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Abstract

We construct the cubic interaction vertex and dynamically generated supercharges in

light-cone superstring field theory in the pp-wave background. We show that these satisfy

the pp-wave superalgebra at first order in string coupling. The cubic interaction vertex

and dynamical supercharges presented here differ from the expressions previously given in

the literature. Using this vertex we compute various string theory three-point functions

and comment on their relation to gauge theory in the BMN limit.
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1 Introduction and Summary

Following earlier work on maximally supersymmetric solutions of eleven-dimensional supergrav-

ity [1, 2, 3], a new maximally supersymmetric solution of Type IIB supergravity [4] was found.

This paved the way for quantisation in light-cone gauge of superstring theory in a constant R-R

flux [5]. The spectrum consists of a unique massless groundstate on which a tower of massive

states is constructed [5, 6] using creation operators whose masses are of order ωn/(α′p+) where

ωn ≡
√

n2 + (α′µp+)2 , n ∈ IN , (1.1)

p+ is momentum along the x− light-cone direction and µ is the R-R flux. This new string

background merits further investigation.

Since the string spectrum in the pp-wave background is now known, string interactions are

the next step in the study of the pp-wave background. In this background ten-dimensional

Lorentz invariance is broken by the non-zero R-R flux, and hence it is no longer possible to set

p+ to zero in general scattering amplitudes. This obstruction significantly hinders the vertex

operator approach to string interactions. There is only one other known way of studying string

interactions in light-cone gauge pioneered by Mandelstam [7] for the bosonic string. In this

approach an interaction vertex for the scattering of three strings can be constructed by requiring

continuity of string fields on the worldsheet depicted in Figure 1. This continuity is enforced

by a delta functional on string fields

∆(X1 + X2 − X3) . (1.2)

For computational purposes it is essential to express the delta functional in Fourier modes [8].
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Figure 1: The worldsheet of the three string interaction vertex.

The interaction vertex may then be written as an exponential of creation operators which

enforce the delta functional conditions mode by mode.
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The functional approach [7, 9] can be extended to the superstring [10, 11, 12]. The cubic

interaction vertex is a first order in string coupling gs correction to the free Hamiltonian.

In order to satisfy the superalgebra with this new Hamiltonian, dynamical supercharges also

receive corrections. This essential difference from the bosonic string modifies the form of the

vertex [11, 12]. In particular [12], in the oscillator basis, the superstring interaction vertex

as well as the dynamical supercharges not only have a part exponential in creation operators,

but also have a prefactor which is polynomial in creation operators. The exact form of the

prefactors is determined by two requirements. Firstly, they should not destroy worldsheet

continuity enforced by the exponential part of the vertex. Secondly, the superalgebra should be

satisfied order by order in string coupling. In [12] an oscillator expression for the flat spacetime

superstring vertex and dynamical supercharges was constructed and shown to satisfy all said

consistency conditions.

In this paper we apply the formalism of [8, 11, 12] to the pp-wave background in order to

construct an interaction vertex and dynamical supercharges in the oscillator basis. We prove

explicitly that our expressions satisfy all the aforementioned consistency conditions. We use

this vertex to compute various three-point functions in string theory.

The pp-wave interaction vertex has also been recently investigated in [13, 14]. Our results

differ from the expressions presented in [13, 14] in several ways. Firstly, our bosonic prefactor

contains a piece, not present in [13, 14], proportional to µδIJ (cf. equation (4.19)). This piece is

crucial in proving (see section 4) that the dynamically generated supercharges and interaction

Hamiltonian satisfy the pp-wave superalgebra at first order in string coupling. Further, without

it, three-point functions of states containing only fermionic creation operators would vanish (see

section 5.2). Secondly, we also present the oscillator-basis expression for the fermionic prefactor;

in particular, the µ-dependent normalisation (cf. equation (4.22)) is essential in proving that

the dynamical superalgebra is satisfied. The exponential part of our vertex also contains a piece

linear in fermionic zero-modes [15] (cf. equation (3.17)) and our expression for the coefficients

of the negatively moded bosonic creation operators in the prefactor (cf. equation (4.11)) differs

by a factor of i [15] from the original one in [14].1 Since we prove that our expressions for the

dynamical supercharges and Hamiltonian satisfy the superalgebra, we believe that the vertex

constructed here is the correct one.

The pp-wave background can be obtained as a Penrose limit [16] of AdS5 × S5 [4]. Through

the AdS/CFT correspondence [17, 18, 19], this has led to a conjectured duality between string

theory in the pp-wave background and a double scaling limit of SU(N), N = 4 Super Yang-

Mills theory [20]. Explicitly one considers a sector of (BMN) operators with U(1) R-charge

1Recently a new version of [14] has appeared correcting the factor of i discrepancy.
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J and conformal dimension ∆ such that the difference ∆ − J remains fixed in the limit J ,

N → ∞, J2/N and gYM fixed [20]. The BMN operators are field theory duals of perturbative

string states in the pp-wave background. The SYM theory is believed to be expandable in a

double series in the effective genus counting parameter g2
2 and effective coupling λ′ [21, 22]

g2
2 =

J4

N2
, λ′ =

g2
YMN

J2
. (1.3)

Moreover, the finite quantity ∆−J is a function of λ′ [20, 23, 24] and g2
2 [21, 22]. The expansion

parameters g2 and λ′ are related to string theory parameters by [20]

1

(µα′p+)2
= λ′ , 4πgs(µα′p+)2 = g2 . (1.4)

One of the most appealing aspects of this duality is that both string theory and the BMN sector

of gauge theory are simultaneously perturbatively accessible.

While some further investigation seems necessary to clarify the exact form of this correspon-

dence, at the planar (interacting) field theory two-point function/free string level, there is

increasing evidence [20, 23, 24] that the BMN operators do correspond to the free string the-

ory. The extension of the duality beyond this limit, by considering string interactions and the

non-planar sector of (interacting) gauge theory respectively, needs further clarification. Indeed,

the exact notion of the Penrose limit in a CFT needs to be better understood [25]. By focusing

on a certain subclass of the BMN operators, several proposals for such an extension of the BMN

correspondence have been made and were studied in [21, 22, 26, 27, 28, 29, 30, 31, 32, 33]. In

this paper we use our interaction vertex to compute three-point functions for various string

states. In particular, for the class of amplitudes studied so far in the literature the term in the

cubic vertex proportional to µδIJ does not contribute and we recover the results of [14, 32, 33].

We show that so-called impurity preserving three-point functions of states dual to a class of

protected operators vanish in string theory, as would be expected by the extension of the du-

ality recently proposed in [32, 33]. Further, we compute three-point functions for string states

having only fermionic creation operators. Here only the µδIJ term contributes and these ampli-

tudes may provide a check of any extension of the string-bit dynamical supercharges to terms

bilinear in fermions, which are not known at present [30]. We hope our results can shed some

light on the BMN correspondence and that the three-string vertex can be used to investigate

the duality further. Finally if the BMN duality is to be believed, D-branes in the pp-wave

background [34, 35] should play an important role in gauge theory.

This paper is organized as follows. In section 2 we briefly review the free string in the pp-wave

background and set our notation. In sections 3 and 4 we construct the superstring vertex in the
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pp-wave background. Section 3 focuses on the exponential part of the vertex. Most of the results

of this section have appeared in [13, 14, 15] and are included here for completeness. In section 4

we construct the prefactors and show that the superalgebra is satisfied with these modified

generators. Using the vertex, we compute some three-point functions and compare them to

field theory in the BMN limit in section 5. Several appendices, containing computational

details are also included.

2 Review of free string theory on the pp-wave

The free string in the maximally supersymmetric pp-wave background in light-cone gauge is

described by xI
r(σr) and ϑa

r(σr) in position space or by pI
r(σr) and λa

r(σr) in momentum space,

where I is a transverse SO(8) vector index, a is a SO(8) spinor index.2 The index r = 1, 2, 3

denotes the rth string (see Figure 1). The bosonic part of the light-cone action in the pp-wave

background is [5]

Sbos.(r) =
e(αr)

4πα′

∫
dτ

∫ 2π|αr |

0

dσr

[
ẋ2

r − x′ 2
r − µ2x2

r

]
, (2.1)

where

ẋr ≡ ∂τxr , x′
r ≡ ∂σr

xr , αr ≡ α′p+
r , e(αr) ≡

αr

|αr|
. (2.2)

In a collision process p+
r will be positive for an incoming string and negative for an outgoing

one. The mode expansions of the fields xI
r(σr, τ) and pI

r(σr, τ) at τ = 0 are

xI
r(σr) = xI

0(r) +
√

2

∞∑

n=1

(
xI

n(r) cos
nσr

|αr|
+ xI

−n(r) sin
nσr

|αr|
)
,

pI
r(σr) =

1

2π|αr|
[
pI

0(r) +
√

2
∞∑

n=1

(
pI

n(r) cos
nσr

|αr|
+ pI

−n(r) sin
nσr

|αr|
)]

.

(2.3)

The Fourier modes can be re-expressed in terms of creation and annihilation operators as

xI
n(r) = i

√
α′

2ωn(r)

(
aI

n(r) − aI †
n(r)

)
, pI

n(r) =

√
ωn(r)

2α′
(
aI

n(r) + aI †
n(r)

)
. (2.4)

Canonical quantization of the bosonic coordinates

[xI
r(σr), p

J
s (σs)] = iδIJδrsδ(σr − σs) (2.5)

2We will often suppress these indices in what follows.
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yields the usual commutation relations

[aI
n(r), a

J †
m(s)] = δIJδnmδrs . (2.6)

The fermionic part of the light-cone action in the pp-wave background is [5]

Sferm.(r) =
1

8π

∫
dτ

∫ 2π|αr|

0

dσr[i(ϑ̄rϑ̇r + ϑr
˙̄ϑr) − ϑrϑ

′
r + ϑ̄rϑ̄

′
r − 2µϑ̄rΠϑr] , (2.7)

where ϑa
r is a complex, positive chirality SO(8) spinor and

Πab ≡ (γ1γ2γ3γ4)ab (2.8)

is symmetric, traceless and squares to one.3 The mode expansion of ϑa
r and its conjugate

momentum

iλa
r ≡ δSferm.(r)

δϑ̇a(r)

= i
1

4π
ϑ̄a

r , (2.9)

at τ = 0 is

ϑa
r(σr) = ϑa

0(r) +
√

2

∞∑

n=1

(
ϑa

n(r) cos
nσr

|αr|
+ ϑa

−n(r) sin
nσr

|αr|
)
,

λa
r(σr) =

1

2π|αr|
[
λa

0(r) +
√

2
∞∑

n=1

(
λa

n(r) cos
nσr

|αr|
+ λa

−n(r) sin
nσr

|αr|
)]

.

(2.10)

The Fourier modes satisfy the reality condition

λa
n(r) =

|αr|
2

ϑ̄a
n(r) , (2.11)

and, due to the canonical anti-commutation relations for the fermionic coordinates

{ϑa
r(σr), λ

b
s(σs)} = δabδrsδ(σr − σs) , (2.12)

they obey the following anti-commutation rules

{ϑa
n(r), λ

b
m(s)} = δabδnmδrs . (2.13)

It is convenient to define a new set of fermionic operators [13]

ϑn(r) =
cn(r)√
|αr|

[
(1 + ρn(r)Π)bn(r) + e(αr)e(n)(1 − ρn(r)Π)b†−n(r)

]
, (2.14)

3Throughout this paper we use the gamma matrix conventions of [12]. It is convenient to use a representation

of gamma matrices in which Πab = diag(14 ,−14).
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which break the SO(8) symmetry to SO(4) × SO(4). Here

ρn(r) = ρ−n(r) =
ωn(r) − |n|

µαr
, cn(r) = c−n(r) =

1√
1 + ρ2

n(r)

. (2.15)

These modes satisfy

{ba
n(r), b

b †
m(s)} = δabδnmδrs . (2.16)

The free string light-cone Hamiltonian is

H2(r) =
1

αr

∑

n∈ZZ

ωn(r)

(
a†

n(r)an(r) + b†n(r)bn(r)

)
. (2.17)

In the above the zero-point energies cancel between bosons and fermions. Since the Hamiltonian

only depends on two dimensionful quantities µ and αr, α′ and p+
r should not be thought of as

separate parameters. The vacuum |v〉r is defined as

an(r)|v〉r = 0 , bn(r)|v〉r = 0 , n ∈ IN . (2.18)

The isometries of the pp-wave superalgebra are generated by H , P+, P I , J+I , J ij and J i′j′.

The latter two are angular momentum generators of the transverse SO(4)×SO(4) symmetry of

the pp-wave background. The 32 supersymmetries split into kinematical supercharges Q+, Q̄+

and dynamical ones Q−, Q̄−. The latter square to the light-cone Hamiltonian and hence get

corrected by interactions. A subset of the superalgebra that will be of importance throughout

this paper is [5]

[H, P I ] = −iµ2J+I , [H, Q+] = −µΠQ+ ,

{Q−
ȧ , Q̄−

ḃ
} = 2δȧḃH − iµ

(
γijΠ

)
ȧḃ

J ij + iµ
(
γi′j′Π

)
ȧḃ

J i′j′ .
(2.19)

The dynamical supercharges can be expressed in terms of world-sheet fields as

Q−
(r) =

√
2

α′

∫ 2π|αr|

0

dσr

[
2πα′e(αr)prγλr − ix′

rγλ̄r − iµxrγΠλr

]
(2.20)

and Q̄−
(r) = e(αr)

[
Q−

(r)

]†
. Expanding in modes one finds

Q−
(r) =

e(αr)√
|αr|

γ
(√

µ
[
a0(r)(1 + e(αr)Π) + a†

0(r)(1 − e(αr)Π)
]
λ0(r)

+
∑

n 6=0

√
|n|
[
an(r)P

−1
n(r)b

†
n(r) + e(αrn)a†

n(r)Pn(r)b−n(r)

])
, (2.21)

where

Pn(r) =
1√

1 − ρ2
n(r)

(1 − ρn(r)Π) . (2.22)
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3 Interacting string theory

In interacting light-cone string field theory some generators of the supersymmetry algebra,

such as J , P and Q+, are quadratic in fields. These kinematical generators correspond to

symmetries which are manifest in the theory and do not receive gs corrections. On the other

hand, dynamical generators such as H , Q− and Q̄−, depend on the interactions and hence

involve higher powers of fields. For example H , the full Hamiltonian of the interacting theory,

has an expansion in string coupling

H = H2 + gsH3 + · · · , (3.1)

where H3 creates or destroys a single string, while the H2 conserves the number of strings.

Despite such corrections to the generators, the supersymmetry algebra has to be satisfied

order by order in gs. This consistency condition gives rise to two types of constraints: the

kinematic constraints arise from demanding that (anti)commutation relations of kinematical

with dynamical generators are realized at order O(gs); the dynamic constraints arise from the

(anti)commutation relations of dynamical generators alone. The former are relatively easy to

satisfy, and it is the latter relations that severely constrain the form of the dynamical generators

and will be used to determine the interaction vertex below. In this section we review the

exponential part of the cubic vertex which enforces the kinematic constraints.4 In the following

section we construct the prefactor of the interaction vertex by imposing the dynamic constraints.

The bosonic contribution |Ea〉 to the exponential part of the three-string interaction vertex has

to satisfy the kinematic constraints [11, 12]

3∑

r=1

pr(σr)|Ea〉 = 0 ,

3∑

r=1

e(αr)xr(σr)|Ea〉 = 0 . (3.2)

These are the same as in flat space and arise from the commutation relations of H with P I

(cf. equation (2.19)) and J+I . They guarantee momentum conservation and continuity of the

string worldsheet in the interaction. The coordinates of the three strings are parameterized by

σ1 = σ − πα1 ≤ σ ≤ πα1 ,

σ2 =





σ − πα1 πα1 ≤ σ ≤ π(α1 + α2) ,

σ + πα1 −π(α1 + α2) ≤ σ ≤ −πα1 ,
(3.3)

σ3 = −σ − π(α1 + α2) ≤ σ ≤ π(α1 + α2) (3.4)

4Apart from the differences mentioned in the introduction, our expression for the exponential part of the

vertex agrees with the construction first presented in [13].
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and α1 + α2 + α3 = 0, α3 < 0. The solution to the constraints in equation (3.2) can be

constructed as a functional integral and is given by [13]

|Ea〉 ∼ exp

(
1

2

3∑

r,s=1

∑

m,n∈ZZ

a†
m(r)N̄

rs
mna

†
n(s)

)
|0〉123 , (3.5)

where |0〉123 = |0〉1 ⊗ |0〉2 ⊗ |0〉3 is annihilated by an(r), n ∈ ZZ. The determinant factor coming

from the functional integral will be cancelled by the fermionic determinant except for the zero-

mode part which is
(

2
α′

2µ
π3

α1α2

α3

)2

. In the equation above the non-vanishing elements of the

bosonic Neumann matrices for m, n > 0 are [13]

N̄ rs
mn = δrsδmn − 2

√
ωm(r)ωn(s)

mn

(
A(r) T Γ−1A(s)

)
mn

, (3.6)

N̄ rs
m0 = −

√
2µαsωm(r)ε

stαtN̄
r
m , s ∈ {1, 2} , (3.7)

N̄ rs
00 = (1 − 4µαK)

(
δrs +

√
αrαs

α3

)
, r, s ∈ {1, 2} , (3.8)

N̄ r3
00 = −

√
−αr

α3
, r ∈ {1, 2} . (3.9)

Here

α ≡ α1α2α3 (3.10)

and

Γ ≡
3∑

r=1

A(r)U(r)A
(r) T , (3.11)

where

U(r) ≡ C−1
(
C(r) − µαr

)
, Cmn ≡ mδmn ,

(
C(r)

)
mn

≡ ωm(r)δmn . (3.12)

The matrices A(r) arise from the Fourier transformation of the constraints in equation (3.2)

and are given in appendix E. Notice that in the Neumann matrices the inverse of the infinite

dimensional matrix Γ appears. In contrast to flat space [7], in the pp-wave explicit expressions

for the Neumann matrices valid for all µ, are not known. It is however possible to obtain their

large µ behavior using the approach of [36] (see also appendix E). We also define

N̄ r ≡ −C−1/2A(r) T Γ−1B , K ≡ −1

4
BT Γ−1B . (3.13)

An explicit expression for the vector B is given in appendix E. The quantities Γ, N̄ r and K

manifestly reduce to their flat space counterparts, defined in [11, 12], as µ → 0. The only

non-vanishing matrix elements with negative indices are N̄ rs
−m,−n. They are related to N̄ rs

mn via

[13]

N̄ rs
−m,−n = −

(
U(r)N̄

rsU(s)

)
mn

, m, n > 0 . (3.14)
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A very useful formula relating N̄ rs
mn to N̄ r

mN̄ s
n is [36, 15]

N̄ rs
mn = −(1 − 4µαK)−1 α

αrωn(s) + αsωm(r)

[
U−1

(r) C
1/2
(r) CN̄ r

]

m

[
U−1

(s) C
1/2
(s) CN̄ s

]

n
. (3.15)

This factorization theorem can be used to verify [15] that |Ea〉 satisfies equation (3.2). It will

also prove essential throughout the next section.

Analogously to the bosonic case, the fermionic exponential part of the interaction vertex has

to satisfy [11, 12]

3∑

r=1

λ(r)(σr)|Eb〉 = 0 ,
3∑

r=1

e(αr)ϑ(r)(σr)|Eb〉 = 0 . (3.16)

These constraints arise from the commutation relations of H with Q+ and Q̄+, cf. equation

(2.19). The solution is [15]

|Eb〉 ∼ exp

[
3∑

r,s=1

∞∑

m,n=1

b†−m(r)Q
rs
mnb

†
n(s) −

√
2Λ

3∑

r=1

∞∑

m=1

Qr
mb†−m(r)

]
|E0

b 〉 , (3.17)

where Λ ≡ α1λ0(2) − α2λ0(1) and |E0
b 〉 is the pure zero-mode part of the fermionic vertex

|E0
b 〉 =

8∏

a=1

[
3∑

r=1

λa
0(r)

]
|0〉123 . (3.18)

Here |0〉r is not the vacuum defined to be annihilated by the b0(r). Rather, it satisfies ϑ0(r)|0〉r =

0 and H2(r)|0〉r = 4µe(αr)|0〉r. In the limit µ → 0 it coincides with the flat space state that

generates the massless multiplet by acting with λa
0(r) on it. The fermionic Neumann matrices

can be expressed in terms of the bosonic ones as [15]

Qrs
mn = e(αr)

√∣∣∣∣
αs

αr

∣∣∣∣
[
P−1

(r) U(r)C
1/2N̄ rsC−1/2U(s)P

−1
(s)

]
mn

, (3.19)

Qr
n =

e(αr)√
|αr|

(1 − 4µαK)−1(1 − 2µαK(1 + Π))
[
P(r)C

1/2
(r) C1/2N̄ r

]
n
. (3.20)

In summary, the part of the cubic contribution to the dynamical generators satisfying the

kinematic constraints is

|V 〉 ≡ |Ea〉|Eb〉δ
(

3∑

r=1

αr

)
. (3.21)

9



4 The Complete O(gs) Superstring Vertex

In the previous section we reviewed the exponential part of the vertex, which solves the kine-

matic constraints. The remaining dynamic constraints are much more restrictive and are solved

by introducing a prefactor [11, 12], polynomial in creation operators, in front of |V 〉.5 Within

the functional formalism, the prefactor can be re-interpreted as an insertions of local operators

at the interaction point [10, 11] (see also appendix D). In this section we present expressions

for the dynamical generators and prove that they satisfy the superalgebra up to order O(gs).

4.1 The Superalgebra and the Constituents of the Prefactors

Define the linear combinations of the free supercharges (η = eiπ/4)

√
2η Q ≡ Q− + iQ̄− , and

√
2η̄ Q̃ = Q− − iQ̄− (4.1)

which satisfy

{Qȧ, Q̃ḃ} = −µ
(
γijΠ

)
ȧḃ

J ij + µ
(
γi′j′Π

)
ȧḃ

J i′j′ ,

{Qȧ, Qḃ} = {Q̃ȧ, Q̃ḃ} = 2δȧḃH .
(4.2)

Since J ij and J i′j′ are not corrected by the interaction, it follows that at order O(gs) the

dynamical generators have to satisfy

3∑

r=1

Qȧ(r)|Q3 ḃ〉 +

3∑

r=1

Qḃ(r)|Q3 ȧ〉 = 2|H3〉δȧḃ , (4.3)

3∑

r=1

Q̃ȧ(r)|Q̃3 ḃ〉 +

3∑

r=1

Q̃ḃ(r)|Q̃3 ȧ〉 = 2|H3〉δȧḃ , (4.4)

3∑

r=1

Qȧ(r)|Q̃3 ḃ〉 +

3∑

r=1

Q̃ḃ(r)|Q3 ȧ〉 = 0 . (4.5)

In order to derive equations that determine the full expressions for the dynamical generators

one has to compute (anti)commutators of Qȧ(r) and Q̃ȧ(r) with the constituents of the pref-

actors. Moreover, the action of the supercharges on |V 〉 has to be known in terms of these

constituents. Here the factorization theorem (3.15) for the bosonic Neumann matrices and

5The prefactors are polynomials of K, K̃ and Y, defined below, where K, K̃ and Y are linear in creation

operators. Apart from an important factor of i (see discussion in the introduction), the oscillator expressions

for K and K̃ were first derived in [14]. The corresponding expression for Y was first derived in [15].

10



the relation between the bosonic and fermionic Neumann matrices given in equations (3.19)

and (3.20) prove to be essential.

So as not to destroy the constraints in equation (3.2), the bosonic part of the prefactors (that

we will collectively denote by P) has to satisfy [11, 12]

[ 3∑

r=1

pr(σr),P
]

= 0 =
[ 3∑

r=1

e(αr)xr(σr),P
]
. (4.6)

Making an ansatz linear in creation oscillators and taking the Fourier transform of the above

equations one finds that negative and non-negative modes decouple from each other. The

resulting constraint equations on the infinite component vectors appearing in the ansatz can be

solved using flat space identities [11]; for details, see [14, 15]. The solution of these constraints

involving non-negatively moded bosonic creation oscillators is [14]

K0 + K+ ≡ P − iµ
α

α′R +
3∑

r=1

∞∑

n=1

Fn(r)a
†
n(r) , (4.7)

where

P ≡ α1p0(2) − α2p0(1) , α3R ≡ x0(1) − x0(2) , [R, P] = i (4.8)

and in terms of the zero-mode creation oscillators

3∑

r=1

F0(r)a
†
0(r) ≡ P − iµ

α

α′R =

√
2

α′
√

µα1α2

(√
α1a

†
0(2) −

√
α2a

†
0(1)

)
. (4.9)

The explicit expression for Fn(r) is given in appendix A, equation (A.1). The solution involving

negatively moded creation oscillators is

K− ≡
3∑

r=1

∞∑

n=1

F−n(r)a
†
−n(r) , (4.10)

where

F−n(r) = iUn(r)Fn(r) . (4.11)

The fermionic parts of the prefactor have to satisfy the conditions

{ 3∑

r=1

λr(σ),P
}

= 0 =
{ 3∑

r=1

e(αr)ϑr(σ),P
}

(4.12)

that are solved in a similar way to the bosonic case. The solution involving non-negatively

moded creation oscillators is

Y ≡
√

2

α′Λ +
3∑

r=1

∞∑

n=1

Gn(r)b
†
n(r) , (4.13)
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where the infinite component vector Gn(r) can be expressed in terms of the bosonic one Fn(r)

[15] (see appendix A, equation (A.2)). As in flat space [11, 12], it turns out that the prefactors

do not involve negatively moded fermionic creation oscillators.

Below we present the results necessary to verify equations (4.3) and (4.4), given the ansatz

(4.19)-(4.21) for the cubic vertex and dynamical supercharges. We need

√
2η

3∑

r=1

[Q(r), K̃] |V 〉 =
√

2η̄

3∑

r=1

[Q̃(r),K] |V 〉 = µγ(1 + Π)Y|V 〉 , (4.14)

where

K ≡ K0 + K+ + K− , K̃ ≡ K0 + K+ −K− (4.15)

and

√
2η

3∑

r=1

{Q(r),Y}K̃I |V 〉 = iγJ(1 − 2µαK(1 − Π))KJK̃I |V 〉 − iµ
α

α′γ
I(1 − Π)|V 〉 ,

√
2η̄

3∑

r=1

{Q̃(r),Y}KI |V 〉 = −iγJ(1 − 2µαK(1 − Π))K̃JKI |V 〉 + iµ
α

α′γ
I(1 − Π)|V 〉 .

(4.16)

Notice, that the above identities are only valid when both sides of the equation act on |V 〉. The

action of the supercharges on |V 〉 is

√
2η

3∑

r=1

Q(r)|V 〉 = −α′

α
Kγ(1 − 2µαK(1 + Π))Y|V 〉 , (4.17)

√
2η̄

3∑

r=1

Q̃(r)|V 〉 = −α′

α
K̃γ(1 − 2µαK(1 + Π))Y|V 〉 . (4.18)

The proof of equations (4.14)-(4.18) is given in appendix A.

4.2 The dynamical generators at order O(gs)

The results of the previous subsection motivate the following ansatz for the explicit form of the

dynamical supercharges and the three-string interaction vertex

|H3〉 =
(
(1 − 4µαK)K̃IKJ − µ

α

α′δ
IJ
)

vIJ(Y )|V 〉 , (4.19)

|Q3 ȧ〉 = (1 − 4µαK)1/2K̃IsI
ȧ(Y )|V 〉 , (4.20)

|Q̃3 ȧ〉 = (1 − 4µαK)1/2KI s̃I
ȧ(Y )|V 〉 . (4.21)
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Here

Y ≡ (1 − 4µαK)−1/2(1 − 2µαK(1 + Π))Y . (4.22)

Substituting this into equations (4.3) and (4.4) and using equations (4.14)-(4.18), we get the

following equations for vIJ , sI
ȧ and s̃I

ȧ
6

δȧḃv
IJ =

i√
2

α′

α
γJ

a(ȧD
asI

ḃ)
, δȧḃv

IJ = − i√
2

α′

α
γI

a(ȧD̄
as̃J

ḃ)
, (4.23)

which originate from terms proportional to K̃IKJ and are identical to the flat space equations

of [12]. Two additional equations, arising from terms proportional to µδIJ are

−δȧḃv
II =

i√
2

α′

α
γI

a(ȧ

(
Da + i

[
ΠD̄
]a)

sI
ḃ)

,

−δȧḃv
II = − i√

2

α′

α
γI

a(ȧ

(
D̄a − i

[
ΠD
]a)

s̃I
ḃ)

.

(4.24)

As in flat space [12] we define

Da ≡ ηY a + η̄
α

α′
∂

∂Ya
, D̄a ≡ η̄Y a + η

α

α′
∂

∂Ya
. (4.25)

Recall first the solution of the flat space equations (4.23) [12]. One introduces the following

functions of Y a

wIJ = δIJ +

(
α′

α

)2
1

4!
tIJ
abcdY

aY bY cY d +

(
α′

α

)4
1

8!
δIJεabcdefghY

a · · ·Y h , (4.26)

iyIJ =
α′

α

1

2!
γIJ

ab Y aY b +

(
α′

α

)3
1

2 · 6!
γIJ

ab εab
cdefghY

c · · ·Y h , (4.27)

1

2
sI
1 ȧ = γI

aȧY
a +

(
α′

α

)2
1

6!
uI

abcȧε
abc

defghY
d · · ·Y h , (4.28)

1

2
sI
2 ȧ = −α′

α

1

3!
uI

abcȧY
aY bY c +

(
α′

α

)3
1

7!
γI

aȧε
a
bcdefghY

b · · ·Y h . (4.29)

Here

tIJ
abcd ≡ γIK

[ab γJK
cd] , uI

abcȧ ≡ −γIJ
[abγ

J
c]ȧ . (4.30)

Notice that tIJ
abcd is traceless and symmetric in I, J , hence wIJ is a symmetric tensor of SO(8),

whereas yIJ is antisymmetric. The solution of equations (4.23) is [12]

vIJ ≡ wIJ + yIJ , sI
ȧ ≡ − 2

α′
i√
2

(
ηsI

1 ȧ + η̄sI
2 ȧ

)
, s̃I

ȧ ≡ 2

α′
i√
2

(
η̄sI

1 ȧ + ηsI
2 ȧ

)
. (4.31)

6Here (ȧḃ) denotes symmetrization in ȧ, ḃ.
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Next consider the additional equations (4.24). Using the flat space solution, these can be

rewritten as

0 = γI
a(ȧ

[
ΠD̄
]a

sI
ḃ)

0 = γI
a(ȧ

[
ΠD
]a

s̃I
ḃ)

. (4.32)

We prove in appendix B that these equations are also satisfied by equation (4.31).

The proof of equation (4.5) is more involved and provides an important consistency check of

the ansatz (4.19)–(4.21). We show in appendix C that it leads to the equations

δIJmȧḃ −
1√
2

α′

α
γ

(I
aȧD

as̃
J)

ḃ
= 0 , (4.33)

δIJmȧḃ −
1√
2

α′

α
γ

(I

aḃ
D̄as

J)
ȧ = 0 , (4.34)

√
2
(
γI

aȧηs̃I
ḃ
− γI

aḃ
η̄sI

ȧ

)
− 4imȧḃYa = 0 , (4.35)

(
γI

aȧD̄bs̃
I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1 − Π)ab = 0 . (4.36)

Here

mȧḃ = δȧḃ +
i

4

α′

2α
γIJ

ȧḃ
γIJ

ab Y aY b − 1

4 · 4!

(
α′

2α

)2

γIJKL
ȧḃ

tIJKL
abcd Y aY bY cY d

− i

6!

(
α′

2α

)3

γIJ
ȧḃ

γIJ
ab εab

cdefghY
c · · ·Y h − 2

7!

(
α′

2α

)4

δȧḃεabcdefghY
a · · ·Y h (4.37)

and

tIJKL
abcd ≡ γ

[IJ
[ab γ

KL]
cd] . (4.38)

The first three equations are identical to those in flat space7 and were proven in [12]. The

additional equation (4.36) is proved in appendix B.

We have not yet fixed the overall normalisation of the dynamical generators which can depend

on µ and the αr’s. This is more difficult to do than in flat space since there is no J−I generator in

the pp-wave background. A comparison with a supergravity calculation fixes the normalisation

for small µ to be ∼ (α′µ2)/(α4
3) [37]. However, this does not completely fix the normalisation;

one may still multiply by a function of µ and αr that goes to one as µ → 0. On the other

hand, the definition of Y in equation (4.22) and the fact that the terms K̃IKJ and µδIJ in

equation (4.19) are multiplied by different powers of 1 − 4µαK are fixed by demanding that

one recovers the flat space equations (4.23), (4.33)-(4.35). In order to obtain the supergravity

expressions for the dynamical generators from equations (4.19)–(4.21), one should set K to

zero, since it originates from massive string modes. Together with [RI , PJ ] = iδIJ , one can

7In appendix C we correct some minor typos present in [12].
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check that the supergravity vertex obtained in this way agrees with the supergravity vertex

presented in section 4 of [13].

We would like to stress that the nontrivial relation between Y and Y in equation (4.22), as well

as the part in the cubic interaction vertex proportional to µδIJ , were not present in [13, 14] and

played an essential role in the above proof of the superalgebra in the interacting string field

theory. In [13], functional expressions for the constituents of the prefactors were used to argue

that the vertex of [13] satisfied the superalgebra. It is well known [11, 12] that these functional

expressions do not in general agree with the oscillator basis expressions given in equations

(4.7), (4.10) and (4.13). As explained in appendix D, it would appear that this subtlety is the

origin for the absence of the µδIJ term in [13]. In flat space the functional expression agrees

with the one in the oscillator basis only when acting directly on |V 〉 [11, 12]. In the pp-wave

however, they agree only up to non-trivial functions of µ [15] (see also appendix D). This leads

to equation (4.22). In summary the oscillator expression (4.19), which is used in the following

section to compute three-point functions, has been shown explicitly to satisfy the superalgebra

at O(gs).

5 3-string amplitudes

In this section we use H3 to compute three-string amplitudes. For three general string states

|Φi〉 in the number-basis representation the amplitude is

gs〈Φ3|H3|Φ1〉|Φ2〉 = gs〈Φ3|〈Φ2|〈Φ1|H3〉 . (5.1)

We restrict ourselves to the case, where either all states have bosonic excitations or fermionic

ones. We compare our expressions to gauge theory results in the BMN limit. Recall that

the full interacting Hamiltonian H/µ in string theory is identified with the operator ∆ − J

in field theory [20, 23, 26]. A comparison of matrix elements of the two operators requires an

identification of the free string basis used in string theory with a dual basis in field theory. At the

planar level, multi-trace BMN operators are identified with multi-string states [20]. However,

non-planar corrections lead to a mixing of single and multi trace BMN operators [28, 29] and

this effect has to be taken into account when comparing matrix elements of H3 to field theory.

The dual basis was proposed [30, 32, 33] to be the one, in which the matrix of two-point

functions of redefined BMN operators (i.e. now mixtures of single and multi-trace) is diagonal

in free field theory. As emphasized in [32, 33], the required basis transformation is not unique.8

8We are grateful to Jan Plefka for discussions on this point.
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5.1 Amplitudes of bosonic states

To facilitate the comparison with field theory, we change our oscillator basis to the BMN basis.

For n > 0 the transformation is

√
2an = αn + α−n , i

√
2a−n = αn − α−n , a0 = α0 . (5.2)

Using equation (4.11) we have

K =
3∑

r=1

∑

n∈ZZ

Kn(r)α
†
n(r) , K̃ =

3∑

r=1

∑

n∈ZZ

K̃n(r)α
†
n(r) , (5.3)

where

Kn(r) =





F0(r) , n = 0

1√
2
F|n|(r)

(
1 − Un(r)

)
, n 6= 0

, K̃n(r) =





F0(r) , n = 0

1√
2
F|n|(r)

(
1 + Un(r)

)
, n 6= 0

. (5.4)

In this basis the Neumann matrices are

Ñ rs
mn =





1
2
N̄ rs

|m||n|
(
1 + Um(r)Un(s)

)
, m , n 6= 0

1√
2
N̄ rs

|m|0 , m 6= 0

N̄ rs
00 .

(5.5)

We compute amplitudes involving the string states

|v〉r , |0i〉r ≡ αi †
0(r)|v〉r , |ni,j〉r ≡ αi †

n(r)α
j †
−n(r)|v〉r . (5.6)

The fermionic contribution to these amplitudes is simple to determine. The pp-wave vacua r〈v|
are related to r〈0| via

r〈v| = r〈0|
(αr

2

)2
8∏

a=5

ϑa
0(r) , r ∈ {1, 2} , 3〈v| = −3〈0|

(α3

2

)2
4∏

a=1

ϑa
0(r) . (5.7)

Eight of the zero-modes in equation (5.7), namely ϑa
0(3), a = 1, . . . , 4 and, say, ϑa

0(2), a = 5, . . . , 8

are saturated by |E0
b 〉, so, to give a non-zero contribution the remaining four zero-modes must

be contracted with the O(Y 4) term in vIJ(Y ). Hence, the fermionic contribution is

−
(α3

2

)4

(1 − 4µαK)−2ΠIJ , (5.8)

where ΠIJ ≡ tIJ
5678 = diag(14 ,−14); the factor (1 − 4µαK)−2 is due to equation (4.22). The

bosonic zero-mode determinant can be computed using results in appendix B of [13]

(
2

α′
2µ

π3

α1α2

α3

)2

. (5.9)

16



As discussed at the end of section 4 the overall normalisation of the cubic interaction vertex is

still not completely fixed. We will take it to be

π7α′3

α2
(1 − 4µαK)2 (5.10)

by comparing a three-string amplitude (e.g. equation (5.13)) in the limit µ → ∞ to a known

field theory result. Strictly speaking, from the comparison with supergravity and field theory we

only know that equation (5.10) is correct for µ = 0 and µ → ∞. Since the function (1−4µαK)

plays such a prominent role in pp-wave string field theory, we conjecture that it is the correct

choice for all µ. Combining the various contributions we conclude that for amplitudes of string

states build out of bosonic oscillators acting on the |v〉r, the interaction vertex is9

gs|H3〉 = −πgsα
′µ2(1 − 4µαK)KIK̃JΠIJ |Ea〉δ

(
3∑

r=1

αr

)
. (5.11)

In particular, the term proportional to µδIJ does not contribute, since ΠIJ is traceless. Using

the factorization theorem (3.15) this can be further simplified to [32, 38]

gs|H3〉 =
1

2
g2β(β + 1)

3∑

r=1

∑

n∈ZZ

ωn(r)

αr
αI †

n(r)α
J
−n(r)ΠIJ |Ea〉|α3|δ

(
3∑

r=1

αr

)
. (5.12)

Recall that gs = g2/(4πµ2α2
3). Here β = α1/α3 is related to r = J1/J , the ratio of R-charges

conventionally used in SYM, by β = −r. For amplitudes involving two zero-mode oscillators

and one massive string state we find10

gs〈n1,2|H3|01〉|02〉 = −g2µα1α2(−β(β + 1))3/2
[
CU−1

(3) C(3)

]
n

(
N̄3

|n|
)2

= −µg2λ
′√−β(β + 1)

sin2 nπβ

2π2

[
1 − 1

4
(3 − 16aR)λ′n2 + O(λ′ 2)

]
, (5.13)

gs〈n1,1|H3|01〉|01〉 = −2g2µα1α2(−β(β + 1))3/2
[
CU−1

(3) C(3)

]

n

(
N̄3

|n|
)2
[
1 +

1

4µα3

[
CU−1

(3)

]

n

]

= −µg2λ
′√−β(β + 1)

sin2 nπβ

π2

[
1 − 1

4
(7 − 16aR)λ′n2 + O(λ′ 2)

]
. (5.14)

The leading order result given in equation (5.13) has also been computed in [32, 33] and is

in agreement with field theory [28, 29]. The subleading terms are predictions for the 2-loop

results in field theory from which one should be able to fix the yet unknown constant aR (cf.

9For general amplitudes it is gs|H3〉 = 16πgsα
′µ2α−4

3
(1− 4µαK)2

(
(1 − 4µαK)KIK̃J − µ α

α′
δIJ

)
vIJ(Y )|V 〉 .

10To avoid clutter of notation we suppress the index r of the rth string and the factor of |α3|δ
(∑

r
αr

)
.
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appendix E). An amplitude of two massive string states and the pp-wave vacuum is

gs〈n1,2|H3|m1,2〉|v〉 = g2
β + 1

4α2
3

(
α1ωn(3) + α3ωm(1)

) (
N̄13

|m||n|
)2 (

1 − U2
m(1)U

2
n(3)

)

= µg2λ
′(β + 1)

sin2 nπβ

2π2
+ O(λ′ 2) . (5.15)

This amplitude has also been computed in [32, 33] and agrees with the field theory result [28, 29].

Finally, consider amplitudes involving only zero-mode oscillators. From equation (5.12) it

follows, that all amplitudes with, say, l oscillators for the first string, m oscillators for the

second string, n oscillators for the third string and l + m = n vanish for all µ. This is in

agreement with the proposal of [30, 32, 33], since the operators in field theory dual to single

and double string states at order O(g2) are constructed in such a way that they do not mix in

free field theory. Since the operator dual of the single string is protected this is an exact result

for all λ′, thereby matching the string theory result.

5.2 Amplitudes of fermionic states

As in the bosonic case, we change the oscillator basis to the BMN basis (n > 0)

√
2bn = βn + β−n , i

√
2b−n = βn − β−n , b0 = β0 . (5.16)

and compute amplitudes of the states

|v〉r , |0a〉r ≡ βa †
0(r)|v〉r , |na,b〉r ≡ βa †

n(r)β
b †
−n(r)|v〉 . (5.17)

In this case the cubic interaction vertex reduces to

gs|H3〉 = −4µg2
β(β + 1)

α4
3

(1 − 4µαK)2tr(v)(Y )|Eb〉|α3|δ
(
∑

r

αr

)
. (5.18)

Due to the trace over vIJ only terms of order O(Y 0) and O(Y 8) contribute. Note that these

amplitudes are identically zero for the vertex constructed in [13], because the trace over vIJ

comes from the term proportional to µδIJ . As an example, we consider

gs〈n5,6|H3|07〉|08〉 , gs〈n5,6|H3|m7,8〉|v〉 , (5.19)

which are fermionic analogues to the bosonic amplitudes in equations (5.13) and (5.15). For

the above amplitudes to be non-zero it is essential that the fermionic exponential part of the
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vertex contains a term linear in zero-modes. Counting fermionic zero-modes shows that in this

case only the O(Y 0) term in tr(v) gives a contribution. We find

gs〈n5,6|H3|07〉|08〉 = −µα1α2g2

(
−β(β + 1)

)3/2[
CU−1

(3) C(3)

]
n

(
N̄3

|n|
)2

= µg2λ
′√−β(β + 1)

sin2 nπβ

2π2

[
1 − 1

4
(3 − 16aR)λ′n2 + O(λ′ 2)

]
, (5.20)

gs〈n5,6|H3|m7,8〉|v〉 = −1

2
µg2α

2
1α

2
2(β + 1)(1 − 4µαK)−2

[
CU−1

(1) C(1)

]
m

[
CU−1

(3) C(3)

]
n

(
N̄1

|m|N̄
3
|n|
)2

= µg2λ
′(β + 1)

sin2 nπβ

2π2
+ O(λ′ 2) . (5.21)

Up to a sign, the first amplitude in equation (5.20) is identical to its bosonic analogue (5.13)

for all µ, whereas the second one, equation (5.21), is the same at leading order. These results

reflect that the vertex constructed in section 4 satisfies the superalgebra. One can check that

equations (5.20) and (5.21) are unchanged if all spinor indices are in {1, 2, 3, 4} and (up to

permutations) vanish otherwise.
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A Some computational details

Here we give the details leading to equations (4.14), (4.16), (4.17) and (4.18). The explicit

expression for the infinite component vector F(r) appearing in the bosonic constituent of the

prefactors is

F(r) = − 1√
α′

α

1 − 4µαK

1

αr

U−1
(r) C

1/2
(r) CN̄ r . (A.1)
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The fermionic quantity G(r) can be expressed in terms of F(r) as [15]

G(r) =
(
1 − 2µαK(1 − Π)

)√
|αr|P−1

(r) U(r)C
−1/2F(r) . (A.2)

The following identities prove very useful (α3Θ ≡ ϑ0(1) − ϑ0(2))

R|V 〉 = i
√

α′

[
2K

√
α′
(
P − i

µα

α′ R

)
+
∑

r,n>0

C
1/2
n(r)N̄

r
na†

n(r)

]
|V 〉 , (A.3)

Θ|V 〉 = −
√

2
∑

r,n

Qr
nb

†
−n(r)|V 〉 . (A.4)

Using the mode expansions of Q−
(r), Q̄−

(r), K0 + K+, K− and Y given in equations (2.21), (4.7),

(4.10) and (4.13) one gets

3∑

r=1

{Q−
(r),Y} = −γ

3∑

r=1

1√
|αr|

∞∑

n=1

[
P(r)C

1/2G(r)

]
n
a†
−n(r) , (A.5)

3∑

r=1

{Q̄−
(r),Y} = Pγ − i

µα

α′ RγΠ + γ
3∑

r=1

1√
|αr|

∞∑

n=1

[
P−1

(r) C
1/2G(r)

]
n
a†

n(r) , (A.6)

3∑

r=1

[Q−
(r),K0 + K+] = µγ(1 + Π)

√
2

α′Λ + γ
3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P−1

(r) C
1/2F(r)

]
n
b†n(r) , (A.7)

3∑

r=1

[Q−
(r),K−] = iγ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P−1

(r) C
1/2U(r)F(r)

]
n
b†−n(r) , (A.8)

3∑

r=1

[Q̄−
(r),K0 + K+] = − µα√

2α′
γ(1 − Π)Θ + γ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P(r)C

1/2F(r)

]
n
b†−n(r) , (A.9)

3∑

r=1

[Q̄−
(r),K−] = −iγ

3∑

r=1

e(αr)√
|αr|

∞∑

n=1

[
P(r)C

1/2U(r)F(r)

]
n
b†n(r) . (A.10)

Using equations (A.2), (A.3) and (A.4) we find equations equations (4.14) and (4.16). The

action of the supercharges on |V 〉 given in equations (4.17) and (4.18) can be proven similarly.

One needs

N̄ rs
nm + e(αs)

(
m

n

∣∣∣∣
αr

αs

∣∣∣∣
)3/2

Pn(r)Pm(s)Q
rs
nm = − α

αs
(1 − 4µαK)−1

[
C

1/2
(r) N̄ r

]
n

[
U−1

(s) C
1/2
(s) CN̄ s

]
m

,

N̄ rs
−n,−m + e(αr)

(
m

n

∣∣∣∣
αr

αs

∣∣∣∣
)1/2

Pn(r)Pm(s)Q
rs
nm = 0 ,

(A.11)
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N̄ rs
nm − e(αr)

(
m

n

∣∣∣∣
αr

αs

∣∣∣∣
)1/2

P−1
n(r)P

−1
m(s)Q

rs
nm = −µα(1 − 4µαK)−1(1 − Π)

[
C

1/2
(r) N̄ r

]
n

[
C

1/2
(s) N̄ s

]
m

,

N̄ rs
−n,−m − e(αs)

(
m

n

∣∣∣∣
αr

αs

∣∣∣∣
)3/2

P−1
n(r)P

−1
m(s)Q

rs
nm =

α

αs
(1 − 4µαK)−1

[
P−2

(r) C
1/2
(r) N̄ r

]
n

[
C

1/2
(s) CN̄ s

]
m

(A.12)

which follow from (3.15) and (3.19).

B Proof of equations (4.24) and (4.36)

In this appendix we prove that

γI
a(ȧ

[
ΠD̄
]a

sI
ḃ)

= 0 , (B.1)

γI
a(ȧ

[
ΠD
]a

s̃I
ḃ)

= 0 , (B.2)
(
γI

aȧD̄bs̃
I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1 − Π)ab = 0 . (B.3)

Equations (B.1) and (B.2) are equivalent to

(
γI

a(ȧYbs
I
1 ḃ)

+
α

α′γ
I
a(ȧ

∂

∂Y b
sI
2 ḃ)

)
Πab = 0 , (B.4)

(
γI

a(ȧYbs
I
2 ḃ)

− α

α′γ
I
a(ȧ

∂

∂Y b
sI
1 ḃ)

)
Πab = 0 , (B.5)

The first equation has terms of order O(Y 2) and O(Y 6), whereas the second one has terms

of order O(Y 0), O(Y 4) and O(Y 8). There are two contributions to the order O(Y 2) in equa-

tion (B.4), both vanish separately. The first one is

γI
a(ȧYbs

I
1 ḃ)

Πab = 2γI
a(ȧγ

I
cḃ)

Y bY cΠab = −2δȧḃΠabY
aY b = 0 , (B.6)

whereas the second one is

α

α′γ
I
a(ȧ

∂

∂Y b
sI
2 ḃ)

Πab = −γI
a(ȧu

I
bcdḃ)

Y cY dΠab =

1

16

(
γIJγKL

)
(ȧḃ)

γIJ
a[bγ

KL
cd] ΠabY cY d =

1

24

(
γIJγKL

)
(ȧḃ)

(
γIJΠγKL

)
cd

Y cY d = 0 . (B.7)

Here we have used equations (B.19) and (B.22). From the Fourier identities [12]

s1 ȧ(φ) =
( α

α′

)4
∫

d8Y sI
2 ȧ(Y )e

α
′

α
φY ,

s2 ȧ(φ) =
( α

α′

)4
∫

d8Y sI
1 ȧ(Y )e

α
′

α
φY ,

(B.8)
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it follows that the terms of order O(Y 6) vanish as well. This proves equation (B.1). The O(Y 0)

term in equation (B.5) is

γI
a(ȧγ

I
bḃ)

Πab = δȧḃtr(Π) = 0 , (B.9)

and the order O(Y 8) term vanishes by (B.8). The terms of order O(Y 4) in equation (B.5) are

Πa
bγ

I
a(ȧu

I
cdeḃ)

(
Y bY cY dY e +

1

24
εcdeb

ghijY
gY hY iY j

)

= − 1

16
Πa

b

(
γIJγKL

)
(ȧḃ)

γIJ
a[cγ

KL
de]

(
Y bY cY dY e +

1

24
εcdeb

ghijY
gY hY iY j

)

= − 1

16
Πa

b

(
γIJKL

ȧḃ
− 2δȧḃδ

IKδJL
)
γIJ

a[cγ
KL
de]

(
Y bY cY dY e +

1

24
εcdeb

ghijY
gY hY iY j

)

= − 1

16
Πa

bγ
IJKL
ȧḃ

tIJKL
acde

(
Y bY cY dY e +

1

24
εcdeb

ghijY
gY hY iY j

)
= 0 . (B.10)

In the last step we used that Π is symmetric and traceless and

tIJKL
abcd = − 1

24
εabcd

efghtIJKL
efgh . (B.11)

This proves equation (B.2). Finally, equation (B.3) is equivalent to

(
γI

a(ȧYbs
I
1 ḃ)

− α

α′γ
I
a(ȧ

∂

∂Y b
sI
2 ḃ)

)
(1 − Π)ab = 0 , (B.12)

(
γI

a[ȧYbs
I
2 ḃ]

+
α

α′γ
I
a[ȧ

∂

∂Y b
sI
1 ḃ]

)
(1 − Π)ab = 0 . (B.13)

The first equation is symmetric in ȧ, ḃ and contains terms of order O(Y 2) and O(Y 6). These

vanish for the same reason as those in equation (B.1). The second equation is antisymmetric

in ȧ, ḃ and contains terms of order O(Y 0), O(Y 4) and O(Y 8). The O(Y 0) contribution to

equation (B.13) is

γI
a[ȧγ

I
bḃ]

(1 − Π)ab =
1

4
γIJ

ȧḃ
γI

ab(1 − Π)ab = 0 . (B.14)

From equation (B.8) it follows that the term of order O(Y 8) vanishes as well. Finally, there

are two contributions to the terms of order O(Y 4), both of them vanish separately. The first

one is

α

α′γ
I
a[ȧYbs

I
2 ḃ]

(1 − Π)ab = −1

3
γI

a[ȧu
I
cdeḃ]

(1 − Π)a
bY

bY cY dY e =

1

12

(
γIJ

ȧḃ
δa[cγ

IJ
de] +

1

4

(
γIJγKL

)
[ȧḃ]

γIJ
a[cγ

KL
de]

)
(1 − Π)a

bY
bY cY dY e =

1

12
γIJ

ȧḃ
γIK

a[c γKJ
de] (1 − Π)a

bY
bY cY dY e =

1

6
γIJ

ȧḃ
γIJ

bc (1 − Π)deY
bY cY dY e = 0 . (B.15)
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In the last step we have used equation (B.20). The second contribution of order O(Y 4) then

vanishes by equation (B.8). This concludes the proof of equation (B.13).

Apart from symmetry and tracelessness of Π we have used the following identities

γIJ
ab = −γIJ

ba , (B.16)

γI
aȧγ

I
bḃ

= δabδȧḃ +
1

4
γIJ

ab γIJ
ȧḃ

, (B.17)
(
γIJγKL

)
ab

= γIJKL
ab + δILγJK

ab + δJKγIL
ab

− δIKγJL
ab − δJLγIK

ab +
(
δJKδIL − δJLδIK

)
δab , (B.18)

γI
aȧu

I
bcdḃ

= −1

4
γIJ

ȧḃ
δa[bγ

IJ
cd] −

1

16

(
γIJγKL

)
ȧḃ

γIJ
a[bγ

KL
cd] , (B.19)

γIK
a[b γJK

cd] = tIJ
abcd − 2δa[bγ

IJ
cd] , (B.20)

γIJ
ab γIJ

cd = 8
(
δacδbd − δadδbc

)
, (B.21)

γIJKL
ȧḃ

(
γKLΠγIJ

)
[ab]

= 0 . (B.22)

C {Q, Q̃} at order O(gs)

Here we demonstrate that equation (4.5) leads to the constraints (4.33)–(4.36) given in section 4.

To this end, we adopt a trick introduced in [12]. Namely, we associate the world-sheet coordinate

dependence with the oscillators as

an(r) → e−iω
n(r)τ/αr

(
an(r) cos

nσr

αr
− a−n(r) sin

nσr

αr

)
, (C.1)

a−n(r) → e−iω
n(r)τ/αr

(
a−n(r) cos

nσr

αr

+ an(r) sin
nσr

αr

)
, (C.2)

bn(r) → e−iω
n(r)τ/αr

(
bn(r) cos

nσr

αr
− b−n(r) sin

nσr

αr

)
, (C.3)

b−n(r) → e−iω
n(r)τ/αr

(
b−n(r) cos

nσr

αr
+ bn(r) sin

nσr

αr

)
. (C.4)

Then we integrate the constraint equation (4.5) over the σr. In dealing with the resulting

expressions we can integrate by parts since the integrand is periodic. In addition to the identities

in equations (4.16),11 (4.17) and (4.18) we have to calculate the commutator of
∑

r Q(r) with

11In fact, here we need the analogue of equation (4.16) with K ↔ K̃.
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K and and its tilded counterpart. We get

√
2η

3∑

r=1

[Q(r),K] |V 〉 = −2i(1 − 4µαK)−1/2γ

[
Ẏ + Y ′ +

i

2
µ(1 − Π) (Y − 2Y0)

]
|V 〉 ,

√
2η̄

3∑

r=1

[Q̃(r), K̃] |V 〉 = −2i(1 − 4µαK)−1/2γ

[
Ẏ − Y ′ +

i

2
µ(1 − Π) (Y − 2Y0)

]
|V 〉 .

(C.5)

Here Y0 is the zero-mode part of Y , we suppressed the τ , σr dependence and

Ẏ ≡ ∂τY , Y ′ ≡
3∑

r=1

∂σr
Y . (C.6)

The fact that the above equations have a term which only depends on the zero mode Y0 is

important. Combining the various contributions to equation (4.5) yields

∫ 3∏

r=1

dσr

(
√

2(1 − 4µαK)−1
[(

γI
aȧηs̃I

ḃ
− γI

aḃ
η̄sI

ȧ

)
Ẏ a +

(
γI

aȧηs̃I
ḃ
+ γI

aḃ
η̄sI

ȧ

)
Y ′a
]

− µ√
2
(1 − 4µαK)−1

[(
γI

aȧD̄bs̃
I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1 − Π)ab + 2i

(
γI

aȧηs̃I
ḃ
− γI

aḃ
η̄sI

ȧ

)
(1 − Π)a

bY
b
0

]

+
i√
2

α′

α

[
KIKJγJ

aȧD
as̃I

ḃ
− K̃IK̃JγJ

aḃ
D̄asI

ḃ

])
|V 〉 = 0 . (C.7)

Next we remove the σr derivatives from Y by partial integration. This requires the identity [12]12

(
γI

aȧηs̃I
ḃ
+ γI

aḃ
η̄sI

ȧ

)
Y ′a = −23/2α

α′ m′
ȧḃ

(C.8)

and

3∑

r=1

∂σr
|V 〉 = − i

4

α′

α

(
(1 − 4µαK)

(
K2 − K̃2

)
+ 4
(
Y Ẏ + iµ(1 − Π)Y Y0

))
|V 〉 . (C.9)

12There are some minor typos in appendices D and E of [12] which we correct for the interested reader to

facilitate the comparison with this paper. The right-hand-side of equation (D.25) in [12] should be multiplied

by 1

2α
; on the r.h.s. of equations (D.26) and (D.27) it should be 1

23/2
instead of 1√

2
; the r.h.s. of equation (E.8)

should be multiplied by 1

α
. This corrections modify equation (E.9) of [12] slightly, which is now in agreement

with equations (4.33)–(4.35) of this paper. These typos do not affect the proof presented in appendix E of [12].
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Using the above identities equation (C.7) becomes after integrating by parts

∫ 3∏

r=1

dσr

(
(1 − 4µαK)−1

[√
2
(
γI

aȧηs̃I
ḃ
− γI

aḃ
η̄sI

ȧ

)
− 4imȧḃYa

](
Ẏ a − Ẏ a

0

)

− µ√
2
(1 − 4µαK)−1

(
γI

aȧD̄bs̃
I
ḃ
+ γI

aḃ
Dbs

I
ȧ

)
(1 − Π)ab

− iKIKJ
[
δIJmȧḃ −

α′
√

2α
γJ

aȧD
as̃I

ḃ

]
+ iK̃IK̃J

[
δIJmȧḃ −

α′
√

2α
γJ

aḃ
D̄asI

ȧ

])
|V 〉 = 0 .

(C.10)

D The Functional Approach to the Prefactor

The bosonic constituents of the prefactor can be obtained via the operators [11, 12]

∂X(σ) = 4π

√−α

α′ (πα1 − σ)1/2
(
x̀1(σ) + x̀1(−σ)

)
,

P (σ) = −2π
√
−α(πα1 − σ)1/2

(
p1(σ) + p1(−σ)

)
.

(D.1)

Acting on the exponential part of the vertex these satisfy

lim
σ→πα1

K(σ)|V 〉 ≡ lim
σ→πα1

(
P (σ) +

1

4π
∂X(σ)

)
|V 〉 = f(µ)K|V 〉 ,

lim
σ→πα1

K̃(σ)|V 〉 ≡ lim
σ→πα1

(
P (σ) − 1

4π
∂X(σ)

)
|V 〉 = f(µ)K̃|V 〉 .

(D.2)

Here we defined

f(µ) ≡ −2

√−α

α1

lim
e→0

ε1/2
∞∑

n=1

(−1)nn cos(nε/α1)N̄
1
n (D.3)

which is equal to one for µ = 0 [11]. For the fermionic constituent of the prefactor one

considers [11, 12]

Y (σ) = −2π

√
−2α√
α′

(πα1 − σ)1/2
(
λ1(σ) + λ1(−σ)

)
(D.4)

which satisfies [15]

lim
σ→πα1

Y (σ)|V 〉 = f(µ)(1 − 4µαK)−1(1 − 2µαK(1 + Π))Y|V 〉 . (D.5)

Comparing this identity with equation (4.22), we see that

lim
σ→πα1

Y (σ)|V 〉 = Y |V 〉 , ⇐⇒ f(µ) = (1 − 4µαK)1/2 . (D.6)
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We conjecture that this is indeed the case. Unfortunately, it seems that there is no way of

proving this conjecture, at least for large-µ, without knowing N̄ r for all µ. This is because in

equation (D.3), the large-µ expansion does not commute with the infinite sum over n.

One can write the functional equivalent of equations (4.19), (4.20) and (4.21) as

H3 = lim
σ→πα1

∫
dµ3

(
K̃I(σ)KJ(σ) − µα

α′ δIJ
)
vIJ(Y (σ))Φ(1)Φ(2)Φ(3) , (D.7)

Q3 ȧ = lim
σ→πα1

∫
dµ3K̃

I(σ)sI
ȧ(Y (σ))Φ(1)Φ(2)Φ(3) , (D.8)

Q̃3 ȧ = lim
σ→πα1

∫
dµ3K

I(σ)s̃I
ȧ(Y (σ))Φ(1)Φ(2)Φ(3) . (D.9)

Here

dµ3 ≡
(

3∏

r=1

dαrD
8λr(σ)D8pr(σ)

)
δ
(∑

s

αs

)
∆8
[∑

s

λs(σ)
]
∆8
[∑

s

ps(σ)
]

(D.10)

is the functional expression leading to the exponential part of the vertex [11, 12].

Finally, let us mention the following subtlety. Using equation (2.20) it is easy to see that for

example
√

2η̄

3∑

r=1

[Q̃(r), lim
σ→πα1

K(σ)] |V 〉 = µγΠY |V 〉 . (D.11)

However, this is not equal to the commutator of
∑

r Q̃(r) with f(µ)K. To see this, rewrite

√
2η̄

3∑

r=1

[Q̃(r), f(µ)K]|V 〉 =
√

2η̄

3∑

r=1

[Q̃(r), lim
σ→πα1

K(σ)] |V 〉

− α′

α
γY (1 − 4µαK)f−1(µ)[ lim

σ→πα1

K(σ), K̃]|V 〉 = µγΠY |V 〉 + µγY |V 〉 = µγ(1 + Π)Y |V 〉 .

(D.12)

Here we used equation (4.18) and

[ lim
σ→πα1

K(σ), K̃]|V 〉 = −µα

α′ (1 − 4µαK)−1f(µ)|V 〉 . (D.13)

Equation (D.12) is equivalent to equation (4.14) of section 4. It is this appearance of the matrix

1 + Π as opposed to just Π, that is responsible for the term proportional to µδIJ in the cubic

interaction vertex.
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E Large-µ Expansions

In this appendix we collect some results on the large-µ expansion. We need the explicit expres-

sions for the matrices A(r) and the vector B. For m, n > 0 they are

A(1)
mn = (−1)n 2

√
mnβ

π

sin mπβ

m2β2 − n2
,

A(2)
mn =

2
√

mn(β + 1)

π

sin mπβ

m2(β + 1)2 − n2
,

A(3)
mn = δmn ,

Bm = −2

π

α3

α1α2

m−3/2 sin mπβ .

(E.1)

Writing

Γ−1 =
1

2
CC−1

(3) + R (E.2)

it was shown in [36] that

R = aR
π

(µα3)4

(
α1α2

α3

)2

C3BBT C3 + · · · (E.3)

with aR an undetermined number. The next term in the expansion would be of order µ−6. It

follows that

N̄3 =
1

µα3

[
−1

2
C1/2 +

1

(µα3)2

(
1

4
− aR

)
C5/2 + . . .

]
B . (E.4)

Furthermore the large-µ expansion of 1 − 4µαK is [36]

1 − 4µαK =
aK

πµα3

1

β(β + 1)
+ · · · . (E.5)

The next term in the expansion would be of order µ−3. Here, aK is undetermined as well,

however it was shown in [36] that

aRaK =
1

64
. (E.6)

From the definition of N̄ rs
mn it is easy to see that

N̄ r3
mn ∼ −2

π
(−1)(m+1)r

(
−αr

α3

)3/2
n sin nπβ

n2

(
αr

α3

)2

− m2

(E.7)

at leading order. Here and below r, s ∈ {1, 2}. Using the factorization theorem equation

(3.15), the above formulae are sufficient to determine the leading large-µ behavior of all the

other Neumann matrices as well. We find

N̄ r
n ∼ (−1)(n+1)r aK

π

1

µ2α1α2αr
(E.8)
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and therefore

N̄ rs
mn ∼ (−1)(m+1)r+(n+1)s 2aK

πµ
√

αrαs
, N̄33

mn ∼ 2aK

π(µα3)3

(
m sin mπβ

)(
n sin nπβ

)
. (E.9)
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