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Abstract 

 

 

 

 

 

In this thesis, we investigate a pensioner’s gains from access to annuities. We observe 

a pensioner aged 65, having constant income from social security, having certain 

amount of pension wealth at age 65. The pensioner optimally decides each year how 

much of his available assets to consume, to invest into tradable assets, and how much 

to convert to annuities. Annuities are irreversible investments, once bought they 

provide income in the later years, but it is not possible to trade annuities any more. 

The pensioner makes optimal decisions such that the expected discounted utility from 

future consumption and bequest (if the pensioner has a bequest motive) is maximised. 

We develop and solve two models for the member of a defined contribution pension 

scheme in the post–retirement period. 

 

The first one is a two assets model with stochastic inflation. We refer to this model as 

the inflation risk model. The pensioner in the inflation risk model has access to risk 

less (cash) and risky (equity) investment and to nominal and/or real annuities. The 

solution of this type of problem using numerical mathematics is presented in detail. 

We investigate different constraints on annuitisation. The main results presented and 

analysed are the pensioner’s gains from access to certain class/classes of annuities, 

and also the pensioner’s optimal asset allocation and annuitisation strategies such that 

the maximised expected discounted utility from future consumption and bequest is 

attained. 

 

The second model for the pensioner in a defined contribution pension scheme is a 

three assets model with a stochastic interest rate. We refer to this model as the interest 

rate risk model. The pensioner in the interest rate risk model has access to risk less 

(one year bond), low risk (rolling bond with constant duration) and risky (equity) 

assets, and to annuities. Again, we precisely define the problem mathematically and 

solve it using numerical mathematics. We present and thoroughly analyse the 

pensioner’s optimal asset allocation and optimal annuitisation such that his expected 

discounted utility from consumption and bequest is maximised. Particularly, we 

investigate in detail the dependence of the results on the value of the interest rate 

during the year before retirement. 
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After investigating the inflation risk model and interest rate risk model separately, we 

investigate deeper the new results obtained by introducing a stochastic interest rate. 

We compare the results obtained in the inflation risk model where the value of the 

interest rate is constant and the results in the interest rate risk model where the value 

of the interest rate changes. Particularly, in the interest rate risk model, we investigate 

deeper the dependence of the results on the value of the interest rate during the year 

before retirement and on the value of the interest rate during each year before 

annuitisation and asset allocation during the retirement period. 
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Chapter 1 

 

 

 

 

 

Introduction 

 

 

Financial contracts having payments dependent on a person's survival have been 

known for centuries. One often thinks of the tontine that was introduced as early as 

17
th

 century, as the first form of annuities. Later in history, and particularly in the 20
th

 

century, the care and support of elderly people have been dramatically improved. 

Nowadays, some type of income after retirement exists in almost all economically 

developed countries throughout the world. 

 

Defined benefit pension schemes, either funded or not, have prevailed in the market 

for a long period and still do. However, the maturing of such schemes and the 

changing age structure of the population in many countries have opened the question 

of the long–term sustainability of many defined benefit schemes. Other major factors 

affecting defined benefit pension schemes include the employer’s scheme 

management costs, and the identification of the costs of guarantees that the employer 

has promised to the scheme members. Although employees usually favour defined 

benefit schemes, both employers in company run schemes and states in state run 

schemes wish to free themselves from the rising risks by transferring these risks to the 

employees and pensioners. The possible solution for employers and for states may be 

the partial or complete switch from defined benefit to defined contribution pension 

schemes. 

 

1.1 Main Features of Defined Contribution Pension Scheme 

 

The main idea behind defined contribution pension schemes (abbreviation DCPS) is 

the individualisation of assets as well as risks. By definition, DCPS is funded, and 
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member’s income in retirement is the result of the available pension assets in 

possession.  

 

Usually, the member of the DCPS joins the scheme in the early years of his 

employment, and stays involved up to the end of his life. In a pre–retirement period, 

the prospective pensioner contributes into his pension account and that period of the 

member’s life is referred to as the accumulation phase. Contributions are invested into 

appropriate assets yielding investment returns. The member of DCPS expects the 

value of his assets to increase during the accumulation phase due to the contributions 

and due to the positive investment returns. However, the member carries the 

investment risks. Generally, no or little guarantee is given on asset returns.  

 

At the end of a member’s active working period of life, he has certain assets that are 

then used for income in retirement. The time of retirement and type of income stream 

can be, up to the certain limits, chosen by the member. In many countries the state 

provides certain income to the pensioners in the form of social security. Income from 

social security usually depends on the particular pre–retirement employment and is 

very different from state to state. There is an expectation that in the coming years, 

income from social security will be more or less sufficient for the basic pensioner’s 

needs. All income above a pensioner’s basic needs will probably come from his extra 

contribution to either defined benefit or defined contribution pension schemes. As 

DCPS are becoming more and more widespread throughout the world, we can expect 

that the pensioner in the coming years will have income from social security up to the 

limited level and above that he will have income directly connected to his pre–

retirement contributions and investment results on the accumulated funds. 

 

The moment of retirement is very important for the pensioner in DCPS. In many 

countries, the pensioner at the time of retirement chooses, with possible legal 

constraints, the way we will use his accumulated pension funds. We usually refer to 

the pension funds available to the pensioner as “pension wealth”. Thus, the pensioner 

at the time of retirement ceases salary earnings and contributions to the pension funds 

and begins receiving income from social security and income from his pension 

wealth. 

 

Throughout this thesis, we assume that our investigation is done on the 

microeconomic level. In other words, we assume that the market is exogenously given 

and the market is perfectly competitive. In that environment, the member is a price–

taker, i.e. the member’s decision cannot influence the market itself. 
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1.1.1 Pre–Retirement Period 

 

The contribution into the pension fund in the pre–retirement period can be any stream 

of instalments, depending on legislation and on the member’s preferences. The regular 

contribution stream, for example, can be a percentage of the salary or absolute 

amounts in money terms are a common type of contribution. It could be further 

enhanced with the regular contributions by the employer. Moreover, a single 

instalment, as well as any stream of irregular instalments is possible. 

 

When the member starts with the very first pension contribution, he will usually 

continue contributing for the whole period while the assets are in accumulation. The 

collected amounts will be invested into the appropriate assets. For the whole 

accumulation period, there are contributions of the new amounts and investments of 

any new contributions, and also reinvestment of any amount earned from investments. 

Usually no outflow, i.e. no consumption of the pension wealth, is allowed in the 

accumulation period. The individual often accepts that his savings are for retirement 

purposes only and under that condition he is eligible to get a tax incentive (Lunnon 

(2002)). 

 

The member, together with the investments advisers, will manage the assets available 

in the portfolio. The investment approach will balance the need for the long–term 

growth with a concern for risk. The way that the asset classes are managed is of 

particular interest and it is referred to as the strategic asset allocation. Often, the 

member himself will make decisions regarding the level of risk that he is willing to 

take, and investment advisers will create the asset allocation strategy, based on the 

member’s preferences towards risk and returns trade off. Understanding different 

investment options and goals, and choosing an appropriate investment strategy are of 

particular importance. 

 

There are a number of desirable requirements for the asset allocation in the 

accumulation period. The higher return and the lower risk are often stated as the most 

important requirements of the asset allocation strategy. In practice, a higher return 

means higher risk, and the trade–off between the two must be exercised. Many other 

criteria can be set up, and asset allocation can be managed and assessed in accordance 

with these criteria as well (Khorasanee (1995), Blake, Cairns and Dowd (2001), 

Haberman and Vigna (2002), Basu, Byrne and Drew (2010)). 
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The two main types of investment strategies are static and dynamic. If the member 

keeps his assets in the same proportions during the whole investment period it is 

referred to as the static asset allocation strategy. The dynamic strategy is the one 

where the member changes with time the proportions invested in available assets. The 

proportions in the dynamic investment strategy can be deterministic or can be 

stochastic processes. The latter is referred to as stochastic dynamic asset allocation. 

 

The investment strategy usually adopted by actuaries and investment managers of 

DCPS in pre–retirement period is the “lifestyle strategy” (Blake, Cairns and Dowd 

(2001), Vigna and Haberman (2001)). The lifestyle strategy in the accumulation 

period means that the member switches from more to less risky assets when he is 

close to retirement. In practice, it means a higher proportion of stocks in earlier years 

and a gradual switch towards bonds and maybe cash in the years before retirement. 

The time when this switch begins is usually less than ten years before retirement. The 

switch is usually implemented gradually throughout the last five to ten years in the 

pre–retirement period. If the decrease of the percentage invested in the risky asset and 

increase of the percentage invested in less risky asset is a deterministic function of the 

time left to retirement, then it is referred to as a deterministic lifestyle strategy. On the 

other hand, if these percentages are stochastic processes, then it is referred to as a 

stochastic lifestyle strategy. 

 

1.1.2 Post–Retirement Period 

 

In the post–retirement period, the member’s contributions into the pension fund 

terminate, and the consumptions of the assets accumulated prior to the time of 

retirement commence. We differentiate income and consumption in retirement. In this 

thesis we assume that income in retirement comes from social security and from 

annuities bought earlier in retirement. Consumption is the amount that the pensioner 

actually consumes. The amounts used for purchasing annuities are deemed as change 

of the form of the pension wealth, and purchasing annuities is neither income nor 

consumption. During one period, for example one year, income can be smaller, equal 

or larger than consumption. If the income is larger than the consumption in certain 

periods then the difference between income and consumption is simply added to the 

pension wealth. Otherwise, the positive difference between consumption and income 

is deducted from the pension wealth. 
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Different types of income streams in a retirement period, i.e. pension income in DCPS 

are common nowadays (Collinson (1999)). Lunnon (2002) categorises income in 

retirement in three main groups: annuities, income drawdown and the combination of 

these two. 

 

The annuity is a financial contract, usually offered by an insurance company, to 

provide a given income on a regular basis from the moment when an annuity is 

bought until the annuitant’s death. By taking an annuity, the member transfers 

investment and longevity risks to the insurance company. In other words, he 

completely gives up the control of his assets in exchange for certain type of 

predefined income while he is alive. It usually means that at the time of death, no 

pension assets can be bequeathed. Different types of annuities exist. The income taken 

can be constant in nominal terms, constant in real terms or variable. The member can 

choose a single or joint annuity, with or without a guaranteed term. Bequeathing some 

assets on death can be specially arranged. Also, the frequency and timing of annuity 

payments needs to be defined (Blake (1995)). 

 

On the other side of the spectrum of income plans in retirement is income drawdown, 

sometimes also referred to as self–investment in retirement or self–annuitisation. By 

taking income drawdown, the member keeps the control of the allocation of his 

pension wealth in retirement. In order to provide income in retirement, he deducts 

certain amounts from the pension fund from time to time. In contrast to annuitisation, 

self–annuitisation involves a positive probability that the member will run out of 

pension wealth while still alive. This is sometimes referred to as the probability of 

ruin, or to be more precise the probability of receiving income in retirement from 

social security only. If no annuity is taken, the member is exposed to the risk of 

“living too long” and running out of benefits from his own pension wealth. Because 

the assets stay in the actual possession of the member, all assets not consumed at the 

moment of death will be bequeathed. 

 

Lump sum withdrawal can be deemed as a part of self–annuitisation. However, we 

separate these two by defining that self–annuitisation is the regular withdrawal of 

smaller amounts, while lump sum is withdrawal of larger amounts once or just a few 

times during retirement. For example, lump sum withdrawal could be withdrawing a 

certain percentage of the pension wealth at retirement in order to repay outstanding 

loans, or withdrawing larger amounts for medical expenses in old age. We prefer to 

separate lump sum consumption from self–annuitisation. 
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Income in retirement is the combination of social security income, lump sum 

withdrawal, income from annuities and self–annuitisation. 

 

The member of DCPS can usually choose certain options for the type of income in 

retirement, asset allocation in retirement, and any guarantee and the bequest. 

Applying different options for income in retirement one can easily end up with the 

combination of social security income, lump sum withdrawal, income from annuities 

and self–annuitisation. The plans for income and consumption in retirement are 

usually influenced by the legislation. Often, this legislation significantly differs from 

country to country. It is usual that the government is eager not to have old age people 

with no assets, and often limits the freedom of choosing asset allocation options and 

income options in retirement. By limiting the options for management of the pension 

wealth, income in retirement is controlled, and consequently the consumption is 

limited as well. Legislation usually imposes these limitations such that the pensioner 

is not in a position to consume his pension wealth “too early”. 

 

In the UK for example, there was a legislation limitation that the pensioner can defer 

annuitisation up to the age 75. In the period of deferment he could consume 35% to 

100% of income that he would have been receiving by purchasing a single–life non–

increasing annuity at the moment of retirement from a reasonably competitive 

insurance company. Further, at the time of retirement he was allowed to withdraw 

25% of the available pension wealth as a lump sum. However, these rules have been 

changed recently and there is no compulsory annuitisation at age 75 any longer (for 

details, see The United Kingdom Government Actuary's Department (GAD) website 

www.gad.gov.uk). 

 

1.2 Asset Allocation and Annuitisation in Retirement in DCPS 

 

The analysis of DCPS is usually done separately for the accumulation period and for 

the decumulation period. One reason for this approach could come from the real life 

experience. The time of retirement is a turning point in life, the end of salary earning 

and accumulation, i.e. end of a saving strategy for the retirement period and the 

beginning of the decumulation and income from the social security and from the 

assets in possession, i.e. beginning of the pension consumption strategy. The other 

reason lies in the complexity of the models investigating both phases at the same time. 
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Lately, there appears to be more diversity in the choice of the asset allocation and 

annuitisation options in the retirement. Which asset allocation and annuitisation 

strategy will be adopted by the pensioner depends on many factors, and different 

strategies can be optimal depending on different criteria applied. 

 

In this thesis we want to investigate optimal asset allocation and annuitisation 

strategies for the pensioner retiring at age 65, with a certain pension wealth at that 

age, with a certain last salary received at age 65, with a certain replacement rate at age 

65, with a certain income from social security during retirement period, with certain 

personal preferences towards risk and bequest, and with certain limitations on his 

asset allocation and annuitisation strategies. The pensioner in this thesis wishes to 

maximise utility drawn from consumptions during retirement and also from 

bequeathing assets to his heirs if the pensioner has a bequest motive. We want to 

develop optimal asset allocation and annuitisation strategies for the pensioner wishing 

to maximise expected discounted utility drawn from future consumption and bequest. 

 

Besides the pensioner’s “ordinary” consumption, there is usually a need for certain 

lump sum consumption related to health costs in retirement, loan repayment 

expenditure, or some other consumption needed in special cases. These expenditures 

can be significant in terms of amounts and can happened just once or several times in 

retirement. This kind of expenditure will have its influence on a pensioner’s optimal 

asset allocation and annuitisation. 

 

In this thesis, we particularly concentrate on adding the risk of inflation in the model 

where nominal and real annuities are available in the market and on adding the risk of 

a real interest rate in the model where only real annuities are available. We develop 

one model with two assets with a constant interest rate in real terms and random 

inflation and with the presence of nominal and real annuities, and another model with 

three assets with no inflation but with a random real interest rate and with bonds. 

 

We recognise here that the analysis of both interest risk and inflation risk in a single 

model would be interesting problem to investigate. If we develop a single model with 

both risks then the two models investigated here would be special cases of the more 

general model. Furthermore, it would be possible to investigate the possible 

correlation between these two risks. However, adding both of these risks at the same 

time seems to be too time–consuming for calculating results. Also, the results would 

be too complicated to draw the conclusions about the influence of each of the inflation 

and interest risk individually. We chose to investigate two models separately in this 
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thesis and leave the derivation and investigation of the model addressing both risks in 

the same time for further research. 

 

Inflation risk for the pensioner purchasing nominal annuities and the risk of stochastic 

interest rate have not been deeply investigated so far in the post–retirement models 

with constraints. Our work in this thesis can be deemed as an extension of known 

models and results of optimal asset allocation and annuitisation in retirement in the 

directions of adding one more source of risk, inflation risk in combination with 

nominal annuities, and stochastic interest rate risk in combination with real annuities. 

We will develop the criteria for comparing the results in terms of the pensioner’s 

welfare and give numerical valuation related to these risks. 

 

1.2.1 Asset Allocation 

 

In this thesis we investigate in detail two models, an inflation risk model and an 

interest rate risk model. In the inflation risk model, the pensioner can invest in 

equities with a random return and cash with a constant return in real terms. In the 

interest rate risk model, the pensioner can invest in equities as a high–risk asset with a 

random return, in long–term bonds as a low–risk asset with a random return and a 

one–year bond as risk free asset. In each case, we develop the optimal asset allocation 

strategy with maximising expected discounted utility as a criterion. We will have no 

borrowing constraints in our models and results. No borrowing constraints become 

sometimes very hard to apply in continuous time models. In discrete time models, 

such as the ones developed and investigated here, no borrowing constraints are easily 

handled and many other constraints can be applied as well. 

 

The pensioner can choose the asset allocation for the pension wealth only. At age 65, 

he possesses certain pension wealth and if annuities are available he can purchase a 

certain amount of annuities using his pension wealth and the rest is available for 

investment. Annuities can be deemed as an irreversible risk free investment, and 

income from social security can also be deemed as already bought annuities. From 

that point of view, we can expect that if more annuities are bought and if income from 

social security is higher then more available pension wealth will be invested into risky 

assets. However, some part of the assets available for investment will still be invested 

into low–risk and risk free assets. A precisely developed model and calculation of the 

numerical results from the model will give us an idea about the pensioner’s optimal 

asset allocation. 
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We develop optimal asset allocation as function of the state variables, where the state 

variables are known values of the variables which influence future developments. 

Once knowing those functions, we can also make a sample of random realisations and 

investigate behaviours of optimal asset allocation paths for the pensioner. 

 

As we will see in this thesis, there is a whole range of different pensioner’s optimal 

asset allocation strategies depending on the different assumptions. 

 

1.2.2 Annuitisation 

 

In this thesis we investigate three main environments regarding the annuitisation 

possibility for the pensioner. The first one is where no annuitisation is possible at any 

age, the second one is where annuitisation is available at age 65 only, and the third 

one is where no constraints on annuitisation are imposed where annuitisation is 

possible at any age. 

 

In the inflation risk model, the pensioner can purchase nominal or real annuities, and 

in the interest rate risk model he can purchase real annuities only. Actually, in the 

interest rate risk model no inflation is present and nominal annuities are the same as 

real ones. 

 

Again, we calculate optimal annuitisation as function of the state variables and 

investigate the characteristics of these functions. If no annuitisation is allowed for the 

pensioner then the results under this assumption are used as the benchmark for 

investigating how much benefit the pensioner has from annuitisation. If annuitisation 

is allowed at age 65 only, then we get one single number as the optimal annuitisation 

strategy and this number depends on the assumptions. If annuities are available at any 

age, then we get results which depend on the state variables during retirement. If 

annuities are available at any age, we make a sample of random realisations of 

random variables and get random paths of optimal annuitisation for the pensioner. 

Once we have a random sample of the paths of optimal annuitisation as well as 

optimal asset allocation throughout the retirement we are in a position to investigate 

these random paths in statistical terms determining mean values, quantiles and so on. 
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1.3 Structure of the Thesis 

 

After the introduction in Chapter 1, we present the review of literature relevant for the 

investigation done in this thesis in Chapter 2. We present a wide range of the literature 

relevant for optimal asset allocation in both pre– and post–retirement periods and in 

both discrete and continuous time framework. Other authors investigate optimal 

annuitisation in both a continuous and discrete time framework, and sometimes they 

investigate the post–retirement period only and sometimes it is the whole lifecycle 

with annuities after retirement. Some of the literature is not directly relevant for our 

investigation but is relevant in terms of the way that authors approach the problem of 

optimal asset allocation and annuitisation and the way they approach the problem of 

maximising expected discounted utility. 

In Chapter 3, we develop the inflation risk model, where one asset is a riskless 

investment in cash and the second one is a risky investment in equities. The pensioner 

has access to annuities with or without constraints. We assume that the pensioner 

retirement period starts at age 65 with a given amount of pension wealth and with a 

given last salary as well as income from social security during retirement. We assume 

that the pensioner receives the last salary income at age 65 and then from age 66 to 

the end of life he receives income from social security and from annuities if the 

pensioner converts part of his pension wealth into annuities. We develop the model 

which allow for nominal and real annuities in retirement. The model is quite general 

in terms of possible application for investigation of different constraints on investment 

and annuitisation strategies. If the pensioner purchases nominal annuities in the 

inflation risk model, then income from nominal annuities is subject to the yearly 

correction in real terms due to the influence of inflation. We investigate constant and 

stochastic inflation. The results are presented for different cases where the pensioner 

faces different constraints on his access to annuities. We investigate the case of no 

access to annuities, the case of access to nominal annuities at age 65 only, access to 

real annuities at age 65 only, access to nominal annuities at any age, access to real 

annuities at any age, and the case of access to nominal and real annuities at any age. 

Using numerical mathematics, we find and investigate the pensioner’s optimal 

consumption, optimal asset allocation and optimal annuitisation strategies in order to 

maximise his expected discounted utility from the consumption and from a bequest if 

he has a bequest motive. 

 

In Chapter 4, we develop the model with three assets, the first one being a riskless 

investment in a one year bond, the second one being a low risk investment in a rolling 

bond with constant duration, and the third one being a risky investment in equities. 
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All values are in real terms in this model. The model itself allows for any duration of 

the rolling bonds and even for different durations for different ages. We develop a 

discrete time and space model for interest rate and define the formula for the prices of 

bonds of any duration. Although we set no borrowing constraints, the simple changes 

in the model allow it to be used for different assumptions on the constraints. The 

pensioner has access to annuities with or without constraints. The pensioner aims to 

maximise his expected discounted utility from the consumption and from a bequest if 

he has a bequest motive. Again, the pensioner starts his retirement period at age 65 

with a certain amount of pension wealth at retirement, he receives the very last salary 

at age 65, and from age 66 to the end of his life he receives income from social 

security and from annuities if some annuities are bought during retirement. Although 

the model allows for any constraints on annuitisation, we investigate the results 

related to the three main cases of optimal annuitisation policies. In the first case, the 

pensioner has no access to annuities, in the second one he has access to annuities at 

age 65 only, and in the third case we investigate the pensioner having access to 

annuities during the whole retirement period. Again, we find and investigate the 

numerical results of the pensioner’s optimal consumption, optimal asset allocation and 

optimal annuitisation such that his expected discounted utility from the consumption 

and from a bequest if he has a bequest motive is maximised. In Chapter 4, we are 

more focused on comparing the results between the cases, where we investigate the 

gains in expected discounted utility due to access of annuities. 

 

In Chapter 5, we investigate further the results from Chapter 4 but now we are 

focused, within a given case, on the results depending on the value of the interest rate 

during the year prior to retirement. We also make some comparison with the chosen 

comparable results in Chapter 3. 

 

The most important findings of the developed models, and the conclusions drawn 

from the numerical results based on the inflation risk model and interest rate risk 

model are presented in Chapter 6. We also provide a discussion on possible future 

research based on the results obtained in this thesis. 

 

In the final section of the thesis, we give the entire list of references related to this 

thesis and three Appendices. In the first Appendix, we present the way to decrease the 

number of state variables from four to three state variables in the inflation risk model. 

In the second Appendix, we present the technique used for excluding income as a 

state variable in the interest rate risk model. These two Appendices are very important 

because excluding income as a state variable significantly increases the speed needed 
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for obtaining numerical solutions. In the third Appendix, we present the numerical 

values of the bond prices, obtained for the values of the parameters used in the 

numerical results in Chapters 4 and 5. 
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Chapter 2 

 

 

 

 

 

Literature Review 

 

 

Lifecycle models follow an individual throughout his lifetime and investigate income 

and consumption patterns. A member’s DCPS starts at very early ages and in the pre–

retirement period he earns a salary, consumes and saves for the DCPS fund. In the 

post–retirement period, the member receives income from social security, from 

annuities if any, and consumes. In both periods, if pension wealth exists, he also 

invests these assets. In this thesis we investigate the post–retirement period with a 

particular emphasis on the advantages coming from access to annuities. However, we 

will give some literature related to the pre–retirement period in order to see the ideas 

about optimal asset allocation that is also relevant to investment strategies in the post–

retirement period, and also some literature related to the lifecycle as post–retirement 

period is one part of a pensioner’s lifecycle. 

 

The basic idea of lifecycle consumption can be given as follows. People generate 

income applying their labour and have desires and needs to consume. However, 

income and consumption do not match each other throughout the whole of life. In 

their early working ages, people usually spend more than they earn and generally not 

much is saved. The salary growth is the fastest for this age group. The early working–

age period is followed by ages 40 to 50 years, when earning is higher than needs for 

consumption and the worker is aware of his lifecycle. This age group saves the most. 

Then, near the end of the working age, salary growth slows down and or even a salary 

decrease is experienced. However, the worker is fully aware of the approaching 

retirement period of life and tends to save more for old age. A retiree does not earn 

any more, but still has needs and desires to spend. This is financed from the assets 

accumulated throughout the working period of life and from social security income, or 

in other words from consumption given up in the working period of life. Figure 2.1 

graphically shows this process. 
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Figure 2.1 Lifecycle patterns 

 

DCPS models for the pre–retirement period usually have characteristics of long term 

investment models with periodic contributions and no or little initial wealth. The 

duration of the pre–retirement models can be fixed assuming a fixed date of 

retirement, but also can have uncertain duration assuming that the member can decide 

to work a few years more or less. On the other hand, the models for the post–

retirement period will have characteristics of asset allocation and annuitisation with a 

single contribution at the beginning and the stream of consumption afterwards. In 

addition, the typical feature of the post–retirement model is the assumption of an 

uncertain horizon, as income is needed as long as the member is alive and the time of 

death is not certain. 

 

Ando and Modigliani (1963) investigate implications and real world empirical 

evidence of lifecycle approaches to income and consumption. 

 

In the context of the whole spectrum of possible types of incomes in retirement, the 

results of Yaari (1965) are particularly interesting. In his seminal paper, he argues that 

the lifecycle consumer will always annuitise all his available assets assuming an 

actuarially fair annuity market. Yet, Yagi and Nishigaki (1993) show that in the case 
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of an imperfect capital market and level annuities, a pensioner without a bequest 

motive will still keep some marketable wealth. 

 

In the rest of this chapter, we will firstly focus our attention on the assumptions 

needed for developing DCPS models. Then, we will refer to the relevant models and 

the results derived from these models. We will group these models into five 

categories. The categories are: pre–retirement discrete time, pre–retirement 

continuous time, post–retirement discrete time, post–retirement continuous time, and 

the combination of pre– and post–retirement (lifecycle). The models for DCPS fit 

either into one of these categories, or into a mixture of them. Although we investigate 

discrete time models in this thesis, continuous time models are interesting for drawing 

ideas from them and because discrete time models are actually discrete time versions 

of continuous time models. Generally, continuous time models better represent the 

real world. The advantage of a discrete time model over continuous time one is the 

possibility to solve the problem on computers, and sometimes to obtain the results 

numerically while the analytical solution is currently not known. 

 

2.1 Assumptions for Asset Allocation and Annuitisation Modelling 

 

Investment models for DCPS are usually long term investment models. The long term 

character and periodic or continuous random fluctuations impose the need for 

introducing probabilistic and stochastic models. However, introducing “too many 

variables” representing the real world better and using the stochastic models for all of 

them leaves us with models that are too complex and mathematically intractable. 

 

The asset allocation model should be a good enough representation of the real world 

to lead us to relevant and useful conclusions. At the same time it should be simple 

enough for handling mathematically or numerically such that the results are 

obtainable in a reasonable time. Only then can conclusions be drawn. 

 

The starting point for any actuarial modelling is setting certain assumptions. The 

assumptions are very important and should be deemed as a theoretical environment 

where investigation is valid. Let us start with the usual market assumptions. 

 

A frequently met assumption for modelling DCPS is that the financial market is 

frictionless. A theoretical trading environment where all costs and restraints 

associated with transactions are non existent is referred as a frictionless market. 
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Market developments and decreasing trading costs in recent years make this 

assumption sound. 

 

The models usually ignore taxation. There are different taxation systems for DCPS 

throughout the world and taxes can significantly influence the relevant amounts and 

processes (Davis 1995). Sometimes, we can also assume that the taxation is implicitly 

included in the rates used in the model. 

 

An important assumption for modelling DCPS is the type of stochastic process in the 

model. If we allow that trading and flow of money into or out of a fund are done only 

at distinct time–points with time intervals between then, then we choose a discrete 

time model. Otherwise, if we assume that changes happens as momentarily change at 

each point of time in a specified time interval then we are in a continuous time 

framework. We deal with these types of models separately in the sections 2.2, 2.3 and 

2.4 of this chapter. 

 

2.1.1 Utility Function 

 

Wishing to make a theoretical model for asset allocation and annuitisation, and to find 

the superior asset allocation and annuitisation strategy, we have to define in which 

sense a certain strategy is superior to the others. Before defining criteria, we need to 

define what we want to compare. In the post–retirement period, it seems appropriate 

to compare utilities drawn from consumption and, if a bequest motive exists, from 

bequeathing assets to heirs as a result of a certain strategy. Using a utility function, we 

can distinguish the risk preferences of different investors. In the pre–retirement 

period, it can be the utility from the accumulated pension wealth at the time of 

retirement, or the utility from pension ratio. If one investigates the lifecycle, then the 

utility drawn from consumption throughout life time and possibly from the bequest in 

retirement can be the appropriate criterion for more or less successful asset allocation 

and annuitisation strategy. Pratt (1969) discussed preference ordering and introduced 

Pratt–Arrow’s measures of risk aversion that are defined as: 

 

( )
( )
( )

U W
A W

U W

′′
= −

′
, Absolute risk aversion (ARA) function, 

( )
( )
( )

U W W
R W

U W

′′
= −

′
, Relative risk aversion (RRA) function, 
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where U is the utility function. It is common to order preferences towards asset 

allocation and annuitisation in DCPS models using one of these two measures. The 

cases when ( )A W  and ( )R W  are constant functions of wealth W  are referred to as 

constant absolute risk aversion (CARA) and constant relative risk aversion (CRRA), 

respectively. 

 

2.1.2 Interest Rate and Assets 

 

The usual assumption for the interest rate in the model is one of the following: 

• a constant interest rate, 

• identically independently (iid) random variables for each time period, 

• discrete time stochastic process in a discrete time framework, 

• continuous time stochastic process in the continuous time framework.  

 

If the interest rate depends on time, we will usually denote the time dependence of the 

rate by the subscript only, i.e., ( ) tr t r= . For random variables, we will use superscript 

∼  above the variable. 

 

A fixed interest rate does not seem to be the best assumption for long–term models. 

However, the model is usually significantly simpler with a constant interest rate and 

the results obtained using the fixed interest rate can give us an indication about results 

in the cases that are more sophisticated. When the interest rate is assumed to be 

modelled by independent identically distributed random values for each consecutive 

time intervals then it is often assumed that random values are taken from normal or 

log–normal distribution. Its mathematical formulation in a case of iid normal 

distribution from interval to interval is as follows 

 

( ),tr N µ σ� ∼ , 

 

while in a case of log–normal iid it is 

 
tx

t
r e= �
� , 

where 

( ),tx N µ σ� ∼ . 

 

Among continuous time models for interest rate, we will confine ourselves to the 

models having stochastic differential equation of the type 
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 ( ) ( ) ( ), ,t t tdr µ t r dt σ t r dε t= +� �  (2.1) 

 

where ( )tε�  is the standard Brownian motion, ( ), tµ t r  is the drift coefficient and 

( ), tσ t r  is the diffusion coefficient and the initial condition 0r  is given constant. 

( ), tµ t r  and ( ), tσ t r  are deterministic functions. 

 

In this case, the interest rate tr  is referred to as the diffusion process whose dynamics 

are defined above by Ito’s stochastic integral. Four models (Vasicek 1977, Cox, 

Ingersoll and Ross 1985, Hull and White 1990) given in Table 2.1 are often used 

when modelling interest rates as a stochastic process 

 

Model name Formula Parameters 

Vasicek ( )t t rdr b ar dt σ dε= − +� �  , 0ra σ > , 0≥b  

Cox–Ingersoll–Ross ( )t t r tdr a b r dt σ r dε= − +� �  , , 0ra b σ >  

Hull–White 

(extended Vasicek) 
( ) ( )( ) ( )t tdr t a t r dt t dσ ε= Θ − + ��  ( ) ( ) ( ), , 0a t t tσΘ >  

Hull–White 

(extended 

Cox–Ingersoll–Ross) 
( ) ( )( ) ( )t t tdr t a t r dt t r dσ ε= Θ − + ��  ( ) ( ) ( ), , 0a t t tσΘ >  

Table 2.1 Some interest rate models 

 

In our notation, the name of the function and the name of the constant will always be 

different. Although we will always have a unique name for each drift and diffusion 

function or coefficient, often the names will differ in subscript only. In addition, we 

will sometimes omit writing the arguments of the functions. For example, ( )σ t  is the 

function, and even if sometimes written without arguments, i.e. σ , the meaning is the 

same, while rσ  is the constant because it is defined as such. 

 

When talking about the interest rate, we should state if it is a nominal or real interest 

rate. Due to the long term nature of the models and possible diminishing value of 

money amounts in real terms, the effect of inflation can have a significant influence 

on DCPS models (Meredith et al 2003). Inflation has its own dynamics and can be 

modelled similarly as the interest rate. However, the explicit inclusion of inflation 

makes models significantly more complex and harder to handle. 
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Asset prices are the building blocks of each DCPS model. When modelling asset 

prices in a continuous time framework, the usual assumption is that the asset prices 

follow a geometric Brownian motion (GBM). Mathematically, GBM is defined by 

 

( ) ( ) ( ) ( )dS t S t dt S t d tα σ ε= +� � , 

 

with initial condition ( ) 00S s=  where ( )tε�  is a standard Brownian motion, α  is a 

drift coefficient and σ  is a diffusion coefficient. 0s , α  and σ  are known constants. 

 

The type and number of assets included in the model depend largely on the type of the 

model itself and the objectives of the investigation. It is argued that different rates of 

return of the portfolios are a consequence of the allocation of assets to particular 

classes and not of the particular chosen assets in the class. From that point of view, 

modelling each particular stock and bond will probably not significantly improve the 

results. Many authors model one risk free asset representing cash in the portfolio, and 

one or two risky assets, representing bond (low risk and less variable asset) and equity 

(high risk and more variable asset) portfolios. A low risk low return asset can be 

deemed to be the bond portfolio and high risk high return asset can be deemed as a 

representative index from the stock market. In other words, proportions held in these 

three assets represent the proportions held in appropriate asset classes. If we assume a 

constant interest rate, we can analyse only two assets, one risk free and another risky. 

 

All of the models in Table 2.1 above possess an affine term structure (Duffie and Kan 

1996), i.e. ( ), , tB t T r  – price at time t of the zero–coupon bond paying 1 at time T can 

be written as 

 

( ) ( ) ( ), ,
, , , for 0tA t T C t T r

tB t T r e t T
−

= ≤ ≤ , 

 

for all (0,T T ∗ ∈  . In an arbitrage free bond market, (see definition 2.2 below), 

functions ( ),A t T  and ( ),C t T  are determined from the term structure partial 

differential equation 

 

( )

( )

21
0

2

, , 1

t r rr

T

B µ λσ B σ B rB

B T T r


+ − + − =


 =

 

 

where ( )λ t  is the market price of risk of the zero–coupon bond ( ), , tB t T r . If we 

assume that 0t = , then we will often omit writing the first variable in ( ), , tB t T r  and 

write ( )0,B T r  
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If the nominal interest rate is assumed to follow the Vasicek model defined above, 

then the nominal interest rate can have negative values. In that case, the zero–coupon 

bond can have a negative yield. No demand would exist for that zero–coupon bond. 

This non–realistic possibility is the main shortcoming of the Vasicek model. The CIR 

model for interest rate guarantees the positive value of the interest rate. In this sense, 

the CIR model of the interest rate is probably superior to the Vasicek one. However, 

the mathematics is usually simpler in the Vasicek framework. 

 

One can also observe that the stock prices modelled as a GBM are always non 

negative. This feature reconciles with the real world feature of the common stock as 

being the limited liability security. 

 

A typical approach to modelling the stochastic interest rate and portfolio containing 

cash, bonds and equities is used in Chapter 4. 

 

2.1.3 Portfolio Process, Arbitrage and Completeness 

 

Definition 2.1 : Portfolio Process 

Let 

• N =  the number of different types of stocks; 

• ( )ih t =  number of shares of type i held during the period [ ),t t t+ ∆ ; 

• ( )h t =  the portfolio ( ) ( )1 ,...,
N

h t h t    held during the period [ ),t t t+ ∆ ; 

• ( )c t =  the rate of consumption during the period [ ),t t t+ ∆ , and ( ) 0c t ≥ ; 

• ( )iS t =  the price of one share of type i during the period [ ),t t t+ ∆ ; 

• ( )V t =  the value of portfolio h at time t; 

Then, 

• a portfolio process (or simply portfolio) is any process ( ){ ; 0}h t t ≥ ; 

• the value process ( )h
V t  corresponding to the portfolio h is given by 

 

( ) ( ) ( )
1

N
h

i i

i

V t h t S t
=

=∑ ; 

 

• a portfolio consumption pair ( ),h c  is called self financing if the value process 

satisfies the condition 

 

( ) ( ) ( ) ( )
1

N
h

i i

i

dV t h t dS t c t dt
=

= −∑ ; 
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A self financing portfolio is sometimes defined as the portfolio where purchasing new 

assets as well as consumption can be financed only by selling assets already held in 

the portfolio. 

 

Definition 2.2 : Arbitrage 

An arbitrage possibility exists on the financial market if there exists a self financed 

portfolio h such that 

 

( ) ( )0 0, and 0 . .h h
V V T P a s= > −  

 

We say that the market is arbitrage free if there is no arbitrage possibility (Björk 

1998). No arbitrage is a standard assumption in DCPS asset allocation models. 

 

Definition 2.3 : Hedging and Completeness 

We say that a T–claim χ  can be replicated, or that it is reachable or hedgeable, if 

there exists a self financing portfolio h such that 

 

( ) , . .h
V T P a sχ= −  

 

In this case, we say that h is the hedge against χ . We also say that h is a replicating or 

hedging portfolio. If every contingent claim is reachable, we say that the market is 

complete (Björk 1998). 

 

The following result gives relation between the number of assets and no arbitrage and 

completeness in the model (Björk 1998). 

 

Theorem 2.1: Meta theorem 

Let M denote the number of underlying traded assets in the model excluding the risk 

free asset, and let R denote the number of random sources. Generally, we can have the 

following relations 

1. the model is arbitrage free if and only if RM ≤ ; 

2. the model is complete if and only if RM ≥ ; 

3. the model is arbitrage free and complete if and only if RM = . 

 

Let us define the risk neutral measure. It is also referred to as risk adjusted or 

martingale measure. 

 

 

 



 24

Definition 2.4 : Risk Neutral Measure 

Let the rate of interest ( )r t  be defined by (2.1). The risk–neutral measure Q is 

characterised by any of the following equivalent conditions 

1. Under Q, every price process ( )tΠ  has the risk neutral valuation property 

 

( ) ( )[ ]

T

s

t

r ds
Q

tt E e T
−∫

Π = Π ; 

 

2. Under Q every price process ( )tΠ , be it underlying or derivative, has the 

short interest rate as its local rate of return, i.e. the Q–dynamics are of the form 

 

( ) ( ) ( ) ( ) ( )td t r t dt t σ t dε tΠΠ = Π + Π� � , 

 

3. Under Q every price process ( )tΠ , be it underlying or derivative, has the 

property that the normalised price process 

 

( )
( )0

t

S t

Π
, 

 

is a martingale, i.e., it has a vanishing drift coefficient, where ( )0S t  is defined 

 by ( ) ( ) ( )0 0dS t r t S t dt=  with ( )0 0 1S = . 

 

The following two theorems establish relations between risk neutral probability 

measure and no arbitrage and completeness. 

 

Theorem 2.2 : Fundamental theorem of asset pricing – part I 

If a market has a risk neutral probability measure then it admits no arbitrage (Harrison 

and Pliska 1981). The opposite is true as well. 

 

Theorem 2.3 : Fundamental theorem of asset pricing – part II 

The risk neutral probability measure is unique if and only if every contingent claim 

can be hedged (Harrison and Pliska 1983). 

 

These two theorems are important in a sense that the assumption of complete market 

guarantees us that the powerful tool of risk neutral probability measure is available. 

When modelling DCPS, one can easily end up with the incomplete market 

environment if for example the contributions have their own source of risk stemming 

from the member’s uncertain salaries. 
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In this thesis we investigate discrete time models. However, a discrete time model can 

be deemed as an approximation of the continuous time one. The definitions and 

theorems given in this section are useful because we can appropriately position our 

models in the whole range of the papers investigating the similar problem such that 

we can compare our results with the relevant results of the other authors. 

 

2.1.4 Some Features of Post–Retirement Period 

 

When modelling DCPS in the post–retirement period, one has to consider the entire 

set of assumptions about a member’s preferences and about the available post–

retirement options. 

 

Under annuitisation, members pool their assets and completely give up the control of 

their annuitized assets. Upon the death of the member, the residual assets are shared 

among surviving members. The amount transferred to surviving members of the 

pension plan is sometimes referred to as the survival credit or mortality drag (Blake 

1996). Mortality drag is a positive feature for those who survive as it increases their 

rate of return and provides assets for those living longer then average. If part of the 

pension wealth is annuitised then no asset allocation and no additional trading of those 

assets is possible from the member’s point of view. 

 

Giving up one’s assets in exchange for annuity means that no pension assets will be 

left behind to the heirs. Often, the member will wish to bequeath some of his assets. 

This is referred to as the bequest motive. In fact, there is evidence that very few 

people voluntary annuitise all their assets (Mitchell and McCarthy (2002) and 

Finkelstein and Poterba (2000)). It is particularly true for those having large pension 

assets available and those who believe that they are in a worse health than an average 

member. The member’s bequest motive could be an important determinant of the 

decumulation strategy. 

 

The family can influence one’s attitude towards risk as well as the bequest motive. 

For example, a married couple have the ability to pool their mortality risk and the 

decision to annuitise is less likely (Kotlikoff and Spivak (1981) and Brown and 

Poterba (2000)). The existence of income from other sources, such as social security, 

encourages the bequest motive as well (Brown (2001)). 
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Bodie, Merton and Samuelson (1992) investigate the possibility of a flexible 

retirement date. They investigate the effects of the labour–leisure choice on portfolio 

and consumption decisions over an individual’s lifecycle. A flexible time of 

retirement or allowing working part– or full–time in retirement can also change a 

member’s attitude towards risk and his optimal asset allocation and annuitisation 

strategy.  

 

2.1.5 Risk Faced by the DCPS Member 

 

We have already mentioned the individualisation of risks which happens when the 

pensioner is in DCPS and not in DBPS. Let us now consider some of the risks faced 

by the member of DCPS. 

 

Two main risks in the pre–retirement period are the investment risk and the risk of 

inadequate contributions. The member bears the risk of the high volatility of return 

and lower than expected investment returns. The investment risk is particularly 

important a few years prior to the time of retirement, because not much time is left for 

asset prices to recover. Contribution rates can be inadequate but this fact is usually 

realised when it is too late to repair it. Unwanted contribution holidays caused by 

different reasons can diminish the retirement income significantly. Also, unwanted 

contribution holidays and poor return on investment can both happen at the same 

time. Namely, in years when the overall economy performs badly then both poor 

investment results as well as increased unemployment can be expected. 

 

In the post–retirement period, risks largely depend on the chosen decumulation 

options. 

 

If the retired member chooses to convert part of his pension wealth into an annuity, he 

bears the risk of unfavourable annuity prices, due to the lower than expected interest 

rate or due to the increase in the population’s longevity. Adverse selection among the 

annuitants also increases annuity prices. Inflation risk can be a very important source 

of uncertainty in retirement as the real value of the income in retirement can be 

significantly eroded by inflation. The member is also under the risk of not making use 

of his pension wealth if the annuitisation is soon followed by death and no bequest is 

arranged. 
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If the retired member chooses self investment of the significant part of his pension 

wealth, then investment risk remains important in the post–retirement period as well. 

Further, restricted investment opportunities, such as limited availability of index–

linked bonds or legislative investment restrictions, can be a source of inadequate 

income in retirement. With self investment, the pensioner is generally under the risk 

of running out of pension assets, particularly if he underestimates his remaining 

lifetime.  

 

During the whole period of DCPS, the member should be aware of the risk of high 

costs and profit margins in any financial arrangement, as well as possibly 

unfavourable taxation. 

 

The properly chosen asset allocation and annuitisation strategies can decrease or 

eliminate some of these risks. However, for some risks, choosing the member’s choice 

of the proper annuitisation strategy can be more important than the asset allocation 

strategy. Further, the criteria for properly chosen asset allocation and annuitisation 

strategies will not be related to the different risks to the same extent. Optimising to a 

certain criterion usually means handling one or more risks, but not all. So, we should 

always think of the optimal asset allocation and annuitisation strategies as dependent 

on the particular criterion or criteria. We can expect that different criteria will result in 

different optimal asset allocation and annuitisation strategies, which sometimes may 

even be contradictory. 

 

2.1.6 Criteria for Optimality 

 

Each optimal asset allocation strategy will be optimal according to the certain 

criterion. A number of criteria can be defined. The two commonly met criteria are: 

• maximising member’s expected utility, or in a mathematical form 

 

( )( )max
c

E U f t   , 

 

• minimising member’s expected disutility, or 

 

( )( )min
c

E D f t   , 

 

where ( )f t  is a function from which utility (disutility) is drawn and c  is the 

control variable. The optimal value of the control variable is the one that 

provides maximised (minimised) expected utility (disutility).;  
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If we are optimising the pre–retirement period, the function ( )f t  can be  

• the final wealth or intertemporal wealth, or;  

the pension target (pension ratio, the amount of annuity or some other target), 

where the pension ratio PR  is defined by 

 

annual penison income
PR

final annual salary
= . 

 

In the post–retirement period, the function ( )f t  can be utility from consumption plus 

utility from the wealth bequeathed to heirs, for example 

 

1 2

0

( , ) ( ( ))

T

tf U c t dt U W T= +∫ , 

 

where T  is the time of death, 1U  is utility drawn from consumption in retirement and 

2U  is utility drawn from the bequest. 

 

A number of criteria are based on the maximising or minimising probabilities. Let 

again c  be the control variable. The optimal value of the control variable is now the 

one that provides maximised (minimised) probability. For example, the problem can 

be defined  

• maximising probability of reaching certain target, for example 

 

( )( )max T
c

P W T G≥ , 

 

where ( )W T  is a pension wealth at the time of retirement and TG  is the 

minimum guarantee; 

• minimizing probability of ruin in post–retirement period, for example 

 

( ) ( )( )
0

min inf 0 | 0
c t T

P W t W
≤ ≤

≤ , 

 

where ( )0W  is pension wealth at the time of retirement and T  is random time 

of death; 

• minimising the probability of shortfall below a certain lower bound given for 

example with the formula 

 

( ) ( )( )min
c

P W t Tar t≤  
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where ( )W t  is a pension wealth at time t  and ( )Tar t  is some target value 

that the member sees as a lower acceptable bound of his pension wealth.; 

 

One can optimise asset allocation in the pre–retirement period in order to minimise 

the value at risk of a certain variable (pension ratio, pension wealth at retirement, 

etc.). In a mathematical form the problem can be defined for example as 

 

( )min R
c

W , where 

 

( )( ) 1RP W T W ε≥ − = − , 

 

where ( )W T  is pension wealth at retirement, RW  is value at risk calculated from the 

second equation. c  is the control variable and the optimal value of the control 

variable is the one that provides minimal value at risk. 

 

A number of other risk measures such as variance, semi–variance, can also be used, 

and optimal asset allocation and annuitisation can be determined according to these 

criteria.  

 

Different criteria will probably result in different optimal asset allocation and 

annuitisation strategies. It opens a number of questions about the optimality and 

probably requires some subjective judgement before concluding which asset 

allocation and annuitisation strategies to apply. 

 

In Chapter 1, we categorised the basic options for income from DCPS in retirement 

as: annuities, income drawdown and the combination of these two. Usually, each 

member will be eager to exercise some combination of income drawdown and 

annuities with particular amounts to be annuities and withdrawn from pension wealth. 

Each DCPS member will probably have his own preferences towards risk and 

bequest. Once the preferences of the pensioner are known, we can define the criteria 

for optimality. Only then we can try to find the optimal asset allocation and 

annuitisation strategy for that particular member. 

 

2.1.7 Discrete Versus Continuous Time Models 

 

Discrete time models for DCPS asset allocation and annuitisation can be deemed as 

the natural modelling approach for the pensioner’s income and consumption. Indeed, 

the retirement income inflows and retirement consumption outflows from the pension 
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fund are usually made on a regular time basis, say monthly or annually, and one can 

assume that asset allocation and annuitisation strategies are examined and possibly 

improved on a regular time intervals. One can also expect that the required 

mathematical tools are simpler in a discrete time environment and obviously 

numerical solutions done using computers are expected to be more easily solved. 

However, in modelling optimal asset allocation and annuitisation, we have to model 

financial assets such as stocks and bonds. These assets do not stop changing its values 

during the regular and longer time intervals but quite opposite. There are many agents 

and the values of assets change at different and short time intervals and thus 

continuous time approach seems to be more appropriate approximation when 

modelling values of the assets. 

 

The powerful tool of mathematical analysis in continuous time and the analytical 

results arising from continuous time models induce us to consider the continuous time 

approach as well. A great advantage of continuous time models is the possibility of an 

analytical solution to the problem. If we have an analytical solution to the problem 

then we can investigate this solution in many ways and get a clear idea about the 

changes of the solution when we change different parameters. If we use continuous 

time model then we can better model different volatility functions, we can better 

investigate possible heavy tail of the distribution. Strong dependence of the serial data 

can usually be modelled better using continuous time than discrete time approach. 

Also, continuous time models allow for modelling occasionally sudden but large 

jumps.  

 

In the seminal papers, Merton (1969, 1971) set up the models for asset allocation 

strategy in the continuous time framework. These papers are reprinted in Merton 

(1990). He employs a general technique which has been widely used subsequently for 

developing intertemporal problems under uncertainty. Merton (1969) analyses the 

model with given initial wealth, and the case when income is generated by capital 

asset gains only. Asset prices are modelled using geometric Brownian motion process. 

Firstly, he examines a two assets problem then extends it to multi asset problem and 

finds the relevant optimality equations for consumption and for asset allocation. He 

particularly investigates constant relative risk aversion (CRRA) and constant absolute 

risk aversion (CARA) and finds explicit solutions for these cases. He also shows that, 

in the given framework and with many assets, if asset prices follow geometric 

Brownian motion, one can work with two assets only without a loss of generality. 

Merton (1971) further develops the model for more general utility functions, price 
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behaviour assumptions, and contributions into the fund from non–capital gains 

sources. 

 

There is also a significant disadvantage to the continuous time models. Although there 

are many continuous time models in finance investigated and solved, we find that the 

solution of the continuous time model involving annuities and different constraints on 

investment and access to annuities becomes very hard or even mathematically 

intractable. For example, it is possible to have an analytical solution for a certain 

continuous time model with no constraints on short–selling, and introducing no 

borrowing constraint in the model can become mathematically extremely hard or even 

intractable problem. We can say that there is a mathematical barrier to the complexity 

of the model that can be solved in the continuous time framework. 

 

On the other hand, discrete time models can be solved using computers. In recent 

years we have witnessed the fast development of computer hardware and software, 

and of parallel computing. Very powerful software, particularly for optimisation, has 

been developed as well. So, when we develop a discrete time model there are very 

powerful tools for obtaining a numerical solution. Even more, if we want to improve 

the model, for example to add certain constraints or to add annuities or one or more 

other variables, the improved version of the model still can be solvable. A 

shortcoming of the numerical solution on the computer is that we usually get one 

numerical solution for one choice of the values for each parameter. In order to get an 

idea about the solution for different values of the parameters, we need to get a number 

of solutions and to compare them numerically. 

 

2.2 Models and Results in Pre–Retirement Period 

 

The models for pension wealth development in the pre–retirement period are 

characterised by income from investment and from contribution, and possible outflow 

due to adverse investment results. Usually, no consumption of the pension wealth is 

allowed. The asset allocation strategy objective is to provide the appropriate wealth at 

the moment of retirement. The appropriate wealth at the moment of retirement means 

that the member will be in a position to obtain a satisfactory income in retirement 

from the accumulated pension wealth. 
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2.2.1 In Discrete Time 

 

Knox (1993) develops a discrete time stochastic model for both inflation and a range 

of investment returns, and analyses different investment strategies and the distribution 

of retirement income that are to be obtained from DCPS. He stresses the importance 

of the investment performance of the fund. He recognises the risk return trade–off in 

investment, resulting in different levels of annuity income in retirement, where this 

income is expressed as a percentage of the final salary. Rather than suggesting the 

appropriate investment strategy, he suggests that each member should understand the 

risks of his particular DCPS. 

 

The model for DCPS fund value developed by Ludvik (1994) incorporates the most 

important variables and develops a closed form formula for pension benefit as a 

fraction of the final salary. Pension benefit is modelled as an annuity after 

withdrawing a lump sum at retirement. Numerical investigations are done using 

Wilkie (1986) model. The Wilkie (1986) model is based on modelling financial 

variables using time series. Ludvik (1994) extends it to include time series for major 

investment classes and national average earnings. He investigates four investment 

strategies: 100% in equities, 100% in bonds, 100% in cash, and a deterministic 

lifestyle, which entails switching from 100% equities to 100% bonds over the last five 

years of accumulation phase. The criterion for comparing the strategies is downside 

volatility measuring floor level (the worst 5% percentile). He finds that bonds and 

cash are a superior strategy to the equity and deterministic lifestyle, although with a 

lower median. 

 

Khorasanee (1995) examines the investment problem by analysing different 

investment strategies and comparing them. The models for annual investment returns 

are: iid log–normal random variables and a dividend yield model. He analyses the 

following investment strategies: investing the whole fund in equities, static investment 

strategy investing 75% and 50% in equities and the rest in index–linked bonds, and 

one–off switching to low risk asset close to retirement. He also investigates the use of 

derivative based investment products. The switching strategy is supported as 

appropriate for reducing investment risk associated with equities, particularly in a 

period close to the time of retirement. However, it is found that the equities are the 

most appropriate asset class for DCPS. 

 

Booth and Yakoubov (2000) analyse deterministic lifestyle investment strategy close 

to retirement based on historical datasets. They use Wilkie’s simulation model, where 
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parameters are determined by historical values from the available databases. A 

number of asset allocation strategies are analysed with respect to the post–retirement 

preferences towards the decumulation choice of the pension wealth. Funding is 

analysed for cash, for purchasing a fixed annuity and for purchasing an index–linked 

annuity at retirement. They find no evidence for supporting the superiority of a 

lifestyle investment strategy. However, they find strong evidence for supporting a 

well–diversified investment strategy until retirement rather than a one–off switch to 

low risk asset. They also conclude that the investment strategy close to retirement 

should be dependent on the required decumulation strategy. 

 

Blake, Cairns and Dowd (2001) examine different models for investment returns on 

assets and different strategies for asset allocation in the accumulation phase of DCPS. 

They investigate the following asset allocation strategies: static asset allocation 

throughout the accumulation period, deterministic lifestyle strategy with gradual 

switch 10 years before retirement and stochastic dynamic lifestyle investment 

strategy. In the latter, randomness is involved via feedback control. The assumed 

decumulation in retirement is full annuitisation and the member’s pension target is the 

pension ratio. The main criterion adopted in this paper is the Value–at–Risk (VaR ). 

The formulae for different models are presented followed by a number of interesting 

numerical results based on historical values. They recognise that a DCPS can be risky 

compared with a DBPS. The high sensitivity of VaR  estimates to the choice of asset 

allocation strategy is found. They find that the constant proportion asset allocation 

strategy with heavy investing in equities yields much better results than any dynamic 

strategy, including lifestyle investment strategy. Further, if the same retirement 

income is to be obtained, a bond based asset allocation strategy will require a 

considerably higher contribution rate compared with equity based investment strategy. 

 

The dynamic programming approach in a discrete time framework is applied by 

Vigna (1999), Vigna and Haberman (2001), and Haberman and Vigna (2002). Vigna 

and Haberman (2001) investigate the model with the two assets, one low–risk and the 

other high–risk. The assets are modelled by assuming that annual asset returns are iid 

log–normally distributed, and that returns from different assets are uncorrelated. They 

develop a multi–period model for DCPS asset accumulation and determine the 

optimal investment strategy that minimises member’s discounted future costs. The 

proposed total future cost at time t  is of the form 

 

( )
N

s t

t

s t

G γ C s
−

=

=∑ , 
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where γ  is intertemporal discount factor which can be seen as a psychological 

discount factor, and the “cost” at time t  is defined as 

 

( ) ( )
2

1 t tC t θ f F= −  for 1, 2,..., 1t N= − , and 

 

( ) ( )
2

0 N NC N θ f F= − , 

 

where tf  is the fund value, and TF  is the target fund value. They allow 0θ  and 1θ  to 

be different, recognising the different weights given to the costs of the intertemporal 

fund deviations and the final fund deviation. They present the link in their approach 

with expected quadratic utility. The two assets model leads to conclusions that are 

supportive of the stochastic dynamic lifestyle strategy. They find that with low 

volatility it is optimal to invest in the high risk asset at the beginning of the 

accumulation period and then switch into the low risk asset once the fund value is 

close to the target. In the case of the higher volatility, it is optimal to diversify, with 

increasing diversification as volatility increases. The annuity risk, i.e. the risk of low 

conversion rate when purchasing annuity at retirement, is analysed as well. In the case 

of the pension ratio as a target, they find that the probability of failing the target tends 

to decrease as the time to retirement increase. Haberman and Vigna (2002) extend the 

previous model in three ways: by analysing n  assets, introducing correlations 

between assets, and by improving the disutility function. The cost at time t  is now 

defined as 

 

( ) ( ) ( )
2

t t t tC t F f α F f= − + −  for 0,1,..., 1t N= − , and 

 

( ) ( ) ( )
2

N N N NC N θ F f α F f = − + −
 

, 

 

where 0α ≥  and 1θ ≥ . Under these settings, the deviations of the fund above the 

target are not penalised to the same degree as the deviations below the target, and the 

risk profile of the individual is taken into consideration. They also analyse two new 

risk measures: the mean shortfall and the value–at–risk. These risk measures are 

introduced with respect to the net replacement ratio. The optimal asset allocation 

strategy for risk averse member is again the stochastic dynamic lifestyle strategy, and 

the time when the switch to low–risk asset begins depends on the risk aversion. They 

conclude that the optimal asset allocation into high–risk asset increases as α  

increases. The risk neutral member, i.e. the member whose α→ +∞ , will not switch 

from riskier to lower risky assets according to this model. Haberman and Vigna 

(2002) find that different risk measures of the downside risk faced by the member of a 

DCPS give different and contradictory indications. The effect of changing the 
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correlation factor between assets does not appear to be of great significance. They 

suggest that the member’s risk profile and the trade–off between different risk 

measures of the downside risks are important factors when defining the optimal asset 

allocation for DCPS. 

2.2.2 In Continuous Time 

 

Boulier, Trussant and Florens (1995) apply Merton’s model in order to determine the 

optimal pre–retirement asset allocation. Although they concentrate on a defined 

benefit model, they stated the possible application for the defined contribution model. 

They set up the model with a constant risk free rate of return and one risky asset, and 

optimise the contributions and proportions invested into risky asset. An explicit 

solution is found for the case of the quadratic loss function. Further developments in 

the same directions are done by Siegmann and Lucas (1999). They calculate optimal 

policies for a loss function with constant relative risk aversion as well as one with 

constant absolute risk aversion. 

 

Boulier, Huang and Taillard (2001) set up the model for DCPS where the guarantee in 

the form of the minimal fund value is given on the benefit. The rate of interest is 

modelled using the Vasicek framework, and the guarantee is a bond like liability. 

They assume two sources of randomness: one from the interest rate and the other from 

the stock itself. The assets available for investments are cash, bonds with the constant 

time to maturity and stocks. The rate of contribution is assumed to follow a simple 

exponential function. They maximise the expected utility of the excess of the fund 

over guarantee, where CRRA utility function is taken. In order to end up with a 

solvable maximisation problem, they make two important modifications to the model. 

Firstly, a loan corresponding to the contributions is taken and put into the fund at the 

outset. The loan is repaid by contributions. In other words, they construct the bond 

portfolio that replicates the future contributions. The discounted future contributions 

at time t  are defined by 

 

( ) ( ) ( ),

T

t

D t c s B t s ds= ∫ , 

 

where T  is time of retirement, ( )c s  is the rate of contribution at time s , and ( ),B t s  

is the price at time t  of the bond paying 1 at time s . The guarantee is also replicated 

by bonds, and its value at time t  is 
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( ) ( ) ( )
'

,

T

T

G t f s B t s ds= ∫ , 

 

where 'T  is the time of death, ( )f s  is the rate of pension income, and T  and ( ),B t s  

as already defined. Using this technique, they define the equivalent problem where the 

contributions are converted into the initial wealth with no further contributions and 

the minimum guarantee of the pension wealth is expressed as a constraint on the fund 

being positive. The explicit solution of the optimal asset allocation in the pre–

retirement period is found. Numerical application of the derived solution shows that 

although the amount of the stock investment increases smoothly, its proportion in the 

pension fund declines. They also find that the member will have a short position in 

cash until just a few years prior to retirement, and that the proportion invested in 

bonds would decline first slowly and then sharply a few years prior to retirement. 

 

Deelstra, Grasselli and Koehl (2000) investigate optimal investment problem with 

initial wealth only and no further contribution, and where the stochastic interest rate 

follows the Cox–Ingersoll–Ross model. They explicitly expressed the asset allocation 

strategy which maximises the expected utility of the terminal wealth. They use the 

Cox, Huang (1989) methodology and find the explicit solution in the form of optimal 

proportions that should be invested in each asset in order to maximise CRRA utility 

drawn from the final wealth. The maximisation problem in this paper is closely 

related to the modified maximisation problem stated and solved by Boulier et al 

(2001). The difference is the model for stochastic interest rate, with the CIR 

framework probably being less easy to manage. 

 

In related papers, Deelstra, Grasselli and Koehl (2002) and Deelstra, Grasselli and 

Koehl (2003) exploit their model and results from Deelstra et al (2000), now in the 

continuous time framework of the accumulation period for DCPS. Deelstra et al 

(2003) tackle the problem of optimal asset allocation in order to maximise the 

expected utility of the excess of the terminal wealth over the minimum guarantee. 

They assume the complete market, investing in cash, bonds and stock, CRRA utility 

function, and affine dynamics of the stochastic interest rate. An explicit solution of the 

optimal asset allocation is found under the assumption that a contribution process and 

the guarantee are not subject to its own sources of risk. The results include Vasicek as 

well as CIR stochastic interest rate models as special cases. Appling the model from 

Deelstra et al (2000), Deelstra et al (2002) move in the direction of obtaining the 

optimal guarantee that maximises the expected utility function of the benefit in DCPS. 
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The detailed derivation from simple to more general DCPS asset accumulation model 

and analysis of the resulting formulae is done by Cairns, Blake and Dowd (2004). The 

simple model includes one risk free asset and one risky asset, stochastic salary, and 

two cases of contribution, a single premium with no subsequent contribution and no 

initial wealth with contributions as a constant proportion of the salary. CRRA utility 

function is employed and they maximise the expected utility of the final wealth over 

the final salary. The terminal utility function is assumed to be of the form 

 

 ( ) ( )( )
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 (2.2) 

 

where T  is the time of retirement, ( )W T  is the pension wealth at retirement and 

( )Y T  is the final salary. They find that, in the case of investing initial wealth with no 

further contributions, the optimal asset allocation is a constant and does not depend on 

the salary related risk. In this case, the member can do nothing but accept 

unhedgeable volatility of the salary. In the case of a regular contribution and 

hedgeable future salaries, the explicit optimal asset allocation is the lifestyle strategy. 

With unhedgeable salaries, the lifestyle strategy is still favourable. The analysis of the 

cost of sub–optimality shows that the member with a low degree of risk aversion can 

have a substantial cost of sub–optimality. The more general model includes a 

stochastic rate of interest, n  risky assets, and introduction of the replacement ratio as 

the argument of utility function. The terminal utility is now either of the form (2.2) or 

in the case of drawing utility from the replacement ratio 

 

( )
( )( )
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,

W T
u Y T

a T r T

 
 
 
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, where 

 

( )( ),a t r t  is the market rate for life annuities. They show that the optimal asset 

allocation consists of three funds: one hedging salary risk, one hedging annuity risk 

and one satisfying member’s risk appetite. They develop a partial differential equation 

for the case of hedgeable salaries, solve it when the rate of interest follows the 

Vasicek model and analyse it numerically. Again, support for the stochastic lifestyle 

strategy is found. However, optimal asset allocation requires cash borrowing that can 

be impractical in the real world. In the stochastic interest rate environment, the 

interest rate risk to the future annuity is present regardless of risk aversion. 
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The model for DCPS asset allocation with the stochastic salary and stochastic 

inflation is developed by Battocchio and Menoncin (2004). They assume the Vasicek 

interest rate model. The financial market consists of one riskless asset, one rolling 

bond, and one stock. The salary has its own source of risk. The risks from the interest 

rate, the stock and the salary are also the only sources of risk for inflation. The 

member’s objective is to choose the asset allocation strategy in order to maximise the 

expected value of the terminal utility of the fund’s real value. In the market structure 

with inflation, riskless asset becomes another risky asset. However, the market 

completeness is maintained with three risky assets. The optimal portfolio is 

represented as a sum of: preference–free hedging component, speculative component 

depending on portfolio Sharpe ratio and the inverse of the risk aversion index, and the 

hedging component depending on the state variable parameters. The closed form 

solution of the optimal asset allocation strategy is presented for the exponential 

(CARA) utility function. Using a numerical simulation, they show that the weights of 

stock and bond decrease with time, while the proportion of the riskless asset increases. 

 

Many authors, including some of those referenced here, use the trick of adding the 

present value of future contributions and subtracting the present value of the future 

consumptions and/or guarantees at the time of retirement. It brings us to the models 

based on Merton (1969, 1971) with zero consumption. This type of problem is 

analysed more widely, and we can reference a number of papers with different 

designs and results about this type of model (e.g., Liu (2007), Korn and Krekel 

(2002)). However, the strategy of discounted future contribution depends on the 

possibility to replicate contributions with the available assets. Even in the complete 

markets, the mathematics can become very complex when applying this approach. 

 

2.3 Models and Results in Post–Retirement Period 

 

Post–retirement asset allocation strongly depends on the member’s choice of how to 

spend his available pension wealth. We can say that the most important member’s 

requirement is a safe, lifelong income stream providing him with a “reasonable” 

lifestyle in retirement. The proper asset allocation and annuitisation strategy will be 

the one that suits the above stated needs in the best way, given the initial pension 

wealth and overall conditions in a given market and population. Let us emphasise that 

in this thesis, we are primarily interested in the member’s decisions on asset allocation 

and annuitisation strategies. By definition, annuitisation means paying a non 

refundable lump sum, i.e. giving up assets, in exchange for a guaranteed lifelong 
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income. Thus, annuitised assets are not subject to the member’s asset allocation 

strategy any longer. However, the time of annuitisation and the possible partial or 

phased annuitisation will influence the optimal strategy for the allocation of the 

available assets. The question of optimal asset allocation strategy in the post–

retirement period will be interesting for our investigation only if the member decides 

to keep control of part or all of his pension wealth after retirement. 

 

2.3.1 In Discrete Time 

 

The risk of outliving one’s money, i.e. the risk of ruin in retirement as one of the most 

important post–retirement risks, is analysed by Milevsky, Ho and Robinson (1997). 

They develop a discrete time stochastic model for post–retirement wealth and use it to 

determine the optimal asset allocation, where optimisation is done such that the 

probability of ruin is minimised. They assume a random rate of return, a fixed initial 

pension wealth and desired level of consumption. The model is supported by 

empirical values and numerical results are presented. In the bond and equity portfolio, 

they found the optimal asset allocation to be 70–100% in equities. The member’s risk 

of outliving his money is generally surprisingly high, particularly for low risk, low 

return investment policy. They find that retirees should consider their desired 

consumption, existing wealth, age and gender, before deciding how to allocate 

available assets. Their analysis shows that women face significantly greater risk of 

ruin in retirement than men. 

 

Milevsky (1998) develops a model where the retiree defers annuitisation as long as he 

can to obtain a better rate of return from an investment than from a life annuity. He 

allows the rate of return on a life annuity to be the subject of mortality drag and cost 

and profit loading. The development of the discrete time model is followed by a 

stochastic continuous time model. Assuming annual consumption in the amount of the 

available annuity and a continuously compounded rate of return on the pension wealth 

δ , he finds that the member will run out of money at time t∗  given by 
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showing that the member can safely beat the annuity if ( )
1

x
δ a

−
≥ . The probability of 

successful deferral is analysed. Although no optimal asset allocation is developed, the 

model and criterion in the paper can be used for optimal asset allocation analysis. In a 
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closely related paper, Milevsky (2000) uses the same model for further analysis of the 

same question. He concludes that annuitisation of assets provides a unique and 

valuable longevity insurance and should be encouraged at the higher ages. It is 

pointed out that an adverse selection in life annuities acts as a deterrent to full 

annuitisation. Retirees with a (strong) bequest motive might be inclined to self 

annuitise during the early stages of retirement. Focusing on the strategy “consume 

term and invest the difference”, he finds that the pensioner can successfully defer 

annuitisation up to age 75–80. 

 

Self–annuitisation and probability of consumption shortfall with respect to German 

insurance and stock market is analysed by Albrecht and Maurer (2002). They allow 

investment in three assets: stocks, bonds and real estate. They find that the self 

annuitisation strategy bears a substantial risk of outliving one’s wealth, providing that 

the amounts to be withdrawn every year are equal to the level annuity available on the 

insurance market. This appears to be particularly true for older members. Again, no 

optimal asset allocation strategy is found, but different asset allocation strategies are 

analysed and the importance and the superiority of the proper asset allocation is 

shown. 

 

Mitchell, Poterba, Warshawsky and Brown (1999) investigate the market for annuities 

in the United States and the reasons why that market has historically been small. They 

find that the prices charged for a single premium immediate life annuity vary widely, 

that the effective transaction costs to participating in the individual annuity market 

have declined during this period, and that the specialised income tax liabilities that are 

associated with annuity income does not significantly affect the expected present 

discounted value of annuity payouts. They compute the expected utility that a 

consumer with random lifetime and an additively separable utility function would 

derive from following an optimal intertemporal consumption plan in the absence of an 

annuity market, and the same individual’s utility if he can purchase an actuarially fair 

nominal annuity. 

 

Horneff, Maurer, Mitchell and Dus (2008) use a utility framework to compare the 

value of purchasing a standalone life annuity, versus a number of phased withdrawal 

strategies backed by a properly diversified investment portfolio, as well as 

combinations of these two tactics. They show that the appropriate mix depends on the 

retiree’s attitudes toward risk as well as the underlying economic and demographic 

assumptions. Then they compare standalone withdrawal rules versus immediate 

annuitisation of the entire portfolio. Consistent with previous studies, they show that 
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annuities are attractive as a standalone product when the retiree has sufficiently high 

risk aversion and lacks a bequest motive. Withdrawal plans dominate annuities for 

low/moderate risk preferences, because the retiree can gain by investing in the capital 

market and from “betting on death”. Finally, they examine combination/mixed 

strategies where retirees may both invest some of their assets and also purchase a 

payout annuity. In the case where the annuitisation decision occurs at the point of 

retirement, they find that annuities become appealing for those with moderate risk 

aversion, when retirees can hold both annuities and phased withdrawal plans as a 

mixed strategy. Withdrawal plans are now attractive for highly risk averse retirees. 

 

Brown (2001) examines household decisions about whether or not to annuitise 

retirement sources. A lifecycle model of consumption, implemented with the use of 

dynamic programming techniques, is used to construct a utility based measure of 

annuity value for individuals and couples. He develops annuity equivalent wealth as a 

measure which essentially captures the maximum mark–up over the actuarially fair 

cost that an individual would be willing to pay. He finds that one percentage point 

increase in annuity equivalent measure corresponds to a one percentage point increase 

in the probability of planning to annuitise. Marital status appears to be a particularly 

important source of underlying variation in the annuity equivalent wealth measure and 

annuity decision and that the ability of the simple lifecycle model to predict annuity 

behaviour is the strongest among individuals. He recognises the existence of both 

lifecyclers and “myopes” in the population. He also casts doubt on the importance of 

the bequest motives in influencing annuity decisions. 

 

Blake, Cairns and Dowd (2003) thoroughly analyse and compare three types of 

decumulation plans: purchased life annuity, equity–linked annuity with a level life 

annuity purchased at age 75, and equity–linked income–drawdown with a level life 

annuity purchased at age 75. The latter two plans are considered with equity exposure 

in the managed fund: 0%, 25%, 50%, 75% and 100%. The optimal retirement 

program among those proposed is the one which maximises the value function, where 

the value function is given by 
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where K  is the curtate future lifetime, β  measures the member’s subjective rate of 

time preference, 2k  specifying the desire for income and desire to make a bequest, 

( )F s  is pension fund value at time s, 1J  is utility drawn from the pension income and 

2J  is utility drawn from a bequest. They find that for the central values chosen for the 
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bequest function, the best program does not usually involve a bequest. The best 

program is the one paying survival credits to the member. The optimal choice of a 

distribution program is not found to be sensitive to the member’s weight attached to 

the bequest. The equity proportion chosen for the distribution programme has a 

considerably more important effect on the plan member’s welfare than the distribution 

programme chosen, and a poor choice can lead to substantially reduced expected 

discounted utility. The optimal annuitisation age is found to be very sensitive to the 

plan member’s degree of risk aversion, sensitive to the bequest motive and dependent 

on fund size. 

 

Horneff, Maurer and Stamos (2008a) compute the optimal dynamic annuitisation and 

asset allocation policy for a retiree with Epstein–Zin (EIS) preferences as defined in 

Epstein and Zin (1989), uncertain investment horizon, a potential bequest motives, 

and pre–existing pension income. In their setting, the retiree can decide each year how 

much he consumes and how much he invests in stocks, bonds, and life annuities. The 

gradual annuitisation refers to the intertemporal asset allocation problem of equity, 

bonds, and life annuities in a setting, in which the annuities purchased to date provide 

constant payments for the retiree’s remaining lifetime. The partial switch limits the 

freedom of choice given in the gradual annuitisation strategy. The partial switch 

restriction urges the retiree to purchase annuities only once, but it also gives him the 

freedom to decide when to switch and how much wealth to shift into annuities. The 

third possible annuitisation strategy is a complete switch, where no investments into 

stocks and bonds are allowed. They show that postponing the annuity purchase is no 

longer optimal in the gradual annuitisation case since investors are able to attain the 

optimal mix between liquid assets (stocks and bonds) and illiquid life annuities each 

year. In order to assess potential utility losses, they benchmark various restricted 

annuitisation strategies against the unrestricted gradual annuitisation strategy. Taking 

into account a reasonable parameterization of the asset model (e.g. risk free rate, 

magnitude of the equity premium, volatility of stocks, and cost structure of life 

annuities), their numerical assessment indicates for a moderately risk averse and 

endowed retiree that complete and partial switch restrictions cause the annuitisation 

age to be postponed for 10–15 years after retirement when annuities offer a higher 

mortality credit, or put differently, when annuities become cheaper. Although the 

partial switch strategy is less restrictive than the complete switch strategy, the partial 

switch occurs only slightly earlier than the complete switch tactic. The reason is that it 

is optimal to annuitise a high fraction of wealth later in life due to the increased 

mortality credit. Switching restrictions do not only cause annuitisation to be deferred 

but they can also reduce annuitisation. This is particularly severe in the cases with a 
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bequest: annuities are never purchased if complete switch restrictions are present. In 

contrast to the switching cases, the retiree already starts to purchase annuities at the 

beginning of the retirement phase, the age of 65, if he is allowed to follow the gradual 

annuitisation strategy. In the base case, he invests 30 percent of his wealth in annuities 

while keeping the remainder fully invested in stocks. Doing so, the investor is able to 

attain both the mortality credit of annuities and the equity premium of stocks. After 

the age of 65, he continues to repurchase annuities until full annuitisation is reached at 

about the age of 78. This is true for all RRA and EIS specifications considered, if no 

bequest motive is present. Welfare analysis evaluates the utility costs of restricted 

annuitisation and decumulation strategies compared to the case where gradual 

annuitisation is possible. This analysis is conducted for various degrees of RRA 

coefficients, EIS coefficients, the bequest motives, and initial endowments. For the 

CRRA case, we find utility losses of up to 30 percent of financial wealth if the retiree 

is forced to completely annuitise his wealth at the beginning of retirement. The utility 

loss is of a similar magnitude, if the retiree can only invest in stocks and bonds and 

has no access to annuities at all. They also conduct the welfare analysis for Epstein–

Zin preferences in order to disentangle the implications of varying the RRA and EIS 

coefficients. If the EIS coefficient is relatively low, utility losses are below those of 

the CRRA case for all restricted strategies considered. 

 

2.3.2 In Continuous Time 

 

The idea of continuously distributed time of death, continuous evolution and 

adjustments of the portfolio of the pension wealth, and continuous income and 

consumption rates, lead us to the continuous time models for post–retirement asset 

allocation and annuitisation in DCPS. 

 

The application of Merton’s (1969) model for the maximisation of the utility of the 

retirement income, when the DCPS member can invest in equities and annuity is 

examined by Kapur and Orszag (1999). They set up the model as if an annuity is an 

investment although an annuity is not a tradable asset. They exclude bond investment 

after retirement because annuities are superior to bonds due to the mortality drag. 

They find that that in the case of a no bequest motive the optimal decision depends on 

risk aversion but that all individuals switch into annuities as they get older. When 

mortality drag is large enough, annuity investment is superior to the equities as well. 

In this framework and based on UK data, they argue that annuitising pension wealth is 

not optimal before age 80 for males and even later for females.  
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The member’s right, but not the obligation to annuitise, as an option, is analysed by 

Milevsky and Young (2007). They analyse the optimal annuitisation and investment 

and consumption for utility maximising retiree facing a stochastic time of death under 

a variety of institutional pension and annuity arrangements. The model consists of a 

risk free rate of interest, one risky asset modelled via GBM, and annuity purchasing 

process. They firstly analyse the case where self investment, consumption and only 

full annuitisation at one distinct point of time is allowed. They argue that in this 

framework, the member’s option to delay annuitisation has substantial value at 

younger ages. In their model, they distinguish the subjective and objective probability 

of survival. The insurance company calculates annuity rates using the objective 

probability of death. The value function in the model is defined by 
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where 
s

c  is consumption prior annuitisation, 
s
π  is the optimal asset allocation 

strategy prior annuitisation, T is the time of annuitisation, ( )u x  is utility drawn from 

consumption, and superscripts S  and O  denote subjective and objective probabilities 

of death. They assume ( )u x  to be a CRRA utility function. It is shown that the 

optimal annuitisation time is independent of one’s wealth and can be regarded as 

some fixed time in the future. They find that in the case of equal subjective and 

objective force of mortality, the optimal age to annuitise is when the instantaneous 

force of mortality O S

x x
λ λ=  exceeds ( )

2 2/ 2µ r σ γ− . If the subjective force of mortality 

is different from the objective one, no matter higher or lower, then the optimal time of 

annuitisation increases. Using historical market parameters and realistic mortality 

estimates, they conclude that in this framework annuitisation is not optimal before at 

least age 70. They also investigate the case when annuitising in small amounts is 

allowed. In this case, they find that the member should obtain some basic level of 

annuities and then keep investing the rest at least until the wealth to income ratio 

exceeds a certain level. According to their results this would not occur before age 70. 

 

A similar model and question as Milevsky and Young (2007) are analysed by Stabile 

(2006). For a general form of the utility function and for the level annuity, he 

characterises the optimal rules, and does not provide an explicit solution. However, 

for a CRRA utility function, the explicit value function as well as optimal 

consumption, optimal asset allocation and the optimal time of annuitisation are 

presented. Stabile (2006) provides a number of useful equations. 
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Gerrard, Haberman and Vigna (2004) investigate DCPS member’s optimal investment 

strategy during the income drawdown period until the time of compulsory 

annuitisation. The pensioner invests the money in a typical Merton (1969) financial 

market. They assume a constant riskless rate of return, one risky asset whose price 

follows GBM, constant consumption per unit of time, and no bequest motive. It is 

assumed that the member wishes to minimise his expected disutility of quadratic loss 

function 
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where ( )X t  is the fund value at time t, and ( )F t  is the target value of the fund that 

the member wishes to achieve at time t, and ε  is constant. This choice of utility 

function implies the dependence of the asset allocation on the pension wealth. It is 

claimed to be a desirable feature in the context of the pension related problems. They 

aim to find the optimal asset allocation such that the value function 
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is minimised, where ρ  is subjective intertemporal discount factor, 0x  is pension 

wealth at retirement, and T is the time of annuitisation. The problem is explicitly 

solved for the certain targets in finite time and for a constant target in infinite time. 

Further analysis of the optimal asset allocation is done using a Monte Carlo 

simulation. They investigate the probability of ruin, the average time of ruin, given 

that ruin occurs, the probability of reaching the target (e.g. the desired level of 

annuity) at time T , the distribution of the annuity that can be bought at time T , 

compared to the target pursued, how the risk attitude of the individual can affect 

optimal choices and final results. The main conclusion is that for the member with not 

too high risk aversion, the income drawdown option should be preferred to immediate 

annuitisation, adopting an optimal asset allocation strategy with a sufficiently good (in 

terms of its risk–reward characteristics) risky asset. They find a relatively high 

probability of being worse off when adopting income drawdown for the member with 

the high risk aversion or for the member who aims at a target pension which is not too 

much higher than one he could receive with immediate annuitisation. In the extreme 

framework with no risky assets, they find the support for Yaari (1965) results that the 

immediate annuitisation seems to be optimal. 
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In a related paper, Gerrard, Haberman and Vigna (2003) use a somewhat similar 

framework to investigate income drawdown first in the case of no mortality and then 

include mortality and a bequest as well. However, now they penalise the variation of 

the consumption relative to the individual’s ideal level of the income. They aim to 

minimise the consumer’s expected discounted future loss 

 

( )
( ) ( )

( )( ) ( )( ) ( )
2

0 1
,

, inf

T

ρu

b y
t

V t x E e b b u du X T X t x
−

⋅ ⋅ ∈

 
= − + Ψ = 

  
∫

�

, 

 

where 1b  is the individual’s ideal level of consumption, T being the time of the 

compulsory annuitisation, ( )( )X tΨ  represent member’s disutility after annuitisation. 

The optimisation takes place in variables ( )b u  being the consumption in retirement 

and in the asset allocation strategy. In the case with no mortality, the effect of 

imposing the restrictions on the income drawdown and proportions of the fund 

invested in a risky asset is investigated and certain directions for tackling the problem 

are discussed. In the case that includes mortality and bequest, they introduce the idea 

of the double state variable, ( ) ( )( ),X t I t , where ( )I t  takes value 1 if the member is 

still alive and value 0 otherwise. They solve this type of stochastic optimal control 

problem, providing the proof of the verification theorem as well. This result is based 

on the work by Steffensen (2001). The authors believe that this approach of the 

double state variable stochastic optimal control problem is original in the actuarial 

literature. Stochastic simulations are carried out in order to investigate the behaviour 

of the results, such as the sensitivity of the optimal choices to the weight given to the 

bequest motive. Also, investigation is done on the probability of ruin. The results 

which they obtain show that inclusion of mortality in the model tends to decrease the 

volatility of the growth of the pension fund, of the optimal asset allocation and 

consumption. Including mortality in the model significantly decreases borrowing 

money from the bank as the optimal investment strategy. Further results lead to the 

conclusion that the ability to bequeath wealth affects only the riskiness of the optimal 

asset allocation, which seems to increase slightly with the increase of the bequest 

motive. 

 

2.4  Lifecycle Models and Results 

 

If we optimise asset allocation in order to maximise member’s utility at the end of the 

accumulation period, drawn from the post–retirement consumption, we in fact take 

into account post–retirement asset allocation and possibly annuitisation. For example, 

maximising the replacement ratio is a form of a model that involves both pre–
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retirement and post–retirement asset allocation. Here one makes the implicit 

assumption that the member plans to invest pension wealth into the annuity. The 

models presented so far in this thesis investigate only one period, either accumulation 

or decumulation period. 

 

Let us firstly present two papers which actually have interdependency between two 

periods and their influence on the optimal asset allocation strategy are important 

characteristic of the model. Although these models are not directly related to the 

following chapters in this thesis, the way they develop the models is relevant and it is 

also interesting to see the definitions and the use of other possible criteria in 

retirement. 

 

Arts and Vigna (2003) develop the model in a discrete time framework, with one low 

risk (bonds) and one high risk (equities) asset, the time of retirement is fixed, and the 

member chooses the decumulation option depending on the investment results. They 

assume that the member first starts investing contributions into the equity fund only, 

and when a “switch contribution” criterion depending on experienced investment 

results is satisfied he invests all future contribution into the bond fund. When the 

“switch funds” criterion is satisfied, also depending on the investment results, the 

member switches the equity fund into bonds. They investigate the best time to start 

investing contributions into bonds and the best time to switch the equity fund into the 

bonds. The switching criterion is to reach certain target fund values. “Switch 

contribution” can obviously happen in the accumulation period only, while “switch 

funds” can happen after “switch contribution”, either in the accumulation or in the 

decumulation period. At the time of retirement, there is the choice between income 

drawdown and fixed real annuity depending on if “switch fund” occurs before 

retirement. A number of numerical results are presented. They conclude that it seems 

to be important to consider both the period before and after retirement since an 

income drawdown option is available. They do not find equity investment to be risky 

in their framework and do not find strong support for the lifestyle investment strategy. 

 

Another attempt in setting up the DCPS model that takes into account both periods is 

done by Lachance (2004). She investigates the optimal consumption and portfolio 

choice where the retirement date is adjustable as a function of market return. An 

adjustable retirement date means that the duration of the accumulation period can be 

appropriately adjusted, i.e. that labour supply is flexible. The idea of labour flexibility 

is developed by Bodie, Merton and Samuelson (1992), and empirically supported in 

EBRI’s Retirement Confidence Survey (2003). Lachance (2004) maximises expected 
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utility for pre–retirement and for post–retirement period, and retirement is efficient 

when retiring yields as least as much utility as continuing to work. She finds that the 

introduction of labour flexibility into the model results in a higher proportion of 

wealth invested in risky asset. She also finds that eagerness to retire motivates these 

workers to take more investment risk prior to retirement and that the incentive 

disappears upon retirement. She suggests that investment risk influences retirement 

security only as long as the worker is unable to adjust her labour supply in response to 

market shocks. 

 

Chai, Horneff, Maurer and Mitchell (2009) derive optimal lifecycle portfolio asset 

allocations as well as annuity purchases trajectories for a consumer who can select his 

hours of work and also his retirement age. Using a realistically calibrated model with 

stochastic mortality and uncertain labour income, they extend the investment universe 

to include not only stocks and bonds, but also survival contingent payout annuities. 

Making labour supply endogenous raises older persons’ equity share and substantially 

increases work effort of the young; it also affords significant lifetime welfare gains of 

7% or more than 60% of first year earnings. Introducing annuities then generates even 

more realistic models which permit earlier retirement and higher participation by the 

elderly in financial markets. 

Although we aim to work with a constant time of retirement, it is interesting to see 

that the papers investigating time of retirement in a different framework lead to 

qualitatively new results for the optimal asset allocation and annuitisation. 

 

In this thesis, we investigate the post–retirement period only. The models involving 

the whole lifecycle can be used for getting the ideas and results about post–retirement 

asset allocation and annuitisation because in many models of this type the results are 

developed backwards year by year. 

 

Charupat and Milevsky (2002) derive the optimal asset allocation that maximises 

utility from pension wealth at retirement and utility from consumption in retirement. 

They observe two separate models for the accumulation phase and for the 

decumulation phase, and then compare optimal asset allocation strategies. For the 

accumulation period, they follow the Merton (1971) model and find an optimal asset 

allocation for CRRA utility function. In the post–retirement period, they assume the 

similar economy of one riskless asset, one risky asset, and a CRRA utility function. 

The member can annuitise his pension wealth by a level annuity or by a variable 

annuity. The level annuity is backed by the riskless asset, and the variable annuity by 

the risky asset. They analyse two separate cases: one with the assumption of the 
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exponential distribution of death and the other under the assumption of the Gompertz 

mortality law. They find that the optimal proportion is the same for these two cases. 

Further, this optimal asset allocation is contrasted with its counterpart in the 

accumulation phase. They show that the optimal asset allocation remains the same 

upon transition to the payout phase. Although accumulation and decumulation periods 

are independently analysed, the results show that in this particular framework optimal 

asset allocation is constant and does not change throughout the whole duration of the 

lifecycle. 

 

Cocco, Gomes and Maenhout (2005) develop a lifecycle model of consumption and 

portfolio choice with non tradable uncertain labour income and borrowing constraints. 

They assume CRRA utility function and one risk free and one risky asset and also 

allow for the presence of the bequest motive of the member. They calibrate the model 

realistically and analyse a number of realistic labour income possibilities. Given the 

quantitative focus of the article, they investigate what can reduce the average 

allocation to stocks and thus bring the empirical predictions of the model closer to 

what is observed in the data. They give a number of results regarding optimal asset 

allocation and optimal consumption depending on many different changes in the 

model set up. In terms of the lifecycle pattern of optimal asset allocation, the share 

invested in equities is roughly decreasing with age. With an increase in age, labour 

income becomes less important and the investor reacts optimally to this by shifting his 

financial portfolio towards the risk free asset. There is no annuity option in this 

model, but they realistically model pension fund, income and optimal consumption 

and asset allocation in post–retirement period. 

 

Horneff and Maurer (2009) develop the model for the investor who can purchase and 

sell stocks, bonds, money market investments, and mortality contingent claims 

continuously. They assume a risky stock market and the Vasicek model for the 

interest rate, and stochastic wages. In order to maximise utility drawn from future 

consumptions and possibly bequest, the investor consumes optimally, and optimally 

purchases and sells stock, bonds, cash and life insurance. The investor can have a long 

or short position in the term life insurance, which is not realistic but can be deemed as 

a simplification of a reverse mortgage. They find that the demand for insurance 

products is growing with age. Then the investor will have more demand for annuities 

if his wealth is higher and the human capital is lower. They find a considerably small 

influence of the short rate on the demand of life insurance. 
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Horneff, Maurer, Mitchell and Stamos (2009) and Horneff, Maurer, and Stamos 

(2008) are two similar papers. Basically, the authors use the same models, with the 

difference that in Horneff el at (2009) they assume that the investor has access to 

variable annuities and in Horneff et al (2008) they assume access to the constant real 

payout lifetime annuities. Other assumptions are almost the same and we will 

concentrate on Horneff et al (2008) as it is more relevant to the work in this thesis. 

They observe the investor over lifecycle facing uninsurable income risk, ruin risk, 

equity investment risk and uncertain lifetime. They introduce an incomplete annuity 

market into the lifecycle model assuming that the investor has access to annuities 

anytime during his lifetime. The investor can convert his available assets into one 

risky, one riskless asset, and into annuities. Each year, he optimally chooses the 

allocation into equities, bonds, annuities and optimally chooses consumption. The 

investor has subjective survival probabilities, while annuities are calculated using 

objective survival probabilities. He aims to maximise his discounted utility drawn 

from future consumption and bequest, if a bequest motive is present. They use 

Epstein–Zin preferences as in Epstein and Zin (1989). For welfare analysis, Horneff et 

al (2008) compute the additional constant lifelong income (as a fraction of average 

labour income) an individual without access to annuity markets would need in order 

to attain the same expected utility as in the case with annuity markets, while Horneff 

et al (2009) calculate for a certain age the expected equivalent increase in financial 

wealth needed to compensate an individual lacking access to annuity products. The 

model for income and parameterisation is mostly the same as the ones used by Cocco 

et al (2005). For the sake of convenience, they use Gompertz law for mortality. Each 

year investment into risky, riskless assets and annuities is constrained to be 

nonnegative. Due to untradeable labour income, the irreversibility of annuity 

purchases and the short selling restrictions, the problem cannot be solved analytically, 

and they adopt the standard approach of dynamic stochastic programming to solve the 

investor’s optimisation problem. They find that over time the annuity demand 

increases (age effect) for the following reasons. The mortality credit of annuities, the 

excess return above the bond return, increases with age. The sinking value of human 

capital results in a lower stock demand, as human capital is perceived as a closer 

substitute to a bond investment than to equity. Liquidity is also required to rebalance 

the portfolio. The demand for annuities also increases with the level of wealth on hand 

(wealth effect) because the investor does not require a high stock position in financial 

wealth in order to compensate for the investment in bond like human capital. In 

addition, the higher is the wealth in hand, the lower is the need for liquidity. Their 

welfare analysis reveals that loads, poor health, public pensions, and the bequest 

motives clearly reduce the willingness to participate in annuity markets. However, 
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none of them can really explain limited annuitisation in the market. Utility gains from 

purchasing annuities are still substantial. They suggest that behavioural factors might 

explain the remaining part of the “annuity puzzle”. This relates back to a bigger 

literature (Mitchell et al (1999) and Brown (2001)). 

 

2.5  Our Position in Literature 

 

The two main articles used as a starting point for the development of the models in 

this thesis are the models developed by Cocco, Gomes and Maenhout (2005) and 

Horneff, Maurer and Stamos (2008). These authors investigate the lifecycle model. 

We develop the models for the pensioner, retiring at age 65 with an uncertain and 

limited life time. If we observe the model investigated by Cocco et al (2005), for the 

individual age 65 and above, and if this individual has access to annuities, then we get 

to the starting point for the models in this thesis. Also, we observe the model 

investigated by Horneff, Maurer and Stamos (2008), for the individual age 65 and 

above, and if this individual has constant relative risk aversion utility function then we 

again get to the starting point for the models in this thesis. 

 

In Chapter 3, we develop this model further by introducing nominal annuities and 

stochastic inflation. Inflation has been addressed by Brennan et al (2002) and 

Battocchio et al (2004). However, we develop a discrete time and state spaces 

stochastic inflation model based on the work of Wilkie (1986, 1995). We introduce 

the stochastic inflation model into the framework of a post–retirement model for the 

pensioner making optimal decisions regarding optimal consumption, optimal asset 

allocation, and optimal nominal and real annuitisation in order to maximise expected 

discounted utility derived from consumption and bequest in retirement. The idea of 

the individual’s maximising expected discounted utility derived from consumption 

and bequest have been investigated in the seminal papers by Merton (1969) and 

(1971). 

 

In Chapter 4, we improve the basic model described above by introducing stochastic 

interest rate and annuities. Stochastic interest rate has been addressed by many authors 

and we have relied on the work of Boulier et al (2001) and Deelstra et al (2000). We 

actually make discrete time and space approximation of the bond market developed 

by Boulier et al (2001), and similar reasoning could be applied to the work of Deelstra 

et al (2000). We derive a discrete time and space stochastic interest rate model and 
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develop the bond market and derive the model such that the pensioner has access to 

three assets and annuities. The annuity rate is defined according to the bond prices. 

 

In order to measure the pensioner’s welfare, we apply constant equivalent measures 

used for example by Cocco et al (2005) and also the required equivalent wealth 

measure as used by Mitchell et al (1999) and Horneff, Maurer and Stamos (2008). 
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Chapter 3 

 

 

 

 

 

The Inflation Risk Model 

 

 

3.1 The Problem to be Solved 

 

In this chapter, we model two assets world with the presence of inflation. We are 

interested in the post–retirement period of the member’s life and we investigate 

financial gains/losses due to optimal/suboptimal behaviour in postretirement period.  

 

3.1.1 Economic Environment 

 

Let us first explain the economic environment that is represented by the model. 

 

We assume two sources of randomness in our model: one from the risky rate on 

equity investment and the other one from inflation. We assume a constant real interest 

rate. We have two assets: one risky asset (equities) and one risk free asset (cash). 

 

We assume that the pensioner has income coming from social security, and that this 

income is constant in real terms. Regarding consumption, we assume that he 

consumes part of his available assets at the beginning of each year, and we assume 

that this amount is not subject to inflation during the period shorter than one year. The 

pensioner draws utility from consumed amounts and possibly from amounts 

bequeathed to his heirs. He draws utility from the amounts in real terms only. 

 

After receiving income and consuming part of his pension wealth and income, the 

pensioner can invest his available assets into the risky and risk free asset at his own 

discretion.  
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We assume the presence of real and nominal annuities on the market. Real annuity 

provides constant income in real terms, while nominal annuity provides constant 

income in nominal terms. Having access to each type of annuity at each age is the 

most general case and obviously, the pensioner can act optimally in this environment 

and obtain the biggest gains. However, we will investigate this market with different 

limitations in order to investigate the importance of these limitations. Depending on 

constraints, the pensioner can be in the market where only real or only nominal 

annuities are available. It can also be that only real annuities are available and only at 

certain ages. There are many combinations and we will choose what we think are 

appropriate to shed light on the significance of having access to each of them. 

 

Under our assumption about the market, the pensioner who takes nominal annuities 

has no protection against the risk of inflation. His income from a nominal annuity will 

be subject to inflation risk and will diminish in time if inflation is positive. However, 

nominal annuities provide better income in both real and nominal terms in the early 

years after purchasing nominal annuities. As we will see later, the pensioner will still 

choose optimally some nominal annuities and expose himself to the risk of inflation. 

 

We assume that the member can annuitise his pension wealth only, and that the very 

first income from an annuity is receivable after one year time. So, at the beginning of 

each year of life, he annuitises the available pension wealth, receives income from 

social security and annuities bought in earlier years, consumes part of the remaining 

amount and invests the rest. 

 

We will present our model and results in real terms. However, one should be aware 

that this is just for presentational reasons, and we will actually convert from nominal 

to real values in order to present the results more clearly. 

 

We work in discrete time. We assume that postretirement decumulation process starts 

at age 65t = , and finishes at age 100t = . We assume that the maximum member’s 

age is 99, i.e. no member will be alive at age 100. The decumulation process lasts for 

35 years. If the bequest motive exists, the pensioner aged 99 will consume part of his 

assets and the rest will be invested and bequeathed when he is going to die during that 

year. Otherwise, he will consume everything at age 99 and nothing will be left for 

investing. In the earlier periods, the pensioner consumes part of his available assets, 

uses one part for purchasing real annuities, one part for purchasing nominal annuities 

and invests the rest. We take the duration of one period to be one year. A slight 

modification would allow other lengths of each period. As we will see, the solution to 
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the problem follows the same pattern for different periods. That is why it is useful to 

investigate one representative period and then the solution for the whole problem can 

be derived from the solution of one representative period. We will always denote 

random variables with a ∼  sign above the name of variable. Graphical presentation of 

the most important variables appearing in our model is given as follows 

 

State (information) variables 

t
W  is pension wealth, 

t
Y  is income, 

NA

t
d  is percentage of the real income received from nominal annuity, 1t

I −  is inflation 

65W  66W  … t
W  1t

W +  … 100W  

65Y  66Y  … t
Y  1t

Y +  … 100 0Y =  

65

NA
d  66

NA
d  … 

NA

t
d  1

NA

t
d +  … 100

NA
d  

64I  65I  … 1t
I −  

t
I  … 99I  

 

Inflation 

t
I�  is random inflation rate 

65I�  66I�  … t
I�  1t

I +
�  … 100I�  

 

Returns  

r  is constant interest rate, 
t

r�  is random rate on risky asset 

r  r  … r  r  … ––– 

65r�  66r�  … t
r�  1t

r +
�  … ––– 

 

Control (decision) variables 

t
C  is consumption, 

t
α  is proportion invested into equities, 

NA

t
m  is proportion used for purchasing nominal annuities, 

RA

t
m  is proportion used for purchasing real annuities 

65C  66C  … t
C  1t

C +  … –––
 

65α  66α  … t
α  1t

α +  … ––– 

65

NA
m  66

NA
m  … 

NA

t
m  1

NA

t
m +  … –––

 

65

RA
m  66

RA
m  … 

RA

t
m  1

RA

t
m +  … –––

 

 

Age during the decumulation process 

65 66 … t t+1 … 100 

 

 

We assume that the maximum pensioner’s age is 100 years. However, we witness 

constantly increasing longevity in recent years and it is not unusual any more that the 

pensioner’s age is more than 100 years. We recognise that this assumption in the 

thesis is at the variance with the empirical evidence. However, as we will see in the 

later text in the thesis, we investigate a number of numerical examples. Producing the 
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numerical results is time consuming and increasing the maximum pensioner’s age to, 

for example, 115 years would require more time for calculation. Some other authors 

who investigate the problem of the pensioner’s optimal annuitisation and asset 

allocation use the maximum pensioner’s age of 100 years (Horneff, Maurer, Mitchell 

and Stamos (2009), Chai, Horneff, Maurer and Mitchell (2009), Horneff, Maurer and 

Stamos (2008)). When investigating consumption and portfolio choice over life cycle, 

but with no annuities, Cocco et al (2005) assume that the investor dies with 

probability 1 at age 100. 

 

3.1.2 The Types of the Problem to be Investigated 

 

We assume that the member can annuitise any part of the available pension wealth. 

We will assume that the member never annuitises any part of his income, only 

pension wealth available at the beginning of the year can be used for purchasing 

annuities. 

  

The pensioner aims to maximise the expected discounted utility derived from 

consumption and possibly from bequeathing wealth by choosing the optimal 

consumption, asset allocation and annuitisation. Regarding annuitisation, we 

distinguish the strategies for the proportions of the pension wealth RA

t
m  and NA

t
m  to be 

annuitised. We group these assumptions into six types of problems to be investigated 

as follows: 

3.1 Annuitising NA

t
m  and RA

t
m  parts of a pension wealth exogenously. In this 

type of the problem, the pensioner chooses a predetermined amount for 

purchasing real and nominal annuities and for given NA

t
m  and RA

t
m  the 

pensioner invests and consumes optimally. The control variables are 

{ },t tC α , and NA

t
m  and RA

t
m  are determined exogenously and are usually 

suboptimal. The model can handle any assumption about predetermined 

values of NA

t
m  and RA

t
m  for 65 99t≤ ≤ . We will investigate in more details 

the results with no annuitisation which is the special case of this type of 

problem. 

3.2 NA

t
m  is chosen optimally for some ages and exogenously for others, and RA

t
m  

is chosen exogenously for all ages 65 99t≤ ≤ . For ages where NA

t
m  is 

chosen endogenously, the member chooses a predetermined amount for 

purchasing real annuities and for given RA

t
m  the member maximises the 

value function with respect to three control variables { }, , NA

t t t
C mα . 

Otherwise, the control variables are { },t tC α . The model allows us to 
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calculate the results for any combination of exogenous/endogenous nominal 

annuitisation. All we need to know is for which age nominal annuitisation is 

endogenous, and for which it is exogenous, and for exogenous annuitisation 

ages we need to know NA

t
m . We will thoroughly investigate the results under 

the assumption that the pensioner purchases nominal annuitises optimally at 

age 65 and no nominal annuities is available afterwards, and no real 

annuities.  

3.3 NA

t
m  is chosen exogenously for all ages, and RA

t
m  is chosen optimally for 

some ages and exogenously for others. For ages where RA

t
m  is chosen 

endogenously, the member maximises the value function with respect to 

three control variables { }, , RA

t t t
C mα , and otherwise the control variables are 

{ },t tC α . Similarly to the type of problem 2, we will thoroughly investigate 

the results under the assumption that the pensioner purchases real annuitises 

optimally at age 65 and no real annuities is available afterwards, and no 

nominal annuities is bought at any age. 

3.4 NA

t
m  chosen endogenously and RA

t
m  exogenously for all ages 65 99t≤ ≤ . In 

this type of problem, the member chooses a predetermined amount for 

purchasing real annuities and for given RA

t
m  the member maximises the 

value function with respect to three control variables { }, , NA

t t t
C mα  at all 

ages. 

3.5 NA

t
m  chosen exogenously and RA

t
m  endogenously for 65 99t≤ ≤ . In this 

type of problem, the member chooses a predetermined amount for 

purchasing nominal annuities and for given NA

t
m  the member maximises the 

value function with respect to the three control variables { }, , RA

t t t
C mα  at all 

ages. 

3.6 NA

t
m  and RA

t
m  are optimally chosen proportions for 65 99t≤ ≤ . In this case, 

the member maximises the value function with respect to the four control 

variables, and control variables are { }, , ,NA RA

t t t t
C m mα  for all ages. 

 

We have six groups of problems to be investigated, and these groups are differentiated 

by the assumption regarding exogenous/endogenous nominal/real annuitisation. When 

we have a particular assumption about the values of NA

t
m  and RA

t
m  for ages when NA

t
m  

and/or RA

t
m  are exogenous we will refer to this assumption as a case. We can think of 

different cases as being different markets which are comparable and which differ in 

offering annuities only. Actually, market and case are equivalent expressions in this 

thesis. That is why we sometimes referred to cases as markets. 
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Although we will not investigate the results for many other combinations of 

optimal/suboptimal annuitisation strategies, we want to emphasize that the model in 

this chapter can be used for any exogenous/endogenous nominal/real annuitisation 

strategies. For example, if we assume that full compulsory annuitisation is imposed at 

a certain age then annuitisation occurs at the pensioner’s discretion after retirement 

and before full compulsory annuitisation. Full compulsory annuitisation at a certain 

age can be deemed to be exogenous annuitisation with a proportion 100% at the age 

of compulsory annuitisation, and exogenous annuitisation with proportion 0% 

afterwards. We have witnessed this example in UK (Blake (1999)). Many countries 

do not impose compulsory annuitisation at any age. 

 

We allow that the pensioner has a certain utility from the bequest. If 100% 

compulsory annuitisation happens, we exclude the bequest after that age since no 

pension wealth is left for bequeathing in the case of full annuitisation. In this context, 

it is sensible to assume that the bequest motive exists until the time of full 

annuitisation and not after that.  

 

Regarding the amount to be annuitised at each age t , if exogenous annuitisation 

happens then it means that the member purchases real annuities for the amount of 
RA

t t
m W , or nominal ones for the amount of NA

t t
m W , and these annuitisation choices are 

suboptimal. Endogenous annuitisation happens if RA

t t
m W  and/or NA

t t
m W  are chosen 

optimally from the model. 

 

We will write { }
t

cv  to denote the { }
t

control variables  at age t , such that we have the 

general notation for any type of problem. As we will see later, we work with control 

variables for values in money units and with control variables for scaled down values 

suitable for the calculations. In order to differentiate between the two we will denote 

with { }
t

CV  the control variables for values in money units and with { }
t

cv  the control 

variables for scaled down values. 

 

3.2 The Model 

 

3.2.1 Definitions and Notation 

 

We use the following notation and definitions: 

• 
t

W  is the pension wealth at time t , just before income 
t

Y  is received; 

• 
t

Y
 
is the variable denoting income at time t . We model income as  
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65 99

0 100

t

t

PP for t
Y

for t

 ≤ ≤
= 

=
 (3.1) 

 

P  is constant and is equal to the income at age 65, 65 1P = , and 
t

P  will be 

defined later. 

• 
t

C
 
is consumption at the beginning of the period [ ], 1t t +  for 65,66,...,99t = , 

just after annuitisation and receiving income 
t

Y ; 

• 
t

b  is the factor which controls the pensioner’s strength of the bequest motive. 

If no bequest motive exists then 0
t

b = , for 65,66,...,99t = ; 

• NA

t
d  is the percentage of the real income at time t  received from nominal 

annuity bought before time t . We always assume that 65 0NA
d = . We refer to 

NA

t
d  as nominal income coefficient; 

• 
t

I�  is the inflation rate during the period [ ], 1t t +  for 65,66,...,99t = . We 

model the inflation process as being approximated by the autoregressive 

scheme 

 

( )1 1t I I t I tI µ ψ I σ ε+ = + − +� �  

 

where 
I
µ , 

I
ψ  and 

I
σ  are constants, ( )0,1tε N� ∼ . 64I  is known inflation rate 

during the year prior to retirement, The value of inflation rate 
t

I  during the 

period [ ]1,t t−  is known at time t .; 

• 
t

p  – probability that the member aged t  will survive until the age of 1t + ; 

• r  – risk free real interest rate, the constant and the same in all periods; 

• 
t

r�  – random variable denoting random real rate on risky asset during the 

period [ ], 1t t + , for 65,66,...,99t = . We assume that [ ], 1t t +  is one year 

period, and that 

 

 ( )( )t eLn r tµ σε= + ��  (3.2) 

 

where µ  and σ  are constants and ( ) ( )0,1eε t N� ∼ . 

• 
t

α  – the proportion of the wealth invested in the risky asset during the period 

[ ], 1t t + , for 65,66,...,99t = ; 

• NA

t
m  – the proportion of the pension wealth used for purchasing nominal 

annuity at time t , for 65,66,...,99t = ; 

• RA

t
m  – the proportion of the pension wealth used for purchasing real annuity at 

time t , for 65,66,...,99t = ; 
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The control variables of the type of problem 3.6 are { }, , ,NA RA

t t t t
C m mα . Depending on 

assumptions they can also be { }, , NA

t t t
C mα  for type of problem 3.4 and for 3.2 for 

those ages where nominal annuitisation is optimal. Control variables are { }, , RA

t t t
C mα  

for type of problem 3.5 and for 3.3 for those ages where real annuitisation is optimal, 

and { },t tC α  for type of problem 3.1 for all ages and 3.2 and 3.3 for those ages where 

we assume both real and nominal annuitisation to be exogenous. The state variables of 

the problem are { }
99

1
65

, , , ,NA

t t t t
t

t W Y d I − =
. We will skip explicitly writing the state 

variable t  and write the state variables as { }
99

1
65

, , ,NA

t t t t
t

W Y d I − =
. 

 

Let us also introduce the random variable 

 

(1 ) ( )P

t t t t t t
r r r r r rα α α= − + = + −� � �  

 

denoting the random real rate on the portfolio during the period [ ], 1t t + , for 

65,66,...,99t = . 

 

In inflation risk model, we define all variables in real term and allow the inflation to 

influence annuity income from nominal annuities only. Thus, we assume that real 

interest rate is constant, return on equity investment is modelled in real terms, income 

from social security is constant in real terms, and consumption and pension wealth are 

always expressed in real terms. If the inflation risk is present then it would influence 

the annuity rate of nominal annuity and then future income from nominal annuities. 

From this point of view it may be interesting to explore the possible correlation 

between real return on equity investment and inflation. Inflation can influence both 

expected return on stock as well as its volatility. We acknowledge here that this may 

be interesting topic to explore and with different assumptions and results, but due to 

already complicate model and numerous results that we provide in this thesis, we 

leave this analysis for future research. In this thesis, we assume that real return on 

equity investment is not correlated with inflation. 

 

The utility function is CRRA function, given by 

 

( )
x

u x
γ

γ
=  for 0,1 ≠< γγ , and 

( ) ( )u x Log x=  for 0=γ . 
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3.2.2 Income process 

 

Let us define income process more precisely. At age 65t = , income comes from the 

last salary only. After receiving his last salary, for ages 66 99t≤ ≤  the member’s 

income consists of social security income and income from annuities bought at age 65 

and afterwards. For reasons of simplicity, we will assume that income from the social 

security SS

t
Y  for 66 99t≤ ≤  is constant in real terms. We also define 100 0Y = , as we 

actually assume that no pensioner aged 100 is alive. 

 

We will distinguish three types of income in retirement, income from social security 

sources denoted by SS

t
Y , income from nominal annuities bought before time t  denoted 

by NA

t
Y , and income from real annuities bought before time t  denoted by RA

t
Y . 

Income from social security SS

t
Y  and income from index–linked annuity RA

t
Y  are real 

incomes to be received at time t . Income from nominal annuity NA

t
Y  is income in real 

terms received at time t  provided from nominal annuities bought before time t . It 

means that income NA

t
Y  is adjusted for inflation up to time t . This can be written as 

 
SS NA RA

t t t t
Y Y Y Y= + +  

 

for 66 99t≤ ≤ . 65Y  is defined in (3.1). Let us now define SS

t
Y , NA

t
Y  and RA

t
Y , for 

66 99t≤ ≤  more precisely. 

 

We assume that the pension member receives his very first income from social 

security at age 66, and SS

t
Y  will be defined as 

 

65

SS

t
Y replrate Y= ⋅  

 

for 66 99t≤ ≤  and replrate  is the percentage of the last salary provided from the 

state in form of social security income after age 65. It is a constant real income until 

the end of pensioner’s life. We also introduce the variable 

 

 
65

1 66 99
t

replrate t

t
ρ

=
= 

≤ ≤
 (3.3) 

 

Now we assume the environment where purchasing real and nominal annuities from 

pension wealth is allowed at the member’s discretion at age 65 and afterwards. 

Whenever the member purchases an annuity his wealth decreases by the amount used 

for purchasing that annuity, and his income in future periods increases from the newly 

provided annuity income. For reasons of simplicity, we assume that annuities provide 
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the very first instalment one year after purchasing annuities. Let us denote income 

from nominal and real annuities bought at age 65 with 65

NA

a
Y  and 65

RA

a
Y  respectively, at 

age 66 with 66

NA

a
Y  and 66

RA

a
Y  respectively, and so on until maximum age 99t = . 

 

We define 

 

99 1NA
a =  and 99 1RA

a =  

and 

 ( ) ( )
99

1 ,

1 1

1 1
it i

NA

t t j t i

i j

a NALoadings p r E I
− −

+ −
= =

  
 = + + +     

  
∑ ∏ �  (3.4) 

and 

 ( ) ( )
99

1

1 1

1 1
it

iRA

t t j

i j

a RALoadings p r
−

−

+ −
= =

  
= + +   

  
∑ ∏  (3.5) 

 

for 65,66,...,99t = , where NALoadings  and RALoadings  are loadings on the 

actuarially fair nominal and real annuities depending on the market, and ,t i
E I  
�  is 

expected annual inflation rate at time t  for the period of next i  years. Now, we can 

write 

 
NA

NA t t
at NA

t

m W
Y

a
= , and 

RA
RA t t

at RA

t

m W
Y

a
= . 

 

Thus, if some annuities are bought at age 65, the real income at age 66 is 

 

( )
1

66 66 65 65 65

66 66 66

1SS NA RA

a a

SS NA RA

Y Y Y I Y

Y Y Y

−
= + + +

= + +
 

 

Then some new annuities are bought at age 66, and the real income at age 67 is 

 

( ) ( ) ( )
66

1 1

67 67 65 66 66 65 66

65

67 67 67

1 1SS NA NA RA RA

a k a a a

k

SS NA RA

Y Y Y I Y I Y Y

Y Y Y

− −

=

 
= + + + + + + 

 

= + +

∏
. 

 

The same pattern repeats itself and at age 66 99t≤ ≤  the real income is 

 

( ) ( ) ( ) ( )( )
1

1 1

65 1 651 1

65

1 ... 1 ...
t

SS NA NA RA RA

t t a k t aa t a t

k

SS NA RA

t t t

Y Y Y I Y I Y Y

Y Y Y

−
− −

−− −
=

 
= + + + + + + + + 

 

= + +

∏
. 
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where 

( ) ( ) ( )
1

1 1

65 11
65

1 ... 1
t

NA NA NA

t a k ta t

k

Y Y I Y I
−

− −

−−
=

= + + + +∏ , and 

( )65 1
...RA RA RA

t a a t
Y Y Y

−
= + + . 

 

For incomes in the two subsequent periods, we have the relation 

 

 ( )( )
1

1 1 1SS NA NA RA RA

t t t at t t at
Y Y Y Y I Y Y

−

+ += + + + + +  (3.6) 

 

It can be seen from the last relation that we need to know what part of the income is 

subject to an inflation adjustment. We do this using the state variable NA

t
d  denoting 

the percentage of the income at time t  received from nominal annuity bought before 

time t , where all values are in real terms. Thus 

 

 
NA

NA t
t

t

Y
d

Y
= , and (3.7) 

 1
SS RA

NA t t
t

t

Y Y
d

Y

+
− =  (3.8) 

 

for 65 99t≤ ≤ . Now, we can write income in retirement at age t  as 

(1 )NA NA

t t t t t
Y d Y d Y= − + . The first summand (1 )NA

t t
d Y−  is a constant real income 

consisting of real income from social security and from previously bought real 

annuities. The second one, NA

t t
d Y , is a nominal income adjusted for inflation. 

 

Using the nominal income coefficient NA

t
d  the relation between the two subsequent 

periods becomes 

 

 ( ) ( )( )
1

1 1 1NA RA NA NA

t t t t at t t at t
Y d Y Y d Y Y Iρ

−

+ = − + + + +  (3.9) 

 

for 65 99t≤ ≤ , where 
t

ρ  is defined in (3.3). The term 
t

ρ  appears as a multiplicative 

factor, and it influences this and other equations where it appears for age 65 only. One 

can also see that 
t

ρ  is not a factor in the term NA

t t
d Y , and it is because 65 0NA

d =  and so 

t
ρ  does not influence this term. The real income is represented by the term 

( )1 NA RA

t t t at
d Y Yρ− + , and the nominal income in real terms is given by 

( )( )
1

1NA NA

t t at t
d Y Y I

−
+ + . Using (3.7), we can write 

 

( )( )
1

1
1

1 1

1NA NANA
t t at tNA t

t

t t

d Y Y IY
d

Y Y

−

+
+

+ +

+ +
= = . 

Now, using (3.9), we can write 
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( )( )

( ) ( )( )

1

1 1

1

1 1

NA NA

t t at tNA

t NA RA NA NA

t t t at t t at t

d Y Y I
d

d Y Y d Y Y Iρ

−

+ −

+ +
=

− + + + +
 (3.10) 

 

for 65 99t≤ ≤ . Earlier in this chapter, we introduce the constant P . All equations in 

realistic amounts will be divided by this constant in order to work with smaller 

numbers when solving the problem numerically on the computer. Let us now express 

the equations of income process in terms of P  variables. We said earlier that P  is 

constant, equal to the income at age 65 and 65 1P = . Now, we define SS

tP , NA

tP , RA

tP , 
NA

atP  and RA

atP  via equations SS SS

t tY PP= , NA NA

t tY PP= , RA RA

t tY PP= , NA NA

at atY PP= , 
RA RA

at atY PP= , respectively.  

 

The equivalent equations to equations (3.9) and (3.10) are given by 

 

 ( ) ( )( )
1

1 1 1NA RA NA NA

t t t t at t t at tP d P P d P P Iρ
−

+ = − + + + + . (3.11) 

and 

 
( )( )

( ) ( )( )

1

1 1

1

1 1

NA NA

t t at tNA

t NA RA NA NA

t t t at t t at t

d P P I
d

d P P d P P Iρ

−

+ −

+ +
=

− + + + +
. (3.12) 

and also 
SS NA RA

t t t tP P P P= + + . 

 

for 65 99t≤ ≤ . The equation (3.1) is fully defined now. The variable 
t

ρ  influences 

equations (3.11) and (3.12) for 65t =  only. 

 

For representing the equations that follow later in this chapter in a more compact 

form, it will be useful to define 

 

 1
1

t
t

t

Y
G

Y

+
+ =  (3.13) 

From (3.9) we get 

( ) ( ) ( )

( ) ( )

1

1

1

1 1

1 1

NA RA NA NA

t t t at t t at t

t

t

RA NA

at atNA NA

t t t t

t t

d Y Y d Y Y I
G

Y

Y Y
d d I

Y Y

ρ

ρ

−

+

−

− + + + +
=

 
= − + + + +  

 

, 

and using (3.4) and (3.5) we get 

 

 ( ) ( )
1

1 1 1

RA NA

t t t tNA NA

t t t t tRA NA

t t t t

m W m W
G d d I

Y a Y a
ρ

−

+

 
= − + + + +  

 
 (3.14) 
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for 65 99t≤ ≤ . Again, 
t

ρ  influences the equation above for 65t =  only, otherwise 

1
t

ρ =  and 
t

ρ  does not influences equation (3.14). 

 

3.2.3 Mathematical Model for the Problem 

 

We assume that the pensioner’s maximum attainable age is 99t = . No pensioner will 

survive until age 100. Thus, 99 0p =  and there is no annuitisation at age 99. Let us 

start with the last age period [99,100]. If the pensioner is alive at the beginning of this 

period, he draws utility from consuming part of his available financial wealth and 

possibly draws utility from bequeathing some assets. There is no income at the end of 

the period [99,100], i.e. 100 0Y = . Pensioner’s value function (utility) at age 99 is  

 

 ( )
{ }

( ) ( ) ( )
99

99 99 99 99 98 99 99 99 99 100, , , max 1NA

CV
V W Y d I E u C p b u Wδ = + − 

�  (3.15) 

where 

 ( ) ( )( )100 99 99 99 99 991W W Y C r r rα= + − + + −� �  (3.16) 

 

The pensioner maximises his value function at age 99 over all possible consumption 

99C  and investment decisions 99α . These two are the only control variables at this age 

as no annuitisation occurs. We assume that the control variables are subject to the no 

borrowing constraint. It means that the maximum amount the member can consume is 

his available pension wealth 99W  and his income 99Y . The maximum amount he can 

invest in equities is 99 99 99W Y C+ − . Mathematically, 

 

 99 99 990 C W Y≤ ≤ + , and (3.17) 

 990 100%α≤ ≤ . (3.18) 

 

We will assume that the member’s pension wealth 0
t

W ≥  for 65 99t≤ ≤ . Another 

sensible assumption would be 99 99 0W Y+ ≥ , or in the other words we assume that 

pension wealth can become negative up to the level of the income in that period. This 

assumption would be equivalent to the assumption that limited borrowing is allowed 

because the pensioner must consume certain money each period. Although, this is an 

interesting problem for investigation, we will keep the assumption 0
t

W ≥  in our 

model. 

 

The factor 
t

b  controls the pensioner’s strength of the bequest motive and where 0
t

b ≥  

for all t . 
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The formulae (3.15)–(3.18) can be used for developing formulae for value function in 

earlier period as well. In order to see changes in formulae when we move one period 

backwards, let us firstly see member’s value function at age 98t = . We have 

 

( )
{ }

( ) ( )

( ) ( ) ( ) ( )

99

98

98 98 98 98 97 98 98 98 99

2

98 99 98 99 100

, , , max

1 1

t t

NA

CV

t t

V W Y d I E u C p u C

p b u W p p b u W

δ

δ δ

=

= + +


− + − 

�

� �

 

( )
{ }

( ) ( ) ( )

( ) ( ) ( )( )

99

98

98 98 98 98 97 98 98 98 99

98 99 99 100

, , , max 1

1

t t

NA

t
CV

t

V W Y d I E u C p b u W

p u C p b u W

δ

δ δ

=

= + − +


+ −


�

� �

 

Thus 

( )
{ }

( ) ( ) ( )

( )

99

98

98 98 98 98 97 98 98 98 99

98 99 99 99 99 98

, , , max 1

, , ,

t t

NA

t
CV

NA

V W Y d I E u C p b u W

p V W Y d I

δ

δ

=

= + − +




�

�� � �

 

where 

 ( )( ) ( )( )99 98 98 98 98 98 98 981 1NA RA
W m m W Y C r r rα= − − + − + + −� �  (3.19) 

Using (3.9) we have 

 ( ) ( )
1

98 98 98 98
99 98 98 98 98 98

98 98

1 1
RA NA

NA NA

RA NA

m W m W
Y d Y d Y I

a a

− 
= − + + + + 

 

� �  (3.20) 

Using (3.10) 

 

( )

( ) ( )

1
98 98

98 98 98

98

99
1

98 98 98 98
98 98 98 98 98

98 98

1

1 1

NA
NA

NA

NA

RA NA
NA NA

RA NA

m W
d Y I

a
d

m W m W
d Y d Y I

a a

−

−

 
+ + 

 =
 

− + + + + 
 

�

�

�

 (3.21) 

and the constraints are 

 ( )98 98 98 98 980 1 RA NAC m m W Y≤ ≤ − − +  (3.22) 

 980 1NA
m≤ ≤ , 980 1RA

m≤ ≤ , and 98 980 1NA RA
m m≤ + ≤  (3.23) 

 980 100%α≤ ≤ . (3.24) 

 

Here, we have used the Bellman principal of optimality and the law of iterated 

conditional expectations. 

 

Now, one can derive value function for any age 65 99t≤ ≤ . The value function for 

ages 065 99t≤ ≤  is given by 

 

 

( )
{ }

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )( )

990 0 0 0 0 0 0 0 0 0

0

0 0

0 0 00 0

0

1 1

99
1

1 1 11 1
1

, , , max 1

1

t t t

NA

t t t t t t t t t t
CV

t t t t

t t t t t t tt t t t
t t

V X Y d I E u C p b u W

p p u C p p b u W

δ

δ δ δ

=

− +

− + −

+ + +− + − +
= +

= + − +



+ − 


∑

�

� �

(3.25) 
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Using Bellman’s principal of optimality, which says that 

 

{ }
( )

{ } { } { }
( )

99 99

0 10 0 0
outcome from

max max max
t t tt t tt t t t t t

CVCV CV CV

Z Z
== = + =

 
=  

  
 

we have 
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{ }

( ) ( ) ( )

{ }

( )
( ) ( )(

( ) ( ) ( ))

0 0 0 0 0 0 0 0 0 0

0

0

990 0 00

10 0

0

00

1 1

99
1

11
1

1 11

, , , max 1

max

1

t t t

t t t

NA

t t t t t t t t t t
CV

t t

t t t tt t
CV t t

t t

t t t tt t

V X Y d I u C E p b u W

p E p u C

p p b u W

δ

δ δ

δ

=

= +

− +

− +

+− +
= +

−

+ +− +

  = + − + 

 
+ 

 

−


∑

�

�

�

 

 

and using the law of iterated conditional expectations 
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0
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t t t t t t
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p E E p u C

p p b u W

δ

δ δ

δ
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− +

+ − + +
= +

−
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 

 
+ 
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Thus, 

  

 
( )

{ }
( ) ( ) ( )

( )

1 1

1 1 1 1

, , , max 1

, , ,

t

NA

t t t t t t t t t t
CV

NA

t t t t t t

V W Y d I E u C p b u W

p V W Y d I

δ

δ

− +

+ + + +

= + − +




�

�� � �

 (3.26) 

where 

 ( )( )( )1 1 1NA RA P

t t t t t t tW m m W Y C r+ = − − + − +� �  (3.27) 

 ( ) ( )
1

1 1 1
RA NA

NA NAt t t t
t t t t t t tRA NA

t t

m W m W
Y d Y d Y I

a a
ρ

−

+

 
= − + + + + 

 

� �  (3.28) 

 ( )P

t t tr r r rα= + −� �  (3.29) 

 
65

1 66 99
t

replrate t

t
ρ

=
= 

≤ ≤
 (3.30) 
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( ) ( )

1

1
1

1

1 1

NA
NA t t
t t tNA

tNA

t RA NA
NA NAt t t t
t t t t t tRA NA

t t

m W
d Y I

a
d

m W m W
d Y d Y I

a a
ρ

−

+
−

 
+ + 

 =
 

− + + + + 
 

�

�

�

 (3.31) 

with the constraints 

 ( )0 1 NA RA

t t t t tC m m W Y≤ ≤ − − +  (3.32) 
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 0 1NA

t
m≤ ≤ , 0 1RA

t
m≤ ≤ , and 0 1NA RA

t t
m m≤ + ≤  (3.33) 

 0 100%tα≤ ≤  (3.34) 

 

for 65 99t≤ ≤ . 

 

3.3 Solution to the Problem 

 

Let us present the solution to the problem defined in the previous section. We will 

show in detail the solution assuming endogenous NA

t
m  and RA

t
m . Other solutions for 

the types of problem explained in Section 3.1.2 follow the same suit, and we will give 

the explanations about the changes needed to obtain these solutions. 

 

3.3.1 Solution for Endogenous m
t

NA

 and m
t

RA

 

 

The analytical solution to the problem (3.26)–(3.34) cannot be found in the current 

literature. Assuming stochastic inflation, we have two sources of randomness. If we 

assume deterministic inflation then we stay with only one source of randomness but 

the problem is still unsolved analytically in the current literature.  

 

The usual approach to this type of problem nowadays is a numerical solution using 

computers. There are two main approaches. The first one is deriving first order 

condition equations and then solving them numerically. The second approach is 

finding the maximum using numerical mathematics, i.e. solving the equations given 

above directly. We apply the latter. 

 

Observing equations (3.26)–(3.34) and the constraints accompanying them, one can 

see that we need to solve a problem of nonlinear optimization with constraints. In this 

particular problem, we have four control variables. The constraints are analytical 

function. We solve this problem in Mathematica 5.2 using Gauss Quadrature for the 

approximating random variables and cubic splines for interpolating the value function. 

The Gauss Quadrature method is used in many papers and we refer here to the paper 

Tauchen and Hussey (1991). The N –points Gauss Quadrature rules are a discrete 

approximation to a density function determined by the method of using moments up 

through 2 1N − , where N  is the number of pairs of points and weights used for the 

approximation. Gauss Quadrature rules are close to the minimum norm rule and 

possess several optimum properties (Davis and Rabinowithz (1975)). They are the 

best that can be done with N  points using moments as a criterion, because if two 
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probability distributions have the same moments up through 2N , and if one of the 

distributions is a discrete distribution concentrated on N  points, then the two 

distributions must coincide (Norton and Arnold (1985)). We will use the Gauss 

Quadrature rules throughout this thesis whenever we need the discrete approximation 

of a density function. 

 

In this setup of the problem, we assume that NA

t
m  and RA

t
m , where 65 99t≤ ≤ , are not 

predetermined and depend on the evolution of the process. Let us explain the way we 

will solve the problem. 

 

Before solving the problem itself, we need to explain the solution we are aiming to 

obtain. We assume that inflation can take a finite number of values for each age t . We 

denote the possible states of inflation as ( ); 1

In

t k k
I

=
, where 

I
N  is the number of possible 

values of inflation for each age 65 99t≤ ≤ , and where ;t k
I  for 65 99t≤ ≤  and 

1
I

k N≤ ≤  are predefined allowed values of inflation. As a solution we get 

 

 
( ) ( ) ( )(

( ) ( ))
1; 1; 1;

1; 1;

, , , ; , , , ; , , , ;

, , , ; , , ,

NA NA NA NA

t t t t t k t t t t t k t t t t t k

RA NA NA

t t t t t k i t t t t k

C W Y d I W Y d I m W Y d I

m W Y d I V W Y d I

α∗ ∗ ∗

− − −

∗

− −

 (3.35) 

 

for 65 99t≤ ≤ , 0
t

W ≥  and 0tY ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  in the domain of inflation 

rate. In other words, we get the solution for continuous values of the variables 
t

W  and 

tY  and NA

t
d  in their domains, and for discrete predefined values of the variable 1;t k

I −  

in the predefined domain of inflation values. 

 

Let us assume that we have solution for time 1t +  and we need to go one step back in 

order to find the solution for time t . It means that we have obtained 

 

 

( ) ( ) ( )({

( ) ( ))}

1; 1; 1;

99

1; 1;
1

, , , ; , , , ; , , , ;

, , , ; , , ,

NA NA NA NA

i i i i i m i i i i i m i i i i i m

RA NA NA

i i i i i m i i i i i m
i t

C W Y d I W Y d I m W Y d I

m W Y d I V W Y d I

α∗ ∗ ∗

− − −

∗

− −
= +

 (3.36) 

 

for 65 99t≤ ≤ , 0
t

W ≥  and 0tY ≥ , 0 1NA

t
d≤ ≤ , and 1;t m

I −  in the domain of the 

inflation rate. Having this solution we want to find the solution 

 

 
( ) ( ) ( )(

( ) ( ))
1; 1; 1;

1; 1;

, , , ; , , , ; , , , ;

, , , ; , , ,

NA NA NA NA

t t t t t k t t t t t k t t t t t k

RA NA NA

t t t t t k t t t t t k

C W Y d I W Y d I m W Y d I

m W Y d I V W Y d I

α∗ ∗ ∗

− − −

∗

− −

 (3.37) 
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for 0
t

W ≥ , 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  in the domain of inflation rate values, where 

( )1;, , ,NA

t t t t t k
C W Y d I∗

−  is optimal consumption, ( )1;, , ,NA

t t t t t k
W Y d Iα ∗

−  is optimal asset 

allocation, ( )1;, , ,NA NA

t t t t t k
m W Y d I∗

−  optimal nominal annuitisation, 

( )1;, , ,RA NA

t t t t t k
m W Y d I∗

−  optimal real annuitisation, and ( )1;, , ,NA

t t t t t k
V W Y d I −  is the 

value function for those optimal control variables. It means, we want to determine 

(3.37) which maximizes the value function below 
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( )

( ) ( ) ( )

1;
, , ,

1 1 1 1 1

, , , max

1 , , ,

NA RA
t t t t

NA

t t t t t k t
C m m

NA

t t t t t t t t t t

V W Y d I u C

E p b u W p V W Y d I

α

δ δ

−

+ + + + +

= +

 − +
 
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For simplicity and for reasons of grasping the solution more easily for other control 

variables assumptions, we will write { }tCV  (abbreviation for control variables) 

instead of { }, , ,NA RA

t t t t
C m mα . Let us now, for reason of explicit derivation of 

formulae, rewrite the last equation in a more explicit form as 
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( ) ( ) ( )( )(

( ) ( ) ( )( )) ( ) ( )

1; 1

1 1 1 1

, , , max 1 ,
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δ

δ

∞ ∞
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−∞ −∞

+ + + +
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


∫ ∫
(3.38) 

 

It is possible to decrease the number of state variables from four to three. For this 

reason, we will now make the transformations that will allow us to work with only 

three state variables. The state variable that is going to be excluded is income tY . 

Using the results from Appendix 1, we know that  
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y Y
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for any 0y > . Introducing this relation into equation (3.38) we get 
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Using (3.27) and skipping writing dependent variables one get 
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( ) ( )t t
dF I dF r
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where ( )P

t t tr r r rα= + − . Let us define  

 

 t
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t

t

C
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= , and (3.39) 

 

Multiplying both sides by 
t

y

Y

γ
 
 
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 and introducing (3.39) we have 
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where { }tcv  is now { }, , ,NA RA

t t t t
c m mα . We will actually derive our solution for 

t
Y y=  

and 0
t

w ≥ , and control variables { }, , ,NA RA

t t t t
c m mα  and then use the transformation 

from Appendix 1 to get solution (3.37) for any 0
t

W ≥ , 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  

in the domain of inflation values. Using (3.28) we have 
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We have defined in (3.13) 
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and 
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Introducing these relations into the previous equation one get 
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∫ ∫ (3.40) 

 

As we are looking for the numerical solution using the Gauss Quadrature method, the 

continuous random variable 
t

r�  is approximated with the discrete random variable 
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� ∼  (3.41) 

 

Let us assume that wealth gets only the values on the wealth grid ( ), 1

wn

t i i
w

=
 and nominal 

income coefficient NA

t
d  takes values from the set ( ), 1

dn
NA

t j
j

d
=

, where ,1 0NA

td =  and 

, 1
d

NA

t nd = . Let us assume that we model inflation as a discrete state autoregressive 

process. We denote the states for inflation as ( )1, 1

In

t k k
I − =

 and the transitional matrix as 
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I In n
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Thus, we actually find and save into the file the solution 

 

 

( ) ( ) ( )({

( ) ( ))}
( ) ( )

( )

; ; 1; ; ; 1; ; ; 1;

, ,

; ; 1; ; ; 1;
, , 1,1,1

, , , ; , , , ; , , , ;

, , , ; , , ,
w d I

NA NA NA NA

t t i t j t k t t i t j t k t t i t j t k

n n n
RA NA NA

t t i t j t k t t i t j t k
i j k

c w y d I w y d I m w y d I

m w y d I V w y d I

α∗ ∗ ∗
− − −

∗
− −

=

 (3.42) 

 

of the following equation 
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( )
{ }

( )

( )( ( )( )
( )

; , , ; , , ; , , ; , ,

; ; 1; ; , ,
, , ,

; , , ,

1; , , , ; , , ; , , ; ; , ,

1 1 1; , , ,

1 ; , ,

, , , max

1
1 1

1

NA RA
t i j k t i j k t i j k t i j k

r I

NA

t t i t j t k t i j k
c m m

Pn n
t i j k lRA NA

t i j k m t t t i j k t i j k t i t i j k

l m t i j k m

RA

t t t i j k

V w y d I u c

r
G p b u m m w y c

G

p V m

α

γδ

−

+
= = +

+

= +

 +
 − − − + − +
 
 

−

∑∑

( )( )
( ); , , ,

; , , ; ; , , 1; , , , ; , ; , ;

1; , , ,

1
, , ,

P

t i j k lNA NA

t i j k t i t i j k t i j k m t k m I k m r l

t i j k m

r
m w y c y d I p p

G
+

+

 +
 − + −

  
  

(3.43) 

 

where 

( ); , , , ; , , ;1 1P

t i j k l t i j k t lr r r rα+ = + + − , 

and 

( ) ( )
1; , , ; ; , , ;

1; , , , ; ; ; ,

;

1 1

RA NA

t i j k t i t i j k t iNA NA

t i j k m t j t t j t k mRA NA

t t k

m w m w
G d d I

ya ya
ρ

−

+

 
= − + + + +  

 
, 

and 

( )

( ) ( )

1; , , ;

; ; ,

;

1; , , ,
1; , , ; ; , , ;

; ; ; ,

;

1

1 1

NA

t i j k t iNA

t j t k mNA

t kNA

t i j k m RA NA

t i j k t i t i j k t iNA NA

t j t t j t k mRA NA

t t k

m w
d I

ya
d

m w m w
d d I

ya ya
ρ

−

+
−

 
+ +  

 =
 

− + + + +  
 

. 

 

Having the set of solutions (3.42) in hands, for each 1,..,
I

k n=  we use cubic splines to 

interpolate the optimal consumption through the points ( ){ }
( ) ( )

( ),

; ; 1;
, 1,1

, , ,
w dn n

NA

t t i t j t k
i j

c w y d I
∗

−
=

, 

the optimal asset allocation through the points ( ){ }
( ) ( )

( ),

; ; 1;
, 1,1

, , ,
w dn n

NA

t t i t j t k
i j

w y d Iα ∗

−
=

, the 

optimal nominal annuitisation through the points ( ){ }
( ) ( )

( ),

; ; 1;
, 1,1

, , ,
w dn n

NA NA

t t i t j t k
i j

m w y d I
∗

−
=

, and 

the optimal real annuitisation through the points ( ){ }
( ) ( )

( ),

; ; 1;
, 1,1

, , ,
w dn n

RA NA

t t i t j t k
i j

m w y d I
∗

−
=

, and 

the value function through the points ( ){ }
( ) ( )

( ),

; ; 1;
, 1,1

, , ,
w dn n

NA

t t i t j t k
i j

V w y d I −
=

. Then we have  

 

 

( ) ( ) ( )({

( ) ( ))}

1; 1; 1;

1; 1;
1

, , , ; , , , ; , , , ;

, , , ; , , ,
I

NA NA NA NA

t t t t k t t t t k t t t t k

N
RA NA NA

t t t t k t t t t k
k

c w y d I w y d I m w y d I

m w y d I V w y d I

α∗ ∗ ∗

− − −

∗

− −
=

 (3.44) 

for 0
t

w ≥ , 0 1NA

t
d≤ ≤ . Now, using (3.39) and the results from Appendix 1, we get 

 

 ( ) ( )1; 1;, , , , , ,NA NAt
t t t t t k t t t t k

Y
C W Y d I c w y d I

y

∗ ∗
− −= , for 1,..,

I
k n=  (3.45) 

 ( ) ( )1; 1;, , , , , ,NA NA

t t t t t k t t t t k
W Y d I w y d Iα α∗ ∗

− −= , for 1,..,
I

k n=  (3.46) 
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 ( ) ( )1; 1;, , , , , ,NA NA NA NA

t t t t t k t t t t k
m W Y d I m w y d I∗ ∗

− −= , for 1,..,
I

k n=  (3.47) 

 ( ) ( )1; 1;, , , , , ,RA NA RA NA

t t t t t k t t t t k
m W Y d I m w y d I∗ ∗

− −= , for 1,..,
I

k n=  (3.48) 

 ( ) ( )1; 1;, , , , , ,NA NAt
t t t t t k t t t t k

Y
V W Y d I V w y d I

y

γ

− −

 
=  
 

, for 1,..,
I

k n=  (3.49) 

 

for 0
t

W ≥  and 0tY ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  in the domain of values for the inflation 

rate. Thus, we have the solution to the problem (3.26)–(3.34) in the form 

 

 
( ) ( ) ( )(

( ) ( ))

1; 1; 1;

1; 1;
1

, , , ; , , , ; , , , ;

, , , ; , , ,
I

NA NA NA NA

t t t t t k t t t t t k t t t t t k

N
RA NA NA

t t t t t k i t t t t k
k

C W Y d I W Y d I m W Y d I

m W Y d I V W Y d I

α∗ ∗ ∗

− − −

∗
− −

=

 (3.50) 

 

for 65 99t≤ ≤ , 0
t

W ≥  and 0tY ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  takes discrete values in the 

domain of values for the inflation rate. 

 

3.3.2 Solution for Exogenous m
t

RA

 and Endogenous m
t

NA

 

 

In order to develop the way to solve the remaining three cases explained in 3.1.2 we 

can use the results from 3.3.1. The algorithm for solving the problem (3.26)–(3.34) for 

the remaining types of problem in 3.1.2 is similar to the one used for solving the 

problem of endogenous RA

t
m  and NA

t
m , and actually this is a special case of it. Let us 

now explain how we can solve the case of endogenous NA

t
m  and exogenous RA

t
m . 

 

Now, in equations (3.38) we write { }, , NA

t t t
C mα  instead of { }tCV . RA

t
m  is now 

exogenous and it means it is not derived from the model itself but predefined earlier. 

Then, we follow the same steps as in the previous section. The only difference is that 

we know the value of RA

t
m  and we are using its value in equation (3.38) and all the 

following equations, instead of finding its value from the model. As a result, we end 

up with the solution to the problem (3.26)–(3.34) as follows 

 

 
( ) ( )(

( ) ( ))

1, 1,

1, 1,
1

, , , ; , , , ;

, , , ; , , ,
I

NA NA

t t t t t k t t t t t k

N
NA NA NA

t t t t t k i t t t t k
k

C W Y d I W Y d I

m W Y d I V W Y d I

α∗ ∗

− −

∗
− −

=

 (3.51) 

for 65 99t≤ ≤ , 0
t

W ≥ , 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , 1;t k

I −  in the domain of values of the 

inflation rate, where ( )1;, , ,NA

t t t t t k
C W Y d I∗

− , ( )1;, , ,NA

t t t t t k
W Y d Iα ∗

−  and 

( )1;, , ,NA NA

t t t t t k
m W Y d I∗

−  are optimal consumption, optimal asset allocation and optimal 

percentage for purchasing nominal annuities. ( )1;, , ,NA

t t t t t k
V W Y d I −  is the value 

function for those optimal control variables.  
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3.3.3 Solution for Endogenous m
t

RA

 and Exogenous m
t

NA

 

 

This case is mathematically the same as the previous one. The only difference is the 

change in the control variables. Instead of { }, , NA

t t t
C mα  now we find the maximum 

value function by controlling the variables { }, , RA

t t t
C mα . Now, the solution to the 

problem (3.26)–(3.34) is 

 

 
( ) ( )(

( ) ( ))

1; 1;

1; 1;
1

, , , ; , , , ;

, , , ; , , ,
I

NA NA

t t t t t k t t t t t k

N
RA NA NA

t t t t t k i t t t t k
k

C W Y d I W Y d I

m W Y d I V W Y d I

α∗ ∗

− −

∗
− −

=

 (3.52) 

 

for 65 99t≤ ≤ , 0
t

W ≥ , 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  in the domain of values for the 

inflation rate, where ( )1;, , ,NA

t t t t t k
C W Y d I∗

− , ( )1;, , ,NA

t t t t t k
W Y d Iα ∗

−  and 

( )1;, , ,RA NA

t t t t t k
m W Y d I∗

−  are optimal consumption, optimal asset allocation and optimal 

percentage for purchasing real annuities. ( )1;, , ,NA

t t t t t k
V W Y d I −  is the value function for 

those optimal control variables.  

 

3.3.4 Solution for Exogenous m
t

RA

 and m
t

NA

 

 

Again, the solution is very similar. The control variables are { },t tC α  now. The 

solution to the problem (3.26)–(3.34) is 

 

 ( ) ( ) ( )( )1, 1, 1,
1

, , , ; , , , ; , , ,
IN

NA NA NA

t t t t t k t t t t t k i t t t t k
k

C W Y d I W Y d I V W Y d Iα∗ ∗
− − −

=
 (3.53) 

 

for 65 99t≤ ≤ , 0
t

W ≥ , 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , and 1;t k

I −  in the domain of inflation 

values, where ( )1;, , ,NA

t t t t t k
C W Y d I∗

− , ( )1;, , ,NA

t t t t t k
W Y d Iα ∗

−  are optimal consumption 

and optimal asset allocation. ( )1;, , ,NA

t t t t t k
V W Y d I −  is the value function for those 

optimal control variables. 

 

3.3.5 Solution for Other Endogenous/Exogenous m
t

RA

 and m
t

NA

 

 

We can also assume that NA

t
m  and/or RA

t
m  are endogenous or exogenous variables, i.e. 

that NA

t
m  and/or RA

t
m  are derived optimally and/or sub optimally from the model for 

each age 65 99t≤ ≤ . For example, we can assume that at certain age NA

t
m  and/or RA

t
m  

are endogenous and at some other age, these two variables are exogenous. Solving our 

problem (3.26)–(3.34) for any other assumption follows the same suit. The only 

difference is that we put NA

t
m  and/or RA

t
m  in the control variable or give them 
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predefined values depending on the endogenous/exogenous assumptions about the 

variables NA

t
m  and/or RA

t
m . 

 

3.3.6 Parallel Computation in Mathematica 

 

As we said earlier, the problem (3.26)–(3.34) is converted into a form suitable for 

solving it on the computer. Actually, we solve the problem on eight computers and 

use the technique of parallel computations. It means that we transform the problem 

into a form suitable for distributing similar tasks to many processors, in our case 14 

processors, where each processor solves one set of tasks and returns the results. Each 

processor works on the computer where Mathematica 5.2 is installed. In these 

circumstances, one computer is the master and others are slaves. The master computer 

runs Mathematica front–end and one kernel, while the others use Mathematica kernels 

only. The slave computers have two processors and one kernel runs on each of them, 

thus running two kernels at the same time on each slave computer. 

 

All programming and storage of data is done on the master computer. We develop the 

programs using standard Mathematica 5.2 as the main programming language, 

supported with Parallel Toolkit 2.0 and Global Optimisation 5.2 package. 

 

Parallel Toolkit 2.0 is an addition to Mathematica 5.2, which provides the tool for 

distributing tasks to many processors, which are run on the computers where 

Mathematica 5.2 and Parallel Toolkit 2.0 are installed. We also need to connect the 

computers in the appropriate way such that each processor recognises the master 

computer. Once we have this setup, we write the programs on the master computer 

which sets up the model and all the variables, procedures and functions. We use the 

standard Mathematica 5.2 as the front–end on the master computer. Parallel Toolkit 

2.0 provides us with the tool to send tasks to other processors such that they receive 

the task, solve it and return the results to the master computer. The results are then 

collected to the master computer and regrouped such that they give us one full 

solution. The solution is stored on the master computer and available for further 

analysis. Parallel Toolkit 2.0 runs Mathematica kernel on the remote computers only, 

and we actually do not see these calculations, we only send tasks and get results. 

Using this technique, we have parallel computations which means that by running the 

problem on 14 processors we obtain the solution 14 times faster compared to running 

the same problem on just one computer. 
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The Global Optimisation 5.2 package provides a suite of tools for solving nonlinear 

optimization problems, as well as a variety of other applications such as finding the 

roots or zeros of a non–analytic function. As the authors say, the package is easier, 

simpler, and more robust than most optimisation tools, and we find it works quite 

efficiently. The range of functions for solving nonlinear optimisation problems uses 

different techniques. In order to find the best solution in the shortest time, we 

combined two main functions, GlobalSearch and MultiStartMin. Generally, both 

functions find the minimum of a nonlinear function of n  variables with equality and 

inequality constraints. Both functions use a multiple–start generalised hill–climbing 

algorithm designed to work with or without constraints. The function itself starts the 

calculation from the random point in the domain of the solution and then finds the 

optimal solution and multiple–start algorithm means that the function starts from a 

predefined number of randomly chosen starting points. Then the function chooses the 

best solution obtained amongst solutions for each starting point. MultiStartMin 

handles highly nonlinear problems better and in order to solve this subset of problems, 

it handles constraints differently and is thus slower than GlobalSearch, particularly as 

problems get larger. Both functions are robust to noisy functions and local minima. 

 

Let us now give some more details of the solution of our problem. On the computer 

we solve equation (3.43) for the values on the wealth grid ( ), 1

wn

t i i
w

=
, where 51

w
n = . 

Nominal income coefficient NA

t
d  takes values from the set ( ), 1

dn
NA

t j
j

d
=

, where 8
d

n = . 

The inflation grid ( ), 1

In

t k k
I

=
 takes 15

I
n =  values, and transitional matrix for inflation is 

( )
( ) ( )

( ),

; , , 1,1

I In n

t k m k m
I

=
. Grids, states and transitional matrix for inflation are presented in 3.4.1.  

 

We calculate and store in the file the set of solutions (3.42) of equation (3.43). This is 

the point where we use parallel computing. We need to calculate the solution of 

equation (3.43) 
w d I

n n n× ×  times.  

 

One calculation is measured in seconds depending on the complexity of the 

calculation. We firstly apply the GlobalSearch algorithm for two random starting 

points. If we get two same solutions, we assume that this solution is correct and 

practice has shown that it is the correct assumption. If we get two different solutions, 

or only one solution, or no solution then we apply the MultiStartMin algorithm for 

three random starting points. Now, if we get one solution using the GlobalSearch 

algorithm then we compare the expected value functions obtained using different 

algorithms and take as the solution the one providing the highest expected value 

function. If no solution is obtained using the GlobalSearch algorithm then we take as 
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the solution the one providing the highest value function using the MultiStartMin 

algorithm. This approach has proved to lead to good solutions in each instance. 

 

Rarely it is possible that two random starting points for the GlobalSearch algorithm 

and three random starting points for the MultiStartMin algorithm are not enough 

because we get unsatisfactory solutions in some instances. Then we increase the 

number of starting points. It means that we solve the problem a bit more slowly but 

we increase the quality of the solution. In some cases, useful criteria for finding the 

good solution are the precisions of the required solution in terms of number of 

decimal places up to which we compare resulting expected value function. Usually, 

we use 810−  for ages 90 99− , 710−  for ages 80 89− , 610−  for ages 70 79− , and 510−  

for ages 65 69− . We determine these precision limits from experience such that we 

get smooth curves of the expected value functions, asset allocation functions, and 

annuitisation functions. If we do not get satisfactory solutions in terms of smooth 

curves, then we can try to improve the solutions by decreasing the powers mentioned 

earlier and we get solutions that are more precise. Thus, we have two main 

assumptions that can be changed in order to improve the quality of the solutions and 

these are the number of random starting points and the required precisions of the 

value functions. 

 

Depending on the complexity of the instance, the time needed for obtaining one 

solution varies from 1 to 20 seconds. Rarely it can take more time but never more than 

100 seconds. One calculation takes 10 seconds on average. If we work with 

deterministic inflation and if we work with 51 points of wealth grid and 8 points of 
NA

t
d  grid then the calculation for one year of age takes 10 51 8 4000⋅ ⋅ =  seconds or 

approximately one hour. However, we use parallel computation and the set of 

calculation tasks is distributed to 14 processors. As a result, it takes us just a few 

minutes to obtain the solution for one year of age. The time needed for the cubic 

splines, and storing results on the hard drive is not significant. If we work with 

stochastic inflation and if we take the inflation grid to have 15 points then our 

calculation is 15 times longer. 

With the appropriate programs in Mathematica, we can make the full set of solutions 

for one setup of assumptions in one run of the program. In practice, we start the 

program, leave it for a couple of hours, and get solutions stored on the computer. 

Solutions are stored in excel files. As we will see later, stochastic inflation is not 

always necessary and in that case we store on the computer one excel file for each age 

and for five functions, optimal consumption, optimal asset allocation, optimal nominal 

annuitisation, optimal real annuitisation and derived optimal value function. 



 79

Altogether, it is 35 5 175⋅ =  files. If we work with stochastic inflation then we have 15 

times more, or 2625 files as the solution for one assumption of parameters. We save 

and name these files in a predetermined way and then they are easily manageable. 

 

Transformation of the solutions from the form (3.44) into the form (3.50) is done 

afterwards when we have the set of the solution (3.44) stored on the master computer. 

This transformation is not time consuming once when we have the set of solutions 

(3.44) stored in files. 

 

Solutions can be easily used for the analysis afterwards. Producing tables and graphs 

in excel is not time consuming once the appropriate excel files together with macros 

are made. We do not need parallel computing for this part of obtaining the results. 

 

3.3.7 Check of Accuracy of Numerical Calculations in Mathematica 

 

Once we have the solution saved in the excel files, we check that these solutions are 

accurate. In order to check the accuracy of the solution we make 2,000 simulations 

with the same assumptions as used for producing results. As a result, we get 2,000 

random realisations of the paths of optimal consumption, optimal asset allocation, 

optimal nominal annuitisation, optimal real annuitisation, pension wealth income and 

paths of all other variables of interest. Equation (3.25) shows explicitly the expected 

value function as a discounted sum of utilities derived from future consumption and 

bequest. This equation can also be applied to the sample of random realisations. By 

analogy with the set of equations (3.26)–(3.34), we can write the set of equations for 

random realisations  

 

 ( ) ( ) ( ) ( )( )
199

; 1; ; 1;, , , 1
i

NA i t

t n t t t t k k i n i i i n

i t k t

V W Y d I p u C p b u Wδ δ
−

−
− +

= =

  
= + −  

  
∑ ∏  (3.54) 

where 

 ( )( ) ( )1; ; ; ; ; ; ;1 1RA NA P

i n i n i n i n i n i n i nW m m W Y C r+ = − − + − +  (3.55) 

 ( ) ( )
1; ; ; ;

1; ; ; ; ; ;

; ;

1 1

RA NA

i n i n i n i nNA NA

i n i n i i n i n i n i nRA NA

i n i n

m W m W
Y d Y d Y I

a a
ρ

−

+

 
= − + + + +  

 
 (3.56) 

 ( ); ; ;

P

i n i n i nr r r rα= + −  (3.57) 

 
65

1 66 99
t

replrate t

t
ρ

=
= 

≤ ≤
 (3.58) 
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;
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1; ; ; ;

; ; ; ; ;

; ;

1

1 1

NA

i n i nNA

i n i n i nNA

i nNA

i n RA NA

i n i n i n i nNA NA

i n i i n i n i n i nRA NA

i n i n

m W
d Y I

a
d

m W m W
d Y d Y I

a a
ρ

−

+
−

 
+ +  

 =
 

− + + + +  
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 (3.59) 

 

for 65 99t≤ ≤ , for ( ) ( ); ; ; 1; ; 1;, , , , , ,NA NA

t n t n t n t k n t t t t kW Y d I W Y d I− −= , for 100t i≤ ≤  and 

1,..., 2,000n = , and where ;i nC , ;i nα , ;

NA

i nm  and ;

RA

i nm  are optimal consumption, asset 

allocation and nominal and real annuitisation calculated from functions (3.45)–(3.49). 

;i nC , ;i nα , ;

NA

i nm  and ;

RA

i nm  depend on ( ); ; ; 1; ;, , ,NA

i n i n i n i k nW Y d I − . ;i nr  and ;i nI  are random 

realisation from the stochastic simulation based on the assumptions in Table 3.3 and 

3.4. Index n  represents each random realisation. Thus, we get 2,000 values of 

discounted utilities derived from random realisations of consumption and bequest. 

 

If our calculations using equations (3.26)–(3.34) are correct then the following 

equations should be valid 

 

 ( ) ( )1; ; 1;
1,...,2000

, , , , , ,NA NA

t t t t t k t n t t t t k
n

V W Y d I Mean V W Y d I− −
=

 ≈    (3.60) 

 

We make calculations and check if the differences are very small. Usually, it appears 

to be less than 2% for 2000 random realisations. This variability depends on the 

assumptions, and particularly and significantly depends on the assumption of 

availability of annuities. If we have more annuitisation then the difference in equation 

(3.60) is lower than 2%, sometimes it is less than 0.1%. The difference in equation 

(3.60) will also decrease with an increase of the random sample, but we can say from 

analyses not presented here that 2,000 random realisations is enough to get 

insignificant differences and to see all of the basic rules as expected. So in all 

examples of random realisation we use the same number of 2,000n =  random 

realisation 

 

In Section 3.4.7, we make left–tail analysis of the values of the function 

( ); 1;, , ,NA

t n t t t t kV W Y d I − . For this purpose we use the same realisations of the stochastic 

simulations as we use for the check of accuracy of the numerical calculations. We 

believe that this number of random realisations provides us with reasonably good 

results for the left–tail analysis as well. The deeper analysis of the pensioner’s left–tail 

risk would require more than 2,000 random realisations. However, we investigated a 

couple of examples with 10,000 random realisations and no new results significantly 

different for the purposes of the investigation in this thesis were obtained. 
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So, we calculate the value function using a set of equations (3.26)–(3.34) and 

calculate the mean discounted utility derived from future consumption and bequest 

using equations (3.54)–(3.59). Then, for fixed ( )1;, , ,NA

t t t t kW Y d I − , we compare the two 

and check if these two values are close to each other. Our criterion for the evaluation 

of accuracy of the results is to have ( ); 1;
1,...,2000

, , ,NA

t n t t t t k
n
Mean V W Y d I −
=

 
   sometimes higher 

and sometimes lower than ( )1;, , ,NA

t t t t t kV W Y d I − , for different choices of 

( )1;, , ,NA

t t t t kW Y d I − , and that this difference is never higher than 2%. All our results 

have passed this test. 

 

3.4 The Results 

 

We now present the results obtained using the model developed in this chapter. We 

choose the results that are in our opinion the most representative and shed light on 

important assumptions, variables, and other parts of the model and the ways it 

influences results. However, the model can be used for solving a wide variety of 

problems and the results presented here are just some chosen examples. One can 

produce results for virtually any combinations of suboptimal and optimal asset 

allocation, and nominal and real annuitisation strategies. It can be done by defining 
NA

t
m  and RA

t
m  in an appropriate way. We also give results that can be compared with 

the results in Chapter 4. In Chapter 5, we will compare the results from this chapter 

and from Chapter 4. 

 

When we have one particular assumption about the pensioner’s 

exogenous/endogenous annuitisation for each age we refer to this particular example 

as a Case. If we assume exogenous annuitisation, then we also need the assumed 

proportion to be annuitised. As we said earlier, we sometimes use the term market 

instead of the term case. Market and case have the same meaning of the economic 

environment for the pensioner. We will concentrate on six cases and each of these can 

be connected to a type of problem described in Section 3.1.2. 

 

Case 3.1 is connected to the type of problem 3.1 and we will assume no annuities at 

any age, and mathematically it means the assumption that 0NA

t
m =  and 0RA

t
m = , for 

65 99t≤ ≤ . Case 3.2 is connected to type of problem 3.2 and we will assume here 

optimal nominal annuitisation at age 65 only, no nominal annuitisation at other ages, 

and no real annuitisation at any age. Mathematically, Case 3.2 assumption is 65

NA
m  is 

endogenous, 0NA

t
m =  for 66 99t≤ ≤ , and 0RA

t
m = , for 65 99t≤ ≤ . Case 3.3 is 

calculated under the assumption of no nominal annuities at any age, optimal real 



 82

annuities at age 65 only and no real annuities afterwards. Mathematically, Case 3.3 

assumption is 0NA

t
m = , for 65 99t≤ ≤ , 65

RA
m  is endogenous, 0RA

t
m =  for 66 99t≤ ≤ . 

Case 3.4 assumption is optimal nominal annuitisation at any age and no real 

annuitisation, or mathematically NA

t
m  is endogenous and 0RA

t
m = , for 65 99t≤ ≤ . 

Case 3.5 is connected to type of problem 3.5 and we assume no nominal annuities at 

any age and optimal real annuitisation at all ages. Mathematically, 0NA

t
m =  and RA

t
m  

is endogenous, for 65 99t≤ ≤ . The best option for the pensioner is optimal nominal 

and real annuitisation at any age and this assumption will be investigated as Case 3.6, 

which is related to the type of problem 3.6. 

 

In order to show clearly the assumption about the control variables for each case to be 

investigated, we present the assumptions regarding annuitisation in the following 

table. Consumption and asset allocation are always optimal. 

 

Case 

Nominal 

Annuitisation at 

age 65 

Nominal 

Annuitisation at 

ages 66–99 

Real 

Annuitisation at 

age 65 

Real 

Annuitisation at 

ages 66–99 

Case 3.1 
Exogenous, 

65 0NA
m =  

Exogenous, 

0NA

t
m =  for 

66 99t≤ ≤  

Exogenous, 

65 0RA
m =  

Exogenous, 

0RA

t
m =  for 

66 99t≤ ≤  

Case 3.2 
Endogenous, 

65

NA
m  is optimal 

Exogenous, 

0NA

t
m =  for 

66 99t≤ ≤  

Exogenous, 

65 0RA
m =  

Exogenous, 

0RA

t
m =  for 

66 99t≤ ≤  

Case 3.3 
Exogenous, 

65 0NA
m =  

Exogenous, 

0NA

t
m =  for 

66 99t≤ ≤  

Endogenous, 

65

RA
m  is optimal 

Exogenous, 

0RA

t
m =  for 

66 99t≤ ≤  

Case 3.4 
Endogenous, 

65

NA
m  is optimal 

Endogenous, 
NA

t
m  is optimal 

for 66 99t≤ ≤  

Exogenous, 

65 0RA
m =  

Exogenous, 

0RA

t
m =  for 

66 99t≤ ≤  

Case 3.5 
Exogenous, 

65 0NA
m =  

Exogenous 

0NA

t
m =  for 

66 99t≤ ≤  

Endogenous, 

65

RA
m  is optimal 

Endogenous, 
RA

t
m  is optimal 

for 66 99t≤ ≤  

Case 3.6 
Endogenous, 

65

NA
m  is optimal 

Endogenous, 
NA

t
m  is optimal 

for 66 99t≤ ≤  

Endogenous, 

65

RA
m  is optimal 

Endogenous, 
RA

t
m  is optimal 

for 66 99t≤ ≤  

Table 3.1 The assumptions about nominal and real annuitisation for each case. 
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3.4.1 Parameter Values 

 

We chose to investigate thoroughly six Cases just defined. For each Case, we find the 

optimal solution for RRA coefficient γ  taking values –1, –4 and –9, and the bequest 

motive coefficient 
t

b , for 65 99t≤ ≤  taking values 0 and 1. All together, we have six 

Cases and six combinations of coefficients, and overall 36 solutions. The values of 

other parameters in all of the basic numerical solutions are as follows: 

− Income at age 65 65 33,320.90Y =  

− Replacement ratio 65 0.68212ρ = , 1
t

ρ =  for 65 99t≤ ≤  

− Wealth at age 65 65 200,000W =  

− Risk free interest rate 0.02r =  

− Inflation to be defined in 3.4.1.2 

− Real rate on risky investment ( )2( ) ,tLn r N µ σ� ∼  

 0.0474187µ = , 0.14731σ =  

 [ ] 0.06tE r =� , [ ] 0.157tStD r =�  

− Survival (Mortality) table Interim life table produced by The 

 Government Actuary’s Department 

 for United Kingdom Males, based on 

 data for years 2002–2004 

− Discount factor 0.96δ =  

 

The parameter values are chosen in accordance with the parameter values chosen by 

many authors who investigated similar problems, for example Cocco et al (2005). 

 

Two particularly coefficients, income at age 65 and replacement ratio are very precise 

numbers. We develop these two numbers in accordance with the work of Cocco et al 

(2005). They fitted a third–order polynomial to the age dummies and propose the 

three labour income processes depending on the individual’s education, for the 

individuals no high–school, for the individuals with high–school and with college 

education. They obtain the average income from age 20 to age 75. Income at age 65 is 

obtained using the following function 

 

( )3 218,127 0.002 0.0323 0.1682 2.1700age age age⋅ ⋅ − ⋅ + ⋅ −  

 

The polynomial in the previous equation is the same as proposed by Cocco et al 

(2005) for the individual with high–school education. The amount of the coefficient 

18,127 is taken such that the pensioner’s first yearly salary at age 21 was 20,500. We 

take higher value of the first salary than the one taken by Cocco et al (2005), in order 
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to get slightly higher income at age 65 such that the individual investigated here is 

slightly richer person than the individual with high–school education in Cocco et al 

(2005) and in the same time slightly poorer person than the individual with college 

education in Cocco et al (2005). So, we investigate the pensioner with the income at 

age 65 in between the average individual with high–school and college education. The 

value of the replacement ratio is the same as those proposed Cocco et al (2005) for the 

individual with high–school education. 

 

The choice of the amount of the pension wealth at age 65 is also based on the work by 

Cocco et al (2005). They investigate similar values of the pension wealth at age 65. 

 

We acknowledge here that these assumptions about the pensioner’s income at age 65 

and his pension wealth are above the average values and it means that we investigate 

the richer pensioner than average. The results presented up to Section 3.4.3 are not 

dependent on the pensioner’s last salary and pension wealth at age 65. In the sections 

afterwards, the values of the pensioner income ate age 65, replacement ratio and 

pension wealth at age 65 are important for the numerical results obtained. However, 

as we will see later, our choice of these parameters results in a quite wide range of the 

optimal decisions depending on the pensioner’s attitude towards risk and bequest. The 

wide range of the results is also one reason for choosing these values of the pensioner 

wealth and income at age 65. Sensitivity analysis based on the model and the results 

developed here would give us the answers for the pensioners with different pension 

wealth and income at age 65. In this thesis we will focus our investigation in Sections 

3.4.3 and onwards on these, richer pensioners. 

 

3.4.1.1 Grids 

 

When making numerical calculations one needs to approximate all continuous 

variables with discrete ones. We solve equation (3.43) on the computer and from this 

equation one can see that we have four continuous variables which need to be 

approximated by the discrete ones. These are: wealth, nominal income coefficient, 

rate of return on equities and inflation. 

 

Wealth is approximated with values on the wealth grid ( ), 1

wn

t i i
w

=
, where 51

w
n =  and 

,0 40
t i

w≤ ≤  and ,t i
w  are taken such that the grid is denser for smaller values. The 

wealth grid points are given in the following table. 
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wealth grid 

( ), 1

wn

t i i
w

=
, 

51
w

n = , 

65 99t≤ ≤  

0.000 0.019 0.040 0.061 0.084 0.109 0.135 0.162 0.192 0.223 

0.257 0.293 0.332 0.373 0.418 0.467 0.519 0.576 0.637 0.704 

0.777 0.857 0.944 1.040 1.146 1.263 1.393 1.537 1.697 1.878 

2.080 2.309 2.568 2.864 3.202 3.591 4.041 4.566 5.179 5.903 

6.763 7.791 9.030 10.538 12.390 14.686 17.563 21.210 25.890 31.975 

40.000          

Table 3.2 Wealth grid 

 

The range for the wealth grid is 0 to 40, and one can see that it is not an equally 

spaced grid. The differences between points are smaller for smaller values of wealth 

and become larger as we approach 40. This is done because of the curvature of the 

value function. The value function is negative and an increasing function of wealth 

and, if all other variables are constant, for smaller values the value function increases 

very steeply. As wealth increases, the value function increases more slowly. After a 

certain value, it becomes almost a flat horizontal line. Due to this characteristic shape 

of the value function it is important to have more wealth grid points for smaller wealth 

in order to capture the behaviour of the value function for these wealth values. For the 

larger values of pension wealth, we can capture the value function behaviour with a 

less dense wealth grid. Actually, we need larger values of wealth to ensure a stable 

solution while reasonable wealth values to be analysed will be in the range 0 to 4. 

 

The nominal income coefficient NA

t
d  takes values from the set ( ), 1

dn
NA

t j
j

d
=

, where 8
d

n =  

and ,

NA

t jd  are equally spaced on the interval [ ]0,0.91 , i.e. taking values 

{ }0,0.13,0.26,...,0.78,0.91 . It appears to be a good enough grid because NA

t
d  in 

reality will not take values above 0.5. Again, we use larger values for reasons of 

solution stability only. 

 

The rate on equities is approximated with 15
r

n =  points. The first and the third rows 

in the following table present possible states of real rate on equities, i.e. the values of 

;t l
r  in the first row of (3.41) and the second and fourth rows give the probabilities for 

attaining those states, i.e. the values of ;t l
p  in the second row of (3.41), where 

1
r

l n≤ ≤ . 
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Rate on equities – 

state 
0.661 0.685 0.727 0.786 0.859 0.943 1.035 1.131 

Rate on equities – 

probability 
0.044 0.203 0.871 3.394 10.028 19.715 24.680 20.287 

Rate on equities – 

state 
1.227 1.319 1.403 1.476 1.535 1.577 1.601  

Rate on equities – 

probability 
11.850 5.441 2.176 0.828 0.319 0.124 0.040  

Table 3.3 Distribution of discrete approximation of rate on risky investment. 

 

With this approximation of equity rate, we have that [ ] 0.05914tE r =�  and 

[ ] 0.154443tStD r =� . 

 

3.4.1.2 Inflation 

 

We assume that consumption, wealth, and real annuities are all in real terms. It means 

that inflation does not influence their values through the time. Income partly comes 

from nominal annuities and thus is affected by inflation. When we investigate nominal 

annuities, and all other processes are in real terms then the constant nominal income 

provided by nominal annuity is changing in real terms. Thus, for a nominal annuity, 

we need to adjust nominal income with inflation in order to get real income.  

 

We have defined the inflation process in 3.2.1. Let us now define the inflation process 

numerically. It is defined as a discrete time–state space stochastic process, 

( )1 1t t I tI µ ψ I σ ε+ = + − +� � , where 0.024Iµ = , 0.6Iψ = , 0.02Iσ = , ( )0,1tε N� ∼ , and 

here , 0.04
t

E I ∞  =   and , 0.016
t

StD I ∞  ≈  . The approximation follows Tauchen 

(1986). Assuming fifteen possible states, 15
I

n =  of yearly inflation, we get the 

following states and transition matrix 
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 0.05 0.25 0.61 1.10 1.72 2.42 3.20 4.00 4.80 5.58 6.28 6.90 7.39 7.75 7.95 

0.05 1.84 4.86 9.18 14.71 19.59 20.40 15.73 8.72 3.51 1.08 0.28 0.07 0.02 0.00 0.00 

0.25 1.66 4.43 8.51 13.96 19.14 20.62 16.49 9.50 3.98 1.27 0.34 0.08 0.02 0.01 0.00 

0.61 1.37 3.73 7.37 12.61 18.20 20.81 17.75 10.95 4.90 1.67 0.47 0.12 0.03 0.01 0.00 

1.10 1.03 2.87 5.92 10.73 16.63 20.65 19.28 13.06 6.42 2.40 0.74 0.21 0.06 0.02 0.00 

1.72 0.70 2.01 4.35 8.48 14.36 19.75 20.62 15.69 8.67 3.62 1.23 0.37 0.11 0.04 0.01 

2.42 0.42 1.26 2.90 6.14 11.53 17.83 21.17 18.42 11.64 5.53 2.11 0.71 0.23 0.08 0.02 

3.20 0.23 0.71 1.75 4.05 8.49 14.94 20.41 20.55 15.04 8.21 3.57 1.35 0.48 0.17 0.05 

4.00 0.11 0.36 0.96 2.43 5.72 11.52 18.21 21.37 18.21 11.52 5.72 2.43 0.96 0.36 0.11 

4.80 0.05 0.17 0.48 1.35 3.57 8.21 15.04 20.55 20.41 14.94 8.49 4.05 1.75 0.71 0.23 

5.58 0.02 0.08 0.23 0.71 2.11 5.53 11.64 18.42 21.17 17.83 11.53 6.14 2.90 1.26 0.42 

6.28 0.01 0.04 0.11 0.37 1.23 3.62 8.67 15.69 20.62 19.75 14.36 8.48 4.35 2.01 0.70 

6.90 0.00 0.02 0.06 0.21 0.74 2.40 6.42 13.06 19.28 20.65 16.63 10.73 5.92 2.87 1.03 

7.39 0.00 0.01 0.03 0.12 0.47 1.67 4.90 10.95 17.75 20.81 18.20 12.61 7.37 3.73 1.37 

7.75 0.00 0.01 0.02 0.08 0.34 1.27 3.98 9.50 16.49 20.62 19.14 13.96 8.51 4.43 1.66 

7.95 0.00 0.00 0.02 0.07 0.28 1.08 3.51 8.72 15.73 20.40 19.59 14.71 9.18 4.86 1.84 

Table 3.4 The transition matrix for inflation process. The values in the first row are 

 possible random states of the inflation rate in the current year, the first 

 column are possible known states of inflation rate in the previous year. 

 The values crossing row and column in the table are probabilities of 

 transition from known rate in the first column to random rate in the first 

 row. The values are in percentages. 

 

All values in the table are in percentages. The values in the Table 3.3 are rounded to 

two decimal places for presentation purposes only, and we actually work with as 

many decimal places as we need. Values 0.00% that appear in the table have positive 

values but are less than 0.01%. 

 

If we are at the beginning of the year, then the first row are possible states of inflation 

rate in the previous year, and the first column are possible states of random yearly 

inflation rate in the coming year. The data in the table are probabilities for moving 

from the state in the first row to the state in the first column. 

 

One can see that the sum of values in Table 3.3 in each row is equal to 100. If we 

observe one particular row then the values in the table in this row show probabilities 

for all possible states after one year and thus the sum of probabilities for all possible 

states must be one. 

 

For example, if the pensioner’s age is exactly 70 and he knows that the inflation in the 

previous year was 2.42%, then during the year when his age will move from 70 to 71 

the inflation will be 4.80% with a probability of 11.64%. 
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In equation (3.4) we need an expected annual inflation rate at time t  for the period of 

next i  years, denoted as ,t iE I  
� . The following table show some values of ,t iE I  

�  

for different inflation rates during the year prior to attaining age t  and for different 

periods of the following i  years. 

 

 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 

0.05 2.17 2.64 2.95 3.16 3.31 3.42 3.50 3.57 3.62 3.66 3.78 3.84 3.88 3.90 3.92 

0.25 2.24 2.70 2.99 3.20 3.34 3.45 3.53 3.59 3.64 3.67 3.79 3.85 3.88 3.91 3.92 

0.61 2.39 2.80 3.08 3.26 3.40 3.49 3.57 3.62 3.67 3.70 3.81 3.86 3.90 3.92 3.93 

1.10 2.59 2.96 3.20 3.36 3.48 3.56 3.62 3.67 3.71 3.74 3.84 3.88 3.91 3.93 3.94 

1.72 2.87 3.16 3.36 3.49 3.58 3.65 3.70 3.74 3.77 3.80 3.87 3.91 3.93 3.95 3.96 

2.42 3.21 3.41 3.55 3.64 3.71 3.76 3.80 3.82 3.85 3.86 3.92 3.94 3.96 3.97 3.98 

3.20 3.59 3.70 3.77 3.82 3.86 3.88 3.90 3.92 3.93 3.94 3.97 3.98 3.99 4.00 4.00 

4.00 4.00 4.01 4.01 4.01 4.01 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 

4.80 4.41 4.31 4.25 4.20 4.17 4.15 4.13 4.12 4.11 4.10 4.08 4.06 4.06 4.05 4.05 

5.58 4.79 4.60 4.47 4.38 4.32 4.27 4.24 4.21 4.19 4.18 4.13 4.10 4.09 4.08 4.07 

6.28 5.13 4.85 4.66 4.53 4.44 4.38 4.33 4.29 4.26 4.24 4.17 4.13 4.11 4.10 4.09 

6.90 5.41 5.05 4.82 4.66 4.55 4.47 4.41 4.36 4.32 4.29 4.20 4.16 4.13 4.11 4.10 

7.39 5.61 5.20 4.94 4.75 4.63 4.53 4.46 4.41 4.37 4.33 4.23 4.18 4.15 4.13 4.11 

7.75 5.76 5.31 5.02 4.82 4.68 4.58 4.50 4.44 4.40 4.36 4.25 4.19 4.16 4.14 4.12 

7.95 5.83 5.37 5.06 4.85 4.71 4.60 4.52 4.46 4.41 4.38 4.26 4.2 4.17 4.14 4.13 

Table 3.5 The expected annual inflation rate for the period of next i  years. The 

 values in the first row are duration of next i  years, and in the first 

 column are possible known states of inflation rate in the previous year. 

 The values that cross row and column in the table are expected annual 

 inflation for the duration of i  years assuming a known rate in the first 

 column in the previous year. The values, apart from the first row, are in 

 percentages. 

 

The values in the first column are possible inflation rates during the year prior to the 

point of time when we calculate ,t iE I  
� . Values in the first row represent the number 

of years i . All values in the table apart from the first row are in percentages.  

 

For example, if the pensioner’s age is 65 exactly, then 65t = . We assume that, for 

example, the inflation during the previous year was 1.72%. Then, expected inflation 

during pensioner’s age [ ]65,66  is 2.87%. Also, the expected annual inflation during 

pensioner’s age [ ]65,75  is 3.80%. 
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3.4.1.3 Survival Rates 

 

We assume that the pensioner’s subjective survival rates are the same as the survival 

rates used for the calculation of annuity rate. We assume that the pensioner’s survival 

(mortality) rates follow Interim life table produced by The Government Actuary’s 

Department for United Kingdom males, based on the data for years 2002–2004. We 

present in Table 3.6, for a given pensioner’s age, the values of probability that the 

pensioner will survive at least one year more. 

 

Age Probability  Age Probability  Age Probability 

65 98.345%  78 93.734%  91 79.842% 

66 98.183%  79 93.001%  92 77.916% 

67 97.987%  80 92.331%  93 76.015% 

68 97.779%  81 91.530%  94 74.818% 

69 97.513%  82 90.808%  95 71.908% 

70 97.309%  83 90.135%  96 70.490% 

71 96.960%  84 89.222%  97 68.573% 

72 96.631%  85 88.068%  98 66.677% 

73 96.274%  86 86.314%  99 0.000% 

74 95.813%  87 85.084%    

75 95.349%  88 83.718%    

76 94.855%  89 82.307%    

77 94.305%  90 81.416%    

Table 3.6 Survival rates – Interim life table produced by The Government 

 Actuary’s Department for United Kingdom Males, based on the data for 

 years 2002–2004. 

 

3.4.2 Optimal Consumption, Asset Allocation and Annuitisation 

 

Before investigating the simulations, we present the main results as functions of age 

and wealth, and of wealth and nominal income coefficient.  

 

In our investigation, inflation is assumed to be random. However, this assumption 

significantly influences only some of the results. In a number of results, random 

inflation has a negligible influence. For reasons of a clearer presentation, we will 

often present results obtained using the assumption of constant inflation and when 

random inflation brings new information and conclusions we will also present these 

results. If we present results with constant inflation then we assume that ; 4%
t k

I =  for 

64 99t≤ ≤  and 1
I

k n≤ ≤ . 
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In Section 3.4.2, we present deterministic numerical values of the control variables 

obtained by solving equations (3.26)–(3.34). These results are not dependent on the 

realisation of random variables but on their distributions only. In subsequent sections, 

we will concentrate on the analysis of the value function, and on the results obtained 

from simulations of the random paths of stochastic equity return and inflation. 

 

Regarding the results in this section, we will usually have three–dimensional surfaces 

where one dimension is pension wealth, the second one is age or nominal income 

coefficient and the third dimension is the value of optimal consumption or optimal 

proportion of asset allocation or optimal annuitisation. We will also have two–

dimensional graphs where again one dimension is pension wealth and the other is the 

proportion to be annuitised. So, we should read these figures as results of calculations 

for given wealth and possibly one other variable. If the x and y axes are wealth and 

age then the surface shows the possible paths of the value presented on the surface for 

one particular realisation of random variables. For example, in Figure 3.2 the surface 

gives us the value of optimal asset allocation for a particular level of pension wealth 

and age. 

 

3.4.2.1 Case 3.1 – Dependence on Wealth and Age 

 

Let us first present optimal consumption in Case 3.1. One can see that optimal 

consumption is always an increasing function of age and wealth. The more pension 

wealth the pensioner possesses the more he consumes, which is an expected result. 

The increase in optimal consumption as the pensioner’s age increases while the 

wealth is fixed can be explained by the decreasing incentive to save as age increases. 

The older pensioner has a lower expected remaining lifetime and their incentive to 

save decreases, and so consumption increases. The pensioner with no bequest motive 

loses the incentive to save and his consumption increases faster with age. The 

pensioner with a bequest motive still loses the incentive to save, but due to the utility 

from the bequest this decrease is lower compared to the pensioner with no bequest 

motive. One can see that the shapes of the surfaces in Figure 3.1 are similar. For the 

more risk averse pensioner, the surface of optimal consumption moves downwards 

and becomes flatter at early ages. A similar characteristic of the surfaces is seen when 

the bequest motive is introduced. The nominal income coefficient is constant and 

0NA

t
d = , for all ages 65 99t≤ ≤  because there is no nominal annuitisation in Case 3.1 

and Figure 3.1 refers to this assumption. 
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Figure 3.1 Optimal consumption in Case 3.1, for the values of RRA coefficient γ  

 taking values –1, –4, and –9, and for bequest motive coefficient 
t

b  taking 

 values 0 and 1. Wealth and Optimal Consumption values are in 

 thousands. 

 

Optimal asset allocation as a function of wealth and age in Case 3.1 is presented in 

Figure 3.2. 
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Figure 3.2 Optimal asset allocation in Case 3.1, for the values of RRA coefficient γ  

 taking values –1, –4, and –9, and for bequest motive coefficient 
t

b  taking 

 values 0 and 1. Wealth values are in thousands, Optimal asset allocation 

 values are in percentages. 

 

We can see that the less risk averse pensioner with RRA coefficient 1γ = −  invests all 

of his available assets into the risky asset for all ages and for all reasonable values of 

pension wealth. For the more risk averse pensioner, for 4γ = −  and 9γ = −  and no 

bequest motive, the pensioner would invest a lower percentage of pension wealth into 

the risky asset at older ages. Also, if more wealth is available then a lower percentage 

of pension wealth is invested into the risky asset. Optimal allocation into risky asset 

decreases faster for the more risk averse pensioner with RRA coefficient 9γ = − . For 

the pensioner with a bequest motive, we can see a very similar optimal asset 

allocation for wealth above 50,000 approximately. Below these values, the pensioner 
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with a bequest motive would invest less into the risky asset due to the risk of not 

gaining utility derived from the bequest. 

 

In Figure 3.2, for the pensioner with no bequest motive, we observe that optimal asset 

allocation decreases for higher values of the pension wealth and also for the later ages. 

This is due to the implicit possession of the risk free assets in a form of income from 

social security. We recall here that the pensioner in Case 3.1 has no access to 

annuities but has constant, risk free income from social security. Firstly, for a given 

age, optimal asset allocation decreases as pension wealth increases. If we understand 

the risk free income from social security as a form of risk free asset already in the 

possession of the pensioner then the pensioner will adjust the optimal asset allocation 

of his pension wealth according to the amount of the pension wealth. For the lower 

values of the pension wealth, he will optimally invest more into equities in order to 

balance the implied risk free assets in already in possession. As his pension wealth 

increases, the relative amount of the implied risk free asset decreases, and the 

pensioner optimally invests a lower part of his pension wealth into equities. Secondly 

and similarly, for a given amount of the pension wealth, optimal asset allocation 

decreases as the age of the pensioner increases. The reason lies in the fact that the the 

amount of the implied risk free asset in a form of income from social security is larger 

for a younger pensioner. So, an older pensioner will have a smaller amount of the risk 

free asset already in a possession and consequently he will invest a higher portion of 

his pension wealth into risk free asset and a lower portion into risky asset. Similar 

findings are done by Cocco et al (2005) and Merton (1971). 

 

For the pensioner with a bequest motive, we find decreasing proportion of the pension 

wealth optimally invested into equities as the pensioner gets older. For the higher 

values, say higher than 50,000, we also find decreasing proportion of the pension 

wealth optimally invested into equities as the pension wealth increases. However, for 

the pensioner with bequest motive and for lower values of the pension wealth, we find 

decreasing optimal equity allocation as the pension wealth decreases from say 50,000 

to 0. The reason is that income from social security is implied risk free asset in a 

possession of the pensioner but he cannot transfer these assets to his heirs. So, for a 

lower value of the pension wealth the pensioner needs protection in a form of risk free 

investment for the pension wealth to be bequeathed to his heirs. So, as the pension 

wealth decreases and the age of the pensioner is constant, optimal asset allocation for 

the pensioner with a bequest motive will decrease in order to protect the amount to be 

bequeathed. 
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3.4.2.2 Cases 3.2 and 3.3 – Dependence on Wealth and Age 

 

In Cases 3.2 and 3.3, the pensioner has access to nominal and real annuities 

respectively, at age 65 only and no other annuitisation is possible. 

 

We can use formulae (3.39) and (3.45) and the surfaces in Figure 3.1 to read 

consumption in Case 3.2 and 3.3. Actually, we use the same technique for reading 

consumption for all cases with annuitisation. Figure 3.1 shows consumption in the 

case with no annuities. It means that we assume that income is constant and equal to 

social security income. If we assume that 65 33,320.90Y =  and that 65 0.68212ρ = , 

then income from social security is 22,728.85SS

tY =  for 66 99t≤ ≤ . Thus, Figure 3.1 

shows optimal consumption under the assumption that real income after age 65 is 
3.1 22,728.85SS

t tY Y= = . Now, if we have annuitisation then the income in real terms is 

changed. If we denote income in Case 3.3 with 3.3

t
Y  then using (3.39) we have 

 
3.1

3.1 3.3

3.3

t
t t

t

Y
W W

Y
= . 

 

Now using (3.45) we have 

 

( )
3.3 3.1

3.3 3.3 3.3 3.1 3.3 3.1

1; 1;3.1 3.3
, , , , , ,NA NAt t

t t t t t k t t t t t k

t t

Y Y
C W Y d I C W Y d I

Y Y

∗ ∗
− −

 
=  

 
. 

 

So, if we want to determine the optimal consumption ( )3.3 3.3 3.3

1;, , ,NA

t t t t t k
C W Y d I∗

−  in 

Case 3.3 using Figure 3.1, we firstly need to calculate value 3.1

t
W . Then we read 

optimal consumption ( )3.1 3.1 3.1

1;, , ,NA

t t t t t k
C W Y d I∗

−  from the surface in Figure 3.1, and 

then multiply ( )3.1 3.1 3.1

1;, , ,NA

t t t t t k
C W Y d I∗

−  with 

 
3.3

3.1

t

t

Y

Y
. 

 

Using this technique, we can determine the optimal consumption from Figure 3.1 for 

any value of income. Obviously, there will be many different optimal consumption 

paths depending on annuitisation and income from nominal or real annuities. One 

should be aware that optimal real income is constant in Case 3.3, while in Case 3.2 

income decreases in real terms with age. It is also worth mentioning that in Case 3.1 

pension wealth for any particular pensioner decreases slowly with age, while in Case 

3.2 and 3.3 optimally it usually decreases sharply at age 65 and then takes low values 

at later ages. This feature can be seen in Figure 3.12. 
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Regarding optimal asset allocation, we find that annuities are better options for the 

pensioner with no bequest motive than the riskless asset for all reasonable 

combinations of pension wealth and income. We find that for the more risk averse 

pensioner, it is optimal to keep part of his pension wealth in the riskless asset if the 

pension wealth is about 50,000 or more. However, it is optimal for the more risk 

averse pensioner to annuitise such a large part of his pension wealth at age 65 so that 

his remaining pension wealth after age 65 is below the level of the pension wealth 

where keeping riskless asset is optimal. 

 

In Figure 3.3, we choose to show the graphs for three combinations of RRA and 

bequest motive coefficients. The graphs for other combinations of RRA and bequest 

motive coefficients have similar patterns. 
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Figure 3.3 x–axis shows pension wealth in thousands, and y–axis show percentages 

 of pension wealth annuitised at age 65 in Cases 3.2 and 3.3 and for three 

 combinations of RRA and bequest motive coefficients, i.e. 1γ = −  and 

 0b = , 4γ = −  and 1
t

b = , and 9γ = −  and 1
t

b = . 

 

If we observe the example for 1γ = −  and 0b =  in the left upper corner of Figure 3.3, 

we can see that taking any nominal annuity becomes optimal when pension wealth is 

larger than 170,000. At the same time, for the pensioner who decides to take real 

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. RealAnnuitis. in Case 3.3, b=0, g=-4, Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. NominalAnnuitis. in Case3.2,b=0,g=-4,Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. RealAnnuitis. in Case 3.3, b=0, g=-1, Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. NominalAnnuitis. in Case3.2,b=0,g=-1,Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. RealAnnuitis. in Case 3.3, b=1, g=-9, Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. NominalAnnuitis. in Case3.2,b=1,g=-9,Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. RealAnnuitis. in Case 3.3, b=1, g=-4, Age=65, dAge

NA =0

0 50 100 150 200 250 300 350

20

40

60

80

100
Opt. NominalAnnuitis. in Case3.2,b=1,g=-4,Age=65, dAge

NA =0



 97

annuities at age 65 it becomes optimal to take any real annuity when his pension 

wealth is about 120,000. 

 

If we observe the more risk averse pensioner who has RRA and bequest motive 

coefficients 9γ = −  and 1b = , then if he is taking nominal annuities it is optimal for 

him to start taking them when his pension wealth exceeds 45,000, while for the 

pensioner who is going to take real annuity this point is somewhere around 35,000. If 

the pensioner in the market modelled via Case 3.2 possesses the amount of 100,000 of 

pension wealth, then it is optimal to annuitise about 65% of this amount. If the 

pensioner with the same amount of pension wealth is in the Case 3.3 market, then it is 

optimal for him to annuitise about 55% of his pension wealth at age 65. 

 

If we observe the pensioner in Case 3.2 having RRA and bequest motive coefficients 

4γ = −  and 0b = , then it is optimal for him to start purchasing annuities with the 

pension wealth of about 45,000, while for the pensioner in the same case and with the 

same attitude towards risk but with the bequest motive it is optimal to start purchasing 

annuities when his pension wealth is about 60,000. Also, we observe that the 

percentage of the pension wealth to be optimally annuitised for the pensioner with no 

bequest motive increasing faster than for the pensioner with the bequest motive. 

Similarly, in Case 3.3 and for 4γ = − , the demand for annuities starts for the lower 

values of the pension wealth and then increases faster for the pensioner with no 

bequest motive than for the pensioner with the bequest motive. 

 

The following general conclusions can be drawn from Figure 3.3 and from other 

related examples not presented here. Firstly, when we compare the pensioners with 

the same RRA and bequest motive coefficients but one in Case 3.2 and the other in 

Case 3.3, we observe that the curve representing optimal annuitisation in Case 3.2 as a 

function of pension wealth increases similarly or more quickly as a function of 

pension wealth than in Case 3.3. Secondly, taking any annuity becomes optimal for 

the pensioner for larger amounts of pension wealth in Case 3.2 than in Case 3.3.So, 

we find that the pensioner having access to nominal annuities at age 65 only has more 

demand for annuities than the pensioner having access to real annuities at age 65 only. 

The reason for this finding lies in the decreasing, in real terms, income from the 

nominal annuities in Case 3.2. So the pensioner optimally purchases more annuities in 

Case 3.2 compared to Case 3.3 in order to compensate for the lower income from 

annuities in real terms in the later years. 
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Observing the changes in the pensioner’s risk aversion, we find that the more risk 

averse pensioner optimally takes any annuity with less pension wealth. In other 

words, the curve of optimal annuitisation moves leftwards on the x–axis as the 

pensioner’s risk aversion increases. Fourthly, for the more risk averse pensioner 

optimal annuitisation at age 65 increases faster as a function of pension wealth at age 

65. The third and fourth conclusions actually show that the more risk averse pensioner 

annuitises more in both Cases 3.2 and 3.3 compared to the less risk averse pensioner. 

Annuities are a form of protection against equity risk and the more risk averse 

pensioner has more demand from annuities. 

 

When comparing the two pensioner in the same case, either Case 3.2 or Case 3.3, and 

with the same risk aversion, but one without and the other with the bequest motive, 

we observe that the pensioner with no bequest motive optimally purchases any 

annuity for the smaller values of the pension wealth. Also, if the demand for annuities 

exists, the pensioner with no bequest motive optimally purchases more annuities than 

the pensioner with the bequest motive. Thus, we find that the pensioner with the 

bequest motive has a lower demand for annuities in both Cases 3.2 and 3.3 compared 

to the pensioner with the same attitude to risk but with no bequest motive. This is 

expected result, because the pensioner with the bequest motive has the desire to 

bequeath assets to his heirs and due to this desire he purchases fewer annuities and 

keeps more pension wealth available for bequeathing. 

 

3.4.2.3 Cases 3.4, 3.5 and 3.6 – Dependence on Wealth and Age, no bequest 

 

Regarding the optimal consumption in Cases 3.4, 3.5 and 3.6 and for the pensioner 

with no bequest motive, the surfaces takes slightly higher values than the values of the 

optimal consumption presented in Figure 3.1. However in Cases 3.4, 3.5 and 3.6 we 

find similar shapes of the surfaces to each other and just moved slightly up compared 

to surfaces in Case 3.1 and we will not present them graphically here. We give here a 

couple of observations. For one chosen set of the parameters, the surfaces of optimal 

consumption in Cases 3.4, 3.5 and 3.6 have very similar, almost identical shapes and 

values to each other. If we compare the surfaces of optimal consumption in Cases 3.4 

and change RRA coefficient only, then we observe slightly lower values of optimal 

consumption for the more risk averse pensioner compared to the less risk averse 

pensioner. However, the differences between values of optimal consumption when we 

change the RRA coefficient in Case 3.4 are lower than those presented in Figure 3.1. 

The same conclusions when we allow the changes to the RRA coefficient only, are 

drawn in Cases 3.5 and 3.6. Again, when we have one surface of optimal 
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consumption, we can use the same technique as explained in 3.4.2.2 to read optimal 

consumption for any income. Changing income is important here because income is 

changed whenever the pensioner purchases either nominal or real annuities. So these 

conclusions are valid only for the pensioners with the same income. 

 

Similar values of the optimal consumption in Cases 3.4, 3.5 and 3.6, for the same 

values of the pension wealth and income, age of the pensioners, pensioners’ RRA and 

bequest coefficient, and for the same value of income at that age, are the 

consequences of the fact that the newly bought annuities, either nominal or real or 

combined, are a form of the risk free investment providing similar added value to the 

pensioner. If we observe the pensioners with the same RRA and bequest coefficients, 

the same age and the amount of the pension wealth and income, but in Cases 3.4, 3.5 

and 3.6, then at the beginning of the year just before asset allocation all these 

pensioners also have the same amount of the risk free asset, implied from the their 

risk free income. So, all these pensioners have the same states at the beginning of the 

year and the same amount of the risk free asset already in a possession. Regarding 

investment and annuitisation, annuitisation is a form of risk free investment. The 

pensioner in Case 3.1 can invest in risk free asset and in equities, while the pensioners 

in Cases 3.4, 3.5 and 3.6 can invest in risk free asset and into annuities as well. 

Purchasing annuities is a form of risk free investment with a better return than cash. It 

seems that nominal and real annuities bear similar added value to the pensioner, and 

thus, the pensioners in different cases will optimally choose similar amounts to be 

invested into risky investment and into cash and annuities as risk free investment. The 

pensioners in different cases will optimally choose similar amounts to be consumed as 

well, as the pensioner consumes the part of his assets not invested into equities, cash 

and annuities. That is why the optimal consumption graphs are similar in different 

Cases 3.4, 3.5 and 3.6. However, we state here that small differences exists, and we 

find that the highest consumption values are in Case 3.6, just slightly smaller values 

are in Case 3.5 and then a bit lower values in Case 3.4. 

 

We find that optimal consumption is higher in Cases 3.4, 3.5 and 3.6 than in Case 3.1, 

and it is due to the better return from annuity than cash investment. We should bear in 

mind that annuities provides better return than risk free asset due to the survival 

credits. 

 

If the pensioner has no bequest motive ( 0
t

b = ) and purchases optimally either 

nominal or real annuities whenever during retirement, he invests all his remaining 

pension wealth into the risky asset for almost all ages and pension wealth values. We 
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observe that only at ages above 95 and the highest values of pension wealth 

considered, the pensioner would only invest optimally small percentage into riskless 

asset. Thus, in Cases 3.4, 3.5 and 3.6, the surface representing optimal asset allocation 

against the pensioner’s wealth and age is a flat surface at the level of 100%, apart 

from the ages above 95 and the highest values of pension wealth considered. We can 

conclude that annuities in the case with no bequest motive are the preferred 

investment for the pensioner compared to the riskless asset. 

 

Regarding optimal nominal and real annuitisation, we can say that, under the same 

assumptions about the parameters, the surfaces of the optimal nominal annuitisation in 

Case 3.4 and the surfaces of the optimal real annuitisation in Case 3.5 have similar 

shapes and values. Optimal nominal annuitisation in Case 3.4 is very similar to 

optimal real annuitisation in Case 3.5, but the shape of the surfaces are very similar. 

In Case 3.6, the surface representing the sum of optimal nominal and real 

annuitisation has a similar shape and values as optimal nominal annuitisation in Case 

3.4, again of course if we compare the cases with the same assumptions about the 

parameters.  

 

Very similar values of optimal nominal annuitisation in Case 3.4, optimal real 

annuitisation and 3.5, and the sum of optimal nominal and real annuitisation in Case 

3.6 shows that the pensioner optimally annuitises similar proportion of his available 

pension wealth regardless of the types of the annuity available. Nominal annuity in 

Case 3.4 provides higher income in the early years after purchasing them and 

decreasing income in real term afterwards, and the real annuity provides constant 

income in real term. From the observation that the pensioner will optimally convert 

similar part of pension wealth into nominal annuity in Case 3.4 as into real annuity in 

Case 3.5 and also as into combination of the two in Case 3.6 shows that any of these 

annuities provides similar added value. Actually, access to annuities is important 

added value as risk free investment is not optimal to the pensioner. From Figure 3.8 

later in this section, we see that in Case 3.6 the demand for nominal annuities exists 

when both nominal and real annuities are available. And we see that the demand for 

nominal annuities exists for older ages.  

 

We will present here in detail the surfaces in Case 3.4 only. 
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Figure 3.4 Percentages of the pension wealth optimally annuitised in Cases 3.4 for 

 three values of RRA coefficients, 1γ = − , 4γ = −  9γ = − , and with no 

 bequest motive, i.e. 0
t

b = . The two surfaces in the same row present the 

 surfaces of the same function viewed from different points. Pension 

 wealth values are in thousands. 

 

From the plots on the left side of Figure 3.4, we can see that the shapes of the surfaces 

for ages 75 and above are very similar irrespective of the risk aversion of the 

pensioner. Significant differences can be seen in the plots on the right side in Figure 

3.4, which clearly depict the optimal annuitisation for earlier ages. There is an 

obvious connection with the risk aversion of the pensioner. For the less risk averse 

pensioner, with RRA coefficient 1γ = − , optimally there is no annuitisation in the 

early years of retirement, and then there is a steep increase in the degree of optimal 
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annuitisation. This steep increase starts slightly earlier for the pensioner with more 

pension wealth. 

 

The more risk averse pensioner will optimally annuitise part of his pension wealth 

even at age 65, if his pension wealth reaches appropriate level. For this pensioner, the 

increasing age and pension wealth is followed by the increasing optimal annuitisation 

until ages 75–80. After these ages, optimal annuitisation does not significantly depend 

on wealth any longer. 

 

We can see in Figure 3.4 that in Case 3.4 with no bequest motive, the level of risk 

aversion influences the degree of optimal annuitisation up to ages 75–80, but not after 

these ages. 

 

3.4.2.4 Cases 3.4, 3.5 and 3.6 – Dependence on Wealth and Age, with a bequest 

 

Regarding optimal consumption in Cases 3.4, 3.5 and 3.6 and with a bequest motive, 

we have very similar patterns as in Cases 3.4, 3.5 and 3.6 and no bequest motive. 

 

However, the pensioner’s optimal asset allocation in Cases 3.4, 3.5 and 3.6 and with a 

bequest motive is quite different compared to optimal asset allocation in Cases 3.4, 

3.5 and 3.6 with no bequest motive. Optimal asset allocation in Cases 3.4, 3.5 and 3.6 

and with a bequest motive depends on the pensioner’s level of risk aversion 

significantly. For 1γ = − , which is not shown here, the pensioner invests all his 

pension wealth into the risky asset for all considered ages when the amounts of 

pension wealth is below 350,000. In Figure 3.5, we present the surfaces of optimal 

asset allocation for the pensioner with a bequest motive and with the level of RRA 

coefficients 4γ = −  9γ = − . 
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Figure 3.5 Optimal asset allocation in Case 3.4, for the value of RRA coefficients 

 4γ = −  9γ = − , and for bequest motive coefficient 1
t

b = . Pension 

 wealth values are in thousands. 

 

Under the assumption of 4γ = −  9γ = −  shown in Figure 3.5, the pensioner will 

invest less in the risky asset as his risk aversion increases, and as his age and pension 

wealth increase. For these pensioners, annuities are not a better choice than the 

riskless asset, as it is the case for the pensioner with no bequest motive and for the 

less risk averse pensioner. 
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Figure 3.6 Percentages of pension wealth optimally annuitised in Case 3.4 for three 

 values of RRA coefficients 1γ = − , 4γ = −  9γ = − , and 1
t

b = . Two 

 plots in the same row present the surfaces of the same function viewed 

 from the different points of view. Pension wealth values are in thousands 

 

In Figure 3.6, we present optimal nominal annuitisation for the pensioners with a 

bequest motive and with different levels of risk aversion in Case 3.4. 

 

As in Section 3.4.2.3, for the no bequest assumption, one can see in Figure 3.6 that the 

surfaces have a similar shape for ages after 75. Before this age, optimal annuitisation 

decreases for less risk averse pensioners. Now, for low values of pension wealth no 

annuitisation is optimal. Thus, when a significant part of pension wealth is converted 

into annuities once, then it is optimal not to annuitise anymore. 
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As we noted earlier, optimal annuitisation and asset allocation surfaces as functions of 

age and wealth are very similar for both Cases 3.4 and 3.5. We present in Figure 3.7 

one example of the optimal real annuitisation function in Case 3.5. 

 

Figure 3.7 Optimal real annuitisation as function of age and wealth in Case 3.5, for 

 1
t

b =  and 4γ = − . Pension wealth values are in thousands. 

 

We can compare surfaces in Figure 3.7 with the two surfaces in the middle row in 

Figure 3.6. Clearly, the surfaces on both left and right sides are similar. The only 

small difference that we can observe is that the surfaces in Case 3.4 have slightly 

lower values. 

 

3.4.2.5 Cases 3.6 – Distribution of nominal and real annuities 

 

As we said earlier, there is a little difference between optimal consumption, optimal 

asset allocation in Cases 3.4, 3.5 and 3.6. Regarding annuitisation, we also find small 

differences between optimal nominal, real and the sum of optimal nominal and real 

annuitisation in Cases 3.4, 3.5 and 3.6, respectively. 

 

In Section 3.4.5, we measure the value added from the access to annuities in terms of 

discounted expected utility. We will see from the analysis in Section 3.4.5 that having 

access to both nominal and real annuities at all ages brings little extra benefits to the 

pensioner compared to Cases 3.4 and 3.5 where the pensioner has access to nominal 

and real annuities respectively only. Although both nominal and real annuities exist 

extensively in practice, we find that both of them provide similar additional 

discounted expected utility to the pensioner. However, it is interesting to observe the 

optimal real and optimal nominal annuitisation surfaces in Case 3.6. In order to 

compare the surfaces with those in Case 3.4 and 3.5, we choose 0b =  and 1b =  , and 

4γ = −  and 9γ = − , and present the optimal real and optimal nominal annuitisation 

surfaces in Case 3.6 in Figure 3.8. 
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Figure 3.8 Optimal nominal and real annuitisation as function of age and wealth in 

 Case 3.6, for the values of RRA coefficients 4γ = −  9γ = − , and for  the 

 values of the bequest coefficient 0
t

b =  and 1
t

b = . Pension wealth 

 values are in thousands.  
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In Figure 3.8, we observe that both nominal and real annuitisation is optimal for a 

certain values of age and wealth. It means that the pensioner having access to both 

nominal and real annuities will optimally purchase both types of annuities for those 

values of age and pension wealth. If we observe carefully the shapes of surfaces on 

the left and right hand sides of Figure 3.8, we can see the following. If we add values 

on the z–axis of the optimal nominal annuitisation to the values on the z–axis of the 

optimal real annuitisation for the same age and wealth, then we get a function with a 

very similar shape as the plots on the right hand side Figures 3.4, 3.6 and 3.7 for the 

appropriate value of relative risk aversion and a bequest motive coefficients. It means 

that in Case 3.6 we have the similar values of the overall percentage of optimal 

annuitisation as in Cases 3.4 and 3.5, and it is just a question of how much the 

nominal annuitisation is preferred over real annuitisation and vice versa. 

 

Regarding optimal nominal and real annuitisation in Figure 3.8 as a function of the 

pension wealth, we observe that, for higher values of the pension wealth, the 

pensioner optimally converts a higher proportion of his pension wealth into real 

annuities than into nominal annuities. The pensioner will optimally convert more 

pension wealth into nominal annuities only for lower values of his pension wealth. If 

the pensioner has no bequest motive, then as his pension wealth increases the 

percentage of the optimal nominal annuitisation decreases. If the pensioner has a 

bequest motive, his optimal nominal annuitisation increases slightly as pension wealth 

increases and then decreases after attaining a maximum percentage for the value of 

the pension wealth about 80,000–120,000. 

 

Regarding optimal nominal and real annuitisation in Figure 3.8 as a function of age, 

we observe that if the pensioner has no a bequest motive, the demand for nominal 

annuities exists for ages 75 and above only. However, if the pensioner has a bequest 

motive we observe the demand for nominal annuities starts at earlier ages. If 9γ = −  

and 1
t

b =  then purchasing at least some nominal annuities is optimal at age 66. We 

also observe that after the earliest pensioner’s age when the demand for nominal 

annuities exists, during a couple of the following years the optimal percentage of the 

nominal annuitisation increases, then it attains a certain maximum, and then the 

percentage of the optimal nominal annuitisation decreases again. 

 

It is not easy to find a clear general reasoning for the distribution of the optimal 

nominal and real annuitisation in Case 3.6. One should also bear in mind that the 

results presented in Figure 3.8 are conditional on the assumed income from social 

security. The reasons for the observed distribution should be sought in the 
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characteristics of the income provided by nominal and real annuities. For the same 

amount of the pension wealth converted into annuities, the nominal annuity provides 

higher income in early years after purchasing annuities and then income deceases in 

real terms. Real annuities provides a lower income compared to nominal annuities in 

early years after purchasing but then income is constant and after a couple of years it 

is higher than income from nominal annuities bought for the same amount of the 

pension wealth. Thus, we have two effects, a higher income from nominal annuities in 

early years and lower income a couple of years after purchasing them compared to 

real annuities. In early years of retirement, nominal annuities are less preferable 

compared to real ones as the effect of decreasing income in real terms overweight the 

effect of the higher income in early years due to possible long period or receiving 

income from annuities. Thus, it is optimal to purchase nominal annuities later during 

the retirement. Regarding more demand for nominal annuities for lower values of the 

pension wealth, if any demand for nominal annuities exists, the effect of the higher 

income in early years after purchasing nominal annuities overweight the effect of the 

decreasing income in real terms. For a lower amount of pension wealth, a lower 

amount is converted into annuities and a lower additional income is provided. In this 

case, the percentage of the additional income from nominal annuities is higher than 

the percentage of the increase of the income provided from real annuities, and also 

percentage of the overall decrease of income in real terms is lower. 

 

So far in Section 3.4.2, we have investigated the behaviour of the optimal 

consumption, optimal asset allocation, optimal nominal annuitisation and optimal real 

annuitisation (given by functions (3.45)–(3.48)) for different cases and we have 

presented results for these functions when age and pension wealth changes and other 

variables stay the same. However, these functions depend on ( );, , ,NA

t t t t k
W Y d I . In 

order to obtain an idea of how these functions depend on income, nominal income 

coefficient and inflation, we will present more results in the rest of Section 3.4.2. 

 

3.4.2.6 Dependence on Income 

 

Regarding optimal consumption, we have explained in Section 3.4.2.2 the way in 

which the optimal consumption changes with the changes of income variable. 

 

Regarding optimal asset allocation and optimal annuitisation, the changes of the value 

of the income variable 
t

Y  does not change the general shape of the surfaces. It only 

changes the scale on the wealth axis. This conclusion can be drawn from the relations 

given in (3.46)–(3.48). If the income variable 
t

Y  increases and we keep other variables 
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the same, then the surfaces of optimal asset allocation and optimal annuitisation will 

be pulled on the wealth axis towards larger values, keeping their overall shape. In 

contrast, if the income variable 
t

Y  decreases while keeping other variables the same, 

then the surfaces will be squeezed again keeping their overall shape. 

 

As we noted in 3.4.2.2, income changes if annuitisation is present. In all of our figures 

above, the assumed income at age 65 is 65 33,320.90Y = , 65 0.68212ρ =  and 

afterwards income is 22,728.85tY =  for 66 99t≤ ≤ . If we have any annuitisation 

then 22,728.85tY >  for 66 99t≤ ≤ . According to the previous paragraph, if the level 

of income is increased then the surface of optimal asset allocation and optimal 

annuitisation will be pulled towards larger values on the wealth axis, while their 

shapes are kept the same. 

 

3.4.2.7 Dependence on the Nominal Income Coefficient 

 

The dependence on the nominal income coefficient NA

t
d  changes with age and wealth. 

Sometimes these changes are not significant, but sometimes they are, depending on 

the assumptions regarding the other parameter values. 

 

The nominal income coefficient NA

t
d  in Cases 3.1, 3.3 and 3.5 keeps its value equal to 

zero for all ages 65 99t≤ ≤ , because only real income is present. However, in Cases 

3.2, 3.4 and 3.6 the nominal income coefficient is not equal to zero once the pensioner 

purchases nominal annuities.  

 

In detailed figures not shown here, we observe the optimal consumption as a function 

of nominal income coefficient NA

t
d  only, and note that it decreases slightly as NA

t
d  

increases. One should be aware that if the nominal income coefficient is positive then 

income in real terms is larger than income from social security because the pensioner 

has bought some nominal annuities. So, if one part of the pensioner’s income comes 

from the nominal annuities, optimal consumption depends on the positive nominal 

income coefficient and on the level of the real income above the level of the income 

from social security only. 

 

Regarding optimal asset allocation, the positive value of the nominal income 

coefficient can influence optimal asset allocation in Cases 3.4 and 3.6. Not shown 

here, but we again find that the optimal asset allocation is increasing slightly if the 

nominal income coefficient increases, and if we keep the values of all other variables 

the same. 
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Figure 3.9 presents the dependence of the optimal nominal annuitisation on wealth 

and the nominal income coefficient. Four surfaces presented in Figure 3.9 show 

optimal nominal annuitisation for pensioners aged 66, 71, 76 and 81 years. 

 

Figure 3.9 Optimal nominal annuitisation in Case 4, for 1
t

b =  and 4γ = − , for 

 different pensioner’s ages, and as a function of the nominal income 

 coefficient NA

t
d  and wealth. 

 

Figure 3.9 shows that optimal nominal annuitisation usually does not depend strongly 

on NA

t
d . We can see in Figure 3.9 that optimal nominal annuitisation increases more 

steeply for the lower pension wealth values. The surfaces in Figure 3.9 assume the 

same income of 22,728.85tY = . However, if the pensioner has a positive nominal 

income coefficient it means that he has already bought some nominal annuities and 

that his income is not the same as in the years before purchasing nominal annuities. If 

one wants to calculate the exact value of the optimal nominal annuitisation for a given 

income, he needs to calculate it using equations (3.39) and (3.47) and the values from 

the surfaces in Figure 3.9. The aim of presenting Figure 3.9 is to give an idea of 

optimal nominal annuitisation as a function of the pension wealth, age and the 

nominal income coefficient. 
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3.4.2.8 Change of Control Variables due to Stochastic Inflation 

 

In this section, we observe optimal consumption, optimal asset allocation and optimal 

annuitisation as a function of the stochastic inflation. Before presenting any result, we 

need to understand how income and nominal annuity rate change with the change of 

the value of the inflation, when inflation is random. 

 

If inflation during the year before the annuitisation is lower, then the nominal annuity 

rate defined in (3.4) is larger and income from nominal annuity is smaller. However, 

the lower inflation during the year before nominal annuitisation will be on average 

followed by the lower inflation in the following years as well. The lower is inflation 

in the years after the year of nominal annuitisation the smaller is the decrease of 

income in real terms. It means that if we start with lower inflation then income from 

any nominal annuity will be lower but the decrease of income in real terms due to 

inflation will be slower. The opposite is true as well. If the inflation during the year 

before nominal annuitisation is higher, then income in nominal terms from any 

nominal annuity will be higher as well but this income in real terms will decrease 

more quickly because of higher inflation in the following years. So, the lower/higher 

inflation in the year prior to the nominal annuitisation the higher/lower is the nominal 

annuity rate and the lower/higher is income from nominal annuity. The lower/higher 

inflation in the year prior to the nominal annuitisation is on average followed by the 

lower/higher inflation in the years after nominal annuitisation. The effects of 

lower/higher nominal annuity income and slower/faster decrease of nominal annuity 

income in real terms due to (on average) lower/higher inflation in the years following 

nominal annuitisation seem to cancel each other out. In almost all of our investigated 

examples, when we allow the inflation to be random, we do not find significant 

changes in any of the control variables of the problem (3.26)–(3.34). 

 

Regarding optimal consumption, asset allocation and annuitisation, we compare the 

data for a given age of the pensioner, and for a given reasonable value of income, and 

for different values of inflation in the year prior to the observed age. The differences 

depend on the nominal income coefficient, and of the pensioner’s preferences towards 

risk and bequest. We present here the observations from the calculated optimal values, 

and we do not present the optimal values itself. 

 

For any chosen preferences towards risk and bequest and for the nominal income 

coefficient 0NA

t
d = , we find almost no differences in the level of the optimal 

consumption. In Case 3.2, if the nominal income coefficient takes values 
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0 0.2NA

t
d≤ ≤ , we find the differences to be less than 0.1% . In Case 3.4, if the 

nominal income coefficient 0 0.2NA

t
d≤ ≤ , we find the differences to be less than 1%  

for almost all combination of RRA coefficient and bequest motive. We observe that 

the differences of the values of optimal consumption increase as the nominal income 

coefficient increases. We also observe that for a given value of the nominal income 

coefficient optimal consumption decreases as inflation increases. The last observation 

is a consequence of the irreversibility of the converting pension wealth into nominal 

annuity. If a nominal annuity is purchased in the earlier years of the retirement then 

nominal income coefficient is positive. It means the part of the pensioner’s income, 

coming from nominal annuity, decreases in real terms every year. If the value of 

inflation is higher, then the pensioner expects his income to decrease faster in 

following years. If we observe a future income from nominal annuity as an asset in a 

possession of the pensioner, then the pensioner actually expects that his overall wealth 

will decrease faster in real terms in following years. Thus the pensioner will optimally 

consume less in order to balance out the lower expected income in real terms in the 

following years, or in the other words the lower expected discounted value of future 

income from nominal annuity. 

 

Regarding optimal asset allocation, we again find very small differences. If the 

pensioner has no bequest motive, then it is optimal for him to annuitise one part of his 

pension wealth and to keep the rest of his available assets in the risky asset. Similar to 

the conclusions for the constant inflation, we find that for the pensioner with no 

bequest motive annuities are the preferred investment than riskless asset. If the 

pensioner is a more risk averse person and he has the bequest motive then it is optimal 

for him to keep part of his pension wealth in both riskless and risky asset. We find 

that in Case 3.2 with a bequest motive and if the nominal income coefficient 

0 0.2NA

t
d≤ ≤ , the differences in optimal asset allocation are less than 1% when the 

level of the pension wealth is larger than 30,000. Below this level of pension wealth 

the differences can be up to 3%. In Case 3.4 with a bequest motive, optimal asset 

allocation is 100% in equities up to a certain age. For example, that age for 9γ = −  is 

about 77. For this pensioner it is optimal to keep part of his pension wealth in the 

riskless asset. After that age, for the different levels of inflation the differences in the 

proportions kept in the equities are less than 1%. 

 

When we observe the calculated data about the optimal nominal annuitisation and in 

the presence of the stochastic inflation the conclusions are again that the differences in 

the level of optimal nominal annuitisation due to the differences of the level of 

inflation are less than 1%. 
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As we can see, introduction of the random inflation in the model has very limited 

influence on any of the control variables. The differences are so small that they cannot 

be seen from the figures and it is for this reason that we do not present these results in 

graphic form. 

 

3.4.3 A Typical Example of Simulation 

 

In order to give to an idea how the model developed in this chapter can be used for the 

analysis of the different paths of the values important for the pensioner, we present 

here one typical solution to the problem in graphic form. Firstly, we have to know the 

case where the pensioner acts optimally, to know the pensioner’s preferences towards 

risk and bequest and all other parameters relevant to the pensioner. Then we make 

2,000 simulations of the random samples of the equity returns and inflation rates for 

ages 65–99. Then we calculate 2,000 simulations of the random samples for ages 65–

99 of optimal consumption, optimal asset allocation, optimal nominal and real 

annuitisation, pension wealth and income. All these calculated data are kept in the 

excel files and can be used for different analysis. We present here the pensioner in 

Case 3.4 and with a bequest motive. In Figure 3.10 and 3.11, we depict the mean 

values of these optimal values calculated using simulations, together with 0.05 and 

0.95 quantiles for optimal consumption, asset allocation and nominal annuitisation. 

We assume that pension wealth at age 65 is 65 200,000W = , income at age 65 is 

65 33,321Y = , inflation is stochastic and the value of inflation prior to the year of 

retirement is equal to 4%. The following four graphs depict mean values and 5% and 

95% quantiles values of the pensioner’s optimal behaviour. 

 

Figure 3.10 Mean (full line), 5% (dash and dot line) and 95% (dash line) of optimal 

 asset allocation on the left hand side graph and mean (full line), 5% 

 (dash and dot line) and 95% (dash line) of optimal nominal annuitisation 

 on the right hand side graph, for the pensioner in Case 3.4, with bequest 

 motive and with RRA coefficient 9γ = − . 
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Figure 3.11 Mean income (dash line with shorter dashes), wealth (dash line with 

 longer dashes) and consumption (full line) on the left hand side graph, 

 and mean (full line), 5% (dash and dot line) and 95% (dash line) 

 quantiles of consumption on the right hand side. The pensioner is in Case 

 3.4, with bequest motive 1
t

b =  and with RRA coefficient 9γ = − . 

 

In our model, the pensioner draws utility from consumption and from bequeathing the 

wealth to his heirs. The paths presented in Figures 3.10 and 3.11 are not the actual 

(realised) paths, but the mean value and the quantiles values of the paths. Depending 

on each particular random realisation of inflation and equity rates we get different 

paths. 

 

If not emphasised otherwise, we assume constant inflation in the following sections. 

In Section 3.4.7, we will again investigate the consequences of random inflation. 

 

3.4.4 Criteria for Comparing Results 

 

The main aim of this study is to investigate importance of access to annuities, either 

nominal, real, or both. We need to compare different results and get an insight into the 

gains from access to annuities, either nominal or real, or both. A range of conclusions 

is possible. At one extreme, we may conclude that losses due to the lack of the 

availability of a certain class of annuities remain significant although the pensioner 

behaves optimally regarding consumption, asset allocation and available 

annuitisation. If we draw this conclusion then access to the class or classes of 

unavailable annuities is very important for the pensioner. At the other extreme, we 

may conclude that losses due to the lack of a certain class of annuities can be 

significantly decreased by the pensioner’s optimal consumption, asset allocation and 

optimal annuitisation using available annuities if any. If we draw this conclusion then 

access to the other class or classes of annuities is not very important for the pensioner. 

Of course, many conclusions will lie somewhere between these two. 
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Gains from access to annuities can be measured in different ways. In this thesis, we 

optimise the pensioner’s behaviour with respect to the maximum derived utility from 

consumption. However, at the same time, we are interested in other risks to which the 

pensioner is exposed. Thus, we will investigate the left tail of the distribution of 

possible random realisations for the pensioner. As we will see, a combination of these 

measures will give us an idea of the importance of access to annuities for the 

pensioner. Conclusions are not straightforward and one needs both to observe value 

function and carry out a left tail analysis to come to an understanding of the benefits 

and risks. However, the criterion for the optimisation of the pensioner’s behaviour is 

the maximisation of derived utility only and not the minimising of the left tail risk of 

the possible less than expected result of random realisation. Thus, we here analyse the 

left tail of the distribution, or worse than expected random realisations for the 

pensioner in order to shed some light on this obviously important risk for the 

pensioner. 

 

In our model, the pensioner wishes to maximise the expected utility derived from 

future consumption and, if there is a bequest motive, expected utility derived from 

bequeathing assets to heirs. When we have two different utilities that result from the 

two different examples, it is not directly clear how significant that difference is. One 

solution is to transform that difference into money terms and then to compare them. 

We classify our criteria for measuring the differences between two comparable 

examples in two groups. The first one is the group where we compare expected 

discounted utilities. In this group, we have two criteria: constant equivalent 

consumption – CEC  measure and required equivalent wealth – REW  measure. The 

second group of criteria is the group where we measure risks of possible worse than 

expected realisations of utility drawn from consumption and bequest in retirement. 

The second group of criteria consists of Value at Risk – VaRα  and Conditional Value 

at Risk – CVaRα , for 0 1α< < . The second group of criteria is based on the 

distribution of random utility derived from future consumption and bequest. 

 

The constant equivalent consumption – CEC  measure is based on finding the 

constant amount of consumption such that the expected utility derived from the 

optimal consumption as a result of the calculations is the same as the expected utility 

derived from the stream of those constant consumption. This criterion can be applied 

in the case with no bequest motive. This measure is widely accepted and examples of 

analysis using CEC  measure can be found in Cocco, Gomes, and Maenhout (2005). 
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We now explain in more detail how we use CEC  criterion. At age 65, we know 

pension wealth, income at that age, inflation, and nominal income coefficient 

65 0NA
d = . Based on that information we calculate the expected discounted utility 

derived from the stream of future random consumption. Future random consumption 

depends on the realisation of the stochastic processes for risky rate on equities and for 

random inflation. We denote that the stream of future random consumption (as earlier 

in this chapter) by 
t

C�  for 65 99t≤ ≤ . Avoiding writing the dependent variables and 

using the formula (3.25) and the derivation before this formula we can write the 

following 
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∑ ∏
�

 (3.61) 

 

We need to emphasise here that 65C�  is not random but it is a control variable. 

However, we keep the notation as if it is random variable in order to have a more 

compact form of the formula (3.61). We can see that there is no bequest motive in 

equation (3.61) while in equation (3.25) there is a possibility that the pensioner has a 

bequest motive. It is not possible to include in a proper way the pensioner’s utility 

from the bequest motive in a CEC  measure. 

 

Let us now assume that the constant stream of consumption 
CEC

C  for 65 99t≤ ≤  

produces the same expected utility at age 65 then we have 
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where 65V  is defined in (3.61). Taking the term 
CEC

C  on the left side and the other 

terms on the right side of the equation, we obtain 
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Now, introducing equation (3.61) into the last equation we get 
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We leave the denominator γ  in this last formula so that we see that constant 

equivalent consumption is in some sense normalised expected discounted utility 

derived from future consumption. In numerical calculations we cancel out the 

common term γ  and get the following formula for the constant equivalent 

consumption 
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 (3.64) 

 

In our numerical calculations, we actually calculate the values 65V  for different values 

of the state variables. So, equation (3.63) can be used as the definition of 
CEC

C . 

However, we want to emphasise that a CEC  measure recognises utility from 

consumption only and we prefer to define it by equation (3.64). 

 

We apply the CEC  measure for comparing two cases while the values of the 

parameters and the pensioner’s preferences towards risk and bequest are the same. 

Having calculated 
CEC

C  for the two different comparable cases, we then compare 

CEC
C  values. The pensioner will prefer the case where 

CEC
C  is higher. Also, we 

determine in money terms how much one case is more favourable than the other. 

 

A required equivalent wealth – REW  measure is the second measure of the value 

function that we apply. The same idea of this type of measure is employed in a 

welfare analysis in Horneff, Maurer, Mitchell, and Stamos (2009). However, the 

concept of the equivalent wealth is used by other authors as well, for example 

Mitchell et al (1999). They define it as an equivalent increase in financial wealth 

needed to compensate an individual lacking access to annuity products. We define it 

as the required equivalent wealth needed to provide the pensioner with the same 

expected derived utility in different cases, where cases differ in availability of a 

certain class/classes of annuities. 

 

Having solved the problem (3.26)–(3.34) we get the value function 
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 ( )65 65 65 65 64;, , ,NA

k
V W Y d I  (3.65) 

 

for 1,..,
I

k n= , 65 0W ≥  and 65 0Y ≥ , 65 0NA
d = , and 64;kI  in the domain of the values for 

the inflation rates. 

 

Function ( )65 65 65 65 64;, , ,NA

k
V W Y d I  is an increasing function with respect to variable 65W . 

For given values ( )65 65 65 64;, ,0,
k

V W Y I , 65 0Y ≥  and 65;kI  we can calculate the inverse 

function with respect to variable 65W . We calculate required equivalent wealth in the 

following way. If we have one case and given values of 1 65 0W ≥  and 65 0Y ≥ , 

65 0NA
d = , and given 64;kI  in the domain of the values for the inflation rates, we 

calculate ( )1 65 1 65 65 64;, ,0,
k

V W Y I . Then, if we have another value function 

( )2 65 2 65 65 64;, ,0,
k

V W Y I  in another comparable case where 2 65W  is unknown variable, 

then we can calculate 2 65W  such that 

 

 ( ) ( )2 65 2 65 65 64; 1 65 1 65 65 64;, ,0, , ,0,
k k

V W Y I V W Y I=  (3.66) 

 

Thus, we get the amount of wealth in the second case such that the expected 

discounted utility is the same in both cases. Then we compare 1 65W  and 2 65W , and we 

can conclude which one of two cases is more favourable. If 1 65 2 65W W>  then the 

pensioner in the second case can derive the same utility as the pensioner in the first 

case but with the lower value of wealth. Then we can say that the second case is more 

favourable for the pensioner. Again, we determine in money terms how much one 

case is more favourable than the other. If the opposite is true, i.e. if 1 65 2 65W W< , then 

the first market is more favourable for the pensioner. If 1 65 2 65W W= , then the pensioner 

is indifferent between the two cases in terms of expected discounted utility derived 

from future consumption and bequest. 

 

The value at Risk and Conditional Value at Risk from random discounted utility 

derived from future consumption and bequest, VaRα  and CVaRα , are measures of the 

pensioner’s left tail risk. Now, we consider the discounted utility from future 

consumption and bequest as a random variable and investigate its characteristics. In 

order not to create confusion with the value function, we introduce a new random 

variable ( )65 65 64;, ,0,
k

D W Y I�  such that 
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for 1,..,
I

k n= , 65 0W ≥  and 65 0Y ≥ , 65 0NA
d = , 65;kI  in the domain of values of the 

inflation rate, and where 
t

C�  and 1t
W +
� , for 65 99t≤ ≤ , are random variables, resulting 

from the process (3.26)–(3.34). Again, 65C�  is a control variable but we keep the 

notation as if it is a random variable to get a compact form of equation (3.67). We 

cannot find PDF  or CDF  of the random variable ( )65 65 64;, ,0,
k

D W Y I�  analytically, 

but we can make a number of random realisations of this random variable and use this 

to calculate VaRα  and CVaRα . One property that we expect to be satisfied in all 

examples when we calculate the right hand side of (3.67) numerically comes from the 

very first definition of the value function and ( )65 65 64;, ,0,
k

D W Y I�  and it is  

 

( ) ( )65 65 65 64; 65 65 64;, ,0, , ,0,
k k

V W Y I E D W Y I ≈  
� . 

This is the result that we use in Section 3.3.7. 

  

Once we have a random variable ( )65 65 64;, ,0,
k

D W Y I�  in a numeric form, we can use it 

to calculate the approximate values of VaRα  and CVaRα  which will give us an idea of 

the pensioner’s left tail risk of discounted utility from future consumption and 

bequest. We define this measure more precisely in Section 3.4.7 and investigate its 

use. 

 

3.4.5 Application of CEC and REW Measures 

 

In this section, we investigate the relations amongst the results from CEC  and REW  

measures for different cases and for different parameter setup. The parameters which 

we change here are the RRA coefficient γ  and a bequest motive coefficient 
t

b . In 

order to focus our investigation on the differences in the results in different cases, we 

assume in this section that inflation is constant and equal to 4%. Further investigation 

of the effects of the stochastic inflation will be presented in Section 3.4.6. 

 

Before presenting the results using CEC  and REW  measures, we show two 

examples of mean consumption and mean wealth paths. In Figures 3.12 and 3.13, we 

show mean pension wealth and mean consumption development during the retirement 

for the pensioner who optimally consumes, allocates assets and annuitises in Cases 

3.1–3.6. The mean is calculated from the sample of 2,000 simulated pension wealth 

and consumption paths. We assume 9γ = −  and 0
t

b = , pension wealth at age 65 is 

200,000, inflation is constant and equal to 4%, and other parameters are as stated in 

Section 3.4.1. 
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Figure 3.12 Mean pension wealth development in the retirement period in Cases 3.1–

 3.6, for 9γ = −  and 0
t

b =  

 

Figure 3.13 Mean optimal consumption development in the retirement in Cases 3.1–

 3.6, for 9γ = −  and 0
t

b =  

 

Figures 3.12 and 3.13 give an idea of very different mean wealth and mean 

consumption paths in Cases 3.1–3.6. Then the CEC  and REW  are measures which 

summarise into a single number the complexity of these future developments. We can 

see that both mean pension wealth and mean consumption paths are very different 

from case to case.  
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In Case 3.2, where optimal nominal annuitisation is allowed at age 65 only and no real 

annuities are allowed, it is optimal to annuitise almost all pension wealth (more than 

97% of the available pension wealth). However, some of the pension wealth is saved 

again afterwards, which means that the pensioner does not spend all his income from 

social security and nominal annuities during retirement, but saves one part in the early 

pension years and then consumes it afterwards. The pensioner in this example uses his 

only opportunity to purchase annuity, or in the other words he uses the only 

opportunity to benefit from the survival credits. Apart from the survival credits the 

pensioner protects himself from the decreasing income in real terms during 

retirement.. As he has access to annuities at age 65 only, he converts almost all his 

pension wealth into nominal annuities at that age. This is interesting result because the 

pensioner optimally purchases more annuities than he needs for the consumption, and 

actually uses annuity as a risk free investment for saving and not only as an 

instrument for providing income in retirement. Also, income from nominal annuity is 

beneficial as risk free investment in early years of retirement because income from 

nominal annuities is increased by inflation rate in the early years compared to the risk 

free investment. We emphasise here that increase in pension wealth is not in a 

contradiction with the assumption, stated in Section 3.1.2, that the pensioner never 

annuitises any part of his income. The pension wealth can increase if it is optimal for 

the pensioner not to consume all his income in earlier years, but annuities are bought 

from the available pension wealth at the beginning of the year only. An increase in the 

pension wealth can also happen if the return on investment is significantly better than 

expected. However, in all our examples where purchasing annuities is allowed 

wherever during retirement, the mean consumption will always be higher than the 

mean income. Increase in the mean pension wealth happens only in the cases where 

no annuities are allowed after retirement such as in the Case 3.2 in Figure 3.13. 

 

The mean wealth and optimal consumption in Cases 3.4, 3.5 and 3.6 are almost the 

same. It means that whichever option the pensioner chooses amongst these three, he 

would have very similar mean pension wealth and mean optimal consumption paths. 

We also see that the Case 3.1 is the worst one in terms of consumption. It provides a 

lower consumption than any other case at all ages. 

 

Figures 3.14 and 3.15 show the same results as Figures 3.12 and 3.13 but for 1γ = −  

and 1
t

b = . 
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Figure 3.14. Mean pension wealth development in the retirement in Cases 3.1–3.6, 

 for 1γ = −  and 1
t

b =  

 

Figure 3.15 Mean optimal consumption development in the retirement in Cases 3.1–

 3.6, for 1γ = −  and 1
t

b =  

 

Comparing Figures 3.12 and 3.13 and Figures 3.14 and 3.15, we observe less 

differences of the mean pension wealth and mean optimal consumption paths in the 

latter two. Regarding mean pension wealth in Figure 3.14, we observe two groups of 

the patterns of mean pension wealth developments. In the first group are the mean 

pension wealth paths for Cases 3.4, 3.5 and 3.6, and in the second one are the mean 
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pension wealth paths for Cases 3.1, 3.2 and 3.3. We observe the similar patterns in 

Figure 3.15, apart from mean optimal consumption path in the later years of 

retirement when income decreases due to the influence of the inflation. 

 

Table 3.7 shows the CEC  measure for different bequest and RRA coefficients. All 

CEC  values are calculated at age 65. 

 

In Table 3.8, we compare the results for CEC  more directly, by considering the 

change relative to the no annuity case, Case 3.1. Thus, Table 3.8 shows the percentage 

changes calculated using the formula 

 
( ) ( )

Case 3.j Case 3.1

( )

Case 3.1

row i row i

CEC CEC

row i

CEC

C C

C

−
 

 

for 1 6i≤ ≤  and 2 6j≤ ≤ . 

 

 

Bequest and 

RRA 

coefficients 

No annuity 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Optimal RA 

and NA at 65 

and 

afterwards 

Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 Case 3.6 

1 
0

t
b =  

1γ = −  
37,597 37,627 37,749 38,098 38,120 38,121 

2 
0

t
b =  

4γ = −  
35,706 36,777 37,192 37,261 37,383 37,383 

3 
0

t
b =  

9γ = −  
33,981 36,360 37,003 36,909 37,098 37,100 

4 
1

t
b =  

1γ = −  
35,976 35,976 35,980 36,128 36,139 36,144 

5 
1

t
b =  

4γ = −  
34,956 35,818 36,016 36,078 36,141 36,142 

6 
1

t
b =  

9γ = −  
33,355 35,396 35,693 35,727 35,780 35,782 

Table 3.7 CEC  measure in amounts – Values in the cell show CEC  measure for 

 different cases and different pensioner’s preferences towards risk and 

 bequest. Assumed interest rate during the year prior to retirement is 

 2.00%. Initial pension wealth is 200,000 money units. 
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Bequest and 

RRA 

coefficients 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Optimal RA 

and NA at 65 

and 

afterwards 

Case 3.2 Case 3.3 Case 3.4 Case 3.5 Case 3.6 

1 
0

t
b =  

1γ = −  
0.08% 0.41% 1.33% 1.39% 1.39% 

2 
0

t
b =  

4γ = −  
3.00% 4.16% 4.36% 4.70% 4.70% 

3 
0

t
b =  

9γ = −  
7.00% 8.89% 8.62% 9.17% 9.18% 

4 
1

t
b =  

1γ = −  
0.00% 0.01% 0.42% 0.45% 0.47% 

5 
1

t
b =  

4γ = −  
2.47% 3.03% 3.21% 3.39% 3.40% 

6 
1

t
b =  

9γ = −  
6.12% 7.01% 7.11% 7.27% 7.28% 

Table 3.8 CEC  measure in percentages – The values in cells show percentage 

 difference between the Case in the header of the column and Case 3.1, 

 for the values of CEC  measure in amounts given in Table 3.7. 

 

Table 3.9 shows the REW  measures for one set of parameters such that the pension 

wealth values in a particular row give the pensioner the same expected discounted 

utility derived from future consumption. Benchmark wealth is in Case 3.1 and it is 

200,000. Again, all the calculations assume that the pensioner’s age is 65. 

 

Similarly to the case for CEC  measure, we can compare the REW  measure with 

Case 3.1. Table 3.10 shows the percentage changes calculated according to the 

following formula 

 
( ) ( )

Case 3.1 65 Case 3.j 65

( )

Case 3.1 65

row i row i

row i

W W

W

−
 

 

For 1 6i≤ ≤  and 2 6j≤ ≤ . This is the same formulae as for CEC  measure but with a 

negative sign in order to get positive percentages. 
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Bequest and 

RRA 

coefficients 

No annuity 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Optimal RA 

and NA at 65 

and 

afterwards 

Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 Case 3.6 

1 
0

t
b =  

1γ = −  
200,000 199,551 197,773 192,877 192,586 192,576 

2 
0

t
b =  

4γ = −  
200,000 183,438 178,007 176,767 175,311 175,303 

3 
0

t
b =  

9γ = −  
200,000 162,277 155,052 155,826 153,756 153,737 

4 
1

t
b =  

1γ = −  
200,000 200,000 199,934 197,729 197,562 197,498 

5 
1

t
b =  

4γ = −  
200,000 186,460 183,798 182,744 181,942 181,928 

6 
1

t
b =  

9γ = −  
200,000 167,101 163,941 163,196 162,704 162,672 

Table 3.9 REW  measure in amounts – Values in the cell show wealth needed in 

 Case shown in the column to obtain the same utility as 200,000 in Case 

 3.1. 

 

 

Bequest and 

RRA 

coefficients 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Optimal RA 

and NA at 65 

and 

afterwards 

Case 3.2 Case 3.3 Case 3.4 Case 3.5 Case 3.6 

1 
0

t
b =  

1γ = −  
0.22% 1.11% 3.56% 3.71% 3.71% 

2 
0

t
b =  

4γ = −  
8.28% 11.00% 11.62% 12.34% 12.35% 

3 
0

t
b =  

9γ = −  
18.86% 22.47% 22.09% 23.12% 23.13% 

4 
1

t
b =  

1γ = −  
0.00% 0.03% 1.14% 1.22% 1.25% 

5 
1

t
b =  

4γ = −  
6.77% 8.10% 8.63% 9.03% 9.04% 

6 
1

t
b =  

9γ = −  
16.45% 18.03% 18.40% 18.65% 18.66% 

Table 3.10 REW  measure in percentages – Values in the cells show percentage 

 difference between Case 3.1 and the Case in the header of the column, 

 for the values in the Cases given in Table 3.9. 
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In Tables 3.7–3.10 we clearly see the importance of using annuities. Each case with 

annuities is more favourable in terms of both the CEC  and REW  measure. 

 

If we compare Tables 3.8 and 3.10, we find that the ratio of the values in the cells in 

Table 3.10 and the value in the relevant cells in Table 3.8 is between 2.5 and 2.8. So, 

we find that for a given pensioner’s preferences, both CEC  and REW  measures give 

similar results in terms of ratios between any two values in a single row in Table 3.8, 

and the ratio between the values in the relevant cells in Table 3.10. In percentage 

terms, the values obtained using REW  measure are higher than the relevant values 

obtained using CEC  measure. The results of CEC  and REW  measures in 

percentages give us relative gains and losses for the pensioner due to the introduction 

of a certain class of annuities. However as we noted earlier, CEC  measure includes 

the utility from consumption and does not include the utility from a bequest. CEC  

measure does not give us the appropriate result in the cases with a bequest motive. 

Thus, one should observe Tables 3.9 and 3.10 when investigating rows 4–6. 

 

Depending on the pensioner’s preferences, the importance of access to annuities 

varies significantly. The biggest difference is between rows 3 and 4. We can say that 

these two parameter combinations are the two most extreme investigated as all of the 

other results are somewhere between these results. It is interesting to see from Figures 

3.13 and 3.15 that all of the mean optimal consumption paths for 9γ = −  and 0
t

b =  

apart from Case 1 are almost the same, and for 1γ = −  and 1
t

b =  almost all are the 

same up to about age 80. However, we see in Tables 3.7–3.10 that the results lead to 

much larger differences in terms of both CEC  and REW  measures for 9γ = −  and 

0
t

b =  than for 1γ = −  and 1
t

b = . For 9γ = −  and 0
t

b = , it is optimal to annuitise 

more than 97% of pension wealth in Case 3.2, about 84% in Case 3.3, and in Cases 

3.4, 3.5 and 3.6 mean optimal annuitisation is about 65% at age 65 and then about 

7%–15% afterwards. For 1γ = −  and 1
t

b = , it is optimal not to annuitise at all in Case 

3.2, to annuitise about 4% in Case 3.3, and in Cases 3.4, 3.5 and 3.6 it is optimal to 

start annuitisation at age 70 and to annuitise mostly 5% afterwards. Due to the lower 

differences amongst cases regarding optimal annuitisation for 1γ = −  and 1
t

b =  than 

for 9γ = −  and 0
t

b = , we observe the lower differences in the mean optimal 

consumption paths and consequently the lower differences in CEC  and REW  

measures. 

 

Case 3.4 is always more advantageous than Case 3.2 because there are weaker 

constraints on the annuitisation in Case 3.4 than in Case 3.2. Similarly Case 3.5 is 

always more advantageous than Case 3.3. In Case 3.6, the pensioner has no 
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constraints on the annuitisation strategy and obviously, this is the most favourable 

case for the pensioner. The results in Tables 3.8 and 3.10 confirm this as we observe 

that for the lower constraints on the annuitisation the higher are the values of CEC  

and REW  measures. 

 

From Tables 3.7–3.10, we can say that generally Cases 3.4–3.6 result in similar values 

of CEC  and REW  measures. From detailed results not presented here, we also 

observe that the pensioners with different preferences will behave similarly in these 

cases regarding mean optimal asset allocation. Also, if we observe the sum of the 

mean optimal nominal and real annuitisation in Case 3.6, the mean optimal nominal 

annuitisation in Case 3.4, and the mean optimal real annuitisation in Case 3.5, then we 

find a similar optimal annuitisation strategy. 

 

In terms of both CEC  and REW  measures, Case 3.6 and Case 3.5 are the best cases 

for the pensioner. For 1γ = −  and 1
t

b = , the pensioner purchases real annuities only 

and is indifferent between Cases 3.5 and 3.6. For the other combinations of the 

parameters γ  and 
t

b , the losses of Case 3.5 compared to Case 3.6 are almost 

negligible. In almost all of our examples, the pensioner in Case 3.6 optimally 

purchases significantly more real annuities than the nominal ones and real annuities 

are optimally bought earlier in the retirement than the nominal ones. These are the 

reason that the differences between Cases 3.5 and 3.6 are so small. 

 

Case 3.4 is always inferior compared to Cases 3.5. We find the largest differences for 

9γ = −  and 0
t

b =  where the losses are about 0.55% according to the CEC  measure 

and 1.03% according to the REW  measure. With the introduction of the bequest 

motive the losses decrease. Mean optimal consumption in Cases 3.4 and 3.5 seems to 

be very similar in the early years of retirement. However, we observe that mean 

optimal consumption in Case 3.4 decreases below the values of mean optimal 

consumption in Case 3.5 in the later years of the retirement due to the effects of 

inflation on the income from nominal annuities. The more income is received in 

nominal terms the stronger is the effect of the erosion of the income in real terms, and 

consequently optimal consumption decreases in the later years of retirement due to 

this effect. Thus, if the pensioner in Case 3.4 optimally purchases more nominal 

annuities and if he purchases them earlier in retirement then his income will decrease 

more in real terms, and the difference between Case 3.4 and Case 3.5 will be larger in 

terms of CEC  and REW  measures. 
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As we have already noted Cases 3.3 is inferior compared to Case 3.5 due to the 

stronger constraints in Case 3.3. Optimal asset allocation and annuitisation strategies 

differ significantly. The common conclusions for any pensioner’s preferences 

investigated are the following. The pensioner purchases more annuities in Case 3.3 

than in Case 3.5 because he uses the only opportunity to purchase annuities at age 65. 

As more annuitisation is done at age 65, the pensioner has a lower pension wealth 

available for investment in retirement in Case 3.3 than in Case 3.5. Consequently, 

because annuities are a kind of riskless investment, the pensioner invests the higher 

proportion of the available pension wealth in equities in Case 3.3 than in Case 3.5. 

However, the optimal asset allocation and annuitisation strategy in Case 3.3 provides 

the pensioner with a lower gains than in Case 3.5 losses in terms of CEC  and REW  

measures in all of the examples we investigated. The gains in Case 3.5 compared to 

Case 3.3 are higher if the pensioner has no bequest motive and if the pensioner is less 

risk averse. For example, the pensioner in Case 3.3 and with preferences 1γ = −  and 

0
t

b =  optimally annuitises about 31% of his pension wealth at age 65, and in Case 

3.5 he optimally starts annuitisation at age 69 and optimally annuitises up to 40% of 

his available pension wealth in a single year during the rest of the retirement. The 

difference between Case 3.3 and 3.5 for this pensioner in terms of CEC  measure is 

2.6%. The pensioner in Case 3.3 and with preferences 1γ = −  and 1
t

b =  optimally 

annuities about 4% of his pension wealth at age 65, and in Case 3.5 he optimally starts 

annuitisation at age 70 and optimally annuitises up to 6% of available pension wealth 

in a single year during the rest of the retirement. The difference between Case 3.3 and 

3.5 for this pensioner in terms of CEC  measure is 1.19%. If the pensioner in Case 3.3 

has the preferences 9γ = −  and 0
t

b =  he optimally annuitises about 84% of his 

pension wealth at age 65, and in Case 3.5 he optimally annuitises at age 65 about 65% 

and much lower percentages of his available pension wealth afterwards. The 

difference between Case 3.3 and 3.5 are now 0.65%. We conclude that if annuitisation 

is less attractive for the pensioner, depending on his risk and bequest preferences, then 

the differences in terms of CEC  and REW  measures are larger. 

 

In Cases 3.3 and 3.5 the pensioner is always better off than in Cases 3.2 and 3.4 

respectively, and we can say that real annuities provide gains in terms of CEC  and 

REW  measures compared to nominal annuities. However, there is no simple 

conclusion if we compare Case 3.3 and Case 3.4. In the third row in Tables 3.8 and 

3.10, where the pensioner has preferences 9γ = −  and 0
t

b = , Case 3.3 is more 

preferable than Case 3.4. It means that the availability of optimal real annuities at age 

65 only is more favourable for the pensioner than optimal nominal annuities at any 

age for this choice of γ  and 
t

b . However, for all other pensioner’s preferences, Case 
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3.4 is more favourable than Case 3.3. The pensioner with no bequest motive, for 

9γ = −  gains 0.38% in terms of REW  measure in Case 3.3 compared to Case 3.4, for 

4γ = −  he loses 0.62%, and for 1γ = −  he loses 2.6% in Case 3.3 compared to Case 

3.4. If the pensioner has the bequest motive, he is always better off in Case 3.4 than in 

Case 3.3 and the range of the gains in terms of REW  measure is from 0.37% for 

9γ = −  to 1.11% for 1γ = − . Thus, the more risk averse the pensioner is the lower are 

the gains in Case 3.4 compared to Case 3.3 in terms of REW  measure, and if no 

bequest motive is present, the more risk averse pensioner experiences even lower 

gains in Case 3.4 compared to Case 3.3. 

 

When comparing Cases 3.2 and 3.3, we see in Tables 3.8 and 3.10 that Case 3.3 is 

always more favourable than Case 3.2 in terms of CEC  and REW  measures. The 

less risk averse pensioner optimally converts a larger part of the pension wealth into 

annuities in Case 3.3 than in Case 3.2, while the more risk averse pensioner optimally 

converts smaller part of the pension wealth into annuities in Case 3.3 than in Case 3.2. 

It the pensioner has no bequest motive and if we observe the values of RRA 

coefficient in the range from –1 to –9, then the optimal nominal annuitisation in Case 

3.2 ranges from 9% to 97%, while in Case 3.3 the range of optimal real annuitisation 

is from 31% to 84%. It the pensioner has the bequest motive, then optimal nominal 

annuitisation in Case 3.2 ranges from 0% to 80 %, while in Case 3.3 the range of 

optimal real annuitisation is from 4% to 69%. At the same time, we observe the larger 

differences in terms of CEC  and REW  measures for the less risk averse pensioner. 

This again shows that the right choice of the optimal asset allocation and optimal 

annuitisation, together with optimal consumption is crucially important for attaining 

the best results in terms of CEC  and REW  measures. We conclude here that the 

gains in Case 3.3 compared to Case 3.2 decreases with a decrease of the pensioner’s 

risk aversion and decreases with the introduction of the bequest motive. 

 

Case 3.1 is inferior to any other case, apart for the value of parameters 1γ = −  and 

1
t

b = . The availability of any kind of annuity investigated in this thesis is always 

beneficial to the pensioner. For 9γ = −  and 0
t

b = , the pensioner gains 23.13% in 

terms of REW  measures in Case 3.6 compared to Case 3.1. For 1γ = −  and 0
t

b = , he 

gains 3.71%, for 1γ = −  and 1
t

b = , he gains 1.25%. The more risk averse the 

pensioner is, the larger are the gains in terms of CEC  and REW  measures in Case 

3.6 compared to Case 3.1. The pensioner with the bequest motive obtains the lower 

gains compared to the pensioner with the same RRA coefficient and with no bequest 

motive. 
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3.4.6 Expected Discounted Utility and Stochastic Inflation 

 

In this section, we investigate the effects of stochastic inflation on the value function 

and on CEC  and REW  measures. Random inflation will affect Cases 3.2, 3.4 and 

3.6 because inflation influences the demand for nominal annuities and income from 

nominal annuities only. We noted in the previous section that in Case 3.6 the majority 

of the annuities bought are real annuities. Small differences in the results in Case 3.5 

and 3.6 show that nominal annuities do not have a significant influence in Case 3.6. 

As we generally do not find significant change of the optimal asset allocation and 

optimal annuitisation strategies with the introduction of the random instead of 

constant inflation, we will focus our investigation in this section on Cases 3.2 and 3.4 

only and compare them with Cases 3.1, 3.3 and 3.5. 

 

As we note in Section 3.4.2.8, the lower/higher value of inflation in the year prior to 

the nominal annuitisation the higher/lower is the nominal annuity rate. It is then 

followed by a lower/higher income from nominal annuity and slower/faster decrease 

of this income in real terms due to (on average) lower/higher inflation in the following 

years. 

 

We find that in all our investigated examples, the results in terms of the value function 

are changing just slightly when we allow inflation to be random. 

 

In order to give an idea of how the expected discounted utility changes with the 

change of the value of inflation in the year prior to retirement, we present in Table 

3.11 the values of the expected discounted utility for different cases and for chosen 

possible states of inflation in the year prior to retirement. We also present the values 

of the expected discounted utility with the assumption of the constant inflation. In 

Table 3.11, we show the results for 9γ = −  and 0
t

b = , initial pension wealth of 

200,000 money units and other parameters as defined in Section 3.4.1. 

 

In Table 3.11, we choose five out of 15 possible states of the inflation rate in the year 

preceding retirement. The first and the last values of the inflation are the most extreme 

allowed values that can be attained with the lowest probability. The second and the 

fourth values of inflation are the fifth and eleventh possible values when inflation 

states are ordered from the lowest to the highest value and these values of inflation 

can be attained with reasonably high probability. The third one is the mean value of 

the inflation. 
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Inflation in 

the year prior 

to retirement 

No annuity 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 

Random Inflation 

1 0.05% –55,522.87 –30,442.34 –25,789.68 –26,549.71 –25,200.31 

2 1.72% –55,522.87 –30,444.07 –25,789.68 –26,550.19 –25,200.31 

3 4.00% –55,522.87 –30,447.12 –25,789.68 –26,551.05 –25,200.31 

4 6.28% –55,522.87 –30,451.23 –25,789.68 –26,552.27 –25,200.31 

5 7.95% –55,522.87 –30,455.97 –25,789.68 –26,553.82 –25,200.31 

Constant Inflation 

6 4.00% –55,522.87 –30,197.95 –25,789.68 –26,385.99 –25,200.31 

Table 3.11 Expected discounted utility – Values in the cells show expected 

 discounted utility at age 65 in different cases, for 9γ = −  and 0
t

b = , 

 initial pension wealth 65 200.000W = , last salary income 65 33.321Y =  

 and for different values of the inflation rate in the year preceding 

 retirement. 

 

As we expect, random inflation affects Cases 3.2 and 3.4 only. The effect of the 

random inflation has a decreasing effect on the expected discounted utility in Cases 

3.2 and 3.4 for all presented values of inflation. In Case 3.2, we find the decrease of 

about 250 units of utility, and in Case 3.4 the decrease of about 166 utility units. 

Comparing expected discounted utility for random inflation in Case 3.2, we find the 

differences between expected discounted utility of only 13 utility units. In Case 3.4, 

these differences are less than 5 utility units. Expected discounted utility with a 

stochastic inflation is always lower than with a constant inflation. Thus, we find that 

stochastic inflation results in the loss of utility units compared with the results for 

constant inflation. Changing the value of the inflation rate in the year prior to the 

retirement affects expected discounted utility less than the introduction of the 

stochastic inflation instead of the constant one. However, we find that increasing 

inflation rate results in increasing expected discounted utility in both Cases 3.2 and 

3.4. We can see from Table 3.11 that the pensioner in Cases 3.2 and 3.4 will attain a 

lower expected discounted utility in the presence of the stochastic inflation than in a 

case where inflation is constant, and also the degree of losses is not significantly 

dependent on the value of the inflation rate in the year prior to retirement. 

 

In Table 3.12, we present expected discounted utility values from Table 3.11 in terms 

of the REW  measure. 
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Inflation in 

the year prior 

to retirement 

No annuity 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 

Random Inflation 

1 0.05% 200,000 162,562 155,052 155,953 153,756 

2 1.72% 200,000 162,583 155,052 155,957 153,756 

3 4.00% 200,000 162,599 155,052 155,964 153,756 

4 6.28% 200,000 162,591 155,052 155,971 153,756 

5 7.95% 200,000 162,575 155,052 155,976 153,756 

Constant Inflation 

6 4.00% 200,000 162,277 155,052 155,826 153,756 

Table 3.12 REW  measure in amounts – Values in the cells show REW  at age 65 in 

 different cases, for 9γ = −  and 0
t

b = , initial pension wealth 

 65 200.000W = , last salary income 65 33.321Y =  and for different values 

 of the inflation rate in the year preceding retirement. 

 

In Table 3.12, we see that the REW  measure shows lower values with stochastic than 

with the constant inflation in both Cases 3.2 and 3.4. When the value of the inflation 

rate before retirement changes from the lowest to the highest possible value, the 

decrease in terms of REW  measure ranges from 306 to 322 money units in Case 3.2 

when we compare stochastic versus constant inflation results. We observe that, due to 

stochastic inflation, the REW  measure in Case 3.2 firstly increases when the inflation 

rate in the year prior to retirement increases from the lowest values to the mean value 

of inflation and then decreases slightly as the value of inflation increase further. In 

Case 3.4, the values of the differences in terms of REW  measure range from 127 to 

131 money units and we observe monotone increase in terms of REW  measure as the 

value of the inflation rate in the year prior to retirement increases from the lowest to 

the highest value. 

 

In Table 3.13, we present REW  measure in percentage, using the same techniques as 

in the previous section. 
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Inflation in 

the year prior 

to retirement 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Case 3.2 Case 3.3 Case 3.4 Case 3.5 

Random Inflation 

1 0.05% 18.72% 22.47% 22.02% 23.12% 

2 1.72% 18.71% 22.47% 22.02% 23.12% 

3 4.00% 18.70% 22.47% 22.02% 23.12% 

4 6.28% 18.70% 22.47% 22.01% 23.12% 

5 7.95% 18.71% 22.47% 22.01% 23.12% 

Constant Inflation 

6 4.00% 18.86% 22.47% 22.09% 23.12% 

Table 3.13 REW  measure in percentages – Values in the cells show REW  in 

 percentages at age 65 in different cases, for 9γ = −  and 0
t

b = , initial 

 pension wealth 65 200.000W = , last salary income 65 33.321Y =  and for 

 different values of the inflation rate in the year preceding retirement. 

 

The results in Table 3.13 show that in Case 3.2, the pensioner loses 0.14–0.16 % in 

terms of REW  measure and 0.07–0.08% in Case 3.4 due to the introduction of the 

stochastic inflation. 

 

In Table 3.14 and 3.15 we present the same results as in Tables 3.12 and 3.13 but now 

for the pensioner with the bequest motive. The values of the other parameters are the 

same. 
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Inflation in 

the year prior 

to retirement 

No annuity 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 

Random Inflation 

1 0.05% 200,000 167,133 163,941 163,225 162,704 

2 1.72% 200,000 167,147 163,941 163,230 162,704 

3 4.00% 200,000 167,166 163,941 163,237 162,704 

4 6.28% 200,000 167,180 163,941 163,244 162,704 

5 7.95% 200,000 167,186 163,941 163,249 162,704 

Constant Inflation 

6 4.00% 200,000 167,101 163,941 163,196 162,704 

Table 3.14 REW  measure in amounts – Values in the cells show REW  at age 65 in 

 different cases, for 9γ = −  and 1
t

b = , initial pension wealth 

 65 200.000W = , last salary income 65 33.321Y =  and for different values 

 of the inflation rate in the year preceding retirement. 

 

 

Inflation in 

the year prior 

to retirement 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Case 3.2 Case 3.3 Case 3.4 Case 3.5 

Random Inflation 

1 0.05% 16.43% 18.03% 18.39% 18.65% 

2 1.72% 16.43% 18.03% 18.39% 18.65% 

3 4.00% 16.42% 18.03% 18.38% 18.65% 

4 6.28% 16.41% 18.03% 18.38% 18.65% 

5 7.95% 16.41% 18.03% 18.38% 18.65% 

Constant Inflation 

6 4.00% 16.45% 18.03% 18.40% 18.65% 

Table 3.15 REW  measure in percentages – Values in the cells show REW  in 

 percentages at age 65 in different cases, for 9γ = −  and 1
t

b = , initial 

 pension wealth 65 200.000W = , last salary income 65 33.321Y =  and for 

 different values of the inflation rate in the year preceding retirement. 

 

Similar to the no bequest case, in Cases 3.2 and 3.4 with the bequest motive the 

introduction of the stochastic inflation results in slightly higher values of REW  

measure in amounts compared to the examples with the constant inflation. In both 

Cases 3.2 and 3.4, we now observe increase of the values of the REW  measure as the 

inflation rate in the year preceding retirement increases from the lowest to the highest 

possible values. The range of the differences due to the introduction of stochastic 
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inflation in terms of REW  measure in amounts is from 33 to 85 in Case 3.2 and from 

29 to 53 in Case 3.4. Regarding the differences in terms of REW  measure in 

percentages, gains in Cases 3.2 and 3.4 are lower for less than 4% if inflation is 

stochastic compared to the constant inflation. 

 

The pensioner with RRA coefficient 9γ = −  will optimally annuitise the largest 

amount of his pension wealth and will annuitise earlier in retirement compared to the 

less risk averse pensioners. Stochastic inflation affects nominal annuities only, and 

due to the highest demands for annuities, the pensioner with RRA coefficient 9γ = −  

will be most affected with the stochastic inflation. However, from the results 

presented in this section, we see that the effects of the stochastic inflation compared to 

the examples with the constant inflation are not significant for this pensioner. The 

pensioners with the lower risk aversion will be even less affected with the 

introduction of the stochastic inflation. 

 

We conclude that stochastic inflation in the model compared to the constant inflation 

brings small differences in terms of expected discounted utility. The results with 

constant inflation are very similar to the ones with the stochastic inflation in terms of 

REW  measure. We observe slightly lower gains in Cases 3.2 and 3.4 when stochastic 

inflation is present than in the example with constant inflation. 

 

3.4.7 Left Tail Analysis of the Random Utility 

 

The results presented in Sections 3.4.5 and 3.4.6 are based on the value function 

which is calculated using numerical mathematics. The value function depends on the 

four state variables and it is a deterministic function. Whenever CEC  and REW  

measures have been applied in these sections, these measures were based on the 

deterministic function. We have used stochastic simulations in Sections 3.4.5 and 

3.4.6 in order to observe the mean and quantiles of the pension wealth path, optimal 

consumption path, optimal asset allocation path, optimal annuitisation path, and paths 

of the other variables that we find interesting for explaining the results of CEC  and 

REW  measures. Pension wealth path, optimal consumption path, optimal asset 

allocation path, optimal annuitisation path are all stochastic processes. In this section, 

we investigate the consequences of the worse than expected market realisation. When 

we say worse than expected, we mean on the fundamental random variables, equity 

and inflation random variables. For reasons of simplicity, we will assume that 

inflation is constant in this section and that it takes a mean value of 4%. Thus, in this 
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section we investigate the consequences of the worse than expected realisation of the 

random equity return. 

 

The value function is defined as expected value of the discounted utility derived from 

future consumption and bequest. We defined equation (3.67) as the discounted utility 

derived from the future random consumption and bequest. In contrast to the value 

function, the function ( )65 65 64;, ,0,
k

D W Y I�  defined in (3.67) is a random variable. 

 

Stochastic simulations provide us with realisations of the random paths of the pension 

wealth, optimal consumption, optimal asset allocation, and optimal annuitisation. 

Each realisation of the stochastic simulation gives one particular realisation of these 

random variables. From the pensioner’s point of view, each realisation of the 

stochastic simulation gives him one possible development of the state and control 

variables during retirement. 

 

Also, each realisation of the stochastic simulation gives one particular realisation of 

the discounted derived utility. The pensioner will be concerned about the possibility 

that he ends up with the lower than expected utility from future consumption. In order 

to investigate this risk, we analyse in this section the left tail of the random utility 

derived from future consumption and bequest. 

 

We have optimisation with respect to expected discounted utility only. The 

importance of the left tail risk is recognised in the model through the concave shape of 

the utility function. Namely, let 
t

C  be a certain amount of the consumption and let 

t
C∆  be some other value of consumption such that 0

t t
C C< ∆ < . Then, the amount of 

utility units lost is larger if the pensioner consumes 
t t

C C− ∆  than the amount of extra 

utility units gained if the pensioner consumes 
t t

C C+ ∆ . Thus, the importance of the 

left tail risk is already included in the model. 

 

The left tail risk of the lower than expected derived utility is just a consequence of the 

pensioner’s attitude to risk represented in his utility function. We employ VaRα  and 

CVaRα  measure in order to see the degree of the important pensioner’s risk of the 

lower than expected derived utility in retirement due to the worse than expected 

market conditions during his retirement. 

 

However, left tail risk is obviously very important for the pensioner and it would be of 

interest to investigate modified utility function such that less than expected 

consumption is punished even more in terms of lost utility units. In that way, we 
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would be in a position to control CVaRα  better and define a utility function balanced 

against CVaRα . The analysis in this section aims to raise the question of the possible 

maximization of the pensioner’s expected derived utility as criterion but with 

constraints on CVaRα . 

 

3.4.7.1 The Definition of VaRα  and CVaRα  measures 

 

The random variable ( )65 65 64;, ,0,
k

D W Y I�  depends on the control variable 65C� , and on 

the stochastic processes 
t

C�  for 66 99t≤ ≤  and 1t
W +
�  for 65 99t≤ ≤ . These stochastic 

processes depend on random variable 
t

r�  and stochastic process 
t

I�  for 65 99t≤ ≤ , 

random equity and inflation rates respectively. 

 

We can measure different characteristics of the random discounted utility 

( )65 65 64;, ,0,
k

D W Y I� . As we have noted, we will focus on the left tail analysis of the 

random variable ( )65 65 64;, ,0,
k

D W Y I� . In order to have understandable results, we need 

to convert discounted utility from utility units into the money units. As in Section 

3.4.5 and 3.4.6 we rely on the idea of required equivalent wealth for presenting VaRα  

and CVaRα  in money terms. 

 

As we noted earlier, ( ) ( )65 65 65 64; 65 65 64;, ,0, , ,0,
k k

V W Y I E D W Y I =  
� . Now, we define 

random variable 65W� , such that 

 

 ( ) ( )65 65 65 64; 65 65 64;, ,0, , ,0,
k k

V W Y I D W Y I=� �  (3.68) 

 

The uniqueness of random variable 65W�  comes from the fact that value function 65V  is 

a strictly increasing function in variable 65W . The existence of random variable 65W�  

should be mathematically proved, but we believe that for this thesis it is enough to say 

that for each random realisation of random variable ( )65 65 64;, ,0,
k

D W Y I� , we could find 

the realisation of random variable 65W� . 

 

The random variable 65W�  gives us the wealth that the pensioner needs such that the 

mean value of all possible random discounted utilities with initial wealth 65W�  is equal 

to the random discounted utility ( )65 65 64;, ,0,
k

D W Y I� . The cumulative distribution 

function (abbreviation CDF ) of the random variable 65W�  can be defined in the 

following way. If CDF of the random variable ( )65 65 64;, ,0,
k

D W Y I�  is given by 

 

( )( )65 65 64;, ,0,
kD

P D W Y I x≤�
� , 
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for ( ),x ∈ −∞ ∞  then CDF  of the random variable 65W�  is defined by 

 

( ) ( ) ( )( )
65

65 65 65 65 64; 65 65 64;, ,0, , ,0,
k kW D

P W y P V W Y I x such that x V y Y I≤ = ≤ =� �
� �  

 

for y  in the domain of the solutions of equation ( )65 65 64;, ,0,
k

x V y Y I= . Equation 

( )65 65 64;, ,0,
k

x V y Y I=  will have a solution in a certain interval. For values of y  

smaller than the lowest value in the interval of the solutions of equation 

( )65 65 64;, ,0,
k

x V y Y I=  we define ( )
65

65 0
W

P W y≤ =�
� , and for higher than the highest 

value in that interval we define ( )
65

65 1
W

P W y≤ =�
� . Thus, CDF  of random variable 

65W�  is fully defined. 

 

Having defined random variable 65W� , we can investigate the left tail of possible future 

random realisations of discounted utility in money terms. 

 

We now can define VaRα  and CVaRα  measures, as left tail measures of the random 

variable 65W� . Firstly, we define VaRα , as follows 

 

 { }65inf : 1VaR W P W Wα α = ∈ ≥ ≤ − 
��  (3.69) 

or 

 ( ) ( ){ }65 65 64; 65 65 64;inf : , ,0, , ,0, 1k kVaR W P D W Y I V W Y Iα α = ∈ ≥ ≤ − 
��  (3.70) 

 

for 0 1α< < . The value of VaRα  gives us the following information. For the 

pensioner with pension wealth 65W , there is an %α  probability that unfavourable 

market realisations in the future will result in a lower or same discounted utility that 

would have been obtained as expected discounted utility with the pension wealth 

VaRα . In other words, VaRα  is the %α  worst pension wealth due to less favourable 

than expected market conditions in the future, where pension wealth is measured 

using equation (3.68). 

 

In our investigation, we make 2,000 stochastic simulations of the developments from 

age 65 to age 99 of all random variables in the model. For the purpose of deeper 

investigation of the pensioner’s left–tail risk, more than 2,000 random realisations 

may be appropriate. However, the results presented here are not very dependent on the 

number of the random realisations and we believe that it is appropriate to use here the 

same realisation of the stochastic simulations that we use for the check of accuracy of 

the numerical calculations. 
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In order to calculate VaRα  from the realisations of the stochastic simulation we use 

formula (3.67). For each realisation of the stochastic simulation, we obtain optimal 

consumption and pension wealth for each age. Substituting these values in equation 

(3.67), we obtain 2,000 realisations of discounted derived utility. So, we obtain the 

sample of 2,000 random realisations of discounted derived utility ( )65 65 64;, ,0,
k

D W Y I� . 

In our analysis we investigate VaRα  for { }0.01,0.05,0.10,0.25α ∈ . We obtain the 

value of VaRα  in the following way. Firstly, we calculate 2,000 random realisations 

of the variable 65W�  using formula (3.68). Then, we order these 2,000 random 

realisations of the variable 65W�  in an increasing array. Then 0.01VaR  is the twentieth 

member of the ordered array, 0.05VaR  is the hundredth member, 0.10VaR  is the two 

hundredth member, and 0.25VaR  is the five hundredth member of the ordered array. 

 

Conditional Value at Risk is a measure of risk that has advantages over Value at Risk. 

CVaRα  is able to quantify dangers beyond VaRα , and moreover it is a coherent 

measure of risk (Rockafellar and Uryasev (2002)). We define CVaRα  in the simplest 

way. CVaRα  is defined as mean shortfall, or in a mathematical definition as 

 

 65 65CVaR Mean W W VaRα α
 = <  , (3.71) 

 

where 65W  are random realisations of random variable 65W�  that satisfy the condition 

65W VaRα< . 

 

In the same way as for VaRα , we calculate CVaRα  for { }0.01,0.05,0.10,0.25α ∈ . We 

use 2,000 random realisations of the random variable 65W�  from the ordered array 

already obtained for the calculation of VaRα . 0.01CVaR  is calculated as the mean of 

the first nineteen members of the ordered array, 0.05CVaR  is the mean of the first 

ninety nine members, 0.10CVaR  is the mean of the first one hundred ninety nine 

members, and 0.25CVaR  is the mean of the first four hundred ninety nine members of 

the ordered array. 

 

3.4.7.2 VaRα  and CVaRα  measures – Results 

 

We will present the results for 0.10α = . The results for the other values of α , not 

presented here, have different values but the pattern is the same and the same 

conclusions can be drawn. As we noted, we aim to shed light on the pensioner’s left 

tail risk and we leave a deeper analysis for future work. 
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Firstly, we present some examples of the graphs representing values of the random 

variable 65W�  on the x–axis and frequencies of this random variable on the y–axis 

where frequencies are taken from the random sample of 2,000 random realisations. 

The left vertical straight line represents 0.10CVaR , and the right one 0.10VaR . 

 

Figure 3.16 Histogram of the random sample of 2,000 random realisation of 65W�  for 

 65 200,000W = , in Cases 3.1, 3.3 and 3.6, for 0
t

b =  and 1
t

b =  and for 

 9γ = − . The left one vertical straight line represents 0.10CVaR , and the 

 right one 0.10VaR . 

 

Although the pensioner in the Case 3.1 behaves optimally in terms on maximising 

utility, he can end up with very different discounted derived utility depending on the 

random realisation of equity rates. His pension wealth at the time of retirement is 

65 200,000W =  and he expects to end up his retirement with the value of 200,000 

money units of the random variable 65W� . However, the distribution has a very wide 

range and he can end up in significantly higher or lower discounted derived utility 

than he expects. 
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In Case 3.3, we have a quite different situation. In the case with no bequest, the 

pensioner optimally annuitises about 85% of his available pension wealth and he is 

less exposed to the risk of the randomness of equity rate. The distribution on the left 

histogram in the middle row in Figure 3.16 has the lowest range of all the graphs, and 

0.10CVaR  and 0.10VaR  are within the histogram. If the pensioner has a bequest motive 

then at age 65 he optimally annuitises about 70% of the pension wealth. Due to the 

lower annuitisation, the pensioner with the bequest motive is more exposed to the risk 

of the randomness of equity rate and the histogram in the middle row on the right 

hand side in Figure 3.16 shows a wider range of the values of the random variable 

65W� . It means that the pensioner with the bequest motive has a less stable single 

outcome of the derived utility compared with the pensioner with no bequest motive. 

 

In Case 3.6, the sum of optimal real and nominal annuitisation for the pensioner 

without bequest motive at age 65 is about 65% and less than 10% afterwards, and for 

the pensioner with the bequest motive it is about 60% at age 65 and less than 5% 

afterwards. Optimally nominal annuitisation is very low for both pensioners and does 

not influence the results significantly. Again, it seems that the pensioner with no 

bequest motive has the lower left tail risk of the lower than expected realisation of the 

discounted derived utility in retirement than the pensioner with bequest motive. 

 

Comparing graphs on the left hand side of Graph 3.16, we find that the pensioner with 

no bequest motive in Case 3.1 has by far the widest range of possible outcomes, by far 

the lowest range on outcomes in Case 3.3 and the Case 3.6 is in between. The right 

hand side present the pensioner with a bequest motive and we observe that in the Case 

3.1 the possible outcomes in terms of the random variable 65W�  are very unstable, 

while in Cases 3.3 possible outcomes are slightly more concentrated around the mean 

value than in the Case 3.6. 

 

In Figure 3.17, we present more examples of the histograms of the approximate 

distributions of the random variable 65W� , but for different values of the RRA 

coefficient. Again, we include on each graph two vertical lines representing 0.10CVaR  

(left one vertical line), and 0.10VaR  (right one vertical line). Frequencies of the random 

variable 65W�  are taken from the random sample of 2,000 realisations of stochastic 

simulations. 
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Figure 3.17 Histogram of the random sample of 2,000 random realisation of 65W�  for 

 65 200,000W = , in Case 3.3, for 0
t

b =  and 1
t

b =  and for 1γ = − , and for 

 Cases 3.3 and 3.5, for 0
t

b =  and 1
t

b =  and for 4γ = − . The left one 

 vertical straight line represents 0.10CVaR , and the right one 0.10VaR . 

 

We observe in Figure 3.17 that the pensioner has very different distributions of 

discounted utility presented in terms of the distribution of random variable 65W� . We 

observe in the left hand side histogram in the middle for Case 3.3, the pensioner with 

RRA coefficient 4γ = −  and with no bequest motive has a short left tail and both 

0.10VaR  and 0.10CVaR  values are closest to the initial pension wealth of 200,000. In 

this Case, and for these values of parameters, the pensioner optimally purchases the 

largest amount of annuities, compared to any other histogram presented in Figure 

3.17. If the pensioner has the bequest motive, then he optimally purchases fewer 

annuities compared to the pensioner with no bequest motive, and he is more exposed 

to the equity rate risk. Thus, the distribution of random variable 65W�  has a wider range 

of values for the pensioner with a bequest motive. In Case 3.5, the pensioner 

optimally purchases annuities during retirement and at age 65 he optimally purchases 

less annuities compared to the pensioner in Case 3.3. So, the pensioner in Case 3.5 has 

the distribution of random variable 65W�  with a longer left tail. 
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In Table 3.16, we present the values of CVaRα  for the pensioners with different 

preferences towards risk and bequest and in different cases. We assume that each 

pensioner has pension wealth of 65 200,000W =  at age 65. The results are obtained 

from the sample of 2,000 realisations of the random variable 65W� . We emphasise that 

the results in Table 3.16 contain random errors due to the limited size of the sample. 

However, we can observe interesting relations between the values of 0.10CVaR . 

 

 

Bequest and 

RRA 

coefficients 

No annuity 

Optimal NA 

at 65, no NA 

afterwards, 

no RA 

Optimal RA 

at 65, no RA 

afterwards, 

no NA 

Optimal NA 

at 65 and 

afterwards, 

no RA 

Optimal RA 

at 65 and 

afterwards, 

no NA 

Optimal RA 

and NA at 65 

and 

afterwards 

Case 3.1 Case 3.2 Case 3.3 Case 3.4 Case 3.5 Case 3.6 

1 
0

t
b =  

1γ = −  
118,636 136,089 146,233 118,173 119,988 119,447 

2 
0

t
b =  

4γ = −  
114,256 180,511 177,946 144,957 148,005 146,200 

3 
0

t
b =  

9γ = −  
134,755 190,107 188,984 171,052 174,802 174,311 

4 
1

t
b =  

1γ = −  
113,266 112,786 117,918 114,873 112,180 111,091 

5 
1

t
b =  

4γ = −  
109,981 160,736 156,500 139,810 141,968 142,702 

6 
1

t
b =  

9γ = −  
130,983 170,454 170,993 165,202 162,503 161,929 

Table 3.16 0.10CVaR  – Values in the cells show the values of 0.10CVaR  for different 

 pensioner’s preferences towards risk and bequest and in different cases. 

 Pensioner is at age 65. Pension wealth is 200,000. The values of 

 0.10CVaR  are calculated from the sample of 2,000 random realisations. 

 

Firstly, we emphasise that all 0.10CVaR  values in Table 3.16 are calculated for the 

value of the pension wealth of 200,000. The pensioners in different cases have 

different expected discounted utility and in Table 3.9 we present the values of initial 

pension wealth that provide the same expected discounted utility for the pensioners in 

different cases. Thus, the conclusions drawn from the values in Table 3.16 cannot be 

simply compared with the conclusions drawn from Tables 3.7 – 3.10. 

 

If both REW  and 0.10CVaR  measures show better results in one case than in another, 

then we can conclude that the pensioner in the first case is better off in terms of both 

measures. We can conclude that the pensioner in the first case benefits in terms of 

expected discounted utility and we can measure this benefit in terms of REW  
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measure. At the same time, the pensioner decreases left tail risk of the lower than 

expected realisation of his discounted utility in retirement. 

 

If we compare the pensioner with no bequest motive and for the value of RRA 

coefficient 4γ = − , in Cases 3.3 and 3.1, then from Table 3.10 we observe that the 

pensioner is 11.00% better off in terms of REW  measure. Applying the optimal 

strategy such that REW  measure is maximised, the pensioner at the same time 

decreases the risk of the lower than expected discounted utility during retirement. In 

terms of 0.10CVaR  measure, the pensioner in Case 3.3 increases the mean value of the 

worst 10% realisation of discounted utility from 134,755 to 188.984. 

 

However, if the pensioner in one case is better off in terms of REW  measure and 

worse off in terms of the 0.10CVaR  measure than in another case, all we can conclude 

is that the pensioner achieved the better result in terms of the criterion that he wanted 

to maximise. According to the 0.10CVaR  measure, the pensioner is worse off in the 

first case, but it is the consequence of the pensioner’s optimal strategy. 

 

For example, the pensioner with the bequest motive and for the value of RRA 

coefficient 9γ = − , gains 0.26% in terms of REW  measure in Cases 3.6 compared to 

Case 3.3. At the same time, the mean value of 10% worst discounted utilities in terms 

of the random variable 65W�  decreases from 170,993 in Case 3.3 to 161,929 in Case 

3.6. 
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Chapter 4 

 

 

 

 

 

The Interest Rate Risk Model 

 

 

4.1 The Problem to be Solved 

 

In this chapter, we investigate the three assets model in the post–retirement period 

where annuities are available. We assume that the pensioner can invest his pension 

wealth into risk free deposit, bonds and stocks, and apart from that he can purchase 

annuities as irreversible investments. We work in a discrete time framework, where 

one time unit is one year and we assume that the member rebalances his wealth at the 

moment when his age increases for one year. 

 

4.1.1 Economic Environment 

 

We model the market consisting of four possible options for converting wealth 

available for investment. Firstly, there are three assets: risk free assets – one year 

bond, low risk asset – 
t

ϒ  year rolling bond, and high risk asset – equities. Then, as we 

investigate the post–retirement period we allow annuities to be the fourth possible 

option into which available wealth can be converted. However, one should always 

have in mind that annuities are irreversible investments, and due to irreversibility they 

differ crucially from first mentioned set of three assets. 

 

We emphasise that there is no inflation in this chapter and thus all amounts are in real 

terms. 

 

We assume that the retirement age is 65 and that the pensioner receives his last salary 

at that age. At age 66 he receives the first income from social security which 

continues at the beginning of each year of pensioner’s life until his death. We assume 
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that income from social security is constant. We also assume that the pensioner has 

certain pension wealth at the time of retirement. 

 

The pensioner draws utility from consuming part of his available assets at the 

beginning of the year. Available assets consist of pension wealth and received 

income. If a bequest motive exists then besides drawing utility from consuming the 

pensioner draws utility from bequeathing assets to heirs. We assume that the 

remaining assets are bequeathed to heirs at the end of the year in which the pensioner 

dies. 

 

At the beginning of the year, the pensioner receives income and interest, then he 

consumes part of his available assets and invests the rest into three assets and 

annuities. The investment into three assets is done at the pensioner’s discretion apart 

from no borrowing constraint. We assume that no borrowing is allowed to the 

pensioner for both assets and annuities. We will investigate different constraint on 

purchasing annuities. Sometimes it will be at the pensioner’s discretion at all age, 

sometimes at the pensioner’s discretion at certain ages and limited at some other ages, 

and sometimes it will be limited for all ages. 

 

In our model, we assume two sources of randomness: random interest rate and 

random rate on equity investment. On the other side, we have bonds and equities. Risk 

free investment is not influenced by randomness because we assume that interest rate 

changes annually. We can say that we have two sources of randomness and two assets 

depending on that randomness. 

 

We summarise the model to be investigated in this chapter and present the most 

important variables graphically. 

 

We work in the discrete time. We assume that the postretirement decumulation 

process starts at age 65t = , and finishes at age 100t = . The decumulation process 

lasts for 35 years. If a bequest motive exists, then the pensioner aged 99 will consume 

part of his assets and the rest will be invested and bequeathed when he dies during 

that year. Otherwise, he will consume everything at age 99 and nothing will be left for 

investing. In the earlier periods, the pensioner consumes part of his available assets, 

uses one part for purchasing annuities and invests the rest into three available assets. 

As we will see, the solution to the problem follows the same pattern for different 

periods. Hence, it is useful to investigate one representative period and then the 

solution to the whole problem can be derived from the solution of one representative 
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period. The graphical presentation of the most important variables in this problem is 

given as follows 

 

State (information) variables 

tW  is pension wealth, tY  is income, 1tr −  is known interest rate during previous year 

65W  66W  … tW  1tW +  … 100W  

65Y  66Y  … tY  1tY +  … 100 0Y =  

64r  65r  … 1tr −  tr  … 99r  

 

Random variables 

tr�  is random interest rate, e

t
r�  is random rate on stock investment 

65r�  66r�  … tr�  1tr +
�  … – 

65

e
r�  66

e
r�  … 

e

tr�  1

e

tr +
�  … – 

 

Control (decision) variables 

tC  is consumption, e

tα  is proportion invested into equities, 

b

tα  is proportion invested into bonds, tm  is proportion used for purchasing annuities 

65C  66C  … tC  1tC +  … –
 

65

eα  66

eα  … 
e

tα  1

e

tα +  … – 

65

bα  66

bα  … 
b

tα  1

b

tα +  … – 

65m  66m  … tm  1tm +  … –
 

 

Age during the decumulation process 

65 66 … t t+1 … 100 

 

4.1.2 The Types of the Problem to be Investigated 

 

We assume that the member annuitises part of the available pension wealth. We will 

assume that the member never annuitises any part of his income, only part of his 

pension wealth. 

 

The pensioner aims to maximise the expected discounted utility derived from 

consumption and a possible bequest by choosing the optimal consumption, asset 

allocation and annuitisation. Regarding annuitisation, we distinguish the assumptions 

for the proportions of the pension wealth 
t

m  to be annuitized. We group these 

assumptions into three groups of the types of the problem to be investigated as 

follows: 
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4.1 Annuitising 
t

m  part of pension wealth exogenously for all ages 65 99t≤ ≤ . 

Under this assumption, the pensioner firstly chooses in a predetermined way 

how much to annuitise and for a given 
t

m  he consumes and invests optimally 

the remaining part of pension wealth. The control variables are { }, ,e b

t t t
C α α , 

t
m  is determined exogenously and is suboptimal. The model can handle any 

assumption about predetermined values of 
t

m  for 65 99t≤ ≤ . We will 

investigate in more detail the results with no annuitisation which is the special 

case of exogenous annuitisation. For the no annuities assumption we will have 

0
t

m =  for 65 99t≤ ≤ . 

4.2 Annuitising 
t

m  part of pension wealth exogenously for some ages and 

endogenously for the others. In this case, the control variables are { }, ,e b

t t t
C α α  

for ages where annuities are chosen exogenously and { }, , ,e b

t t t t
C mα α  for ages 

where annuities are chosen endogenously. The model allows us to calculate 

the results for any combination of exogenous/endogenous annuitisation. All 

we need to know is for which age annuitisation is endogenous, and for which 

it is exogenous, and for exogenous annuitisation ages we need to know the 

value of 
t

m . We will thoroughly investigate the results under the assumption 

that the pensioner optimally annuitises at age 65 and no annuities are available 

afterwards. 

4.3 
t

m  is the optimally chosen proportion for all ages 65 99t≤ ≤ . In this case, the 

member maximises the value function with respect to the four control 

variables, and control variables are { }, , ,e b

t t t t
C mα α . 

 

With this definition of types of problems to be analysed, we have three groups of 

problems. When we have a particular assumption about the values of 
t

m  for ages 

when 
t

m  is exogenous we will refer to this assumption as a Case. As in Chapter 3, we 

can think of different cases as being different markets. When other parameters are 

fixed, cases are comparable and differ in the annuity offered in the market only. 

Hence, we sometimes referred to cases as markets. 

 

We will analyse in more details Case 4.1 where we will assume no annuitisation and it 

is an interesting problem of type 4.1. An interesting problem of type 4.2 to be 

analysed in more detail will be Case 4.2 where we will assume optimal annuitisation 

at age 65 only and no annuitisation afterwards. 

 

Regarding the amount to be annuitised at each age t , if exogenous annuitisation 

happens then it means that the member purchases annuities for the amount of 
t t

mW  
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and this annuitisation choice is usually suboptimal. Endogenous annuitisation happens 

if 
t t

mW  is chosen optimally from the model. 

 

As in Chapter 3, we will write { }tcv  to denote the { }tcontrol variables  at age t , such 

that we have the general notation for control variables for each 

exogenous/endogenous annuitisation assumption. As we will see later, we work with 

control variables for values in money units and with control variables for scaled down 

values suitable for calculations. In order to differentiate the two we will denote with 

{ }tCV  the control variables for values in money units and with { }tcv  the control 

variables for scaled down values. 

 

Before presenting the full model we need to define the model for the bond market 

which is the part of the interest rate risk model. 

 

4.2 Bond Market Model 

 

We model the real interest rate as an autoregressive discrete time and discrete state 

space process. The process is an approximation of Vasicek continuous time–space 

autoregressive process presented in Vasicek (1977). As the Vasicek model provides 

bond prices for an implied bond market, we can compare bond prices on the bond 

market obtained in our model with the Vasicek one. 

 

We choose Vasicek model for interest rate for developing bond prices as the simple 

one and the one which is used in the analysis of optimal asset allocation problems by 

some other authors (Boulier et al (2001)). It is a type of one factor short rate model 

where interest rate movements are driven by one source of market risk. We use it for 

modelling real interest rate. The shortcoming of Vasicek model is the positive 

probability of the negative value of interest rate. However, we will use one and ten 

years rolling bonds in the interest rate risk model. Due to mean reverting 

characteristic of the interest rate, even for the negative value of real interest rate, there 

will be a certain demand for index–linked bonds. It is possible to derive the bond 

market model using the interest rate which does not allow the negative values of the 

interest rate, for example Cox–Ingersoll–Ross model (Cox et al (1985)). Although 

CIR model may be more appropriate, and the one and ten years rolling bonds market 

model can be developed using CIR model, it would be also computationally more 

demanding. 

 



 150

In our model we assume that the discrete time interval is one year. We will show 

below the technique to transform the continuous time Vasicek process into a discrete 

time one. 

 

We assume that real interest rate can take finite number of values in a reasonable 

range. As the Vasicek process transformed into discrete time is still a continuous state 

space process we use the technique from Tauchen and Hussey (1991) and as a result 

we get a process with discrete time–state space. 

 

Once we obtain a discrete time–state process for real interest rate we can model bond 

prices as the expected present value of future incomes from the bond. As we assume a 

zero coupon bond, it means that the bond price is expected present value of one 

money unit that will be due in T  years time, where T  years is the bond duration. 

 

Following the Vasicek approach, we can also introduce a market price of risk. As a 

final result we get the approximation of the bond market. 

 

4.2.1 The Main Parts of the Vasicek Model 

 

The Vasicek model is used for modelling interest rate where time and state spaces are 

continuous. It is a continuous time AR (1) process given by 

 

 ˆ ˆ
ˆ ˆ( ) ( )
t t r r

dr a br dt dW tσ= − −� �  (4.1) 

 

where 0̂r  is the initial value of the interest rate, a , b  and 
r̂

σ  are non–negative 

constants and ˆ ( )
r

W t�  is Brownian motion. We use notation 
t̂

r  for interest rate from 

Vasicek model in order to avoid the confusion with interest rate afterwards in this 

thesis. As throughout the whole thesis, ∼  above variable denotes it is a random 

variable.  

 

We know that 
t̂

r�  is a normally distributed random variable and that the conditional 

expectation and variance of the process given current level 0̂r  are 

 

 0
ˆ ˆ bT

T

a a
E r r e

b b

−   = + −    
�  (4.2) 

 ( )
2

2ˆˆ 1
2

bTr
T

Var r e
b

σ −  = − 
�  (4.3) 

for 0T ≥ . 
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The stochastic differential equation of the bond investments is given by 

 

 ( )( ) ( ) ( )ˆ ˆ

ˆ( , )
ˆ ˆ ˆ, ,

ˆ( , )

t
t B t r B t r

t

dB T t r
r T t r dt T t r dW t

B T t r
σ λ σ

−
= + − + −

−

�
�  (4.4) 

 

where t  is the time such that 0 t T≤ ≤ , T  is bond duration, 1),( =TTB , and 

 

ˆ

ˆ ˆ( , )

ˆ( , )

B t t
r

B t

T t r r

T t r

µ
λ

σ

− −
=

−
. 

 

r̂
λ  is referred to as bond's market price of risk and is constant. 

 

The function ˆ( , )
B t

T t rσ − is given by 

 

 
( )

ˆ

1
ˆ( , )

b T t

B t r

e
T t r

b
σ σ

− −−
− =  (4.5) 

 

for 0T t− ≥ .  

 

If we work with zero–coupon bonds and assume that we are interested in current 

value of the bonds maturing at time T  and with current interest rate is 0̂r , then 0t =  

and the price of the zero–coupon bond is given by 

 

 

( )

( )

ˆ ˆ

0

2 2
2

ˆ ˆ

0 3

1
ˆ,

1 1 1
ˆ 1

2 4

bT

r r

bT bT
bTr r

e
B T r Exp T

b b

e a e
Exp T r e

b b a b a

σ λ

σ σ

−

− −
−

  −
= − − ⋅  

  

   − − 
− − − − −           

 (4.6) 

 

4.2.2 Discrete Time Space Approximation of the Vasicek Model 

 

In order to approximate Vasicek model in discrete time and continuous space we 

observe the process 

 

 ( ) ( )
t d d t dR R

R a b R t tσ ε∆ = − ∆ −� �  (4.7) 

 

where ( ) (0,1)
R

t Nε� ∼  are independent random variables with normal distribution, for 

t ∈� . In order to have similar results from the continuous time and discrete time 

process we fit the parameters 
d

a , 
d

b  and 
dR

σ  into the Vasicek model (4.1). 
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Let us derive formula for 
T

R  using equation (4.7). We have 

 

1 0 0 (1)
d d dR R

R R a b R σ ε− = − −� �  and 

1 0(1 ) (1)
d d dR R

R a b R σ ε= + − −� � . 

Then 

( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 1

0

2 1 2
2 2

0

0 1

1 2

1 1 1 2

1 1 1

d d dR R

d d d d dR R dR R

k k

d d d dR d R

k k

R a b R

a b a b R

a b b R b k

σ ε

σ ε σ ε

σ ε
−

−

= =

= + − −

= + − + − − −

= − + − − −∑ ∑

� � �

� �

�

 

 

Continuing the similar reasoning gives us the relation 

 

 ( ) ( ) ( ) ( )
1

0

0 1

1 1 1
T T

k T T k

T d d d dR d R

k k

R a b b R b kσ ε
−

−

= =

= − + − − −∑ ∑� � , for T∀ ∈�  (4.8) 

Knowing that the sum of normally distributed random variables is again normally 

distributed random variable we have that 

 

( ) ( ) ( ) ( ) ( )22

1 1

1 0, 1
T T

T k T k

r dr d r dr d

k k

T b k N bε σ ε σ
− −

= =

 
= − − 

 
∑ ∑� � ∼ , or 

( ) ( )
1

22

0

0, 1
T

k

R dR d

k

Z T N bσ
−

=

 
− 

 
∑�

∼  

 

Now, we can easily derive 

 

 ( )0 1
Td d

T d

d d

a a
E R R b

b b

 
  = + − −  

 

�  (4.9) 

and 

 
( )
( )

2

2
1 1

2

T

d

T dR

d d

b
Var R

b b
σ

− −
  =  −
�  (4.10) 

 

Let us determine the coefficients 
d

a , 
d

b  and 
dR

σ  such that equations (4.2) and (4.9), 

and (4.3) and (4.10) respectively, gives the same values. From the first two equations, 

by equating the expectations, we have that 

 

 1 b

d
b e

−= −  (4.11) 

and 

 
1 b

d

e
a a

b

−−
=  (4.12) 

  

Now, from the second pair of equations, by equating variances, we get 
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2

ˆ

1

2

b

dR r

e

b
σ σ

−−
=  (4.13) 

 

The discrete time version of the Vasicek process given in (4.7) is now fully defined 

and the appropriate parameter values are given in (4.11)–(4.13). We have the discrete 

time and continuous state AR (1) process such that 
t

R�  is normally distributed and the 

conditional expectation and variation of this random variable is the same as the 

conditional expectation and variance for the Vasicek process given in (4.1). Thus, we 

here defined the discrete time and continuous state space approximation of the 

Vasicek process (4.1). 

 

Tauchen and Hussey (1991) gives the technique for approximating continuous state 

discrete time space AR(1) process with a discrete state and time spaces process. We 

apply this technique to the process (4.7). 

 

In order to deploy the technique from Tauchen and Hussey (1991), we need to choose 

the density function ( )yω , and the number N  denoting the number of Quadrature 

points. Let the density function ( )yω  be the density function of the random variable 

with the distribution 

 

 ,d
dR

d

a
N

b
σ

 
 
 

. (4.14) 

 

This choice is based on the proposal in Tauchen and Hussey (1991), where the authors 

say that this choice works well in most examples. 

 

Let us denote with tr�  random variable which has discrete time and space states and 

which approximate random variable 
t

R� . It is autoregressive process 

 

 1 ( ) ( )
t t d d t dr r

r r a b r t Z tσ+ − = − ∆ − ��  (4.15) 

 

where 
d

a , 
d

b  and 
dr

σ  are constants and ( )rZ t�  is random variable to be defined later, 

where 
d

a , 
d

b  are defined in (4.11)–(4.12), and 
dr dR

σ σ=  where 
dR

σ  is defined in 

(4.13) 

 

Let the number of Quadrature points be N . The bigger the number of points the 

better is approximation. However, the choice of 15N =  provides quite good behavior 

and we show the analysis of this behavior in Appendix 3. 
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Based on this choice we choose abscissa points, i.e. the possible states of the interest 

rate are constants ;1t
r , ;2t

r , …, ;t N
r , such that the probabilities derived using this 

technique satisfies the condition 1 1; ;1 1 1; ;| | 0.02
t t i t t t t i t t N

P r r r r P r r r r+ + + +   = = = = = <   � � � �  

for 1 i N≤ ≤  and that the points are derived from Gauss Quadrature with these ending 

points. We also derive the weights 1w , …, 
N

w , for these choice of abscissa and the 

density function ( )yω . 

 

Let us also define the function ( )0|f y r  as the density function for the random 

variable with the distribution 

 

 ( )0 1 ,d d
d dr

d d

a a
N r b

b b
σ

  
+ − −   
  

 (4.16) 

 

Having determined the abscissa points, the weighting function and the function 

( )0|f y r , we can apply the Tauchen and Hussey (1991) technique as follows. Let 

 

 ( )
( )

( )1

|N
i j

j j

i j

f r r
s r w

rω=

=∑  (4.17) 

and let 

 
( )

( ) ( )

|
k jN

jk k

j k

f r r
w

s r r
π

ω
=  (4.18) 

 

Then according to Tauchen and Hussey (1991), we have 

 

 { } { }
( , ) ( , )

1 1; ;( , ) (1,1)( , ) (1,1)
|

N N N N
N

jk jk t t k t t jj kj k
p P r r r rπ + +==

 = = = = � �  (4.19) 

 

The random variable ( )rZ t�  is now defined via its transitional matrix { }
( , )

( , ) (1,1)

N N

jk j k
p

=
. 

 

4.2.3 Numerical Derivation of the Bond prices 

 

In Section 4.1.2, we defined the discrete time–state AR (1) process which 

approximates the Vasicek model. In order to use this process as an approximation of 

the interest rate, we need to derive the zero–coupon bond prices from this process and 

get the model for the bond market. 

 

We first derive the price of the zero–coupon bond with no market price of risk. As 

usual, it is defined as expected present value of one unit payout after time T . Thus, 

we have 
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 ( ) 1 2

0, ... Tr r r
B T r E e e e

− − − = ⋅ ⋅ 
� � �

 (4.20) 

 

where 1r�  is a random variable denoting random interest during the first year, 2r�  is a 

random variable denoting random interest during the second year knowing 1r� , and so 

on. In order to allow for the existence of the market price of risk, we use the idea from 

the equation (4.6) and introduce the market price of risk by multiplying the bond price 

with no market price of risk with the similar factor as in the continuous time Vasicek 

model. Let the constant 
r

λ  represents the market price of risk in the Vasicek bond 

market model. Then we get the equation for the price of a zero–coupon bond as 

follows 

 

 ( )
( )

1 2

1
1

0, ...
bTr r

T

e T
r r rb bB T r e E e e e

σ λ − 
− − −  − − −   = ⋅ ⋅ 

� � �
 (4.21) 

 

Let us explain how we can calculate numerically the bond price in discrete time–state 

spaces. Following the main formula for the expected value we have that 
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1
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1
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e
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=
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For the bond of the duration two years we have 

 

( )
2 2

1; 2;1 2 1 2

1 2 1

1 2

1 1
2 2

0 0;

1 1
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b b
r r r r
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e e
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or 

( )
2

1; 2;1 2

1 2 1

1 2

1
2

0 0;

1 1

2,

b
r r

k k

e
N N

r rb b

j k k jk

k k

B r r e e e p p

σ λ − −
− −   − − 

= =

 
= =  

 
∑ ∑  

 

The same pattern is applied for longer durations. However, we can see that the part of 

the second sum is the same as the sum for the bond with one year duration. Apart 

from the coefficient for the market price of risk the difference is in the indices only. 

Using this observation, one can firstly calculate 1 year duration bond prices for all 

possible states for 0r  and then use these results to obtain the results for the bond with 

duration of two years. This feature is important when the calculation is applied on the 

computer. If we define 
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1 1 2
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1 1;

1
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B r r e p
−

=
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Then one can write 
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Similarly, if we define 
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b
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Following this pattern, we get an inductive formula for bond prices which 

significantly reduces computing time.  

 

However, we calculate bond prices ( )0 0;,
j

B T r r= , for 0 35T≤ ≤  and 1 j N≤ ≤  only 

once and then use the results. So, it is important to calculate it in reasonable time only 

once. 

 

4.3 The Model 

 

Let us define the model that will be investigated in this thesis.  

 

4.3.1 Definitions and Notation 

 

We use the following definitions and notation: 

• tW  is the pension wealth at time t, just before income tY  is received; 

• tY  is the variable denoting income at time t. We model income as  

 

 
65 99

0 100

t

t

PP for t
Y

for t

 ≤ ≤
= 

=
 (4.23) 

 

P  is constant and is equal to the income at age 65, 65 1P = , and tP  will be 

defined later. 
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• 
t

C
 
is consumption at the beginning of the period [ ], 1t t +  for 65,66,...,99t = , 

just after annuitisation and receiving income 
t

Y ; 

• tb  is the factor which controls the pensioner's strength of the bequest motive. 

If no bequest motive exists then 0tb = , for 65,66,...,99t = ; 

• tr�  is the random real interest rate during the period [ ], 1t t +  for 

65,66,...,99t = . We model the real interest rate as autoregressive process 

 

 1 ( ) ( )
t t d d t dr r

r r a b r t tσ ε+ − = − ∆ − ��  (4.24) 

  

where 
d

a , 
d

b  and 
dr

σ  are constants and random variable ( )rε t�  is defined via 

its transitional matrix { }
( , )

( , ) (1,1)

N N

jk j k
p

=
, as explained in Section 4.2. 64r  is known 

interest rate during the year prior to retirement. The value of real interest rate 

tr  during the period [ ]1,t t−  is known at time t .; 

• 
t

p  – probability that the member aged t  will survive until the age of 1t + ; 

• tr  – variable denoting deterministic rate of return on one year risk free 

investment during the period [ ], 1t t + , for 65,66,...,99t = ; 

• e

tr�  – random variable denoting random real rate on equities during the period 

[ ], 1t t + , for 65,66,...,99t = . We assume that [ ], 1t t +  is one year period, and 

that 

 

 ( )( )e

t e e eLn r tµ σ ε= + ��  (4.25) 

 

where eµ  and 
e

σ  are constants and ( ) ( )0,1eε t N� ∼ ; 

• b

tr�  – random variable denoting random real rate on bond investment during the 

period [ ], 1t t + , for 65,66,...,99t = ; 

• e

tα  – the proportion of the wealth invested in the equities during the period 

[ ], 1t t + , for 65,66,...,99t = ; 

• b

tα  – the proportion of the wealth invested in the bonds during the period 

[ ], 1t t + , for 65,66,...,99t = ; 

• tm  – the proportion of the pension wealth used for purchasing annuity at time 

t , for 65,66,...,99t = ; 

• ( )1, tB T r −  – the price of the zero–coupon bond at time t  maturing after T  

years and with 1t
r −  being experienced interest rate during the period [ ]1,t t− , 

for 65,66,...,99t = . ( )1, tB T r −  is defined in (4.21); 

 

The control variables of the most general type of the problem are { }
99

65
, , ,e b

t t t t
t

c mα α
=

, 

and the state variables of the problem are { }
99

1 65
, , ,t t t t

t W Y r − =
. We will skip explicitly 

writing the state variable t  and write state variables as { }
99

1 65
, ,t t t t

W Y r − =
. As we will see, 

we will decrease the number of control variables from three to two.  
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Regarding risk free investment, we will assume that the member invest in risk free 

deposit with duration of one year. The rate on one–year risk free investment is 

calculated as follows 

 

( )1

1
1

1,
t

t

r
B r −

= − . 

 

Regarding low risk investment, we will assume that the pensioner aged t  invests in 

bonds with the duration of 
t

ϒ  years, for 65 99t≤ ≤ . It means that at age t , the 

pensioner invests in 
t

ϒ –years bonds at the beginning of the year and at the end of 

year he sells the bonds with 1
t

ϒ −  years to maturity, rebalances his portfolio and then 

again purchases bonds with the duration of 
t

ϒ  years, and so on. According to this 

strategy, at the beginning of the period [ ], 1t t + , the member invests the amount of 

( )( )1b

t t t t tm W Y Cα − + −  into bonds and purchases them for the price of ( )1,t tB r −ϒ , 

where 1t
r −  is real interest rate during the previous year. At the end of year, he 

possesses in his bond portfolio the amount of  

 

( )( )
( )

( ) ( )( )
( )
( )1 1

1 1,
1, 1

, ,

b

t t t t t t tb

t t t t t t t

t t t t

m W Y C B r
B r m W Y C

B r B r

α
α

− −

− + − ϒ −
ϒ − = − + −

ϒ ϒ
. 

 

Thus, we can write that, observed at time t , the rate of return on bond investment 

during the year [ ]1,t t−  is 

 

 
( )
( )1

1,
1

,

t tb

t

t t

B r
r

B r −

ϒ −
+ =

ϒ

�
� . (4.26) 

 

In the main results we will assume that 10
t

ϒ = , for 65 99t≤ ≤ . It means that we will 

assume that the pensioner invests in 10–year rolling bonds. However, we make it 

more general in the model such that it is possible to use the model with the 

assumption of different duration of rolling bonds and that duration can depend on age. 

 

Let us now introduce the random variable P

tr� , representing rate of return on portfolio 

investment during the year [ ], 1t t +  

 

( )

( ) ( )

( )
( )
( )1

1

1,
1

,

P e b e e b b

t t t t t t t t

e e b b

t t t t t t t

t te e b

t t t t t t

t t

r r r r

r r r r r

B r
r r r r

B r

α α α α

α α

α α
−

= − − + +

= + − + −

 ϒ −
= + − + − −  ϒ 

� � �

� �

�
�

 

 



 159

for 65,66,...,99t = . 

 

In interest rate risk model, we assume that all variables are in real terms. Real interest 

rate is modelled based on Vasicek model, and from this model we develop the market 

of bonds providing return in real terms. We assume in this thesis that the real interest 

rate, and also derived bond market, is not correlated with the stock market. This 

assumption is a simplification of the real world in order to have more compact set of 

results. Introduction of the correlation between the market of bonds providing real 

return and the market of stock providing real return would bring the new results. 

However, as we will see later in this Chapter and in Chapter 5, many different results 

are obtained and although the analysis of the possible correlation between real interest 

rate and equities would give us interesting results, it would also give us even more 

results and affect our focus on the obtained results. Also, the model would be more 

complicated, and calculation time will increase. However, we acknowledge that 

investigating correlation between real interest rate and stock return is important. We 

also acknowledge that introduction of correlation between real interest rate and stock 

return in the interest rate risk model is possible and computationally feasible. We 

leave this analysis for further research and hope that the results in this thesis will be a 

good basis for the further research in this direction. 

 

We assume that the member wishes to maximise expected utility from his future 

consumption and possibly a bequest. The utility function is CRRA function, given by 

 

( )
x

u x
γ

γ
=  for 0,1 ≠< γγ  and, 

( ) ( )u x Log x=  for 0=γ . 

 

4.3.2 Income Process 

 

In this section we present all details of the income process. At age 65t = , income 

comes from the last salary only. Afterwards, for ages 66 99t≤ ≤ , the member’s 

income consists of social security income and income from annuities bought at age 65 

and afterwards. For the simplicity reasons, we will assume that income from the social 

security SS

tY  for 66 99t≤ ≤  is constant in real terms. We also define 100 0Y = . 

 

We will distinguish two types of income in retirement, income from social security 

sources denoted with SS

t
Y  and income from annuities bought before time t  denoted 

with A

t
Y . This can be written as 
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SS A

t t tY Y Y= +  

 

for 66 99t≤ ≤ . 65Y  is defined in (4.23). Let us now define SS

t
Y  and A

t
Y  for 

66 99t≤ ≤  more precisely. 

 

We assume that the first income from social security is received at age 66, and SS

t
Y  

will de defined as 

 

65

SS

tY replrate Y= ⋅ , 

 

for 66 99t≤ ≤  and replrate  is the percentage of the last salary provided from the 

state in form of social security income after age 65. It is a constant income until the 

end of pensioner’s life. The following variable will be of use in the later discussion 

 

 
65

1 66 99
t

replrate t

t
ρ

=
= 

≤ ≤
 (4.27) 

 

Now we assume the environment where purchasing annuities from pension wealth is 

allowed at the member’s discretion at age 65 and afterwards. Whenever a member 

purchases annuities his pension wealth decreases by the amount used for purchasing 

those annuities, and his income in future periods increases by the newly provided 

annuity income. For simplicity reasons, we assume that annuities provide the first 

instalment one year after purchasing annuities. Let us denote income in the form of 

annuities bought at age 65 with 65

A

a
Y , at age 66 with 66

A

a
Y , and so on until maximum 

age 99t = . 

We assume that the annuitised pension fund is invested into bonds and thus we have 

 

 ( ) ( )
99

1 1

1 1

1 ,
it

t t j t

i j

a Loadings p B i r
−

+ − −
= =

  
= +    

  
∑ ∏  (4.28) 

 

for 65,66,...,99t = , where Loadings  is loadings on the actuarially fair annuities 

depending on the market. Now, we can write 

 

 A t t
at

t

mW
Y

a
= . (4.29) 

 

Thus, if some annuities are bought at age 65, then income at age 66 is 

 

66 66 65

66 66

SS A

a

SS A

Y Y Y

Y Y

= +

= +
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Then some new annuities are bought at ages 66 and 67 then income at age 67 is 

 

( )67 67 65 66

67 67

SS A A

a a

SS A

Y Y Y Y

Y Y

= + +

= +
 

 

The same pattern repeats itself and, for 66 99t≤ ≤ , income at age t  is 

 

( )( )65 1
...SS A A

t t a a t

SS A

t t

Y Y Y Y

Y Y

−
= + + +

= +
, 

where 

( )65 1
...A A A

t a a t
Y Y Y

−
= + + . 

 

We also have the relation 

 

 1

A

t t t atY Y Yρ+ = +  (4.30) 

 

for 65 99t≤ ≤ , where 
t

ρ  is defined in (4.27). 
t

ρ  will always appear as multiplicative 

factor. Due to its definition in equation (4.27) 
t

ρ  influences this and other equations 

where it appears for 65t =  only. 

 

In order to work with smaller numbers when solving the problem on a computer, we 

introduce the constant P . Let us now express the equations of the income process in 

terms of P  variables. P  is constant, equal to the income at age 65 and 65 1P = . Now, 

we define SS

tP , A

tP  and A

atP  via equations SS SS

t tY PP= , A A

t tY PP=  and A A

at atY PP= , 

respectively. We have  

 

 SS A

t t tP P P= +  (4.31) 

 

where 65,66,...,99t = . The equivalent equation to equation (4.30) is given by 

 

 1

A

t t t atP P Pρ+ = +  (4.32) 

 

for 65 99t≤ ≤ . Equation (4.23) is now fully defined. Let us also define 

 

 1 1
1

t t
t

t t

Y P
G

Y P

+ +
+ = =  (4.33) 

From (4.30) we have 

1

A

at

t t

t

Y
G

Y
ρ+ = + , 

and using (4.29) we get 
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 1
t t

t t

t t

mW
G

Y a
ρ+ = +  (4.34) 

for 65 99t≤ ≤ . 

 

4.3.3 Mathematical Model for the Problem 

 

We will assume that the member’s pension wealth is always non–negative, i.e. 0tW ≥  

for 65 99t≤ ≤ . Other assumptions about pension wealth are possible and effectively 

it would mean that limited or unlimited borrowing is allowed. 

 

We assume that the member’s maximum attainable age is 99t = . 99 0p =  and there is 

no annuitisation at age 99. Let us start with the last age period [99,100]. If the 

member is alive at the beginning of this period, he draws utility from consuming part 

of his available financial wealth and possibly draws utility from bequeathing some 

assets. Income at the end of the period [99,100] is 100 0Y = . The member’s value 

function at age 99 is  

  

 ( )
{ }

( ) ( ) ( )
99

99 99 99 98 99 99 99 99 100, , max 1
CV

V W Y r E u C p b u Wδ = + − 
�  (4.35) 

where 

 ( ) ( )
( )

( )
99 99

100 99 99 99 99 99 99 99 99 99

99 98

1,
1 1

,

e e b
B r

W W Y C r r r r
B r

α α
  ϒ −

= + − + + − + − −    ϒ  

�
� � (4.36) 

The member maximises his value function at age 99 over all possible consumptions 

99C  and investment decisions 99

eα  and 99

bα . These three are the only control variables 

at this age as no annuitisation occurs. We assume that after retirement, control 

variables are subject to the no–borrowing constraint. It means that the maximum 

amount the member can consume is 99 99W Y+ , and it is also the maximum amount he 

can invest. Mathematically, 

 

 99 99 990 C W Y≤ ≤ + , and (4.37) 

 990 1eα≤ ≤ , 990 1bα≤ ≤  and 99 990 1e bα α≤ + ≤  (4.38) 

 

In order to get an idea how we move backward year by year we first show the 

member’s value function at age 98t = . We have 

 

( )
{ }

( ) ( )

( ) ( ) ( ) ( )

99

98

98 98 98 97 98 98 98 99

2

98 98 99 98 99 99 100

, , max

1 1

t t
CV

V W Y r E u C p u C

p b u W p p b u W

δ

δ δ

=

= + +


− + − 

�

� �

 

or 
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( )
{ }

( ) ( ) ( )

( ) ( ) ( )( )

99

98

98 98 98 97 98 98 98 98 99

98 99 99 99 100

, , max 1

1

t t
CV

V W Y r E u C p b u W

p u C p b u W

δ

δ δ

=

= + − +


+ −


�

� �

 

Thus 

( )
{ }

( ) ( ) ( ) ( )
98

98 98 98 97 98 98 98 98 99 98 99 99 99 98, , max 1 , ,
CV

V W Y r E u C p b u W p V W Y rδ δ = + − + 
� � �  

where 

 ( )( )( )99 98 98 98 98 981 1 PW m W Y C r= − + − +� �  (4.39) 

using (4.30) we have 

 ( )
( )

( )
98 98

98 98 98 98 98 98 98

98 97

1,
1

,

P e e b
B r

r r r r r
B r

α α
 ϒ −

= + − + − −  ϒ 

�
� �  (4.40) 

 98 98
99 98

98

m W
Y Y

a
= +  (4.41) 

 98 98
99

98 98

1
m W

G
a Y

= +  (4.42) 

and the constraints are 

 ( )98 98 98 980 1C m W Y≤ ≤ − +  (4.43) 

 980 1e≤ ≤α , 980 1b≤ ≤α  and 98 980 1e b≤ + ≤α α  (4.44) 

 980 1m≤ ≤ . (4.45) 

 

Here, we used the Bellman principal of optimality and the law of iterated conditional 

expectations. 

 

Now, one can derive value function for any age 65 99t≤ ≤ . The value function for 

ages 065 99t≤ ≤  is given as 

 

 

( )
{ }

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )( )

990 0 0 0 0 0 0 0 0

0

0 0

0 0 00 0

0

1 1

99
1

1 1 11 1
1

, , max 1

1

t t t

t t t t t t t t t
CV

t t t t

t t t t t t tt t t t
t t

V W Y r E u C p b u W

p p u C p p b u W

δ

δ δ δ

=

− +

− + −

+ + +− + − +
= +

= + − +



+ − 


∑

�

� �

(4.46) 

 

Using Bellman’s principal of optimality which says that 

 

{ }
( )

{ } { } { }
( )

99 99

0 1 00 0
outcome from

max max max
tt t tt t t t

CVCV CV CV

Z Z
= = +

 
=  

  
 

we have 
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( )
{ }

( ) ( ) ( )

{ }

( )
( ) ( )(

( ) ( ) ( ))

0 0 0 0 0 0 0 0 0

0

0

990 0 00

10 0

0

00

1 1

99
1

11
1

1 11

, , max 1

max

1

t

t t t

t t t t t t t t t
CV

t t

t t t tt t
CV t t

t t

t t t tt t

V W Y r u C E p b u W

p E p u C

p p b u W

δ

δ δ

δ

= +

− +

− +

+− +
= +

−

+ +− +

  = + − +
 

 
+ 

 

−


∑

�

�

�

 

 

and using the law of iterated conditional expectations 

 

 

( )
{ }

( ) ( ) ( )

{ }
( )(

( ) ( ))

0 0 0 0 0 0 0 0 0

0

0

990 0 0 0 0

10 0

0

0 0 0

1 1

99
( 1)

1 ( 1) 1

1

( 1) 1 1

, , max 1

max

1

t

t t t

t t t t t t t t t
CV

t t

t t t t t t t
CV t t

t t

t t t t t t

V W Y r u C E p b u W

p E E p u C

p p b u W

δ

δ δ

δ

= +

− +

− +

+ − + +
= +

−

− + + +

  = + − + 

 
+ 

 

−


∑

�

�

�

(4.47) 

 

Thus, 

 

 ( )
{ }

( ) ( ) ( ) ( )1 1 1 1 1, , max 1 , ,
t

t t t t t t t t t t t t t t
CV

V W Y r E u C p b u W p V W Y rδ δ− + + + +
 = + − + 

� � �  (4.48) 

where 

 ( )( )( )1 1 1 P

t t t t t tW m W Y C r+ = − + − +� �  (4.49) 

 1
t t

t t t

t

mW
Y Y

a
ρ+ = +  (4.50) 

 ( )
( )
( )1

1,
1

,

t tP e e b

t t t t t t t

t t

B r
r r r r r

B r
α α

−

 ϒ −
= + − + − −  ϒ 

�
� �  (4.51) 

 
65

1 66 99
t

replrate t

t
ρ

=
= 

≤ ≤
 (4.52) 

with the constraints 

 ( )0 1t t t tC m W Y≤ ≤ − +  (4.53) 

 0 1e

t
α≤ ≤ , 0 1b

t
α≤ ≤ , and 0 1e b

t t
α α≤ + ≤  (4.54) 

 0 1
t

m≤ ≤ . (4.55) 

 

for 65 99t≤ ≤ . 

 

4.4 Solution to the Problem 

 

Let us present the solution to the problem defined in the previous section. We will 

show the solution for different assumptions about 
t

m  as explained in Section 4.1.2. 
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4.4.1 Solution for Endogenous m
t
 

 

The analytical solution to the problem (4.48)–(4.55) cannot be found in the current 

literature. Further, the random real interest rate and random rate of return on equity 

investment can be correlated. 

  

The usual approach to this type of problems nowadays is a numerical solution using 

computers. We approach this problem by finding the maximum in equation (4.48) 

using numerical mathematics. 

 

By observing equations (4.48)–(4.55) and the constraints accompanying them, one 

can see that we need to solve the problem of nonlinear optimization with constraints. 

In this particular problem we have four control variables. The constraints are 

analytical functions. We solve this problem in Mathematica 5.2 using the Gauss 

Quadrature for approximating the interest rate and rate on equity investment and cubic 

splines for interpolating the value function. Let us explain the way we solve the 

problem. 

 

Let us assume that we have a solution for ages 1t +  and onwards and we need to go 

one step backward aiming to find the solution for time t . It means that we have 

obtained 

 

 
( ) ( ) ( )({

( ) ( ))}

1; 1; 1;

99

1; 1;
1

, , ; , , ; , , ;

, , ; , ,

e b

i i i i m i i i i m i i i i m

i i i i m i i i i m
i t

C W Y r W Y r W Y r

m W Y r V W Y r

α α∗ ∗ ∗

− − −

∗

− −
= +

 (4.56) 

 

for 0
i

W ≥ , 0
i

Y ≥ , and 1;i m
r−  in the domain of interest rate values, where 

( )1;, ,
i i i i m

C W Y r∗
− , ( )1;, ,e

i i i i m
W Y rα ∗

− , ( )1;, ,b

i i i i m
W Y rα ∗

−  and ( )1;, ,
i i i i m

m W Y r∗
−  are optimal 

consumptions, optimal equity and bond allocations and optimal annuitisation, and 

( )1;, ,
i i i i m

V W Y r−  is the value function for those optimal control variables. Having this 

solution in hand, we want to derive the solution at time t . It means that we want to 

determine ( )1;, ,
t t t t j

C W Y r∗
− , ( )1;, ,e

t t t t j
W Y rα ∗

− , ( )1;, ,b

t t t t j
W Y rα ∗

−  and ( )1;, ,
t t t t j

m W Y r∗
−  

which maximises the value function below 

 

( )
{ }

( ) ( ) ( ) ( )1; 1 1 1 1
, , ,

, , max 1 , ,
e b

t t t t

t t t t j t t t t t t t t t t
C m

V W Y r u C E p b u W p V W Y r
α α

δ δ− + + + +
  = + − +  

� � �  

 

which can be written in more explicit form as 
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( )

{ }
( ) ( ) ( )( )(

( )( )) ( ) ( )

1; 1 1
, , ,

1 1 1 1 1

, , max 1 ,

, , ,

e b
t t t t

e

t t t t j t t t t t t
C m

e e

t t t t t t t t t

V W Y r u C p b u W r r

p V W r r Y r dF r dF r

α α
δ

δ

∞ ∞

− + +

−∞ −∞

+ + + + +

= + − +




∫ ∫
 (4.57) 

 

It is possible to decrease the number of state variables from three to two. We will now 

make the transformations that will allow us to work with only two state variables. The 

state variable that is going to be excluded is income 
t

Y . Using the results from 

Appendix 2, we know that  

 

 ( )1; 1;, , , ,t
t t t t j t t t j

t

Y y
V W Y r V W y r

y Y

γ

− −

  
=   
   

 (4.58) 

 

for any constant 0y > . Introducing this relation into equation (4.57) one get 

 

{ }
( ) ( ) ( )( )(

( ) ( ) ( )

1; 1
, , ,

1
1 1

1

, , max 1 ,

, , ,

e b
t t t t

et
t t t j t t t t t t

C m
t

e et
t t t t t t t t

t

Y y
V W y r u C p b u W r r

y Y

Y y
p V W r r y r dF r dF r

y Y

γ

α α

γ

δ

δ

∞ ∞

− +

−∞ −∞

+
+ +

+

  
= + − +   

   

  
        

∫ ∫
 

 

Using (4.49) and skipping writing dependent variables one get 

 

{ }
( )

( ) ( )( ) ( )( )(

( )( )( ) ( ) ( )

1;
, , ,

1

1

1

, , max

1 1 1

1 1 , ,

e b
t t t t

t
t t t j t

C m
t

P t
t t t t t t t t

P e

t t t t t t t t t

t

Y y
V W y r u C

y Y

Y
p b u m W Y C r p

y

y
V m W Y C r y r dF r dF r

Y

γ

α α

γ

δ δ

−

∞ ∞

+

−∞ −∞

+

+

  
= +   

   

 
− − + − + + ⋅ 

 

 
− + − +  

  

∫ ∫

 

where  

 

( )
( )

( ); ; ;

1;

1,
1 1 1

,

t tP e e b

t t j t t t j t t j

t t j

B r
r r r r r

B r
α α

−

 ϒ −
 + = + + − + − −
 ϒ 

 

 

and rearranging terms in this equation and using (4.58) we have 
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1

1

1
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1 1 1
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Y W C Y
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α α
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+

+

      
= +      

      

    
− − + − + + ⋅          

 
− + − + 
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∫ ∫

( ) ( )e

t tdF r dF r

   

 

 

Let us define  

  

 t
t

t

W
w y

Y
=  and t

t

t

C
c y

Y
=  (4.59) 

 

Multiplying both sides by 
t

y

Y

γ
 
 
 

 and introducing (4.59) into the previous equation we 

have 
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( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
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1
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Y Y
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Y Y
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α α

γ

δ

−

∞ ∞

+

+−∞ −∞

+

+

= +

   
− − + − + + ⋅   

   

 
− + − +  

 

∫ ∫  

 

We will actually derive our solution for 
t

Y y=  and 0
t

w ≥ , and control variables 
t

c , 
e

t
α , b

t
α  and 

t
m  and then use the transformation from Appendix 2 to get solution 

t
C , 

e

t
α , b

t
α  and 

t
m  for any 0

t
Y ≥  and 0

t
W ≥ . Using (4.50), we have 

 

1
t t

t t t

t

mW
Y Y

a
ρ+ = +  

We have defined in (4.34) 

 

1
t t t t

t t t

t t t

mW m w
G

Y a ya
ρ ρ+ = + = +  

 

Introducing these relations into the previous equation one get 
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∞ ∞
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+

+
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  +
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 

 +
 − + −

 
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∫ ∫  (4.60) 

 

When finding numerical solution on the computer we need to approximate each 

continuous variable with a discrete one. We use the Gauss Quadrature method in 

order to approximate the continuous random variable e

t
r�  with the appropriate discrete 

random variable as follows 

 

 
;1 ;2 ; 1 ;

;1 ;2 ; 1 ;

...

...

re re

re re

e e e e

t t t n t ndis e

t

re re re n re n

r r r r
r

p p p p

−

−

 
 
 
 

� ∼  (4.61) 

 

Let us assume that wealth takes only the values on the wealth grid ( ); 1

wn

t i i
w

=
. We model 

the interest rate as a discrete state autoregressive process. We denote the states for the 

real interest rate as ( ); 1

rn

t k k
r

=
 and the transitional matrix as ( )

( ) ( )

( ),

; , , 1,1

r rn n

r j m j m
p

=
, such that 

; ,r j m
p  is the probability that during one year period the interest rate will move from 

state ;t j
r  to state 1;t m

r + . 

 

Thus, we actually find and save into the file the solution 
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C w y r w y r w y r

m w y r V w y r
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− − −

∗

− −
=

 (4.62) 

 

of the following equation 
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t t i t j t i j
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t i j t t t i j t i t i j
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G p b u m w y c

G
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p V m w y c y r

G

α α
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−

+
= = +

+

+

= +

  +
  − − + − +

 
 

 +
 − + −

 

∑∑

; , ;r j m re l
p p


 ⋅

 
 

(4.63) 

where 
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( )
( )
( )

;

; , , ; ; , ; ; ; , ;

1;

1,
1 1 1

,

t t mP e e b

t j m l t j t i j t l t j t i j t j

t t j

B r
r r r r r

B r
α α

−

 ϒ −
 + = + + − + − −
 ϒ 

 

and 

, , ,

1; ,

;

1
t i j t i

t i j

t j

m w
G

ya
+ = +  

and 

( );

1;

1
1

1,
t j

t j

r
B r −

= − . 

 

Having the set of solutions (4.62) in hands, for each 1,..,
r

j n=  we use cubic splines to 

interpolate the consumption through the points ( ){ }; 1;
1

, ,
wn

t t i t j
i

c w y r
∗

−
=

, optimal asset 

allocation through the points ( ){ }; 1;
1

, ,
wn

e

t t i t j
i

w y rα ∗

−
=

 and ( ){ }; 1;
1

, ,
wn

b

t t i t j
i

w y rα ∗

−
=

, optimal 

annuitisation ( ){ }; 1;
1

, ,
wn

t t i t j
i

m w y r
∗

−
=

, and the value function ( ){ }; 1;
1

, ,
wn

t t i t j
i

V w y r −
=

 

calculated in these optimal points. Thus, we have 

 

 

( ) ( ) ( )({

( ) ( ))}

1; 1; 1;

1; 1;
1

, , ; , , ; , , ;

, , ; , ,
r

e b

t t t j t t t j t t t j

n

t t t j t t t j
j

c w y r w y r w y r

m w y r V w y r

α α∗ ∗ ∗
− − −

∗

− −
=

 (4.64) 

 

for 0
t

w ≥ , and 1,t j
r −  taking discrete values for 1,..,

r
j n= . Finally, using (4.59) and 

the results from Appendix 2 

 

 ( ) ( )1; 1;, , , ,t
t t t t j t t t j

Y
C W Y r c w y r

y

∗ ∗
− −= , for 1,..,

r
j n=  (4.65) 

 ( ) ( )1; 1;, , , ,e e

t t t t j t t t j
W Y r w y rα α∗ ∗

− −= , for 1,..,
r

j n=  (4.66) 

 ( ) ( )1; 1;, , , ,b b

t t t t j t t t j
W Y r w y rα α∗ ∗

− −= , for 1,..,
r

j n=  (4.67) 

 ( ) ( )1; 1;, , , ,
t t t t j t t t j

m W Y r m w y r∗ ∗
− −= , for 1,..,

r
j n=  (4.68) 

 ( ) ( )1; 1;, , , ,
t t t t j t t t j

t

y
V W Y r V w y r

Y

γ

− −

 
=  
 

, for 1,..,
r

j n=  (4.69) 

 

for 0
t

W ≥  and 0
t

Y ≥ , and 1,t j
r −  in the domain of the real interest rate. 

 

4.4.2 Solution for Exogenous m
t
 

 

In order to develop the solution for exogenous 
t

m  we can use the results from Section 

4.4.1. The algorithm for solving the problem (4.48)–(4.55) for exogenous 
t

m  is very 
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similar to the one used for solving the case of endogenous 
t

m . Mathematically, it is 

actually sub–case of the problem with endogenous 
t

m . Let us now explain how we 

can solve the case of exogenous 
t

m . 

 

In equations (4.48) we now write { }, ,e b

t t t
C α α  instead of { }tCV . Let us assume that 

we have the solution 

 

 ( ) ( ) ( ) ( )( ){ }
99

1; 1; 1; 1;
1

, , ; , , ; , , ; , ,e b

i i i i m i i i i m i i i i m i i i i m
i t

C W Y r W Y r W Y r V W Y rα α∗ ∗ ∗

− − − −
= +

 (4.70) 

 

for 0
t

W ≥ , 0
t

Y ≥  and 1;i m
r−  in the domain of real interest rate, where ( )1;, ,

i i i i m
C W Y r∗

− , 

( )1;, ,e

i i i i m
W Y rα ∗

−  and ( )1;, ,b

i i i i m
W Y rα ∗

−  are optimal consumptions and optimal equity 

and bond allocation. ( )1;, ,
i i i i m

V W Y r−  is the value function for those optimal control 

variables. Having this solution in hand, we want to derive the solution at time t . It 

means, we want to determine ( )1;, ,
t t t t j

C W Y r∗
− , ( )1;, ,e

t t t t j
W Y rα ∗

−  and ( )1;, ,b

t t t t j
W Y rα ∗

−  

which maximizes the value function (4.48). Thus, we have the control variables 

{ }, ,e b

t t t
C α α  instead of having the control variables { }, , ,e b

t t t t
C mα α  in Section 4.4.1. 

 

Then we follow the same steps already explained in Section 4.4.1 up to the equation 

(4.61). Now, using computers we find the solution 

 

 ( ) ( ) ( ) ( )( ){ }
( ) ( )

( ),

; 1; ; 1; ; 1; ; 1;
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, , ; , , ; , , ; , ,
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e b

t t i t j t t i t j t t i t j t t i t j
i j

c w y r w y r w y r V w y rα α∗ ∗ ∗

− − − −
=

 (4.71) 

 

of equation (4.63). 

 

Having the set of solutions (4.71) in hands, for each 1,..,
r

j n=  we use cubic splines to 

interpolate the optimal consumption through the points ( ){ }; 1;
1

, ,
wn

t t i t j
i

c w y r
∗

−
=

, optimal 

asset allocation through the points ( ){ }; 1;
1

, ,
wn

e

t t i t j
i

w y rα ∗
−

=
 and ( ){ }; 1;

1
, ,

wn
b

t t i t j
i

w y rα ∗
−

=
 and 

the value function through the points ( ){ }; 1;
1

, ,
wn

t t i t j
i

V w y r −
=

. Then we have  

 

 ( ) ( ) ( ) ( )( ){ }1; 1; 1; 1;
1

, , ; , , ; , , ; , ,
rn

e b

t t t j t t t j t t t j t t t j
j

c w y r w y r w y r V w y rα α∗ ∗ ∗

− − − −
=

 (4.72) 

 

For 0
t

w ≥ , and 1;t j
r −  taking discrete values for 1,..,

r
j n= . Then, using (4.59) and the 

results from Appendix 2  

 

 ( ) ( )1; 1;, , , ,t
t t t t j t t t j

Y
C W Y r c w y r

y

∗ ∗
− −= , for 1,..,

r
j n=  (4.73) 
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 ( ) ( )1; 1;, , , ,e e

t t t t j t t t j
W Y r w y rα α∗ ∗

− −= , for 1,..,
r

j n=  (4.74) 

 ( ) ( )1; 1;, , , ,b b

t t t t j t t t j
W Y r w y rα α∗ ∗

− −= , for 1,..,
r

j n=  (4.75) 

 ( ) ( )1; 1;, , , ,
t t t t j t t t j

t

y
V W Y r V w y r

Y

γ

− −

 
=  
 

, for 1,..,
r

j n=  (4.76) 

 

for 0
t

W ≥  and 0
t

Y ≥ , and 1;t j
r −  in the domain of the real interest rate. 

 

4.4.3 Solution for Endogenous/Exogenous m
t
 

 

We apply endogenous/exogenous solutions to each possible type of problem 1–3 

explained in Section 4.1.2. Whenever we solve the problem for one particular 

pensioner, we firstly have to know what his decision is regarding 

endogenous/exogenous annuitisation in each year during his retirement. If in a certain 

year the pensioner decides to annuitise exogenously then we also need to know which 

part of the pension wealth at that age he wants to annuitise. Of course, his decision 

needs to be in line with the availability of annuities due to possible market limitations.  

 

Once we have this information, we can find the solution of optimal consumption, 

asset allocation and annuitisation starting from the last possible age period and 

calculating year by year backwards. When calculating one particular year we comply 

with the information about endogenous/exogenous annuitisation and if exogenous 

then we also comply with the amount chosen to be annuitised. Thus, applying the 

endogenous/exogenous solutions just derived, we are able to deal with any 

combination of yearly endogenous/exogenous annuitisation in retirement. 

 

4.4.4 Check of Accuracy of Numerical Calculations in Mathematica 

 

Once we have the numerical solution saved in the excel files, we need to check the 

accuracy of the numerical solution. In order to prove the accuracy of the results, we 

make stochastic simulation and obtain 2,000 random realisations with the same 

assumptions as used for getting the deterministic results. Now, we get 2,000 random 

realisations of the paths for all variables in the model. Equation (4.46) explicitly 

shows the formula for expected discounted utility derived from future consumption 

and bequest. This most important formula of this thesis can also be used for testing 

the accuracy of the results. Similarly to the set of equations (4.48)–(4.55), we can 

write the set of equations for random realisations 
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 ( ) ( ) ( ) ( )( )
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; 1; ; 1;, , 1
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i t
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where 

 ( )( )( )1; ; ; ; ; ;1 1 P

i n i n i n i n i n i n
W m W Y C r+ = − + − +  (4.78) 

 
; ;

1; ;

;

i n i n

i n i i n

i n

m W
Y Y

a
ρ+ = +  (4.79) 

 ( )
( )
( )

;

; ; ; ; ; ; ;

1;

1,
1

,

i i nP e e b

i n i n i n i n i n i n i n

i i n

B r
r r r r r

B r
α α

−

 ϒ −
= + − + − − 

 ϒ 
 (4.80) 

 
65

1 66 99
i

replrate i

i
ρ

=
= 

≤ ≤
 (4.81) 

 

for 65 99t≤ ≤ , 100t i≤ ≤  and 1,..., 2,000n = , ( ) ( ), ; 1; , 1;, , , ,
t n t n t j n t t t j

W Y r W Y r− −= , and 

where ,i n
C , ,

e

i nα , ,

b

i nα  and ,i n
m  are optimal consumption, asset allocation and 

annuitisation calculated from functions (4.65)–(4.69). ,i n
C , ,

e

i nα , ,

b

i nα  and ,i n
m  are 

functions of ( ), ; 1; ;, ,
i n i n i j n

W Y r− , and ;i n
r  and ;

e

i nr  are random realisations of the stochastic 

simulations based on the assumptions presented in Table 3.3, 4.2 and 4.3. As a result, 

we get 2,000 discounted utilities derived from future consumption and bequest, if the 

bequest motive exists. 

 

If the calculations using equations (4.48)–(4.55) are correct then the following 

equations must be valid 

 

 ( ) ( )1; , 1;
1,...,2000

, , , ,
t t t t j t n t t t j

n
V X Y r Mean V W Y r− −

=

 ≈    (4.82) 

 

We make calculations and check if the equation (4.82) is approximately satisfied. The 

difference appears to be less than 2% for 2,000 random realisations. This variability 

depends on the assumptions, and in particular significantly depends on the assumption 

regarding the availability of annuities. If more pension wealth is converted into 

annuities, then the difference in equation (4.82) is less than 2%, and sometimes it is 

less than 0.1%. The difference in equation (4.82) will also decrease with the increase 

of the random sample, but we can say from an analysis not presented here that 2,000 

random realisations are sufficient to get very small differences and to see all the basic 

rules as expected. In all examples of random realisation we use the sample of the 

same size of 2,000n =  random realisations.  

 

In Section 4.5.6, we make left–tail analysis of the values of the function 

( ), 1;, ,
t n t t t j

V W Y r − , and in Chapter 5 we make more investigations using random 
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realisations. For this purpose we use the same realisations of the stochastic 

simulations as we use for the check of accuracy of the numerical calculations. We 

believe that this number of random realisations provides us with reasonably good 

results for the left–tail analysis in this chapter and for the analysis of the results in 

Chapter 5. The deeper analysis of the pensioner’s left–tail risk would require more 

than 2,000 random realisations. 

 

Thus, we calculate the value function using a set of equations (4.48)–(4.55) and 

calculate the mean discounted utility derived from future consumptions and a bequest 

using equations (4.77)–(4.81). Then, for a given ( )1;, ,
t t t j

W Y r − , we compare the two 

and check if these two values are close to each other. The criterion for checking the 

accuracy of the results is to have ( ); 1;
1,...,2000

, ,
t n t t t j

n
Mean V W Y r −
=

 
   sometimes higher and 

sometimes lower than ( )1;, ,
t t t t j

V W Y r −  and that this difference is never higher than 2%. 

All our results passed this test. 

 

4.5 The Results 

 

In Section 4.5, we present the numerical results of the problem defined in this chapter. 

We will show the results for different values of the parameters and will choose the 

most representative results in our opinion. 

 

We investigate three types of the problem differentiated by constraints on the control 

variables as it is presented in Section 4.1.2. We refer to the problem with the 

particular constraint on 
t

m  for 65 99t≤ ≤  as Case. In each Case, we firstly assume 

that 
t

m  is either exogenous or endogenous and then, for those ages where 
t

m  is 

exogenous we also assume the values of 
t

m  such that 0 1
t

m≤ ≤ . 

 

Case 4.1 in Section 4.5 is related to the type of problem numbered 4.1 in Section 

4.1.2. In Case 4.1, we investigate the pensioner with no access to annuities, or in other 

words, we investigate the problem where 
t

m  is exogenous and its value is 0
t

m =  for 

65 99t≤ ≤ . Case 4.2 in Section 4.5 is related to the type of problem numbered 4.2 in 

Section 4.1.2. In Case 4.2, the pensioner has access to annuities at age 65 only and he 

purchases annuities optimally at age 65. In mathematical terms, we assume that 65m  is 

endogenous and exogenous otherwise and that 0
t

m =  for 66 99t≤ ≤ . Case 4.3 is the 

most general one. In Case 4.3, the pensioner can optimally invest in equities, bonds 

and cash and optimally purchase annuities whenever in retirement. Case 4.3 is related 
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to the type of problem numbered 4.3 in Section 4.1.2. Any suboptimal behaviour in 

terms of investment and annuitisation decisions can be investigated as well. 

 

In Table 4.1, we show the main assumptions about the control variable 
t

m  for 

65 99t≤ ≤ . 

 

Case 
Annuitisation at age 

65 

Annuitisation at ages 

66–99 

Case 4.1 
Exogenous, 

65 0m =  

Exogenous,  

0
t

m =  for 66 99t≤ ≤  

Case 4.2 
Endogenous, 

65m  is optimal 

Exogenous, 

0
t

m =  for 66 99t≤ ≤  

Case 4.3 
Endogenous, 

65m  is optimal 

Endogenous, 
t

m  is 

optimal for 66 99t≤ ≤  

Table 4.1 The assumptions about annuitisation in each case. 

 

4.5.1 Parameter Values 

 

For each Case 4.1, 4.2 and 4.3, we find the optimal solution for RRA coefficient γ  

taking values −1, −4 and −9, and the bequest motive coefficient 
t

b  being constant and 

taking values 0 or 1 for 65 99t≤ ≤ . All together, we have three cases and six 

combinations of coefficients, overall 18 solutions. The values of other parameters 

used in the basic numerical solutions are as follows: 

− Income at age 65 65 33,320.90Y =  

− Wealth at age 65 65 200,000W =  

− Interest rate 1 ( ) ( )
t t d d t dr r

r r a b r t tσ ε+ − = − ∆ − ��  

 0.00902377
d

a = , 0.451188
d

b = , 

 0.0152622
dr
σ = , ( )0,1tε N� ∼ , 

 [ ] 0.02tE r =� , [ ] 0.0172195tStD r ≈  

− Market price of risk 0.1528λ =  

− Rate on risky investment ( )2( ) ,
t

Ln r N µ σ� ∼  

 0.0474187µ = , 0.14731σ =  

 0.06e

t
E r  = � , 0.157e

t
StD r  = �  

− Survival (Mortality) table Interim life table produced by The 

 Government Actuary’s Department 

 for United Kingdom Males, based on 

 data for years 2002–2004 

− Discount factor 0.96δ =  



 175

 

The values of the parameters are used by other authors who have investigated similar 

problems. The same value of the volatility of the interest rate is used by Boulier et al 

(2001). The values of the other parameters are used for example by Cocco et al 

(2005). We will not repeat it, but the similar comments about the chosen values of the 

income at age 65, replacement ratio and pension wealth as at the beginning of Section 

3.4.1 are also applicable here. 

 

4.5.1.1 Grids 

 

In order to solve the problem (4.48)−(4.55) numerically we need to approximate all 

the continuous variables with discrete ones. We solve equation (4.63) on the 

computer. From this equation, we see that three continuous variables need to be 

approximated by the discrete ones. These are: pension wealth, interest rate and rate of 

return on equity investment. Bond prices are calculated from the interest rate model. 

 

In Chapter 4, we use the same pension wealth and the same approximation of the rate 

of return on equities as in Chapter 3. 

 

Interest rate is approximated with 15
r

n =  points. The values in Table 4.2 are possible 

states of interest rate, i.e. the values of ;t j
r , where 1

r
i n≤ ≤  and 65 99t≤ ≤ . All 

values in Table 4.2 are in percentages. 

 

Interest rate – 

state 
–2.44 –2.21 –1.81 –1.25 –0.56 0.22 1.09 2.00 

Interest rate – 

state 
2.91 3.78 4.56 5.25 5.81 6.21 6.44  

Table 4.2 The possible states of the interest rate (in percentages) 

 

The transitional matrix for interest rate, i.e. the values of ( )
( ) ( )

( ),

; , , 1,1

r rn n

r j m j m
p

=
, such that 

; ,r j m
p  is a probability that during one year period the interest rate will move from state 

;t j
r  to state 1;t m

r + , where 1
r

j n≤ ≤ , 1
r

m n≤ ≤  and 65 99t≤ ≤ . We present the 

transitional matrix for interest rate in Table 4.3. 

 

The values in Table 4.3 are rounded to two decimal places for presentation purposes 

only. In our calculation we work with all decimal digits. Values 0.00% that appear in 

Table 4.3 have positive values but are less than 0.01%. 

 

 



 176

 -2.44 -2.21 -1.81 -1.25 -0.56 0.22 1.09 2.00 2.91 3.78 4.56 5.25 5.81 6.21 6.44 

-2.44 1.67 4.61 9.21 15.59 21.38 21.84 15.45 7.28 2.32 0.53 0.10 0.02 0.00 0.00 0.00 

-2.21 1.48 4.12 8.41 14.67 20.88 22.26 16.49 8.17 2.73 0.66 0.13 0.02 0.00 0.00 0.00 

-1.81 1.17 3.34 7.08 13.02 19.77 22.73 18.28 9.86 3.59 0.94 0.19 0.04 0.01 0.00 0.00 

-1.25 0.83 2.43 5.42 10.72 17.84 22.76 20.52 12.46 5.11 1.49 0.34 0.07 0.02 0.00 0.00 

-0.56 0.51 1.56 3.72 8.05 14.98 21.75 22.58 15.89 7.55 2.54 0.67 0.16 0.04 0.01 0.00 

0.22 0.27 0.87 2.25 5.40 11.44 19.29 23.57 19.65 11.06 4.38 1.34 0.35 0.09 0.03 0.01 

1.09 0.13 0.43 1.19 3.20 7.82 15.51 22.63 22.71 15.38 7.28 2.61 0.80 0.23 0.07 0.02 

2.00 0.05 0.18 0.55 1.68 4.76 11.18 19.64 23.90 19.64 11.18 4.76 1.68 0.55 0.18 0.05 

2.91 0.02 0.07 0.23 0.80 2.61 7.28 15.38 22.71 22.63 15.51 7.82 3.20 1.19 0.43 0.13 

3.78 0.01 0.03 0.09 0.35 1.34 4.38 11.06 19.65 23.57 19.29 11.44 5.40 2.25 0.87 0.27 

4.56 0.00 0.01 0.04 0.16 0.67 2.54 7.55 15.89 22.58 21.75 14.98 8.05 3.72 1.56 0.51 

5.25 0.00 0.00 0.02 0.07 0.34 1.49 5.11 12.46 20.52 22.76 17.84 10.72 5.42 2.43 0.83 

5.81 0.00 0.00 0.01 0.04 0.19 0.94 3.59 9.86 18.28 22.73 19.77 13.02 7.08 3.34 1.17 

6.21 0.00 0.00 0.00 0.02 0.13 0.66 2.73 8.17 16.49 22.26 20.88 14.67 8.41 4.12 1.48 

6.44 0.00 0.00 0.00 0.02 0.10 0.53 2.32 7.28 15.45 21.84 21.38 15.59 9.21 4.61 1.67 

Table 4.3 Transitional matrix for interest rate (values in percentages) 

 

The values in the first column in Table 4.3 are the known values of interest rate during 

the year before the observed year. The values in the first row in Table 4.3 are the 

possible values of interest rate during the observed year. Now, the value in Table 4.3 

crossing one row and one column (apart from the values in the first column and row) 

is the probability that interest rate during the observed year will move from the state 

given in the first column to the state given in the first row. The sum of values in each 

row is 100 (excluding the value in the first column and apart from values in the first 

row). These are expected results as the probabilities in each single row are the 

probabilities for each possible new state of the interest rate. 

 

4.5.1.2 Bonds 

 

The model for the bond market is developed in Section 4.2. For the purpose of the 

numerical solution, we assume that the duration of the rolling bonds is 10 years. In 

this section, we present numerical values of derived one year, nine year and ten year 

bonds, the values of risk free rate, the values of possible states and the transitional 

matrix of low risk rate. The parameters for the interest rate are given at the beginning 

of Section 4.5.1. 

 

We firstly show the numerical values of the prices of one year, nine year and ten year 

bonds. In Table 4.4, we give the bond prices providing 100 money units at maturity 

for different values of the known interest rate in the previous year. 
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Known interest 

rate in the 

previous year 

Price of one year 

bond 

Price of nine year 

bond 

Price of ten year 

bond 

1 –2.44% 100.00 84.39 82.35 

2 –2.21% 99.96 84.24 82.19 

3 –1.81% 99.79 83.95 81.91 

4 –1.25% 99.54 83.53 81.50 

5 –0.56% 99.22 82.97 80.96 

6 0.22% 98.82 82.30 80.30 

7 1.09% 98.38 81.54 79.56 

8 2.00% 97.91 80.73 78.77 

9 2.91% 97.44 79.94 77.99 

10 3.78% 97.00 79.20 77.27 

11 4.56% 96.61 78.55 76.64 

12 5.25% 96.30 78.02 76.12 

13 5.81% 96.05 77.62 75.73 

14 6.21% 95.89 77.35 75.47 

15 6.44% 95.80 77.21 75.33 

Table 4.4 Zero coupon bond prices for durations of one, nine and ten years. 

 

In Table 4.5, we present rates of return on a one year bond, i.e. risk free rates. 

 

Interest rate in the 

previous year 
–2.44 –2.21 –1.81 –1.25 –0.56 0.22 1.09 2.00 

Return on one 

year bond 

investment 

0.00 0.04 0.21 0.46 0.79 1.19 1.65 2.14 

Interest rate in the 

previous year 
2.91 3.78 4.56 5.25 5.81 6.21 6.44  

Return on one 

year bond 

investment 

2.63 3.09 3.51 3.85 4.11 4.29 4.38  

Table 4.5 Risk free rates (values in percentages) 

 

In Table 4.5, in the first and the third row we present the values of the known interest 

rate in the previous year. In the second and fourth row we present the rates obtained 

from investment in the risk free asset, under the assumption that the value of the 

interest rate in the previous year is given in the cell above. 

 

Table 4.6 shows rates of investment return in the low risk asset, i.e. in the ten year 

rolling bonds. Here, we apply formula (4.26) to the values from the last two columns 

in Table 4.4. 
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 -2.44 -2.21 -1.81 -1.25 -0.56 0.22 1.09 2.00 2.91 3.78 4.56 5.25 5.81 6.21 6.44 

-2.44 2.49 2.30 1.95 1.43 0.76 -0.06 -0.98 -1.96 -2.92 -3.83 -4.61 -5.25 -5.74 -6.06 -6.24 

-2.21 2.68 2.49 2.14 1.62 0.95 0.13 -0.80 -1.77 -2.74 -3.65 -4.43 -5.08 -5.56 -5.89 -6.07 

-1.81 3.03 2.84 2.49 1.97 1.29 0.47 -0.46 -1.44 -2.41 -3.31 -4.11 -4.75 -5.24 -5.56 -5.74 

-1.25 3.55 3.36 3.01 2.49 1.81 0.98 0.05 -0.94 -1.92 -2.83 -3.62 -4.27 -4.76 -5.09 -5.27 

-0.56 4.25 4.05 3.70 3.17 2.49 1.66 0.72 -0.27 -1.26 -2.17 -2.97 -3.63 -4.12 -4.45 -4.63 

0.22 5.10 4.90 4.55 4.02 3.33 2.49 1.54 0.54 -0.45 -1.37 -2.18 -2.84 -3.33 -3.67 -3.85 

1.09 6.08 5.88 5.52 4.99 4.29 3.45 2.49 1.48 0.48 -0.45 -1.27 -1.93 -2.43 -2.77 -2.95 

2.00 7.14 6.94 6.57 6.04 5.33 4.48 3.51 2.49 1.48 0.54 -0.28 -0.95 -1.46 -1.80 -1.99 

2.91 8.21 8.00 7.64 7.09 6.38 5.52 4.54 3.51 2.49 1.54 0.71 0.04 -0.47 -0.82 -1.01 

3.78 9.22 9.02 8.64 8.10 7.38 6.51 5.52 4.49 3.45 2.49 1.66 0.97 0.46 0.11 -0.08 

4.56 10.12 9.92 9.54 8.99 8.27 7.39 6.40 5.35 4.31 3.34 2.50 1.81 1.29 0.94 0.75 

5.25 10.87 10.66 10.28 9.73 9.00 8.11 7.12 6.06 5.01 4.04 3.19 2.50 1.97 1.62 1.43 

5.81 11.44 11.23 10.85 10.29 9.56 8.67 7.67 6.61 5.55 4.57 3.72 3.02 2.50 2.14 1.95 

6.21 11.83 11.62 11.24 10.68 9.94 9.05 8.04 6.98 5.92 4.94 4.08 3.38 2.85 2.50 2.30 

6.44 12.04 11.83 11.45 10.89 10.15 9.26 8.25 7.18 6.12 5.14 4.28 3.58 3.05 2.69 2.50 

Table 4.6 Rates on low risk investment, i.e. investment in ten year rolling bonds 

 (values in percentages). 

 

The values in Table 4.6 show rates on low risk investments during a one year period. 

We read Table 4.6 in the following way. At the beginning of the year we know the 

interest rate in the previous year and we read this value in the first column in Table 

4.6. If interest rate during the following year appears to be the value written in the 

first row in Table 4.6, then rate on a ten year rolling bond investment during the 

observed year is read in the cell crossing those row and column. We see that values in 

Table 4.6 are decreasing in each row. It is to be expected. Namely, when we know the 

interest rate during the previous year then we read only that row and the ten year bond 

price is fixed in one row. Each column represent the possible realisation of interest 

rate in the year to come and nine year bond prices decrease with an increase of the 

interest rate observed during the coming year. Also, we observe that the values on the 

diagonal of Table 4.6 are almost the same and roughly 2.50%. This is an expected 

result as the mean value of real interest rate is 2% and we have an increase of about 

25% due to the market price of risk. 

 

We use the same survival table as in Chapter 3. 
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4.5.2 Optimal Consumption, Asset Allocation and Annuitisation 

 

In this section, we present optimal consumption, optimal equity and bond allocation 

and optimal annuitisation as functions dependent on age, pension wealth and interest 

rate. The figures below represent the functions that are calculated using numerical 

mathematics and stored on the computer. Of course, we present here only the results 

which we believe are the most interesting and informative. 

 

Almost all the figures in this section have age and wealth on x and y axes and the 

value in money units or proportions on z–axis. Proportions vary from zero to one. The 

figures show three dimensional surfaces. Figures in this section show the values of the 

control variables, i.e. optimal behaviour, of the pensioner for any combination of the 

value of x and y axes. All these figures are deterministic and do not depend on one 

particular realisation of random interest and equity rates. 

 

If the x and y axis are age and wealth, then the pensioner’s optimal decisions during 

the retirement, regarding the value on the z axis, is a single line on the surface. In 

other words, at a certain age and with a certain pension wealth the pensioner can read 

on the surface the value of his optimal decision. 

 

If x and y axis are interest rate in the previous year and wealth, then the pensioner’s 

optimal decision regarding the value on z axis is a single point on the surface 

depending on his wealth and on the value of the interest rate in the previous year. 

 

We emphasise here that all figures with age as one variable present optimal values on 

the z–axis assuming that the interest rate in the previous year is 2.00%. In this chapter 

we derive and analyse the interest rate risk model where the value of the interest rate 

is changing and optimal values depend on the known interest rate in the previous year. 

The interest rate in the previous year is a state variable in the model. If we want to 

present all optimal results, we should actually present 15 surfaces for each single 

surface presented here and these 15 surfaces will show the optimal values for each 

possible interest rate in the previous year. However, showing all these surfaces would 

be impossible due to the limited space in the thesis. All we want to show here is an 

idea about the shape of the surfaces and about the values of the control variables. 

Sometimes the optimal values for other values of the interest rate in the previous year 

are significantly different but we will not show all these results here. More results 

depending on the interest rate will be presented in the later text in this chapter and in 

Chapter 5. Actually, the pensioner’s optimal values of the control variables are below 
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or above the values shown on the surfaces if interest rate in the previous year is not 

equal to 2.00%. 

 

4.5.2.1 Case 4.1 – Dependence on Wealth and Age 

 

We firstly present the dependence of optimal consumption, equity and bond allocation 

on wealth and age in Case 4.1. There is no annuitisation in Case 4.1. 

 

Optimal consumption is presented in Figure 4.1. We observe that the shapes of the 

surfaces in Figure 4.1 are similar. There is always an increase in optimal consumption 

with an increase of wealth and age. These two features of optimal consumption are to 

be expected. The more wealth the pensioner possesses the more he consumes. Also, if 

the pensioner has the same wealth at two different ages he consumes more at an older 

age because he has fewer years to live and then less incentive to save.  

 

Figure 4.1 Optimal consumption in Case 4.1, for RRA coefficient γ  taking values 

 −1, and −9, and for bequest motive coefficient 
t

b  taking values 0 and 1 

 for 65 99t≤ ≤ . Interest rate in the previous year is 2.00%. Values of 

 wealth are in thousands. 

 

It seems that optimal consumption is not significantly influenced by the bequest 

motive. If we compare the two upper (or two lower) surfaces in Figure 4.1, we 

OptimalConsumption in Case 4.1, b=1, g=-1, rAge-1=2.00%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

20000

40000

60000

80000

100000

C
O

100

200
300350

Wealth

OptimalConsumption in Case 4.1, b=0, g=-1, rAge-1=2.00%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

20000

40000

60000

80000

100000

C
O

100

200
300350

Wealth

OptimalConsumption in Case 4.1, b=1, g=-9, rAge-1=2.00%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

20000

40000

60000

80000

100000

C
O

100

200
300350

Wealth

OptimalConsumption in Case 4.1, b=0, g=-9, rAge-1=2.00%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

20000

40000

60000

80000

100000

C
O

100

200
300350

Wealth



 181

observe that the values on the left hand side surface are slightly higher than the values 

on the right hand side surface. Thus, the pensioner with the bequest motive tends to 

consume slightly less than the pensioner with the same age and wealth and the same 

preferences apart from not having a bequest motive.  

 

The less risk averse pensioner consumes significantly more if he possesses more 

wealth. For example, if we compare the upper left hand side surfaces where 1γ = −  

and 0
t

b =  and the lower left hand side surface where 9γ = −  and 0
t

b = , we observe 

that for each fixed age, the values on the upper surface increase faster than the values 

on the lower surface. 

 

Optimal equity allocation, presented in Figure 4.2, is significantly influenced by the 

pensioner’s risk aversion. If 1γ = − , 100% investment in equities is almost always 

optimal. For a more risk averse pensioner, i.e. under assumption 9γ = − , optimal 

equity investment decreases with age and with wealth, when wealth is about 50,000 or 

more. We observe a steep decrease for the values of the pension wealth from about 

50,000 up to about 200,000. For the pensioner with the bequest motive and the value 

of RRA coefficient 9γ = − , then his optimal equity investment increases for the 

values of pension wealth from 0 to about 50,000. When certain values are attained 

optimal equity investment becomes a decreasing function of wealth. For the pensioner 

with no bequest motive optimal equity investment either decreases or has a constant 

value equal to 100%. 
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Figure 4.2 Optimal equity allocation in Case 4.1, for RRA coefficient γ  taking 

 values −1, and −9, and for bequest motive coefficient 
t

b  taking values 0 

 and 1 for 65 99t≤ ≤ . Interest rate in the previous year is 2.00%. Values 

 of wealth are in thousands. Values of optimal equity allocation are 

 proportions from 0 to 1 

 

Under the assumption stated at the beginning of Section 4.5, optimal bond allocation 

is always equal to one minus optimal equity investment. It means that it is never 

optimal to invest in the risk free asset. Later we will give examples when it is optimal 

to invest one part of wealth into the risk free asset. Surfaces of optimal bond 

allocation are given in Figure 4.3. 
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Figure 4.3 Optimal bond allocation in Case 4.1, for RRA coefficient γ  taking 

 values −1, and −9, and for bequest motive coefficient 
t

b  taking values 0 

 and 1 for 65 99t≤ ≤ . Interest rate in the previous year is 2.00%. Values 

 of wealth are in thousands. Values of optimal bond allocation are 

 proportions from 0 to 1. 

 

4.5.2.2 Case 4.2 – Dependence on Wealth and Age 

 

In Figure 4.4, we present optimal consumption in Case 4.2. We can see that the 

respective surfaces in Figure 4.1 and Figure 4.4 are almost the same. In Case 4.2, 

optimal annuitisation is allowed at age 65 only. We can see from equation (4.63) that 

solutions are calculated backwards year by year. Thus all consumption after age 65 is 

the same. At age 65 we have a different option for the pensioner, i.e. he optimally 

annuitises his pension wealth at that age. We observe later in Figure 4.5 that the 

pensioner optimally uses this opportunity to annuitise, but Figure 4.4 shows that using 

this option does not influence optimal consumption at age 65 significantly. However, 

annuitisation at age 65 will influence the pensioner’s consumption afterwards because 

his income is increased and pension wealth is decreased due to annuitisation at age 65. 

Figure 4.4 shows optimal consumption as a function of wealth and age under 

assumption of constant income after age 65. 
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Figure 4.4 Optimal consumption in Case 4.2, for RRA coefficient γ  taking values 

 −1, and −9, and for bequest motive coefficient 
t

b  taking values 0 and 1 

 for 65 99t≤ ≤ . Interest rate in the previous year is 2.00%. Values of 

 wealth are in thousands. 

 

Figure 4.4 shows optimal consumption under the assumption that income at age 65 is 

65 33,320.90Y = , replacement ratio is 65 0.68212ρ = , and then income is 

22,728.85
t

Y =  for 66 99t≤ ≤ . We know that in Case 4.2, the level of income 

increases after age 65. Now, we need to apply the same technique as explained in 

Section 3.4.2.2. Values of optimal consumption shown in Figure 4.4 should be taken 

as the basis for calculating optimal consumption in Case 4.2. Knowing pension wealth 

and income after purchasing annuities, knowing values in Figure 4.4 and using 

equation (4.65) for 66 99t≤ ≤  one can calculate optimal consumption for any income 

in Case 4.2 after optimally purchasing annuities. Following the same suit as in Section 

3.4.2.2, Figure 4.4 shows optimal consumption under the assumption that income 

after age 65 is 4.1 22,728.85SS

t t
Y Y= = . Now, if we have annuitisation at age 65 then 

income after age 65 is higher. If we denote income in Case 4.2 with 4.2

t
Y  then using 

(4.59) we have 

 
4.1

4.1 4.2

4.2

t
t t

t

Y
W W

Y
= . 

 

Now using (4.65) we have 
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( )
4.2 4.1

4.2 4.2 4.2 4.1 4.2 4.1
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t t t t j t t t t j

t t

Y Y
C W Y r C W Y r

Y Y

∗ ∗
− −
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=  

 
. 

 

In order to calculate optimal consumption ( )4.2 4.2 4.2

1;, ,
t t t t j

C W Y r∗
−  in Case 4.2, we firstly 

read value 4.1

t
W  on wealth axis in Figure 4.4. Then, we read optimal consumption for 

this value of wealth and age on the surface, and then multiply this value with 

 
4.2

4.1

t

t

Y

Y
. 

 

Using this technique, we can determine from Figure 4.4. optimal consumption for a 

given age, pension wealth and any level of income. 

 

For the low risk averse pensioner in Case 4.2, it is optimal to invest all his available 

assets in equities for all ages from 65 onwards and for all reasonable levels of pension 

wealth. In this thesis, we investigate the pensioner who has between 100,000 and 

350,000 money units of pension wealth at age 65. For this pensioner, regardless of 

annuitisation showed in Figure 4.5, it is optimal to invest all his pension wealth in 

equities. For the more risk averse pensioner, it is optimal to invest all his remaining 

pension wealth, after annuitisation, into equities. The more risk averse pensioner with 

no bequest motive will optimally continue investing only into equities during the 

whole retirement period. However the more risk averse pensioner with a bequest 

motive will decrease optimal investment into equities during retirement period and the 

demand for bond investment increases as this pensioner getting older. 

 

Regarding optimal annuitisation at age 65 for the pensioner in Case 4.2, we can see 

from Figure 4.5 that optimal annuitisation at age 65 depends significantly on both 

pension wealth at age 65 and on the interest rate observed during the year prior to 

retirement. Comparing the two upper surfaces ( 1γ = − ) and the two lower surfaces 

( 9γ = − ) in Figure 4.5, we observe that optimal annuitisation is lower for the less risk 

averse pensioner. From the lower left hand side surface, we see that the more risk 

averse pensioner with no bequest motive annuitises around 90% of his pension wealth 

for almost all wealth and interest rate values at age 65. If the pensioner with RRA 

coefficient 9γ = −  has the bequest motive, we can see on the lower right hand side 

surface that his optimal annuitisation is influenced by pension wealth, particularly for 

the level of pension wealth up to about 100,000 money units. For the less risk averse 

pensioner, with RRA coefficient 1γ = − , the choice of optimal annuitisation at age 65 

changes more with changes of wealth and interest rate than for the more risk averse 
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pensioner. If 1γ = −  and 1
t

b =  present optimal annuitisation is less than 55%, and 

decreases with decrease in the values of pension wealth and of interest rate as well. 

 

Figure 4.5 Optimal annuitisation in Case 4.2, for RRA coefficient γ  taking values 

 −1, and −9, for bequest motive coefficient 
t

b  taking values 0 and 1 for 

 65 99t≤ ≤ , and for the different values of interest rate in the previous 

 year Values of wealth are in thousands. Values of optimal annuitisation 

 are proportions from 0 to 1. 

 

4.5.2.3 Case 4.3 – Dependence on Wealth and Age 

 

Figure 4.6 is very similar to Figures 4.1 and 4.4 which means that optimal 

consumption for the same level of income is not significantly influenced by the 

pensioner’s constraints on annuitisation. We emphasise that optimal consumption in 

Figure 4.6 is calculated for the same level of income for all ages. However, due to the 

purchase of annuities, income increases after age 65. Again, we use the same 

technique as in Section 4.5.2.2 to calculate optimal consumption for any value of 

income. In the analysis not presented here, we observed that increased income only 

moves the surfaces in Figure 4.6 up and does not change the shape of the surfaces. 
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Figure 4.6 Optimal consumption in Case 4.3, for RRA coefficient γ  taking values 

 −1, and −9, and for bequest motive coefficient 
t

b  taking values 0 and 1 

 for 65 99t≤ ≤ . Interest rate in the previous year is 2.00%. Values of 

 wealth are in thousands. 

 

Optimal asset allocation in Case 4.3 with no bequest assumption is full investment in 

equities for all reasonable values of pension wealth and age. Less than full equity 

investment is optimal for higher wealth and age but for this combination the pension 

wealth is already mostly annuitised and thus the pension wealth available for 

investment is already significantly decreased. 

 

If the pensioner has the bequest motive, optimal equity and bond investment is 

influenced by the pensioner’s risk aversion. In Figure 4.7, on the left hand side 

surface, we see that for the less risk averse pensioner with 1γ = − , optimal equity 

investment is 100% in equities. However, if the pensioner has RRA coefficient 

9γ = − , then the left hand side surface in Figure 4.7 shows that, apart for very low 

values of pension wealth, optimal equity allocation is decreasing with age and is not 

significantly influenced by the amount of pension wealth available for investment. 
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Figure 4.7 Optimal equity allocation in Case 4.3, for RRA coefficient γ  taking 

 values −1, and −9, and for bequest motive coefficient 
t

b  taking value 1 

 for 65 99t≤ ≤ . Interest rate in the previous year is 2.00%. Values of 

 wealth are in thousands. Values of optimal equity allocation are 

 proportions from 0 to 1 

 

Figure 4.8 shows that all pension wealth not invested into equities is optimally 

invested in bonds. 

 

Figure 4.8 Optimal bond allocation in Case 4.3, for the values of RRA coefficient 

 γ  taking values −1, and −9, and for bequest motive coefficient 
t

b  taking 

 values 1 for 65 99t≤ ≤ . Values of wealth are in thousands. Optimal 

 bond allocation values are proportions from 0 to 1. 

 

Regarding optimal annuitisation in Case 4.3 presented in Figure 4.9, we have 

significantly different shapes of the surfaces. If we observe fixed age and different 

values of pension wealth then optimal annuitisation changes significantly for all ages 

for the pensioner with the bequest motive only. For the pensioner with no bequest 

motive, optimal annuitisation for a given age changes significantly with changes of 

the values of wealth just for some ages. On the two upper surfaces, we observe that 

the less risk averse pensioner will defer annuitisation for a couple of years after 

retirement. How many years this pensioner will optimally defer annuitisation depends 
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on pension wealth, risk aversion and a bequest motive. On two lower surfaces in 

Figure 4.9, we observe that the more risk averse pensioner will optimally annuitise 

part of his pension wealth at the time of retirement for all reasonable values of 

pension wealth. 

 

Figure 4.9 Optimal annuitisation in Case 4.3, for the values of RRA coefficient γ  

 taking values −1, and −9, and for bequest motive coefficient 
t

b  taking 

 values 0 and 1 for 65 99t≤ ≤ . Values of wealth are in thousands. 

 Optimal annuitisation values are proportions from 0 to 1. 

 

Again, we should be aware that Figures 4.7, 4.8 and 4.9 show results when the income 

at age 65 is 65 33,320.90Y = , replacement ratio is 65 0.68212ρ = , and income is 

22,728.85
t

Y =  for 66 99t≤ ≤ . As result of purchasing annuities, income increases 

and precise reading of the values on the mentioned figures above should be done 

using similar technique as explained in Section 4.5.2.2 and using equations(4.59), and 

(4.65)–(4.69). 

 

4.5.2.4 Dependence on Income 

 

Similarly to our conclusions earlier in Section 4.5, an increase/decrease of the value of 

income variable 
t

Y  pulls/squeezes the surfaces of optimal consumption towards 

larger/lower values on the pension wealth axis and moves the whole surface up/down. 
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The overall shape of the surfaces stays the same. This conclusion can be drawn from 

the relations given in (4.59) and (4.65)−(4.68). In Figure 4.10, we present optimal 

consumption for the pensioner with risk preferences 1γ = −  and 0
t

b = , and 9γ = −  

and 1
t

b = , and for two different levels of income, ;1 22,728.85
t

Y =  and 

;2 ;11.5 34,039.27
t t

Y Y= ⋅ = . This is increase of the value of income for 50%. 

 

Figure 4.10 Optimal consumption in Case 4.2, for the pensioners with 1γ = −  and 

 0
t

b = , and 9γ = −  and 1
t

b = . Interest rate in the previous year is 2.00%. 

 Income on the left hand side surfaces is ;1 22,728.85
t

Y = , and income on 

 the right side surfaces is ;2 ;11.5 34,039.27
t t

Y Y= ⋅ = . Values of wealth are 

 in thousands. Optimal annuitisation values are proportions from 0 to 1. 

 

In Figure 4.10, we can observe the effect of the change of income. Income on the left 

hand side surfaces is ;1 22,728.85
t

Y =  and these two surfaces are the same ones as in 

Figure 4.4 for the appropriate values of RRA and bequest motive coefficients. The 

surfaces on the right hand side in Figure 4.10 have income increased by 50% and all 

other parameters are the same as for the surfaces on the left hand side. 

 

If the income variable 
t

Y  increases and other variables remain the same, then the 

surfaces of optimal annuitisation and equity and bond allocation will be pulled on the 

wealth axis towards larger values, while keeping its shape. Similarly, if income 

variable 
t

Y  decreases keeping other variables the same, then the surfaces will be 
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squeezed, again keeping their shape. In Figure 4.11, the surfaces in each row differ in 

the value of income. 

 

Figure 4.11 Optimal annuitisation in Case 4.3, for the pensioners with 1γ = −  and 

 0
t

b = , and 9γ = −  and 1
t

b = . Interest rate in the previous year is 2.00%. 

 Income on the left hand side surfaces is ;1 22,728.85
t

Y = , and income on 

 the right side surfaces is ;2 ;11.5 34,039.27
t t

Y Y= ⋅ = . Values of wealth are 

 in thousands 

 

We observe in Figure 4.11, in either the upper or lower pair of surfaces, that the value 

of optimal annuitisation for a given age and wealth on the left hand side surface is the 

same as the value on the right hand side surface for the same age but for a 50% larger 

value of pension wealth. 

 

4.5.2.5 Dependence on the value of Interest Rate 

 

Optimal consumption does not show a significant dependence on the known interest 

rate in the previous year. The pensioner in any one of the investigated cases will 

experience relative differences of up to 3% in the values of optimal consumption. 

Optimal consumption is closely related to optimal asset allocation and annuitisation 

and the changes in optimal consumption can be explained in the context of optimal 

asset allocation and annuitisation only. We need to observe income at the beginning 

Optimal Annuitisation in Case4.3, b=0, g=-1, rAge-1=2.00%, DY=50.%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

0.2

0.4

0.6

0.8

1

A
O

100

200
300350

Wealth

0

Optimal Annuitisation in Case4.3, b=0, g=-1, rAge-1=2.00%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

0.2

0.4

0.6

0.8

1

A
O

100

200
300350

Wealth

Optimal Annuitisation in Case4.3, b=1, g=-9, rAge-1=2.00%, DY=50.%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

0.2

0.4

0.6

0.8

1

A
O

100

200
300350

Wealth

0

Optimal Annuitisation in Case4.3, b=1, g=-9, rAge-1=2.00%

0

100

200
300350

Wealth
65

70
75

80
85

90
9598

Age

0

0.2

0.4

0.6

0.8

1

A
O

100

200
300350

Wealth



 192

of the year as implied risk free asset in a possession of the pensioner. As interest rate 

increases the value of this implied risk free asset decreases. On the other side, the 

pensioner expects better return on his pension wealth only if optimal asset allocation 

for a given value of pension wealth includes investment in risk free investment, bonds 

or annuities. So, if the pensioner possesses pension wealth such that it is optimal to 

invest 100% or almost 100% into equities than his optimal consumption decreases 

because his implied risk free assets decrease in value and his perspective of 

investment returns stays the same. However, if optimal asset allocation includes a 

higher proportion of risk free or bond investment or annuities, then his expected 

return on investment increases the value of interest rate increases. If this is the case 

then, for enough high values of pension wealth, his optimal consumption increases as 

the value of interest rate increases because higher expected return due to the higher 

expected return on risk free investment, bonds or annuities provides him with a higher 

overall wealth (including implied assets from future income). As a result of these 

combined effects the patterns of changes in optimal consumption as the value of 

interest rate increases are different from case to case. For example, in Case 4.1 for the 

more risk averse pensioner with no bequest motive, for a lower value of pension 

wealth, it is optima to invest 100% in equities and optimal consumption decreases as 

the value of interest rate increases. However, for the higher values of the pension 

wealth for this pensioner, it is optimal to increase consumption as interest rate 

increases. If we observe the more risk averse pensioner with a bequest motive in Case 

4.1, then it is optimal to increase consumption for very low values of the pension 

wealth, then for a certain range of the higher values of the pension wealth it is optimal 

to decrease consumption, and then after that range for further higher values of the 

pension wealth it is optimal to increase consumption as the value of interest rate 

increases. Thus, for a given case and the pensioner’s preferences towards risk and 

bequest, and for a given value of the pension wealth, we need to observe optimal asset 

allocation and annuitisation and to draw conclusion if the optimal consumption will 

increase or decrease as the value of the interest rate increases. 

 

In Figure 4.12, we present the changes of optimal equity allocation in Case 4.1 due to 

the changes of the value of the interest rate in the year preceding the pensioner’s ages 

of 65 and 80. 
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Figure 4.12 Dependence of optimal equity allocation on interest rate for ages 65 and 

 80 in Case 4.1, RRA coefficient γ  taking values −1, and −9, 0
t

b = . 

 Wealth values are in thousands. Optimal equity allocation values are 

 proportions from 0 to 1. 

 

In the upper right hand side surface in Figure 4.12, optimal equity allocation changes 

from 20% to 90% for pension wealth of about 200,000 units. On the upper left hand 

side surface the optimal equity allocation changes from 70% to 100% for pension 

wealth of about 200,000 units and it is 100% for small pension wealth values. We 

observe that the upper and the lower surfaces on the left hand side and the upper and 

the lower surfaces on the right hand side have a similar shapes and that the surfaces 

have a slightly lower position for the higher ages. The differences in values are up to 

about 10%. 

 

In Figure 4.13, we present the changes of optimal equity allocation in Cases 4.3 with 

the changes of the value of the interest rate in the year preceding the pensioner’s ages 

of 65 and 80. 
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Figure 4.13 Dependence of optimal equity allocation on interest rate for ages 65 and 

 80 in Case 4.3, RRA coefficient γ  taking values −1, and −9, with a 

 bequest. Wealth values are in thousands. Optimal equity allocation 

 values are proportions from 0 to 1. 

 

In Figure 4.13 we see that in Case 4.3 the optimal equity allocation surfaces, as 

functions of interest rate and wealth, change significantly with age. These changes 

depend on the combinations of the risk and bequest parameters. 

 

For 1γ = − , for the lower values of pension wealth the pensioner at age 65 optimally 

invests all available pension wealth into equities for all values of interest rate. For the 

values of pension wealth larger than 50,000, he optimally invests less in equities for 

the higher values of interest rate and 100% for the lower values of interest rate. 

However, the same pensioner invests similarly at age 80 for all pension wealth values. 

Thus, we have two surfaces with different patterns on the left hand side in Figure 

4.13. 

 

For the less risk averse pensioner, with 9γ = − , we find that both surfaces have 

similar shapes with the following characteristics. Optimal equity allocation does not 

depend on pension wealth apart from very small pension wealth values. The 

percentage of the pension wealth invested into equities significantly depends on the 

known interest rate in the year preceding the year of investment and on the age of the 

pensioner. The pensioner with 9γ = −  and 1
t

b =  will optimally invest into equities 
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40–100% at age 65, while the same pensioner will optimally invest into equities 20–

100% of his pension wealth at age 80. We observe that the pensioner aged 65 will 

invest roughly 20% more into equities than the pensioner aged 80. 

 

In Figures 4.12 and 4.13, we find that interest rate significantly influences optimal 

equity allocation for different combinations of parameters. It is the expected result 

because bond prices and the annuity rate directly depend on the known interest rate 

during the previous year. For the higher values of interest rate, the bond prices are 

lower, and consequently the bonds and annuities become more attractive. We can 

observe on all surfaces that optimal equity allocation decreases as the value of the 

interest rate increases. However, the degree of the changes of optimal equity 

allocation with the changes of the values of interest rate depends significantly on the 

value of the parameters. 

 

In Figure 4.14, we show optimal annuitisation for the two pensioners, one with RRA 

coefficient 1γ = −  and the other with RRA coefficient 9γ = − , and both pensioners 

have the bequest motive. Optimal annuitisation is presented for ages 65 and 75. 

 

Figure 4.14 Dependence of optimal annuitisation on interest rate for ages 65 and 75 

 in Case 4.3, RRA coefficient γ  taking values −1, and −9, with bequest. 

 Wealth values are in thousands. Values of optimal annuitisation are 

 proportions from 0 to 1. 
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For the investigated values of pension wealth, the pensioner with 1γ = −  and 1
t

b =  

will optimally annuitise at age 65 only if the interest rate in the previous year is 

favourable. Otherwise, it is optimal for this pensioner to defer annuitisation. The same 

pensioner at age 75 will optimally annuitise part of his pension wealth if his pension 

wealth is reasonably large. Again, annuities are more attractive for this pensioner if 

the value of the interest rate is attractive. 

 

The pensioner with 9γ = −  and 1
t

b =  optimally annuitises part of his pension wealth 

for all reasonable values of pension wealth. However, we observe the decrease of the 

values of optimal annuitisation as interest rate decreases. It means that the pensioner 

defers annuitisation partly if interest rate is not favourable and purchases annuities in 

the later years of retirement when he expects the values of interest rate to be 

favourable. At age 75, optimal annuitisation does not significantly depend on interest 

rate. The pensioner with 1γ = −  and 1
t

b =  will optimally annuitise at age 75 

depending on his available pension wealth only  

 

In Figure 4.14, we observe that at age 65, the pensioner will optimally annuitise a 

certain part of his pension wealth. If interest rate is favourable, he annuitises more and 

if not then he defers annuitisation partly or in full. This is the general pattern of 

optimal annuitisation in Case 4.3 for all investigated combinations of the values of the 

parameters. However, at later ages annuities are more advantageous for the pensioner, 

due to the higher value of mortality drag. Thus, at later ages the pensioner’s demand 

for annuities increases and is less sensitive to the value of the interest rate during the 

year before annuitisation. The largest advantage in deferring annuitisation is in the 

early years in retirement. 

 

More results related to changing interest rate in the year prior to retirement will be 

presented in Sections 4.5.5 and 4.5.7 and also in Chapter 5. In Chapter 5 we compare 

the results in Chapter 3 for Cases 3.1, 3.3 and 3.5 and the results in Chapter 4 for 

Cases 4.1, 4.2 and 4.3. 

 

4.5.3 The Typical Example of Simulation 

 

In this chapter, we determine the control variables (optimal consumption, asset 

allocation and annuitisation) such that the pensioner’s expected derived utility is 

maximised. All control variables are functions and we obtain these functions using 

numerical mathematics. Once calculated, control variables are stored on the computer 
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and ready for further investigation. Control variables allow us to make stochastic 

simulations and to investigate different realisations of the stochastic simulations. 

 

For each case and for each combination of parameters γ  and 
t

b  given in Section 

4.5.1, we make 2,000 random realisations of interest and equity rate. Then we 

calculate 2,000 random realisations of control variables and derived utility, as well as 

all other variables of interest. By investigating these random realisations, we get a 

clearer idea about the pensioner’s optimal behaviour. From the sample of random 

realisations, we calculate mean value, quantiles and other statistics of any interesting 

variable. 

 

In this section we present one typical solution obtained from stochastic simulations of 

different random paths of interest rate, equity rates, and paths for all other variables in 

the model. We assume that pension wealth at age 65 is 65 200.000W = , income at age 

65 is 65 33.321Y = , interest rate prior to retirement is 2.00%. The size of the sample of 

random realisations is 2,000. The following four graphs show the mean values and 

0.05 and 0.95 quantiles of the pensioner's optimal behaviour. 

 

Figure 4.15 Mean optimal asset allocation and mean optimal annuitisation for the 

 pensioner in Case 4.3, with 1
t

b =  and 1γ = − . Mean optimal equity 

 allocation (solid line), mean optimal bond allocation (dashed line), 

 optimally no cash in the left hand side graph. Mean (solid line) and 95% 

 quantile (dashed line) of optimal annuitisation in the right hand side 

 graph. 
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Figure 4.16 Mean income, mean wealth and mean optimal consumption for the 

 pensioner in Case 4.3, with bequest motive 1
t

b =  and for RRA 

 coefficient 1γ = − . Mean income (dash line with shorter dashes), mean 

 wealth (full line) and mean optimal consumption (dash line with longer 

 dashes) in the left hand side graph, and mean (full line), 5% (dash line) 

 and 95% (dash and dot line) quantiles of optimal consumption in the 

 right hand side graph. 

 

4.5.4 Criteria for Comparing Results 

 

In this chapter we apply the same criteria as in Chapter 3. We have two groups of 

criteria (measures). In the first group, we have Constant Equivalent Consumption – 

CEC , and Required Equivalent Wealth – REW  measure. We apply these criteria to 

expected discounted utility derived from consumption and bequest. The second group 

of measures consists of Value at Risk – VaRα  and Conditional Value at Risk – 

CVaRα , for 0 1α< < . We apply the criteria from the second group to the random 

discounted utility derived from consumption and bequest. If we have the results in 

terms of utility units then the degree of pensioner’s gains or loss is not clear. That is 

why we convert and present all measures in money terms. 

 

Regarding CEC  measure, we follow the derivation in Section 3.4.4 and obtain the 

same formula 
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 (4.84) 

 

where 
t

C�  is random consumption at age t , for 65 99t≤ ≤ , and 65C�  is optimal 

consumption at age 65. Thus, 65C�  is control variable. 

 

We can calculate the CEC  measure for any case and for any reasonable values of the 

parameters and as a result we get a single non–negative number. The pensioner is 

better off if 
CEC

C  is higher. If we determine the values of the CEC  measure for two 

comparable examples, then the pensioner is better off in the example where the value 

of the CEC  measure is higher. Now, we can also observe the difference between the 

two values of the CEC  measure and get an idea of how much better off the pensioner 

is in one example to the next. Two comparable examples can be the results in 

different cases, while all other assumptions are the same or the two results with 

different values of interest rate in the year before retirement and all other assumptions 

the same. 

 

Required equivalent wealth – REW  measure is the second measure. Having solved 

the problem (4.48)–(4.55) we get the value function 

 

 ( )65 65 65 64;, ,
j

V W Y r  (4.85) 

 

65 0W ≥  and 65 0Y ≥ , and 64; j
r  for 1,..,

r
j n=  in the domain of the value for interest 

rate. 

 

Function ( )65 65 65 64;, ,
j

V W Y r  is increasing function with respect to variable 65W . For 

given values ( )65 65 65 64;, ,
j

V W Y r , 65 0Y ≥  and 64; j
r  we can calculate the inverse function 

with respect to variable 65W . REW  measure can be calculated from two comparable 

examples only. Let us suppose that two comparable examples are two different cases, 

while all other assumptions in examples are the same. Let us suppose that we have 

expected discounted utility ( )1 65 1 65 65 64;, ,
j

V W Y r  in the first case, where 1 65 0W ≥  and 

65 0Y ≥ , and 64; j
r  are known values. Then, we can calculated 2 65W  such that 

 

 ( ) ( )2 65 2 65 65 64; 1 65 1 65 65 64;, , , ,
j j

V W Y r V W Y r=  (4.86) 
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where ( )2 65 2 65 65 64;, ,
j

V W Y r  is expected discounted utility function in the second case. 

Thus, we get the amount of wealth in the second case such that expected discounted 

utility is the same in both cases. Now, we compare 1 65W  and 2 65W , and we can 

conclude which one of two comparable cases is favourable for the pensioner. If 

1 65 2 65W W>  then the pensioner in the second case can derive the same utility as the 

pensioner in the first case but with the lower value of initial pension wealth. So, the 

second case is more favourable for pensioner. We get in money term how much one 

case is more favourable than the other. If the opposite is true, i.e. if 1 65 2 65W W< , then 

the first case is more favourable for the pensioner. If 1 65 2 65W W= , then the pensioner 

is, in terms of expected discounted utility derived from future consumption and 

bequest, indifferent between the two cases. 

 

We prefer to use REW  measure compared to CEC  measure because REW  measure 

takes into account the expected discounted utility from both consumption and bequest 

while CEC  measure takes into account expected discounted utility from consumption 

only. However, we will show the results in terms of both CEC  and REW  measures. 

 

Value at Risk and Conditional value at risk are measures of the pensioner’s left tail 

risk. We calculate VaRα  and CVaRα  from a random utility derived from discounted 

future random consumption and bequest. We follow the same steps as in Chapter 3, 

and introduce a new random variable ( )65 65 64;, ,
j

D W Y r�  such that 
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�  (4.87) 

 

where 65 0W ≥  and 65 0Y ≥ , 64; j
r  for 1,..,

r
j n= , in the domain the values of interest 

rate, and where 65C�  is control variable, 
t

C�  are random variables for 66 99t≤ ≤ . The 

PDF  or CDF  of the random variable ( )65 65 64;, ,
j

D W Y r�  cannot be found analytically. 

However, we can make a number of random realisations of this random variable and 

then calculate approximate values of VaRα  and CVaRα  from the random realisation. 

Obviously, one property that we expect to be satisfied in all examples when we 

calculate right hand side of (4.87) numerically comes from the very first definition of 

the value function and ( )65 65 64;, ,
j

D W Y r�  and it is  

 

( ) ( )65 65 65 64; 65 65 64;, , , ,
j j

V W Y r E D W Y r ≈  
� . 

 

This is the rule that we use in Section 4.4.4 for checking the accuracy of the results. 

 



 201

Once we have a random variable ( )65 65 64;, ,
j

D W Y r�  in the form of a random sample, we 

can use it to calculate approximate values of VaRα  and CVaRα  as measures of the 

risk that the pensioner derives lower than expected discounted utility. In Section 4.5.6, 

we define this measure precisely and investigate the results. 

 

4.5.5 CEC and REW Measures Applied 

 

In this section, we investigate expected discounted utility using CEC  and REW  

measures for different cases and for different values of the parameter. The parameters 

that we change here are the RRA coefficient γ  and the bequest motive coefficient 
t

b . 

In order to focus on the analysis of the different cases, we firstly investigate the 

results for the value of the interest rate in the year prior to retirement 64 2.00%r = . In 

the second part of this section, we present some results for different values of the 

interest rate. As we note at the end of this section, a deeper investigation related to the 

different values of interest rate is done in Chapter 5. 

 

Before investigating CEC  and REW  measures, we present the mean consumption 

and mean wealth paths for 9γ = −  and 0
t

b =  and for 1γ = −  and 1
t

b = . 

 

In Figure 4.17, we show the mean values of pension wealth paths in different Cases, 

for the pensioner with 9γ = −  and 0
t

b = , and for initial pension wealth 200,000 and 

interest rate in the year before retirement 64 2.00%r = .  
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Figure 4.17 Mean pension wealth development in the retirement in Cases 4.1, 4.3 and 

 4.3, for 9γ = −  and 0
t

b = . The value of the interest rate during the year 

 prior to retirement is 2.00%. Initial pension wealth is 200,000. 

 

In Figure 4.18, we present the mean values of optimal consumption in different Cases, 

for the pensioner with 9γ = −  and 0
t

b = , and for initial pension wealth 200,000 and 

interest rate in the year before retirement 64 2.00%r = . 

Figure 4.18 Mean optimal consumption development in the retirement in Cases 4.1. 

 4.2 and 4.3, for 9γ = −  and 0
t

b = . The value of the interest rate during 

 the year prior to retirement is 2.00%. Initial pension wealth is 200,000. 
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We observe very different paths of the values of mean pension wealth and 

consumption. CEC  and REW  measures summarise into a single number the 

complexity of these future developments. 

 

We observe that both mean pension wealth and mean consumption paths are very 

different from case to case. In Case 4.2, where optimal annuitisation is allowed at age 

65 only, it is optimal to annuitise almost 90% of pension wealth. None of the pension 

income is saved afterwards, which means that after age 65 the pensioner consumes all 

his income from social security and annuities. The mean values of pension wealth and 

consumption in Case 4.3 have similar paths as in Case 4.2, but less annuitisation is 

done at age 65 in Case 4.3 and some annuitisation is done afterwards as well. In 

Figure 4.18, we observe that Case 4.1 is the worst one in terms of mean values of 

optimal consumptions. 

 

In Figures 4.19 and 4.20, we present the same results as in figures 4.17 and 4.19 but 

now for the pensioner with 1γ = −  and 1
t

b = . 

 

Figure 4.19 Mean pension wealth development in the retirement in Cases 4.1, 4.2 and 

 4.3, for 1γ = −  and 1
t

b = . The value of the interest rate during the year 

 prior to retirement is 2.00%. Initial pension wealth is 200,000. 
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Figure 4.20 Mean optimal consumption development in the retirement in Cases 4.1, 

 4.2 and 4.3, for 1γ = −  and 1
t

b = . The value of the interest rate during 

 the year prior to retirement is 2.00%. Initial pension wealth is 200,000. 

 

The differences between mean pension wealth paths in Figure 4.19 are less than in 

Figure 4.17. There is a fewer annuitisation in both Cases 4.2 and 4.3 in Figure 4.19. 

For example, optimal annuitisation in Case 4.2 in Figure 4.19 is 18%. Regarding 

mean optimal consumption paths, we observe a wider range of values in Figure 4.20 

than in Figure 4.18. If we observe case by case, then in each case mean optimal 

consumption is higher in Figure 4.20 than in Figure 4.18 for the lower ages and lower 

for the higher ages.. 

 

Table 4.7 shows the CEC  measure for different bequest and RRA coefficients. The 

value of the interest rate in the year prior to retirement is equal to 2.00% for each 

calculated value. Initial pension wealth is 200,000 money units and all values of CEC  

measure are calculated at age 65. 

 

In Table 4.8 we present the relative changes of CEC  measure in Table 4.7 in Cases 

4.2 and 4.3 to Case 4.1, for the same values of γ  and 
t

b . Percentages changes 

presented in Table 4.8 are calculated using the formula 

 
( ) ( )

Case 4.j Case 4.1

( )

Case 4.1

row i row i

CEC CEC

row i

CEC

C C

C

−
 

 

for 1 6i≤ ≤  and 2 3j≤ ≤ . 
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Bequest and 

RRA parameters 

No annuity 

Optimal 

annuities at 65, 

no annuities 

afterwards 

Optimal 

annuities at 65 

and afterwards 

Case 4.1 Case 4.2 Case 4.3 

1 0
t

b =  1γ = −  37,597 37,958 38,322 

2 0
t

b =  4γ = −  35,761 37,583 37,752 

3 0
t

b =  9γ = −  34,205 37,457 37,541 

4 1
t

b =  1γ = −  35,977 36,041 36,237 

5 1
t

b =  4γ = −  35,046 36,328 36,438 

6 1
t

b =  9γ = −  33,641 36,114 36,185 

Table 4.7 CEC  measure in amounts – Values in the cell show CEC  measure for 

 different cases and different pensioner’s preferences towards risk and 

 bequest. Assumed interest rate during the year prior to retirement is 

 2.00%. Initial pension wealth is 200,000 money units. Pensioner’s age is 

 65. 

 

 
Bequest and 

RRA parameters 

Optimal 

annuities at 65, 

no annuities 

afterwards 

Optimal 

annuities at 65 

and afterwards 

Case 2 Case 3 

1 0
t

b =  1γ = −  0.96% 1.93% 

2 0
t

b =  4γ = −  5.10% 5.57% 

3 0
t

b =  9γ = −  9.51% 9.75% 

4 1
t

b =  1γ = −  0.18% 0.72% 

5 1
t

b =  4γ = −  3.66% 3.97% 

6 1
t

b =  9γ = −  7.35% 7.56% 

Table 4.8 CEC  measure in percentages – The values in cells show percentage 

 difference between the case in the header of the column and Case 4.1, for 

 the values of CEC  measure in amounts given in Table 4.8. 

 

Table 4.9 shows REW  measures for one set of parameters such that all pension 

wealth in one row give to the pensioner the same expected discounted utility derived 

from future consumption and bequest. The benchmark wealth is in Case 4.1 and it is 

200,000. The value of the interest rate in the year prior to retirement is 2.00%. Again, 

all calculations are done for the pensioner aged 65. 

 

Similarly to CEC  measure in percentages, we develop REW  measure in 

percentages. Using values from Table 4.9 and the following formula 
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( ) ( )

Case 4.1 65 Case 4.j 65

( )

Case 4.1 65

row i row i

row i

W W

W

−
 

 

for 1 6i≤ ≤  and 2 3j≤ ≤  we calculate the values presented in table 4.10. This is 

similar formula as for CEC  measure in percentages, but with a negative sign in order 

to get positive percentages. 

 

 
Bequest and 

RRA parameters 

No annuity 

Optimal 

annuities at 65 

only 

Optimal 

annuities at 65 

and afterwards 

Case 4.1 Case 4.2 Case 4.3 

1 0
t

b =  1γ = −  200,000 194,880 189,941 

2 0
t

b =  4γ = −  200,000 173,900 171,607 

3 0
t

b =  9γ = −  200,000 153,270 152,165 

4 1
t

b =  1γ = −  200,000 199,050 196,196 

5 1
t

b =  4γ = −  200,000 181,005 179,441 

6 1
t

b =  9γ = −  200,000 163,139 162,164 

Table 4.9 REW  in amounts – Values in the cell show wealth needed in Case 

 shown in the column to obtain the same utility as 200,000 in Case 4.1. 

 The value of the interest rate during the year prior to retirement is 2.00%. 

 Initial pension wealth is 200,000. 

 

 
Bequest and 

RRA parameters 

Optimal 

annuities at 65 

only 

Optimal 

annuities at 65 

and afterwards 

Case 4.2 Case 4.3 

1 0
t

b =  1γ = −  2.56% 5.03% 

2 0
t

b =  4γ = −  13.05% 14.20% 

3 0
t

b =  9γ = −  23.37% 23.92% 

4 1
t

b =  1γ = −  0.48% 1.90% 

5 1
t

b =  4γ = −  9.50% 10.28% 

6 1
t

b =  9γ = −  18.43% 18.92% 

Table 4.10 REW  measure in percentages – Values in the cells show percentage 

 difference between Case 4.1 and the cases shown in the first column. The 

 values in Cases are taken from Table 4.10. The value of the interest rate 

 during the year prior to retirement is 2.00%. Initial pension wealth is 

 200,000 money units. Pensioner’s age is 65. 
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Again, as in the analysis of Tables 3.8 and 3.10 in Chapter 3, the differences are larger 

in Table 4.10 than in Table 4.8. The CEC  measure does not include utility derived 

from a bequest, only from consumption. Thus, if we observe the pensioner with a 

bequest motive then we should use the results from Table 4.10 only. 

 

Table 4.8 and 4.10 gives the results assuming the values of interest rate in the year 

prior to retirement to be 2.00%. The numbers are different but the conclusions in Case 

3.1, 3.3 and 3.5 in Chapter 3 are similar to the conclusions in Cases 4.1, 4.2 and 4.3 

here. As all the results in these two tables are based on the expected discounted utility 

and all assumptions apart from the difference in interest rate are the same, it is not 

surprising that the conclusions from Table 4.8 and 4.10 will be similar to the 

conclusions from Table 3.8 and 3.10, respectively.  

 

We clearly see the importance of having access to annuities. In Tables 4.8 and 4.10 

we observe that Cases 4.2 and 4.3 results are always more preferable than Case 4.1. 

Access to annuities always brings extra expected discounted utility for the pensioner. 

The exact amount of extra expected discounted utility either measured using CEC  or 

REW  measures significantly depends on the pensioner’s preferences towards risk and 

the bequest motive. 

 

Comparing any pair of the rows in Table 4.10, we find the largest difference between 

the results in the rows 3 and 4. In both Case 4.2 and 4.3, the pensioner with 9γ = −  

and 0
t

b = , have the highest gains and the pensioner with 1γ = −  and 1
t

b =  has the 

lowest gains. In Figures 4.17 and 4.18, we present mean pension wealth and mean 

optimal consumption for the pensioner with 9γ = −  and 0
t

b = , and in Figures 4.19 

and 4.20 for the pensioner with 1γ = −  and 1
t

b = . We observe in Figure 4.18 that up 

to age 80, mean optimal consumption in Cases 4.2 and 4.3 is almost the same, and 

after age 80 we observe a lower mean optimal consumption in Case 4.2. Mean 

optimal annuitisation for this pensioner in Case 4.2 is about 87%, and in Case 4.3 it is 

about 67% at age 65 and mostly 17% afterwards. Thus, this pensioner annuitises a 

significant part of his pension wealth at age 65 in both Cases 4.2 and 4.3. On the other 

hand, we observe in Figure 4.19 that the pensioner with 1γ = −  and 1
t

b =  optimally 

annuitises a smaller amounts of his pension wealth. His mean optimal annuitisation in 

Case 4.2 is about 18%, and in Case 4.3 he optimally defers annuitisation at the very 

beginning of the retirement and then annuitises less than 5% of his available pension 

wealth. We emphasise that we state here the values of mean optimal annuitisation in 

Cases 4.2 and 4.3. Each optimal annuitisation depends on the random interest rate and 
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on pension wealth and income. However, we can conclude that the pensioner with the 

higher demand for annuities benefits more in terms of the CEC  and REW  measure. 

 

We observe in Table 4.10 that the overall gains, in terms of the CEC  or REW  

measures, are lower for the less risk averse pensioner. If we observe the pairs of the 

results in the rows such that the RRA coefficients are the same, then we can see that 

the existence of the bequest motive results in a lower increase of the pensioner’s gains 

in terms of the CEC  or REW  measures. We can conclude that the more risk averse 

pensioner will benefit more from access to annuities than the less risk averse 

pensioner. Also, the pensioner with no bequest motive will benefit more from access 

to annuities than the pensioner with the bequest motive. 

 

Case 4.3 is always more favourable than Case 4.2. It is an expected result because the 

constraints on annuitisation are stricter in Case 4.2 compared to Case 4.3. We observe 

that the differences between Cases 4.2 and 4.3 are larger for the less risk averse 

pensioner.  

 

In Table 4.10, we find that if 0
t

b =  and 1γ = − , then the pensioner’s access to 

annuities whenever in retirement brings him 5.03% gains. If 1
t

b =  and 1γ = −  then 

the pensioner gains 1.90% in terms of the REW  measure. At the same time, the 

pensioner has 2.47% and 1.42% better results in Case 4.3 compared to Case 4.2, 

respectively. 

 

For the more risk averse pensioner, for 0
t

b =  and 9γ = − , the gains in Case 4.3 

compared to Case 4.1 is 23.92% and the gains in Case 4.3 compared to Case 4.2 are 

0.55%. Observing other combinations of the pensioner’s risk and bequest preferences, 

we find the following The more risk averse pensioner benefits more in Case 4.3 

compared to Case 4.1 in terms of the REW  measure and at the same time the benefit 

for the more risk averse pensioner in Case 4.3 compared to Case 4.2 is lower than the 

benefits for the less risk averse pensioner. The same pattern of higher gains occurs for 

the pensioner with the bequest motive compared to the pensioner with no bequest 

motive. 

 

Purchasing fewer annuities is followed by a lower income and a higher pension 

wealth. The pattern for income repeats itself for mean consumption. Purchasing fewer 

annuities is followed by a lower mean consumption in later years. Generally, 

increasing the bequest motive and lowering the pensioner’s risk aversion is followed 

by a lower levels of annuitisation. Thus, increasing the bequest motive, and 
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decreasing the pensioner’s risk aversion will be followed by a higher mean optimal 

consumption in the early years of retirement and a lower mean optimal consumption 

in the later years of retirement. 

 

In Table 4.11 we present the pensioner’s gains in terms of REW  measure when the 

value of the interest rate in the year prior to retirement changes. We show these results 

for different combinations of the pensioner’s preferences towards risk and bequest. 

 

Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 

–2.44 1.04% 4.96% 21.64% 23.08% 0.02% 1.87% 17.21% 18.14% 

–2.21 1.09% 4.96% 21.73% 23.12% 0.02% 1.87% 17.28% 18.17% 

–1.81 1.19% 4.97% 21.88% 23.18% 0.04% 1.87% 17.39% 18.24% 

–1.25 1.34% 4.97% 22.10% 23.28% 0.07% 1.87% 17.55% 18.34% 

–0.56 1.55% 4.98% 22.38% 23.41% 0.12% 1.88% 17.75% 18.46% 

0.22 1.83% 5.00% 22.69% 23.57% 0.20% 1.88% 17.98% 18.61% 

1.09 2.17% 5.01% 23.03% 23.74% 0.32% 1.89% 18.21% 18.77% 

2.00 2.56% 5.03% 23.37% 23.92% 0.48% 1.90% 18.43% 18.92% 

2.91 2.98% 5.05% 23.67% 24.09% 0.66% 1.91% 18.62% 19.05% 

3.78 3.40% 5.07% 23.93% 24.25% 0.85% 1.92% 18.80% 19.18% 

4.56 3.79% 5.10% 24.13% 24.38% 1.04% 1.94% 18.94% 19.28% 

5.25 4.12% 5.14% 24.29% 24.48% 1.21% 1.94% 19.05% 19.37% 

5.81 4.35% 5.19% 24.40% 24.55% 1.30% 1.95% 19.13% 19.43% 

6.21 4.49% 5.22% 24.47% 24.60% 1.36% 1.96% 19.18% 19.47% 

6.44 4.57% 5.24% 24.50% 24.63% 1.39% 1.97% 19.21% 19.50% 

Table 4.11 REW  measure in percentages – Values in the cells show percentage 

 difference between Case 4.1 and the Case shown in the column header. 

 The pensioner’s preferences towards risk and bequest are given in the 

 very first row. The values of interest rate in the year prior to retirement 

 are given in the very first column. Pension wealth is 200,000, 

 pensioner’s age is 65. 

 

We see in Table 4.11 that interest rate in the year prior to the year of retirement 

influences the pensioner’s expected discounted utility drawn from consumption and 

bequest during retirement. If the value of interest rate is lower than the annuity factor 

t
a  is higher and income from annuity is lower. Thus, the pensioner will be keener to 

purchase more annuities if the value of interest rate is higher. In each column in Table 

4.11 we have better results for the pensioner if the value of the interest rate is higher. 

This happens because annuitisation is almost always advantageous for the pensioner 

and if annuitisation occurs at a time of good value of the interest rate, then 
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annuitisation is even more advantageous. We say “almost always advantageous” 

because the pensioner with preferences 1
t

b =  and 1γ = −  and in Case 4.2 will convert 

a very small part of his pension wealth into annuities if the value of the interest rate is 

low. Case 4.3 is always beneficial for the pensioner, because at a certain age mortality 

will be high enough such that even with unfavourable values of the interest rate at age 

65 there will be a demand for annuities at later ages. 

 

As we expect in Table 4.11, the gains in terms of REW  measure in Case 4.3 are 

always larger than in Case 4.2. The more risk averse pensioner will annuitise a 

significant part of his pension wealth at an earlier age, and if the value of the interest 

rate is unfavourable he will partly defer annuitisation. The pensioner with RRA 

coefficient 1γ = −  in Case 4.3 will completely defer annuitisation if the value of the 

interest rate is not favourable, but he will eventually attain almost the same gains for 

any value of the interest rate at age 65. 

 

In Figure 4.5, we have presented optimal annuitisation in Case 4.2 as a function of the 

value of pension wealth and interest rate during the year prior to retirement. In Figure 

4.5 for 0
t

b = , 1γ = − , we observe significant differences in the values of optimal 

annuitisation at age 65. If pension wealth has the values of about 200,000 money 

units, the optimal annuitisation ranges from 30% to more than 60%. So, the pensioner 

in Case 4.2 with low risk aversion will choose very different optimal annuitisation 

depending on the value of the interest rate during the year prior to retirement. Using 

optimal annuitisation policy, he will gain extra utility from 1.04% to 4.57% (a range 

of 3.53%) in terms of the REW  measure depending on the known value of the 

interest rate . In Case 4.3, we again have a quite different optimal annuitisation policy. 

Using optimal annuitisation at any age, he will be able to avoid the risk of 

unfavourable interest rate at age 65 and gains from 4.96% to 5.24% (a range of 

0.28%) in terms of the REW  measure depending on the value of the interest rate at 

age 65. So we can say that the less risk averse pensioner in Case 4.3 has the 

possibility to control the risk of unfavourable interest rates at age 65 quite well. 

 

If we now observe the pensioner in Case 4.2 with lower values of coefficient of RRA 

γ  and no bequest, then he will annuitise more at age 65. For the pensioner with no 

bequest and RRA coefficient 4γ = − , not presented in Table 4.11, the range is 4.55%, 

and for no bequest assumption and RRA coefficient 9γ = −  the range is 2.86%. The 

pensioner in Case 4.3 will have slightly wider range of gains as RRA coefficient γ  

decreases. In Case 4.3 for the pensioner with no bequest and RRA coefficient 4γ = − , 

not presented in Table 4.11, the range is 1.68%, and the pensioner with no bequest 
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and RRA coefficient 9γ = −  will have the range of gains of 1.55%. So, for the more 

risk averse pensioner we have more annuitisation at age 65 in Case 4.2 and the range 

of gains will firstly slightly increase with the increase of risk aversion and then 

decrease. The same pattern regarding range of gains repeats itself in Case 4.3. 

 

If we observe the pensioner with the bequest motive then, as we already know, he will 

optimally annuitise a smaller part of his pension wealth compared to the pensioner 

with the same level of risk aversion and no bequest motive. Also, the gains from 

access to annuities will be smaller for the pensioner with the bequest motive. As the 

direct consequence of this fact, the ranges of the gains depending on the interest rate 

during the year prior to retirement are smaller compared to no bequest cases. We have 

that the ranges in Case 4.2 are 1.37%, 3.22% and 2.00% for the values of RRA 

coefficient 1γ = − , 4γ = −  and 9γ = − , respectively. In Case 4.3, the ranges are 

0.10%, 1.57% and 1.36% for 1γ = − , 4γ = −  and 9γ = − , respectively. Again, we 

observe here that the ranges of gains are not monotonic function of RRA coefficient 

γ  and we observe the same patterns as in the results for the pensioner with no bequest 

motive. 

 

We will show more results related to changing interest rate in the year prior to 

retirement in Chapter 5 where we compare chosen results in Chapter 3 for Cases 3.1, 

3.3 and 3.5 and results in Chapter 4 for Cases 4.1, 4.2 and 4.3, and where we also 

investigate in more detail results for a chosen set of pensioner’s preferences. 

 

In Chapter 5, we will focus our investigation on optimal consumption, asset allocation 

annuitisation and expected derived utility in a single case. In Chapter 4, we almost 

always try to compare the results between different cases. However, if we observe the 

pensioner at age 65 then it is interesting to investigate how much he is going to gain 

or lose due to the value of the interest rate in the year prior to retirement. We have 

presented some results of this kind in Table 4.11, but in Chapter 5 we will investigate 

this problem more thoroughly. 

 

4.5.6 Left tail Analysis of Discounted Utility 

 

So far in this section, apart from Figures 4.15–4.20, we have presented the results that 

are based on expected discounted utility. All these results are obtained without 

stochastic simulations, but are based on the exact results from the model. Figures 

4.15–4.20 are presented in order to give an idea about the development of pension 
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wealth, optimal consumption, annuitisation, and asset allocation paths during 

retirement. In 4.5.6, we investigate the realisations from stochastic simulations of the 

random variables and investigate discounted utility as a random variable. Thus, all 

results in Section 4.5.6 are based on stochastic simulations, and stochastic simulations 

are based on the values of the variables given in Section 4.5.1 and on the solutions 

derived in Section 4.4. 

 

Similarly as in Section 3.4.7, we aim to present only the basic results related to 

discounted utility when observed as a random variable and to give a possible way of 

measuring pensioner’s left tail risk of lower than expected realisation of discounted 

utility derived from consumption and bequest. In this thesis, we have no optimisation 

with respect to VaRα  or CVaRα  as a criterion. We have optimisation with respect to 

expected discounted utility only. The importance of the left tail risk is recognised in 

the concave shape of the utility function. We find optimal control variables such that 

the maximum of expected utility derived from consumption and bequest is attained. 

Thus, the aim of the analysis in this section is to open the question of the importance 

of the possible maximization of derived utility as criterion but with the constraints on 

VaRα  or CVaRα . 

 

We have defined discounted utility derived from future consumption and bequest as a 

random variable in equation (4.87). The value function is the expected value of 

discounted derived utility. However, we are interested in the left tail of discounted 

utility as it shows the risk of the worse than expected possible outcomes of the 

pensioner’s random discounted utility. In order to have the results in money terms we 

will convert discounted utility in money terms first and then present the results in 

money terms. 

 

4.5.6.1 The Definition of VaRα  and CVaRα  measure 

 

Random variable ( )65 65 64;, ,
j

D W Y r� , defined in (4.87) depends on the control variable 

65C� , random variables 
t

C�  for 66 99t≤ ≤  and 1t
W +
�  for 65 99t≤ ≤ . These two random 

variables further depend on random variables 
t

r�  and e

t
r�  for 65 99t≤ ≤ , random 

interest and equity rates respectively. Also, random variables 
t

C�  and 
t

W�  depend on 

decisions ( )1;, ,
i i i i j

C W Y r∗
− , ( )1;, ,e

i i i i j
W Y rα ∗

− , ( )1;, ,b

i i i i j
W Y rα ∗

−  and ( )1;, ,
i i i i j

m W Y r∗
−  for 

65 i t≤ < , 1,..,
r

j n= , for 0
i

W ≥  and 0iY ≥ , and 1;i j
r−  in the domain of the values of 

the interest rate. 
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Thus, we have random variable ( )65 65 64;, ,
j

D W Y r�  depending on decisions, random 

variables and known interest rate during the year prior to retirement. 

We noted earlier that ( ) ( )65 65 65 64; 65 65 64;, , , ,
j j

V W Y r E D W Y r =  
� . Now, we define 

random variable 65W� , such that 

 

 ( ) ( )65 65 65 64; 65 65 64;, , , ,
j j

V W Y r D W Y r=� �  (4.88) 

 

The random variable 65W�  is unique because value function 65V  is strictly increasing 

function in variable 65W . Regarding the existence of random variable 65W�  we rely in 

this thesis on the fact that for each random realisation of random variable 

( )65 65 64;, ,
j

D W Y r� , we have found the realisation of random variable 65W� . 

 

The value of random variable 65W�  is the value of pension wealth that the pensioner 

needs such that the mean value of all possible random discounted utilities with initial 

wealth 65W�  is equal to the random discounted utility ( )65 65 64;, ,
j

D W Y r� . The cumulative 

distribution function (abbreviation CDF ) of the random variable 65W�  can be defined 

in the following way. If the CDF of the random variable ( )65 65 64;, ,
j

D W Y r�  is given by 

 

( )( )65 65 64;, ,
jD

P D W Y r x≤�
� , 

 

for ( ),x ∈ −∞ ∞  then CDF  of the random variable 65W�  is defined by 

 

( ) ( ) ( )( )
65

65 65 65 65 64; 65 65 64;, , , ,
j jW D

P W y P V W Y r x such that x V y Y r≤ = ≤ =� �
� �  

 

for y  in the domain of the solutions of equation ( )65 65 64;, ,
j

x V y Y r= . Equation 

( )65 65 64;, ,
j

x V y Y r=  will have a solution for a certain interval. For the values of y  

smaller than the lowest value in the interval we define ( )
65

65 0
W

P W y≤ =�
� , and for 

higher than the highest value of the interval we can define ( )
65

65 1
W

P W y≤ =�
� . Thus, the 

CDF  of random variable 65W�  is fully defined. 

 

Having defined the random variable 65W� , we can investigate the left tail of possible 

future random realisations of discounted utility in money term. It is important here to 

have this transformation from utility into pension wealth, as utility itself does not give 

a clear idea of the meanings of the results to the pensioner. 

 

Now, we can define α  Value at Risk (abb. VaRα ) and α  Conditional Value at Risk 

(abb. CVaRα ) measures, as left tail measures for random variable 65W� . We define 

VaRα , as follows 
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 { }65inf : 1VaR W P W Wα α = ∈ ≥ ≤ − 
��  (4.89) 

or 

 ( ) ( ){ }65 65 64; 65 65 64;inf : , , , , 1j jVaR W P D W Y r V W Y rα α = ∈ ≥ ≤ − 
��  (4.90) 

 

for 0 1α< < . The value of VaRα  gives us the following information. For the 

pensioner with pension wealth 65W , there is a %α  probability that possible 

unfavourable market realisations in the future will result with lower or the same 

discounted utility that would have been obtained as expected discounted utility with 

the pension wealth VaRα . In other words, VaRα  is the %α  worst pension wealth due 

to less favourable than expected market conditions in the future. 

 

Similar to the technique for obtaining VaRα  in Chapter 3, we again make 2,000 

stochastic simulations for ages 65 to age 99 for all random variables in the model in 

Chapter 4. . For the purpose of deeper investigation of the pensioner’s left–tail risk, 

more than 2,000 random realisations may be appropriate. However, the results 

presented here are not very dependent on the number of the random realisations and 

we believe that it is appropriate to use here the same realisation of the stochastic 

simulations that we use for the check of accuracy of the numerical calculations. 

 

For each realisation of the stochastic simulation, we obtain optimal consumption and 

pension wealth for each age. Substituting these values in equation(4.87), we obtain 

2,000 realisations of discounted derived utility ( )65 65 64;, ,
j

D W Y r� . We determine the 

values of VaRα  for { }0.01,0.05,0.10,0.25α ∈ . We obtain the value of VaRα  in the 

following way. Firstly, we calculate 2,000 random realisations of the random variable 

65W�  using formula (4.88). Then, we order these 2,000 random realisations in an 

increasing array. Then 0.01VaR  is the twentieth member of the ordered array, 0.05VaR  is 

the hundredth member, 0.10VaR  is the two hundredth member, and 0.25VaR  is the five 

hundredth member of the ordered array. 

 

CVaRα  is defined as the mean shortfall, or in a mathematical definition as 

 

 65 65CVaR Mean W W VaRα α
 = <  , (4.91) 

 

where 65W  are random realisations of random variable 65W�  that satisfy the condition 

65W VaRα< . 

 

In order to calculate CVaRα  for { }0.01,0.05,0.10,0.25α ∈ , we use 2,000 random 

realisations of the random variable 65W�  in the ordered array already obtained for the 
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calculation of VaRα . 0.01CVaR  is the calculated as the mean of the first nineteen 

members of the ordered array, 0.05CVaR  is the mean of the first ninety nine members, 

0.10CVaR  is the mean of the first one hundred ninety nine members, and 0.25CVaR  is 

the mean of the first four hundred ninety nine members of the ordered array. 

 

4.5.6.2 VaRα  and CVaRα  measures – the Results 

 

We present here the results for 0.10α = . The results for the other values of α , not 

presented here, have different values but the pattern is the same and the same 

conclusions can be drawn. As we noted, we aim to shed light on the pensioner’s left 

tail risk and we leave a more thorough analysis for future work. 

 

In Figure 4.21, we present graphs showing the histogram of the random variable 65W� , 

and also the values of 0.10VaR  and 0.10CVaR . The histogram is made from the sample 

of 2,000 random realisations of random variable 65W� . The left bold vertical line in 

each graph in the following figures shows the value of 0.10CVaR , while the right one 

shows the value of 0.10VaR . 
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Figure 4.21 Histogram of the random sample of 2,000 random realisation of 65W�  for 

 65 200,000W = , in Cases 4.1, 4.2 and 4.2, for 0
t

b =  and 1
t

b = , for 

 65 99t≤ ≤ , and for 1γ = − . The left one vertical straight line represents 

 the value of 0.10CVaR , and the right one the value of 0.10VaR . The value 

 of interest rate in the year prior to retirement is equal to 2.00%. 

 

In Figure 4.21, we observe that the pensioner with RRA coefficient 1γ = −  has a very 

wide range of possible outcomes of the random variable 65W� . Cases 4.1 and 4.3 are 

quite similar, meaning that although the pensioner purchases annuities during 

retirement in Case 4.3 and increases his derived utility he decreases the left tail risk of 

the derived discounted utility just slightly. The pensioner with 1γ = − , in Case 4.2, 

has a lower left tail spread of the random realisations of random variable 65W� , and 

both 0.10VaR  and 0.10CVaR  lines are positioned on values higher than in Cases 4.1 and 

4.3. Thus, the pensioner with 1γ = −  has a lower left tail risk in Case 4.2 than in 

Cases 4.3. The reason for the lower left tail risk lies in the fact that the pensioner in 

Case 4.2 optimally purchases more annuities at an earlier age, and the pensioner is 

exposed to less risk of possible unfavourable developments of random equity and 

interest rates compared to Cases 4.1 and 4.3 where either no annuities are bought or 

annuities are bought later in the retirement period. 

120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

W
è

65 forCase4.1, b=1, g=-1

120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

W
è

65 forCase4.1, b=0, g=-1

120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

W
è

65 forCase4.2, b=1, g=-1

120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

W
è

65 forCase4.2, b=0, g=-1

120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

W
è

65 forCase4.3, b=1, g=-1

120 140 160 180 200 220 240 260 280 300

10

20

30

40

50

W
è

65 forCase4.3, b=0, g=-1



 217

In Case 4.2 with no bequest, both 0.10VaR  and 0.10CVaR  are positioned more to the 

right than in the Case 4.2 with a bequest. Again, the pensioner with no bequest motive 

in Case 4.2 optimally purchases more annuities at age 65 than the pensioner with 

bequest motive in Case 4.2 and thus 0.10VaR  and 0.10CVaR  take higher values. 

 

In Figure 4.22, we present the same group of graphs as in Figure 4.21 but now for the 

pensioner with the value of RRA coefficient 9γ = − . 

 

Figure 4.22 Histogram of the random sample of 2,000 random realisation of 65W�  for 

 65 200,000W = , in Cases 4.1, 4.2 and 4.2, for 0
t

b =  and 1
t

b = , for 

 65 99t≤ ≤ , and for 9γ = − . The left one vertical straight line represents 

 the value of 0.10CVaR , and the right one the value of 0.10VaR . The value 

 of interest rate in the year prior to retirement is equal to 2.00%. 

 

In Figure 4.22, the histograms have very different shapes as well as the values of 

0.10VaR  and 0.10CVaR . In Case 4.1, histograms’ spread are again quite wide and the 

values of 0.10VaR  and 0.10CVaR  are in similar positions. For the pensioner in Case 4.2 

and with no bequest, the range of values on the histogram is very narrow and the 

0.10VaR  and 0.10CVaR  lines cannot be differentiated from the histogram itself. The 
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reason for such a shape of the histogram lies in the fact that it is optimal for this 

pensioner to convert more than 87% of his pension wealth to annuities at age 65, and 

so very few assets are left to be under the influence of the randomness of equity and 

interest rates. In Case 4.2 with a bequest, the histogram’s spread is wider because this 

pensioner optimally converts a lower amount of pension wealth into annuities than the 

pensioner with no bequest motive. 

 

We can make the general conclusion that the pensioner in Case 4.2 optimally 

annuitises a significant part of his pension wealth at age 65 because he uses that single 

opportunity to annuitise. As a consequence, a lower amount of pension wealth is left 

under the pensioner’s control and this lower amount of pension wealth is subject to 

interest and equity rate risk. Thus, it is not surprising that 0.10VaR  and 0.10CVaR  have 

the highest values observing three histograms in either left or right column in Figures 

4.21 and 4.22. 

 

At age 65, the pensioner with 9γ = −  in Case 4.3 optimally purchases fewer annuities 

than the pensioner with 9γ = −  in Case 4.2. As a consequence of this optimal 

strategy, the pensioner with 9γ = −  in Case 4.3 is less exposed to equity and interest 

rate risks than the pensioner with 9γ = −  in Case 4.1, but is more exposed to these 

risks than the pensioner with 9γ = −  in Case 4.2. Thus, we obtain the widest range of 

values of 65W�  in the histogram and the lowest values of 0.10VaR  and 0.10CVaR  in Case 

4.1, the lowest range of values of 65W�  and the highest values of 0.10VaR  and 0.10CVaR  

in Case 4.2. In Case 4.3 we obtain results that are somewhere in between the first two. 

 

In Table 4.12, we present the values of 0.10CVaR  for the pensioner at age 65, in 

different cases, with and without bequest motive, for the value of RRA coefficient 

1γ = − . Pension wealth at age 65 is 200,000. The values of 0.10CVaR  are presented for 

the five chosen values of interest rate in the year preceding retirement. The first and 

the fifth values of interest rate are the two extreme values investigated, the second and 

the fourth values are moderately different from the mean value of the interest rate, and 

the third value of the interest rate is the mean value of the interest rate. 
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Interest 

rate prior 

retirement 

1γ = − , 0
t

b =  1γ = − , 1
t

b =  

Case 4.1 Case 4.2 Case 4.3 Case 4.1 Case 4.2 Case 4.3 

–2.44 120,506 146,046 120,568 114,186 117,215 112,650 

–0.56 119,613 150,319 119,514 113,566 123,178 115,539 

2.00 119,748 160,315 123,511 115,416 129,515 115,556 

4.56 121,240 168,315 127,621 113,574 136,188 114,628 

6.44 124,383 172,677 146,629 118,601 142,738 129,962 

Table 4.12 0.10CVaR  – Values in the cells show the values of 0.10CVaR  in different 

 cases for the pensioner’s preferences towards risk and bequest stated in 

 the first row, and for the different values of interest rate during the year 

 preceding retirement. Pensioner is at age 65. Pension wealth is 

 200,000. The values of 0.10CVaR  are calculated from the sample of 2,000 

 random realisations. 

 

In Table 4.12, we observe that the pensioner with 1γ = −  in Case 4.1 has slightly 

increasing but similar values of 0.10CVaR  as the value of the poor interest rate 

increases. The values of 0.10CVaR  are the lowest compared to other cases. Thus, the 

pensioner with access to annuities gains in terms of expected discounted utility and at 

the same time gains in terms of the lower left tail risk. We observe that in Case 4.1, 

both for 1γ = − , 0
t

b =  and for 1γ = − , 0
t

b = , the values of 0.10CVaR  are similar but 

not increasing or decreasing as the value of interest rate increases. The reason for this 

pattern is that optimal asset allocation is 100% in equities and no annuitisation is 

present. Thus, the different values of the interest rate do not influence discounted 

utility. 

 

In Case 4.2, it is optimal for the pensioner with 1γ = −  to annuitise the highest 

proportion of pension wealth at age 65 and this leads to the lowest left tail risk. In this 

case, we observe the fastest increase of the values of 0.10CVaR  as the value of the 

interest rate increases. The reason is that the pensioner optimally increases the 

proportion of annuitised pension wealth as the value of the interest rate increases, and 

then he is less exposed to the risk of random equity and interest rate. 

 

The pensioner in Case 4.3 has significantly lower values of 0.10CVaR  than in Case 4.2, 

particularly if the pensioner has no bequest motive. However, the pensioner in Case 

4.3 has a just slightly lower left tail risk compared to the pensioner in Case 4.1 for all 

but the very high values of interest rate at age 65. The reason for the sharp increase of 

0.10CVaR  for very high values of interest rate at age 65 in Case 4.3 is that it is optimal 

for this pensioner to annuitise a significantly higher part of his pension wealth at age 
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65 for very high values of interest rate at age 65. The pensioner with 1γ = −  in Case 

4.3 gains in terms of REW  measure compared to Case 4.1, but also slightly in terms 

of left tail risk. However, the conclusion is not that clear if we compare Cases 4.2 and 

4.3. The pensioner 1γ = −  gains in terms of REW  measure, but at the same time his 

left tail risk is higher in Case 4.3 compared to Case 4.2. We observe that in Case 4.3 

for 1γ = − , 0
t

b =  and for the values of the interest rate –2.44% and –0.56%, we get 

similar values of 0.10CVaR . The reason is that optimal asset allocation is 100% and 

that for the chosen value of the pension wealth at age 65 it is optimal to differ 

annuitisation. So for the values of the interest rate –2.44% and –0.56%, the influence 

of the value of the interest rate to 0.10CVaR  in Case 4.3 for 1γ = − , 0
t

b =  decreases 

and we observe unexpected pattern of the higher value of 0.10CVaR  for the values of 

the interest rate –0.56% than for –2.44%. In Case 4.3 for 1γ = − , 1
t

b = , optimal asset 

allocation is 100% in equities, and deferred annuitisation for the values of the interest 

rate of –2.44%, –0.56%, 2.00% and 4.56% and as a result the influence of the value of 

the interest rate to 0.10CVaR  decreases to a level that we observe similar values of 

0.10CVaR  for stated values of the interest rate during the year before retirement. 

 

In Table 4.13, we give the same group of results but now for the pensioner with RRA 

coefficient 9γ = − . 

 

Interest 

rate prior 

retirement 

9γ = − , 0
t

b =  9γ = − , 1
t

b =  

Case 4.1 Case 4.2 Case 4.3 Case 4.1 Case 4.2 Case 4.3 

–2.44 132,772 188,679 165,854 132,150 170,640 162,425 

–0.56 134,481 189,739 168,807 132,513 172,442 163,889 

2.00 136,003 191,831 179,088 137,269 174,049 168,306 

4.56 144,479 193,526 183,340 142,992 176,436 172,586 

6.44 143,166 194,242 187,499 144,305 178,950 174,577 

Table 4.13 0.10CVaR  – Values in the cells show the values of 0.10CVaR  in different 

 cases for the pensioner’s preferences towards risk and bequest stated in 

 the first row, and for the different values of interest rate during the year 

 preceding retirement. Pensioner is at age 65. Pension wealth is 

 200,000. The values of 0.10CVaR  are calculated from the sample of 2,000 

 random realisations. 

 

In Table 4.13, we observe the same patterns in Cases 4.1 and 4.2, but the values of 

0.10CVaR  are now significantly higher than in Case 4.1 and these values increase now 

as the values of interest rate at age 65 increases. The reason is that the pensioner with 

9γ = −  in Case 4.3 optimally annuitises a higher proportion of pension wealth at age 
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65 than the less risk averse pensioner. We conclude that this pensioner significantly 

gains from annuitisation both in terms of REW  measure and in terms of lowering the 

left tail risk. Again comparing Cases 4.2 and 4.3, the more risk averse pensioner gains 

in terms of REW  measure but his left tail risk is higher in Case 4.3. 

 

4.5.7 Sensitivity Analysis 

 

In this section, we present the pensioner’s gains from access to annuities, in terms of 

the REW  measure in percentages, but now for different values of the chosen 

variables. We present the results for the new values of the following variables: last 

salary income (and income from social security afterwards), pension wealth at age 65, 

mean value of random equity rate, mean value of random interest rate, and market 

price of risk. We change the value of a single variable only and the results presented 

below show the way and the level of the changes in the results due to the change of 

the value of that single variable. 

 

The aim of presenting these results is to explore the sensitivity of the main results in 

this thesis, the pensioner’s gains from access to annuities, and to the values of the 

above mentioned variables. 

 

For each new value of the variable, we present the pensioner’s gains from access to 

annuities, in terms of REW  measure in percentages, in different cases, for different 

pensioner’s preferences towards risk and bequest, and for different values of interest 

rate during the year before retirement. We also present the percentage differences of 

the pensioner’s gains for the new value of the chosen variable compared to the 

pensioner’s gains presented in Table 4.11. We obtain these percentage differences 

simply by subtracting the pensioner’s gains for the new value of the chosen variable 

from the pensioner’s gain in Table 4.11. 

 

4.5.7.1 Increasing Last Salary Income for 50% 

 

In Section 4.5.1, we have defined the value of the last salary income at age 65 to be 

65 33,321Y = , replacement ratio is 65 0.68212ρ = , and income from social security is 

22,729SS

t
Y =  for 66 99t≤ ≤ . Increasing income by 50%, we get the value of last 

salary income at age 65 of 65 49,981Y =  and income from social security is 

34,093SS

t
Y =  for 66 99t≤ ≤ . The value of the replacement ratio is kept 
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65 0.68212ρ = . In Table 4.14, we present the pensioner’s gains for the higher value of 

the last salary income. 

 

Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 

The pensioner’s gains in terms of REW  measure in percentages 

–2.44 0.11% 3.46% 17.47% 19.43% 0.00% 0.91% 12.42% 13.68% 

–0.56 0.34% 3.48% 18.40% 19.81% 0.00% 0.91% 13.08% 14.05% 

2.00 0.99% 3.50% 19.67% 20.43% 0.00% 0.92% 13.92% 14.58% 

4.56 1.94% 3.53% 20.66% 20.99% 0.07% 0.93% 14.53% 15.00% 

6.44 2.66% 3.55% 21.14% 21.31% 0.21% 0.91% 14.87% 15.25% 

Differences of the pensioner’s gains above compared to the gains in Table 4.11 

–2.44 –0.93% –1.50% –4.17% –3.65% –0.02% –0.96% –4.79% –4.46% 

–0.56 –1.21% –1.51% –3.98% –3.60% –0.12% –0.97% –4.67% –4.41% 

2.00 –1.57% –1.53% –3.69% –3.49% –0.48% –0.98% –4.51% –4.34% 

4.56 –1.84% –1.57% –3.47% –3.38% –0.98% –1.01% –4.41% –4.28% 

6.44 –1.91% –1.69% –3.36% –3.32% –1.18% –1.06% –4.35% –4.25% 

Table 4.14 REW  measure in percentages for the 50% higher value of last salary 

 income – Values in the cells show percentage difference between Case 

 4.1 and the Case shown in the column header. The pensioner’s 

 preferences towards risk and bequest are given in the very first row. The 

 values of interest rate in the year prior to retirement are given in the very 

 first column. Pension wealth is 200,000, pensioner’s age is 65. 

 

Income from social security is a form of annuity already in a possession of the 

pensioner. From that point of view, we observed the expected result of the lower 

pensioner’s gains from annuities. In further results not presented here, we observe a 

lower level of optimal annuitisation in Case 4.2, and lower and later during retirement 

optimal annuitisation in Case 4.3. 

 

In Case 4.2, the less risk averse pensioner has a small gains from access to annuities 

according to the results in Table 4.11, and if his income increases by 50%, the gains 

are even lower. If this pensioner has the bequest motive then there is no demand for 

annuities for the lower values of interest rate during the year before retirement. In 

Case 4.3, the gains for the less risk averse pensioner again do not depend on the value 

of the interest rate during the year before retirement, but the gains are smaller in Table 

4.14 compared to the gains in Table 4.11. 

 

For the more risk averse pensioner the differences in gains in Table 4.14 do not seem 

to depend significantly on the value of the interest rate during the year before 
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retirement. The range of the differences is slightly larger in Case 4.2 than in Case 4.3. 

We observe that the differences in the pensioner’s gains are larger for about 0.5% to 

1% for the pensioner with the bequest motive than for the pensioner with no bequest 

motive. 

 

4.5.7.2 Increasing Pension Wealth at age 65 for 50% 

 

In Section 4.5.1, we have defined the value of pension wealth at age 65 to be 

65 200,000W = . Increasing pension wealth at age 65 by 50%, we get the value pension 

wealth at age 65 of 65 300,000W = . In Table 4.15, we present the pensioner’s gains for 

the higher value of pension wealth at age 65. 

 

Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 

The pensioner’s gains in terms of REW  measure in percentages 

–2.44 2.64% 6.64% 25.23% 26.31% 0.78% 3.23% 21.42% 22.12% 

–0.56 3.32% 6.68% 25.79% 26.57% 1.15% 3.26% 21.84% 22.38% 

2.00 4.55% 6.76% 26.55% 26.96% 1.89% 3.32% 22.38% 22.75% 

4.56 5.94% 6.96% 27.13% 27.31% 2.77% 3.47% 22.77% 23.03% 

6.44 6.70% 7.23% 27.41% 27.50% 3.20% 3.65% 22.98% 23.20% 

Differences of the pensioner’s gains above compared to the gains in Table 4.11 

–2.44 1.60% 1.68% 3.59% 3.24% 0.76% 1.37% 4.21% 3.98% 

–0.56 1.77% 1.69% 3.41% 3.16% 1.03% 1.38% 4.09% 3.92% 

2.00 1.99% 1.73% 3.18% 3.05% 1.41% 1.42% 3.94% 3.83% 

4.56 2.15% 1.86% 3.00% 2.94% 1.72% 1.54% 3.83% 3.75% 

6.44 2.13% 1.99% 2.90% 2.87% 1.81% 1.68% 3.77% 3.70% 

Table 4.15 REW  measure in percentages for the 50% higher value of pension 

 wealth at age 65 – Values in the cells show percentage difference 

 between Case 4.1 and the Case shown in the column header. The 

 pensioner’s preferences towards risk and bequest are given in the first 

 row. The values of interest rate in the year prior to retirement are 

 given in the first column. Pension wealth is 300,000, pensioner’s age is 

 65. 

 

The pensioner with a higher amount of pension wealth at age 65, other values of the 

variables being the same, benefits more from access to annuities. Again, income from 

social security is a form of annuity income, and as the pensioner has a higher pension 

wealth at age 65, he has a relatively lower value of income from social security, and 

thus gains more from access to annuities. 
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For the less risk averse pensioner the increase in gains in Table 4.15 compared to the 

gains in Table 4.11 are lower compared to the more risk averse pensioner. The 

differences in gains for the less risk averse pensioner are less dependent on the value 

of the interest rate during the year before retirement in Case 4.3 than in Case 4.2. We 

observe that the differences in gains for the less risk averse pensioner are lower in 

Case 4.2 than in Case 4.3 for the lower values of interest rate before retirement, and 

higher for the higher values of the interest rate before retirement. We also observe that 

the differences in gains are slightly higher for the less risk averse pensioner with no 

bequest motive compared with the less risk averse pensioner with a bequest motive. 

 

The more risk averse pensioner has quite stable differences in gains compared in 

Tables 4.15 and 4.11 for all values of the interest rate during the year before 

retirement. However, we observe slightly higher differences in gains for the more risk 

averse pensioner with a bequest motive compared to the more risk averse pensioner 

with no bequest motive. 

 

We observe different patterns in the differences in gains for the less and more risk 

averse pensioners for different values of the interest rate during the year before 

retirement. The less risk averse pensioner’s differences in gains increases, while the 

differences in gains for the more risk averse pensioner decreases as the value of the 

interest rate increases. 

 

4.5.7.3 Decreasing of the Mean Value of Equity Rate to 4% 

 

In Section 4.5.1, we have defined the mean value of equity rate to be 0.06e

t
E r  = � . 

In Section 4.5.7.3, we present in Table 4.16 the pensioner’s gains in terms of REW  

measure in percentages, if the mean value of equity rate is 0.04e

t
E r  = � . 

 

 

 

 

 

 

 

 

 

 

 



 225

Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 

The pensioner’s gains in terms of REW  measure in percentages 

–2.44 7.85% 9.35% 27.92% 28.25% 3.08% 4.19% 21.07% 21.34% 

–0.56 8.82% 9.61% 28.37% 28.52% 3.69% 4.34% 21.38% 21.57% 

2.00 10.36% 10.45% 28.91% 28.93% 4.67% 4.86% 21.80% 21.88% 

4.56 11.32% 11.32% 29.24% 29.24% 5.21% 5.27% 22.12% 22.16% 

6.44 11.67% 11.67% 29.37% 29.37% 5.44% 5.48% 22.29% 22.32% 

Differences of the pensioner’s gains above compared to the gains in Table 4.11 

–2.44 6.81% 4.39% 6.28% 5.17% 3.06% 2.33% 3.86% 3.21% 

–0.56 7.27% 4.62% 6.00% 5.11% 3.57% 2.46% 3.63% 3.11% 

2.00 7.80% 5.42% 5.55% 5.01% 4.19% 2.95% 3.37% 2.96% 

4.56 7.53% 6.22% 5.10% 4.86% 4.16% 3.33% 3.19% 2.88% 

6.44 7.10% 6.43% 4.87% 4.74% 4.05% 3.51% 3.08% 2.83% 

Table 4.16 REW  measure in percentages for the mean value of equity rate of 4% – 

 Values in the cells show percentage difference between Case 4.1 and the 

 Case shown in the column header. The pensioner’s preferences towards 

 risk and bequest are given in the first row. The values of interest rate in 

 the year prior to retirement are given in the first column. Pension wealth 

 is 200,000, pensioner’s age is 65. 

 

If the mean value of the equity rate is lower than the demand for the less risky 

investments, bond and cash as well as annuities, increases. Due to increasing demand 

for annuities, the pensioner facing lower mean value of equity rate gains more from 

access to annuities. 

 

We observe in Table 4.16 that the differences in gains are the highest for the 

pensioner with no bequest motive. This pensioner, regardless of his attitude towards 

risk, has the highest increase in demand for annuities as the mean value of equity rate 

decreases. This is particularly true for the pensioner in Case 4.2, who has access to 

annuities only once at age 65. 

 

For the less risk averse pensioner, we again observe increasing differences in gains as 

the value of the interest rate before retirement increases. However, we observe a 

sharper increase of the differences in gains in Case 4.3, and a more modest increase of 

the differences in gains in Case 4.2 in Table 4.16 compared to the differences in gains 

in Table 4.15. For the more risk averse pensioner, we observe a decrease of the 

differences in gains in Table 4.16. 
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4.5.7.4 Increasing the Mean Value of the Interest Rate to 4% 

 

In Section 4.5.1, we have defined the parameters for the interest rate as follows 

0.00902377
d

a = , 0.451188
d

b = , 0.0152622
dr
σ = , [ ] 0.02tE r =� , 

[ ] 0.0172195tStD r ≈ . We increase the mean value of the interest rate to 4% by 

changing the values of the parameters as follows: 0.0180475
d

a = , 0.451188
d

b = , 

0.0152622
dr
σ = , [ ] 0.04tE r =� , [ ] 0.0164822tStD r ≈ . Thus, by changing the 

parameters values we increase the mean value of the interest rate, but also slightly 

decrease the standard deviation of values of the interest rate. In Table 4.17, we present 

the pensioner’s gains in terms of REW  measure in percentages for these new values 

of the parameters for the interest rate. 

 

Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 

The pensioner’s gains in terms of REW  measure in percentages 

–2.44 11.30% 12.72% 26.34% 26.64% 5.34% 6.48% 20.00% 20.25% 

–0.56 12.21% 12.97% 26.63% 26.80% 5.96% 6.64% 20.19% 20.37% 

2.00 13.63% 13.75% 27.01% 27.03% 6.89% 7.16% 20.44% 20.54% 

4.56 14.53% 14.54% 27.22% 27.22% 7.39% 7.52% 20.63% 20.69% 

6.44 14.83% 14.83% 27.29% 27.29% 7.59% 7.69% 20.73% 20.78% 

Differences of the pensioner’s gains above compared to the gains in Table 4.11 

–2.44 10.26% 7.76% 4.70% 3.56% 5.33% 4.61% 2.79% 2.11% 

–0.56 10.66% 7.98% 4.26% 3.38% 5.84% 4.76% 2.44% 1.91% 

2.00 11.07% 8.72% 3.64% 3.11% 6.42% 5.26% 2.01% 1.62% 

4.56 10.75% 9.44% 3.09% 2.85% 6.35% 5.58% 1.70% 1.41% 

6.44 10.26% 9.59% 2.79% 2.66% 6.19% 5.72% 1.51% 1.28% 

Table 4.17 REW  measure in percentages for the mean value of interest rate of 4% – 

 Values in the cells show percentage difference between Case 4.1 and the 

 Case shown in the column header. The pensioner’s preferences towards 

 risk and bequest are given in the first row. The values of interest rate in 

 the year prior to retirement are given in the first column. Pension wealth 

 is 200,000, pensioner’s age is 65. 

 

Changing the value of parameters of the interest rate such that the mean value of the 

interest rate increases, results in a lower annuity rate as well as a higher return on 

bond and cash investment. As annuity rate decreases, income from annuity increases. 

As a result, the pensioner’s gains from access to annuities increases. 

 

For the less risk averse pensioner, we observe a significant increase of benefits from 

access to annuities in Table 4.17 compared to the gains in Table 4.11. The differences 
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in gains are particularly high for the less risk averse pensioner with no bequest 

motive. His demand for annuities significantly increases in both Cases 4.2 and 4.3. 

The less risk averse pensioner with a bequest motive also has a significant increase in 

the gains in Table 4.17 compared to Table 4.11, but his demand for annuities does not 

increase as much as for the less risk averse with no bequest motive. The presence of 

the bequest motive limits the demand for annuities. 

 

The more risk averse pensioner does not experience such significant changes in the 

gains in Table 4.17 compared to the gains in Table 4.11. The extra gains are lower 

compared to the less risk averse pensioner. In Table 4.17, we observe the lowest 

differences in gains for the more risk averse pensioner with the bequest motive. 

 

The less risk averse pensioner’s differences in gains, when the mean value of the 

interest rate increases, are higher than the differences in gains for the more risk averse 

pensioner in Case 4.3 but lower in Case 4.2. Also, the pensioner with no bequest 

motive increases the gains from access to annuities more when the mean value of the 

interest rate increases, than the pensioner with a bequest motive. 

 

4.5.7.5 Decreasing the Market Price of Risk to 0.01528 

 

In Section 4.5.1, we have defined the value of market price of risk to be 0.1528λ = . 

In Table 4.18, we present the pensioner’s gains in terms of REW  measure in 

percentages if the value of the market price of risk is significantly lower and equal to 

0.01528. 
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Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 Case 4.2 Case 4.3 

The pensioner’s gains in terms of REW  measure in percentages 

–2.44 0.24% 4.02% 20.23% 21.99% 0.00% 1.40% 16.29% 17.44% 

–0.56 0.52% 4.03% 21.03% 22.35% 0.00% 1.40% 16.91% 17.80% 

2.00 1.18% 4.05% 22.14% 22.90% 0.04% 1.41% 17.71% 18.32% 

4.56 2.11% 4.07% 23.02% 23.41% 0.30% 1.42% 18.30% 18.74% 

6.44 2.79% 4.08% 23.46% 23.70% 0.56% 1.42% 18.61% 18.98% 

Differences of the pensioner’s gains above compared to the gains in Table 4.11 

–2.44 –0.80% –0.94% –1.42% –1.09% –0.02% –0.47% –0.92% –0.69% 

–0.56 –1.03% –0.95% –1.34% –1.06% –0.12% –0.48% –0.84% –0.66% 

2.00 –1.38% –0.98% –1.23% –1.01% –0.44% –0.49% –0.72% –0.60% 

4.56 –1.68% –1.03% –1.12% –0.96% –0.74% –0.52% –0.64% –0.54% 

6.44 –1.78% –1.16% –1.05% –0.93% –0.83% –0.55% –0.60% –0.51% 

Table 4.18 REW  measure in percentages for the value of market price of risk of 

 0.01528 – Values in the cells show percentage difference between Case 

 4.1 and the Case shown in the column header. The pensioner’s 

 preferences towards risk and bequest are given in the first row. The 

 values of interest rate in the year prior to retirement are given in the first 

 column. Pension wealth is 200,000, pensioner’s age is 65. 

 

If the value of the market price of risk is lower, then the return on bond and cash 

investment decreases and also annuity rates are less attractive for the pensioner. In 

further results not presented here, we show that the demand for bonds decreases and 

the demand for cash investment increases if the market price of risk decreases. 

 

The pensioner’s demand for annuities slightly decreases and the gains from access to 

annuities also decrease slightly. We observe a lower decrease of the pensioner’s gains 

from access to annuities for the pensioner with a bequest motive compared to the 

pensioner with no bequest motive. 
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Chapter 5 

Equation Section 5 

 

 

 

Comparing the Results Between the Models 

 

 

5.1 The Connection between the Models 

 

The problems in Cases 3.1, 3.3 and 3.5 in Chapter 3 and the problems in Cases 4.1, 

4.2 and 4.3 in Chapter 4 respectively, differ in the assumption regarding interest rate. 

In the inflation risk model in Chapter 3, we model the interest rate as a deterministic 

variable taking a constant value. In the interest rate risk model in Chapter 4, the 

interest rate is modelled as stochastic process taking random values and based on 

stochastic interest rate we introduce bonds as an investment available for both the 

pensioner and the annuity provider. In mathematical terms, if we let the variability 

and the market price of risk of the interest rate tend to zero in the interest rate model 

in Chapter 4, then the problem in Cases 3.1, 3.3 and 3.5 in the inflation risk model 

becomes the same as the problem in Cases 4.1, 4.2 and 4.3 in the interest rate risk 

model. 

 

In Chapters 3 and 4 we compare the results between different cases, where cases are 

differentiated by the assumptions regarding the pensioner’s access to annuities. In this 

chapter, we focus on the results from the interest rate risk model depending on the 

introduction of stochastic interest rate. We focus on the results within a single case 

depending on the value of the interest rate in the year prior to investment and 

annuitisation. We also compare these results with the results from the appropriate 

example in the inflation risk model. Thus, in Chapter 5, we make a more thorough 

analysis of the outcomes related to the introduction of the stochastic interest rate and 

to the introduction of the third asset. 

 

Cases 3.2, 3.4 and 3.6 in Chapter 3 cannot be compared with the interest rate risk 

model. In these cases, the pensioner has access to nominal annuities and the inflation 

influences the results, while in the interest rate risk model in Chapter 4 the pensioner 

has no access to nominal annuities and is not subject to inflation risk. In the interest 
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rate risk model, all values are in real terms and thus we assume no dependence on 

inflation. In Chapter 5 we will investigate the results from Chapter 3 where inflation is 

irrelevant and compare those results with the results from Chapter 4. Thus, nominal 

annuities and inflation are irrelevant for this chapter. 

 

The model in Chapter 4 represents a more realistic view of the real world regarding a 

pensioner’s experience with real annuities because we allow for two sources of 

randomness: equity and interest rate. We want to investigate the results in the interest 

rate risk model in more detail so that we recognise the new results related to the 

stochastic interest rate. In Chapter 4, the result depending on the value of the interest 

rate in the year prior asset allocation and annuitisation is a single result as interest rate 

is a constant. From this point of view we will try to isolate the effects of the 

randomness of equities which can also be investigated in the inflation risk model, and 

the effects of randomness of the value of the interest rate that can be investigated in 

the interest rate risk model only. In this chapter we investigate the results where 

introduction of the stochastic interest rate is important and also the extent to which it 

is important. 

 

The point where we concentrate is the variability of interest rate introduced in Chapter 

4. We investigate the consequences of this extra variability regarding optimal 

consumption, optimal asset allocation, optimal annuitisation and value function. In the 

inflation risk model, the annuity rates of real annuities depend on the pensioner’s age 

and on a single value of the interest rate for all ages. In the interest rate risk model, we 

use the interest rate in the year prior to the observed year as a state variable and the 

future development of the value of the interest rate depends on this state. Thus, the 

annuity rate in the interest rate risk model depends on the value of the interest rate in 

the year prior to annuitisation. In the interest rate risk model, besides the randomness 

of interest rate, we have introduced the market price of risk that slightly increases the 

return on one year investment in a rolling bond compared to the mean value of the 

interest rate during one year, all conditional on the value of the interest rate during the 

previous year. The points stated in this paragraph are very important for explaining 

the results in this chapter. 

 

Although the interest rate risk model in Cases 4.1, 4.2 and 4.3  is an improvement 

over the inflation risk model in Cases 3.1, 3.3 and 3.5, one should carefully choose 

what to compare amongst the results from the inflation risk model in Cases 3.1, 3.3 

and 3.5and interest rate risk models. We must be aware that the inflation risk model in 

Cases 3.1, 3.3 and 3.5and the interest rate risk model are developed under different 
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assumptions and the numerical results in Chapter 5 should be compared very 

carefully. The interest rate risk model is a richer model and gives new results. We 

compare results side by side in order to see the differences due to the introduction of 

the stochastic interest rate and the market price of risk. We can observe the inflation 

risk model in Cases 3.1, 3.3 and 3.5to be an extreme case of the interest rate risk 

model in Cases 4.1, 4.2 and 4.3, respectively, when the variability of the interest rate 

and the market price of risk tend to be zero. 

 

If we do not state otherwise, we assume the same parameter values as stated in 

Chapter 3 and 4 in Sections 3.2.1 and 3.4.1 and Sections 4.3.1 and 4.5.1. 

 

5.2 Control Variables and Value Function 

 

The pensioner’s optimal consumption, asset allocation and annuitisation strategy in 

the interest rate risk model, as well as the gains from access to annuities depend on the 

value of the interest rate during the previous year. However, the results again 

significantly depend on the pensioner’s preferences towards risk and bequest, and also 

on the market price of risk. In Chapter 5, we investigate the pensioners with the value 

of RRA coefficient 1γ = −  and 9γ = − , and the pensioners with and with no bequest 

motive. Regarding market price of risk, throughout Chapter 5 we assume the same 

value as it is defined in Section 4.5.1. 

 

We assume 15 possible states of the interest rate in the interest rate risk model. The 

results depend on the value of the interest rate during the previous year, and we 

choose five representative states of the interest rate: the two extreme (the lowest and 

the highest value) symmetric states, two symmetric states that are attainable with a 

reasonable probability, and mean value state. If we order the states of the interest rate 

defined in Section 4.5.1, from the lowest to the highest then amongst all possible 

states of the interest rate in the previous year we choose the first, fifth, eighth, 

eleventh and fifteenth states with the values { 2.44%, 0.56%, 2.00%,4.56%,6.44%}− − . 

In Section 5.2, we present the results under the assumption that retirement starts at the 

pensioner’s age 65, income at age 65 65 33,320.90Y = , and income from social 

security is 22,728.85SS

t
Y =  for 66 99t≤ ≤ . The results obtained from stochastic 

simulations and the results concerning expected discounted utility are all obtained 

with the assumption that pension wealth at age 65 is 200,000. 
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In Section 5.2, we present and analyse the results obtained from stochastic 

simulations, and also include some examples of the numerical values of the control 

variable functions depending on the pensioner’s age and wealth. Regarding stochastic 

simulations, we produce a sample of 2,000 realisations of the paths of optimal 

consumption, optimal asset allocation and optimal annuitisation. From the sample of 

2,000 random realisation paths we calculate and present on the graph the mean, 5% 

quantile and 95% quantile values for each age. We use the same random realisations 

that we use for the check of accuracy of the numerical calculations and for the left–tail 

analysis. We will not present here in the thesis, but we checked a couple of examples 

of the results obtained from the more that 2,000 random realisations and the results 

were not dependent on the number of the random realisations. 

 

For each figure, we will emphasise if the results represent the values of an optimal 

control variable function or the numerical realisations of stochastic simulations. 

However, the results based on stochastic simulations show us the differences of the 

mean, 5% quantile and 95% quantile values of optimal control variables for each age 

for the pensioner with given pension wealth and income at age 65 and the value of the 

interest rate during the year preceding retirement. Now, observing the differences of 

the mean, 5% quantile and 95% quantile values of optimal control variables for each 

age, we can determine for how many years and in which way in each year, the value 

of the interest rate during the year preceding retirement influences the pensioner’s 

optimal decisions. We cannot make these conclusions from the numerical values of 

the control variable deterministic functions that depend on the pensioner’s age and 

wealth. 

 

5.2.1 Optimal Consumption 

 

The values of optimal consumption change just slightly as the value of the interest 

rate in the previous year changes. In Section 4.5.2, we have presented the surfaces of 

optimal consumption for the value of the interest rate in the previous year equal to 

2.00%. When we change the value of the interest rate, the surfaces of optimal 

consumption are very similar. In order to see the small differences in the values of the 

pensioner’s optimal consumption clearly, in Section 5.2.1 we present the graphs of the 

development of the mean, 5% quantile and 95% quantile values obtained from 

stochastic simulations.  
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In Figure 5.1, we show the mean, 5% and 95% quantiles paths of optimal 

consumption in Case 3.1 and Case 4.1 for the pensioner with 1
t

b = , 9γ = −  and for 

different values of the interest rates during the year before retirement. 

 

Figure 5.1 Optimal consumption – mean, 5% and 95% quantile in Case 3.1 (upper 

 left hand side graph), and in Case 4.1 (other graphs) for the pensioner 

 with bequest motive and the value of RRA coefficient 9γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.1. 

 Mean consumption (full line), 5% quantile of consumption (dash and dot 

 line, lower line) and 95% quantile of optimal consumption (dash line 

 with longer dashes, upper line). The numerical values in graphs are 

 calculated from 2,000 random realisations. 

 

The differences in the graphs in Figure 5.1 are very small. We observe an increase of 

the values of mean optimal consumptions in Case 4.1 as the value of the interest rate 

in year before retirement increases. The differences between the values of 95% and 

5% quantiles for a given age are the largest and almost the same in Case 3.1 (upper 

left hand side graph) and in Case 4.1 for 64 0.56%r = −  (lower left hand side graph). In 

graphs in Case 4.1 for 64 2.00%r =  (upper right hand side graph) and in Case 4.1 for 

64 4.56%r =  (lower right hand side graph), we can see that the differences between the 

values of 95% and 5% quantiles for a given age are decreasing as the value of the 

interest rate in the year prior to retirement increases. 

 

For the less risk averse pensioner with 1γ = −  compared with the more risk averse 

pensioner, we observe even smaller differences of the values of mean, 5% and 95% 

quantiles paths of optimal consumption in Case 3.1 and in Case 4.1 for different 
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values of interest rates. We have similar changes in the value of mean, 5% and 95% 

quantiles paths of optimal consumption for the pensioner with and with no bequest 

motive. 

 

In Figure 5.2, we show mean, 5% and 95% quantiles paths of optimal consumption in 

Case 3.3 and Case 4.2 for the pensioner with 1
t

b = , 9γ = −  and for different values of 

interest rates during the year before retirement. 

 

Figure 5.2 Optimal consumption – mean, 5% and 95% quantile in Case 3.3 (upper 

 left hand side graph), and Case 4.2 (other graphs) for the pensioner with 

 bequest motive and RRA coefficient 9γ = − , for the different values of 

 interest rates in the year before retirement in Case 4.2. Mean (full line), 

 5% quantile (dash and dot line, lower line) and 95% quantile of optimal 

 consumption (dash line with longer dashes, upper line). The numerical 

 values in graphs are calculated from 2,000 random realisations. 

 

We observe the same pattern in Figure 5.2 as in Figure 5.1. However, the differences 

in graphs in Figure 5.2 are clearer. We emphasise that we use a smaller range of 

values on y–axis on Figure 5.2 than in Figure 5.1. From Figure 5.2 and from the other 

numerical solution not presented here, we find that the changes of the value of the 

mean, 5% and 95% of optimal consumption paths have a regular behaviour apart from 

the random error which is due to the limited size of the random sample. 

 

Regarding the values of mean optimal consumption paths in Figure 5.2, we observe 

the lowest values in Case 3.3 (upper left hand side graph) and in Case 4.2 for 

64 0.56%r = −  (lower left hand side graph). In Case 4.2 for 64 4.56%r =  (lower right 
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hand side graph) the values of mean optimal consumption paths are the highest in 

Figure 5.2. We find that in Case 4.2, the values of mean optimal consumption paths 

increase as the value of the interest rate in the year before retirement increases. 

 

Then we observe that the range between 95% and 5% quantiles is the largest in the 

graph showing consumption paths in Case 3.3 where the 5% quantile line is the lowest 

and the 95% quantile line is the highest one amongst all the graphs in Figure 5.2. 

Although we have one less source of risk in Case 3.3 than in Case 4.2, this 

observation can be justified. The first reason for less variability in Case 4.2 is that 

slightly more annuities are bought in Case 4.2 than in Case 3.3 and this will be 

presented in Section 5.2.3. The next reason lies in the possibility (that will also be 

clearer from the rest of Section 5.2.3) for the pensioner to behave optimally according 

to the state of the interest rate in the year prior investment and annuitisation decisions 

during the whole retirement period. The pensioner uses this opportunity optimally and 

achieves better results in terms of optimal consumption. 

 

Amongst the graphs for Case 4.2, we see that 5% and 95% quantiles lines move 

upwards with the changes of the value of the interest rate during the year preceding 

retirement. We find that when the value of the interest rate during the year preceding 

retirement increases, the values of 5% quantiles increase more compared to the 

increase of the value of mean and 95% quantile of optimal consumption. 

 

In Figure 5.3, we present mean, 5% and 95% quantiles paths of optimal consumption 

for the same pensioner as in Figures 5.1 and 5.2, but now in Case 3.5 and Case 4.3 

where the pensioner has access to annuities during the whole retirement period. 
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Figure 5.3 Optimal consumption – mean, 5% and 95% quantile in Case 3.5 (upper 

 left hand side graph), and Case 4.3 (other graphs) for the pensioner with 

 bequest motive and RRA coefficient 9γ = − , for the different values of 

 interest rates in the year before retirement in Case 4.3. Mean (full line), 

 5% quantile (dash and dot line, lower line) and 95% quantile of optimal 

 consumption (dash line with longer dashes, upper line). The numerical 

 values in graphs are calculated from 2,000 random realisations. 

 

In Figure 5.3, one can see a similar movement of the data on the graphs as we have 

observed in Figure 5.2. In Case 3.5, the range between the 5% and 95% quantile lines 

is larger than in all examples in Case 4.3. It means that the pensioner in Case 4.3 uses 

the opportunity of optimal annuitisation according to bond prices and gets lower 

variability of consumption. When comparing the mean and 5% and 95% quantile lines 

in Case 4.3 for the different values of the interest rate during the year before 

retirement, we observe a small movements of all these lines upwards as the value of 

interest rate increases and it is the result of the better pensioner’s state if the value of 

the interest rate is higher. If the value of the interest rate is higher during the year 

before retirement, the pensioner will purchase more annuities and at the better annuity 

rate earlier in retirement. 

 

An interesting, and maybe an unexpected, observation in each graph in Figure 5.3 is 

the decreasing mean consumption lines for the earlier years of retirement and the 

increasing mean during the later years of retirement. Observing the values of the mean 

optimal consumption paths, we find that the values change moderately during 

retirement, and that there is no steep decrease or increase of the values of mean 

optimal consumptions paths. In the results not presented here, the same shape of the 

65 70 75 80 85 90 95
32

34

36

38

40

42

OptimalConsumption in Case 4.3, b=1, g=-9, r64=4.56%

65 70 75 80 85 90 95
32

34

36

38

40

42

Optimal Consumption in Case 4.3, b=1, g=-9, r64=-0.56%

65 70 75 80 85 90 95
32

34

36

38

40

42

OptimalConsumption in Case 4.3, b=1, g=-9, r64=2.00%

65 70 75 80 85 90 95
32

34

36

38

40

42

OptimalConsumption in Case 3.5, b=1, g=-9, r64=2.00%



 237

mean optimal consumption paths can be observed for the values of RRA coefficient 

4γ = −  and 1γ = − . We find a U–shape of the mean optimal consumption path 

obtained from stochastic simulations in Cases 3.5, 3.6 and 4.3 and only if the 

pensioner has a bequest motive and for all investigated values of RRA coefficient. 

The reason for this shape of the mean optimal consumption path is the possibility for 

the pensioner to keep the overall value his assets, pension wealth and implied asset 

from income, during the whole period of retirement and even to increase it slightly at 

older ages due to survival credits. In Cases 4.1 and 4.2 and any investigated 

pensioner’s preferences towards risk and bequest, we observe that the values of mean 

optimal consumption paths from stochastic simulations decrease as the pensioner gets 

older. 

 

In Case 4.1, the pensioner has no access to annuities and he optimally invests his 

pension wealth and consumes his income and part of his pension wealth throughout 

the whole period of retirement. However, his income is constant and its implied value 

decreases as the pensioner gets older and as his pension wealth decreases as well he 

optimally consumes lower amounts as he gets older. Also, at older ages the pensioner 

possesses a lower pension wealth and variability of his consumption decreases 

because of the lower variability of his pension wealth. 

 

In Case 4.2, the pensioner has access to annuities at age 65 only and he uses that 

opportunity for purchasing annuities optimally. The pensioner in this case has 

constant income after age 65 and his asset implied form income decreases as he gets 

older. His pension wealth decreases during the retirement and at some age his pension 

wealth will approach certain minimal value and will not decrease anymore because 

the pensioner has a bequest motive. So, his pension wealth will approach a certain 

minimal value and his optimal consumption will keep decreasing. However, 

comparing with the pensioner in Case 4.1, the pensioner in Case 4.2 will have smaller 

variability of his consumption as his pension wealth is on average will take lower 

values, due to purchased annuities at age 65. When pension wealth approaches a 

minimum value the variability of consumption will be more or less constant until the 

maximum possible age of the pensioner. 

 

In Case 4.3, we have qualitatively different opportunity for the pensioner. He can 

purchase annuities whenever in retirement and take advantages of increasing survival 

credits at older ages. The pensioner in Case 4.3 optimally purchasing annuities at 

earlier years of retirement and his pension wealth decreases and his income increases. 

However, survival credits in the early years of retirement are not high enough to 
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prevent his overall assets, pension wealth and assets implied in income, from 

decreasing. So, we observe small decrease in the mean optimal consumption during 

early years of retirement. Again, we observe that the pensioner will keep a certain 

minimum value of the pension wealth due to a bequest motive. Interesting optimal 

behaviour of the pensioner in Case 4.3 happens at older ages. If the return on the 

pension wealth is below or at average the pensioner will not purchase more annuities 

at the end of that year and his overall all assets will decrease and optimal consumption 

will decrease. However, if the return on investment is above average, the pensioner 

will optimally purchase new annuities and take advantage of increasing survival 

credits at older ages. Thus, the pensioner in Case 4.3 will purchase new annuities until 

very late ages and increase his income and also his asset implied in income. At older 

ages survival credits are so high that they provide the opportunity for the pensioner in 

Case 4.3 to increase his overall assets at older ages and as a result we observe increase 

in the mean optimal consumption. Also, we observe increase of the 95% quantile line 

because of the possibility of significantly increase in the pension wealth and asset 

implied from income if we have a couple of years of better than expected returns on 

investments. However, we emphasise that the mean consumption line increases as the 

pensioner in Case 4.3 getting older. For one particular random realisation, it is 

possible that optimal consumption decreases if returns on investments are not above 

average and purchasing more annuities is not optimal at older ages because of the 

minimal pension wealth the this pensioner keeps due to his bequest motive. 

 

Regarding the changes of the values of mean, 5% and 95% optimal consumption path 

in Case 4.3 in Figure 5.3, we observe the same pattern as in Figure 5.2. As the value 

of the interest rate during the year before retirement increases, we find that all three 

lines move upwards, and that 5% optimal consumption line moves upwards to a 

greater extent than the mean and 95% optimal consumption lines. 

 

5.2.2 Optimal Asset Allocation 

 

In Case 3.1, the pensioner with the value of RRA coefficient 1γ = −  optimally invests 

at each age 100% of pension wealth in equities for any investigated amount of 

pension wealth. 

 

The pensioner with 1γ = −  in Case 4.1 optimally invests 100% of pension wealth in 

equities at each age and for all but very high values of the interest rate during the year 

prior to the investment decision. For example, if the value of the interest rate is 6.44% 
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at age 65, this pensioner optimally invests about 60% into equities. However, this 

value of the interest rate has a low probability and very soon the interest rate moves 

closer to the mean and then 100% into equities is optimal again. 

In Figure 5.4, we show the value of the mean, 5% and 95% quantiles of optimal 

equity allocation obtained from 2,000 random realisations of stochastic simulation for 

the pensioner with no bequest motive and RRA coefficient 9γ = − , in Cases 3.1 and 

4.1, and for the different values of interest rate during the year prior to retirement. 

 

Figure 5.4 Optimal equity allocation – mean, 5% and 95% quantile in Case 3.1 

 (upper left hand side graph), and Case 4.1 (other graphs) for the 

 pensioner with no bequest motive and RRA coefficient 9γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.1. 

 Mean (full line), 5% quantile (dash and dot line, lower line) and 95% 

 quantile of optimal equity allocation (dash line with longer dashes, upper 

 line). The numerical values in graphs are calculated from 2,000 random 

 realisations. 

 

The pensioner with no bequest will generally have a mean value of optimal equity 

allocation that increases with age. However, one should bear in mind that in the later 

years of retirement the pension wealth available for investment is very low. Thus, the 

investment strategy for the pensioner with no bequest motive is actually interesting 

for earlier retirement ages only, say up to age 85 or 90. 

 

The first observation is that the value of the mean optimal equity allocation is larger in 

Case 3.1 than in Case 4.1. The reason is that bond investment in Case 4.1 offers, on 

average, a better return than a constant interest rate in Case 3.1. The lower left hand 
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side graph represents the pensioner in Case 4.1 when the value of the interest rate 

during the year before retirement is –0.56%. The demand for bonds for this pensioner 

is lower due to the lower value of the interest rate during the year before retirement 

and the pensioner optimally invests more into equities. Up to age 72, this pensioner 

invests on average more into equities than the pensioner when the value of the interest 

rate before retirement is 2.00% and after that age both pensioners have very similar 

graphs in Figure 5.4. It seems that the effects of the lower than average interest rate 

before retirement last for about 5–7 years regarding optimal equity investment. A 

similar situation, but with a higher demand for bonds at the early ages, is for the 

pensioner experiencing a value of the interest rate before retirement of 4.56%. This 

pensioner’s optimal equity allocation (lower right hand side graph) is on average 

lower for about the first 5–7 years of retirement compared to the optimal equity 

allocation of the pensioner experiencing the value of the interest rate before retirement 

of 2.00% (upper right hand side graph). After the first 5–7 years of retirement these 

two pensioners have very similar graphs in Figure 5.4. 

 

It is interesting that in the upper right hand side graph and two lower graphs in Figure 

5.4 that the 5% and 95% quantile lines are also very similar after age of 72. It means 

that the variability of the optimal equity investment in Case 4.1 is influenced by the 

interest rate at age 65 only for the first few years during retirement. 

 

Another interesting observation in Figure 5.4 can be found when we compare the 5% 

and 95% quantile lines in the graph showing Case 3.1 and the graphs showing Case 

4.1. The distance between the 5% and 95% quantile lines is larger in Case 4.1 than in 

Case 3.1 for each age. It means that optimal equity allocation is more variable in Case 

4.1 than in Case 3.1. The reason for more variability in Case 4.1 is the randomness of 

the interest rate. The pensioner in Case 4.1 optimally invests in equities not only 

based on current values of pension wealth, income and age, but also based on the 

value of the interest rate experienced in the year prior to the optimal decisions. Due to 

here being one more source of risk in Case 4.1 compared to Case 3.1, more variability 

in the pensioner’s optimal equity allocation is observed in Case 4.1. If the interest rate 

in the year prior to the time of investment decision is lower then the higher proportion 

of pension wealth is invested in bonds and less into equities, and vice versa. The 

pensioner whose optimal equity allocation is presented in Figure 5.4 has no demand 

for cash. 

 

We can connect the observation regarding variability of optimal equity allocation in 

the previous paragraph with the observation in Section 5.2.1 that optimal consumption 
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is slightly less variable in the interest rate risk model compared with the appropriate 

values in the inflation risk model. We can conclude that the pensioner in the interest 

rate risk model in Case 4.1 has a more proactive optimisation strategy and in using it 

he makes decisions that are more variable than in the inflation risk model in Case 3.1. 

However, using these optimal decisions the pensioner in the interest rate risk model 

achieves a lower variability of the optimal consumption. 

 

In Figure 5.5, we present the same results as in Figure 5.4 but now for the pensioner 

with a bequest motive. 

 

Figure 5.5 Optimal equity allocation – mean, 5% and 95% quantile in Case 3.1 

 (upper left hand side graph), and Case 4.1 (other graphs) for the 

 pensioner with bequest motive and RRA coefficient 9γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.1. 

 Mean (full line), 5% quantile (dash and dot line, lower line) and 95% 

 quantile of optimal equity allocation (dash line with longer dashes, upper 

 line). The numerical values in graphs are calculated from 2,000 random 

 realisations. 

 

In Cases 3.1 and 4.1, the pensioner with a bequest motive and RRA coefficient 

9γ = −  has a moderately increasing mean optimal equity allocation from around age 

70 to around age 85 and then a decreasing mean optimal equity investment until the 

maximum possible pensioner’s age. The reason for this shape of mean optimal equity 

investment line in each graph in Figure 5.5 is the amount of pension wealth in later 

years of the retirement period. Thus, the pensioner with a bequest motive optimally 

keeps part of his pension wealth during the whole retirement period. From the data not 

65 70 75 80 85 90 95
0

20

40

60

80

100

OptimalEquity Allocationin Case 4.1, b=1, g=-9, r64=4.56%

65 70 75 80 85 90 95
0

20

40

60

80

100

Optimal Equity Allocationin Case4.1, b=1, g=-9, r64=-0.56%

65 70 75 80 85 90 95
0

20

40

60

80

100

OptimalEquity Allocationin Case 4.1, b=1, g=-9, r64=2.00%

65 70 75 80 85 90 95
0

20

40

60

80

100

OptimalAsset Allocationin Case 3.1, b=1, g=-9, r64=2.00%



 242

presented here, we find that the amount of pension wealth is usually larger than the 

income. In the later years of retirement, the amount of pension wealth is already 

decreased and the pensioner draws utility from keeping a certain amount of pension 

wealth available for the bequest. So, the pensioner with a bequest motive keeps the 

remaining pension wealth in a less risky portfolio in the later years of retirement. 

 

Observations regarding the values of the mean, 5% and 95% quantile lines of optimal 

equity allocation in the graphs in Figure 5.5 are similar to the observations of the 

graphs in Figure 5.4 and we will not repeat them. We only emphasise again that the 

duration of the period while significant differences in the values of mean, 5% and 

95% quantile of optimal equity allocation due to the different values of interest rate in 

the year preceding retirement in Case 4.1 in Figure 5.5 is about 5–7 years. The 

duration of this period is similar as in Figure 5.4 for the pensioner with no bequest 

motive. 

 

In Figure 5.6, we present the numerical values of mean, 5% and 95% of optimal 

equity allocation in Cases 3.3 and 4.2 for the pensioner with a bequest motive and 

with the value of RRA coefficient 9γ = − . 

 

Figure 5.6 Optimal equity allocation – mean, 5% and 95% quantile in Case 3.3 

 (upper left hand side graph), and Case 4.2 (other graphs) for the 

 pensioner with bequest motive and RRA coefficient 9γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.2. 

 Mean (full line), 5% quantile (dash and dot line, lower line) and 95% 

 quantile of optimal equity allocation (dash line with longer dashes, upper 
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 line). The numerical values in graphs are calculated from 2,000 random 

 realisations. 

 

In Case 3.3, the pensioner optimally purchases annuities instead of investing in cash 

and during the first few years of retirement he optimally invests all the available 

pension wealth in equities. Thus, in Case 3.3 the pensioner uses annuities as a 

substitution for the risk free asset. Figure 5.6 relates to the pensioner with a bequest 

motive, and again he is keen to keep a certain part of his pension wealth for the 

bequest and his risky investments decrease at later ages. 

 

Regarding the pensioner in Case 4.2 in Figure 5.6, he has a similar pattern of optimal 

equity investment observed as a function of the interest rate during the year prior to 

retirement as the pensioner in Case 4.1 in Figure 5.5. During the first few years of 

retirement, the value of the interest rate in the year before retirement influences the 

pensioner’s decisions regarding optimal investment in equities. After say 5 years, this 

influence disappears and the pensioner’s decisions in terms of the values of the mean, 

5% and 95% quantiles of optimal equity allocation are more or less the same for any 

value of the interest rate during the year before retirement. 

 

Comparing the two upper graphs in Figure 5.6, we observe same pattern as earlier in 

this section. In Case 4.2 when the value of the interest rate during the year before 

retirement is 2.00%, the mean optimal equity allocation line is a few percentage points 

below the mean optimal equity allocation line in Case 3.3. Also, the distance between 

the mean and 5% quantile lines and the distance between the mean and 95% quantile 

lines of optimal equity investment in Case 3.3 are smaller than the relevant distances 

in Case 4.2. 

 

In results not presented here, we find that the pensioner with no bequest motive and 

with the same attitude towards risk will optimally invest all available pension wealth 

in equities throughout the whole retirement period. This means that annuities are a 

better investment than risk free asset for this pensioner, and he uses the opportunity of 

access to annuities at age 65 so that nothing is invested in the risk free asset after 

retirement. 

 

In Figure 5.7, we present the values of the mean, 5% and 95% quantiles of optimal 

equity allocation for the pensioner with a bequest motive and with the value of RRA 

coefficient 9γ = − , in Cases 3.5 and 4.3. 
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Figure 5.7 Optimal equity allocation – mean, 5% and 95% quantile in Case 3.5 

 (upper left hand side graph), and Case 4.3 (other graphs) for the 

 pensioner with bequest motive and RRA coefficient 9γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.3. 

 Mean (full line), 5% quantile (dash and dot line, lower line) and 95% 

 quantile of optimal equity allocation (dash line with longer dashes, upper 

 line). The numerical values in graphs are calculated from 2,000 random 

 realisations. 

 

In Cases 3.5 and 4.3, the pensioner with preferences 1
t

b =  and 9γ = −  optimally 

invests in equities using a large proportion of his pension wealth at an early retirement 

age and afterwards the proportion of pension wealth invested in equities decreases. 

However, a significant part of pension wealth is annuitised at age 65, which we will 

present in Table 5.1 in Section 5.2.3. Due to this fact, the optimal equity allocation 

strategy remains similar as in Cases 3.3 and 4.2 with the difference that the optimal 

asset has higher equities allocation in early ages and then the decrease of mean 

optimal equity allocation is steeper in Cases 3.5 and 4.3. Other characteristics 

observed for Cases 3.3 and 4.2 remain the same. 

 

We present in Figure 5.8 the surfaces of optimal equity allocations for the pensioner 

with a bequest motive and with the value of RRA coefficient 9γ = − , in Cases 3.5 and 

4.3. The surfaces in Figure 5.8 are deterministic functions that are the solutions of the 

optimisation problem in Chapter 4. The upper left hand side surface in Figure 5.8 is 

very similar to the right hand side surface in Figure 3.5, and the upper right hand side 

surface is already presented in Figure 4.7. 
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Figure 5.8 Optimal equity allocation – in Case 3.5 (upper left hand side graph), and 

 Case 4.3 (other graphs) for the pensioner with bequest motive and RRA 

 coefficient 9γ = − , for the different values of interest rates in the year 

 before retirement in Case 4.3. The numerical values in the surfaces are 

 calculated from the deterministic functions of optimal control variables. 

 

In Figure 5.8, we observe similar surfaces in Case 3.5 and in Case 4.3 when the value 

of the interest rate in the year prior to equity investment is 2.00%. The lower left hand 

side surface, when the value of the interest rate in the year prior equity investment is –

0.56%, is moved upwards and is steeper compared to the upper right side surface. The 

lower right hand side surface, when the value of the interest rate in the year prior 

equity investment is 4.56%, is shifted downwards and is less steep compared to the 

upper right side surface. Thus, an increase in the value of the interest rate in the year 

prior equity investment results in the downward movement of the surface of the 

optimal equity allocation and also in a less steep surface. 

 

The downward movement of the value of the mean, 5% and 95% as the value of the 

interest rate before retirement decreases is also observed in Figure 5.7 in the first few 

years of retirement. The previous paragraph explains the reasons for this observation 

in Figure 5.7. After a few years in retirement, the value of the interest rate does not 

depend on the value of the interest rate in the year prior to retirement and the graphs 

in Figure 5.7 are almost the same after say 5 years. In Figure 5.8, we observe the 
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differences in optimal equity allocation due to the differences of the value of the 

interest rate in the year prior to the equity investment are similar for any age. Also, it 

seems that the optimal equity allocation does not change its value for the pensioners 

with different amounts of pension wealth. However, from Figure 5.8 we cannot get an 

idea of how many years during the retirement period the pensioner’s optimal equity 

allocation is going to be influenced by the value of the interest rate during the year 

before retirement. This can only be seen in the figures presenting the realisations of 

stochastic simulations. Thus, for presenting the results regarding optimal control 

variables, the majority of the results presented in this chapter are obtained from 

stochastic simulations. 

 

5.2.3 Optimal Annuitisation 

 

In this thesis, we investigate two main annuitisation policies, optimal annuitisation at 

age 65 only with no annuities afterwards, and optimal annuitisation at any age during 

retirement. In Cases 3.3 and 4.2, the pensioner optimally annuitises at age 65 only and 

as a result we obtain a single number only. In Cases 3.5 and 4.3, the pensioner 

optimally annuitises at any age, and as a result we obtain optimal annuitisation for 

each age. In Cases 3.5 and 4.3, optimal annuitisation at each age depends on the 

development of the random variables in the earlier years. In Section 5.2.3, we 

investigate pensioner’s optimal annuitisation strategy but now with a particular 

emphasis on the dependence of optimal annuitisation on the value of the interest rate. 

 

In Table 5.1, we present optimal annuitisation percentages at age 65 in Case 4.2 for 

the pensioner aged 65 and for the different values of the interest rate during the year 

before retirement. Pension wealth is 200,000, income from the last salary is 

65 33,320.90Y = , and income from social security is 22,728.85SS

t
Y =  for 66 99t≤ ≤ . 

The values of the optimal annuitisation percentages presented in Table 5.1 are the 

deterministic solution of the problems in Chapters 3 and 4. 
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Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 3.3 Case 4.2 Case 3.3 Case 4.2 Case 3.3 Case 4.2 Case 3.3 Case 4.2 

–2.44  30.16%  84.15%  3.23%  69.36% 

–0.56  36.54%  85.43%  9.64%  70.18% 

2.00 31.04% 46.33% 84.33% 87.36% 4.36% 18.75% 69.73% 71.39% 

4.56  55.50%  89.15%  27.29%  72.41% 

6.44  60.93%  90.19%  31.80%  72.94% 

Table 5.1 Optimal annuitisation – in Case 3.3 and in Case 4.2, for the pensioner 

 with different preferences towards risk and bequest, and for different 

 values of interest rate in the year preceding retirement. Initial pension 

 wealth is 200,000. The numerical values in the cells are calculated from 

 the deterministic functions of optimal control variables. 

 

For the pensioner with 0
t

b =  1γ = − , and for the pensioner with 1
t

b =  9γ = − , the 

values of optimal annuitisation in Case 3.3, presented in Table 5.1 are also presented 

in Figure 3.3 in Chapter 3. For the pensioners in Case 4.2 with the different 

combinations of the values of 
t

b  and γ , optimal annuitisation percentages are also 

presented in Figure 4.5 in Chapter 4. 

 

In Table 5.1, we observe that the pensioner who purchases annuities optimally at age 

65 has more demand for annuities in the interest rate risk model in Case 4.2 than in 

the inflation risk model in Case 3.3. We know from the definition of the annuity factor 

in the inflation risk and interest rate risk models that the annuity factor in the interest 

rate risk model is slightly lower for the mean value of the interest rate in the previous 

year, and provides a slightly better annuity income. In the inflation risk model, we 

calculate the annuity rate using a constant value of the interest rate. In the interest rate 

risk model, the annuity rate is calculated using bond prices with the appropriate 

duration. As the market price of risk increases the bond prices, we get a slightly more 

attractive annuity factor in the three than in the inflation risk model, if the value of the 

interest rate in the year preceding retirement is 2.00%. In all examples shown in Table 

5.1, the pensioner in the inflation risk model optimally annuitises similar amount as 

the pensioner in the interest rate risk model when the value of the interest rate is –

2.44%. 

 

In Table 5.1 in Case 4.2, we observe a wide range of the percentages representing 

optimal annuitisation of the pensioner with RRA coefficient 1γ = − . Thus, for the less 

risk averse pensioner in Case 4.2, the decisions regarding optimal annuitisation 

significantly depend on the value of the interest rate during the year before retirement. 
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The more risk averse pensioner in the interest rate risk model has a narrower range of 

the percentages of optimal annuitisation in Case 4.2. Further, for any value of the 

interest rate in the year before retirement, this pensioner annuitises a significant part 

of his pension wealth. 

 

From the values in Table 5.1 and from other results not presented here, we find that 

annuities, as a protection from future uncertain development of random equity and 

interest rates, are important for the pensioner in Case 4.2. The more risk averse is the 

pensioner, the higher is the percentage of optimal annuitisation at age 65 in Case 4.2, 

for a given value of the interest rate. Also, the more risk averse is the pensioner, the 

narrower is the range of the percentages of optimal annuitisation at age 65 in Case 4.2, 

for different values of the interest rate. 

 

Now we will investigate optimal annuitisation in Case 3.5 and Case 4.3. The 

pensioner in Cases 3.5 and 4.3 firstly makes an optimal annuitisation decision at age 

65. That decision is a single number depending on state variables at age 65. In Case 

3.5, the pensioner’s decision regarding optimal annuitisation in later years of 

retirement is conditional on the development of the equity rate experienced in the 

previous years of retirement and consequently on all other variables depending on the 

equity rate. These developments are summarised in the values of the state variables at 

the moment of optimal annuitisation. In Case 4.3, the pensioner’s decision regarding 

optimal annuitisation in later years of retirement is conditional on the development of 

both equity and interest rate experienced during retirement. Similarly to Case 3.5, all 

developments, from age 65 to the moment of annuitisation, of the variables depending 

on the values of random equity and interest rates are summarised into the values of the 

state variables at the moment of optimal annuitisation. 

 

The pensioner in Case 4.3 optimally annuitises depending on the value of the interest 

rate in the year prior to the year of the annuitisation decision. If the value of the 

interest rate in the prior year is lower then the pensioner’s demand for annuities will 

be lower. He will hope that the value of the interest rate in the coming years will be 

better and he will purchase more annuities in the following years. Conversely, if the 

value of the interest rate in the preceding year is higher, then the pensioner purchases 

more annuities at that point of time and less afterwards. 

 

In Figure 5.9, we present the values of mean, 5% and 95% quantiles of optimal 

annuitisation in Cases 3.5 and 4.3 for the pensioner with no bequest motive and with 

the value of RRA coefficient 1γ = − . 
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Figure 5.9 Optimal annuity allocation – mean, 5% and 95% quantile in Case 3.5 

 (upper left hand side graph), and Case 4.3 (other graphs) for the 

 pensioner with no bequest motive and RRA coefficient 1γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.3. 

 Mean (full line), 5% quantile (dash and dot line, lower line) and 95% 

 quantile of optimal equity allocation (dash line with longer dashes, upper 

 line). The numerical values in graphs are calculated from 2,000 random 

 realisations. 

 

Firstly, we observe that optimal annuitisation is significantly different in the inflation 

risk model in Case 3.5 compared to the interest rate risk model in Case 4.3. In the 

inflation risk model, in the upper left hand side graph in Figure 5.9, we have no 

annuitisation at the very early ages of the retirement period and then we have steep 

increase. Then, at age 73, there is the peak, and then a steep decrease. The distances 

between the 5% quantile and mean lines and also between the mean and 95% quantile 

lines are much smaller in the inflation risk model than in any graph representing 

optimal annuitisation in the interest rate risk model. The other graphs representing 

optimal annuitisation in the interest rate risk model have similarities. The mean 

optimal annuitisation does not show a steep increase or decrease and no sharp peak 

exists. The highest value of mean optimal annuitisation in Case 4.3 is lower than in 

Case 3.5 and at the same time the 95% quantile line attains larger values in Case 4.3 

than in Case 3.5. In Case 4.3, the 5% quantile line is equal to the x–axis which means 

that there is at least 5% probability that no annuitisation will occur at any age. So, we 

find that the shapes and the values of mean of optimal annuitisation are similar in all 
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graphs in Case 4.3 but very different compared to Case 3.5. The same conclusion is 

valid for the shapes and the values of 5% and 95% quantiles of optimal annuitisation. 

 

If we compare the three graphs in Figure 5.9 representing optimal annuitisation in the 

interest rate risk model, we observe similar values of the mean, 5% and 95% quantile 

lines for ages after 70. However, up to the pensioner’s age of 70, if the value of the 

interest rate during the year before retirement is higher than expected, shown in the 

lower right hand side graph in Figure 5.9, then the pensioner optimally purchases 

more annuities at age 65 and there is a steeper increase of the 95% quantile line 

during the first two or three years of retirement. If the value of the interest rate in the 

year prior to retirement decreases then the pensioner optimally decreases or even 

defers annuitisation during the early ages of retirement. It means that if the value of 

the interest rate during the year prior to retirement decreases, the pensioner with no 

bequest motive and RRA coefficient 1γ = −  in the interest rate risk model purchases 

fewer annuities in the first five years of retirement in order to use the advantages of 

possible achieving a better annuity rate in the following years. If the value of the 

interest rate during the year prior to retirement is very low, then it is optimal for this 

pensioner to defer annuitisation. 

 

In Figure 5.10, we present the same type of results as in Figure 5.9, but now for the 

pensioner with a bequest motive and with the value of RRA coefficient 9γ = − . In 

order to present the most important part of the graphs in more details, we rescale the 

y–axis such that the values of optimal annuitisation percentages of pension wealth 

from 0% to 35% are shown. 
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Figure 5.10 Optimal annuity allocation – mean, 5% and 95% quantile in Case 3.5 

 (upper left hand side graph), and Case 4.3 (other graphs) for the 

 pensioner with bequest motive and RRA coefficient 9γ = − , for the 

 different values of interest rates in the year before retirement in Case 4.3. 

 Mean (full line), 5% quantile (dash and dot line, lower line) and 95% 

 quantile of optimal equity allocation (dash line with longer dashes, upper 

 line). The numerical values in graphs are calculated from 2,000 random 

 realisations 

 

We observe fewer differences between the inflation risk model in Case 3.5 (the upper 

left hand side graph in Figure 5.10) and the interest rate risk model in Case 4.3 for the 

average value of the interest rate before retirement (the upper right hand side graph in 

Figure 5.10) compared to the differences in the equivalent graphs in Figure 5.9. Thus, 

the graph presenting the mean, 5% and 95% quantile lines of optimal annuitisation in 

the inflation risk model and the graph presenting the same lines in the interest rate risk 

model for the average value of the interest rate before retirement show fewer 

differences for the more risk averse pensioner with a bequest motive than for the less 

risk averse pensioner with no bequest motive. In results not shown on these graphs, 

we find that the pensioner with a bequest motive and 9γ = −  optimally annuitises 

about 63% at age 65 according to the interest rate risk model for the value of the 

interest rate before retirement of 2.00%, and about 60% according to the inflation risk 

model. 

 

Regarding the graphs representing the results in the interest rate risk model in Figure 

5.10, we clearly observe the differences of the mean and 95% quantile lines of 

optimal annuitisation up to age 75. It is optimal to annuitise about 54%, 63% and 67% 
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of the initial pension wealth of 200,000 for the value of initial interest rate during the 

year before retirement of –0.56%, 2.00% and 4.56%, respectively. Then, the higher 

optimal annuitisation at age 65 is followed by lower annuitisation in the coming years 

and vice versa. For instance, if the value of the interest rate before retirement is –

0.56%, then the 95% quantile of optimal annuitisation at age 68 is around 23%, and 

the mean optimal annuitisation is around 6%. If the value of the interest rate before 

retirement is 2.00%, then the 95% quantile at age 68 is around 19% and the mean is 

around 4%, while for the value of the interest rate of 4.56% before retirement, the 

95% quantile is about 14.5% and the mean is about 2.5%. Thus, we find the following 

pattern for the pensioner’s optimal annuitisation in terms of mean, 5% and 95% 

quantile values. For the higher values of the interest rate during the year prior to 

retirement, the pensioner with a bequest motive and with 9γ = −  optimally purchases 

more annuities at age 65 and fewer annuities afterwards. 

 

In Figures 5.9 and 5.10, we observe a pattern that is actually the same for the 

pensioner who has any preferences towards risk and bequest. In the interest rate risk 

model, we find that the pensioner optimally annuitises a lower amount of pension 

wealth, or completely defers annuitisation, at age 65 if the value of the interest rate 

during the year before retirement is unfavourable. After age 65, the pensioner waits 

for a year with a favourable value of the interest rate and annuitises more when the 

annuity rate is favourable. However, after several years of retirement, the annuity rate 

becomes favourable due to the mortality drag as well and the pensioner optimally 

does not defer annuitisation for a too long period. In examples that we have 

investigated, we observe that the pensioner partly or completely defers annuitisation 

during a maximum of the first eight years of the retirement period. 

 

In Figure 5.11, we present the surfaces of optimal annuitisation for the pensioner with 

a bequest motive and with the value of RRA coefficient 9γ = − , in Cases 3.5 and 4.3. 

The upper left hand side surface in Figure 5.11 is very similar to the lower right hand 

side surface in Figure 3.6, and the upper right hand side surface in Figure 5.11 is 

already presented in the lower right hand side in Figure 4.9. 
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Figure 5.11 Optimal annuitisation – in Case 3.5 (upper left hand side graph), and 

 Case 4.3 (other graphs) for the pensioner with bequest motive and RRA 

 coefficient 9γ = − , for the different values of interest rates in the year 

 before retirement in Case 4.3. The numerical values are in the surfaces 

 graphs are calculated from the deterministic functions of optimal control 

 variables. 

 

In Figure 5.11, we observe that the optimal annuitisation as a deterministic function of 

age, wealth and the value of the interest rate during the year before annuitisation has 

very similar values for ages above say 75, for fixed pension wealth and for different 

values of the interest rate before annuitisation. From this observation, we can 

conclude that the only reason for the position of the 95% quantile line above the mean 

line after age 75 in Figure 5.10 is that the pensioner has different amounts of pension 

wealth due to the investment and annuitisation realisations up to age 75. However, 

with this conclusion from Figure 5.11, we cannot determine how the length of the 

period during which the value of the interest rate in the year before retirement 

influences pensioner’s optimal annuitisation decisions. 

 

In Section 5.2.2, we concluded that the pensioner experiences more variability of 

optimal equity allocation in the interest rate risk model compared to the appropriate 

cases in the inflation risk model. We can confirm this conclusion regarding optimal 

annuitisation as the second control variable. Actually, we can conclude that both 
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optimal asset allocation and annuitisation control variables will be more variable in 

random samples in the interest rate risk model than in the comparable cases in 

inflation risk model, but this more active pensioner’s optimal policies will result in a 

slightly less variable optimal consumption in the observed random sample. 

 

5.2.4 Expected Discounted Utility and Adjusted REW 

 

In Section 5.2.4, we present the expected discounted utility drawn from consumption 

and bequest in different cases for the pensioners with different preferences towards 

risk and bequest. All the numerical results presented in this section are deterministic 

calculated using the value function. 

 

We present the values of expected discounted utility, and also expected discounted 

utility in terms of required equivalent wealth. However, the REW  measure in this 

section is a modification of the REW  measure in Chapters 3 and 4, which we used to 

compare required equivalent wealth for comparing expected discounted utility in 

different cases. Now, REW  measure shows the required equivalent wealth that will 

provide the pensioner with the same expected discounted utility for a given value of 

the interest rate during the year prior to retirement as the expected discounted utility 

he would have obtained if the value of the interest rate in the year prior to retirement 

were 2.00%. In order to differentiate the REW  measure in Chapter 5 from the REW  

measure in Chapters 3 and 4, we refer to the REW  measure in Chapter 5 as “the 

adjusted REW  measure”. 

 

In Table 5.2, we present the values of the adjusted REW  measure and the values of 

the expected discounted utility in Cases 3.1 and 4.1, for pensioners with different 

preferences towards risk and bequest and for the different values of the interest rate in 

the year prior to the time of retirement. 
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Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 3.1 Case 4.1 Case 3.1 Case 4.1 Case 3.1 Case 4.1 Case 3.1 Case 4.1 

Required equivalent wealth within case 

–2.44  200,003  202,897  200,005  203,115 

–0.56  200,002  202,011  200,004  202,137 

2.00 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

4.56  199,993  197,285  199,988  197,184 

6.44  199,784  195,236  199,719  195,084 

Expected discounted utility 

–2.44  –34.67  –54,201  –36.23  –63,176 

–0.56  –34.67  –53,634  –36.23  –62,428 

2.00 –34.67 –34.67 –55,523 –52,328 –36.23 –36.23 –65,641 –60,776 

4.56  –34.67  –50,558  –36.23  –58,597 

6.44  –34.65  –49,227  –36.21  –56,983 

Table 5.2 The adjusted REW  measure and expected discounted utility – in Cases 

 3.1 and 4.1, for the pensioners with different preferences towards risk 

 and bequest, and for the different values of interest rate in the year prior 

 retirement. 

 

We observe in Table 5.2, that the value of expected discounted utility in Case 3.1 is 

always lower or equal to the lowest value of the values of the expected discounted 

utility attained in Case 4.1. 

 

The pensioner with the value of RRA coefficient 1γ = −  has almost the same values 

of expected discounted utility in Case 3.1 in the inflation risk model and for all 

investigated values of interest rates in the year preceding the time of retirement in the 

interest rate risk model. There are no annuities in Cases 3.1 and 4.1 presented in Table 

5.2 and only the optimal asset allocation differentiates the obtained values of expected 

discounted utility. If the demand for bonds and cash exist then we get different results. 

For 1γ = − , only for very high values of interest rates in the year preceding the time 

of retirement does some demand for bonds exist and then we get slightly better results 

than in Case 3.1 in the inflation risk model. Otherwise, no demand for bonds and cash 

exist and the values of expected discounted utilities are the same. Small differences 

actually exist but these differences are beyond the second decimal place in the 

numerical values and cannot be seen in the presented results. These small differences 

are confirmed with the small differences in the adjusted REW  measure. 

 

If we observe examples for the pensioner with preferences towards risk represented 

by 9γ = − , we observe the pensioner who has demand for bonds at almost all ages. As 

a result of this demand, the value of expected discounted utilities in the interest rate 
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risk model is always higher than in the inflation risk model. The numerical values of 

the results should not be compared directly because the inflation risk and interest rate 

risk models are not the same. In the interest rate risk model we have a random interest 

rate, the market price of risk and investments in one year bonds (risk free asset) and 

10 year bonds (low risk asset). The pensioner makes optimal cash, bonds and equities 

investment decisions knowing the value of the interest rates in the year preceding the 

year when making investments. Due to this fact and due to the presence of market 

price of risk, the pensioner in the interest rate risk model gets a higher return from risk 

free and bond investment than 2.00%, which is the return on the risk free investment 

in the inflation risk model. It would be possible to fit risk free rate and a given value 

of the market price in the interest rate model such that one year bond prices for the 

average risk free interest rate in the previous year is 2.00%. If this is the case we 

would get the results that are more comparable. Although we investigate only one 

value of the market price of risk, apart from the results in Section 4.5.7.5, we want to 

keep market prices as a variable that can take different values. In this sense, fitting the 

return on one year bond investment in the interest rate risk model would be valid for 

just one choice of the market price of risk. We are actually not interested in 

comparing a limited number of the numerical results in the inflation risk and interest 

rate risk models, but to develop the complete model with the three available assets and 

investigate qualitatively new results from the more rich model. 

 

The combination of optimal investment based on the dependence on the known value 

of the interest rate and the existence of the market price of risk obviously gives the 

pensioner an opportunity for attaining a higher expected discounted utility.  

 

The pensioner with 9γ = −  always has demand for bonds. If the value of the interest 

rate in the year preceding retirement is higher, bond prices are lower at age 65, the 

returns from bonds are higher and the pensioner obtains a higher value of expected 

discounted utility. If the value of the interest rate in the year prior to retirement is 

higher, then, on average, the value of the interest rate in the early years of retirement 

is higher and the pensioner gains in terms of expected discounted utility and the 

adjusted REW  measure. 

 

Regarding the range of the values of the adjusted REW  measure in Table 5.2, we 

observe that for the pensioner with 1γ = − , the range is very narrow and we can say 

that this pensioner is almost indifferent to the value of the interest rate in the year 

prior to retirement. However, the pensioner with 9γ = −  and no bequest motive has 

the range of the values of the adjusted REW  measure of 7.661, and for the pensioner 
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with 9γ = −  and with a bequest motive this range is 8.031 money units. Thus, we 

conclude that in Case 4.1, the more risk averse the pensioner, the more important is 

the state of interest rate in the year preceding the time of retirement. 

 

In Table 5.3, we present the values of the adjusted REW  measure and the values of 

expected discounted utility in Cases 3.3 and 4.2. 

 

Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 3.3 Case 4.2 Case 3.3 Case 4.2 Case 3.3 Case 4.2 Case 3.3 Case 4.2 

Required equivalent wealth within case 

–2.44  203,196  207,167  200,943  205,948 

–0.56  202,116  204,415  200,727  203,666 

2.00 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

4.56  197,440  195,575  198,837  196,209 

6.44  195,630  192,804  197,873  193,683 

Expected discounted utility 

–2.44  –34.54  –25,960  –36.23  –35,355 

–0.56  –34.47  –24,847  –36.21  –34,091 

2.00 –34.53 –34.34 –25,790 –23,110 –36.22 –36.16 –35,669 –32,099 

4.56  –34.17  –21,432  –36.08  –30,093 

6.44  –34.05  –20,415  –36.02  –28,791 

Table 5.3 The adjusted REW  measure and expected discounted utility – in Cases 

 3.3 and 4.2, for the pensioners with different preferences towards risk 

 and bequest, and for the different values of interest rate in the year prior 

 retirement. 

 

In Table 5.3, we give the results under the assumption that the pensioner optimally 

purchases annuities at age 65 only, and has no access to annuities afterwards. Note 

that the ways that we calculate the annuity factor in the inflation risk model and 

interest rate risk model are not the same. In the inflation risk model in Cases 3.3 and 

3.5, the annuity factor is calculated under the assumption of a constant interest rate 

and in the interest rate risk model it is calculated using bond prices with the 

appropriate durations. Annuity loadings are the same. In the inflation risk model in 

Cases 3.3 and 3.5 annuity factor is always the same for a given age and in the interest 

rate risk model it depends on the age and on the value of the interest rate in the year 

preceding the time of annuitisation. Thus, apart from the two ways that cash and bond 

prices influence expected discounted utility explained after Table 5.2, this is another 

reason why different bond prices lead to different results in the inflation risk and 

interest rate risk models. 
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Table 5.3 shows that the expected discounted utility in Case 3.3 is close to, but not 

always lower, than the lowest value of expected discounted utility obtained in Case 

4.2. 

 

For the pensioner with no bequest motive and with RRA coefficient 1γ = − , the range 

of the values of the adjusted REW  measure is 7,566 money units. This pensioner has 

a demand for annuities and he attains the best results in terms of the adjusted REW  

measure using access to annuities. However, the advantage of annuities depends on 

the value of the interest rate before retirement. The pensioner with the same RRA 

coefficient but with a bequest motive has a smaller demand for annuities and the 

range of the values of the adjusted REW  measure is 3,070 money units. The 

pensioner with a bequest motive experiences the same risk of interest rate as the 

pensioner with no bequest motive, but this risk has lower consequences on the 

expected discounted utility. 

 

The same pattern repeats itself for the pensioner with RRA coefficient 9γ = − . The 

difference between the values of the adjusted REW  measure for the smallest and the 

highest values of interest rate in the year preceding retirement is 14.363 if no bequest 

motive exists, and 12.265 money units if the bequest motive exists. We observe that 

the more risk averse pensioner is significantly exposed to the risk of interest rate in 

the year preceding the time of retirement. However, annuities for the pensioner with 

9γ = −  in Case 4.2 and with pension wealth of 200,000 are good options for any 

value of the interest rate in the year preceding retirement. This pensioner optimally 

annuitises from 84% to more than 90% of their pension wealth if no bequest motive 

exists and from 69% to 73% if a bequest motive exists. 

 

In Table 5.4, we present the values of the adjusted REW  measure and the values of 

expected discounted utility in Cases 3.5 and 4.3. 
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Interest 

rate 

0
t

b =  1γ = −  0
t

b =  9γ = −  1
t

b =  1γ = −  1
t

b =  9γ = −  

Case 3.5 Case 4.3 Case 3.5 Case 4.3 Case 3.5 Case 4.3 Case 3.5 Case 4.3 

Required equivalent wealth within case 

–2.44  200,163  205,256  200,083  205,032 

–0.56  200,109  203,376  200,056  203,206 

2.00 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 

4.56  199,830  196,229  199,915  196,497 

6.44  199,262  193,697  199,562  194,089 

Expected discounted utility 

–2.44  –34.02  –24,667  –35.97  –34,230 

–0.56  –34.02  –23,938  –35.97  –33,248 

2.00 –34.19 –34.01 –25,200 –22,647 –36.07 –35.97 –34,904 –31,542 

4.56  –34.00  –21,239  –35.96  –29,717 

6.44  –33.96  –20,318  –35.94  –28,491 

Table 5.4 The adjusted REW  measure and expected discounted utility – in Cases 

 3.5 and 4.3, for the pensioners with different preferences towards risk 

 and bequest, and for the different values of interest rate in the year prior 

 retirement  

 

In Case 4.3, the pensioner has the opportunity to decrease the risk of unfavourable 

interest rate value before retirement by deferring annuitisation partly or completely to 

the later years of retirement when the annuity factor is better due to mortality drag and 

when the pensioner hopes that the value of the interest rate would be more favourable. 

We have concluded in Chapter 4 that Case 4.3 is the most favourable for the 

pensioner in terms of expected discounted utility. 

 

The pensioner with the RRA coefficient 1γ = −  will be in a position to almost 

completely control the risk of unfavourable interest rates in Case 4.3. The range of the 

adjusted REW  measure values for the pensioner with no bequest motive is 901 and 

for the pensioner with a bequest motive it is 521 money units. 

 

For the less risk averse pensioner with RRA coefficient 9γ = − , annuities are a more 

preferable option that even with unfavourable interest rate values, he optimally 

annuitises a significant part of his pension wealth at age 65. However, unfavourable 

interest rate value results in an unfavourable annuity factor and in lower gains from 

annuitisation. The less risk averse pensioner in Case 4.3 only partly defers 

annuitisation and has limited success in decreasing the risk of unfavourable interest 

rate before retirement. The pensioner with 9γ = −  and with no bequest motive has a 

range of values of the adjusted REW  measure of 11.559, and if the pensioner has a 

bequest motive the range is 10.943 money units. We observe that although the 
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pensioner in Case 4.3 still has a wide range of the adjusted REW  measure values, it is 

a lower range than in Case 4.2. 

 

We also make one more observation regarding the comparison of the values of 

expected discounted utility in Tables 5.2, 5.3 and 5.4. If we compare the values in 

each table for a given pensioner’s preferences towards risk and bequest and for a 

given value of the interest rate before retirement, we find increasing values in each 

triple of compared values. The results in Tables 5.2, 5.3 and 5.4 are the results in 

Cases 3.1 and 4.1, Cases 3.3 and 4.2, and Cases 3.5 and 4.3, respectively. Thus, we 

expect to observe increasing values in each triple of the compared values because, in 

Cases 3.1 and 4.1 the pensioner has no access to annuities, in Cases 3.3 and 4.2 the 

pensioner has access to annuities with a constraint (access to annuities at age 65 only), 

and in Cases 3.5 and 4.3 the pensioner has access to annuities with no constraint 

(access to annuities at any age during retirement). 
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Chapter 6 

 

 

 

 

 

Conclusions 

 

 

6.1 Aims and Objectives of the Thesis 

 

In this thesis, we aim to extend the models investigated so far in the literature and to 

explore numerically their properties. The starting point for the development of our 

model is the following one. A retirement period starts at age 65 and lasts until the 

random moment of a pensioner’s death. The pensioner possesses a pension wealth at 

age 65 and also has income from social security during retirement. The pensioner can 

keep his pension wealth in cash (risk free asset), equities (risky asset) and annuities 

(irreversible risk free asset). The pensioner draws utility from consuming money 

during retirement and, if the bequest motive exists, from bequeathing money to his 

heirs. The pensioner optimally invests and annuitises available pension wealth aiming 

to maximise an expected discounted utility drawn from consumption in retirement and 

a bequest. 

 

Based on this framework we develop two models. The first one is the model with 

stochastic inflation. In this model we investigate pensioner’s gains from having access 

to real and nominal annuities. The second one is the model with a random interest rate 

and no inflation. In the second model, we investigate the benefits of the pensioner’s 

access to annuities. As no inflation is present in the second model, the pensioner has 

access to real annuities only. 

 

The objective of the thesis is to understand better how inflation influences the 

pensioner’s benefits from access to annuities, and also to understand better the 

benefits to the pensioner from access to annuities in the presence of stochastic interest 

rate. We develop the models that are extensions of the current models, but at the same 

time the model we develop in the thesis can be the basis for further extensions and 

research. We also develop the measures such that the pensioner’s benefits can be 
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measured, and investigate numerical values of the pensioner’s gains from access to 

annuities in terms of these measures. 

 

Thus, we want to understand in which way and by how much, the introduction of 

stochastic inflation in the two assets model influences the pensioner’s gains from his 

access to annuities, and also, the pattern and the level of the pensioner’s gains from 

his access to annuities in the three assets model in the presence of the stochastic 

interest rate. We develop and investigate two distinct models, the first one addressing 

the inflation risk and the second one addressing the interest rate risk, and do not 

attempt in this thesis to address the both risks in the single model. 

 

6.2 The Model 

 

In this thesis, we develop the models based on the model investigated by Cocco, 

Gomes and Maenhout (2005) with the introduction of annuities that is similar to 

Horneff, Maurer and Stamos (2008). However, we improve this model further in two 

directions. In Chapter 3 we introduce nominal annuities and random inflation and in 

Chapter 4 we introduce stochastic interest rate in the model. We investigate the model 

for the pensioner who retires at age 65. Both models are precisely developed 

mathematically and allow for further developments as noted in Section 6.4. However, 

the model inherits all the limitations of the models investigated in Cocco, Gomes and 

Maenhout (2005) and Horneff, Maurer and Stamos (2008). 

 

The main limitation of our research is the lack of the behavioural motives of the 

pensioner and the household. There is some evidence that households understand their 

own limitations and avoid financial strategies for which they feel unqualified to judge 

(Campbell (2006)). Pensioners who do not feel qualified enough to participate in the 

investment and annuity markets will try to avoid possible mistakes.  We do not try to 

deeper understand the pensioner’s motivation for annuitisation. We assume that the 

whole psychological or sociological motivation of the pensioner in a particular society 

is included in the utility function. We assume that a single aim of the pensioner is to 

draw a maximised expected utility from his future consumptions. Even with this 

single pensioner’s goal, we assume that the utility function for each pensioner for both 

consumption and a bequest can be modelled using a single parameter. It is obviously 

not the true and each particular pensioner will have his own utility function depending 

on many factors. Another important limitation comes from the fact that the conclusion 

are drawn from the investigation of the numerical solution where a number of values 
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of the parameters and probability distributions are assumed and although we tried to 

investigate different possible values of the most important variables, it is still a limited 

range of possible solutions. We are not able to derive an analytical solution to the 

main problems stated in the thesis. However, the model and the solution developed in 

the thesis allow for sensitivity analysis of many variables and it is just a question of 

time needed for a calculation of numerical results for different values of the 

parameters. We should also be aware that the probability distribution of inflation in 

the inflation risk model and the probability distribution of the interest rate in the 

interest rate risk model do not include possible longer tails of these distributions. 

Longer tails can be particularly interesting for possible higher values of the inflation 

and interest rate. Also, related to the assumed probability distribution of the inflation 

and interest rate, we assume that the only state variables in the inflation risk and 

interest rate risk models are the value of the inflation and interest rate during the 

previous year, respectively. So we assume that the values of inflation and interest rate 

before two or more years do not influence the probability distribution of the inflation 

and interest rate in the coming year. This is a questionable assumption and even more 

if we want to extend our models in terms of the stronger serial dependence of the 

inflation and interest rate the time needed for the calculation of the numerical solution 

would probably increase exponentially. The reason is that we would need to increase 

a number of state variables which results in significant increase of the computational 

time. Thus, we can say that our model do not allow for the stronger serial dependence 

of the inflation and interest rate. One more limitation of the model investigated in the 

thesis is related to problem that we tried to address in the left tail analysis. The left tail 

risk is implicitly included in the utility function by its concave shape. However, we 

question if it is good enough for modelling pensioner’s optimal decisions because the 

pensioner has no opportunity to actively recover from possible worse than expected 

experience during the retirement. He is not in a position to earn more and all he can 

do is to spend his assets in appropriate way. So, it is possible that the pensioner’s 

decisions would be much more influenced by significant decrease or increase of the 

pension wealth or income than expected. In the models in this thesis we have no tool 

for modelling the possible additional decisions influenced by significant decrease or 

increase of the pension wealth or income than expected. 

 

In Chapter 3, we develop the two assets model with annuities, one asset being cash 

and the other equities, and with nominal and real annuities. In Chapter 4, we develop 

the interest rate risk model with annuities, one asset being a one year bond, the second 

one is rolling bond with a constant duration and the third asset being equities, and 

with annuities. Inflation in the inflation risk model in Chapter 3 influences income 
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from nominal annuities only, while all other variables in money units are in real 

terms. In the interest rate risk model all variables in money units are in real terms. 

 

6.2.1 The Inflation Risk Model 

 

Using an improvement of the well–known two assets model, the inflation risk model 

in Chapter 3 allows us to investigate the pensioner’s optimal decisions and expected 

discounted utility in the presence of income from nominal and real annuities in 

retirement. The only variable having a value in nominal terms is nominal income and 

this variable is converted into real terms. The value function depends on the state 

representing nominal income as a proportion of the overall income and adjusts it each 

year for inflation. There are four state variables in this model at each age: the value of 

pension wealth, income, the nominal income coefficient and the value of inflation 

during the previous year. In the most general form of the model, the pensioner 

optimises consumption, asset allocation and nominal and real annuitisation in order to 

draw his maximised expected discounted utility from consumption and bequest. 

 

6.2.2 The Interest Rate Risk Model 

 

In Chapter 4, we introduce a stochastic interest rate to the well known two assets 

model and develop the interest rate risk model, where the third asset is a bond, 

introduced as a consequence of the introduction of stochastic interest rates. Other 

authors (Boulier et al (2001) and Deelstra et al (2000)) have developed the continuous 

time models with three assets. If we assume no annuitisation in our model, then our 

model is a discrete time approximation of these two continuous time models. 

Furthermore, we introduce annuities in the interest rate risk model. Due to the discrete 

time framework, in our interest rate risk model we can investigate different constraints 

and investigate annuitisation that is not possible in the continuous time models. In the 

most general form of the model, the pensioner optimises consumption, asset allocation 

and annuitisation in order to draw maximised expected discounted utility from 

consumption and bequest. 

 

We model stochastic interest rate as a discrete time and space approximation of the 

Vasicek model for interest rate. An one year bond is the riskless asset, a rolling bond 

with constant duration is the low risk asset and equities are the third asset available for 

investment. In order to get an actuarially fair annuity factor, we calculate it using 

bonds with the appropriate duration. 



 265

6.3 Main Results 

 

We find that the risk of inflation and risk of random interest rate have different 

consequences for the pensioner. Generally, if we introduce the inflation risk into the 

two assets model then optimal variables do not significantly change and the expected 

discounted utility drawn from consumption and bequest decreases slightly. Regarding 

the risk of random interest rate, it influences optimal values of control variables 

significantly and the value of expected discounted utility increases. Expected 

discounted utility decreases due to the randomness of interest rate and it increases due 

to the presence of the market price of risk and due to the availability of the third asset. 

 

6.3.1 The Inflation Risk Model 

 

6.3.1.1 Constant Inflation 

 

For reasonable values of pension wealth and income from social security (values 

stated in Section 3.4.1), we find that, in the inflation risk model in Case 3.1, it is 

optimal for the pensioner with no bequest motive to keep a large part of his pension 

wealth in equities. For the less averse pensioner with no bequest it is optimal to keep 

all pension wealth in equities. For the pensioner with a bequest motive in Case 3.1 in 

the inflation risk model, it is still optimal to keep significant part of his pension wealth 

in equities, but the amounts are lower than for the pensioner with no bequest motive. 

Increasing pensioner’s risk aversion and an introduction of the bequest motive result 

in a lower optimal equity asset allocation. 

 

For reasonable values of pension wealth and income from social security, we find that 

in the inflation risk model in all cases where the pensioner has access to annuities, it is 

optimal for the pensioner with no bequest motive to keep all his, non annuitised, 

pension wealth in equities. For the less averse pensioner with no bequest it is optimal 

to keep all his pension wealth in equities due to his attitude to risk. This pensioner 

does not convert a large percentage of his pension wealth to annuities in the early 

years of retirement. The more risk averse pensioner will convert large part of his 

pension wealth to annuities at age 65 and the rest of his pension wealth will be 

invested in equities. Thus, we find that for the pensioner with no bequest motive, 

annuities are the preferred investment compared to the risk free asset. This is not 

surprising because annuities provide a higher return due to the effect of mortality 

drag. 
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The pensioner with a bequest motive has a higher demand for annuities than for risk 

free asset for the most combinations of the pensioner’s preferences towards risk. It is 

optimal for the pensioner with a bequest motive to keep part of his pension wealth 

until death. We find that only the pensioner with very low risk aversion and bequest 

motive keeps almost all his pension wealth in equities until the very late years of 

retirement, if the pensioner is alive at that age. For the more risk averse pensioner 

with a bequest motive it is optimal to increase the risk free investment as a proportion 

of his pension wealth in the later years of retirement. Thus, it is optimal for the 

pensioner with a bequest motive to keep part of his pension wealth until death and to 

decrease the riskiness of the pension wealth in the later years of retirement. The level 

of the decrease of the riskiness of the pension wealth in the later years of retirement 

depends on the pensioner’s risk aversion. 

 

Regarding optimal annuitisation, we find that the more risk averse pensioner in Cases 

3.2 and 3.3 (access to nominal or real annuities respectively at age 65 only, 

respectively) purchases significantly more annuities compared to the less risk averse 

pensioner. This is particularly true for the pensioner in Case 3.2. The pensioner in 

Case 3.2 with no bequest motive and with a very low risk aversion will have almost 

no demand for annuities. If the pensioner in Case 3.2 with no bequest motive has a 

very high level of risk aversion then almost full annuitisation is optimal for him. The 

pensioner in Cases 3.2 and 3.3, as in other cases, prefers annuities towards risk free 

assets as annuities provides the higher return compared to risk free asset due to the 

survival credits. However, he can purchase annuities at age 65 only. Optimally, he 

converts the part of the pension wealth into annuities at age 65 so that he has no 

demand for risk free asset afterwards during the retirement. In Case 3.2, only nominal 

annuities are available and the pensioner receives a decreasing income from nominal 

annuities in real terms during the retirement. The low risk averse pensioner in Case 

3.2 accepts the risk or equity return and the demand for the nominal annuity is very 

low. However, for the more risk averse pensioner in Case 3.2 seeks for the protection 

from the equity risk and the demand for nominal annuities increases steeply with the 

increase of the pensioner’s risk aversion. The pensioner with a very high risk aversion 

in Case 3.2 will optimally purchase so high amount of annuities that he will save part 

of annuity income in early years of retirement and consume it afterwards. In the same 

time, the pensioner has a higher income from nominal annuities in real terms in later 

years of retirement as well. The pensioner with no bequest motive in Case 3.3 will 

optimally purchase annuities so that he always consumes all annuity income. As the 

real annuities provides the protection from equity risk and keeps income constant 
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there is a higher demand for real than for nominal annuities for the lower risk averse 

pensioner. However, as the pensioner’s risk aversion increases in Case 3.3, his 

demand for the real annuities will increase slower than in Case 3.2, because in Case 

3.3 the pensioner’s implied risk free investment in a form of annuity will decrease 

slower during retirement. 

 

If the pensioner in Case 3.2 has a bequest motive then we observe a lower demand for 

annuities compared to the pensioner with no bequest motive for all investigated levels 

of risk aversion. The less risk averse pensioner in Case 3.3 with a bequest motive has 

a higher demand for annuities than in Case 3.2, and a lower demand in Case 3.3 than 

in Case 3.2 if the pensioner is more risk averse. If the pensioner has a bequest motive, 

we find the similar conclusions about the optimal annuitisation in Cases 3.2 and 3.3. 

His demand for annuities is lower because the pensioner aims to keep a part of his 

pension wealth until the end of his life due to the bequest motive. 

 

If the pensioner can purchase only nominal, or only real, or both nominal and real 

annuities any time during retirement, which is investigated in Cases 3.4, 3.5 and 3.6 

respectively, we find that optimal nominal, real and the sum of nominal and real 

annuitisation respectively are similar for the different combinations of the pensioner’s 

preferences towards risk and bequest. 

 

For the pensioner in the earlier years of retirement, optimal annuitisation in Cases 3.4, 

3.5 and 3.6 significantly depends on his preferences towards risk and bequest. For the 

lower risk averse pensioner it is optimal to defer annuitisation for 2–3 years and then 

to annuitise significant parts of his pension wealth soon after deferment of 

annuitisation. For the more risk averse pensioner it is optimal to annuitise a significant 

proportion of his pension wealth at the very beginning of retirement and then to keep 

annuitising smaller amounts of the remaining pension wealth. The lower risk averse 

pensioner is prepared to take equity risk during the early years of retirement because 

equity return is better compared to annuity, but after a couple of years survival credits 

become significant and the demand for annuities increases. 

 

If the pensioner has no bequest motive, we find that optimal annuitisation depends 

significantly up to age 75. The pensioner with a lower risk averse purchases a lower 

amounts of annuities at very early ages and his demand for annuities increases steeper 

as he approaches age 75 compared to the pensioner with a higher risk aversion. At 

ages 75 and above, the demand for annuities does not depends significantly on the 

pensioner’s risk aversion if the pensioner has no a bequest motive. 



 268

 

The pensioner with a bequest motive will always have a lower demand for annuities 

than the pensioner with no bequest motive, both having the same preferences towards 

risk. If the pensioner has a bequest motive, again he takes more risky investment 

strategy at very early ages, which results with a decrease or deferment of the 

annuitisation for the pensioner with a lower risk aversion. 

 

We find that optimal nominal, real and the sum of nominal and real annuitisation in 

Cases 3.4, 3.5 and 3.6 respectively, do not significantly depend on the pensioner’s 

preferences towards risk for ages above 75 if the pensioner has no a bequest motive. 

We can conclude that any type of annuities is more or less equally good investment 

for the pensioner with no bequest motive at later ages regardless of his preferences 

towards risk. The reason for very low dependence on the pensioner’s risk aversion is 

that survival credit is so high that even a lower risk averse pensioner purchases 

significant amount of annuities and optimal annuitisation for the pensioners with 

different risk aversion differs just slightly. 

 

For the pensioner with a bequest motive, we find that optimal nominal, real and the 

sum of nominal and real in Cases 3.4, 3.5 and 3.6 respectively depend significantly on 

the pensioner’s preferences towards risk during the ages 75 and above. The 

pensioner’s bequest motive decreases his demand for annuities and in the same time 

the more risk averse pensioner purchases more annuities compared to the pensioner 

with a lower risk aversion. 

 

In Case 3.6, the pensioner has access to both nominal and real annuities during the 

whole retirement period. For different values of the pensioner’s RRA and bequest 

motive coefficients, and for the different values of the pensioner’s age and wealth, we 

find all possible combination of the demand for nominal and real annuities. For some 

values no demand for any annuity exists, for some values the pensioner has a demand 

only for real or only for nominal annuities, and for some other values he has a demand 

for both real and nominal annuities. It is very complicate to draw the general 

reasoning for the observed distribution of the nominal and real annuities in Case 3.6. 

It is particularly tricky question because from the analysis of the gains in terms of 

REW , we observe that access to both type of annuities are very small in Case 3.6 

compared to Case 3.5. It seems that the pensioner will optimally purchase some 

nominal annuities but in terms of REW  measure it would provide him with very low 

additional gains. It means that the pensioner in Case 3.6 will make optimally choice of 

optimal nominal and/or real annuitisation but he will obtain just slight gains of 
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expected discounted utility compared to the pensioner who has opportunity to 

optimally annuitise real annuities only. 

 

If the pensioner has no bequest motive then we find that it is optimal for the pensioner 

to start purchasing nominal annuities at age 73–75, then after these ages the 

percentage of the optimal nominal annuitisation increases, and then it decreases again. 

We also find that if the demand for nominal annuities at a given pensioner’s age exists 

then the percentage of the optimal nominal annuitisation is higher for lower values of 

the pension wealth and this percentage decreases as income wealth increases. In the 

same time, the percentage of the optimal real annuitisation increases as the pension 

wealth increases. We believe that the reasons for the demand for nominal annuities 

compared to real annuities should be sought in a higher income provided from 

nominal annuities during a couple of years after purchasing them, its constant 

decrease in real terms and eventually a lower income in real terms compared to the 

constant income in real terms provided by real annuities purchased at the same age 

and for the same amount of the pension wealth. We believe that the demand for the 

nominal annuities does not exist at earlier ages because of the long period of 

decreasing income from nominal annuities in real terms during the retirement. If the 

pensioner purchases nominal annuities very early during retirement period then the 

income from nominal annuities in real terms will decrease later during the retirement 

so that the gains of the higher income from nominal annuities in a years after 

purchasing them is overweight. Regarding a higher percentage of the optimal nominal 

annuitisation compared to the optimal real annuitisation for low values of the pension 

wealth, we believe that the reason for this observation lies in a fact that for a lower 

amount of pension wealth a lower amount of additional income can be provided using 

annuitisation. Thus, although income from nominal annuities decreases in real terms, 

the decrease of the overall income is relatively low and the gains from the higher 

income in early years after purchasing annuities overweight the losses in later years 

after purchasing nominal annuities. 

 

We observe similar properties of the optimal nominal versus optimal real 

annuitisation in Case 3.6 for the pensioner with a bequest motive. The important 

difference, compared to the pensioner with no bequest motive, is that the pensioner 

with a bequest motive will not purchase any annuities for very low values of the 

pension wealth due to his bequest motive. However, if the demand for nominal 

annuities exists then this pensioner will optimally purchase only nominal annuities or 

more nominal annuities compared to real annuities for lower values of the pension 

wealth. As the amount of pension wealth increases for a given age, the percentage of 
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the optimal nominal annuitisation decreases and the percentage of the optimal real 

annuitisation increases. We also observe that no demand exists for nominal annuities 

at very early retirement years. However, for the pensioner with a bequest motive and 

with the value of the RRA 9γ = −  it is only during the first 2 or 3 years of the 

retirement. So we find that the demand for nominal annuities for the pensioner with a 

bequest motive starts earlier compare to the pensioner with no bequest motive. 

Although we have different values of the optimal nominal and optimal real 

annuitisation for the pensioner with and with no bequest motive, we find that the same 

pattern of deferred optimal nominal annuitisation at the beginning of the retirement 

period, and of decreasing demand for nominal and increasing demand for real 

annuities as the pension wealth increases for a given age. Thus, we believe that the 

same general reasoning is applicable for the pensioner with a bequest motive as stated 

for the pensioner with no bequest motive. 

 

Cases in the inflation risk model differ in access to the class/classes of annuities and 

in constraints regarding at which ages the pensioner can access annuities. We find 

that, in terms of REW , annuitisation is beneficial to the pensioner in each case and in 

all but one combination of the parameters representing the pensioner’s preferences 

towards risk and bequest motive. We find that only the pensioner with a very low 

level of risk aversion and with a bequest motive in Case 3.2 does not have a demand 

for annuities. The level of a pensioner’s benefit from annuitisation significantly 

depends on his preferences towards risk and bequest. The more risk averse pensioner 

has more demand for annuities and he benefits more in terms of expected discounted 

utility. Also, the pensioner with no bequest motive compared with the pensioner with 

a bequest motive and for the same level of risk aversion, will have more demand for 

annuities and will benefit more in terms of expected discounted utility. The more risk 

averse pensioner in Case 3.2 will gain significant benefits from nominal annuitisation 

at age 65. However, the pensioner in Case 3.2 always gains lower benefits compared 

to the pensioner with access to any other class/classes of annuities. The pensioner 

with access to nominal annuities whenever in retirement (Case 3.4) benefit more than 

the pensioner with access to real annuities at age 65 only (Case 3.3) for all 

investigated combinations of the risk aversion and bequest motive parameters, apart 

for the pensioner with no bequest and with high risk aversion. We find that the 

differences in gains between the pensioners in Case 3.4 and Case 3.3 are larger for the 

lower level of risk aversion and for no bequest motive. Cases 3.5 and 3.6 provide the 

highest and very similar levels of benefit to pensioners for all combinations of risk 

aversion and both with and without a bequest motive. We find that for the investigated 

values of the parameters, real annuitisation in Case 3.6 is more favourable to the 
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pensioner than nominal annuitisation. The differences in the level of benefits between 

Cases 3.5 and 3.4 increase with the increase of the pensioner’s risk aversion. These 

differences are higher for the pensioners with no bequest motive than for the 

pensioner with a bequest motive. When comparing the levels of benefits between 

Cases 3.5 and 3.3, we find that the differences are smaller for the more risk averse 

pensioner, and again differences are smaller for the pensioner with a bequest motive 

than for the pensioner with no bequest motive. 

 

6.3.1.2 Stochastic Inflation 

 

As we want to isolate the effect of stochastic inflation, we have firstly investigated 

different cases and different combinations of the parameters for constant inflation and 

then we have investigated the same examples but with stochastic inflation. Stochastic 

inflation influences Cases 3.2, 3.4 and 3.6 when the pensioner has income from 

nominal annuities, as it is the only variable in nominal terms. 

 

We observe that in both deterministic and stochastic inflation in Case 3.6, the 

pensioner optimally purchases much more real annuities than the nominal ones. As 

stochastic inflation has the effects on the nominal annuities only, the effects of 

stochastic inflation in Case 3.6 are almost negligible. 

 

However, we find that stochastic inflation has minimal effects in Cases 3.2 and 3.4 as 

well. Regarding optimal control variables, the differences are very small. We find that 

for different pension wealth and for different amounts of nominal income as a 

proportion of overall income all control variables vary just slightly. We find that for 

the pensioner with a high level of risk aversion, for whom the benefits from nominal 

annuitisation are the largest, the differences in the benefits in constant inflation 

framework and in stochastic inflation framework are almost negligible. We find that 

the risk of uncertain inflation results in a small decrease in the pensioner’s benefits 

compared to the case of constant inflation.  

 

We believe that the higher/lower annuity income from nominal annuities at times 

when the value of inflation is higher/lower, and the faster/slower decrease of the 

nominal income in real terms in the years that follow the year when inflation is 

higher/lower cancel each other out. Namely, if the value of random inflation is 

higher/lower in the year prior to nominal annuitisation, then the nominal annuity rate 

is lower/higher. Income from nominal annuity bought at that moment is higher/lower. 

However, as the value of inflation in the year prior to nominal annuitisation is 



 272

higher/lower, then the value of inflation in the coming years is going to be 

higher/lower on average. Due to, on average, higher/lower inflation in the coming 

years, the nominal annuity income decreases its value in real terms faster/slower. As 

we measure expected discounted utility, these effects seems to cancel each other out 

and we find influences of inflation very small in terms of expected discounted utility. 

This is actually a consequence of a feature of a mean reverting AR(1) model for 

inflation. 

 

6.3.2 The Interest Rate Risk Model 

 

In the interest rate risk model, the pensioner can invest in cash, bonds and equities and 

the interest rate is stochastic. We find that the value of the interest rate significantly 

influences the pensioner’s optimal control variables as well as the gains from access 

to annuities. We firstly focus our analysis on comparing results between cases and in 

this way we investigate the pensioner’s gains from access to annuities. Then, we focus 

on comparing results within a case and in such way we investigate the influence of the 

value of the interest rate during the year before retirement on the pensioner’s optimal 

decisions and gains from annuities in retirement. 

 

6.3.2.1 Comparing Results between Cases 

 

As in the inflation risk model, we focus our analysis on reasonable values of the 

variables, as stated in Section 4.5.1. For these values of the variables, we find that 

optimal allocation in the ten year rolling bond is always preferable for the pensioner 

compared to the allocation in cash. For the pensioner with no bequest motive in Cases 

4.2 and 4.3, annuities are preferable compared to both bonds and cash as all pension 

wealth is optimally either annuitised or kept in equities. The pensioner with no 

bequest motive in Case 4.3 optimally annuitises all pension wealth before the last 

possible age, if still alive at that age. Due to the utility drawn from bequeathing assets 

to his heirs, the pensioner with a bequest motive keeps a part of his pension wealth 

until the end of his life. For the pensioner with a bequest motive it is optimal to reduce 

the investment risk during later years of retirement by increasing the proportion of the 

pension wealth invested in bonds. 

 

Regarding optimal annuitisation in Case 4.2 (access to annuities at age 65 only), we 

find that the more risk averse pensioner optimally annuitises a significantly larger part 

of his pension wealth than the less risk averse pensioner. We also find that the optimal 
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proportion of annuitised pension wealth in Case 4.2 depends more on the value of the 

interest rate during the year before retirement for the less risk averse pensioner than 

for the more risk averse pensioner. 

 

In Case 4.3 (access to annuities at any age), we find significant differences in optimal 

annuitisation strategies for ages 65 to about 75. We find that the pensioner with no 

bequest motive and with any level of risk aversion optimally converts all his pension 

wealth to annuities by age 80. In the early years of retirement, we find significant 

differences in optimal annuitisation for pensioners with no bequest motive and 

different attitudes to risk aversion. The more risk averse pensioner will optimally 

purchase a significant amounts of annuities at age 65 and will only partly defer 

annuitisation if the value of the interest rate during the year before retirement is not 

favourable. The less risk averse pensioner will completely defer annuitisation if the 

value of the interest rate during the year before retirement is not favourable, but if the 

value of the interest rate is favourable he will purchase a significant amounts of 

annuities at age 65. However, in the early years of retirement but after age 65, the 

more risk averse pensioner with no bequest motive will purchase a fewer annuities 

than the less risk averse pensioner with no bequest motive because the first pensioner 

has already bought more annuities at age 65. Similar trends will be observed for the 

pensioner with a bequest motive. However, we find that the pensioner with a bequest 

motive keeps part of his pension wealth until death and annuitises a smaller portion of 

his pension wealth. 

 

In terms of expected discounted utility, the pensioner with no bequest motive benefits 

more from annuitisation than the pensioner with a bequest motive. 

 

The more risk averse pensioner optimally purchases more annuities, and in Case 4.3 

earlier during retirement, and this pensioner benefits significantly more from access to 

annuities than the less risk averse pensioner. We find this to be true for all 

investigated values of the interest rate during the year before retirement. 

 

Regarding the differences in gains from access to annuities in Cases 4.2 and 4.3, we 

find that these differences are larger for the less risk averse pensioner compared to the 

more risk averse pensioner with a same bequest motive. These differences are also 

larger for the pensioner with no bequest motive compared to the pensioner with a 

bequest motive, both pensioners having the same attitude towards risk. 
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The difference between the benefits from annuitisation in Case 4.2 and 4.3 depend on 

the value of the interest rate during the year before retirement. For lower values of the 

interest rate during the year before retirement, the difference between benefits from 

annuitisation in Case 4.2 and 4.3 are larger for the less risk averse pensioner. As the 

values of the interest rate during the year before retirement increase we find that these 

differences become smaller for all investigated levels of risk aversion and for the high 

values of interest rate during the year before retirement, the differences are almost 

negligible. 

 

6.3.2.2 Sensitivity Analysis 

 

We have performed a sensitivity analysis of the pensioner’s gains from access to 

annuities by changing the values of different variables. If the pensioner has a higher 

income from his last salary and also from social security, keeping the replacement 

ratio the same, his gains from access to annuities decreases. Income from social 

security is a form of annuity income and if the pensioner possesses a higher income 

from social security he optimally annuitises lower amounts of pension wealth and 

annuitises them later in retirement and benefits less from access to annuities compared 

to the pensioner with a lower income from social security. If the pensioner has a 

higher pension wealth at age 65, then he has a relatively lower income from social 

security, and he gains more from access to annuities compared to the pensioner with 

the lower pension wealth at age 65. If the mean value of equity rates decreases, the 

annuities are more favourable for the pensioner and the gains from access to annuities 

increases. If the mean value of the interest rate increases, then the demand for 

annuities increases and the pensioner’s gains from access to annuities increases. If the 

market price of risk decreases, the demand for annuities and for rolling bonds 

decreases, and the demand for equities and cash increases. As a result, we observe a 

small decrease of the pensioner’s gains from access to annuities. 

 

6.3.2.3 Comparing Results within Case 

 

For the different values of interest rate during the year before retirement, we find 

small differences in the pensioner’s optimal consumption. We find that the pensioner 

adjusts his optimal investment strategy and, if he has access to annuities, his optimal 

annuitisation strategy according to the value of the interest rate before retirement. We 

find significant differences in the values of optimal investment and annuitisation for 

the different value of the interest rate before retirement. Applying this an optimal 
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strategy, the pensioner keeps the values of optimal consumption less variable, and in 

that way attains the highest expected discounted utility. 

 

In Cases 4.2 and 4.3, for the pensioner with no bequest motive, optimal equity 

investment is preferred over bonds and cash for all but very high values of the interest 

rate during the year before investment. The pensioner with no bequest motive in Case 

4.3 only, when the value of the interest rate during the year before investment is 

extremely high, has some demand for bonds during the early years of retirement. 

 

For the pensioner with a bequest motive in Cases 4.2 and 4.3, optimal equity 

allocation decreases as the value of the interest rate during the year before investment 

increases. The range of optimal equity allocation as a function of the value of the 

interest rate during the year before investment is quite large for this pensioner. 

 

The range of the percentages of optimal annuities purchased as a function of the value 

of the interest rate during the year before annuitisation and the pensioner’s age 

decreases as the pensioner gets older. It seems that optimal annuitisation does not 

depend significantly on the value of the interest rate during the year before 

annuitisation for the less risk averse pensioner, aged around 80 and above. The 

pensioner’s age limit when optimal annuitisation does not any more depend 

significantly on the value of the interest rate during the year before annuitisation 

decreases to less than 75 for the more risk averse pensioner with a bequest motive. 

We find that the range of the values of optimal annuitisation, as a function of the 

value of the interest rate during the year before annuitisation, is larger for the 

pensioner with no bequest motive than for the pensioner with a bequest motive. We 

also find that this range is larger for the less risk averse pensioner. 

 

In Case 4.2, we find significant differences in optimal annuitisation at age 65 

depending on the value of the interest rate during the year before retirement. We find 

that the range of the values of optimal annuitisation at age 65 in Case 4.2 as a function 

of the value of the interest rate during the year before retirement is larger for the less 

risk averse pensioner compared to the more risk averse pensioner with the same 

attitude towards the bequest. Also, the range is larger for the pensioner with no 

bequest motive compared to the pensioner with a bequest motive, both having the 

same risk aversion. 

 

The pensioner in Case 4.3 defers annuitisation partly or completely, depending on the 

value of the interest rate during the year before retirement. For the pensioner aged 65, 
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we find that the values of the mean and 5% and 95% quantiles of optimal 

annuitisation changes during the first five to eight years of retirement as the value of 

the interest rate during the year before retirement changes. 

 

Optimal annuitisation, optimal equities and bond allocation all change at the same 

time as a function of the value of the interest rate during the previous year. If 

annuitisation is allowed and the demand for annuities and bonds exists, we find that as 

the value of the interest rate during the previous year increases, the demand for both 

annuities and bond investment increases while the value of optimal equities allocation 

decreases. 

 

In Cases 4.1, 4.2 and 4.3, the pensioner faces equity and interest rate risks, while in 

Cases 3.1, 3.3 and 3.5, he faces equity rate risk only. When comparing Cases 3.1, 3.3 

and 3.5 and Cases 4.1, 4.2 and 4.3, respectively, we find that the variability of optimal 

asset allocation and annuitisation is higher in Cases 4.1, 4.2 and 4.3. At the same time, 

the variability of optimal consumption is very similar or even lower in Cases 4.1, 4.2 

and 4.3. Thus, we conclude that the pensioner in a more risky environment in Cases 

4.1, 4.2 and 4.3 has enough space to act optimally regarding optimal asset allocation 

and annuitisation such that the mean and 5% and 95% quantiles of optimal 

consumption are kept similar or even closer together compared to the less risky 

environment in Cases 3.1, 3.3 and 3.5. 

 

Regarding expected discounted utility (measured via the adjusted REW  measure) 

drawn from the pensioner’s consumption and bequest in retirement as a function of 

the value of the interest rate during the year before retirement, we find the following 

results. 

 

The less risk averse pensioner is almost indifferent toward the value of the interest 

rate before retirement in Cases 4.1 and 4.3. One reason for this result is that the less 

risk averse pensioner optimally invests all his pension wealth in equities and 

investment results are not affected by changes in the value of the interest rate. The 

second reason applies to Case 4.3: this pensioner optimally purchases annuities during 

the first ten to fifteen years of retirement and optimally he purchases small amount of 

annuities at age 65. So this pensioner purchases annuities when the value of the 

interest rate or when mortality drag is favourable and thus avoids the risk of interest 

rate. The less risk averse pensioner with a bequest motive in Case 4.2 is slightly more 

exposed to interest rate risk, but still we find small differences in terms of adjusted 

REW  measure. 
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However, the less risk averse pensioner with no bequest motive in Case 4.2 obtains a 

wider range of results in terms of adjusted REW  measure for the different values of 

the interest rate during the year before retirement. This pensioner optimally purchases 

annuities at age 65 whatever the value of the interest rate. So this pensioner benefits if 

the value of the interest rate before retirement is favourable because then the annuity 

rate is more favourable as well. 

 

The more risk averse is the pensioner, the more influence has the value of the interest 

rate before retirement on the expected discounted utility. The more risk averse 

pensioner has a higher demand for both bonds and annuities during the whole 

retirement period and he benefits from the more favourable value of the interest rate 

before retirement. In all cases we find significant differences in terms of expected 

discounted utility for different values of the interest rate before retirement. The 

differences in terms of adjusted REW  measure are the smallest in Case 4.1, as the 

value of the interest rate before retirement influences bond investment only. In Case 

4.3, the more risk averse pensioner has a significant demand for annuities at age 65 

for any value of the interest rate before retirement, but he can partly defer 

annuitisation during the early years of retirement and decrease the level of interest rate 

risk before retirement. The differences in terms of adjusted REW  measure are higher 

in Case 4.3 compared to Case 4.1, but smaller than in Case 4.2. In Case 4.2, the more 

risk averse pensioner optimally purchases a significant amount of annuities at age 65 

for any value of the interest rate before retirement and all he can do is to purchase 

fewer annuities if the value of the interest rate before retirement is unfavourable. That 

is why this pensioner in Case 4.2 has the widest range of the values of expected 

discounted utilities for different values of the interest rate before retirement. 

 

Comparing pensioners with the same attitude towards risk, one with a bequest motive 

and the other with no bequest motive, we find the following results in terms of 

adjusted REW  measure as a function of the value of the interest rate before 

retirement. In Case 4.1, the pensioner with a bequest motive is slightly more exposed 

to the risk of an unfavourable interest rate before retirement. The reason lies in the 

fact that in Case 4.1 it is optimal for the pensioner with a bequest motive to invest 

slightly less in equities. However, in Cases 4.2 and 4.3, the differences of expected 

discounted utility for the pensioner with a bequest motive are lower compared to the 

differences for the pensioner with no bequest motive. The pensioner with no bequest 

motive has a higher demand for annuities and he is more exposed to the risk of 

changes to the interest rate before retirement. 
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6.4 Future Research 

 

As we have already noted, the two models developed in this thesis build on existing 

models. However, by improving the existing models by introducing stochastic 

inflation in Chapter 3 and stochastic interest rate in Chapter 4, we have not come to 

the limits of the development of the model. The main obstacle for further 

development of the model can be the speed of the numerical calculation on the 

computer. However, we witness increasing speed and capacity of processors and also 

the development of parallel and high performance computing centres in many 

countries. The possibility to numerically solve the equations in the more complex 

model, which is an extension of our model, makes the results in this thesis an 

excellent basis for future work. 

 

We will mention some of the possible directions for further research based on the 

results presented here. 

 

Different constraints on consumption, asset allocation and annuitisation can be 

imposed and investigated. For example, one can assume that the pensioner can borrow 

money and also set a constraint on the borrowing. The model would be numerically 

solvable. 

 

We model the inflation rate and interest rate using AR(1) model. Another inflation 

and interest rate model can be used for developing the values of inflation and bond 

prices. It can be particularly interesting in the interest rate risk model. We base our 

interest rate model on the Vasicek model. However, the Vasicek model has long left 

tail as well as right tail and it is not skewed distribution. It would seem more sensible 

to base the interest rate model on the Cox–Ingersoll–Ross model because in CIR 

model left tail is short and limited to zero value and right tail is long. It seems to be 

better representation of the real interest rate. It is possible to develop the discrete time 

and space interest rate model based on the CIR model and to derive the bond market 

for that model. Once the bond market is derived, we just introduce new bond prices in 

our model. 

 

An important extension will be allowing for longevity risk. We assume that the 

pensioner’s maximum lifetime is 100. It can be increased in the model. We can 

introduce the pensioner’s subjective and objective probabilities of survival in the 

model. Increasing the maximum lifetime and differentiating subjective and objective 

probabilities of survival can be particularly interesting in today’s world of constantly 
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improving survival probabilities for pensioners and of longevity risk. We observe a 

single pensioner from his retirement age until his death. However, the tables we use 

are the 2002–2004 tables of the one year survival probability of the person alive at a 

given age. So it would be interesting to project the mortality table for the future years 

and in the same time to increase the maximum lifetime. Then we would get the better 

pensioner’s survival probabilities in the future years until his death. We observe 

systematic downward trends in mortality rates especially at older ages and taking this 

trend into account would result in higher survival probabilities at older ages and new 

results. 

 

It would be interesting to investigate the effects of the introduction of the correlation 

between random variables in each model. In the inflation risk model it would be 

interesting to investigate the correlation between inflation and equity return and the 

correlation between interest rate and equity return in the interest rate model . 

 

Also, it is possible to introduce inflation in the interest rate risk model and get a single 

general model that we can use for the simultaneous investigation of stochastic 

inflation and interest rate. Then, the inflation risk model would be a special case of the 

general model if interest rate variability approaches zero, and the interest rate model 

would be a special case of the general model if the mean of the inflation rate is zero 

and variability of the inflation rate approaches zero. If one develops the general 

model, then it would be also possible to introduce and investigate the effects of the 

correlation between the inflation and interest rate risk. However, we recognise that in 

the model including both inflation and interest rate risks would have one more state 

variable and that would result in significant increase of the computational time. In the 

same time handling the numerical results would be more demanding. 

 

Income from social security is assumed to be a constant in real terms in this thesis and 

this assumption can be relaxed. Introduction of possible random shocks in 

consumption due to the costs of the pensioner’s health care or loan repayments, for 

example, would be one more improvement of the model making it more realistic. 

 

In the model developed in this thesis, we assume that the pensioner has constant 

relative risk aversion utility function and no pensioner’s target consumption of 

pension wealth is assumed. There are many possible variations regarding the 

pensioner’s utility function that would be realistic and that could give us interesting 

answers. Thus, we could assume that the pensioner has an Epstein–Zin or some other 

utility function and investigate the numerical results for that pensioner. In Sections 
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3.4.6 and 4.5.6, we have defined and calculated numerically the pensioner’s left tail 

risk. This measure seems important for the pensioner as (in retirement) the pensioner 

is spending the wealth that he saved from earning during the period of life before 

retirement. The pensioner gets older and is less willing and able to work and he has no 

possibility to recover from the poor financial experience in retirement. Thus, the 

model in this thesis could be improved such that it better recognises the pensioner’s 

left tail risk. 

 

We witness a number of discussions about the extending individual’s retirement date. 

In our model we assume that the individual is retired at age 65 and after that age he 

receives income from social security only. The model allows for investigating the 

individual who choose to work after age 65 as well. Instead of the constant income 

from social security one can extend our model such that the individual works a few 

years after age 65 and receives either salary only or a combination of maybe part or 

the whole income from social security and salary as well. If we assume that the 

pensioner receives only part or no income from social security during additional 

working years then we can introduce a higher income from social security when the 

individual retires after age 65. In the same time it would be sensible to assume that the 

individual has access to annuities from age 65 onwards. The retirement age in this 

model could be an exogenously chosen age by the individual or it can be 

endogenously chosen as a function of the pension wealth and income from social 

security and annuities. In the interest rate model, the retirement age could also be 

connected to the value of the interest rate such that the individual chooses the 

retirement date optimally as a function of the pension wealth, income from social 

security and also as a function of the annuity rates available. Then we would probably 

have earlier retirement age if the value of the pension wealth is more than expected, 

but also it could be earlier if the pension wealth is below expected but the annuity rate 

is favourable and retirement becomes optimal. Introducing exogenously chosen 

retirement age is easier and one can use REW  measure to compare the pensioner’s 

gains from working additional years. However, if one develops the model with 

flexible retirement age then probably some kind of the utility from not working needs 

to be introduced because we can assume that the individual has additional utility from 

leisure. Bodie et al (1992), Lachance (2004) and Chai et al (2009) develop the models 

with flexible retirement age and besides utility from consumption they introduce 

utility from leisure as well. 

 

The results in this thesis can be used for the investigation of optimal asset allocations 

in the preretirement period as well. We have determined the value functions at age 65 
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for the pensioner having access to a given class/classes of annuities in retirement. 

Using these value functions, one can extend our results for the individual in the 

preretirement period such that this individual makes optimal decisions knowing his 

time of retirement and the availability of annuities in retirement. 

 

Developing the life cycle model with flexible retirement age, optimal asset allocation 

in preretirement period and optimal postretirement asset allocation and annuitisation 

could be the further development of the model in this thesis. Bodie et al (1992), 

Lachance (2004) and Chai et al (2009) investigate flexible retirement age. One can 

use their ideas and results and the model developed in this thesis, particularly the 

interest rate model, and develop the lifecycle model with three assets, with access to 

annuities from a given age and with flexible retirement age. 
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Appendices 

 

 

 

 

A.1 Appendix 1 – Income as State Variable in the Inflation risk Model 

 

In this Appendix, we prove the relations amongst the solutions of the problem (3.26)–

(3.34) for different values of the income variable. We find that we can solve the 

problem (3.26)–(3.34) for one single value of the income variable and for different 

values of other variables and then transform this solution to obtain the solution for any 

value of the income. It is very useful for numerical solution because using this 

techniques, we decrease the number of state variables such that the income variable 

becomes a constant. Then, we can obtain a numerical solution for only one value of 

income and then investigate different values of income using the technique from this 

Appendix. It is also useful because we can derive the solution for a smaller range of 

values for different variables which is faster and more controllable and then convert 

this solution back into the nominal amounts in pounds. 

 

We will prove the relations (3.45)–(3.49). This is the solution of the most general case 

of the problem (3.26)–(3.34). If real annuities (RA) or/and nominal annuities (NA) are 

exogenous then it is easy to see that transformation of the income variable is just 

special cases of the general solution presented here. Here, we exclude writing index k  

that appears in (3.45)–(3.49) in the inflation variable and just assume that inflation 

variable takes values in the domain of the inflation variable. 

 

We apply mathematical induction in order to prove the relations (3.45)–(3.49). Let us 

start from equations (3.15)–(3.18), and let us prove that the relations (3.45)–(3.49) are 

valid for t i=  where 99i = . 

 

For some fixed income 99Y  and wealth 99W  we have the solution 

 

optimal consumption: ( )99 99 99 99 98, , ,NAC W Y d I∗  (A.1.1) 

optimal asset allocation: ( )99 99 99 99 98, , ,NAW Y d Iα ∗  (A.1.2) 

optimal NA: ( )99 99 99 98, , , 0NA NA

i
m W Y d I∗ =  (A.1.3) 

optimal RA: ( )99 99 99 98, , , 0RA NA

i
m W Y d I∗ =  (A.1.4) 
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value function: ( )99 99 99 99 98, , ,NAV W Y d I  (A.1.5) 

 

for 99 0W ≥  and 99 0Y ≥ , 990 1NA
d≤ ≤ , and 98I  in the domain of inflation values. This 

solution exists because we are looking for the maximum of the continuous function on 

the compact set. The solution is unique as well. Equations (A.1.3) and (A.1.4) say that 

no annuitisation occurs at age 99. 

 

Let us now assume that we have a new income variable 99 99Y kY=  and a new pension 

wealth variable 99 99W kW= , for some positive constant k
+∈� . Let us introduce a 

new random variable 100W
�  defined in (A.1.7), and let 99C  and 99α  be the new control 

variables. Thus, we have the problem (3.15)–(3.18) again but now with wealth and 

income variables, 99W  and 99Y  respectively. The problem can be written as 

 

 ( )
{ }

( ) ( ) ( )
99 99

99 99 99 99 98 99 99 99 99 100
,

, , , max 1NA

C
V W Y d I E u C p b u W

α
δ = + −  

�  (A.1.6) 

 ( ) ( )( )100 99 99 99 99 991W W Y C r r rα= + − + + −�
�  (A.1.7) 

 99 99 990 C W Y≤ ≤ + , and (A.1.8) 

 990 100%α≤ ≤ . (A.1.9) 

 

As no annuitisation occurs at age 99, one can derive from formula (3.10) the 

following 

 

( )
( )

1

99 99

100 1

99 99 99

1

1 1

NA

NA

NA NA

d I
d

d d I

−

−

+
=

− + +

�
�

�
 

 

From (3.7) we can see that 99 99

NA NA
d d= , and now we can write 

 

( )
( )

1

99 99

100 1

99 99 99

1

1 1

NA

NA

NA NA

d I
d

d d I

−

−

+
=

− + +

�
�

�
 

and thus 

100 100

NA NA
d d=� � . 

 

However, one can observe that value function at age 99 does not depend on 100

NA
d� . 

Now, we can write equation (A.1.6) as follows 
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( )
{ }

( ) ( ) ( )( )( )

{ }
( ) ( )( )( )

99 99

99 99

99 99 99 99 98 99 99 99 99 99 99 99
,

99
99 99 99 99 99 99

,

, , , max 1 1

max 1 1

NA

C

C

V W Y d I E u C p b u W r r r

C
k E u p b u W r r r

k

α

γ

α

δ α

δ α

 = + − + + −
 

  
= + − + + −  

  

�

�

 

As we assume that  

 

( ) ( )( )( )99
99 99 99 99 99 991 1

C
E u p b u W r r r

k
δ α

  
+ − + + −  

  
�  

 

attains its maximum for the set of solutions (A.1.1)–(A.1.5), and then  

 

{ }
( ) ( )( )( )

99 99

99
99 99 99 99 99 99

,
max 1 1
C

C
E u p b u W r r r

kα
δ α

  
+ − + + −  

  
�  

 

is maximized for  

 

( )
( )99 99 99 99 98

99 99 99 99 98

, , ,
, , ,

NA

NA
C W Y d I

C W Y d I
k

∗= , and 

( ) ( )99 99 99 99 98 99 99 99 99 98, , , , , ,NA NAW Y d I W Y d Iα α ∗= . 

 

As we said earlier, the solution is unique and thus, we can conclude that the optimal 

solution on the problem (A.1.6)–(A.1.9) must be 

 

( ) ( )99 99 99 99 98 99 99 99 99 98, , , , , ,NA NAC W Y d I kC W Y d I∗ ∗= , 

( ) ( )99 99 99 99 98 99 99 99 99 98, , , , , ,NA NAW Y d I W Y d Iα α∗ ∗= . 

 

It means that the following statement is valid: 

 

if k
+∈�  and 

wealth: 99 99W kW=   (A.1.10) 

income: 99 99Y kY=   (A.1.11) 

then the solution to the problem (3.26)–(3.34) satisfies the following rules 

annuitisation coefficient: 100 100

NA NA
d d=� �   (A.1.12) 

optimal consumption: ( ) ( )99 99 99 99 98 99 99 99 99 98, , , , , ,NA NAC W Y d I kC W Y d I∗ ∗=  (A.1.13) 

optimal asset allocation: ( ) ( )99 99 99 99 98 99 99 99 99 98, , , , , ,NA NAW Y d I W Y d Iα α∗ ∗=  (A.1.14) 

optimal NA: ( ) ( )99 99 99 98 99 99 99 98, , , , , ,NA NA NA NA

i i
m W Y d I m W Y d I∗ ∗=  (A.1.15) 

optimal RA: ( ) ( )99 99 99 98 99 99 99 98, , , , , ,RA NA RA NA

i i
m W Y d I m W Y d I∗ ∗=  (A.1.16) 

value function: ( ) ( )99 99 99 99 98 99 99 99 99 98, , , , , ,NA NAV W Y d I k V W Y d Iγ=  (A.1.17) 
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for 99 0W ≥  and 99 0Y ≥ , 990 1NA
d≤ ≤ , and 98I  in the domain of inflation values. Thus, 

we proved that the relations (3.45)–(3.49) are valid for t i=  where 99i = . Let us now 

assume that the relations equivalent to the relations (A.1.10)–(A.1.17) are valid for 

1t i= + , for some 65 1 98i≤ + ≤ . Thus, we assume that if k
+∈�  and 

 

wealth: 1 1i i
W kW+ +=   (A.1.18) 

income: 1 1i i
Y kY+ +=   (A.1.19) 

then the solution to the problem (3.26)–(3.34) satisfies the following rules 

annuitisation coefficient: 2 2

NA NA

i i
d d+ +=� �   (A.1.20) 

optimal consumption: ( ) ( )1 1 1 1 1 1 1 1, , , , , ,NA NA

i i i i i i i i i i
C W Y d I kC W Y d I∗ ∗

+ + + + + + + +=  (A.1.21) 

optimal asset allocation: ( ) ( )1 1 1 1 1 1 1 1, , , , , ,NA NA

i i i i i i i i i i
W Y d I W Y d Iα α∗ ∗

+ + + + + + + +=  (A.1.22) 

optimal NA: ( ) ( )1 1 1 1 1 1 1 1, , , , , ,NA NA NA NA

i i i i i i i i i i
m W Y d I m W Y d I∗ ∗

+ + + + + + + +=  (A.1.23) 

optimal RA: ( ) ( )1 1 1 1 1 1 1 1, , , , , ,RA NA RA NA

i i i i i i i i i i
m W Y d I m W Y d I∗ ∗

+ + + + + + + +=  (A.1.24) 

value function: ( ) ( )1 1 1 1 1 1 1 1, , , , , ,NA NA

i i i i i i i i i i
V W Y d I k V W Y d Iγ

+ + + + + + + +=  (A.1.25) 

 

for 1 0
i

W + ≥  and 1 0
i

Y + ≥ , 10 1NA

i
d +≤ ≤ , and 

i
I  in the domain of the inflation values. 

 

Let us now assume that t i=  for some 65 99i≤ ≤ . We have the following equations 

 

 

( )
{ }

( ) ( ) ( )

( )

1 1
, , ,

1 1 1 1

, , , max 1

, , ,

NA RA
i i i i

NA

i i i i i i i i i i
C m m

NA

i i i i i i

V W Y d I E u C p b u W

pV W Y d I

α
δ

δ

− +

+ + + +

= + − +




�

�� � �

 (A.1.26) 

and 

 

( )
{ }

( ) ( ) ( )

( )

1 1
, , ,

1 1 1 1

, , , max 1

, , ,

NA RA
i i i i

NA

i i i i i i i i i i
C m m

NA

i i i i i i

V W Y d I E u C p b u W

pV W Y d I

α
δ

δ

− +

+ + + +

= + − +




�

�� � �

 (A.1.27) 

 

and also assuming the relations i iW kW=  and i iY kY=  for some k
+∈� . 

 

Let us firstly derive the formulae for 1

NA

id +

�
 and 1

NA

id +
� . From (3.10) we have 

 

 

( )

( ) ( )

1

1
1

1

1 1

NA
NA i i

i i iNA

iNA

i RA NA
NA NAi i i i

i i i i i iRA NA

i i

m W
d Y I

a
d

m W m W
d Y d Y I

a a
ρ

∗
−

+ ∗
−

 
+ + 

 =
 

− + + + + 
 

�

�

�
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From equation (3.7) and our assumption i iW kW=  and i iY kY=  for some k
+∈�  we 

easily see that NA NA

i id d= . Knowing this fact and dividing the equation above by k  

we get 

 

 

( )

( ) ( )

1

1
1

1

1 1

NA
NA i i
i i iNA

iNA

i RA NA
NA NAi i i i
i i i i i iRA NA

i i

m W
d Y I

a
d

m W m W
d Y d Y I

a a
ρ

∗
−

+ ∗
−

 
+ + 

 =
 

− + + + + 
 

�

�

�

 (A.1.28) 

 

Similarly, we can derive the following formula for 1

NA

id +
�  

 

 

( )

( ) ( )

1

1
1

1

1 1

NA
NA i i
i i iNA

iNA

i RA NA
NA NAi i i i
i i i i i iRA NA

i i

m W
d Y I

a
d

m W m W
d Y d Y I

a a
ρ

∗
−

+ ∗
−

 
+ + 

 =
 

− + + + + 
 

�

�

�

 (A.1.29) 

 

Thus, 1

NA

id +

�
 depends on ( ), , , , , , ,NA NA RA NA RA

i i i i i i i id W Y m m I a a
∗ ∗ �  and 1

NA

id +
�  depends on 

( ), , , , , , ,NA NA RA NA RA

i i i i i i i id W Y m m I a a
∗ ∗ � . The only difference in the variables on which 

1

NA

id +

�
 and 1

NA

id +
�  depend on are the control variables NA

im
∗  and RA

im
∗ , and NA

im
∗  and RA

im
∗  

respectively. 

 

Equation (A.1.26) can be written as 

 

 

( )
{ }

( )

( ) ( )( ) ( )( )( )
( )( ) ( )( )( )

1
, , ,

1 1 1

, , , max

1 1 1

1 1 , , ,

NA RA
i i i i

NA

i i i i i i i
C m m

RA NA

i i i i i i i i i

RA NA NA

i i i i i i i i i i i i

V W Y d I E u C

p b u m m W Y C r r r

pV m m W Y C r r r Y d I

α

δ α

δ α

−

+ + +

= +

− − − + − + + − +

− − + − + + − 

�

�� ��

(A.1.30) 

 

and equation (A.1.27) as 

 

( )
{ }

( )

( ) ( )( ) ( )( )( )
( )( ) ( )( )( )

1
, , ,

1 1 1

, , , max

1 1 1

1 1 , , ,

NA RA
i i i i

NA

i i i i i i i
C m m

RA NA

i i i i i i i i i

RA NA NA

i i i i i i i i i i i i

V W Y d I E u C

p b u m m W Y C r r r

pV m m W Y C r r r Y d I

α

δ α

δ α

−

+ + +

= +

− − − + − + + − +

− − + − + + −


�

�� ��

 

 

and using (A.1.25) and assumption i iW kW=  and i iY kY= , we get 
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( )
{ }

( ) ( ) ( )( )

( ) ( )( )

1
, , ,

1 1 1

, , , max

1 1 1

1 1 , , ,

NA RA
i i i i

NA y i
i i i i i i

C m m

RA NA i
i i i i i i i i

RA NA NAi
i i i i i i i i i i i

C
V W Y d I k E u

k

C
p b u m m W Y r r r

k

C
pV m m W Y r r r Y d I

k

α

δ α

δ α

−

+ + +

  
= +  

 

  
− − − + − + + − +  

  

  
− − + − + + −   

  

�

�� ��

(A.1.31) 

 

Let the set of solution ( )1, , ,NA

i i i i i
W Y d Iα ∗

− , ( )1, , ,NA

i i i i i
C W Y d I∗

− , ( )1, , ,NA NA

i i i i i
m W Y d I∗

−  

and ( )1, , ,RA NA

i i i i i
m W Y d I∗

−  maximises equation (A.1.30) then, knowing formulae 

(A.1.28) and (A.1.29), the set of equations 

 

( )
( )1

1

, , ,
, , ,

NA

i i i i i NA

i i i i i

C W Y d I
C W Y d I

k

− ∗

−=  

( ) ( )1 1, , , , , ,NA NA

i i i i i i i i i i
W Y d I W Y d Iα α ∗

− −=  

( ) ( )1 1, , , , , ,NA NA NA NA

i i i i i i i i i i
m W Y d I m W Y d I− −=  

( ) ( )1 1, , , , , ,RA NA RA NA

i i i i i i i i i i
m W Y d I m W Y d I− −=  

 

maximises equation (A.1.31). 

 

Based on mathematical induction we can conclude that if k  is positive constant 

k
+∈�  and if 

 

wealth: 
t t

W kW=   (A.1.32) 

income: 
t t

Y kY=   (A.1.33) 

then the solution to the problem (3.26)–(3.34) satisfies the following rules 

optimal consumption: ( ) ( )1 1, , , , , ,NA NA

t t t t t t t t t t
C W Y d I kC W Y d I∗ ∗

− −=  (A.1.34) 

optimal asset allocation: ( ) ( )1 1, , , , , ,NA NA

t t t t t t t t t t
W Y d I W Y d Iα α∗ ∗

− −=  (A.1.35) 

optimal NA: ( ) ( )1 1, , , , , ,NA NA NA NA

t t t t t t t t t t
m W Y d I m W Y d I∗ ∗

− −=  (A.1.36) 

optimal RA: ( ) ( )1 1, , , , , ,RA NA RA NA

t t t t t t t t t t
m W Y d I m W Y d I∗ ∗

− −=  (A.1.37) 

value function: ( ) ( )1 1, , , , , ,NA NA

t t t t t t t t t t
V W Y d I k V W Y d Iγ

− −=  (A.1.38) 

 

for 0
t

W ≥  and 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , and 1t

I −  in the domain of inflation values, and for 

t  such that 65 99t≤ ≤ . 

 

Now we see from (A.1.34)–(A.1.38) that these relations are valid for any combination 

of the values of income and wealth if they satisfy relations (A.1.32) and (A.1.33). 

Optimal values are actually optimal functions depending on certain variables. So, the 
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set of equations (A.1.32)–(A.1.38) can be deemed as a set of characteristics which 

optimal functions satisfy. We can present the result just obtained in equivalent form as 

follows. 

 

If 
t

Y  and 
t

Y  are two different positive values for income then the solution to the 

problem (3.26)–(3.34) satisfies the following rules 

 

optimal consumption: ( )1 1, , , , , ,NA NAt t
t t t t t t t t t t

t t

Y Y
C W Y d I C W Y d I

Y Y

∗ ∗
− −

 
=  

 
 (A.1.39) 

optimal asset allocation: ( )1 1, , , , , ,NA NAt
t t t t t t t t t t

t

Y
W Y d I W Y d I

Y
α α∗ ∗

− −

 
=  

 
 (A.1.40) 

optimal NA: ( )1 1, , , , , ,NA NA NA NAt
t t t t t t t t t t

t

Y
m W Y d I m W Y d I

Y

∗ ∗
− −

 
=  

 
(A.1.41) 

optimal RA: ( )1 1, , , , , ,RA NA RA NAt
t t t t t t t t t t

t

Y
m W Y d I m W Y d I

Y

∗ ∗
− −

 
=  

 
 (A.1.42) 

value function: ( )1 1, , , , , ,NA NAt t
t t t t t t t t t t

t t

Y Y
V W Y d I V W Y d I

Y Y

γ

− −

   
=    
   

(A.1.43) 

 

and also, if y  is positive constant and 
t t

t

y
w W

Y
=  then the solution to the problem 

(3.26)–(3.34) satisfies the following rules 

 

optimal consumption: ( ) ( )1 1, , , , , ,NA NAt
t t t t t t t t t

Y
C W Y d I C w y d I

y

∗ ∗
− −=  (A.1.44) 

optimal asset allocation: ( ) ( )1 1, , , , , ,NA NA

t t t t t t t t t
W Y d I w y d Iα α∗ ∗

− −=  (A.1.45) 

optimal NA: ( ) ( )1 1, , , , , ,NA NA NA NA

t t t t t t t t t
m W Y d I m w y d I∗ ∗

− −=  (A.1.46) 

optimal RA: ( ) ( )1 1, , , , , ,RA NA RA NA

t t t t t t t t t
m W Y d I m w y d I∗ ∗

− −=  (A.1.47) 

value function: ( ) ( )1 1, , , , , ,NA NAt
t t t t t t t t t

Y
V W Y d I V w y d I

y

γ

− −

 
=  
 

 (A.1.48) 

 

for 0
t

W ≥  and 0
t

Y ≥ , 0 1NA

t
d≤ ≤ , and 1t

I −  in the domain of inflation values, and for 

t  such that 65 99t≤ ≤ . 

 

A.2 Appendix 2 – Income as State Variable in the Interest Rate Risk Model 

 

We will now prove the relation between solutions (4.65)–(4.69) of the problem 

(4.48)–(4.55) for different values of income variable. We will prove the general 

relations amongst solutions if we change the income variable values, and then using 
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this result we will show that it is possible to transform the solution for constant 

income into any value of income. Using this result it is possible to solve the problem 

for one income value, and it means that it is not necessary to have income variable as 

state variable. Thus, we decrease the number of states variable for one. It is very 

useful for a numerical solution because using these results we can work with a more 

suitable value of income and then make transformation for any required income 

values. Again, we prove the most general case with four control variables and other 

cases are then special cases of the general solution. 

 

We exclude writing index j  that appears in (4.65)–(4.69) as subscript in interest rate 

variable and just assume that interest rate variable takes values in the domain of the 

interest rate variable. 

 

We apply mathematical induction in order to prove the relations (4.65)–(4.69).  

 

Let us firstly prove that the relations (4.65)–(4.69) are valid for t i=  where 99i = . 

For some fixed income 99Y  and wealth 99W  we have the solution 

 

optimal consumption: ( )99 99 99 98, ,C W Y r
∗  (A.2.1) 

optimal equity allocation: ( )99 99 99 98, ,e
W Y rα ∗  (A.2.2) 

optimal bond allocation: ( )99 99 99 98, ,b
W Y rα ∗  (A.2.3) 

optimal annuitisation: ( )99 99 99 98, , 0m W Y r
∗ =  (A.2.4) 

value function: ( )99 99 99 98, ,V W Y r  (A.2.5) 

 

for 99 0W ≥  and 99 0Y ≥ , and 98r  in the domain of the real interest rate. This solution 

exists because we are looking for the maximum of the continuous function on the 

compact set. The solution is unique as well. As we said there is no annuitisation at this 

age. 

 

Let us now assume that we have some other income 99 99Y kY=  and wealth 99 99W kW= , 

for some positive constant k
+∈� . Let us introduce a new variable 100W

� , and a new 

control variables 99C , 99

eα  and 99

bα . There is no annuitisation during the last period, so 

again 99 0m = . Now the problem equivalent to the problem (4.48)–(4.55) but with 

wealth 99W  and income 99Y  can be written as 

 

( )
{ }

( ) ( ) ( )
99 99 99

99 99 99 98 99 99 99 99 100
, ,

, , max 1
e bC

V W Y r E u C p b u W
α α

δ = + −  
�  

where 
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 ( )( )( )100 99 99 99 99 991 1 P
W m W Y C r= − + − +� �  (A.2.6) 

 ( )
( )

( )
99

99 99 99 99 99 99 99

98

1,
1

,

tP e e b

t

B r
r r r r r

B r
α α

 ϒ −
= + − + − −  ϒ 

�
� �  (A.2.7) 

 100 0Y =  (A.2.8) 

and the constraints are 

 ( )99 99 99 990 1C m W Y≤ ≤ − +  (A.2.9) 

 990 1eα≤ ≤ , 990 1bα≤ ≤ , and 99 990 1e bα α≤ + ≤  (A.2.10) 

 99 0m = . (A.2.11) 

 

Now, we can write 

 

( )
{ }

( ) ( ) ( )( ) ( )( )

{ }
( ) ( ) ( )

99 99 99

99 99 99

99 99 99 98 99 99 99 99 99 99 99 99 99
, ,

99 99
99 99 99 99 99 99 99

, ,

, , max 1 1 1

max 1 1 1

e b

e b

P

C

P

C

V W Y r E u C p b u m W Y C r

C C
k E u p b u m W Y r

k k

α α

γ

α α

δ

δ

 = + − − + − +
 

     
= + − − + − +     

      

�

�

 

Knowing that k
γ  is positive constant and that the control variables { }99 99 99, ,e bC α α∗ ∗ ∗  

which provide the optimal solution are unique, from the equation above we can 

conclude that { } { }99 99 99 99 99 99, , , ,e b e bC kCα α α α∗ ∗ ∗ ∗ ∗ ∗= . It means that 

 

( )
( )99 99 99 98

99 99 99 98

, ,
, ,

C W Y r
C W Y r

k

∗

∗= , 

( ) ( )99 99 99 98 99 99 99 98, , , ,e eW Y r W Y rα α∗ ∗= , 

( ) ( )99 99 99 98 99 99 99 98, , , ,e eW Y r W Y rα α∗ ∗= , and also 

( ) ( )99 99 99 98 99 99 99 98, , , ,V W Y r k V W Y rγ= .
 

 

It means that if k
+∈�  and 

wealth: 99 99W kW=   (A.2.12) 

income: 99 99Y kY=   (A.2.13) 

then the solution to the problem (4.48)–(4.55) satisfies the following rules 

optimal consumption: ( ) ( )99 99 99 98 99 99 99 98, , , ,C W Y r kC W Y r∗ ∗=  (A.2.14) 

optimal equity allocation: ( ) ( )99 99 99 98 99 99 99 98, , , ,e eW Y r W Y rα α∗ ∗=  (A.2.15) 

optimal bond allocation: ( ) ( )99 99 99 98 99 99 99 98, , , ,b bW Y r W Y rα α∗ ∗=  (A.2.16) 

optimal annuitisation: ( ) ( )99 99 99 98 99 99 99 98, , , ,m W Y r m W Y r∗ ∗=  (A.2.17) 

value function: ( ) ( )99 99 99 98 99 99 99 98, , , ,V W Y r k V W Y rγ=  (A.2.18) 

 

for 99 0W ≥  and 99 0Y ≥ , and 98r  in the domain of the interest rate. 
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Let us now assume that the relations equivalent to the relations (A.2.12)–(A.2.18) are 

valid for 1t i= + , for some 65 1 98i≤ + ≤ . Thus, we assume that if k
+∈�  and 

 

wealth: 1 1i i
W kW+ +=   (A.2.19) 

income: 1 1i i
Y kY+ +=   (A.2.20) 

then the solution to the problem (4.48)–(4.55) satisfies the following rules 

optimal consumption: ( ) ( )1 1 1 1 1 1, , , ,
i i i i i i i i

C W Y r kC W Y r∗ ∗
+ + + + + +=  (A.2.21) 

optimal equity allocation: ( ) ( )1 1 1 1 1 1, , , ,e e

i i i i i i i i
W Y r W Y rα α∗ ∗

+ + + + + +=  (A.2.22) 

optimal bond allocation: ( ) ( )1 1 1 1 1 1, , , ,b b

i i i i i i i i
W Y r W Y rα α∗ ∗

+ + + + + +=  (A.2.23) 

optimal annuitisation: ( ) ( )1 1 1 1 1 1, , , ,
i i i i i i i i

m W Y r m W Y r∗ ∗
+ + + + + +=  (A.2.24) 

value function: ( ) ( )1 1 1 1 1 1, , , ,
i i i i i i i i

V W Y r k V W Y rγ
+ + + + + +=  (A.2.25) 

 

for 1 0
i

W + ≥  and 1 0
i

Y + ≥ , and 
i

r  in the domain of the interest rate. 

 

Let us now assume that t i=  for some 65 99i≤ ≤ . We will prove that if for some 

k
+∈�  we define 

i i
W kW=  and 

i i
Y kY=  then the relations (4.65)–(4.69) are valid. We 

have the following equations 

 

 ( )
{ }

( ) ( ) ( ) ( )1 1 1 1 1
, , ,

, , max 1 , ,
e b

i i i i

i i i i i i i i i i i i i i
C m

V W Y r E u C p b u W pV W Y r
α α

δ δ− + + + +
 = + − + 

� � � (A.2.26) 

and 

 ( )
{ }

( ) ( ) ( ) ( )1 1 1 1 1
, , ,

, , max 1 , ,
e b

i i i i

i i i i i i i i i i i i i i
C m

V W Y r E u C p b u W pV W Y r
α α

δ δ− + + + +
 = + − +  

� �
� (A.2.27) 

 

where 
i i

W kW=  and 
i i

Y kY=  for some k
+∈� . 

 

Using (4.49), equation (A.2.26) can be written as 

 

 

( )
{ }

( )

( ) ( )( )( )( )
( )( )( )( )

1
, , ,

1 1

, , max

1 1 1

1 1 , ,

e b
i i i i

i i i i i i
C m

P

i i i i i i i

P

i i i i i i i i i

V W Y r E u C

p b u m W Y C r

pV m W Y C r Y r

α α

δ

δ

−

+ +

= +

− − + − + +

− + − +


�

� �

(A.2.28) 

 

and using (A.2.25) and assumption i iW kW=  and i iY kY= , (A.2.27) can be written as 
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( )
{ }

( ) ( ) ( )

( ) ( )

1
, , ,

1 1

, , max

1 1 1

1 1 , ,

e b
i i i i

i
i i i i i

C m

Pi
i i i i i i

Pi
i i i i i t i i

C
V W Y r k E u

k

C
p b u m W Y r

k

C
pV m W Y r Y r

k

γ

α α

δ

δ

−

+ +

  
= +  

 

  
− − + − + +  

  

  
− + − +   

  

�

� �

(A.2.29) 

 

Knowing that k
γ  is positive constant and that the control variables { }, , ,e b

i i i i
C mα α∗ ∗ ∗ ∗  

which provide the optimal solution are unique, from equations (A.2.28) and (A.2.29) 

we can conclude that { } { }, , , , , ,e b e b

i i i i i i i i
C m kC mα α α α∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗=  are optimal control 

variables for equation (A.2.27). It means the solution to the problem (4.48)–(4.55) for 

i iW kW=  and i iY kY=  for some k
+∈�  is given by 

 

( )
( )1

1

, ,
, ,

i i i i

i i i i

C W Y r
C W Y r

k

∗
− ∗

−=  

( ) ( )1 1, , , ,e e

i i i i i i i i
W Y r W Y rα α∗ ∗

− −=  

( ) ( )1 1, , , ,b b

i i i i i i i i
W Y r W Y rα α∗ ∗

− −=  

( ) ( )1 1, , , ,
i i i i i i i i

m W Y r m W Y r∗ ∗
− −=  

 

Based on the mathematical induction we have just proved that if k
+∈�  and if 

 

wealth: t tW kW=   (A.2.30) 

income: t tY kY=   (A.2.31) 

then the solution to the problem (4.48)–(4.55) satisfies the following rules 

optimal consumption: ( ) ( )1 1, , , ,
t t t t t t t t

C W Y r kC W Y r∗ ∗
− −=  (A.2.32) 

optimal equity allocation: ( ) ( )1 1, , , ,e e

t t t t t t t t
W Y r W Y rα α∗ ∗

− −=  (A.2.33) 

optimal bond allocation: ( ) ( )1 1, , , ,b b

t t t t t t t t
W Y r W Y rα α∗ ∗

− −=  (A.2.34) 

optimal annuitisation: ( ) ( )1 1, , , ,
t t t t t t t t

m W Y r m W Y r∗ ∗
− −=  (A.2.35) 

value function: ( ) ( )1 1, , , ,
t t t t t t t t

V W Y r k V W Y rγ
− −=  (A.2.36) 

 

for 0
t

W ≥  and 0tY ≥ , and 1t
r −  in the domain of the interest rate and for any t  such 

that 65 99t≤ ≤ . 

 

Set of equation (A.2.30)–(A.2.36) can also be written in the following useful form. If 

t
W  is wealth, and 

t
Y  and 

t
Y  are two different positive values of income then the 

solution to the problem (4.48)–(4.55) satisfies the following rules 
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optimal consumption: ( )1 1, , , ,t t
t t t t t t t t

t t

Y Y
C W Y r C W Y r

Y Y

∗ ∗
− −

 
=  

 
 (A.2.37) 

optimal equity allocation: ( )1 1, , , ,e e t
t t t t t t t t

t

Y
W Y r W Y r

Y
α α∗ ∗

− −

 
=  

 
 (A.2.38) 

optimal bond allocation: ( )1 1, , , ,b b t
t t t t t t t t

t

Y
W Y r W Y r

Y
α α∗ ∗

− −

 
=  

 
 (A.2.39) 

optimal annuitisation: ( )1 1, , , ,t
t t t t t t t t

t

Y
m W Y r m W Y r

Y

∗ ∗
− −

 
=  

 
 (A.2.40) 

value function: ( )1 1, , , ,t t
t t t t t t t t

t t

Y Y
V W Y r V W Y r

Y Y

γ

− −

   
=    
   

 (A.2.41) 

 

for 0
t

W ≥  and 0tY ≥ , and 1t
r −  in the domain of the interest rate and for 65 99t≤ ≤ . 

 

Also, if y  is positive constant and 
t t

t

y
w W

Y
=  then the solution to the problem (4.48)–

(4.55) satisfies the following rules 

 

optimal consumption: ( ) ( )1 1, , , ,t
t t t t t t t

Y
C W Y r C w y r

y

∗ ∗
− −=  (A.2.42) 

optimal equity allocation: ( ) ( )1 1, , , ,e e

t t t t t t tW Y r w y rα α∗ ∗
− −=  (A.2.43) 

optimal bond allocation: ( ) ( )1 1, , , ,b b

t t t t t t tW Y r w y rα α∗ ∗
− −=  (A.2.44) 

optimal annuitisation: ( ) ( )1 1, , , ,t t t t t t tm W Y r m w y r
∗ ∗

− −=  (A.2.45) 

value function: ( ) ( )1 1, , , ,t
t t t t t t t

Y
V W Y r V W y r

y

γ

− −

 
=  
 

 (A.2.46) 

 

for 0
t

W ≥  and 0tY ≥ , and 1t
r −  in the domain of the interest rate and for 65 99t≤ ≤ . 

 

A.3 Appendix 3 – Bond Prices Analysis 

 

In Appendix 3, we firstly derive the formula for the exact value of bond prices in 

discrete time and continuous state space. Then, we compare bond prices derived from 

the Vasicek model (continuous time and state spaces), from the first approximation of 

the Vasicek model (discrete time and continuous state spaces) and from the second 

approximation of the Vasicek model (discrete time and state spaces). In the interest 

rate risk model in Chapter 4 we use the second approximation of the Vasicek model as 

we work in discrete time and state spaces. This Appendix is intended to give the idea 

of the changes in bond prices due to the approximation. We will not try to evaluate the 

quality of approximation by any criteria, just to give comparable bond prices values. 
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A.3.1 Exact Bond Prices for Discrete Time and Continuous Space AR(1) Process 

 

Equation (4.20) for the discrete time and continuous state spaces AR(1) process 

defined in (4.7) can be solved exactly. Having solved equation (4.20), we multiply it 

by the factor  

 

 

1 T b
r r e

T
b b

e

σ λ − −
− −  

   (A.3.1) 

 

for T ∈�  and get the exact bond prices in the first approximation of the Vasicek 

model, where we have discrete time and continuous state spaces Although we will not 

use this solution in the numerical solution of the main problem of the optimal asset 

allocation, it will be of use as an indication that the approximation of bond market in 

Chapter 4 is acceptable. 

 

For 1T =  equation (4.20) in discrete time and continuous state spaces can be written 

as 

 

 

( )

( )

1

1

0

1 0 1

1,

|

r

r

B r E e

e f r r dr

−

∞
−

−∞

 =  

= ∫
 (A.3.2) 

 

Knowing that 1r  is normally distributed with mean and variance defined in (4.9) and 

(4.10) respectively, we have that 

 

 ( )
( )

2

1 1 0

1 01

[ | ]

2 [ | ]

0 1

1 0

1
1,

2 [ | ]

r E r r

Var r rr
B r e e dr

Var r rπ

−∞ −
−

−∞

= ∫  (A.3.3) 

 

Then, knowing that we can write 

 

( )

( )

1 2

2 1

2

0 0

0 0

0 0

2, |

| |

1, |

r r

r r

r

B r E e e r

E e E e r r

E e B r r

− −

− −

−

 =  

  =   

 =  

 

 

As we know that 2r  is normal random variable, we can derive the solution of the last 

equation. Having the solution ( )02,B r  and multiplying it with factor defined in 

(A.3.1) for 2T =  we get the bond price with the duration of two years for any for 

0r ∈� . 
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Continuing this process, we can calculate any ( )0,B T r , for T ∈� . Multiplying 

( )0,B T r  with factor defined in (A.3.1) we get bond prices for any duration and any 

0r ∈� . 

 

A.3.2 Examples of Comparable Bond Prices 

 

We can calculate bond prices derived from the Vasicek model, bond prices derived 

from the first approximation of the Vasicek model where the time space is discrete 

and the state space is continuous and bond prices from the second approximation of 

the Vasicek model where the time and state spaces are both discrete. There is a 

requirement to have certain relations between bond prices if we want to have sound 

model. One way to check the soundness of the bond market model is to compare bond 

prices derived using the three models for interest rate. We expect these bond prices to 

have similar values. The second important thing we need to have in order to deem the 

bond prices model sound is to have the same pattern when bond prices are compared 

in each model. It means that we expect decreasing bond prices as the value of the 

interest rate during the previous year increases. 

 

Tables A.3.1 below shows the prices of zero–coupon bonds with the duration of five 

and ten years and different values of the interest rate during the previous year, for 

discrete time and state spaces, for discrete time and continuous state space, and for the 

Vasicek model. The model in Chapter 4 allows any duration of zero–coupon rolling 

bond, but our main results will be for the duration of 10 years. We assume that the 

number of states 15N = , and that the end points for the abscissa are 2.44%−  and 

6.44% . Other parameter values are chosen to be the same or similar to the values 

used in the numerical results in Chapter 4. 
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Interest 

rate 

Duration 5 year Duration 10 year 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time 

continous 

state spaces 

Continous 

time and 

state 

spaces, 

Vasicek 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time 

continous 

state spaces 

Continous 

time and 

state spaces, 

Vasicek 

1 –2.44% 92,96 93,78 95,55 82,35 83,20 84,84 

2 –2.21% 92,79 93,53 95,21 82,19 82,97 84,52 

3 –1.81% 92,49 93,10 94,60 81,91 82,57 83,96 

4 –1.25% 92,04 92,50 93,77 81,50 82,01 83,19 

5 –0.56% 91,44 91,77 92,75 80,96 81,33 82,24 

6 0.22% 90,73 90,93 91,59 80,30 80,54 81,16 

7 1.09% 89,92 90,02 90,34 79,56 79,70 79,99 

8 2.00% 89,06 89,08 89,05 78,77 78,83 78,80 

9 2.91% 88,21 88,15 87,79 77,99 77,97 77,62 

10 3.78% 87,42 87,27 86,59 77,27 77,15 76,51 

11 4.56% 86,73 86,48 85,50 76,64 76,41 75,50 

12 5.25% 86,17 85,79 84,57 76,12 75,77 74,64 

13 5.81% 85,74 85,24 83,83 75,73 75,26 73,95 

14 6.21% 85,46 84,84 83,30 75,47 74,90 73,46 

15 6.44% 85,30 84,62 83,00 75,33 74,69 73,18 

Table A.3.1 Bond prices for the parameters for the Vasicek model are as follows 

 0.012a = , 0.6b =  0.02σ =  and 0,1528
r

λ = . Then 0.00902377
d

a = , 

 0.451188
d

b =  and 0.0152622
d

σ = . 

 

We see that long term expected values / 0.02a b =  as well as / 0.02
d d

a b = , as we 

expected. When we compare bond prices with the same duration in each row we see 

similar values. For both chosen durations, we can see the biggest range of bond prices 

is for the Vasicek model and the lowest is for discrete time and state spaces. However, 

observing the columns for the first and for the second approximation of the Vasicek 

model we can say that bond prices behave quite reasonably in terms of changes as 

function of the value of the interest rate during the previous year. 

 

In Table A.3.2 we present the values of the rates of return on 10 year rolling bonds 

during one year assuming the value of the interest rate during the previous year being 

1.25%−  and 2.00% . 
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Interest 

Rate 

( )
( )

19,
1

10, 1.25%

B r

B
−

−
 in % 

( )
( )

19,
1

10,2.00%

B r

B
−  in % 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time 

continous 

state spaces 

Continous 

time and 

state spaces, 

Vasicek 

Discrete 

time/state 

spaces, 

numerical 

solution 

Discrete 

time 

continous 

state spaces 

Continous 

time and 

state spaces, 

Vasicek 

1 –2.44% 3,55 3,96 4,51 7,14 8,15 10,33 

2 –2.21% 3,36 3,67 4,11 6,94 7,85 9,91 

3 –1.81% 3,01 3,17 3,42 6,57 7,33 9,18 

4 –1.25% 2,49 2,47 2,47 6,04 6,61 8,18 

5 –0.56% 1,81 1,62 1,30 5,33 5,72 6,95 

6 0.22% 0,98 0,65 –0,02 4,48 4,71 5,54 

7 1.09% 0,05 –0,41 –1,45 3,51 3,61 4,03 

8 2.00% –0,94 –1,49 –2,92 2,49 2,48 2,48 

9 2.91% –1,92 –2,57 –4,37 1,48 1,36 0,95 

10 3.78% –2,83 –3,59 –5,74 0,54 0,30 –0,49 

11 4.56% –3,62 –4,51 –6,97 –0,28 –0,66 –1,79 

12 5.25% –4,27 –5,31 –8,03 –0,95 –1,49 –2,91 

13 5.81% –4,76 –5,94 –8,88 –1,46 –2,15 –3,81 

14 6.21% –5,09 –6,40 –9,48 –1,80 –2,62 –4,44 

15 6.44% –5,27 –6,66 –9,83 –1,99 –2,89 –4,80 

Table A.3.2 Rates on 10 year rolling bonds during one year assuming the value of 

 the interest rate during the previous year is 1.25%−  and 2.00% , and the 

 value of interest the rate in the following year given in the first column. 

 The other parameters are the same as in the example in Table A.3.1. 

 

We suppose here that at the beginning of the year we know the value of the interest 

rate in the previous year and that the 10 year zero coupon bond is priced according to 

that value. This known value of the interest rate is written in the header, and we 

present examples for the two value 
0

1.25%r = −  and 
0

2.00%r = . Then we suppose 

that during the following year the value of the interest rate 
1
r  appears to be as in the 

first column. At the end of the year we have the price of the 9 year bond and calculate 

the rate of return on 10 year rolling bonds by 

 

( )
( )

1

0

9,
1

10,

B r

B r
− . 

 

We can see in Table A.3.2 that the rates of return on 10 year rolling bond investment 

are the highest for the Vasicek model, the lower for the first approximation and the 
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lowest for the second approximation. It means that in our examples, the variability of 

bond investment rates is lower compared to the Vasicek model. However, at the same 

time we can see a regular behaviour of returns for both approximations. If σ  takes 

lower values than 0.02 , then we get the rates on ten years rolling bond investment 

using approximations that are more similar to the rates calculated from the Vasicek 

model. 
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