
              

City, University of London Institutional Repository

Citation: Stefanski, B. (2003). Open String Plane-Wave Light-Cone Superstring Field 

Theory. Nuclear Physics B, 666(1-2), pp. 71-87. doi: 10.1016/s0550-3213(03)00499-1 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1027/

Link to published version: https://doi.org/10.1016/s0550-3213(03)00499-1

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:h

ep
-t

h/
03

04
11

4v
1 

 1
1 

A
pr

 2
00

3

hep-th/0304114

SPIN-2003/09

ITP-2003/16

Open String Plane-Wave Light-Cone

Superstring Field Theory

B. Stefański, jr.∗
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Abstract
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cone superstring field theory for a large class half-supersymmetric D-branes in the plane-

wave background. We show that these satisfy the plane-wave superalgebra at first order
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functions of open strings with endpoints on half-supersymmetric D-branes.
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1 Introduction

Because of their non-perturbative, yet quantifiable nature, D-branes [1] have played a central

role in many string theory settings. Following the discovery of a new exact string theory

background [2, 3, 4] - the maximally supersymmetric plane-wave of the Type IIB theory - it is

natural to investigate D-branes in this spacetime.

In light-cone gauge the superstring action in the plane-wave background is quadratic and has

been quantised [3, 4]. The spectrum of closed string states consists of a unique massless ground-

state and an infinite tower of excited states whose masses are of order ωn/(α′p+) where

ωn ≡
√

n2 + (α′µp+)2 , n ∈ IN , (1.1)

p+ is momentum along the x− direction and µ is the R-R flux. Because the action is quadratic,

it has been possible to analyse D-branes in this background through the open strings that end

on them [5, 6, 7]. In this approach worldsheets with boundaries in σ are considered; consistent

D-branes can then be thought of as boundary conditions on fields which are compatible with the

variational principle. Since the closed string spectrum is known explicitly, it is also possible to

investigate D-branes as sources for closed string states. In this approach boundary conditions

for closed string states are enforced at constant τ , and are implemented, at the Fock space

level, by coherent states [8, 9, 10, 11, 7]. The two approaches are compatible via the open-

closed string duality of the cylinder diagram; this consistency condition is often refered to

as the Cardy condition and has been explicitly verified for a large class of D-branes in the

plane-wave background [9, 11] where a number of beautiful identities were proved. Given this

understanding of D-branes, their interactions in this background merit further investigation.

In light-cone gauge in flat spacetime the action has a classical conformal symmetry which

can be exploited to use a vertex operator approach to interactions. This symmetry is lost in

the plane-wave background and the study of string interactions becomes much more difficult.

The light-cone string field theory formalism has been succesfully used to study closed string

interactions in the plane-wave background [12, 13, 14]. This formalism was originaly developed

in flat spacetime for the bosonic string [15, 16, 17] in which a cubic interaction vertex for

the scattering of three strings is constructed by requiring continuity of string fields on the

worldsheet. This continuity is enforced by a delta function on string fields

∆(X1 + X2 − X3) . (1.2)

It is particularily useful to express the above functional delta function in Fourier modes and to

construct a vertex as an exponential of Fock space creation operators which enforce the above
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Figure 1: The worldsheet of the cubic open string interaction vertex.

continuity conditions mode by mode [16]. The formalism was subsequently extended to the

superstring in flat spacetime [18, 19, 20, 21]. In this approach the cubic interaction vertex is

a first order correction in string coupling gs to the free Hamiltonian. In order to satisfy the

superalgebra with this new Hamiltonian, dynamical supercharges also receive corections. As a

result, in the oscilator basis, the vertex (and the dynamical supercharges) is no longer given by

an exponential of Fock space creation operators as in the bosonic case. Instead it also contains a

prefactor polynomial in creation operators. These prefactors are such that they do not destroy

worldsheet continuity enforced by the exponential part of the vertex. They also ensure that

the superalgebra is satisfied order by order in the string coupling.

In this paper we will construct the cubic interaction vertex and dynamical supercharges for

open strings in the plane-wave background ending on D−-branes. These constitute a large class

of half-supersymmetric D-branes in this background. They extend along q = 0, . . . , 4 directions

in SO(4) and along q±2 directions along SO(4)′, as well as, in the open string light-cone gauge,

along the light-cone directions. In the bulk of the paper we will take the D-branes to lie at

xr′ = 0 in the transverse space. It is, of course, possible to move such D−-branes away from the

origin using the isometries that they preserve [6]. The cubic vertex and dynamical supercharges

for such D−-branes can be easily obtained, by applying the aforementioned isometries to the

vertex and supercharges computed explicitly below.

The interaction vertex presented below uses the SU(4) formalism developed in flat spacetime

in [21]. In [21] the SO(8) symmetry of the problem was broken to a SO(6)×SO(2) ∼ SU(4)×
U(1) subgroup. In the SO(8) formalism the spinor Sa is its own conjugate momentum which

introduces constraints that can significantly complicate the problem. The SU(4) formalism

circumvents this problem since an SO(8) spinor breaks into two fields, one of which can be

treated as the coordinate and the other as the conjugate momentum. We extend the SU(4)
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formalism to open strings ending on D−-branes in the plane-wave background. While it is true

that the D−-branes do not preserve the SU(4) × U(1) symmetry, the cubic vertex can still be

written using SU(4) notation. This is analogous to the closed string vertex in the plane-wave

background which is written in SO(8) notation even though the backgorund only preserves a

SO(4) × SO(4) subgroup.

Following its discovery, the plane-wave background has received substantial interest within

the AdS/CFT correspondence [22, 23, 24]. It was conjectured [25] that string theory in this

background is dual to a double scaling limit of SU(N), N = 4 Super Yang-Mills theory. Sub-

sequently, the duality has been extensively tested and investigated [26, 27]. Since D-branes are

classical vacua of string field theory, one may expect that they will have to manifest themselves

in the dual gauge theory. Several authors investigated gauge theories dual to D-branes in the

plane-wave background [28, 29, 30]. A general picture was proposed in [30], where it was ar-

gued that the D-branes in the plane-wave background would be dual to suitable limits of the

SU(N), N = 4 Super Yang-Mills theory coupled to a defect CFT [31, 32, 33, 34]. The cubic

vertex constructed in this paper can be used to investigate this correspondence at the level of

open-string interactions.

While this paper was in the final stages of preparation [35] appeared on the archive in which

functional expressions in (SU(2) × U(1))2 notation are given for the cubic interaction vertex

for the D7-brane in the plane wave background.

This paper is organized as follows. In section 2 we present the free open string in the plane-wave

background and set out the SU(4) notation. In sections 3 we construct the open superstring

three point vertex in the plane-wave background. An appendix is included which contains some

of the computational details.

2 The free open string theory on the plane-wave in the

SU(4) formalism

In the SU(4) formalism the SO(8) vector representation decomposes as

8v = 60 + 11 + 1−1 , (2.1)

where the subscripts denote U(1) quantum numbers. The 8v index I = 1, . . . , 8 breaks into

i = 1, . . . , 6 of the 6, as well as L and R of the two singlets. We will take i to lie along the

X1, . . . , X6 directions and

XR =
1√
2

(

X7 + iX8
)

, XL =
1√
2

(

X7 − iX8
)

. (2.2)
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The spinor representations decompose as

8s = 41/2 + 4̄−1/2 , 8c = 4−1/2 + 4̄1/2 . (2.3)

The 4 and 4̄ indices will be denoted by a superscript and subscript A = 1, . . . , 4 index, respec-

tively. An open string ending on a half-supersymmetric D-branes in the plane-wave background

in light-cone gauge is described, in the SU(4) formalism by xi
u(σu), xL

u(σu), xR
u (σu), and λA

u (σu),

θuA(σu), λ̃A
u (σu), θ̃uA(σu)

1 together with a set of boundary conditions. These have been dis-

cussed at length in [6]. For D-branes presently under consideration these are

∂σxr
u|σ=0,π|αu| = 0 , xr′,L,R

u |σ=0,π|αu| = 0 (2.4)

θuA|σ=0,π|αu| = ΩA
Bθ̃uB|σ=0,π|αu| , λA

u |σ=0,π|αu| = ΩA
Bλ̃B

u |σ=0,π|αu| . (2.5)

Above the superscripts r and r′, which together span i, correspond to Neumann and Dirichlet

boundary conditions respectively; the matrix Ω is defined as 2

Ω = ρRL
∏

r′

ρr′ . (2.6)

Recall that for D−-branes ΩΠΩΠ = −1 with Π = ρ1234. The index u = 1, 2, 3 denotes the uth

string (see Figure 1). All the D-branes under consideration here have at least two Dirichlet

directions; we take L, R to be Dirichlet througout.

In a collision process p+
u will be positive for an incoming string and negative for an outgoing

one and it is convenient to define

αu = α′p+
u . (2.7)

The mode expansions of the bosonic fields at τ = 0 are

xr
u(σu) = xr

0(u) +
√

2

∞
∑

n=1

xr
n(u) cos

nσu

|αu|
, (2.8)

pr
u(σu) =

1

π|αu|
[pr

0(u) +
√

2
∞
∑

n=1

pr
n(u) cos

nσu

|αu|
] , (2.9)

xr′

u (σu) =
√

2
∞
∑

n=1

xr′

−n(u) sin
nσu

|αu|
, (2.10)

pr′

u (σu) =

√
2

π|αu|
∞
∑

n=1

pr′

−n(u) sin
nσu

|αu|
, (2.11)

1We will often suppress these indices in what follows.
2We are using the same gamma-matrix conventions as [21].
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with the L, R directions having the same expansions as the r′. The Fourier modes can be

re-expressed in terms of creation and annihilation operators as

xI
n(u) = i

√

α′

2ωn(u)

(

aI
n(u) − aI †

n(u)

)

, pI
n(u) =

√

ωn(u)

2α′

(

aI
n(u) + aI †

n(u)

)

, (2.12)

with n non-negative for I = r and negative for I = r′, L, R. Canonical quantization of the

bosonic coordinates

[xI
r(σu), p

J
s (σv)] = iδIJδuvδ(σu − σv) (2.13)

implies the commutation relations

[aI
n(u), a

J †
m(v)] = δIJδnmδuv . (2.14)

The following linear combinations of the fermionic fields are the fermionic normal modes

λA
±u(σu) = λA

u (σu) ± ΩA
Bλ̃B

u (σu) , (2.15)

θ±uA(σu) = θuA(σu) ± ΩA
Bθ̃uB(σu) . (2.16)

At τ = 0 the mode expansions of λA
±(u) and θ±(u)A are

λA
+u(σu) =

1

π|αu|

[

√
2λA

0(u) + 2

∞
∑

n=1

λA
n(u) cos

nσu

|αu|

]

, (2.17)

λA
−u(σu) =

1

π|αu|
∞
∑

n=1

λA
−n(u) sin

nσu

|αu|
, (2.18)

θ+uA(σu) =
√

2θ0(u)A + 2
∞
∑

n=1

θn(u)A cos
nσu

|αu|
, (2.19)

θ−uA(σu) = 2
∞
∑

n=1

θ−n(u)A sin
nσu

|αu|
. (2.20)

The non-zero anti-commutators are

{

θ±Au(σu), λ
B
±v(σ

′
v)
}

= 2δuvδ
B
Aδ(σu − σ′

v) , (2.21)

or in terms of modes
{

θm(u)A, λB
n(v)

}

= δmnδuvδ
B
A . (2.22)
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It is convenient to define a new basis of non-zero moded oscilators

λA
n(u) =

√

|n|
2ωn(u)

(

P−1
n(u)C

ARC
n(u) + Pn(u)C

ARC
−n(u)

)

, (2.23)

λA
−n(u) = i

√

|n|
2ωn(u)

(

Pn(u)C
ARC

n(u) − P−1
n(u)C

ARC
−n(u)

)

, (2.24)

θn(u)A =

√

|n|
2ωn(u)

(

Pn(u)A
CRn(u)C + P−1

n(u)A
BR−n(u)B

)

, (2.25)

θ−n(u)A = i

√

|n|
2ωn(u)

(

P−1
n(u)A

CRn(u)C − Pn(u)A
BR−n(u)B

)

. (2.26)

Here

P±1
n(u)A

B =
1

√

1 − ρ2
n(u)

(1 ∓ iρnΩΠ)A
B , (2.27)

is the generalisation of the P±1
n(r) in the closed string and

ρn(r) = ρ−n(r) =
ωn(r) − |n|

µαr

, cn(r) = c−n(r) =
1

√

1 + ρ2
n(r)

. (2.28)

These modes satisfy

{RAn(u), R
B
m(v)} = δB

Aδn+mδuv . (2.29)

The free string light-cone Hamiltonian is

H2(u) =

∫ π|αu|

0

dσu

[

e(αu)

2πα′
(π2α′2(pI

u)
2 + (∂σxI

u)
2 + µ2(xI

u)
2)

+
1

2i
(e(αu)(θ+uAλ′A

−u + θ−uAλ′A
+u) + µ(λA

+u(ΩΠ)A
Bθ+uB − λA

−u(ΩΠ)A
Bθ−uB))

]

.(2.30)

It is convenient to define

RA
±0(u) =

1

2
(1 ∓ ie(αu)ΩΠ)A

BλB
0(u) , R±0(u)A =

1

2
(1 ∓ ie(αu)ΩΠ)A

Bθ0(u)B , (2.31)

which satisfy

{

R±0A(u), R
B
±0(v)

}

= 0 ,
{

R±0A(u), R
B
∓0(v)

}

= δuv
1

2
(1 ∓ iΩΠ)A

B , (2.32)

The mode-expanded Hamiltonian is then

H2(u) =
1

αu

∞
∑

n=1

ωn(u)

(

ar†
n(u)a

r
n(u) + ar′†

n(u)a
r′

n(u) + R−n(u)ARA
n(u) + RA

−n(u)RAn(u)

)

+
ω0(u)

αu
(ar†

0(u)a
r
0(u) + R−0(u)ARA

+0(u) + RA
−0(u)R+0(u)A) +

1

2
µe(αu)(p − 5) , (2.33)
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where the last term is the zero-mode normal ordering constant for a Dp−-brane. The vacuum

|v〉u is defined as 3

aI
n(u)|v〉u = 0 , RA

m(u)|v〉u = 0 , Rm(u)A|v〉u = 0 , m > 0 (2.34)

with n negative (non-negative) for I Dirichlet (Neumann) and for

RA
+0(u)|v〉u = 0 , R+0(u)A|v〉u = 0 . (2.35)

The 16 supersymmetries are generated by the kinematical q+
(u)A, q+A

(u) and the dynamical q−(u)A,

q−A
(u) . The superalgebra was computed explicitly in [7]. In the SU(4) formalism the part of the

superalgebra of importance throughout this paper is
{

q−A
(u) , q

−
(u)B

}

= 2δA
BδuvH2(u) + iµδuv

(

(γijΠ)A
BJ ij

(u) + (γi′j′Π′)A
BJ i′j′

(u) − Π̃A
BJLR

(u)

)

, (2.36)

where Π′ = ρ5678 and Π̃ = Π, Π′ for R, L in SO(4) or SO(4)′, respectively. The non-linearly

realized supercharges can be expressed in terms of the normal modes of the system as

q−(u)A =

∫ π|αu|

0

dσu

[

−e(αu)(πα′pr
uρ

r
ABλB

+u − ∂σxr
uρ

r
ABλB

−u) − µxr
u(ρ

rΩΠ)ABλB
+u

−e(αu)(πα′pr′

u ρr′

ABλB
−u − ∂σxr′

u ρr′

ABλB
+u) + µxr′

u (ρr′ΩΠ)ABλB
−u

+
√

2(α′pR
u θ−uA − 1

π
∂σxR

u θ+uA − e(αu)
µ

π
xR

u (ΩΠ)A
Bθ−uB)

]

, (2.37)

q−A
(u) =

∫ π|αu|

0

dσu

[

(α′pr
uρ

rABθ+uB − 1

π
∂σx

r
uρ

rABθ−uB + e(αu)
µ

π
xr

u(ρ
rΩΠ)ABθ+uB)

+(α′pr′

u ρr′ABθ−uB − 1

π
∂σxr′

u ρr′ABθ+uB − e(αu)
µ

π
xr′

u (ρr′ΩΠ)ABθ−uB)

+
√

2e(αu)(πα′pL
uλA

−u − ∂σxL
uλA

+u) −
√

2µxL
u(ΩΠ)A

BλB
−u)
]

. (2.38)

Expanding in modes one finds

q−(u)A = −
√

2
α′

α
pr

0(u)(ρ
rλ0(u))A −

√
2µxr

0(u)(ρ
rΩΠλ0(u))A

− 2

αu

√

α′

2

∞
∑

n=1

√
n
[

ar
n(u)(ρ

rPn(u)R−n(u))A + ar†
n(u)(ρ

rP−1
n(u)Rn(u))A − iar′

n(u)(ρ
r′P−1

n(u)R−n(u))A

+iar′†
n(u)(ρ

r′Pn(u)Rn(u))A + i
√

2αua
R
n(u)(Pn(u)R−n(u))A − i

√
2αua

R†
n(u)(P

−1
n(u)Rn(u))A

]

(2.39)

q−A
(u) =

√
2α′pr

0(u)(ρ
rθ0(u))

A +
√

2µαux
r
0(u)(ρ

rΩΠθ0(u))
A

+
√

2α′

∞
∑

n=1

√
n
[

ar
n(u)(ρ

rP−1
n(u)R−n(u))

A + ar†
n(u)(ρ

rPn(u)Rn(u))
A − iar′

n(u)(ρ
r′Pn(u)R−n(u))

A

+iar′†
n(u)(ρ

r′P−1
n(u)Rn(u))

A − i

√
2

αu
aL

n(u)(P
−1
n(u)R−n(u))

A + i

√
2

αu
aL†

n(u)(Pn(u)Rn(u))
A
]

(2.40)

3This vacuum is the SU(4) version of the vacuum defined in [7].
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3 The cubic open string interaction

In this section we construct the cubic open string interaction vertex, corresponding to two

strings joining into a third string. This will be done in two steps. Firstly, we will construct a

state |V 〉 which satisfies

3
∑

u=1

pI
(u)(σ) |V 〉 = 0 ,

3
∑

u=1

e(αu)x
I
(u)(σ) |V 〉 = 0 , (3.1)

3
∑

u=1

λA
(u)(σ) |V 〉 = 0 ,

3
∑

u=1

e(αu)θ(u)A(σ) |V 〉 = 0 , (3.2)

3
∑

u=1

λ̃A
(u)(σ) |V 〉 = 0 ,

3
∑

u=1

e(αu)θ̃(u)A(σ) |V 〉 = 0 . (3.3)

These equations implement the functional delta function constraints (1.2) at the Fock space

level. The coordinates of the three strings shown in Figure 1 are parameterized by

σ1 = σ 0 ≤ σ ≤ πα1 ,

σ2 = σ − πα1 πα1 ≤ σ ≤ π(α1 + α2) , (3.4)

σ3 = −σ 0 ≤ σ ≤ π(α1 + α2) , (3.5)

and α1 + α2 + α3 = 0 with α3 < 0. Further

xI
u(σ) = xI

u(σu)Θu , (3.6)

with similar expressions for the other fields, where

Θ1 =

{

1 σ < πα1

0 σ > πα1 ,
Θ2 =

{

0 σ < πα1

1 σ > πα1 ,
Θ3 = Θ1 + Θ2 = 1 . (3.7)

The above constraints can then be expanded in σ Fourier modes to give the restrictions on |V 〉
in terms of creation and annihilation operators4 (see for example equation (3.9) below).

Secondly, we will require that the interaction vertex together with the dynamical super-

charges satify the supersymmetry algebra at O(gs). The full cubic vertex will be given by an

exponential of creation operators in the Fock spaces of the three strings, which enforces the

kinematical constraints and a prefactor, polynomial in creation operators, which implements

the dynamical constraints. We conclude this section by re-interpreting the operator expres-

sions for the cubic interaction vertex and dynamical supercharges in a functional language.

4The state |V 〉 can also be found by performing a functional integral over the functional delta function.

9



The reader should be aware that using functional expressions directly in the plane-wave back-

ground is much more suble than in flat spacetime. For example equation (3.34) is no longer

valid when the anti-commutator does not act directly on |V 〉; in flat spacetime on the other

hand there is no need to place the commutator next to |V 〉 (see equation (4.29b) of [21]). This

type of behaviour was already encountered in the closed string cubic vertex in the plane-wave

background [14].

3.1 The kinematical constraints

The bosonic continuity conditions, and mode expansions are very similar to the closed string

ones. In particular the Neumann directions are like the positive modes of the closed string and

the Dirichlet directions like the negative modes. The bosonic part of the vertex is then

∣

∣Vbos
〉

= exp

{

1

2

3
∑

u,v=1

(

∑

m,n

aI†
m(u)N̄

uv
mna

I†
n(v)

)}

|0〉123 . (3.8)

where |0〉123 ≡ |0〉1 ⊗ |0〉2 ⊗ |0〉3 with |0〉u defined in equation (3.17) below. Nuv
mn is the usual

plane-wave background Neumann matrix, whose explicit form (up to exponential corrections)

has recently been found [36]. For I Dirichlet the indices m and n run over the negative

integers, while for I Neumann they run over the non-negative integers. It is easy to repeat the

analysis of [37] in order to confirm that
∣

∣Vbos
〉

satisfies the continuity conditions enforced by

the functional delta function.

The continuity conditions for fermions can be recombined as

3
∑

u=1

λA
±(u)(σu) |V 〉 = 0 ,

3
∑

u=1

e(αu)θ±(u)A(σu) |V 〉 = 0 , (3.9)

where λ±(u), θ±(u) are defined in equations (2.15) and (2.16). The functional delta functions

can then be written as an infinite product of delta functions of the sin and cos modes. One may

then perform the Gaussian integration to obtain the fermionic vertex. Instead we will write

down the Fourier modes of the above constraints and solve for the vertex as an eigenstate of

these equations. The continuity conditions (3.9) reduce to

∑

u,n

X(u)
mnλ

A
n(u)

∣

∣Vferm
〉

= 0 ,
∑

u,n

αuX
(u)
mnθn(u)A

∣

∣Vferm
〉

= 0 . (3.10)

The Fourier transform matrices X
(u)
mn were defined in [37]; we note here that they are block

diagonal with the negative modes forming one block and the non-negative modes the other.

10



Re-writing these in terms of the creation and annihilation operators we get

3
∑

u=1

∞
∑

n=1

1

αu
(A(u)CC

−1/2
(u) )mn(Pn(u)C

ARC
n(u) − P−1

n(u)C
ARC

−n(u))
∣

∣Vferm
〉

= 0

[

3
∑

u=1

∞
∑

n=1

(A(u)C
−1/2
(u) )mn(P−1

n(u)C
ARC

n(u) + Pn(u)C
ARC

−n(u)) + BmΛA

]

∣

∣Vferm
〉

= 0

3
∑

u=1

∞
∑

n=1

(A(u)CC
−1/2
(u) )mn(P−1

n(u)A
CRn(u)C − Pn(u)A

CR−n(u)C)
∣

∣Vferm
〉

= 0

[

3
∑

u=1

∞
∑

n=1

αu(A
(u)C

−1/2
(u) )mn(Pn(u)A

CRn(u)C + P−1
n(u)A

CR−n(u)C) − αBmΘA

]

∣

∣Vferm
〉

= 0 .

(3.11)

where

α ≡ α1α2α3 , (3.12)

and the matrices A(u), C, C(u) and vector B are the same as in [14] and

α3ΘA ≡ θ0(1)A − θ0(2)A , ΛA = α1λ
A
0(2) − α2λ

A
0(1) . (3.13)

In appendix A we show that these are satisfied by

∣

∣Vferm
〉

= exp

{

3
∑

u,v=1

∞
∑

m,n=1

RA
−m(u)Q

uv
mnA

BR−n(v)B −
3
∑

u=1

∞
∑

m=1

RA
−m(u)Q

u
mA

BΘB

}

∣

∣

∣
V 0

ferm

〉

,

(3.14)

with
∣

∣

∣
V 0

ferm

〉

=

4
∏

A=1

[

3
∑

u=1

αuθ0(u)A

]

|0〉123 , (3.15)

enforcing the zero-mode constraints. Here

Qu
nA

B =
α/αu

1 − 4µαK
(1 − 2µαK(1 + iΩΠ))A

C(C
1/2
(u) P(u)C

BC1/2N̄u)n ,

Quv
mnA

B =
αv

αu
(P−1

(u)A
CU(u)C

1/2N̄uvC−1/2U(v)P
−1
(v)C

B)mn .
(3.16)

The state |0〉123 ≡ |0〉1 ⊗ |0〉2 ⊗ |0〉3 on which the vertex is built is defined as

aI
n(u)|0〉u = 0 , RA

m(u)|0〉u = 0 , Rm(u)A|0〉u = 0 , m > 0

λA
0(u)|0〉u = 0 , (3.17)

with n negative (non-negative) for I Dirichlet (Neumann).

In summary, the part of the cubic contribution to the dynamical generators satisfying the

kinematic constraints is

|V 〉 ≡
∣

∣Vferm
〉
∣

∣Vbos
〉

δ

(

3
∑

r=1

αr

)

. (3.18)

11



3.2 The dynamical constraints

In interacting lightcone string field theory H , q−A and q−A receive gs corrections, while operators

such as J , P and q+ do not. As a result, the superalgebra relation (2.36) at O(gs) implies

3
∑

u=1

q−A(u)

∣

∣Q−B
〉

+

3
∑

u=1

q−B
(u)

∣

∣Q−
A

〉

= 2δB
A |H〉 . (3.19)

This relation places tight constraints on the form of the dynamical supercharges and cubic

interaction vertex. These dynamical constraints are solved by introducing a prefactor [19, 20],

polynomial in creation operators, in front of |V 〉. The constituents of this polynomial prefactor

have to commute with the dynamical constraints

[

3
∑

u=1

pu(σu),P
]

= 0 =
[

3
∑

u=1

e(αu)xu(σu),P
]

, (3.20)

{

3
∑

u=1

λu(σu),P
}

= 0 =
{

3
∑

u=1

e(αu)ϑu(σu),P
}

. (3.21)

The bosonic constituents are again similar to the closed string case, and for the Neumann

directions they give

Kr ≡ Kr
0 + Kr

+ ≡ P
r − iµ

α

α′
R

r +
3
∑

u=1

∞
∑

n=1

Fn(u)a
†r
n(u) , (3.22)

where

P
r ≡ α1p

r
0(2) − α2p

r
0(1) , α3R

r ≡ xr
0(1) − xr

0(2) , [Rr, Ps] = iδrs (3.23)

and in terms of the zero-mode creation oscillators

P
r − iµ

α

α′
R

r =

√

2

α′

√
µα1α2

(√
α1a

†r
0(2) −

√
α2a

†r
0(1)

)

. (3.24)

In the Dirichlet directions the bosonic prefactor will be built out of

Kr′, L, R ≡
3
∑

u=1

∞
∑

n=1

F−n(u)a
†r′, L, R
−n(u) , (3.25)

where F(u) is the same as in the closed string.

The solution involving subscripted fermionic creation operators is

YA ≡ − α√
α′

ΘA +
3
∑

u=1

∞
∑

n=1

Gn(u)A
BR−n(u)B , (3.26)
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where

Gn(u)A
B = − α/

√
α′

1 − 4µαK
(1 − 2µαK(1 − iΩΠ))A

C(P−1
(u)nC

BC
1/2
(u) C1/2N̄u)n . (3.27)

As in flat space [19, 20], it turns out that the prefactors do not involve superscripted fermionic

creation oscillators.

Given the above, the simplest ansatz for the dynamical supercharges is

∣

∣Q−
A

〉

= YA |V 〉 , (3.28)
∣

∣Q−A
〉

= kǫABCDYBYCYD |V 〉 , (3.29)

with k a constant to be determined and

YA ≡ (1 − 4µαK)−1/2(1 − 2µαK(1 + iΩΠ))A
BYB . (3.30)

One can show that

3
∑

u=1

q−A
(u) |V 〉 = −

√
2α′

α′

α
(Krρr + Kr′ρr′)AB(1 − 2µαK(1 + iΩΠ))B

CYC |V 〉 , (3.31)

3
∑

u=1

q−(u)A |V 〉 = −2
√

α′
α′

α
KR(1 − 2µαK(1 + iΩΠ))A

BYB |V 〉 , (3.32)

and
{

3
∑

u=1

q−A
(u) ,YB

}

|V 〉 = 2
√

α′KL(1 − 2µαK(1 − iΩΠ))B
A |V 〉 , (3.33)

{

3
∑

u=1

q−(u)A,YB

}

|V 〉 = −
√

2α′(Krρr + Kr′ρr′)AC(1 − 2µαK(1 − iΩΠ))B
C |V 〉 . (3.34)

Using these one is led to the solution

|H〉 = (1−4µαK)1/2
[√

α′KL+

√

α′

2

α′

2α
KiρiCDYCYD+

(α′)5/2

24α2
KRǫCDEFYCYDYEYF

]

|V 〉 , (3.35)

and

k = − α′

6α
. (3.36)

It is important to note that as in the case of the closed string in the plane-wave background, the

overall normalisation of the dynamical supercharges, and hence also the cubic vertex cannot be

fixed in this way.5

5The normalisation may well be a µ dependent quantity. Since we have constructed the vertex by enforcing
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3.3 Functional interpretation

The bosonic constituents of the prefactor can be obtained via the operators [19, 20]

∂XI(σ) = 4π

√−α

α′
(πα1 − σ)1/2

(

∂σxI
1(σ) + ∂σx

I
1(−σ)

)

,

P I(σ) = −2π
√
−α(πα1 − σ)1/2

(

pI
1(σ) + pI

1(−σ)
)

.

(3.37)

Acting on the exponential part of the vertex these satisfy

lim
σ→πα1

Kr(σ)|V 〉 ≡ lim
σ→πα1

P r(σ) = f(µ)Kr|V 〉 ,

lim
σ→πα1

Kr′,L,R(σ)|V 〉 ≡ lim
σ→πα1

1

4π
∂Xr′,L,R(σ) = f(µ)Kr′,L,R|V 〉 .

(3.38)

Here we defined

f(µ) ≡ −2

√−α

α1
lim
e→0

ε1/2
∞
∑

n=1

(−1)nn cos(nε/α1)N̄
1
n = (1 − 4µαK)1/2 (3.39)

where the last equality was conjectured in [14] and proved in [36]. For the fermionic constituent

of the prefactor one considers [19, 20]

Y (σ) = −2π

√
−2α√
α′

(πα1 − σ)1/2
(

θ1(σ) + θ1(−σ)
)

(3.40)

which satisfies

lim
σ→πα1

Y (σ)|V 〉 = f(µ)(1 − 4µαK)−1(1 − 2µαK(1 + iΩΠ))Y|V 〉 = Y |V 〉 . (3.41)

The oscilator expressions for the dynamical supercharges may then be replaced by functional

integrals. For example

Q−
3A = gs

∫

dµ3YAtr(Φ(1)Φ(2)Φ(3)) , (3.42)

where the trace is over Chan-Patton factors. Here

dµ3 ≡
(

3
∏

u=1

dαuD
4λ+u(σ)D4λ−u(σ)D8pu(σ)

)

× δ
(

∑

v

αv

)

∆4
[

∑

v

λ+v(σ)
]

∆4
[

∑

v

λ−v(σ)
]

∆8
[

∑

v

pv(σ)
]

(3.43)

continuity conditions, rather then by performing a functional integral, we have already dropped a normalisation

coming from the mismatch between the fermionic and bosonic determinants. The non-zero modes’ determi-

nants cancel between bosons and fermions. On the other hand the bosonic zero-modes contribute a factor

(4µα1α2/α′π3α3)
(p−1)/4 for a Dp-brane while the fermionic zero modes do not contribute at all. It would be

tempting then to speculate that the relative normalisations of |H〉 between a Dp- and a Dp′-brane would be

(4µα1α2/α′π3α3)
(p−p′)/4.
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is the functional expression leading to the exponential part of the vertex [19, 20]. Similar

expressions can be written down for QA
3 and H3 with YA replaced by corresponding expressions

from equations (3.29) and (3.35).

4 Conclusion

We have constructed the cubic interaction vertex and dynamical supercharges for D−-branes in

the plane-wave background. The expressions were obtained in terms of oscilator expressions,

allowing for immediate computation of three-point functions of open strings ending on such D−-

branes. They have also been reinterpreted in the functional language. In the above construction

the SU(4) formalism has been used. The SU(4) language allows for a unified treatment of all

D−-branes even though they do not preserve an SU(4) symmetry. The situation is analogous

to the closed string vertex in the plane-wave background, where SO(8) notation is used, with

the theory preserving only an SO(4) × SO(4) subgroup. While the explicit expressions given

here have been for D-branes placed at the origin in transverse space, as was discussed in the

introduction, it is straightforward to generalise this to other D−-branes. The oscilator formulas

have been constructed on the state |0〉123 rather than on the open string vacuum |v〉123. This

too is similar to the closed string vertex. It may be interesting to investigate if the open string

cubic vertex could be also constructed on |v〉123, in the spirit of [38]. Finally, we note that it

is of course possible to add terms of the form Σuq
−
(u) |V 〉 to the dynamical supercharges and

ΣuH2(u) |V 〉 to the cubic hamiltonian as has been recently suggested by [39].

The D−-branes in the plane-wave background are expected to be dual to the BMN-like limit

of certain defect theories. It would be interesting to compare the open-string three-point func-

tions which can be obtained using the three-point vertex computed here with the corresponding

gauge theory results. It would also be interesting to extend the string bit model [27] to include

open strings.
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A Dynamical fermionic constraints

In this appendix we show that the continuity conditions (3.10) are solved by (3.14). Note first

that given the ansatz (3.14) equations (3.11) become

∑

u,n

A(u)
mnCnC

−1/2
n(u) P−1

n(u)A
CQu

nC
B = 0 , (A.1)

−αBmδB
A +

∑

u,n

αuA
(u)
mnC

−1/2
(u)n P(u)nA

CQu
nC

B = 0 , (A.2)

(A(v)CC
−1/2
(v) P(v)A

B)mn −
3
∑

u=1

(A(u)CC
−1/2
(u) P−1

(u)A
CQuv

C
B)mn = 0 , (A.3)

αv(A
(v)C

−1/2
(v) P−1

(v) A
B)mn +

∑

u

αu(A
(u)C

−1/2
(u) P(u)A

CQuv
C

B)mn = 0 , (A.4)

1

αv
(P−1

(v) B
ACC

−1/2
(v) A(v))mn +

∑

u

1

αu
(Qvu

B
CP(u)C

AC
−1/2
(u) CA(u))mn = 0 , (A.5)

2Qv
mB

ABn + (P(v)B
AC

−1/2
(v) A(v))mn −

∑

u

(Qvu
B

CP−1
(u) C

AC
−1/2
(u) A(u))mn = 0 . (A.6)

In order to verify that the solutions are given in equations (3.16) one needs to generalise some

of the fermionic identities in [37]. For example

P−2
(u)A

CU(u)N̄
uvU(v)P

−2
(u)C

B = δB
A N̄uv + µα(1 − iΩΠ)A

BC
1/2
(u) N̄u(C

1/2
(v) N̄v)T (A.7)

The above constraints are then shown to be satisfied identically using the bosonic identities

in [40, 37].
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