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∗ Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut

Am Mühlenberg 1, D-14476 Golm, Germany

∗∗ Department of Mathematics, King’s College London

Strand, London WC2R 2LS, United Kingdom

† Spinoza Institute, University of Utrecht

Postbus 80.195, 3508 TD Utrecht, The Netherlands

August 2003

Abstract

We prove that the two interaction Hamiltonians of light-cone closed superstring field

theory in the plane-wave background present in the literature are identical.

∗E-mail address: apankie@aei.mpg.de
†E-mail address: stefansk@phys.uu.nl

http://arXiv.org/abs/hep-th/0308062v1


1 Introduction

Following the discovery of the plane-wave solution of Type IIB supergravity [1] 1, the spectrum

and superalgebra of the free superstring theory in this background were found in the light-cone

gauge [4, 5]. The theory possesses a unique groundstate and a tower of states with energies

proportional to

ωn =
√

n2 + (µα′p+)2 , (1.1)

where n ∈ ZZ and µ and p+ are the R-R field-strength and light-cone momentum respectively.

The plane-wave background has also become important because of its interpretation as a Pen-

rose limit [6] of the AdS5 × S5 space-time. In this setting, the AdS/CFT correspondence has

been identified as a relation between string theory in the large µ limit and the N = 4 U(N)

SYM gauge theory in a non-’t Hooft limit where not only N , but also J , a chosen U(1) R-

charge, is taken to be large, with the ratio J2/N fixed [7]. A subset of so-called BMN operators

has been identified in the gauge theory which corresponds to string states. These operators

have an expansion in terms of an effective coupling constant λ′ = g2
YMN/J2 = (µα′p+)−2 and

effective genus counting parameter g2
2 = (J2/N)2 = g2

s(µα′p+)4 [8, 9], and the gauge/gravity

correspondence in this background is given by [10]

1

µ
Hs = ∆ − J , (1.2)

viewed as an operator identity between the Hilbert spaces of string theory and the BMN

sector of gauge theory. This correspondence has been placed on a firm footing at the level of

planar graphs, or equivalently at the level of free string theory [7, 8, 9, 10, 11]. At the non-

planar/string interaction level there is also good evidence that, at least for so-called impurity

preserving amplitudes, the operator identity above is valid [12, 13, 14, 15, 16, 17, 18, 19], see

also [20, 21] for recent reviews.

An essential ingredient in the understanding of string theory in the plane-wave background

is the knowledge of string interactions. Unfortunately, the background has only been quantized

in light-cone gauge and so conformal field theory tools such as vertex operators cannot be used

here. 2 The only known way of studying string interactions in the plane-wave comes from

light-cone string field theory [23, 24, 25, 26, 27, 28, 29]. In this formalism the generators of

the supersymmetry algebra are divided into two sets of operators: the kinematical and the

1For previous work on supergravity plane-wave solutions see [2, 3].
2In flat space it is possible to develop vertex operator techniques even in light-cone gauge [22]. This is aided

by the presence of a classical conformal invariance of the equations of motion in light-cone gauge, as well as by

the existence of angular momentum generators J−I .
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dynamical. The former, such as the transverse momenta P I , do not receive corrections in the

string coupling gs, while the latter, which include the Hamiltonian, are modified order by order

in the string coupling. For example

Hs = H2 + gsH3 + . . . , (1.3)

where H2 is the free-string Hamiltonian and H3 represents the process of one string splitting

into two (as well as the time-reversal of this interaction). When computing string interactions

it is most convenient to write H3 as an operator in the three-string Hilbert space [28, 29].

The interaction Hamiltonian H3 is constructed by requiring two conditions. Firstly, the

process is to be smooth on the world-sheet; this is equivalent to demanding the supercommuta-

tion relations between the interaction Hamiltonian and the kinematical generators be satisfied.

In the operator formalism this is enforced by a coherent state of the three-string Hilbert space

often denoted by |V 〉. Secondly, H3 is required to satisfy the supersymmetry algebra relations

involving the Hamiltonian and the dynamical supercharges at next-to-leading order in the string

coupling. These conditions require that

|H3〉 = P|V 〉 , (1.4)

where P is the so-called prefactor which, in the oscillator basis, is polynomial in the creation

operators.

Originally [30, 31, 32, 33], when H3 was constructed in the plane-wave background, the

oscillator basis expression was built on the state |0〉 which has energy 4µ and (hence) is not the

groundstate of the theory.3 Rather, it is smoothly connected to the SO(8) invariant flat space

state |0〉µ=0 on which the flat spacetime interaction vertex was built [27]. We will refer to H3

constructed on this state as the SO(8) solution throughout this paper

|H3〉SO(8) = PSO(8)|V 〉SO(8) . (1.5)

The presence of the R-R flux in the plane-wave background breaks the transverse SO(8) sym-

metry of the metric to SO(4)×SO(4)×ZZ2, where the discrete ZZ2 is an SO(8) transformation

that exchanges the two transverse IR4 subspaces of the plane-wave. Based on this ZZ2 symmetry

it was argued [34] that one should in fact construct H3 on the true groundstate of the theory:

|v〉. A solution of the kinematical constraints based on this state was given in [35], while the

dynamical constraints were solved in [36]; this solution will be called the SO(4)2 solution here

|H3〉SO(4)2 = PSO(4)2 |V 〉SO(4)2 . (1.6)

3For the precise definitions of |0〉 and |v〉 see section 2.
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The two interaction Hamiltonians appeared to be quite different, and it was not, a priori clear,

if they should give the same physics.4

In this paper we prove that the two interaction Hamiltonians are identical when viewed

as operators acting on the three-string Hilbert space. The proof is presented in section 2 for

the supergravity modes only, and generalized in section 3 to the full three-string Hamilto-

nian. Two appendices are provided in which our conventions are summarized and some of the

computational details are presented.

2 The equivalence of the SO(8) and SO(4)2

formalisms in supergravity

In this section we prove that the supergravity three-string interaction vertices constructed in

the SO(8) formalism in [30] and in the SO(4)2 formalism in [36] are identical to each other.

Recall the fermionic part of the light-cone action on the plane wave [4]

Sferm.(r) =
1

8π

∫
dτ

∫ 2π|αr|

0

dσr[i(ϑ̄rϑ̇r + ϑr
˙̄ϑr) − ϑrϑ

′
r + ϑ̄rϑ̄

′
r − 2µϑ̄rΠϑr] , (2.1)

where r = 1, 2, 3 denotes the rth string, αr ≡ α′p+
r and e(αr) ≡ αr/|αr|. ϑa

r is a complex,

positive chirality SO(8) spinor, ϑ̇r ≡ ∂τϑr, ϑ′
r ≡ ∂σr

ϑr and Πab ≡ (γ1γ2γ3γ4)ab is symmet-

ric, traceless and squares to one. The mode expansions of ϑa
r and its conjugate momentum

λa
r ≡ θ̄a

r/4π at τ = 0 are

ϑa
r(σr) = ϑa

0(r) +
√

2
∞∑

n=1

(
ϑa

n(r) cos
nσr

|αr|
+ ϑa

−n(r) sin
nσr

|αr|
)
,

λa
r(σr) =

1

2π|αr|
[
λa

0(r) +
√

2
∞∑

n=1

(
λa

n(r) cos
nσr

|αr|
+ λa

−n(r) sin
nσr

|αr|
)]

.

(2.2)

The Fourier modes satisfy 2λa
n(r) = |αr|ϑ̄a

n(r) and the canonical anti-commutation relations for

the fermionic coordinates yield the anti-commutation rules

{ϑa
r(σr), λ

b
s(σs)} = δabδrsδ(σr − σs) ⇔ {ϑa

n(r), λ
b
m(s)} = δabδnmδrs . (2.3)

The fermionic normal modes are defined via (e(0) ≡ 1)

ϑn(r) =
cn(r)√
|αr|

[
(1 + ρn(r)Π)bn(r) + e(αr)e(n)(1 − ρn(r)Π)b†−n(r)

]
, n ∈ ZZ , (2.4)

4Some evidence that they were in fact identical was already presented in [36].
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and break the SO(8) symmetry to SO(4) × SO(4). Here

ρn(r) = ρ−n(r) =
ωn(r) − |n|

µαr

, cn(r) = c−n(r) =
1√

1 + ρ2
n(r)

. (2.5)

These modes satisfy {ba
n(r), b

b †
m(s)} = δabδnmδrs. The two states |v〉 and |0〉, on which the inter-

action Hamiltonians are constructed, are then annihilated by all bn(r) for n 6= 0 with

θa
0 |0〉 = 0 , ba

0|v〉 = 0 . (2.6)

We use a γ-matrix representation in which

Π =

(
δβ1

α1
δβ2

α2
0

0 −δα̇1

β̇1

δα̇2

β̇2

)
, (2.7)

where αk, α̇k (βk, β̇k) are two-component Weyl indices of SO(4)k.
5 Hence, (1 ± Π)/2 projects

onto the (2, 2) and (2′, 2′) of SO(4) × SO(4), respectively, and

{bn(r) α1α2
, bβ1β2 †

m(s) } = δβ1

α1
δβ2

α2
δnmδrs , {bn(r) α̇1α̇2

, bβ̇1β̇2 †
m(s) } = δβ̇1

α̇1
δβ̇2

α̇2
δnmδrs . (2.8)

The fermionic contribution to the free string light-cone Hamiltonian is

H2(r) =
1

αr

∑

n∈ZZ

ωn(r)

(
bα1α2 †
n(r) bn(r) α1α2

+ bα̇1α̇2 †
n(r) bn(r) α̇1α̇2

)
, (2.9)

and we have neglected the zero-point energy that is canceled by the bosonic contribution.

2.1 The kinematical part of the vertex

The fermionic contributions to |V 〉 - the kinematical part of the supergravity vertices - in the

SO(8) and SO(4)2 formalisms are respectively (βr ≡ −αr

α3

and α1 + α2 + α3 = 0)

|E0
b 〉SO(8) =

8∏

a=1

[
3∑

r=1

λa
0(r)

]
|0〉123 , (2.10)

|E0
b 〉SO(4)2 = exp

(
2∑

r=1

√
βr

(
bα1α2 †
0(3) b†0(r) α1α2

+ bα̇1α̇2 †
0(3) b†0(r) α̇1α̇2

)
)
|v〉123 . (2.11)

5See appendix A for our conventions.
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To relate these two expressions recall that (cf. equation (2.4))

λα1α2

0(3) = −
√

−α3

2
bα1α2

0(3) , λα̇1α̇2

0(3) =

√
−α3

2
bα̇1α̇2 †
0(3) , (2.12)

λα1α2

0(r) =

√
αr

2
bα1α2 †
0(r) , λα̇1α̇2

0(r) =

√
αr

2
bα̇1α̇2

0(r) , (2.13)

and

|0〉3 = −
∏

α1, α2

b†0(3) α1α2
|v〉3 , |0〉r =

∏

α̇1, α̇2

b†0(r) α̇1α̇2
|v〉r . (2.14)

The relative sign in (2.14) is not fixed and has been chosen for convenience. Then it is easy to

show that

|E0
b 〉SO(8) = −

(α3

2

)4 ∏

α̇1, α̇2

(√
β1b

†
0(2) −

√
β2b

†
0(1)

)
α̇1α̇2

|E0
b 〉SO(4)2 . (2.15)

By construction, both |E0
b 〉SO(8) and |E0

b 〉SO(4)2 satisfy the world-sheet continuity conditions.

Hence, the combination
∏

α̇1, α̇2

(√
β1b

†
0(2) −

√
β2b

†
0(1)

)
α̇1α̇2

has to commute with the kinematical

constraints, and so can be re-written in terms of the (zero-mode of the) fermionic prefactor

constituent Zα̇1α̇2
(in the notation of [32]). In fact

(
2

α3

)4

(1 − 4µαK)2|E0
b 〉SO(8) = −

∏

α̇1, α̇2

Z0 α̇1α̇2
|E0

b 〉SO(4)2 ≡
1

12
Z4

0 |E0
b 〉SO(4)2 . (2.16)

The factor of
(

2
α3

)4

(1−4µαK)2 was introduced in the SO(8) formalism as the overall normal-

ization of the cubic vertex.

2.2 Prefactor

In order to proceed further, we have to re-write the prefactor of the SO(8) formulation in a

manifestly SO(4)×SO(4) invariant form using the γ-matrix representation given in appendix A.

The prefactor is [33, 30]6

PSO(8) =
(
KIK̃J − µα

α′
δIJ
)
vIJ(Y ) . (2.17)

Here KI and K̃I are the bosonic constituents commuting with the world-sheet continuity con-

ditions (for their explicit expressions see e.g. [33]) and vIJ = wIJ + yIJ with7

wIJ = δIJ +
1

4!
tIJ
abcdY

aY bY cY d +
1

8!
δIJεabcdefghY

a · · ·Y h , (2.18)

yIJ = − i

2!
γIJ

ab Y aY b − i

2 · 6!
γIJ

ab εab
cdefghY

c · · ·Y h , (2.19)

6When no confusion arises we will suppress the subscript ‘0’ in what follows.

7Compared to [33] we have redefined
√
−α′

α
Ythere = Yhere.
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and tIJ
abcd = γIK

[ab γJK
cd] . The positive and negative chirality parts of Y a are8

Y α1α2 =

3∑

r=1

∑

n≥0

Ḡn(r)b
†α1α2

n(r) , (2.20)

Y α̇1α̇2 = −(1 − 4µαK)−1/2
2∑

r,s=1

εrs
√

βsb
α̇1α̇2

0(r) +

3∑

r=1

∑

n>0

Un(r)Ḡn(r)b
† α̇1α̇2

n(r) , (2.21)

where Ḡ is defined in [36]. Note in particular that the zero-mode of Y α̇1α̇2 is an annihilation

operator. If we want to suppress the spinor indices of Y α̇1α̇2 , we will denote these components

by Ȳ . We have the useful relations

{Y0 α̇1α̇2
, Z β̇1β̇2

0 } = δβ̇1

α̇1
δβ̇2

α̇2
, Y0 α̇1α̇2

|E0
b 〉SO(4)2 = 0 . (2.22)

Using identities (A.8)–(A.16) of appendix A, the SO(8) prefactor decomposes into the following

SO(4) × SO(4) expressions9

KIK̃JwIJ = KIK̃JδIJ
(
1 +

1

144
Y 4Ȳ 4

)

+
1

12
KiK̃j

(
δij
(
Y 4 + Ȳ 4

)
− 3
(
Y 2Ȳ 2

)ij)

− 1

12
Ki′K̃j′

(
δi′j′
(
Y 4 + Ȳ 4

)
+ 3
(
Y 2Ȳ 2

)i′j′)

+
1

3

(
K α̇1α1K̃ α̇2α2 + K̃ α̇1α1K α̇2α2

)(
Y 3

α1α2
Yα̇1α̇2

+ Yα1α2
Y 3

α̇1α̇2

)
, (2.23)

and

2iKIK̃JyIJ = KiK̃j

(
Y 2 ij

(
1 +

1

12
Ȳ 4
)

+ Ȳ 2 ij
(
1 +

1

12
Y 4
))

+ Ki′K̃j′

(
Y 2 i′j′

(
1 − 1

12
Ȳ 4
)

+ Ȳ 2 i′j′
(
1 − 1

12
Y 4
))

+ 2
(
K α̇1α1K̃ α̇2α2 − K̃ α̇1α̇1K α̇2α2

)(
Yα1α2

Yα̇1α̇2
− 1

9
Y 3

α1α2
Y 3

α̇1α̇2

)
, (2.24)

where we use the notation of [36], for example

K α̇1α1 = Kiσiα̇1α1

, Y 2ij
= Y 2α1β1σij

α1β1
,

(
Y 2Ȳ 2

)ij
= Y 2 k(iȲ 2 j)k , (2.25)

and Y 2
α1β1

etc. are defined in appendix B. Commuting the terms involving Ȳ through the Z4

term in equation (2.16) using equations (2.22) and (B.9)–(B.16), one can show the equivalence

of the two interaction Hamiltonians at the supergravity level

(
P|V 〉

)
SO(8) ,Sugra

=
(
P|V 〉

)
SO(4)2 ,Sugra

. (2.26)

8Here the chirality refers to either of the two SO(4)’s.
9For the derivation of the decomposition of the O(Y 6) term see equations (B.17)–(B.21).
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Here [36]

PSO(4)2 =
(1
2
K α̇1α1K̃ β̇1β1 − µα

α′
εα1β1εα̇1β̇1

)
tα1β1

(Y )t∗
α̇1β̇1

(Z)

−
(1
2
K α̇2α2K̃ β̇2β2 − µα

α′
εα2β2εα̇2β̇2

)
tα2β2

(Y )t∗
α̇2β̇2

(Z)

− K α̇1α1K̃ α̇2α2sα1α2
(Y )s∗α̇1α̇2

(Z) − K̃ α̇1α1K α̇2α2s∗α1α2
(Y )sα̇1α̇2

(Z) , (2.27)

and the spinorial quantities are

s(Y ) ≡ Y +
i

3
Y 3 , t(Y ) ≡ ε + iY 2 − 1

6
Y 4 . (2.28)

3 Extension to non-zero-modes

In this section, we prove that the string theory three-string interaction vertex constructed in

the SO(8) formalism in [30, 31, 32, 33] and in the SO(4)2 formalism in [34, 35, 36] are identical.

In the SO(8) formulation, the complete fermionic contribution to the kinematical part of the

vertex is [32, 30]

|Eb〉SO(8) = exp
[ 3∑

r,s=1

∞∑

m,n=1

b†−m(r)Q
rs
mnb

†
n(s) −

√
2Λ

3∑

r=1

∞∑

m=1

Qr
mb†−m(r)

]
|E0

b 〉SO(8) . (3.1)

In the SO(4)2 formalism the fermionic contribution to the kinematical part of the vertex is [35]

|Eb〉SO(4)2 = exp
[ 3∑

r,s=1

∞∑

m,n=1

(
bα1α2 †
−m(r)b

†
n(s) α1α2

Q̄rs
mn − bα̇1α̇2 †

−m(r)b
†
n(s) α̇1α̇2

Q̄sr
nm

)

−
√

2Λα1α2

3∑

r=1

∞∑

m=1

Q̄r
mb†−m(r) α1α2

+
α√
2
Θα̇1α̇2

∞∑

m=1

Q̄r
mb†m(r) α̇1α̇2

]
|E0

b 〉SO(4)2 , (3.2)

and we have the following relations between the fermionic Neumann matrices of the two vertices

Qrs
mn =

(
1 + Π

2
+

1 − Π

2
Um(r)Un(s)

)
Q̄rs

mn , (3.3)

Qr
m =

(
1 + Π

2
+

1 − Π

2
(1 − 4µαK)−1U−1

m(r)

)
Q̄r

m . (3.4)

The positive chirality parts of the vertices agree in both formulations. In what follows we

concentrate on the contribution with negative chirality. Recall that Θ|E0
b 〉SO(8) = 0, (α3Θ ≡

ϑ0(1) − ϑ0(2)) and

Q̄sr
nm =

αrn

αsm
Q̄rs

mn , (3.5)

Q̄sr
nm −

(
U(r)Q̄

rsU(s)

)
mn

= Ḡm(r)

(
U(s)Ḡ(s)

)
n
. (3.6)
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Equation (3.6) can be derived using the factorization theorem for the bosonic Neumann ma-

trices [37, 32]. Using these identities, one can show that the generalization of (2.16) to include

the stringy modes is

(
2

α3

)4

(1 − 4µαK)2|Eb〉SO(8) =
1

12
Z4|Eb〉SO(4)2 . (3.7)

Finally, note that

{Yα̇1α̇2
, Zβ̇1β̇2

} = δβ̇1

α̇1
δβ̇2

α̇2
, Yα̇1α̇2

|Eb〉SO(4)2 = 0 . (3.8)

Since equations (3.7) and (3.8) are algebraically the same as (2.16) and (2.22), the results of

section 2 imply that (
P|V 〉

)
SO(8)

=
(
P|V 〉

)
SO(4)2

, (3.9)

as conjectured in [36].

4 Conclusions

In this paper, we have proved that the plane-wave light-cone superstring field theory Hamil-

tonians constructed on the states |0〉123 and |v〉123 are identical. This analysis could be easily

extended to show the equivalence of the dynamical supercharges as well. We have thereby

resolved one of the puzzling features of the SO(4)2 formalism, namely that it appeared not to

have a smooth µ → 0 flat space limit to the vertex of [27]. In fact Z4|Eb〉SO(4)2 ∼ |Eb〉SO(8)

and PSO(4)2 Ȳ
4 ∼ PSO(8) have well-defined limits as µ → 0 rather than |Eb〉SO(4)2 and PSO(4)2 .

Moreover, since it is known that |Eb〉SO(8) and |Eb〉SO(4)2 ∼ Ȳ 4|Eb〉SO(8) have opposite ZZ2 par-

ity [36, 34], it follows that PSO(4)2 and PSO(8) also have opposite parity and, therefore, PSO(4)2

is odd under the ZZ2.

The existence of a smooth flat space limit, together with ZZ2 ⊂ SO(8) invariance, suggests

that the assignment of negative ZZ2 parity to |v〉 (equivalently positive ZZ2 parity to |0〉) is

correct: only then the plane-wave interaction Hamiltonian is invariant under SO(4)×SO(4)×ZZ2

and the latter is continuously connected to the SO(8) symmetry of the flat space vertex. This

suggests the uniqueness10 of the interaction Hamiltonian at this order in the string coupling as

a solution of the world-sheet continuity and supersymmetry algebra constraints.11

10Up to the overall normalization, which due to the absence of the J−I generator can be any suitable function

of the light-cone momenta.
11Recently, a different solution of these conditions has been presented [38]. However, it does not have a

smooth flat space limit and is not ZZ2 invariant with the above parity assignment.
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The presence of apparently different interaction Hamiltonians has already been encountered

in flat space, where two such objects were constructed. These had an explicit SO(8) or SU(4)

symmetry, respectively [39], and at first sight appear to be quite different. It is clear that our

proof can be easily applied to show that the two expressions are, in fact, equivalent. Similarly

for the open string interaction Hamiltonian in the plane-wave background, two apparently

different expressions exist [40, 41]. Again our proof can be easily adapted to this case to show

that the two are identical as operators in the three-string Hilbert space.
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A Conventions and Notation

The R-R flux in the plane wave geometry breaks the SO(8) symmetry of the metric into

SO(4) × SO(4) × ZZ2. Then

8v −→ (4, 1) ⊕ (1, 4) , 8s −→ (2, 2) ⊕ (2′, 2′) , 8c −→ (2, 2′) ⊕ (2′, 2) , (A.1)

where 2 and 2′ are the inequivalent Weyl representations of SO(4). We decompose γI
aȧ and γI

ȧa

into SO(4) × SO(4) as follows

γi
aȧ =

(
0 σi

α1β̇1

δβ2

α2

σiα̇1β1δα̇2

β̇2

0

)
, γi

ȧa =

(
0 σi

α1β̇1

δα̇2

β̇2

σiα̇1β1δβ2

α2
0

)
, (A.2)

γi′

aȧ =

(
−δβ1

α1
σi′

α2β̇2

0

0 δα̇1

β̇1

σi′ α̇2β2

)
, γi′

ȧa =

(
−δβ1

α1
σi′ α̇2β2

0

0 δα̇1

β̇1

σi′

α2β̇2

)
. (A.3)

Here, the σ-matrices consist of the usual Pauli-matrices, together with the 2d unit matrix

σi
αα̇ =

(
iτ 1, iτ 2, iτ 3,−1

)
αα̇

(A.4)
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and we raise and lower spinor indices with the two-dimensional Levi-Civita symbols, e.g.

σi
αα̇ = εαβεα̇β̇σ

iβ̇β ≡ εαβσiβ
α̇ ≡ εα̇β̇σ

iβ̇
α . (A.5)

The σ-matrices obey the relations

σi
αα̇σj α̇β

+ σj
αα̇σiα̇β

= 2δijδβ
α , σiα̇α

σj

αβ̇
+ σjα̇α

σi
αβ̇

= 2δijδα̇
β̇

. (A.6)

In particular, in this basis

Πab =

((
σ1σ2σ3σ4

)β1

α1

δβ2

α2
0

0
(
σ1σ2σ3σ4

)α̇1

β̇1

δα̇2

β̇2

)
=

(
δβ1

α1
δβ2

α2
0

0 −δα̇1

β̇1

δα̇2

β̇2

)
, (A.7)

and (1 ± Π)/2 projects onto (2, 2) and (2′, 2′), respectively. The following identities are used

throught the paper

εαβεγδ = δδ
αδγ

β − δγ
αδδ

β , (A.8)

σi
αβ̇

σj β̇

β = −δijεαβ + σij
αβ , (σij

αβ ≡ σ
[i
αα̇σj]α̇

β = σij
βα) (A.9)

σi
αα̇σjα

β̇ = −δijεα̇β̇ + σij

α̇β̇
, (σij

α̇β̇
≡ σ

[i
αα̇σj]α

β̇ = σij

β̇α̇
) (A.10)

σk
αα̇σk

ββ̇
= 2εαβεα̇β̇ , (A.11)

σik
αβσk

γδ̇
= εαγσ

i
βδ̇

+ εβγσ
i
γδ̇

, (A.12)

σik
αβσjk

γδ = δij(εαγεβδ + εαδεβγ) −
1

2

(
σij

αγεβδ + σij
βδεαγ + σij

αδεβγ + σij
βγεαδ

)
, (A.13)

σkl
αβσkl

γδ = 4(εαγεβδ + εαδεβγ) , (A.14)

σkl
αβσkl

γ̇δ̇
= 0 , (A.15)

2σi
αα̇σj

ββ̇
= δijεαβεα̇β̇ + σ

k(i
α1β1

σ
j)k

α̇1β̇1

− εαβσij

α̇β̇
− σij

αβεα̇β̇ . (A.16)

B Useful relations

We define the following quantities, which are quadratic in Y and symmetric in spinor indices

Y 2
α1β1

≡ Yα1α2
Y α2

β1
, Y 2

α2β2
≡ Yα1α2

Y α1

β2
, (B.1)

cubic in Y

Y 3
α1β2

≡ Y 2
α1β1

Y β1

β2
= −Y 2

β2α2
Y α2

α1
, (B.2)

and, finally, quartic in Y and antisymmetric in spinor indices

Y 4
α1β1

≡ Y 2
α1γ1

Y 2γ1

β1
= −1

2
εα1β1

Y 4 , Y 4
α2β2

≡ Y 2
α2γ2

Y 2γ2

β2
=

1

2
εα2β2

Y 4 , (B.3)
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where

Y 4 ≡ Y 2
α1β1

Y 2α1β1 = −Y 2
α2β2

Y 2α2β2 . (B.4)

These multi-linears in Y satisfy

Yα1α2
Yβ1β2

= −1

2

(
εα1β1

Y 2
α2β2

+ εα2β2
Y 2

α1β1

)
, (B.5)

Yα1α2
Y 2

β2γ2
= −1

3

(
εα2γ2

Y 3
α1β2

+ εα2β2
Y 3

α1γ2

)
, (B.6)

Yα1α2
Y 2

β1γ1
=

1

3

(
εα1β1

Y 3
γ1α2

+ εα1γ1
Y 3

α1α2

)
, (B.7)

Y 3
β1γ2

Yα1δ2 =
1

4
εβ1α1

εγ2δ2Y
4 . (B.8)

Analogous relations hold for Z.

To derive equations (2.16) and (3.7) we need the following (anti)commutators

[Yα̇1α̇2
, Z2

β̇1γ̇1

] = εα̇1β̇1
Zγ̇1α̇2

+ εα̇1γ̇1
Zβ̇1α̇2

, (B.9)

[Yα̇1α̇2
, Z2

β̇2γ̇2

] = εα̇2β̇2
Zα̇1γ̇2

+ εα̇2γ̇2
Zα̇1β̇2

, (B.10)

{Yα̇1α̇2
, Z3

β̇1β̇2

} = −3Zα̇1β̇2
Zβ̇1α̇2

, (B.11)

[Yα̇1α̇2
, Z4] = −4Z3

α̇1α̇2
, (B.12)

[Y 2
α̇1β̇1

, Z4]|Eb〉SO(4)2 = −12Z2
α̇1β̇1

|Eb〉SO(4)2 , (B.13)

[Y 2
α̇2β̇2

, Z4]|Eb〉SO(4)2 = 12Z2
α̇2β̇2

|Eb〉SO(4)2 , (B.14)

[Y 3
α̇1α̇2

, Z4]|Eb〉SO(4)2 = −36Zα̇1α̇2
|Eb〉SO(4)2 , (B.15)

[Ȳ 4, Z4]|Eb〉SO(4)2 = 144|Eb〉SO(4)2 , (B.16)

Finally, to rewrite the O(Y 6) term in the SO(8) prefactor in a manifestly SO(4) × SO(4)

invariant form, it is useful to employ the identity [27]

− 1

6!
γIJ

ab εab
cdefghY

cY dY eY fY gY h =

∫
d8Λ γIJ

ab ΛaΛbe−Y ·Λ , (B.17)

and ∫ ∏

α1α2

dΛα1α2
e−Yγ1γ2

Λγ1γ2

= − 1

12
Y 4 , (B.18)

∫ ∏

α1α2

dΛα1α2
Λβ1β2

e−Yγ1γ2
Λγ1γ2 = −1

3
Y 3

β1β2
, (B.19)

∫ ∏

α1α2

dΛα1α2
Λ2

β1δ1e
−Yγ1γ2

Λγ1γ2

= Y 2
β1δ1 , (B.20)

∫ ∏

α1α2

dΛα1α2
Λ2

β2δ2
e−Yγ1γ2

Λγ1γ2 = −Y 2
β2δ2

. (B.21)
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