

City, University of London Institutional Repository

Citation: Filho, Gilberto Amado de Azevedo Cysneiros (2011). Software Traceability for

Multi-Agent Systems Implemented Using BDI Architecture. (Unpublished Doctoral thesis,
City University London)

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1115/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Software Traceability for Multi-
Agent Systems Implemented Using

BDI Architecture

Gilberto Amado de Azevedo Cysneiros Filho

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy at City University London

City University London
Department of Computing

June 2011

Volume 1

[2]

Contents

Volume 1
Contents .. 2
Figures... 7
Tables .. 9
Acknowledgements ... 10
Declaration .. 11
Abstract ... 12
Chapter 1 - Introduction .. 13

1.2 Hypotheses .. 20
1.3 Objectives ... 20
1.4 Contributions... 21
1.5 Thesis Outline ... 22

Chapter 2 - Literature Survey on Traceability .. 24
2.1 Traceability Reference Models and Meta-Models .. 27
2.2 Traceability Approaches to Capture Trace Relations ... 33

2.2.1 Formal Approaches .. 34
2.2.2 Process Oriented Approaches .. 34
2.2.3 Information Retrieval Approaches ... 36
2.2.4 String Matching Approaches ... 39
2.2.5 Rule Based Approaches ... 40
2.2.6 Run-time approaches ... 43
2.2.7 Hypermedia and Information Integration approaches 44

2.3 Representation, Recording and Maintenance of Traceability Relations 45
2.4 Visualisation of Traceability Relations ... 46
2.5 Use of Traceability Relations .. 47
2.6 Traceability Approaches for Multi-Agent Systems .. 49
2.7 Performance Measures .. 50
2.8 Implication of tools that infer trace relations .. 51
2.9 Summary ... 52

Chapter 3 - Traceability Reference Model .. 54
3.1 Overview of the Reference Model .. 54
3.2 Multi-agent Oriented Artefacts ... 56

3.2.1 i* Framework ... 56
3.2.2 Prometheus ... 60
3.2.3 JACK.. 67

3.3 Traceability Relations ... 73
3.3.1 Traceability Relations between i* and Prometheus ... 74
3.2.2 Traceability Relations between Prometheus and JACK 86

3.4 Summary ... 95
Chapter 4 - Traceability Framework ... 96

4.1. Overview of the Framework .. 96
4.2 Traceability and Completeness Checking Rules ... 101

Type 1: .. 104

[3]

Type 2: .. 112
Type 3: .. 114

4.3 Extended Functions ... 116
4.3.1 Completeness checking functions .. 117
4.3.2 XQuery functions ... 119
4.3.3 XQueryJACKFunctions ... 121
4.3.4 XQueryPDTFunctions ... 122
4.3.5 XQuerySimilarityFunctions ... 123
4.3.6 XQuerySynonymsFunctions .. 125
4.3.7 XQueryTAOMFunctions ... 128

4.4 Retratos Tool ... 129
4.5 Discussion ... 139
4.6 Summary ... 140

Chapter 5 - Evaluation and Results ... 141
5.1 Criteria for Evaluation ... 142
5.2 Automatic Teller Machine .. 143

5.2.1 Overview of the Case Study .. 143
5.2.2 Artefacts ... 145
5.2.3 Evaluation .. 146

5.3 Air Traffic Control Environment .. 155
5.3.1 Overview of the Case Study .. 155
5.3.2 Artefacts ... 156
5.3.3 Evaluation .. 157

5.4 Electronic Bookstore ... 164
5.4.1 Overview of the Case Study .. 164
5.4.2 Artefacts ... 165
5.4.3 Evaluation .. 167

5.5 Discussion ... 168
5.6 Threats of Validity .. 170
5.7 Summary ... 172

Chapter 6 - Conclusion and Future Works ... 173
6.1 Overall Conclusions .. 173
6.2 Hypotheses .. 178
6.3 Objectives ... 181
6.4 Contributions... 182
6.5 Future Work .. 183
6.5 Final Remarks ... 186

Bibliography ... 187

Volume 2
Contents .. 2
Figures... 7
Tables .. 12
Appendix A - Extended Functions .. 15

A.1.1 Completeness checking functions ... 16
A.1.2 XQuery functions .. 22

[4]

A.1.3 XQueryJACKFunctions .. 30
A.1.4 XQueryPDTFunctions .. 32
A.1.4.1 ActorHasCapability function ... 34
A.1.4.2 FieldTokenizer function ... 35
A.1.4.3 GetAttributeValue function .. 36
A.1.4.4 GetIncludedFields function .. 37
A.1.4.5 GetInformationCarried function .. 38
A.1.4.6 GetPDTFileName ... 38
A.1.4.7 GetPrometheusElements .. 39
A.1.4.8 GetPrometheusSubElements .. 40
A.1.4.9 GetPrometheusStepScenarios .. 41
A.1.4.10 GetPrometheusSubGoalsElements... 42
A.1.4.11 GetPrometheusSubGoalElements .. 43
A.1.4.12 GetPrometheusUsesData .. 44
A.1.4.13 IsACapabilityThatTheAgentIncludes .. 44
A.1.4.14 IsADataProducedByTheRole ... 44
A.1.4.15 IsADataThatTheAgentReads ... 44
A.1.4.16 IsADataThatTheAgentWrites .. 44
A.1.4.17 IsADataThatTheCapabilityReads .. 45
A.1.4.18 IsADataThatTheCapabilityWrites ... 45
A.1.4.19 IsADataThatThePlanReads .. 45
A.1.4.20 IsADataThatThePlanWrites ... 45
A.1.4.21 IsADataUsedByTheRole .. 45
A.1.4.22 IsADataThatTheAgentAchieves .. 45
A.1.4.23 IsAGoalThatTheCapabilityAchieves ... 46
A.1.4.24 IsAGoalThatThePlanAchieves... 46
A.1.4.25 IsAGoalThatTheAgentAchieves .. 46
A.1.4.26 IsAGoalThatTheCapabilityAchieves ... 46
A.1.4.27 IsAMessageThatTheAgentReceives .. 46
A.1.4.28 IsAMessageThatTheAgentSends ... 47
A.1.4.29 IsAMessageThatTheCapabilityReceives ... 47
A.1.4.30 IsAMessageThatTheCapabilitySends .. 47
A.1.4.31 IsAMessageThatTheReceives .. 47
A.1.4.32 IsAMessageThatThePlanReceives ... 47
A.1.4.33 IsAMessageThatThePlanSends .. 48
A.1.4.34 IsAMessageThatTriggersThePlan .. 48
A.1.4.35 IsAnActionThatTheAgentPerforms ... 48
A.1.4.36 IsAnActionThatTheCapabilityPerforms .. 48
A.1.4.37 IsAnActionThatThePlanPerforms .. 48
A.1.4.38 IsAPerceptThatTheAgentResponds ... 49
A.1.4.39 IsAPerceptThatTheCapabilityResponds .. 49
A.1.4.40 IsAPerceptThatThePlanResponds .. 49
A.1.4.41 IsAPerceptThatTheCapabilityResponds .. 49
A.1.4.42 IsAPerceptThatThePlanResponds .. 49
A.1.4.43 IsAPerceptThatTheCapabilityResponds .. 50
A.1.4.44 IsAPerceptThatThePlanResponds .. 50

[5]

A.1.4.45 IsAPlanThatTheAgentIncludes .. 50
A.1.4.46 IsAPlanThatTheCapabilityIncludes ... 50
A.1.4.47 IsAPlanTheRoleUses ... 51
A.1.4.48 IsARoleThatTheAgentIncludes ... 51
A.1.4.49 IsTrigger ... 51
A.1.5 XQuerySimilarityFunctions .. 51
A.1.6 XQuerySynonymsFunctions ... 64
A.1.7 XQueryTAOMFunctions .. 69

Appendix B – Automated Teller Machine .. 73
B.1 Introduction .. 73
B.2 Organizational Models ... 74
B.3 Prometheus Models .. 76
B.4 JACK Code .. 78
B.5 JACK Code in XML .. 86
B.6 Evaluation... 95

Appendix C – Air Traffic Control Environment ... 105
C.1 Introduction .. 105
C.2 Organizational Models ... 106
C.3 Prometheus Models .. 107
C.4 JACK Code .. 113
C.5 Code in XML ... 128
C.6 Evaluation... 140

Appendix D – Electronic Bookstore Case Study .. 155
D.1 JACK Agent vs Prometheus Goal .. 155
D.2 JACK Agent vs Prometheus Role .. 157
D.3 JACK Agent vs Prometheus Agent .. 158
D.4 JACK Agent vs Prometheus Capability ... 159
D.5 JACK Agent vs Prometheus Plan .. 160
D.6 JACK Agent vs Prometheus Percept ... 162
D.7 JACK Agent vs Prometheus Action ... 164
D.8 JACK Agent vs Prometheus Message (sends) ... 165
D.9 JACK Agent vs Prometheus Message (receives) ... 166
D.10 JACK Agent vs Prometheus Data (uses) ... 167
D.11 JACK Agent vs Prometheus Data (creates) ... 168
D.12 JACK Plan vs Prometheus Goal .. 168
D.13 JACK Plan vs Prometheus Role ... 169
D.14 JACK Plan vs Prometheus Agent .. 170
D.15 JACK Plan vs Prometheus Capability ... 172
D.16 JACK Plan vs Prometheus Plan ... 174
D.17 JACK Plan vs Prometheus Percept .. 178
D.18 JACK Plan vs Prometheus Action (Sends) .. 179
D.19 JACK Plan vs Prometheus Message (Sends) ... 180
D.20 JACK Plan vs Prometheus Message (Receives) .. 182
D.21 JACK Plan vs Prometheus Data (Uses) ... 184
D.22 JACK Plan vs Prometheus Data (Creates) ... 185
D.23 JACK BeliefSet vs Prometheus Role (Creates) ... 185

[6]

D.24 JACK BeliefSet vs Prometheus Role (Uses) ... 185
D.25 JACK BeliefSet vs Prometheus Role (Creates) ... 186
D.26 JACK BeliefSet vs Prometheus Agent (Uses) ... 187
D.27 JACK BeliefSet vs Prometheus Capability (Creates) .. 187
D.28. JACK BeliefSet vs Prometeus Capabilitity (Uses) ... 188
D.29 JACK BeliefSet vs Prometheus Plan (Creates) .. 189
D.30 JACK BeliefSet vs Prometheus Plan (Uses) .. 189
D.31 JACK BeliefSet vs Prometheus Data ... 190
D.32 JACK Event vs Prometheus Agent (sends) .. 191
D.33 JACK Event vs Prometheus Agent (receives) ... 192
D.34 JACK Event vs Prometheus Capability (sends) ... 193
D.35. JACK Event vs Prometheus Capability (receives) ... 193
D.36 JACK Event vs Prometheus Plan (sends) .. 194
D.37 JACK Event vs Prometheus Plan (receives) .. 196
D.38 JACK Event vs Prometheus Message .. 197

Appendix E – Introduction to BDI architecture .. 199
E.1 Agent Architectures .. 199
E.2 BDI Architecture .. 199

Appendix F - Traceability Relations between i* and Prometheus 202
Appendix G - Traceability Relations between Prometheus and JACK 243

[7]

Figures
Figure 3.1 SD model... 56
Figure 3.2 Strategic Dependency Diagram for the Electronic Bookstore .. 58
Figure 3.3 Strategic Rationale Diagram for the Electronic Bookstore actor ... 60
Figure 3.4 Prometheus methodology phases .. 62
Figure 3.5 Goal diagram for the Electronic Bookstore .. 62
Figure 3.6 Role Diagram for the Electronic Bookstore ... 63
Figure 3.7 Order Book Scenario .. 64
Figure 3.8 System Overview Diagram.. 65
Figure 3.9 Find BestSellers Capability .. 66
Figure 3.10 Security Manager Agent Overview Diagram .. 67
Figure 3.11 Airport Agent in JACK .. 68
Figure 3.12 BankAgent agent in JACK .. 69
Figure 3.13 ArrivalSequencing Capability ... 70
Figure 3.14 WithdrawRequest event .. 71
Figure 3.15 WithdrawCash plan .. 72
Figure 3.16 Accounts beliefSet ... 73
Figure 3.17 Prometheus Goal vs. SD Goal overlaps traceability relation ... 76
Figure 3.18 Prometheus Data vs. SR Resource overlaps traceability relation .. 77
Figure 3.19 Prometheus Data vs. SD Goal contributes traceability relation .. 78
Figure 3.20 Prometheus Data vs. SD Task contributes traceability relation ... 79
Figure 3.21 Prometheus Plan vs. SD Resource uses traceability relation ... 80
Figure 3.22 Prometheus Plan vs. SR Resource uses traceability relation.. 80
Figure 3.23 Prometheus Plan vs. SR Resource creates traceability relation ... 81
Figure 3.24 Prometheus Scenario vs. SR Resource creates traceability relation .. 81
Figure 3.25 Prometheus Agent vs. SD Goal achieves traceability relation ... 82
Figure 3.26 Prometheus Plan vs. SR Task achieves traceability relation .. 83
Figure 3.27 Prometheus Goal vs. Actor depends on traceability relation ... 84
Figure 3.28 Prometheus Scenario vs. SR Goal compose traceability relation ... 86
Figure 3.29 Prometheus Scenario vs. SR Task composed traceability relation ... 86
Figure 3.30 JACK BeliefSet vs. Prometheus Data overlaps traceability relation .. 88
Figure 3.31 JACK Agent vs. Prometheus Agent overlaps traceability relation ... 88
Figure 3.32 JACK Agent vs. Prometheus Plan uses traceability relation .. 89
Figure 3.33 JACK Plan vs. Prometheus Data uses traceability relation ... 90
Figure 3.34 JACK Plan vs. Prometheus Data creates traceability relation ... 91
Figure 3.35 JACK BeliefSet vs. Prometheus Plan creates traceability relation .. 91
Figure 3.36 JACK Agent vs. Prometheus Goal achieves traceability relation ... 92
Figure 3.37 JACK Plan vs. Prometheus Goal achieves traceability relation .. 93
Figure 3.38 JACK Agent vs. Prometheus Message sends traceability relation .. 93
Figure 3.39 JACK Plan vs. Prometheus Message sends traceability relation ... 94
Figure 3.40 JACK Plan vs. Prometheus Message receives traceability relation ... 95
Figure 3.41 JACK Plan vs. Prometheus Message sends traceability relation ... 95
Figure 4.1: Overview of traceability framework .. 98
Figure 4.2 Example of the use of rule in our approach ...100
Figure 4.3 Rule Template ..104
Figure 4.4 Rule4 ..106
Figure 4.5 Rule4 Header ...107
Figure 4.6 Namespace declarations ..107
Figure 4.7 Variable declarations ..108
Figure 4.8 Condition part ..109
Figure 4.9 Traceability Relation Creation ..110
Figure 4.10 Traceability Relation between Arrange delivery and Organize delivery110
Figure 4.11 Generation of Missing Element ...111
Figure 4.12 Log Outgoing Delivery Missing Element ...111
Figure 4.13 Rule49 ..112

[8]

Figure 4.14 Iteration part of the Rule15 ...113
Figure 4.15 Airport agent in Prometheus and Airport actor in i* ..113
Figure 4.16 Traceability relation between Airport agent and Airport actor ...113
Figure 4.17 Rule4cc ..114
Figure 4.18 Iteration part of the Rule4cc ..115
Figure 4.19 Airport SR model and ATCE Prometheus Goal ...115
Figure 4.20 Request Runway goal missing in Prometheus ..116
Figure 4.21 Calling getPDTFileName extended function in Java...117
Figure 4.22 List of strings ...118
Figure 4.23 Arrival Sequencing Capability and ATL SD Resource ..120
Figure 4.24 capabilityUsesSDResource function example ..121
Figure 4.25 getBeliefSetFields function example ..122
Figure 4.26 getIncludesFields function example ...123
Figure 4.27 isSimilar function example ...125
Figure 4.28 isSynonyms function example ..127
Figure 4.29 contains function example ...127
Figure 4.30 getSubGoalsAndTask function example ...129
Figure 4.31 Retratos main menu ...130
Figure 4.32 Creating a New Project ...130
Figure 4.33 New Project window ..130
Figure 4.34 Creating traceability relations and identifying missing elements ..131
Figure 4.35 output.xml file ..131
Figure 4.36 – HTML Generator sub-menu item ..132
Figure 4.37 Simple HTML Report ...132
Figure 4.38 HTML Template ...133
Figure 4.39 – retratos.css file ..133
Figure 4.40 HTML Report using HTML template and retratos.css file ..134
Figure 4.41 HTMLGeneratorWith Types menu item ...134
Figure 4.42 HTML Report with Types ...135
Figure 4.43 HTML Report with types using HTML template and retratos.css file136
Figure 4.44 IstarPrometheusRule menu item ..136
Figure 4.45 IstarPrometheus rule editor ...137
Figure 4.46 PrometheusJACKRule menu item ..137
Figure 4.47 PrometheusJACK rule editor ...138
Figure 4.48 Show Rules menu item ...138
Figure 4.49 Rule Viewer ..138
Figure 5.1 Fields of the Accounts beliefSetAccounts Descriptor ..148
Figure 5.2 Accounts Descriptor ..149
Figure 5.3 Balances beliefSet ..149
Figure 5.4 Balances descriptor ...150
Figure 5.5 ProcessWithdraw plan ...150
Figure 5.6 Process Withdraw descriptor ...151
Figure 5.7 WithdrawApproved plan ..151
Figure 5.8 Withdraw Approved descriptor ..152
Figure 5.9 WithdrawCash plan ...152
Figure 5.10 Withdraw Cash descriptor ...153
Figure 5.11 WithdrawRejected plan ..153
Figure 5.12 Withdraw Rejected descriptor ...154

[9]

Tables
Table 3.1 Relations between Prometheus and i* SD .. 74
Table 3.2 Relations between Prometheus and i*SR elements ... 75
Table 3.3 Traceability Relations Types between Prometheus and JACK Artefacts...................................... 87
Table 3.4 Traceability Relations Types between Prometheus and JACK Artefacts...................................... 87
Table 5.1 ATM elements in Prometheus ..146
Table 5.2 ATM elements in JACK ...146
Table 5.3 Results of experiments for the ATM case study ...147
Table 5.4 Missing Information ..148
Table 5.5 Results of the experiments for the new models of the ATM case study ..154
Table 5.6 ATCE elements in Prometheus ..156
Table 5.7 ATCE elements in i* ..156
Table 5.8 ATCE elements in JACK ..156
Table 5.9 Results of the experiments between Prometheus model and JACK code158
Table 5.10 Results of the experiments between i* model and Prometheus model158
Table 5.11 Missing relations between JACK code and Prometheus model ...158
Table 5.12 Results of the experiments for the new models of the ATCE case study159
Table 5.13 Missing relations between i* and Prometheus model ...161
Table 5.14 Results of the experiments for the new models of the ATCE case study164
Table 5.15 EB elements in i* ...166
Table 5.16 EB elements in Prometheus ...166
Table 5.17 EB elements in Prometheus ...166
Table 5.18 Evaluation Results ...167
Table 5.19 Evaluation Results ...168
Table 6.1 – Results of the experiments ..174
Table 6.2 Results of the experiments ...176
Table 6.3 – Results of LEDA case study using threshold ..177
Table 6.4 Results of the experiments ...177
Table 6.5 Number of traceability relations identified for the ATM case study ..180
Table 6.6 Number of traceability relations identified for ATCE case study ..180
Table 6.7 Number of traceability relations identified for the ATCE case study ..181

[10]

Acknowledgements

I would like to thank the examiners Peter Sawyer and Bill Karakostas for having so kindly

accepted to take part of my viva voice examination and for the comments and suggestions.

The quality of thesis would have suffered without their contribution.

Andre Zisman has been principal motivator actor of my work giving helpful feedback during

the period of her supervision. It was also great value have written papers with her and with my

co-supervisor George Spanoudakis.

Thank you to all colleagues from Department of Computing who I have had the good fortune

to share a room with or work together with as visiting tutor. Especially, I would like to thank

Michael Iossif, Mark Firman, Shant Narcessian, Waraporn Jirapathong, Khaled Mahub,

Marcus Andrews, Olga Castilho, Thsiamo, Theoharris, Ricardo Contreras, and George Lekeas.

I would also like to thank the support and administrative team for all their help during all this

period.

Thank you especially to my friends from London for the support and attention that made life

easier and happier.

My greatest gratitude goes to my family that had suffered from my absence and for the

support that they always gave in my life.

Finally, I would to thank you the “Lord” that without anything would not be possible.

[11]

Declaration

I grant powers of discretion to the University Librarian to allow the thesis to be copied in
whole or in part without further reference to the author. This permission covers only single
copies made for study purposes, subject to normal conditions of acknowledgment.

[12]

Abstract

The development of multi-agent software systems is considered a complex task due to (a) the
large number and heterogeneity of documents generated during the development of these
systems, (b) the lack of support for the whole development life-cycle by existing agent-oriented
methodologies requiring the use of different methodologies, and (c) the possible
incompleteness of the documents and models generated during the development of the
systems.

In order to alleviate the above problems, in this thesis, a traceability framework is described to
support the development of multi-agent systems. The framework supports automatic
generation of traceability relations and identification of missing elements (i.e., completeness
checking) in the models created during the development life-cycle of multi-agent systems using
the Belief-Desire-Intention (BDI) architecture.

Traceability has been recognized as an important activity in the software development process.
Traceability relations can guarantee and improve software quality and can help with several
tasks such as the evolution of software systems, reuse of parts of the system, validation that a
system meets its requirements, understanding of the rationale for certain design decisions,
identification of common aspects of the system, and analysis of implications of changes in the
system.

The traceability framework presented in this thesis concentrates on multi-agent software
systems developed using i* framework, Prometheus methodology, and JACK language. Here,
a traceability reference model is presented for software artefacts generated when using i*
framework, Prometheus methodology, and JACK language. Different types of relations
between the artefacts are identified. The framework is based on a rule-based approach to
support automatic identification of traceability relations and missing elements between the
generated artefacts. Software models represented in XML were used to support the
heterogeneity of models and tools used during the software development life-cycle. In the
framework, the rules are specified in an extension of XQuery to support (i) representation of
the consequence part of the rules, i.e. the actions to be taken when the conditions are satisfied,
and (ii) extra functions to cover some of the traceability relations being proposed and
completeness checking of the models.

A prototype tool has been developed to illustrate and evaluate the work. The work has been
evaluated in terms of recall and precision measurements in three different case studies. One
small case study of an Automatic Teller Machine application, one medium case study of an Air
Traffic Control Environment application, and one large case study of an Electronic Bookstore
application.

 [13]

Chapter 1 - Introduction

A multi-agent system consists of a system composed of several agents that are situated in an

environment and that interact with each other and with their environment. Multi-agent

systems have been proposed as a solution to implement complex systems that need to run in

an environment that is open, distributed and highly interactive. An agent is defined by

Wooldridge in (Wooldridge, et al., 1995), (Wooldridge, 2002) as a software component that is

“situated in some environment and that is capable of autonomous action in this environment

in order to meet its design objectives”. Several types of software components fulfil this

definition varying from daemons process in UNIX (Frisch, 2002) to complex decision making

systems that control unmanned autonomous vehicles (Agent Oriented Software Limited,

2010).

An intelligent agent is an autonomous software component that is categorised to be pro-active,

reactive, and social (Wooldridge, 2002). Pro-activeness means that the agent takes initiative in

order to achieve its goals. Reactivity means that the agent perceives its environment and

responds to its stimulus according to its goals. Social ability means that the agent will be able to

communicate with other agents and have abilities such as co-operation, co-ordination, and

negotiation.

Several architectures have been proposed to build multi-agent systems such as Jadex (Pokahr,

et al., 2005), Jason (Bordini, et al., 2005), and JACK (Busetta, et al., 1999), (Howden, et al.,

2001). Agent architectures can be classified in three categories: deliberative architectures,

reactive architectures, hybrid architectures.

Reactive architectures do not maintain a symbolic representation of the environment and

actions are performed using rules. Agents are situated in the environment and perceive the

environment. Depending on the event that occurs in the environment a rule is executed and

actions are performed.

In the deliberative architecture, a symbolic representation of the environment is created and

the agent performs actions to manipulate these symbols. The actions performed are based on

logical reasoning using theorem provers (Genesereth, et al., 1987). The drawback of this

 [14]

architecture is that it is difficult to represent the real world using a symbolic representation.

Moreover, the use of logic reasoning to determine what action to perform is a very resource

and time consuming task. Several multi-agent systems use a deliberative architecture to support

reasoning and some of them are based on the BDI (Belief Desire Intention) architecture

(Bratman, et al., 1988). Hybrid architectures combine deliberative and reactive behaviour.

Examples of hybrid architectures are: TouringMachines, and INTERRRAP (Luck, et al.,

2004).

BDI architectures have been proposed to address the problem of resource boundedness. The

BDI architecture (Rao, et al., 1992) is one of the most successful architectures. The BDI

architecture is founded on the philosophy theory of Bratman (Bratman, 1999) to explain

human rationale action and it has been formalised by logic theory called LORA (Wooldridge,

2000) and BDI logic (Rao, et al., 1998). The BDI architecture has been implemented several

times. Examples of implementation are: IRMA (Bratman, et al., 1988), PRS (Ingrand, et al.,

1992), Jadex (Pokahr, et al., 2005), Jason (Bordini, et al., 2005) and JACK (Howden, et al.,

2001), (Agent Oriented Software Limited, 2010).

Bratman et al. describe the Intelligent Resource-Bounded Machine Architecture (IRMA) that is

the first implementation of BDI architecture (Luck, et al., 2004). The IRMA architecture

addresses the problem of how an agent can select the best set of actions to carry out in order

to achieve a goal when limited by resources such as the amount of time to take the decision.

The Procedural Reasoning System (PRS) is one of the most successful implementation of BDI

architecture. The PRS architecture was used to build several applications such as a prototype

system to manage the air traffic control of Sydney airport (Ljungberg, et al., 1992), (Rao, et al.,

1995). The PRS system has been re-implemented and extended several times. The most known

implementations are dMARS (d'Inverno, et al., 2004), JAM (Huber, 1999), JACK (Howden, et

al., 2001), (Agent Oriented Software Limited, 2010), and Jadex (Pokahr, et al., 2005).

To support the development of multi-agent systems various methodologies have been

proposed such as Prometheus (Padgham, et al., 2004), Tropos (Castro, et al., 2002), MaSE

(DeLoach, 2001), and Gaia (Wooldridge, et al., 2000). These methodologies can be classified

based on their origins. For instance, Tropos is based on requirements oriented methodologies

 [15]

and has its origins on i* framework. Prometheus is based on object-oriented methodologies

and its design phase is influenced by JACK. Luck et al. (Luck, et al., 2004) and Sudeikat et al.

(Sudeikat, et al., 2004) classify agent oriented methodologies origins as object-oriented,

knowledge engineering oriented, requirement engineering oriented, and of general category.

Despite advances in the area, the development of multi-agent systems is a complex task. As

outlined in (Luck, et al., 2004), the difficulty to develop multi-agent systems are due to the (a)

design of software systems that maintain a balance between proactive and reactive behaviour

present in agents, (b) understanding of when agent approaches are appropriate, and (c) use of

informal development techniques. In addition, (i) the large number and heterogeneity of

documents generated during the development of multi-agent systems, (ii) the lack of support

for the whole development life-cycle by existing agent-oriented methodologies requiring the

use of different methodologies, and (iii) the possible incompleteness of the documents and

models generated during the development of multi-agent systems contribute to the difficulties

of developing such systems.

Moreover, the development of multi-agent systems produces a huge number of artefacts. Each

artefact created can be related to several other artefacts. The relations between artefacts can be

explicit or implicit. Explicit relations are concerned with the direct relation between two

artefacts. For instance, artefact B depends on artefact A. Therefore, there is an explicit relation

between the artefacts A and B. Implicit relations are concerned with indirect relations between

two artefacts. For instance, artefact B depends on artefact A and artefact C depends on

artefact B. Therefore there is an implicit relation between artefacts A and C.

Explicit relations are easier to maintain while implicit relations are difficult to maintain and to

be found. Furthermore, multi-agents systems are normally developed by teams of analysts,

developers, and programmers that are often distributed in different locations and use different

tools, notations, and methodologies. The heterogeneity of people, tools, notations, and

methodologies makes difficult to identify and understand the relations between the artefacts.

In addition, it is not possible to guarantee completeness of the generated artefacts.

The need to understand the relations between the artefacts created during the development of

software system is essential to several activities of software development such as impact

 [16]

analysis, software maintenance and evolution, component reuse, verification and validation. It

is difficult or even impossible to indentify manually these relations in complex systems (e.g.

multi-agent systems).

The difficult to indentify traceability relations in multi-agent systems are due to (a) the large

number and heterogeneity of documents generated during the development of these systems,

(b) the lack of support for the whole development life-cycle by existing agent-oriented

methodologies requiring the use of different methodologies, and (c) the possible

incompleteness of the documents and models generated during the development of the

systems.

We recognize that the above problems can occur in other types of complex systems, but in this

thesis we focus on multi-agent systems developed using BDI architecture. In particular, the

main differences are the types of the elements and documents that are used when developing a

multi-agent system. The development of multi-agent systems involves a new set of elements

such as goals, percepts, beliefs, capabilities, agents, roles, actions, events, messages, and plans.

To utilize and understand the traceability relations, it is necessary to define the semantics of the

relations between these elements. To address this problem we define a traceability reference

model to represent the semantic of traceability relations. The semantic of traceability relation

gives the ability to carry out richer kind of analysis (e.g. impact analysis).

Another difference is that in some of methodologies such as Troops and Prometheus the

definition of requirements is based on goal oriented techniques instead of textual descriptions

that allow the development of multi-agent using a model driven development since the

requirement definition phase.

Multi-agent systems are distributed and concurrent, and the agents that make up a multi-agent

system are able to exhibit complex flexible behaviour in order to achieve its objectives in the

face of a dynamic and uncertain environment. This flexible behaviour is key in making agent

technology useful, but it makes it difficult to trace agent systems. Tracing is an essential part of

the process of developing software, and important to support verification, validation and

debugging.

 [17]

In order to alleviate the above problems, in this thesis we propose the use of software

traceability and identification of missing elements between artefacts produced during the

whole life cycle of a multi-agent system.

Software traceability has been defined as “the ability to describe and follow the life of a

requirement, in both a forward and backward direction (i.e. from its origins, through its

development and specification, to its subsequent deployment and use, and through periods of

ongoing refinement and iteration in any of these phases)” (Gotel, et al., 1994). Traceability

relations can help to assist with several activities during the life cycle of software development

such as impact analysis, verification and validation, reuse, and maintenance.

The identification of traceability relations manually is a labour intensive and an error prone

task (Spanoudakis, et al., 2005). Several approaches have been proposed to recover traceability

relations automatically. The approaches can be classified as (i) formal approaches (Pinheiro, et

al., 1996), (ii) process oriented approaches (Castro-Herrera, et al., 2007), (Ravichandar, et al.,

2007), (Pohl, 1996), (iii) information retrieval approaches (Zou, et al., 2007), (Poshyvanyk, et

al., 2007), (Duan, et al., 2007), (Kritzinger, et al., 2008), (Antoniol, et al., 2002), (Marcus, et al.,

2003), (Zou, et al., 2006), (De Lucia, et al., 2007), (De Lucia, et al., 2008), (Lormans, et al.,

2006), (Hayes, et al., 2007), (iv) string matching approaches (Fiutem, et al., 1998), (Antoniol, et

al., 2001), v) rule base approaches (Spanoudakis, et al., 2004), (Jirapanthong, et al., 2005),

(Jirapanthong, et al., 2009), (Cysneiros, et al., 2003), (Cysneiros, et al., 2007a), (Cysneiros, et al.,

2007b), (Cysneiros, et al., 2008) (Spanoudakis, et al., 2003), (Spanoudakis, et al., 2004),

(Dagenais, et al., 2007), (Reiss, 2006), (Fletcher, et al., 2007), (Rilling, et al., 2007), (Kagdi, et al.,

2007), (Alves-Foss, et al., 2002), (vi) run-time approaches (Liu, et al., 2007), (Egyed, 2003),

(Egyed, et al., 2005), (Grechanik, et al., 2007), and (vii) hypermedia and information integration

approaches (Sherba, et al., 2003), (Sherba, 2005).

The approaches above address different aspects of the traceability problem. For instance, i)

formal approaches can be used when it is possible to define the software project using a

formal language and then traceability relations are derived automatically using axioms; ii)

process oriented approaches can be used when a unified software process development is used

to develop software; iii) information retrieval techniques have been used successful to identify

traceability relations between textual documentation of software artefacts; iv) string matching

 [18]

approaches can be used when naming of elements are used consistently to define elements of a

software project; v) rule-based approaches can be used when it is easy to identify and define

rules between relations of elements created during the development of a software; vi) run-time

approaches can be used when code of the system is available.

In this thesis a rule-based framework is described to support automatic generation of

traceability relations and identification of missing elements in artefacts created during the

development of multi-agent systems. The identification of missing elements is called

completeness checking in this thesis report. This work provides support for artefacts created during

different phases of the software development life-cycle. More specifically, the approach

supports artefacts created during early and late requirements elicitation, analysis and design,

and implementation phases of the development of multi-agent systems.

The framework concentrates on early requirements represented using i* framework (Yu,

1995), late requirements, analysis and design specification created using the Prometheus

methodology (Padgham, et al., 2004), and code implemented with JACK (Agent Oriented

Software Limited, 2010).

Prometheus methodology was chosen because it has been largely used in academic and

industrial settings; it covers the whole life cycle of development; and there are a large number

of documentation, examples, and tools support available. Moreover, the detailed design phase

of Prometheus covers the concepts necessary to model multi-agent systems implemented

using the BDI architecture.

The reason for using i* framework to represent the early phase of the requirement

specification is due to the fact that Prometheus methodology only supports a specification of

goals of the system in terms of a hierarchical diagram. The i* framework provides a richer

modelling technique to represent organizational process. The i* framework represents relations

between actors that depend of each other to have its goals accomplished. The rationale behind

the dependencies can also be represented in i*.

The adoption of JACK is due to its use in several academic and commercial applications and

in diverse areas such as unmanned aerial vehicles, surveillance, air traffic management, real-

 [19]

time scheduling, and virtual actors (Agent Oriented Software Limited, 2010). Moreover, a large

number of documentation is available and the detailed phase of Prometheus describes the

elements of the JACK.

In order to support the heterogeneity of models and tools covered in this work, the models are

represented in XML (XML, 2010). XML was chosen as the basis of our approach due to

several reasons: (a) XML has become the de facto language to support data interchange among

heterogeneous tools and applications, (b) the existence of large number of applications that use

XML to represent information internally or as a standard export format, and (c) to allow the

use of XQuery (XQuery, 2010) as a standard way of expressing traceability rules.

We propose to use an extended version of XQuery to represent the rules in our framework.

XQuery is an XML-based query language that has been widely used for manipulating,

retrieving, and interpreting information from XML documents. Apart from the embedded

functions offered by XQuery, it is possible to add new functions. We have extended XQuery

(a) to support representation of the consequence part of the rules, i.e. the actions to be taken

when the conditions are satisfied, and (b) to support extra functions to cover (i) some of the

traceability relations being proposed and (ii) completeness checking of the models.

A prototype tool has been implemented to demonstrate and evaluate the work. The evaluation

of the work has been performed in three case studies, namely: (i) automatic teller machine, (ii)

electronic bookstore, and (iii) air traffic control environment. The automatic teller machine is a

small size application that allows a customer to withdraw cash and print statements. The air

traffic environment is a medium size application that simulates the landing sequencing of an

aircraft. The electronic bookstore application is a large size application that implements the

main functionalities of an electronic bookstore such as browsing catalogue, search books by

keyword and buy a book.

The remainder of this chapter describes the hypotheses, problem definition, objectives,

contributions, and thesis outline.

 [20]

1.2 Hypotheses
The hypothesis of our framework consists on the identification of traceability relations

between software artefacts created during the development of multi-agent systems using a

model driven approach. This hypothesis is broken into the following:

 It is possible to use rules to identify traceability relations between software

artefacts created during the development of multi-agent systems using a model

driven approach;

 It is possible to use rules to identify missing elements between software artefacts

created during the development of multi-agent systems using a model driven

approach;

 It is possible to use the information about missing elements to fix discrepancies

between names given to elements in the different documentation and to

improve completeness between software artefacts created during the

development of multi-agent systems using a model driven approach;

 It is possible to use the information about missing elements to improve the

number of traceability relations identified by our framework.

To evaluate this hypothesis, a prototype tool was built and assessed in three case studies. In

chapter 5 these experiments are described and the results of the evaluation presented.

1.3 Objectives
The overall aim of this research is to develop an approach to support traceability between

artefacts created during the entire life cycle of the development of a multi-agent system. In

particular, the main interest was in supporting the identification of missing elements and

automatic generation of traceability relations between software elements in i* organisational

models (Yu, 1995), Prometheus models (Padgham, et al., 2004), and JACK code (Agent

Oriented Software Limited, 2010).

 [21]

The main aim was broken down into the following objectives:

 To define different types of traceability relations;

 To create a reference model that defines traceability relations between artefacts in i*

and Prometheus and between artefacts in Prometheus and JACK code;

 To create a set of rules to identify missing elements and traceability relations between

i* and Prometheus artefacts;

 To create a set of rules to identify missing elements and traceability relations between

Prometheus and JACK code elements;

 To develop a prototype tool to identify missing elements and to automatically generate

traceability relations between i* and Prometheus models and between Prometheus

models and JACK code;

 To evaluate the work in several case studies.

1.4 Contributions
This research contributes to the Agent Oriented Software Engineering area and addresses the

problems discussed in Section 1.1. The main contributions can be summarised as:

 Automatically recovery of traceability relations - A rule-based approach was proposed

to support automatic generation of traceability relations between heterogeneous

software models created during the development of multi-agent systems. This

alleviates the problems of creating traceability relations manually;

 Support for completeness checking - A rule-based approach was proposed to support

the identification of missing elements in various software models. This facilitates fixing

inconsistencies among the models;

 Traceability Reference Model - Nine types of traceability relations with different

semantics and a traceability reference model between i* and Prometheus elements and

between Prometheus and JACK elements were proposed;

 [22]

 Rules to recover traceability relations and to identify missing elements - Several rules

were created to identify missing elements and to recover traceability relations between

i* and Prometheus and between Prometheus and JACK elements;

 Traceability prototype tool - A prototype tool has been developed in order to execute

the rules and to create traceability relations and identify missing elements information;

 Development of three case studies – The work was evaluated in three case studies. A

small size application of an Automatic Teller Machine where JACK code provided by

AOS (Agent Oriented Software Limited, 2010) has been reversed engineering to create

Prometheus model. This work shows that the prototype tool can identify automatically

most of traceability relations correctly and we used the information about missing

elements to fix the inconsistencies and to complete the models. A medium size

application of an Air Traffic Control Environment where JACK code has been

provided and it was used to create models in Prometheus and i*. A large size case

study of an Electronic Bookstore. In this case, Prometheus models have been created

based on available documentation (Padgham, et al., 2004) and on real applications such

as Amazon.com (Amazon.com, 2010). JACK code was implemented based on the

created Prometheus models.

1.5 Thesis Outline
The remaining of this thesis is structured as follows. In chapter 2 the literature about

traceability is reviewed. We introduce what traceability is and the importance of traceability in

the software development process. This chapter describes the main traceability reference

models, approaches used to recover traceability relations, approaches to represent and

maintain traceability relations, approaches to use and visualise traceability relations, and

approaches that define traceability reference models. We also describe existing work on

traceability and agent oriented systems.

A traceability reference model for software models created during the development of multi-

agent systems using i* framework, Prometheus methodology and JACK language is presented

in chapter 3. We describe the elements of i* framework, Prometheus methodology, and JACK

language used in our framework, and nine types of traceability relations.

 [23]

The framework is described in chapter 4. Initially, we give an overview of the approach and

then we provide details of the architecture of the framework. We show how different types of

rules can be created to be used by the framework and then give some examples of different

type of rules. We describe different functions that we have developed to support the rules, to

perform completeness checking, to verify if names of elements in the models are synonyms, to

compare similarities between elements in the models, and to manipulate elements in PDT

(PDT, 2010), TAOME (TAOME4E, 2008) and JACK models. Finally, we describe the

prototype tool that we have developed to support our traceability framework.

The evaluation of the framework in three case studies and the results of this evaluation are

presented in chapter 5.

In the chapter 6 the conclusions and future works are presented. The main contributions of

the research and how the hypotheses have been achieved are described.

The thesis report is composed of several appendices. Appendix A contains the list of extra

functions implemented in Java to extend XQuery. Appendix B describes the Automatic Teller

Machine case study. Appendix C describes the Air Traffic Control Environment case study.

Appendix D describes the Electronic Bookstore case study. Appendix E gives an introduction

to the BDI architecture. We present different types of agent architecture used to build multi-

agents systems and then we describe in detail the BDI architecture that was used by our

research. Appendix F describes traceability relations between i* and Prometheus elements.

Appendix G describes traceability relations between Prometheus and JACK elements.

 [24]

Chapter 2 - Literature Survey on Traceability
Software traceability is the ability to relate artefacts created during the development life-cycle

of a software system (Spanoudakis, et al., 2005). More specifically, from the point of view of

requirements, traceability has been defined as the “ability to describe and follow the life of a

requirement, in both a forward and backward direction (i.e. from its origins, through its development and

specification, to its subsequent deployment and use, and through periods of ongoing refinement and iteration in

any of these phases)” (Gotel, et al., 1994).

Software traceability is essential in the software development process and has been used to

support several activities such as impact analysis, software maintenance and evolution,

component reuse, verification, and validation. The importance of traceability in the software

development process has been endorsed by several standards for quality management and

process improvement such as ISO 9001:2000 (ISO, 2010) and CMMI (Carnegie Mellon, 2010).

Gotel discusses several challenges and problems (Gotel, 2008), (Gotel, 2009) that exist to

support traceability practice. Examples of these problems and challenges are: i) traceability is

seen as a repetitive and tedious task and the challenge is how to change this image (the yo-yo

challenge – the boredom of a fixed routine); ii) responsibility for traceability is blurred and the

challenge is to distribute the responsibility for traceability to all team members of a software

project ; iii) artefacts in the software project are from different types and they are represented

in a variety of medias, and at different levels of formality and granularity and the challenge is to

identify what should be traced and how trace relations are to be established; iv) the credibility

of traceability can be debatable and the challenge is how determine ways to communicate

confidence level of trace relations; v) traceability relations tend to decay without dedicated

ongoing maintenance and the challenge is to plan a traceability strategy well; vi) unrealistic

expectations are placed on traceability automation, however techniques to recover traceability

relations automatically still demand a high quality set of artefacts and manual filtering of results

and the challenge is to figure out how to combine heterogeneous automated and humans

approaches to support traceability; vii) traceability should be a by product, but it became an

extra activity of software development and the challenge is to make traceability to be achieved

as a by-product of other engineering activities.

 [25]

In addition, several researchers and practitioners have participated in a series of two events:

First Workshop on Grand Challenges for Traceability (GCW'06) and International Symposium

on Grand Challenges in Traceability (GCT’07) with the goal of identifying challenges in the

area of traceability that need to be addressed. The identified challenges in these workshops

have led to the creation of the Grand Challenge document. Examples of these identified

challenges are: Traceability Knowledge, Training and Certification, Supporting Evolution, Link

Semantics, Scalability, Human Factors, Cost Benefit Analysis, Methods and Tools, Tracing

across Organizational Boundaries, Process, Compliance, Measurements and Benchmarks,

Technology Transfer (Cleland-Huang, et al., 2007).

Despite the importance of software traceability, current support for traceability is inadequate.

Most of the commercial tools do not provide mechanisms to automatically generate and

maintain traceability relations. Moreover, existing tools do not offer support for defining the

various types of the traceability relations (i.e., the semantics of the relations). The lack of

automation becomes a serious problem in the development of complex software systems

where the numbers of artefacts are large and there is a need to establish traceability relations

between those artefacts that are usually created by non-interoperable tools, and can evolve

autonomously.

De Lucia et al. (De Lucia, et al., 2007) discuss the importance to show the effectiveness of

traceability recovery approaches. In particular, they present a study that compares the effort to

identify traceability relations using a traceability tool (i.e. ADAMS) with the effort to identify

traceability relations manually. As it is expected, the study shows that the use of a tool helps to

improve precision and it also reduces the time necessary to indentify traceability relations.

Similarly, Grechanik et al. (Grechanik, et al., 2007) shows that less time was spent by software

analysts when using their approach to automatically identify traceability relations in order to

execute task of code evolution and code comprehension.

In (Asuncion, 2007), the authors declare that the effective practice of traceability aids in system

comprehension, impact analysis, system debugging, and communication between the

development team and stakeholders. Assunction et al. present the economic, technical and

social benefits obtained using a traceability tool that supports the entire life cycle of the

software development in an industrial case study. For instance, some benefits derived from the

 [26]

traceability practice are: i) raise of the visibility of actual software processes enabling users to

compare actual practices to stated company procedures; ii) automation replace burdensome

tasks associated with traceability, such as maintaining consistency between various artefact

representations; iii) prove to the customers that the requirement has been tested; iv) project

managers easily obtain an accurate status report of the project.

Traceability has been studied for many years and several approaches have been proposed to

tackle its different aspects and issues. Pohl (Pohl, 1996) states that a traceability approach

should provide answers to the following questions:

 What traceability information should be captured?

 How traceability information should be captured?

 How traceability information should be stored?

Sherba adds in (Sherba, 2005) that a traceability approach should also to answer the question

below:

 How traceability relations are going to be viewed and queried?

Moreover, Gotel (Gotel, 2009) states that before trying to answer what, where, when, and how

to trace, it is necessary to answer “why it is important to trace?”. Gotel highlights that it is

important to know who are the stakeholders and what are their needs. Gotel says that

traceability is a team effort and that other stakeholders need to understand why they should

spend time to create or to maintain traceability relations to other stakeholders. Gotel et al. also

discuss (Gotel, et al., 2007) that some lessons can be learned from other industries that use

traceability. In particular, Gotel et al. compare traceability in software industry with traceability

in the food industry. For instance, the responsibility for traceability in the food industry is

shared by all people involved in a certain process, while the responsibility for traceability in the

software industry is assigned to a few people in most of the cases.

In the next sections, we discuss how different approaches address the questions above and

provide a literature survey of these existing approaches.

 [27]

2.1 Traceability Reference Models and Meta-Models
Traceability reference models are used to define the types of traceability information that

should be captured. Several classifications for different types of traceability relations and

several traceability reference models and meta-models have been proposed in the literature

(Davis, 1990), (Gotel, et al., 1994), (Lindvall, et al., 1996), (Dick, 2002), (Ramesh, et al., 2001),

(Spanoudakis, et al., 2005), (Berenbach, 2007), (Almeida, et al., 2007), (Goknil, et al., 2008),

(Toranzo, et al., 1999), (Toranzo, et al., 2002), (Han, 2001), (Pinto, et al., 2005).

In (Davis, 1990), traceability has been classified from the perspective of direction as forward and

backward. Forward traceability is the ability to trace an artefact to its implementation, while

backward traceability is the ability to trace an artefact to its origin. More specifically, Davis has

identified four types of traceability relations, namely (a) forward from requirements, (b)

backward to requirements, (c) forward to requirements, and (d) backward from requirements.

Types (a) and (b) are also known as post-traceability and types (c) and (d) are known as pre-

traceability (Gotel, et al., 1994). Traceability relations can also be categorised as horizontal (or

inter-traceability) and vertical (or extra-traceability) (Lindvall, et al., 1996). Horizontal

traceability relations refer to those relations within the same model, while vertical traceability

relations refer to those relations that involve different models.

The need to capture the semantic of traceability relations has been point out as fundamental in

order to make effective the use of traceability (Dick, 2002), (Ramesh, et al., 2001),

(Spanoudakis, et al., 2005). Dick proposed in (Dick, 2002) an approach to represent “deeper

kinds of traceability” relations in order to perform deeper types of analysis. He argues that the

use of propositional logic to group relations together and textual information describing the

rationale of the relations can be used to describe the traceability relations and to perform

further analysis.

Ramesh et al. describe two traceability reference models in (Ramesh, et al., 2001). These

traceability reference models have been derived from an empirical study of traceability

practices in 26 major software development organizations. In this study, they identified two

types of traceability users: “low-end” and “high-end” users. Low-end users have few years of

experience with traceability and the use of traceability is compelled by project sponsors or for

compliance with standards. Low-end users simply use traceability to relate various components

 [28]

of information without explicit identification of the semantic and rationale of such relations.

The main application of traceability by low-end users is for requirements decomposition,

requirements allocation, compliance verification, and change control. On the other hand, high-

end users have several years of experience and use traceability to cover the full cycle of the

software development, and to capture discussion issues, decisions, and rationale.

Low-end users use traceability to create relation of: i) dependencies between requirements

(derive); ii) allocation of requirements to system components (allocated_to); iii) satisfaction of

requirements to system components (satisfy); iv) compliance verification procedure developed

for requirements (developed_for); v) dependencies between system components (depend_on); vi)

compliance verification performed by system components (performed_on); vii) between

interfaces that system components has with external systems (interface_with). High-end users use

much richer traceability schemes than low-end users. Ramesh et al. divided traceability

relations in four parts: Requirements Management, Design Allocation,

ComplianceVerification, and Rationale Management.

In (Berenbach, 2007), Berenbach proposes a traceability meta-model and affirms that the

implementation and tool support of traceability can help to enforce design and process rules.

Berenbach says that a traceability meta-model can be used to create completeness verification

checks, and that traceability information can be used to propagate name changes of related

elements. The reference model proposed by Berenbach consists of traceability relations

between elements of analysis and design models in UML. Examples of types of relations are: i)

requirements derive from (Derive From) use cases; ii) use cases are associated with (associated

with) use cases; iii) use cases are shown on (shown on) use case diagrams; iv) use case realizations

implements (realize) use cases; vi) use cases are explained by (explained with) sequence diagrams;

vii) business object relationships are shown on (Relationships shown on) class diagram; viii)

boundary elements interact with business objects; ix) use case realization are contained in

(contained in) design package; x) components realizes (realizes) business object; xi) component

has (has) interface; xii) component are shown on (shown on) component diagram; xiii)

components are composed of (composed of) classes; xiv) classes relations are shown (relationships

shown on) on class diagrams; xv) test case tests (tests) components; xvi) test case verifies (verifies

implementation) requirement; xvii) subsystem details are shown in (details shown in) sequence

 [29]

diagrams; xviii) subsystem behaviour are explained by (behaviour explained by) activity diagram,

subsystem contains (contains) design package.

Almeida (Almeida, et al., 2007) proposes a requirement traceability meta-model to support

Model Driven Engineering development. The meta-model is implemented using Ecore

metamodel. The meta-model proposed by Almeida et al. consists of satisfaction traceability

relations between requirements that are part of the requirement specification and artefacts of

the software model.

Goknil et al. highlight the importance to define the semantics of traceability relations in order

to execute change and impact analysis activities (Goknil, et al., 2008). Goknil presents a

traceability meta-model composed of four different types of traceability relations between

requirements, namely: requires, refines, conflicts, and contains. A requirement R1 requires a

requirement R2, if R1 is fulfilled only when R2 is fulfilled. A requirement R1 refines a

requirement R2, if R1 is derived from R2 by adding more details to it. A requirement R1 contains

requirements R2 if R2 is part of the requirements R1. A requirement R1 conflicts with a

requirement R2, if the fulfilment of R1 excludes the fulfilment of R2 and vice versa.

Another traceability reference model for Model Driven Engineering development has been

proposed in (Vanhooff, et al., 2005). Vanhooff defines traceability information used by model

transformation as transformation traceability. Vanhooff presents a traceability meta-model that

consist of dependencies between source and target elements, dependencies between a mapping

and the transformation unit that created it, and the marking of source element as deleted.

Toranzo et al. (Toranzo, et al., 1999), (Toranzo, et al., 2002) present a general purpose

reference model. Examples of relations are: i) stakeholders are responsible for (responsibility)

requirements, a program represents (represents) requirements, requirements are allocated to

(allocated_to) sub-systems, and tasks are satisfied by (satisfy) design elements. Pinto et al. (Pinto,

et al., 2005) describe a process for guiding the use of a reference model to the development of

multi-agent systems. In particular, Pinto et al. propose a series of guidelines to extend Tropos

in order to support traceability.

 [30]

Han (Han, 2001) describes a traceability model between requirements and architecture

documents. Examples of types of relations are: i) components provides (provides) services; ii)

components requires (requires) services; iii) components are part of (part_of) components; iv)

components conforms to (conforms_to) interface; v) interface makes visible (makes_visible)

assumptions; vi) assumptions are subject to (subject_to) risks; vii) authorities asserts (asserts)

assumption; viii) services respect (respect) assumption; ix) stakeholders owns (owns) goals; goals

refines (refines) goals; x) services are delivered with (derived_with) quality of services; xi) quality

of services satisfies (satisfies) goals; xii) use cases uses (uses) services.

In (Pohl, 1996), the authors identify 18 types of traceability relations that were created based

on a survey of the requirements engineering literature. The types of traceability relations were

created to describe relations between a hypertext model that specify the vision and

requirements of the system, a structured analysis (SA) model that consists of a data flow model

and a data dictionary, an extended entity-relationship (ER) model for modelling the data view

of the system and an OMT model for modelling the object-oriented view as well as the

behaviour of the system.

The traceability relations are classified in five groups, namely: (a) condition links, (b) context

link, (c) document links, (d) evolutionary links, and (e) abstraction links. Condition links are

used to relate restrictions (precondition or constraints) to a particular object; context links are

used to express relations of similarity, comparisons, contradictions, and conflicts between

objects; document links are used to relate different kinds of documentation to a requirement

such as examples, test cases, description of the purpose, background information and

comments; evolutionary links are used to express when a requirement has been replaced,

based on, formalized or elaborated by another requirement; abstraction links are used to

represent abstractions between trace requirements such as generalizations or refinements.

Spanoudakis and Zisman (Spanoudakis, et al., 2005) propose a framework to organize the

types of traceability relations identified in the literature. They had grouped the traceability

relations into eight main groups: i) dependency; ii) generalisation/refinement; iii) evolution; iv)

satisfaction; v) overlap; vi) conflicting, vii) rationalisation; viii)contribution. Dependency

relations are used if an element relies on the existence of another element,

generalization/dependencies are used to identify how complex elements of a system can be

 [31]

divided into components, or how an element can be specialised by other elements or how

elements can be generalised by another element, evolution relations are used if an element is

replaced by another element, satisfiability relations are used if an element meets the

expectation, needs and desires of another element or if an element complies with a condition

represented by another element, overlaps relations are used if two elements refer to common

features of a system or its domain, conflict relations are used to represent conflicts and issues

between two elements, rationalisation are used to represent and maintain the rationale behind

the creation and evolution of elements, and decisions about the system at different levels of

detail, contribution relation are used to represent associations between requirement artefacts

and stakeholders that have contributed to the generation of the requirements.

Spanoudakis et al. describe in (Spanoudakis, et al., 2004), a rule based approach to identify

traceability relations between requirements specifications using structured text and use case

specifications using Cockburn template (Cockburn, 2000), and between requirements and

class diagrams. The approach defines four different semantic types of traceability relations,

namely: overlaps, requires_execution_of, requires_feature_in, and can_partially_realise. An

overlaps relation is used if two elements refer to a common feature of the system or its

domain; a requires execution of (requires_execution_of) is used when a sequence of terms appears

in a pre-condition of an use case, post-condition of an use case, a requirement statement or an

use case event requires the execution of an operation. A requires feature (requires_feature_in)

relation is used between a part of an use case specification and a requirement statement (r2), or

between a requirement statements r1 and another requeriment statement r2 when the use case

or the requirement cannot be realised without the existence of the structural or functional

feature in the requirement r2. A can partially realise (can_partially_realise) relation is used

between a description, an event or a postcondition of a use case and the description of a

requirement statement if the use case can realise part of the requirement statement.

An extension of the above work has been proposed by Jirapanthong et al. in (Jirapanthong, et

al., 2005), (Jirapanthong, et al., 2009). The work in (Jirapanthong, et al., 2005), (Jirapanthong, et

al., 2009) identifies traceability relations between documents created to develop software

product families. The approach helps to identify common and variable aspects between

different members of a product family. The approach identifies traceability relations between

 [32]

different types of documents generated when using an extension of the FORM methodology

to develop product family systems. A traceability reference model has been created and nine

types of traceability relations are proposed: satisfiability, dependency, overlaps, evolution,

implements, refinement, containment, similar, and different. Satisfiability relations are used if

an element meets the expectations and needs of another element. Dependency relations are

used if the existence of an element relies on the existence of another element. Overlaps

relations are used if two elements refer to common aspects of a system or its domain.

Evolution relations are used if an element has been replaced by another element. Implement

relations are used if an element executes or allows for the achievement of another element.

Refinement relations are used to identify how complex elements can be decomposed in sub-

elements. Containment relations are used when an element uses another element. Similar

relations exist between elements that depend on the existence of a relation in common.

Different relations are used to assist with the identification of variable aspects between various

product members.

Although the reference models and types of relations presented in the literature provide a

better understanding of the semantics of traceability relations, there is no consensus on the

different types of traceability relations (Sherba, 2005). Moreover, the types of traceability

relations are project specific (Pinheiro, et al., 1996), (Spanoudakis, et al., 2005) and can vary

depending on the stakeholders, methodologies, domain, and tools involved in the system

software development process. Therefore, it is important to create an approach that allows

stakeholders to define the type of traceability relations that are important to them in a

particular project.

Moreover, to the best of our knowledge, there are no traceability reference models for

elements created during the development of multi-agent systems using i* framework,

Prometheus methodology and JACK language. The granularity of traceability relations created

in (Pinto, et al., 2005) is a general traceability reference model for elements created during the

development of multi-agent systems and it has been created to enhance the Tropos

methodology to support traceability. The granularity of the types of relations between code

elements (i.e. “Program”) and design elements are high level and it does not take in

consideration different types of code elements and design elements.

 [33]

2.2 Traceability Approaches to Capture Trace Relations
There are several types of tools that provide support for capturing traceability in various

activities of the software development life-cycle. Examples of these tools are requirement

management tools, software change and configuration management tools, and project

management tools. However, most of these tools require some intervention by the user in

order to create traceability relations. Moreover, in these types of tools, the user has to select

the source and target elements to be related. Some of these tools provide some mechanism to

assist with the definition of traceability relations. For example, Rational DOORS (IBM

Rational, 2010a) and CaliberRM (Borland, 2010) can import the requirements automatically

from documents in Microsoft Word based on the heading styles of the text, while Rational

RequisitePro (IBM Rational, 2010b) can import the requirements based on keywords.

However, once the requirements have been imported, the relations have to be identified

manually.

The evidence of the importance of tools to support traceability is the large number of

commercial tools available in the market (Standish Group, 2003). Examples of requirement

management tools are Rational DOORS, Rational RequisitePro, and CaliberRM. Most of

commercial tools available to support traceability require the user define traceability relations

manually or provide limited support to automatic creation of the traceability relations.

The task of creating traceability relations manually is costly, labour-intensive, and error-prone

(Spanoudakis, et al., 2005), (De Lucia, et al., 2008), (Hayes, et al., 2004), (Lormans, et al., 2006).

As a consequence, the cost to establish traceability relations can overcome its benefits. To

address this problem several approaches have been proposed to support automatic creation of

traceability relations. We classify these approaches in seven groups based on the techniques

that they use to support generation of traceability relation, namely (i) formal approaches

(Pinheiro, et al., 1996); ii) process oriented approaches (Castro-Herrera, et al., 2007),

(Ravichandar, et al., 2007), (Pohl, 1996); iii) information retrieval approaches (Zou, et al.,

2007), (Poshyvanyk, et al., 2007), (Duan, et al., 2007), (Kritzinger, et al., 2008), (Antoniol, et al.,

2002), (Marcus, et al., 2003), (Zou, et al., 2006), (De Lucia, et al., 2007), (De Lucia, et al., 2008),

(Lormans, et al., 2006), (Hayes, et al., 2007); iv) string matching approaches (Fiutem, et al.,

1998), (Antoniol, et al., 2001); v) rule base approaches (Spanoudakis, et al., 2004),

(Jirapanthong, et al., 2005), (Jirapanthong, et al., 2009), (Cysneiros, et al., 2003), (Cysneiros, et

 [34]

al., 2007a), (Cysneiros, et al., 2007b), (Cysneiros, et al., 2008) (Spanoudakis, et al., 2003),

(Spanoudakis, et al., 2004), (Dagenais, et al., 2007), (Reiss, 2006), (Fletcher, et al., 2007),

(Rilling, et al., 2007), (Kagdi, et al., 2007), (Alves-Foss, et al., 2002); vi) run-time approaches

(Liu, et al., 2007), (Egyed, 2003), (Egyed, et al., 2005), (Grechanik, et al., 2007); vii)

hypermedia and information integration approaches (Sherba, et al., 2003), (Sherba, 2005).

2.2.1 Formal Approaches

Formal approaches define software artefacts and their relations using a formal language, and

by using axioms and regular expression to identify traceability relations between the artefacts

(Pinheiro, et al., 1996). The main problem when using these formal approaches is the need to

have training and knowledge of a specific formal language. To alleviate this problem TOOR

approach (Pinheiro, et al., 1996) uses graphical interface where the specification of the project

and the relation between the artefacts can be defined using a combination of graphical

interface and forms.

TOOR (Pinheiro, et al., 1996) provides a semi-automatic approach to identify traceability

relations and the process of capture traceability relations is divided in three different phases:

definition, registration, and extraction. In the definition phase, the user defines the classes of

objects and types of relations to a specific project using the FOOPS (Functional and Object-

Oriented Programming Systems) formal language. In the registration phase, the objects are

created by the selection of the appropriate class of the object from a graphical user interface

and then a template form is filled. To create a traceability relation, the user has to select the

type of traceability relation and fill a template form with the source and the target object from

the relation. Alternatively, a graphical user interface can be used to select the source and target

objects. Relations can also be created based on axioms defined in the definition phase. Finally,

in the extraction phase, the axioms are computed and the traceability relations are displayed.

2.2.2 Process Oriented Approaches

Traceability is required by several standards for quality management and process

improvements such as ISO 9001:2000 (ISO, 2010) and CMMI (Carnegie Mellon, 2010). Some

approaches integrate traceability techniques with software process (Castro-Herrera, et al.,

2007), (Ravichandar, et al., 2007), (Pohl, 1996). The main advantages of these approaches are

 [35]

that traceability relations are created as a product of the software development process and

also enforce a practice in the software development process. The main disadvantages of these

approaches are concerned with the difficulty to support tool integration and the lack of the

definition of unified software development processes in practice.

Castro-Herrera et al. (Castro-Herrera, et al., 2007) propose to extend Basic Open Unified

Process (OUP/Basic) to incorporating automated traceability adding new documents (i.e. work

products) and tasks to the process. The authors highlight the importance and the need to

integrate automated traceability techniques in the software development process to maximize

the potential benefit of automated traceability. Castro-Herrera added three new work products:

Requirements document, Trace Strategy and Granularity document, and Additional Traceable

document and five new tasks: Create Trace Strategy, Create Additional Traceable documents,

Set Up in Place Traceability, Run Automated Traceability Analysis, and Test and Verify

Automated Traceability Results. Requirements documents describe the functional requirement

using a textual description. Trace Strategy and Granularity document is used to describe

different traces that the stakeholders wish to record. Additional Traceable document is a

general template that can be instantiated to include other artefacts that are not defined in the

process. Create trace strategy task defines the traceability strategy and granularity of the

traceability relations. Create additional traceable documents task creates new artefacts that need

to be traced based on some guidelines. Set up in place traceability task set up the infrastructure

necessary for the use of traceability tools. Run automated traceability analysis task executes the

automated traceability tool and provides feedback. Test and verify automated traceability

results task analyses the effectiveness of automated traceability.

Pohl (Pohl, 1996) presents a process centred approach that automatically creates the

traceability relations by recording the execution of actions during the software system

development. The approach requires a method engineer to define the process and tools that

are stored in a repository. Traceability relations are also identified automatically as part of the

software process in (Ravichandar, et al., 2007). Ravichandar et al. uses Capability Engineering

process to identify systems requirements from user needs. A graph (Function Decomposition)

is created to link the decomposition between different levels of abstraction of user needs.

 [36]

Traceability relations can be inferred by the transformations from the user needs to the

requirements represented in the Function Decomposition graph.

2.2.3 Information Retrieval Approaches

Several approaches use information retrieval techniques to identify traceability relations

between software artefacts (Zou, et al., 2007), (Poshyvanyk, et al., 2007), (Duan, et al., 2007),

(Kritzinger, et al., 2008), (Antoniol, et al., 2002), (Marcus, et al., 2003), (Zou, et al., 2006), (De

Lucia, et al., 2007), (De Lucia, et al., 2008), (Lormans, et al., 2006), (Hayes, et al., 2007).

Information retrieval techniques identify traceability relations based on the fact that artefacts

with high textual similarities probably share concepts and, therefore, are likely candidates to

have traceability relations. The main drawbacks of using information retrieval techniques to

identify traceability relations is that standard information retrieval techniques do not take into

consideration the structure of the artefacts. Moreover, in these approaches, a large percentage

of candidate relations are identified (high recall), however the percentage of identified

candidate relations that are correct is low (low precision) (Zou, et al., 2007). This increases the

effort necessary to select from the set of candidate relations what relations are correct and

what relations are invalid. Some approaches address this problem mainly by incorporating

coupling techniques (Poshyvanyk, et al., 2007), clustering methods (Duan, et al., 2007),

phrasing (Zou, et al., 2007), query term coverage (Zou, et al., 2007), relevance feedback, and

attribute weighting (Kritzinger, et al., 2008) to the information retrieval technique.

Antonio et al. (Antoniol, et al., 2002) describe an approach to identify traceability relations

between source code and natural language documentation based on information retrieval

techniques using both a probabilistic method and vector space model. The approach uses

comments and identifier names within the source code to find similarities in the

documentation. The documents are ranked by relevance and based on these relevance the

traceability relations are created.

Another approach named Latent Semantic Indexing (LSI) is described in (Marcus, et al., 2003).

Marcus et al. argue that their approach achieves better results than the Antoniol’s approach.

Their approach uses full parsing code and morphological analysis of the documentation

Marcus et al. affirm that, in comparison with Antoniol’s approach (Marcus, et al., 2003), their

 [37]

approach requires less processing of the source code and documentation, and it is language,

programming language, and paradigm independent.

Poshyvanyk et al. presents (Poshyvanyk, et al., 2007) an approach that combines LSI technique

to recover traceability relations between software documentation (e.g. requirements and user

manuals) and code with coupling measures techniques. The main goal of the approach is to

address the common problem that the structure of the documentation (e.g. files, sections of

documents, directories, etc.) does not reflect the structure of the source code.

The use of clustering to reduce effort required by the user to select candidate relations

generated by information retrieval techniques is investigated by Duan et al. in (Duan, et al.,

2007). Three algorithms have been implemented and tested using a web-based tool named

Poirot. The tested algorithms are agglomerative hierarchical clustering, K-means, and bisecting

divisive clustering and they were evaluated to capture traceability relations between

requirements and other types of artefacts such as higher level business goal, design elements

and code. Duan et al. affirm that the benefit of using the tool was that traceability relations are

presented to software analysts as part of a meaningful group (cluster). This allows the analyst

to take decision about accept or reject candidates relations based on similar artefacts. The tool

also provides functionality that allows the user to accept or reject all candidate relations

associated with a specific cluster.

Zou et al. declares in (Zou, et al., 2007) that most of the information retrieval techniques used

to recover traceability relations are able to find a large percentage of correct relations (high

recall), but in general produce a low level of precision. To address this problem Zou et al.

propose the use of phrasing in (Zou, et al., 2006). Information retrieval techniques such as

vector space model, probabilistic model, and latent semantic indexing build an index of terms

used by the documents. Zou et al. approach uses phrases instead of single terms. They assume

that artefacts that share common phrases are more inclined to be related than artefacts that

only share common terms. The phrases are automatically generated by the tool making use of

a part-of-speech tagger and searching the entire document. The approach is extended in (Zou,

et al., 2007) to use query term coverage. Query term coverage takes into consideration the

number of unique shared terms, while in standard information retrieval techniques the

 [38]

similarity is based on the total weight that is calculated based on the frequency in which the

terms appear in a document.

Kritzinger et al. propose an approach (Kritzinger, et al., 2008) that uses latent semantic analysis

to identify traceability relations between several software artefacts such as system requirements,

use cases, collaboration and state diagrams, and source code in C#. The Kritzinger’s approach

differs from others approaches that use latent semantic analysis mainly by incorporating user

relevance feedback and attribute weighting to the technique. The user feedback helps to create

cluster of documents that are relevant to previous queries. Attribute weighting takes into

consideration the structure of a document (e.g. methods, fields and package declarations of a

class) during term weighting phase to create a term-artefact matrix.

De Lucia et al. (De Lucia, et al., 2008) present ADAMS Re-Trace tool that also uses latent

semantic indexing technique to identify traceability relations between artefacts of different

types. ADAMS Re-Trace is integrated to Advanced Artefact Management System (ADAMS)

that is a fine-grained artefact management system for Eclipse. Traceability relations between

artefacts are created manually in ADAMS and used for impact analysis and change

management tasks. ADAMS Re-Trace adds to ADAMS system the functionality to identify

traceability relations semi-automatically.

Lormans and Deursen also apply Latent Semantic Indexing (LSI) technique in three different

case studies to recover traceability relations between requirements and design documents and

between requirements and test documents (Lormans, et al., 2006). The cases studies are

different in size and scope varying from small to complex, and from academic to industrial.

The authors highlight the importance of having a traceability model as part of the traceability

approach and classify them in static and dynamic models. In a dynamic model, the types of

relations can change according to specific project needs. A static approach is used to define

traceability relations types between requirements and design and requirements and test

documents. The approach uses a Text to Matrix Generator tool to pre-process documents (e.g.

lexical analysis, stop word elimination, stemming, index-term selection and index construction)

used as input by the Trace Reconstructor (TR) tool that generates a term-by-document matrix.

TR tool selects candidates relations that are greater than a constant value and that have a

 [39]

similarity degree greater than a percentage value calculated based on the total of similarity

measures.

Hayes et al. describes in (Hayes, et al., 2007) a front-end for RETRO (Requirements Tracing

On target) tool that can be used with different information retrieval techniques. The authors

argue that the user satisfaction with a traceability tool depends more on the functionalities

provided by the front-end than the information retrieval method used. RETRO has been used

in several projects by NASA Independent Verification and Validation (IV & V) Program.

2.2.4 String Matching Approaches

String matching approaches identify traceability relations based on the name of the elements

and its properties (Fiutem, et al., 1998), (Antoniol, et al., 2001). Regular expressions, edit

distance, and maximum match algorithms (Fiutem, et al., 1998), (Antoniol, et al., 1999) are

used in the process of naming comparison. The main drawback of string matching approaches

is that they rely on the assumption that artefacts are named consistently through all

documentation of a system.

In (Antoniol, et al., 2001), a method to identify traceability relations between object-oriented

design and code in C++ is proposed. The method first translates the C++ source code into an

intermediate representation and then identifies similarities between the pair of elements from

design and code. The similarity comparison is based on matching class names, attributes and

their types, and method signatures.

Fiutem et al. (Fiutem, et al., 1998) presents an approach that identifies traceability relations

between design elements in OMT and C++ source code elements. The main goal of the

approach is to ensure consistency among software artefacts. The approach uses the Abstract

Object Language (AOL) to represent design elements in OMT and C++ code. The approach

finds traceability relations between elements based on the name of classes and its properties.

The approach uses regular expressions and an edit distance algorithm to match the names. The

approach provides a visualisation mechanism that show common parts and missing

information. Antoniol et al. also use a similar approach in (Antoniol, et al., 1999) to establish

traceability relations between different versions of a system implemented using C++ code.

The approach provides a visualisation mechanism that compares the difference between two

 [40]

versions. It contains a release view and a class level view. The release view represents

graphically the degree of similarity between two versions. The class level view is more detailed

and show additions/deletions and modifications of attribute and a file summary.

Our work is similar to string matching approaches in that we also use name of entities and its

properties to identify traceability relations. However, our work differs from the string

matching approaches on that it uses other information such as traceability relations, to identify

similarities between two elements. Moreover, our work uses synonyms to compare similarities

between names and the completeness checking supported by our work helps to identify

elements that have been named inconsistently (i.e. discrepancy of names between elements), as

described in Chapter 4.

2.2.5 Rule Based Approaches

Rule based approaches create traceability relations between elements when a certain condition

is satisfied. Examples of rule-based approaches to support generation of traceability relations

are (Spanoudakis, et al., 2004), (Jirapanthong, et al., 2005), (Jirapanthong, et al., 2009),

(Cysneiros, et al., 2003), (Cysneiros, et al., 2007a), (Cysneiros, et al., 2007b), (Cysneiros, et al.,

2008) (Spanoudakis, et al., 2003), (Spanoudakis, et al., 2004), (Dagenais, et al., 2007), (Reiss,

2006), (Fletcher, et al., 2007), (Rilling, et al., 2007), (Kagdi, et al., 2007), (Alves-Foss, et al.,

2002). The main challenge of rule based approaches is make people to understand that is

necessary to spend some time a prior to know what need to be traceable and in what ways.

Most of the time, it is difficult to identify what is need to be traceable and in what ways and

then create rules to identify these relations. To alleviate this problem some traceability

approaches create traceability models and pre-established rules to identify traceability relations

(Spanoudakis, et al., 2004), (Jirapanthong, et al., 2005), (Jirapanthong, et al., 2009), (Cysneiros,

et al., 2007).

Spanoudakis et al. describe in (Spanoudakis, et al., 2004), a rule based approach to identify

traceability relations between requirements specifications using structured text and use case

specifications using Cockburn template (Cockburn, 2000), and between requirements and class

diagrams. A prototype tool was developed to generate automatically traceability relations. The

tool receives as input requirement and use case specifications and a set of rules expressed in

 [41]

XML. The requirements and use cases specifications are pre-processed by CLAWS part-of-

speech tagged tool in order to create a tagged representation of the documents indicating the

grammatical role of each word in the text. The documents used by the approach are

represented in XML or translated into XML. A machine learning algorithm has been presented

in (Spanoudakis, et al., 2003) to improve recall of the approach. The algorithm creates new

rules that generalize the syntactic patterns of the original rules based on examples of

undetected traceability relations by the user. The traceability rules are defined using XQuery.

Jirapanthong et al. (Jirapanthong, et al., 2005) extends Spanoudakis et al. work to support

documents created during the development of product line systems. Jirapanthong et al.

approach support different types of documents: feature, subsystem, process, and module

models; and class, statechart, and sequence diagrams. The semantic of relations are different in

both approaches. Spanoudakis et al. create a XML mark-up language to define rules while in

Jirapanthong et al. approach rules are expressed using a XML mark-up language that contains

XQuery code segments. Both approaches provide comparison of synonyms in the terms used

in the documents. The difference is that in Spanoudakis et al. approach the list of synonyms is

created to each project while Jirapanthong and Zisman approach uses WordNet dictionary.

The first approach to implement synonym function gives a better precision, since the terms

that are considered by the synonym function is specific to the domain or context of the

project, but this approach requires an additional effort to create a list of synonyms and the list

of synonyms will also not be as complete as a dictionary such as WordNet (WordNet, 2010).

The semantic of relations are different in both approaches. Spanoudakis et al. proposes four

types of relationships: overlaps, requires_execution_of, requires_feature_in and can_partially_realise and

Jirapanthong and Zisman propose satisfiability, dependency, overlaps, evolution, implements, refinement

and containment.

Dagenais et al. presents in (Dagenais, et al., 2007) a plug-in for Eclipse named ISIS4J to infer

structural patterns between concerns (e.g. features) and source code. The objective of the tool

is to support software evolution. Dagenais et al. say that traceability relations between a

concern and code can be invalid or new relations should be created every time that the code

changes. To address this problem, Dagenais et al. propose an approach to automatically infer

patterns as rules based on a given mapping and a set of pattern rule templates that can be

 [42]

checked as the source code evolves. The paper describes a case study where mapping between

concerns and Java code are created using ConcernMapper tool. Checking whether structural

patterns hold across different versions of a system enables the automatic identification of new

elements related to a document concern and remove elements listed in the concern mapping

file that no longer exist and add new elements to the concern mapping file.

The work in (Reiss, 2006) describes a tool to support consistency between different types of

artefacts represented in XML, based on the use of constraint rules represented in SQL. The

artefacts used in (Reiss, 2006) are mainly UML design models, Java code, and JUnit test

package.

The need to verify that a goal has been satisfied in the design model is highlighted by Fletcher

et al. (Fletcher, et al., 2007). Fletcher et al. proposes an approach that uses design patterns

defined in a Soft Goal Interdependency Graph (SIG) (part of the NFR framework) and UML

models. The approach uses a set of rules based on some heuristics to transform goals defined

in the Soft Goal Interdependency Graph into a XMI representation that corresponds to

elements that are expected to be found in the UML design model. The generated file in XMI is

compared with the design model and then traceability relations are created between elements

that match them. Missing elements in the design models are reported as broken.

Rilling et al. (Rilling, et al., 2007) argue about the need to make use of the structure and

semantic of sentences of textual documents to identify traceability relations. They present an

approach where software documents and source code are parsed and stored in ontology. The

text parts in the software documents are pre-processed by using tokenisation, sentence

splitting, part-of-speech tagging, and noun phrase chunking techniques. These techniques are

executed initially, and the resulting texts are used as input, together with some grammar rules,

to a syntactic analyser parser. The source code is parsed and then the ontology is populated

with both source code and software documents together with their relations. The approach

applies text mining to create traceability relations and queries can be executed to find implicit

relations between parts of the software document and the source code.

Kagdi et al. (Kagdi, et al., 2007) use some heuristic rules based on patterns of documentation

and source code changes to identify traceability relations between source code and other

 [43]

documents such as user documents, build management documents, user guides, release and

distribution documentation, and progress reports. A tool called sqminer was developed to

identify patterns using sequential pattern-mining techniques. The tool analyse version history

of changes of source code and documentation and based on the frequency of occurring co-

changes the traceability relations between the documents are created.

Alves-Foss et al. (Alves-Foss, et al., 2002) use Extensible Stylesheet Language (XSL) to create

rules to identify traceability relations between UML design elements represented in XML

Metadata Interchange (XMI) and Java code represented using JavaML (i.e. a marked up

language to represent Java source-code using XML). The traceability relations are represented

using XML Linking Language (XLink). The traceability relations are identified based on the

name given to the classes.

2.2.6 Run-time approaches

We define run-time approaches as the approaches that uses run-time information of what part

of the code has been executed with use case (or scenarios) and a set of initial traceability

relations to identify other traceability relations. Examples of rule-based approaches to support

generation of traceability relations are (Liu, et al., 2007), (Egyed, 2003), and (Egyed, et al.,

2005).

The main drawback of run-time approaches is that they deal with establishing traceability

relations after the fact, and not during the creation of artefacts, therefore they are only useful

for software maintenance. Moreover, run-time approaches need a set of traceability relations

defined manually initially.

Liu et al. shows an approach to identify parts of code that are related to a feature (Liu, et al.,

2007). Liu et al. uses a hybrid approach combining information about what methods are

executed from trace scenarios with information obtained from the comments and identifiers in

the source code. Latent Semantic Indexing is used to create indexes for methods that are

executed by a particular scenario that implements a feature. A list of methods is ordered by

similarity based on the method and the feature description (i.e. user query) is produced. The

user selects if a method is related to the feature or not. Two case studies have been used to

evaluate the approach in terms of performance and usability in comparison when only latent

 [44]

semantic indexing method is used to identify traceability relations between parts of code and a

feature. The results demonstrate that the hybrid approach is more effective in terms to show

relevant methods in top position than when using only latent semantic indexing method.

Egyed et al. (Egyed, 2003), (Egyed, et al., 2005) proposed a scenario driven approach for

traceability generation. The approach requires an observable and executable software system,

scenarios describing the use of the system, and a set of initial hypothesized trace relations

between software artefacts and the scenario. The traceability relations are generated and

validated by executing scenarios on the running software system and observing the lines of the

code that are used. The parts of the code that are executed by the scenarios (footprints) are

represented as a graph structure (footprint graph) showing the overlaps between the scenarios

and the parts of the code. The footprint graph is normalised and refined. The traceability

relations are created based on transitivity dependency relations (e.g., if A depends on B, and B

depends on C, then A depends on C) and usability dependency relations (e.g., if A uses a sub

set of part of the code that B uses then A depends on B).

Run-time information is also used by Grechanik’s approach (Grechanik, et al., 2007). The

approach addresses the problem that some programmers give arbitrary names to elements in

the code. Grechanik et al. combine information obtained from runtime values of entities in the

program with static information from the source code and use case diagrams. As in (Egyed,

2003), (Egyed, et al., 2005), a set of initial traceability relations between use case diagram

elements and source code is required. The experiments show that in average it is sufficient to

identify manually less than seven percent of traceability relations of a program to give an

acceptable accuracy.

2.2.7 Hypermedia and Information Integration approaches

Hypermedia and information integration approaches rely on the integration of tools to create

traceability relations. The main drawback of this approach is that can be difficult to make the

integration in an environment where there is a great variety of tools been used and the tools

used to develop software can change constantly.

TraceM (Sherba, et al., 2003), (Spanoudakis, et al., 2005) is an approach that makes use of

services provided by open hypermedia technology to the creation of traceability relations.

 [45]

TraceM coordinates the use of the Infinite open media system and the Chimera information

integration system. The process involves extracting the relations from the Infinite tool and

then import into the Chimera system.

2.3 Representation, Recording and Maintenance of Traceability
Relations
Several different approaches have been used to represent, record and maintain traceability

relations such as database, hypermedia, ontology, and mark-up approaches (Spanoudakis, et al.,

2003) (Sherba, 2005), (Gotel, et al., 1994), (Maletic, et al., 2003), (Spanoudakis, et al., 2005),

(Jirapanthong, et al., 2005), (Jirapanthong, et al., 2009) and (Sharif, et al., 2007).

The database approach is used by most of the requirement management tools such as IBM

DOORS (IBM Rational, 2009), IBM Rational RequisitePro (IBM Rational, 2009), and Borland

Caliber (Borland, 2009). The database approach has the advantage of using all the facilities

provided by database systems and database management systems (e.g., query facilities,

consistency control, fault tolerance, and concurrency control), which are important in

industrial settings.

TraceM (Sherba, et al., 2003), (Sherba, 2005) uses a hypermedia approach and supports the

creation of n-ary relations between different types of objects. The approach uses metadata

information about the documents being compared. Open hypermedia relations are stored

separated from the associated elements and hypermedia systems are used to manage the

relations. Sherba et al. argue that data model of hypermedia systems is more powerful than the

data model provided by mark-up language such html that consists of one-way pointers

embedded inside documents while data model of hypermedia system allow n-ary links between

multiple sets of documents.

Mark up approaches has been proposed by Gotel (Gotel, et al., 1994) and Maletic (Maletic, et

al., 2003). The main advantage of these approaches is that relations can be visualised by

Internet browsers. The approaches described in (Spanoudakis, et al., 2005), (Jirapanthong, et

al., 2005), (Jirapanthong, et al., 2009) and (Sharif, et al., 2007) use XML to represent traceability

relations. In each of these approaches, the XML elements and attributes used to represent a

 [46]

traceability relation are different. The traceability relations in (Alves-Foss, et al., 2002) are

represented using XML Linking Language (XLink).

Burge et al. (Burge, et al., 2007) implements Software Engineering Using RATionale

(SEURAT) tool that supports the representation of rationales. Burge technique uses an

Argument Ontology approach to represent the rationale instead of a goal oriented technique.

SEURAT tool capture the relations between functional and non-functional requirements using

an ontology representation. Traceability between lower level and higher level goals is provided

indirectly by the hierarchy of non-functional requirements in the ontology. The ontology

defines relations between different goal levels and rationale.

2.4 Visualisation of Traceability Relations
The simplest ways to show traceability relations are using traceability matrix, tree browser

explorer, and hyperlinks views (Marcus, et al., 2005). Some of the tools also provide query and

filter facilities to enable more specific searches (Borland, 2009), (IBM Rational, 2009), (IBM

Rational, 2009). The traceability matrix is used when an overall view of traceability relations is

required. Tree browser helps to navigate through specific relations, and hypermedia views are

used when the objects and relations need to be presented in the same view.

The current way in which commercial tools support visualisation, analysis and management of

traceability information is limited. Some approaches have been proposed in order to improve

this situation. Hollings et al. propose in (Hollings, et al., 2005) to use XML Topic Maps (XTM)

(TopicMaps.org, 2001): an abstract model and a XML grammar for interchanging Web-based

topic maps to represent requirements traceability. The use of XML Topic Maps improves the

management, analysis and visualisation of requirements. Sherba et al. propose in (Sherba, et al.,

2003), (Sherba, 2005) an approach where traceability relations can be visualised in the same

tool where the artefacts are originally created, using open hypermedia and information

integration techniques. Marcus et al. discuss and propose in (Marcus, et al., 2003) a set of high

level requirements for a tool that support visualisation of traceability relations. They also

present a TraceViz tool that implements some of these requirements: i) integration with an

IDE; ii) interface or integration with traceability relation recovery tools; iii) visualisation and

recording of traceability relation among various artefacts independently of the data

 [47]

representation of the artefacts; iv) provide flexible and user customizable views of the

traceability data;

TraceViz is integrated into the Eclipse IDE as a plug-in and there is an easy navigation

between the TraceViz view and the source code. TraceViz is integrated with a tool presented

in (Marcus, et al., 2005), which uses latent semantic indexing to recover traceability relations

between source code and external documentation. Traceability relations in TraceViz are stored

in a simple XML format. TraceViz support different views such consistency-based view that

groups together relations whose elements change or did not change and artefact-based view

that groups together relations with the target of the same type and the user can also define

additional views and categories, based on other attributes, or groups of attributes.

2.5 Use of Traceability Relations
Traceability relations have been used to support the development of software systems in

several activities such as change management, impact analysis, system verification, validation,

testing, and reuse of software artefacts (Mohan, et al., 2008), (Sharif, et al., 2007), (Murta, et al.,

2006), (Murta, et al., 2006), (Cleland-Huang, et al., 2003), (Grechanik, et al., 2007), (Kurtev, et

al., 2007), (Goknil, et al., 2008), (ten Hove, et al., 2009), (Asuncion, 2007), (van den Berg, et al.,

2006).

Mohan et al. (Mohan, et al., 2008) highlight the importance to integrate software configuration

and traceability practices in order to support software evolution.

Sharif et al. (Sharif, et al., 2007) present an approach to support software evolution using

traceability relations. Models are represented in XML and a tool is used to identify differences

between versions of models. The output of the tool is an XML file that contains common and

different parts of the different versions. Suspected relations are identified by the tool using the

information about what has changed. The relation can be updated manually by the user or

automatically by some tool depending of the case.

ArchTrace is a tool that supports software evolution (Murta, et al., 2006a), (Murta, et al.,

2006b). Some policies rules can be created to respond to changes in the software system. In

particular, ArchTrace supports software evolution between architecture description using

 [48]

xADL and source code stored in Subversion configuration management system. The approach

requires an initial definition of a set of relations.

Huang et al. also describe an approach to support software evolution (Cleland-Huang, et al.,

2003). The approach is based on Event Notifier design pattern. Initially, new requirements are

registered in a server and artefacts related to a requirement can subscribe to receive

notifications when some modifications occur to that requirement. A modification on the

requirement triggers an event that is handled by a server. The server processes the event and

sends a notification message to all dependent artefacts. The type of message depends on the

artefact and the semantic of the relation.

Grechanik et al. implement a tool that allows the user to navigate between traceability relations

created by their approach (Grechanik, et al., 2007). The user can navigate from use cases to the

related parts of the source code and vice-versa.

Kurtev discusses the use of traceability relations to support change management and impact

analysis in Model Driven Engineering development (Kurtev, et al., 2007). Two types of

approaches can be used accordingly to Kurtev when changes occur. One approach is to re-

execute the transformation from the whole source model to the target model and another

approach is to execute incremental transformation by performing transformations of only

those elements that have changed in the source model. In (Goknil, et al., 2008), Goknil uses

the semantic of traceability relations to support change and impact analysis of requirements.

Several rules are created to be executed when requirements are created, deleted or modified

depending of the relations between the artefacts (requires, refines, conflicts, and contains). ten Hove

et al. shows (ten Hove, et al., 2009) a tool that supports impact analysis based on traceability

relations defined by SysML (composedBy, deriveReqt, and copy) between requirement from the

domain and from the model. Some rules are created to propagate changes and to identify

inconsistencies between the model and the domain.

Assuncion et al. present an experiment (Asuncion, et al., 2007) in an industrial case study that

demonstrates that traceability can be used to enforce process adherence and as a consequence

to comply with standards required by customers.

 [49]

Traceability relations have been used to identify crosscutting relations dependencies between

software artefacts (van den Berg, et al., 2006). van den Berg et al. describe an approach where

crosscutting relations through the whole software development process can be identified based

on traceability relations defined between source and target models and based on transitivity

properties of those relations. For instance, van den Berg shows that crosscutting relations

between concerns and design elements can be identified based on traceability relations

between concerns and requirements and based on traceability relations between requirements

and design.

2.6 Traceability Approaches for Multi-Agent Systems
The majority of the work in the area of agent-oriented software engineering has been

concerned with the development of methodologies, notations, and programming languages

(Luck, et al., 2004).

In (Bordini, et al., 2005) and (Luck, et al., 2004), the authors discuss the current state-of-the-art

and issues of agent oriented software development and suggest directions for future research

in this area. As stated in these references, very little has been done to support traceability in

agent oriented software engineering.

In (Pinto, et al., 2005), the authors propose different types of traceability relations and a

traceability reference model, and define an agent oriented software process that extends

Tropos methodology to support traceability generation.

In (Perini, et al., 2005), traceability relations are generated automatically during the

transformation process between source and target model elements for Model-Driven

Architecture using Tropos methodology.

In (Padgham, et al., 2004), Padgham et al. define how to check consistency and completeness

between elements in Prometheus design models. Some of these checks have been

implemented in PDT tool (Padgham, et al., 2005). The PDT tool has also been extended in

(Padgham, et al., 2007) to support automatic generation of skeleton code in JACK. The work

in (Padgham, et al., 2005) supports consistency and completeness checks, but limited to design

phase.

 [50]

As described above, existing approaches to support traceability relations in multi-agent systems

are still in their initial stages and limited. To the best of our knowledge, existing approaches to

assist with automatic generation of traceability relations do not provide support for different

types software models created during different phases of the development life-cycle of multi-

agent systems such as requirements, design and implementation phases. Moreover, they do not

offer support to assist with the identification of missing elements and discrepancies of names

among the artefacts created. Furthermore, existing approaches do not provide traceability

relations of different types with explicit semantic meanings and do provide ways to

communicate confidence level of traceability relation.

2.7 Performance Measures
The set of retrieved relations does not in general coincide with the set correct relations. It

happens that the traceability method will fail to retrieve some of the correct relations, while on

the hand it also retrieve traceability relations that are not relevant. Several measures have

proposed to measure performance of traceability approaches. Recall and precision are widely

used to demonstrate effectiveness of traceability approaches (Marcus, et al., 2003), (Marcus, et

al., 2005), (Spanoudakis, et al., 2004), (De Lucia, et al., 2004). Precision can be seen as measure

of exacteness, where recall is a measure of completeness.

Marcus et al (Marcus, et al., 2003) discuss the importance of precision and recall.They say that

there are times when the user needs recovery all the correct relations even that means

recovering many incorrect ones at the same time. Other times, precision is preferred and the

user restricts the search space so all the recovery relations will be correct.

During the process the recovery of traceability relations, the user has the possibility to

determine a threshold ϵ for the similarity measure, which identifies which elements are

considered related. Only the pairs of elements that have a similarity measure greater than ϵ is

considered a traceability relation. Choosing a higher threshold will result in higher precision

while lowering the threshold will increase recall. Therefore, evaluation can be made based on

the precision/recall curves on retrieval tasks varying the threshold

 [51]

A second option for the user is to impose a threshold on the number of recovery links,

regardless of the actual value of the similarity measure. The user can choose to select the top n

relations for each pair of elements.

Hayes et al. (Hayes et al., 2007) evaluate a traceability approach using students divided in two

groups: those doing manually traceability and those doing traceability using the traceability tool

(i.e. RETRO). It was record the amount the time spent on the task by each group and

additionally asked the students to answer a survey with questions specific to the nature of the

process employed by each group.

The results showed that took the manual group almost three times as long to complete the

task (120.66 min as compared to 41.8 min.) as the group that had used the tool. Students that

used the tool found a higher percentage of the correct links than the students that realised the

tasks manually (70.1% recall versus 33% recall). The students doing manual tracing built RTMs

with much higher precision (24,2% as compared to 12.8%) than the group using the tool.

The students that used the tool answered a survey about what featured they had used and how

happy they were about it. The students gave an overall positive impression of the features that

they used and agreed that the tool was reasonably easy to use.

De Lucia et al. (De Lucia, et al., 2007) also used 20 master students to respond the questions if

traceability tools improve the tracing performance of the software engineer with respect to

manual tracing and if they reduce the time spent by the software engineer to trace links. The

results achieved in the experiments demonstrate that the use of traceability recovery tool

significantly improves the tracing performance of software engineer.

2.8 Implication of tools that infer trace relations
The task of maintaining relations among software artefacts is tedious and time consuming.

Tools that infer trace relations reduce the time spent in the task to create RTMs matrix.

Although there are several commercial tools available that support traceability between

artefacts (IBM Rational, 2009a) (IBM Rational, 2009b)(Borland, 2009). The main drawback

of these tools is the lack of automatic traceability generation. The need for tools that support

traceability recovery has been recognised in the last years (Spanoudakis, et al., 2005).

 [52]

Assuncion et al. (Assuncion et al., 2007) discuss benefits of successful end-to-end software

traceability tool developed by a software development company. Traceabily aids in system

comprehension, impact analysis, system debugging and communication between the

development team and stakeholders.

Assuncion et al affirms that relations between artefacts can be interwined with the underlying

software processes. Raising the visibility of actual software enables users to compare actual

practices to stated company procedures. Therefore, traceability offers the potential for

improving the actual software process, as well as capturing the rationale behind a specific

artefact, fostering system comprehension.

The advantages to use tool to capture traceability relations is that is faster to identify

traceability relations using tool than to identify traceability relations manually. Even when the

tools identify traceability relations incorrect, it is easier to point out what are the incorrect

traceability relations than identify all traceability relations manually.

2.9 Summary
This chapter describes what is traceability and its importance. It discusses about different types

of classifications for traceability relations that have been proposed in the literature. It presents

different approaches to capture, store and use traceability information. It shows how

traceability relations can be visualised and queried by different approaches. Finally, the chapter

discusses traceability approaches that have been applied to the area of multi-agent systems.

Bordini et al. (Bordini et al., 2007) discusses what are the key current issues in developing

multi-agent systems and what should the research community should concentrate future

research efforts. They identify three key areas for future work. These areas were techniques for

integrating design and code; extending agent-oriented programming languages to cover certain

aspects that are currently weak or missing (e.g. social concepts, and modelling the

environment); and development of debugging and verification techniques.

As discussed in this chapter, software traceability is essential in the software development

process and helps in several activities such as impact analysis, software maintenance and

evolution, component reuse, verification, and validation. In the following two chapters, we

 [53]

describe a traceability reference model for multi-agent systems developed using i* framework,

Prometheus methodology and JACK language and a traceability framework to identity missing

information and automatically generate traceability relations between elements created during

the development of multi-agent systems.

 [54]

Chapter 3 - Traceability Reference Model
In this chapter, we present a traceability reference model for elements created during the

development of multi-agent systems using i* framework (Yu, 1995), Prometheus methodology

(Padgham, et al., 2004), and JACK language (Agent Oriented Software Limited, 2010).

We describe i* framework, Prometheus methodology, and JACK language elements used by

our framework in detail. We explain why i* framework, Prometheus methodology, and JACK

language are important when developing multi-agent systems, and describe traceability

relations between elements in i* and Prometheus and between Prometheus and JACK.

Throughout the chapter, we present examples to illustrate our traceability reference model.

3.1 Overview of the Reference Model
A traceability reference model is concerned with different software models created during the

development of software systems, their respective artefacts, and the relations that exist

between these various artefacts. The use and importance of traceability reference models have

been discussed in Section 2.1 (Chapter 2). As we mentioned in Chapter 2, the need to capture

the different types of traceability relations and their semantics has been pointed out as

fundamental by several authors (Aizenbud-Reshef, et al., 2006), (Dick, 2002), (Ramesh, et al.,

2001), (Spanoudakis, et al., 2005) in order to make effective use of traceability and to support

deeper types of software analysis (e.g. change and impact analysis activities).

Several methodologies have been proposed to support the development of multi-agent

systems such as Prometheus (Padgham, et al., 2004), Tropos (Castro, et al., 2002), and MaSE

(DeLoach, 2001), and Gaia (Wooldridge, et al., 2000). In addition, goal modelling, specification

and reasoning have been recognised as fundamental activity of the software development

process (van Lamsweerde, 2001). Goals are used in early phase of the requirement engineering

process. In Agent Oriented Software Engineering, goal is a basic concept and it is used in the

implementation of several agent architectures (e.g. BDI architectures (Rao, et al., 1992)).

Business modelling techniques (Yu, 1995) have also been proposed to specify models of goals,

structures, and processes of organizations. Such models can be applied to assist stakeholders

and developers to develop a common understanding of the organization and, therefore,

 [55]

facilitate the identification of requirements for systems that are developed to support its

function.

Our traceability reference model concentrates on models and artefacts generated when using

the i* framework (Yu, 1995), Prometheus methodology (Padgham, et al., 2004), and JACK

language (Agent Oriented Software Limited, 2010), (Busetta, et al., 1999), (Howden, et al.,

2001).

We adopt the Prometheus methodology (Padgham, et al., 2004) in our work due to several

reasons, namely (a) Prometheus is largely used in both industrial and academic settings; (b)

Prometheus provides cover to the whole development life cycle of multi-agent systems; (c)

Prometheus offers a detailed design phase with concepts that match concepts in JACK; and

(d) there is good support on using Prometheus in terms of documentation, tools, and

examples.

We use i* framework (Yu, 1995) in order to enhance, Prometheus methodology by allowing

support for the early requirements phase for both goals and business modelling. i* framework

has been recognized as one of the most important requirement engineering techniques to

represent business model, and it is a simple technique which contains all necessary elements to

represent organizational models.

Our work adopts JACK (Agent Oriented Software Limited, 2010) due to its use in several

academic and commercial applications (e.g., unmanned aerial vehicles, surveillance, air traffic

management, real-time scheduling, and virtual actors) (Agent Oriented Software Limited,

2010), and large documentation support. Moreover, the design phase of Prometheus describes

in detail the elements of the JACK.

We propose nine types of traceability relations between the artefacts in i*, Prometheus, and

JACK code. The different types of traceability relations that we propose is based (i) on our

experience of using i* framework, Prometheus methodology, and JACK language to develop

multi-agent systems; (ii) on the semantics of the artefacts in i* framework, Prometheus

methodology and JACK language; (iii) on our study and experience with software traceability,

and (iv) on the various types of traceability relations proposed in the literature (Davis, 1990),

 [56]

(Gotel, et al., 1994), (Lindvall, et al., 1996), (Dick, 2002), (Ramesh, et al., 2001), (Spanoudakis,

et al., 2005), (Almeida, et al., 2007), (Toranzo, et al., 1999), (Han, 2001), (Pinto, et al., 2005),

(Pohl, 1996), (Jirapanthong, et al., 2009), (Rilling, et al., 2007). The different types of

traceability relations that we propose are: overlaps, contributes to, uses, creates, achieves,

depends on, composed of, sends and receives.

In the next sections we describe details of the i* framework, Prometheus methodology, JACK

language, and different traceability relations.

3.2 Multi-agent Oriented Artefacts

3.2.1 i* Framework

The i* framework was developed by Yu (Yu, 1995) to provide a richer modelling technique to

represent organizational process. The main concept of the i* framework is an actor. The

framework is composed of two types of diagrams called (a) the Strategic Dependency Model

(SD) and (b) the Strategic Rationale Model (SR). The Strategic Dependency (SD) and Strategic

Rationale (SR) models are used to represent the intentional relations among organizational

actors. In this sub-section we describe some main concepts of i* framework. A detailed

description of i* can be found in (Yu, 1995).

The SD model consists of a network of dependencies between actors. It is composed of five

types of elements namely actors, goals, soft goals, resources, and tasks, and four types of

dependencies, namely goal dependency, resource dependency, task dependency, and soft goal dependency (see

Figure 3.1) (Yu, 1995).

In the goal dependency, an actor (depender) depends on another actor (dependee) to bring about a

certain condition or state in the world, while the dependee is free to choose how to deliver the

Dependum

ResourceTask SoftGoal Goal

Actor
depender

dependee

Figure 3.1 SD model

 [57]

goal. The condition concerned with the achievement of a goal is precisely defined and its

satisfaction can be clearly evaluated to true or false. In the task dependency, the depender

depends on the dependee to carry out an activity and differently of a goal dependency, in the task

dependency, how the dependee executes a task is important to the depender. The softgoal

dependency is similar to a goal dependency. It represents a condition in the world that an actor

would like to achieve. However, differently from the goal dependency, the criterion for the

condition to be achieved is not clearly defined. For certain goals it is difficult to decide a clear-

cut definition if the goal have been achieved or not, because the meaning of the goal is not

clear or its satisfaction is defined subjectively. A resource dependency means that one actor

depends on another actor for the availability of an entity (physical or informational).

Figure 3.2 shows a Strategic Dependency diagram for part of the Electronic Bookstore case

study used to evaluate our work (see Chapter5). In the Figure, actors are represented by circles,

goals are represented by ovals, and resources are represented by rectangles. Figure 3.2 shows

that a Customer actor depends on the Electronic Bookstore actor to achieve its goals of being

supplied with a wide variety of books (Supply wide variety of books), browsing books (Browse

Book), buying books (Buy Book), searching books (Search Book), and tracking the delivery of

book orders (Track Delivery). The Delivery Manager and Sales Manager actors depend on the

Electronic Bookstore actor to monitor the shipping of books (Monitor Shipment) and to keep

prices at a competitive level (Keep Prices Competitive), respectively. The Electronic Bookstore

actor depends on the Delivery System actor to deliver books (Delivery Shipment), to be

informed of lost or damaged items (Inform Lost or Damaged Item), to track shipment (Track

Shipment), and to be informed when a book has or has not been delivered (Inform Book

Delivery and Inform Delivery Refused, respectively). The Electronic Bookstore actor also

depends on the Customer and Bank actors to receive the information about a Delivery Choice,

Credit Card Details, and Bank Transaction Response (represented by the respective resources).

The Customer actor depends on the Electronic Bookstore to have the confirmation of a book

order (Book Order). The Stock Manager depends on the Electronic Bookstore to control the

stock (Control Stock) and to update the catalogue of books (Update Catalogue of Books). The

directions of the dependencies are represented by the arrows.

 [58]

Figure 3.2 Strategic Dependency Diagram for the Electronic Bookstore

SR model in i* describes the process of how an actor achieves its associated dependencies

represented in the SD model, and the rationale (why) behind these dependencies. The SR

model provides four elements namely goal, task, resource, and soft goals, and two types of

relations called means-end and task decomposition. A means-end relation denotes an association

between an element representing the end (i.e. goal, task, resource, or soft goal) and means of

achieving this element. A task decomposition relation describes how a task can be executed in

terms of sub-components, such as resources, goals, soft goals, and tasks.

Figure 3.3 shows a partial SR diagram for the Electronic Bookstore actor. In Figure 3.3, tasks

are represented by angled rectangles, goals are represented by ovals, and resources are

represented by rectangles. Figure 3.3 describes how the Electronic Bookstore achieves Browse

Book, Buy Book, Track Delivery, Monitor Shipment, Control Stock, Search Book, and Keep

Prices Competitive, and Supply wide variety of books dependencies. The Electronic Bookstore

actor provides Browse by New Release, Browse By Category, Browse By BestSeller and

Browse By Special Offer as means to achieve Browse Book. A Customer can place an order

on-line (Place Order Online sub-task) or place an order by phone (Place Order By Phone) to

buy a book. The Place Order Online task is decomposed on Update Customer Orders,

 [59]

Delivery Handling, Make Payment and Send Book Order Confirmation sub-tasks. The

Electronic Bookstore actor needs Customer Order resource to Update Customer Orders. The

Delivery Handling task is decomposed on Fill Pending Order and Organize Delivery. The

Organize Delivery task is decomposed on Place Delivery Request, Compute Delivery Time

Estimates, and Obtain Delivery Options and Log Outgoing Delivery. The Electronic

Bookstore actor uses Postal DB and Courier DB to Obtain Delivery Options. The Electronic

Bookstore uses Customer DB to Compute Delivery Time Estimates. The Make Payment task

is decomposed on Obtain Credit Card Details and Perform Bank Transaction. A transaction

can be accepted (Transaction Accepted task) or rejected (Transaction Rejected task). The

Electronic Bookstore achieves Track Delivery goal by using the Determine Delivery Status and

Location sub-task. The Electronic Bookstore actor provides Determine Delivery Status and

Location, Log Delivery Problems and Update Delivery Status as means to achieve Monitor

Shipment goal. The Electronic Bookstore actor provides Log Outgoing Delivery, Log Books

Arriving, and Restore Stock as means to achieve Control Stock goal. The Electronic Bookstore

needs to Set Prices Competitively, Re-establish Book Price, keep Lower Book Price and

Monitor Bookstore to achieve its goal to Keep Prices Competitive. As means to Supply wide

variety of books the electronic bookstore needs to Update Catalogue of Books. A book can be

searched by name (Search By Name) or by more specific criteria (Advanced Search). The

Electronic Bookstore provides Search By Author, Search By Title, Search By Subject and

Search By ISBN as means to achieve the Advanced Search goal.

 [60]

Figure 3.3 Strategic Rationale Diagram for the Electronic Bookstore actor

3.2.2 Prometheus

Prometheus (Padgham, et al., 2004) is a methodology developed by the RMIT University in

collaboration with the Agent Oriented Software Ltd. Prometheus methodology provides

several diagrams and descriptors to describe analysis and design phases of multi-agent systems

such as Goal diagram, Role diagram, Use Case Scenario, System Overview diagram, Agent

Overview diagram, Capability diagram, Process diagram, and Protocol diagram. In this section

we describe some of the main concepts of the Prometheus methodology. A detailed

description of Prometheus can be found in (Padgham, et al., 2004).

The methodology consists of three phases, namely: system specification, architectural design,

and detailed design phases, as shown in Figure 3.4 (Padgham, et al., 2004).

The system specification focuses on (a) identifying the system goals, the basic functionality of

the system, the interface between the system and its environment in terms of inputs (percepts)

and outputs (actions); and (b) developing use case scenarios that are similar to scenarios used

in object-oriented approaches with a slightly enhanced structure.

 [61]

The architectural design phase focuses on (a) deciding what agent types the system will

contain; (b) developing the agent descriptors; (c) capturing the structure of the system by using

a system overview diagram that models relations between agents, events, and shared data

objects; and (d) describing the dynamic behaviour of the system. The behaviour of the system

is described using interaction diagrams and interaction protocols.

The detailed design phase is concerned with describing the agents in terms of capabilities,

events, plans, and data structures. The artefacts generated in this phase are agent overview

diagrams, capability overview diagrams, and descriptors for plan, data, and events.

The system specification phase shows the interactions between a multi-agent system and the

environment where the system is being executed. This phase consists of identifying actions

and percepts (i.e., outputs and inputs, respectively), and describing goals, roles and scenarios.

Goals are represented graphically using a goal diagram where top-level goals are refined by

sub-goals. Figure 3.5 shows an example of a goal diagram for the Electronic Bookstore case

study used to evaluate our work (see Chapter 5). As shown in the figure, the Order book goal

is refined by the Place order (online) goal that is then refined by Make payment online, Update

customers orders, Fill pending order and Arrange delivery.

 [62]

Figure 3.4 Prometheus methodology phases

Figure 3.5 Goal diagram for the Electronic Bookstore

Scenarios
System Goals

Role
Descriptors Actions and

Percepts

Interaction
Diagrams

Agent
Acquaintance

Data
Coupling Messages

Shared
Data

Sy
st

em

Sp
ec

ifi
ca

tio
n

Protocols

A
rc

hi
te

ct
ur

al

D
es

ig
n

D
et

ai
le

d
D

es
ig

n Process

System
Overview

Agent
Overview

Capability
Overview

Event
Descriptors

Data
Descriptors

Plan
Descriptors

Capability
Descriptors

Agent
Descriptors

final design
artefact
intermediate
design tool
crosscheck

derive

Key

 [63]

The concept of roles (or functionality) is used in Prometheus to group together goals,

percepts, actions, and data related to some behaviour of the system. Figure 3.6 shows a role

diagram for the Electronic Bookstore case study. The diagram shows Book Finding, Online

Interaction, Competition Management, Customer Profile, Purchasing, Delivery Handling, and

Delivery Management roles (represented as rectangles). Every role in the diagram is associated

with percepts to which the role responds (represented as star elements), all actions that the role

performs (represented as arrow rectangles), all information (data) used or produced by the role

(not represented in the diagram), and all goals that the role achieves (represented as ovals). For

instance, the Delivery Handling role that manages delivery of orders to customers (a) responds

to the Delivery Choice percept, (b) performs the Place delivery request action, and (c) achieves

the Arrange delivery, Calculate delivery time estimates, and Get delivery options goals.

Figure 3.6 Role Diagram for the Electronic Bookstore

The interactions between actions, percepts and roles are represented using use cases scenarios.

As in object-oriented approaches, Prometheus adopts use case scenarios to represent the

sequence of steps executed by the system in order to achieve a goal (G), perform an action (A),

and to receive a percept (P). Figure 3.7 shows an example of Order Book scenario. The Order

Book scenario represents a sequence of steps executed by the system to achieve the Order

Book goal. The multi-agent system retrieves all delivery options (Get delivery options goal),

calculate delivery time estimate (Calculate delivery time estimate goal) and show all the options

available to the user (Present information goal). The user selects the delivery option (Delivery

 [64]

Choice percept) and then the system processes the information and wait for the credit card

details of the user (Get credit card details goal). The user enters the credit card details (Credit

Card Details percept), the system processes the input and then sends a message to the bank to

execute the transaction (Execute bank transaction action), the place a delivery request (Place

delivery request action). If a problem occurs to deliver the order then the information is added

to the log (Log delivery problems goal). The system update customer orders information

(Update customers orders goal) and then sends a message to the customer with the

confirmation of the order (Send book order action).

Figure 3.7 Order Book Scenario

The main deliverables of the architectural design phase are Agent Descriptors, System

Overview diagram and Protocols diagram. Agent Descriptors defines agent types of the multi-

agent system and System Overview diagram and Protocols diagram describe how agent

interacts with each other and with their environment. Agent types are defined grouping

together roles that share common functionalities and use the same data based on criteria of

cohesion and coupling. Interactions protocols describe all possible interactions defined by

interaction diagram created based on use case scenarios. Interaction diagram use similar

notation to Interaction diagrams in UML (OMG, 2010). The difference is that the interactions

are between agents instead of objects. Interaction diagram uses notation defined on Agent

 [65]

UML (Huget, et al., 2003) that is similar to the notation used to create protocol diagrams in

UML (OMG, 2010). The system overview diagram specifies how agent interacts with each

other sending messages and with the environment using actions and percepts. Figure 3.8

shows System Overview Diagram for the Electronic Bookstore. The main elements in this

diagram are agents (represented as rectangles with an image of an actor inside the diagram),

percepts (represented as star elements) to which the agents respond, actions performed by the

agents (represented as arrow rectangles), messages exchanged between agents (represented as a

rectangle envelope), and external data accessed by the agents (not shown in Figure 3.8).

As shown in Figure 3.8, the Electronic Bookstore multi-agent system is composed of agents

Sales Assistant, Stock Manager, Credit Card Agent, and Security Manager. The Sales Assistant

agent in Figure 3.8 responds to Book Details percept, which contains information about

purchase of books, and to Keyword Search percept, which contains information about a

search in the book catalogue. The Sales Assistant agent also sends Book Query and Book

Purchase messages to Stock Manager agent requesting information about an item in the book

catalogue and requesting a purchased item to be removed from the stock, respectively. The

other elements in the diagram are represented similarly.

Figure 3.8 System Overview Diagram

The interactions defined on use case scenarios, interaction diagram, and protocol diagram are

refined on the detailed design phase using a slight variant of UML (Rumbaugh, et al., 1999)

activity diagrams to create process diagrams. In the detailed design phase, the internal structure

of each agent is described in terms of capabilities, messages, data and plans. Capabilities can be

 [66]

used to group together actions, data, messages and percepts related. Figure 3.9 shows an

example of Find BestSellers Capability. The capability contains BestSellers Request message,

BestSellers Response message, Find BestSellers plan and bestsellers data. The Find BestSellers

plan is triggered by the BestSellers Request message. The Find BestSellers plan processes

BestSellers Request message, use bestsellers data and sends a message with the result of the

bestsellers books (BestSellers Response message).

Figure 3.9 Find BestSellers Capability

The agent overview diagram represents in detail the design of an agent. The main elements in

this diagram are actions (represented as arrow rectangles), plans (represented as ovals), data

(represented as a data storage symbol), and percepts (represented as arrow rectangles). Figure

3.10 shows an example of an agent overview diagram for Security Manager agent. As shown in

the Figure, in the presence of Login Details percept, the Validate User plan is executed. This

plan consists of checking if a user’s login information matches a data in the User DB data

storage. In positive case, action Show Main Screen is executed; otherwise action Show Invalid

Login Message is performed. The other elements in the diagram are represented similarly. A

detailed description of Prometheus methodology can be found in (Padgham, et al., 2004). The

Prometheus methodology is supported by the Prometheus Design Tool (PDT, 2010).

 [67]

Figure 3.10 Security Manager Agent Overview Diagram

3.2.3 JACK

JACK language is part of the JACK Intelligent Agent Environment developed by the Agent

Oriented Software Limited (Agent Oriented Software Limited, 2010). This section describes

the JACK constructs used in our approach. More details about JACK language can be found

in (Agent Oriented Software Limited, 2010), (Howden, et al., 2001), (Busetta, et al., 1999).

JACK language extends Java language providing new constructs such as agents, capabilities,

beliefset, events and plans.

An agent in JACK can use the same statements that are part of the Java language in addition to

a set of declarations and methods provided by the JACK language. Declarations in JACK are

followed by # symbol. Examples of declarations are: an agent can handle events, an agent can

read or modify beliefs, and an agent can use plans, an agent post events and an agent send

events to other agents. An example of a method is achieve that tells an agent to pursue a goal.

Figure 3.11 shows an example of the Airport agent that is part of the Air Traffic Control

Environment case study that we have used in order to evaluate our work (see Chapter 5 for a

description of the case study and Appendix C for complete JACK code of the case study).

 [68]

Figure 3.11 Airport Agent in JACK

The first two lines in Figure 3.11 contain import Java statements followed by comments. An

agent definition starts with the agent keyword followed by the type of the agent (e.g. Airport).

All agents in JACK are sub-classes of the Agent class. The Agent class provides the core

functionalities of an agent in JACK. In Figure 3.11 the Airport agent declares that it uses the

ArrivalSequencing capability followed by the constructor.

Figure 3.12 shows an example of a BankAgent agent as part of the Automatic Teller Machine

case study that we have used to evaluate our work (see Chapter 5 and Appendix B for more

details). The first line in Figure 3.12 contains a package Java statement followed by an agent

definition. The BankAgent agent can send WithdrawResponse events, handle WithdrawRequest

events, execute ProcessWithdraw plans, read or modify accounts and balances beliefs.

import java.util.Hashtable;
import aos.jack.jak.event.TracedMessageEvent;

/** Airport agents.*/
agent Airport extends Agent {
 #has capability ArrivalSequencing seq;
 Airport(String name,String [] runway) {
 super(name);
 for (int i = 0; i<runway.length; i++)
 new Runway(runway[i],i);
 seq.enable(runway);
 TracedMessageEvent.tracer.start(this);
 }
}

 [69]

Figure 3.12 BankAgent agent in JACK

Capabilities are used in JACK to group together a set of beliefs that the capability can use, a set

of events that the capability can post or send, a set of events that a capability can handle, and a

set of plans that the capability can use. Capability is used to facilitate reuse and modularise

code in JACK. Figure 3.13 shows an example of ArrivalSequencing capability. The first line

contains an import Java statements followed by comments. A capability definition starts with

the capability keyword followed by the type of the capability (e.g. ArrivalSequencing). All

capabilities in JACK are sub-classes of the Capability class. The Capability class provides the

core functionalities to capabilities. Figure 3.13 shows that the ArrivalSequencing capability

handles AircraftEvent event, uses data from the mutex Java object and can execute RequestSlot

plan. The ArrivalSequencing capability also contains the attribute runways and getRunways and

enables methods.

package agents;

public agent BankAgent extends Agent {

 #sends event WithdrawResponse response;

 #handles event WithdrawRequest;
 #uses plan ProcessWithdraw;

 #private data Accounts accounts("accounts.dat");
 #private data Balances balances("balances.dat");

 public BankAgent(String n)
 {
 super(n);
 try {
 if (accounts.nFacts() <= 0) {
 accounts.add(10, 10);
 balances.add(10, 1000);
 }
 } catch (Exception e) {}
 }
}

 [70]

Figure 3.13 ArrivalSequencing Capability

Events are the way that agents react to percepts or respond to messages sent by other agents.

JACK supports two types of events classified by Normal and BDI events. The process of

selecting what plan to execute when a Normal event occurs is simpler than when a BDI event

occurs. The process of selecting what plan to execute when a Normal event occurs involves

finding the first plan that is applicable and relevant to handle that event. The process of selecting

what plan to execute when a BDI event occurs involves a more elaborate reasoning and it can

be customised to the solution of a specific problem. The failure in the course of execution of

the plan also causes the reconsideration of alternative plans to achieve the goal. Normal events

in JACK can be Event or Message Event. Normal Event is used when an agent post an event

to itself or a changed belief triggers the event. Message Event is used when an agent wants to

send a message to another agent. JACK provides several types of BDI events such as

BDIFactEvent, BDIMessageEvent, BDIGoalEvent, InferenceGoalEvent, and PlanChoice.

BDIFactEvent and BDIMesasgeEvent are similar to Normal Event and Message Event

events, respectively. BDIGoalEvent represent goals that an agent wants to achieve. The

import aos.jack.util.thread.Semaphore;

/**
 The ArrivalSequencing capability contains the handling of landing
 requests from aircraft through negotiation with available runways
 for an appropriate landing allocation.
*/
public capability ArrivalSequencing extends Capability {

 #handles external event AircraftEvent;

 #private data Semaphore mutex();

 #uses plan RequestSlot;

 String [] runways;

 String [] getRunways(){
 return runways;
 }

 void enable(String [] runways){
 this.runways = runways;
 mutex.signal();
 }
}

 [71]

InferenceGoalEvent is used when it is desirable that all applicable plans to be executed.

PlanChoice are used for meta-level reasoning to select what plan to be executed.

Figure 3.14 shows an example of the WithdrawRequest event. The first line contains a package

Java statement followed by the import Java statement. The event definition starts with the event

keyword followed by the type of the event (e.g. WithdrawRequest). The WithdrawRequest is sub-

class of MessageEvent class. The WithdrawRequest event contains the attributes: account, pin and

amount. The WithdrawRequest event contains the withdraw method that is called when the event is

sent by an agent.

Figure 3.14 WithdrawRequest event

Plans are the course of actions that are executed when an event occur. A plan in JACK is

composed of two main parts. One part is used to identify what is the type of events that the

plan responds, and if the plan is relevant and applicable. The other part defines the sequence

of steps that are executed when the plan is selected.

package agents;

import aos.jack.jak.core.Jak;

event WithdrawRequest extends MessageEvent {
 public int account;
 public int pin;
 public int amount;

 #posted as
 withdraw(int account, int pin, int amount)
 {
 Jak.log.log("WithdrawRequest:withdraw created");
 this.account = account;
 this.pin = pin;
 this.amount = amount;
 message = "withdraw["+account+","+pin+"]";
 }
}

 [72]

Figure 3.15 shows the WithdrawCash plan. The first lines contain package and import Java

statements. The event definition starts with the plan keyword followed by the type of the plan

(i.e. WithdrawCash). Plans in JACK are sub-class of the Plan class. The #handles event

declaration defines what type of event that the plan handles (i.e. Withdraw). The #uses agent

declaration allows the plan to use methods defined by AtmClient interface. The agent that uses

the WithdrawCash plan has to implement this interface. The context method is used during the

process of selection to check if the plan is applicable.

Figure 3.15 WithdrawCash plan

The #sends event declaration determines what messages the plan can send to an agent (i.e.

WithdrawRequest). The reasoning body method is called when the plan is selected to be executed.

Beliefsets are the way that an agent keeps the information about the environment where they

are situated. JACK use relations to represent beliefSets and beliefs are stored in terms of

tuples. A tuple is composed of zero or more fields that identify the tuple and zero or more

fields that store values of the tuple. Relations can be stored as OpenWorld or CloseWorld.

True and false beliefs can be stored in OpenWorld beliefsets and not found beliefs are

interpreted as unknown information. Only true relations can be stored in ClosedWorld

beliefsets and not found tuples are interpreted as false.

package agents;

import gui.AtmInterface;
import gui.AtmClient;

public plan WithdrawCash extends Plan {
 #handles event Withdraw event;
 #uses agent implementing AtmClient atmc;

 context()
 {
 atmc.getHardware().cardInserted();
 }
 #sends event WithdrawRequest request;
 #reasoning method
 body()
 {
 @send(atmc.getBank(),
 request.withdraw(atmc.getAccount(),
 atmc.getPin(),
 atmc.getAmount())
);
 }
}

 [73]

Figure 3.16 shows Accounts beliefset. The first line contains the package Java statement. The

beliefset definition starts with the beliefset keyword followed by the type of the belief (i.e.

Accounts). The Accounts beliefset is sub-class of the OpenWorld class. The #key field declares

account as the identifier for the Account beliefset and pin is the value stored in the relation. The

Accounts belieftset contains addfact, newfact, endfact, delfact, modfact, modbd that are called

beliefset callbacks in JACK. They are invoked when some changes occurs in the beliefset. For

instance, delfact is called when a tuple is removed from the beliefset.

Figure 3.16 Accounts beliefSet

3.3 Traceability Relations
We have identified nine different types of traceability relations between the various elements in

the models used in our approach. The types of traceability relations are overlaps, contributes

to, uses, creates, achieves, depends on, composed of, sends and receives.

The classification is based on the types proposed in the literature (Spanoudakis, et al., 2005)

such as overlaps, contributes, and depends and some new types related to agent based systems

such as uses, creates, achieves, composed of, sends and receives. These new types were

identified from concepts in i*, Prometheus and JACK.

The process to identify the relations types was to find all relations between elements and then

define the types based on semantic of each relation.

The reference model considers the main elements used by our case studies. For instance, we

did not consider softgoals in i*, and different types of messages in JACK. Knowing the

package agents;

public beliefset Accounts extends OpenWorld {

 #key field int account;
 #value field int pin;
 #indexed query query(int i, int j);

 public void addfact(Tuple t, BeliefState d) {…}
 public void newfact(Tuple t, BeliefState d, BeliefState old){…}
 public void endfact(Tuple t, BeliefState old, BeliefState d){…}
 public void delfact(Tuple t, BeliefState d){…}
 public void modfact(Tuple t, BeliefState d, Tuple tr, Tuple fl){…}
 public void moddb(){…}
}

 [74]

granularity of the elements to be linked is important to the consistency of traceability and

strongly influences the cost-benefits of the traceability effort. Our reference model reflects

what we believe to be the most important elements and the right granularity to be traced. The

set of relations types that we have proposed are considered the main ones and associate the

main (important) elements in the documents of our concerned. In addition, they are important

to support certain activities such as impact analysis, verification and validation.

We present below descriptions of these different types of traceability relations and illustrate

these relations with some examples. Appendices F and G present a complete set of examples

for all the different types of traceability relations.

3.3.1 Traceability Relations between i* and Prometheus

Tables 3.1 and 3.2 present the different types of traceability relations for the main types of

elements in (a) i* SD model and Prometheus models, and (b) i* SR model and Prometheus

models, respectively. In Tables 3.1 and 3.2, apart from overlaps relations that are bi-directional,

the direction of a relation is represented from a row [i] to a column [j] (e.g. “Prometheus role

contributes to SD goal”). We do not consider i* soft goals in Tables 3.1 and 3.2 since soft

goals are concerned with non-functional aspects of a system while elements in Prometheus are

concerned with functional aspects of a system. We define below the various types of

traceability relations and give some examples from the perspective of some associated

artefacts.

i*

Prometheus
SD Goal SD Resource SD Task Actor

Goal Overlaps --- Overlaps Is Dependent

Role Contributes to Uses Contributes to Contributes to

Agent Achieves Uses Achieves Overlaps

Capability Contributes to Uses Contributes to Compose

Plan Achieves Uses Achieves Created by

Percept --- Overlaps --- ---

Data Contributes to --- Contributes to Is Used

Scenario Depends on Composed of Depends on Is Dependent

Message --- Overlaps --- ---

Table 3.1 Relations between Prometheus and i* SD

 [75]

Table 3.2 Relations between Prometheus and i*SR elements

 Overlaps – in this type of relation, an element e1 overlaps with an element e2 (an

element e2 overlaps with an element e1), if e1 and e2 refer to elements with common

aspects of the agent software development. As shown in Tables 3.1 and 3.2, an overlaps

relation may hold between a) goal in Prometheus and SD goal in i*; b) goal in

Prometheus and a SD task; c) an agent in Prometheus and an actor in i* d) a percept in

Prometheus and a SD resource in i*; d) a message in Prometheus and a SD resource in

i*; e) a goal in Prometheus and a SR goal in i*; f) a goal in Prometheus and a SR task in

i*; g) an action in Prometheus and a SR task in i*; h) a data in Prometheus and a SR

Resource in i*.

In order to illustrate, consider the situation in which a goal g1 in Prometheus has an overlaps

traceability relation with a SD goal g2 in i*, if the name of the goal g1 is a synonym of the name

of the goal g2 and the number of sub-elements of goal g1 that is similar to the sub-goals and

sub-tasks of goal g2 is greater than a threshold (e.g. 40%), or the number of sub-elements of

the Prometheus goal g1 that is similar to the sub-goals and sub-tasks of goal g2 is greater than a

threshold (e.g. 60%). For instance, Browse Book SD goal in i* has a synonym name to Browse

book goal in Prometheus (see Figure 3.17). Browse Book SD goal is decomposed on Browse By

Special Offer, Browse By BestSeller, Browse By Category, Browse by New Releases sub-goals and Browse

book goal is decomposed on Browse By category, Browse by new release, Browse by bestseller, and Browse

by special offer sub-tasks. The degree of similarity between the sub-elements of Browse Book SD

goal and Browse Book Prometheus goal is equal to 100% because Browse By Special Offer, Browse By

i*

Prometheus
SR Goal SR Resource SR Task

Goal Overlaps --- Overlaps

Role Achieves Uses Creates Achieves

Agent Achieves Uses Creates Achieves

Capability Contributed by Uses Creates Achieves

Plan Achieves Uses Creates Achieves

Action --- --- Overlaps

Data Used by Overlaps Used by

Scenario Composed of Uses Creates Composed of

 [76]

BestSeller, Browse By Category, Browse by New Releases sub-tasks are synonyms to Browse by category,

Browse by new release, Browse by bestseller, Browse by special offer sub-goals, respectively. Therefore,

there is an overlap traceability relation between Browse Book Prometheus goal and Browse book

SD goal.

Figure 3.17 Prometheus Goal vs. SD Goal overlaps traceability relation

A data d1 in Prometheus has an overlaps traceability relation with a SR resource r1 in i* when the

name of the data d1 is synonym with the name of SR resource. For instance, Customer Order

SR resource has a synonym name with the of the Customer Order data in Prometheus (see

Figure 3.18) Therefore, there is an overlaps traceability relation between Customer Order SR

resource and Customer Order data in Prometheus.

 [77]

Figure 3.18 Prometheus Data vs. SR Resource overlaps traceability relation

 Contributes (Contributed by) - in this type of relation, an element e1 contributes to an

element e2, if e1 helps to achieve or realise another element e2. As shown in Tables 3.1

and 3.2, a contributes relation may hold between a) role in Prometheus and a SD goal in

i*; b) a role in Prometheus and a SD Task in i*; c) a role in Prometheus and actor in i*;

d) a capability in Prometheus and a SD goal in i*; e) a capability in Prometheus and a

SD task in i*; f) a data in Prometheus and a SD goal in i*; g) a data in Prometheus and

a SD task in i*; h) a capability in Prometheus and a SR goal in i*.

In order to illustrate, consider the situation in which a data d1 in Prometheus has a

contributes traceability relation with SD goal g1 in i* when some of the sub-resources of SD

goal g1 has an overlaps traceability relation with data d1. For instance, Customer Order SR

resource is sub-resource of Buy Book SD goal and Customer Order SR Resource has an

overlaps traceability relation with Customer Order Prometheus data (see Figure 3.19).

Therefore, there is a contributes traceability relation between Customer Order data in

Prometheus and Buy Book SD goal in i*.

 [78]

Figure 3.19 Prometheus Data vs. SD Goal contributes traceability relation

A data d1 in Prometheus has a contributes traceability relation with SD Task t1 in i* when some

of the sub-resources of SD Goal g1 has an overlaps traceability relation with data d1. For

instance, balances SD resource in i* is a sub-resource of Process Withdraw SD task and

balances SD resource has an overlaps traceability relation with balances data in Prometheus

(see Figure 3.20). Therefore, there is a contributes traceability relation between balances data in

Prometheus and Process Withdraw SD task in i*.

 [79]

Figure 3.20 Prometheus Data vs. SD Task contributes traceability relation

 Uses (Used by) - in this type of relation, an element e1 uses an element e2, if e1

requires the existence of e2 in order to achieve its objective. As shown in Tables 3.1

and 3.2, a contributes relation may hold between a) a role in Prometheus and a SD

resource in i*; b) an agent in Prometheus and a SD resource in i*; c) a capability in

Prometheus and a SD resource in i*; d) a plan in Prometheus and a SD resource in i*;

e) a data in Prometheus and an actor in i*; f) a role in Prometheus and a SR resource in

i*; g) an agent in Prometheus and a SR goal in i*; h) a capability in Prometheus and a

SR resource in i*; i) a plan in Prometheus and a SR goal in i*; j) a data in Prometheus

and a SR resource in i*.

In order to illustrate, consider the situation in which a plan p1 in Prometheus has an uses

traceability relation with SD Resource r1 when plan p1 receives a message m1 that has an

overlaps traceability relation with resource r1. For instance, RequestSlot plan in Prometheus

receives AircraftEvent message (see Figure 3.21). AircraftEvent message in Prometheus

has an overlaps traceability relation with Slot Allocated SD resource. Therefore, there is an

uses traceability relation between RequestSlot plan and Slot Allocated SD resource.

 [80]

Figure 3.21 Prometheus Plan vs. SD Resource uses traceability relation

A plan p1 in Prometheus has uses traceability relation with SR Resource r1 in i* when the plan

p1 reads a data d1 that has an overlaps traceability relation with SR Resource r1. For instance,

Monitor Aircraft plan reads Landing Information data and Landing Information SR Resource has

an overlaps traceability relation with Landing Information data in Prometheus (see Figure 3.22).

Therefore, there is an uses traceability relation between Monitor Aircraft plan and Landing

Information SR resource.

Figure 3.22 Prometheus Plan vs. SR Resource uses traceability relation

 Creates (Created by) - in this type of relation an element e1 creates an element e2, if e1

generates element e2. As shown in Tables 3.1 and 3.2, a creates relation may hold

between a) a plan in Prometheus and an actor in i*; b) role in Prometheus and SR

resource in i*; c) an agent in Prometheus and a SR resource in i*; d) a capability in

Prometheus and a SR resource in i*; e) a plan in Prometheus and a SR resource in i*; f)

a scenario in Prometheus and a SR resource in i*.

In order to illustrate, consider the situation in which a plan p1 in Prometheus has creates

traceability relation with a SR Resource r1 in i* when the plan p1 writes a data d1 that has an

 [81]

overlaps traceability relation with the SR Resource r1. For instance, Assign Slot Plan writes

landing_info data that has an overlaps traceability relation with Landing Information SR

resource (see Figure 3.23). Therefore, there is a creates traceability relation between Assign Slot

Plan plan in Prometheus and Landing Information SR resource.

Figure 3.23 Prometheus Plan vs. SR Resource creates traceability relation

A scenario s1 in Prometheus has a creates traceability relation with a SR resource r1 in i* when

one of the steps of the scenario s1 writes on data that has an overlaps traceability relation with

resource r1. For instance, Update customer orders step writes on Customer Order data that has

an overlaps traceability relation with Customer Order SR resource (see Figure 3.24). Therefore,

there is a creates traceability relation between Order book scenario and Customer Order SR

resource.

Figure 3.24 Prometheus Scenario vs. SR Resource creates traceability relation

 [82]

 Achieves (Achieved by) - in this type of relation an element e1 achieves an element e2,

if e1 meets the expectations and needs of e2. As shown in Tables 3.1 and 3.2, an

achieves relation may hold between a) an agent in Prometheus and a SD goal in i*; b) an

agent in Prometheus and a SD task in i*; c) a plan in Prometheus and a SD goal in i*;

d) a plan in Prometheus and a SD task in i*; e) a role in Prometheus and a SR goal in

i*; f) a role in Prometheus and a SR task in i*; g) an agent in Prometheus and a SR task

in i*; h) a capability in Prometheus and a SR task in i*; i) a plan in Prometheus and and

a SR task in i*.

In order to illustrate, consider the situation in which an agent a1 in Prometheus has an

achieves traceability relation with a SD Goal g1 when the Prometheus agent a1 achieves a

goal g2 and the goal g2 has an overlaps traceability relation with the goal g1. For instance,

Stock Manager agent achieves Browse book goal in Prometheus and Browse book goal in

Prometheus has an overlaps traceability relation with Browse Book SD goal (see Figure

3.25). Therefore, there is a achieves traceability relation between Stock Manager agent in

Prometheus and Browse Book SD goal in i*.

Figure 3.25 Prometheus Agent vs. SD Goal achieves traceability relation

In order to illustrate, a plan p1 in Prometheus has an achieves traceability relation with a SR Task

t1 in i* when the plan p1 achieves a goal g1 that has overlaps traceability relation with the SR Task

t1. For instance, Initiate Approach plan achieves Initiate Aircraft Approach goal and Initiate

Aircraft Approach goal has an overlaps traceability relation with Initiate Approach SR task (see

Figure 3.26). Therefore, there is an achieves traceability relation between Initiate Approach

plan in Prometheus and Initiate Approach SR task

 [83]

Figure 3.26 Prometheus Plan vs. SR Task achieves traceability relation

 Depends on (Is Dependent) - in this type of relation an element e1 depends on an

element e2, if the existence of e1 relies on the existence of e2, or if changes in e2 have

to be reflected in e1. As shown in Tables 3.1 and 3.2, a depends relation may hold

between a) a goal in Prometheus and an actor in i*; b) a scenario in Prometheus and a

SD goal in i*; c) a scenario in Prometheus and an actor in i*.

In order to illustrate, consider the situation in which a goal g1 in Prometheus has a depends

on traceability relation with an actor a1 in i* when the goal g1 has an overlaps traceability

relation with a goal g2 in i* and the actor depends on that goal g2. For instance, Browse

Book SD goal has an overlaps traceability relation with Browse book goal in Prometheus

(see Figure 3.27). Therefore, a depends on traceability relation is created between the

Customer actor in i* and browse book goal in Prometheus.

 [84]

Figure 3.27 Prometheus Goal vs. Actor depends on traceability relation

A scenario s1 in Prometheus has a depends on traceability relation with a SD Goal g1 in i* when

the number of sub-elements of the goal g1 that has an overlaps traceability relation with the steps

of the scenario s1 is greater than a threshold (e.g. 80%) and the name of the scenario is

synonyms to the name of the SD goal. For instance, Order book scenario (see Figure 3.7) is

composed of the following steps: Get delivery options goal, Calculate delivery time estimates

goal, Present information goal, Delivery Choice percept, Get credit card details goal, Credit

Card Details percept, Execute bank transaction action, Place delivery request action, Log

delivery problems goal, Update customers orders goal, Send book order action . Buy Book SD

goal (see Figure 3.3) is decomposed in Place Order Online SR task, Place Order By Phone SR

task, Send Book Order Confirmation SR task, Update Customer Orders SR task, Customer

Order SR task, Make Payment SR task, Perform Bank Transaction SR task, Transaction

Accepted SR task, Transaction Rejected SR task, Obtain Credit Card Details SR task, Delivery

Handling SR task, Fill Pending Order SR task, Organize Delivery SR task, Log Outgoing

Delivery SR task, Place Delivery Request SR task, Compute Delivery Time Estimates SR task,

and Obtain Delivery Options SR task, Postal DB SR resource, Courier DB SR resource. Get

delivery option goal in Prometheus has an overlaps relation with Obtain Delivery Options SR

task, Calculate delivery time has an overlaps traceability relation with estimates goal and

 [85]

Compute Delivery Time Estimates SR task, Delivery choice percept has an overlaps

traceability relation with Delivery Choice SD resource, Get credit card details goal has an

overlaps traceability with Obtain Credit Card Details SR task, Credit Card Details percept has

an overlaps traceability Credit Card Details SD resource, Execute bank transaction action has

an overlaps traceability relation with Perform Bank Transaction SR task, Place delivery request

action has an overlaps traceability relation with Place Delivery Request SR task, Log delivery

problems goal has an overlaps traceability relation with Log Delivery Problems SR task,

Update customer orders goal has an overlaps traceability relation with Update Customer

Orders SR task, Send book order action has an overlaps traceability relation with Send Book

Order Confirmation SR task. Therefore, there is a depends traceability relation between Order

book scenario and Buy Book SD goal since 90,90% of steps of the Order book scenario has

an overlaps traceability relation with sub-elements of the Buy Book SD goal and Order book

and Buy Book are synonyms

 Composed of - in this type of relation an element e1 is composed of an element e2, if

e1 is a complex element formed by element e2. As shown in Tables 3.1 and 3.2, a

composed of relation may hold between a) a capability in Prometheus and an actor in i*;

b) a scenario in Prometheus and a SD resource; c) a scenario in Prometheus and a SR

goal in i*; d) a scenario in Prometheus and a SR task in i*; e) a scenario in Prometheus

and a SR goal in i*; f) a scenario in Prometheus and a SR task in i*.

In order to illustrate, consider the situation in which a scenario s1 in Prometheus has a composed

traceability relation with a SR Goal g1 in i* when a step of the scenario s1 and the goal g1 has an

overlaps traceability relation. For instance, Assign Slot SR goal has an overlaps traceability with

Assign Slot step of the Landing scenario (see Figure 3.28). Therefore, there is a composed

traceability relation between Landing scenario and Assign Slot SR goal.

 [86]

Figure 3.28 Prometheus Scenario vs. SR Goal compose traceability relation

A scenario s1 in Prometheus has a composed traceability relation with a SR task t1 in i* when a

step of the scenario s1 and the task t1 has an overlaps traceability relation. For instance, Initiate

Approach SR task has an overlaps traceability relation with Initiate Aircraft Approach step of

the Landing scenario (see Figure 3.29). Therefore, there is a composed traceability relation

between Landing scenario and Initiate Aircraft SR task.

Figure 3.29 Prometheus Scenario vs. SR Task composed traceability relation

3.2.2 Traceability Relations between Prometheus and JACK

Tables 3.3 and 3.4 present different types of traceability relations for the main types of

elements in Prometheus and JACK models. As in the case of Tables 3.1 and 3.2, in Tables 3.3

and 3.4, apart from overlaps relations that are bi-directional, the direction of a relation is

represented from a row[i] to a column[j] (e.g. “An agent in JACK achieves a goal in

Prometheus”).

 [87]

Prometheus

JACK Goal Role Agent Capability

Agent Achieves Uses Overlaps Uses
Plan Achieves Is Used by Is Used by Is Used by

BeliefSet --- Creates/Uses Creates/Uses Creates/Uses

 Event --- --- Is Sent by/ Is
Received by

Is Sent by/ Is
Received by

Table 3.3 Traceability Relations Types between Prometheus and JACK Artefacts

Prometheus
JACK

Plan Percept Action Message Data

Agent Uses Uses Creates Send/Receives Uses/Creates
Plan Overlaps Uses Creates Send/Receives Uses/Creates

BeliefSet Creates/Uses --- --- --- Overlaps
Event Send/Receives --- --- Overlaps ---

Table 3.4 Traceability Relations Types between Prometheus and JACK Artefacts

 Overlaps – in this type of relation, an element e1 overlaps with an element e2 (an

element e2 overlaps with an element e1), if e1 and e2 refer to common aspects of the

agent software development. As shown in Tables 3.3 and 3.4, an overlaps relation may

hold between a) an agent in JACK and an agent in Prometheus; b) a plan in JACK and

a plan in Prometheus; c) a beliefSet in JACK and a data in Prometheus; an event in

JACK and Prometheus message.

In order to illustrate, consider the situation in which a data in Prometheus and a beliefSet in

JACK has an overlaps traceability relation when the name of the data is synonyms to the name

of the beliefSet and if the name of the fields of the data and the beliefSet are similar (see Figure

3.30). For instance, the name of accounts data in Prometheus is synonyms to the name of

Accounts beliefSet in JACK and the fields of the Accounts beliefSet (account and pin) are

similar to the fields of the accounts data in Prometheus.

 [88]

Figure 3.30 JACK BeliefSet vs. Prometheus Data overlaps traceability relation

An agent a1 in JACK has an overlaps traceability relation with an agent a2 in Prometheus when

the name of the agent a1 in JACK is synonyms to the name of the agent a2 in Prometheus. For

instance, Sales Assistant agent in Prometheus has synonyms name to SalesAssistant agent in

JACK (see Figure 3.31). Therefore, there is an overlaps traceability relation between Sales

Assistant agent in Prometheus and SalesAssistant agent in JACK.

Figure 3.31 JACK Agent vs. Prometheus Agent overlaps traceability relation

 Uses (Used by) - in this type of relation, an element e1 uses an element e2, if e1

requires the existence of e2 in order to achieve its objective. As shown in Tables 3.3

and 3.4, an uses relation may hold between a) an agent in JACK and a role in

Prometheus; b) a plan in JACK and a role in Prometheus; c) a plan in JACK and a

capability in Prometheus; d) a beliefSet in JACK and a role in Prometheus; e) a

beliefSet in JACK and a capability in Prometheus.

 [89]

In order to illustrate, consider the situation in which an agent a1 in JACK has uses

traceability relation with a plan p1 in Prometheus when there is an overlap traceability

relation between the JACK agent a1 and a Prometheus agent a2 in Prometheus and the

agent a2 includes the plan p1 in Prometheus. For instance, BankAgent agent in JACK has

an overlaps traceability relation with Bank agent in Prometheus and Bank agent in

Prometheus uses Process Withdraw plan (see Figure 3.32). Therefore, there is an uses

traceability relation between BankAgent in JACK and Process Withdraw plan in

Prometheus.

Figure 3.32 JACK Agent vs. Prometheus Plan uses traceability relation

A plan p1 in JACK has uses traceability relation with a data d1 in Prometheus when there is an

overlaps traceability relation between the plan p1 in JACK and a plan p2 in Prometheus and the

Prometheus plan p2 uses the data d1. For instance, Execute Advanced Search plan in Prometheus

has an overlaps traceability relation with ExecuteAdvancedSearch plan in JACK and Execute

Advanced Search plan in Prometheus reads or modifies BooksDB data in Prometheus. Therefore,

there is an uses traceability relation between ExecuteAdvancedSearch plan in JACK and

BooksDB data in Prometheus. For instance, Process Withdraw plan in Prometheus and

ProcessWithdraw plan in JACK has an overlaps traceability relation and Process Withdraw

plan in Prometheus reads accounts data (see Figure 3.33). Therefore, there is an uses

traceability relation between ProcessWithdraw plan in JACK and accounts data in Prometheus.

 [90]

Figure 3.33 JACK Plan vs. Prometheus Data uses traceability relation

 Creates (Created by) - in this type of relation an element e1 creates an element e2, if e1

generates element e2. As shown in Tables 3.3 and 3.4, a creates relation may hold

between a) a plan in Prometheus and an actor in i*; b) role in Prometheus and SR

resource in i*; c) an agent in Prometheus and a SR resource in i*; d) a capability in

Prometheus and a SR resource in i*; e) a plan in Prometheus and a SR resource in i*; f)

a scenario in Prometheus and a SR resource in i*.

In order to illustrate, consider the situation in which a plan p1 in JACK has creates traceability

relation with a data d1 in Prometheus when there is an overlaps traceability relation between the

plan p1 in JACK and a plan p2 in Prometheus and the Prometheus plan p2 creates the data d1.

For instance, Process Withdraw plan in Prometheus has an overlaps traceability relation with

ProcessWithdraw plan in JACK and ProcessWithdraw plan writes on balances data (see Figure

3.34). Therefore, there is a creates traceability relation between ProcessWithdraw plan in JACK

and balances data in Prometheus.

 [91]

Figure 3.34 JACK Plan vs. Prometheus Data creates traceability relation

A plan p1 in Prometheus has creates traceability relation with a beliefSet b1 in JACK when there

is an overlaps traceability relation between the beliefSet b1 in JACK and a data d1 in Prometheus

and the plan p1 in Prometheus writes on the data d1. For instance, Process Withdraw plan in

Prometheus writes on balances data and balances data in Prometheus has an overlaps

traceability relation with Balances beliefSet in JACK (see Figure 3.35). Therefore, there is a

creates traceability relation between Process Withdraw plan in Prometheus and Balances

beliefSet in JACK.

Figure 3.35 JACK BeliefSet vs. Prometheus Plan creates traceability relation

 Achieves (Achieved by) - in this type of relation an element e1 achieves an element e2,

if e1 meets the expectations and needs of e2. As shown in Tables 3.3 and 3.4, a achieves

relation may hold between a) an agent in JACK and a goal in Prometheus; b) a plan in

JACK and a goal in Prometheus.

 [92]

In order to illustrate, consider the situation in which an agent a1 in JACK has an achieves

traceability relation with a goal g1 in Prometheus when there is overlap traceability relation

between the JACK agent a1 and an agent in Prometheus a2 and the goal g1 is one of the

goals that the Prometheus agent a2 achieves. For instance, Sales Assistant agent in

Prometheus has an overlaps traceability relation with the SalesAssistant agent in JACK and

the Sales Assistant agent in Prometheus achieves the Respond Add Customer Request goal in

Prometheus (see Figure 3.36). Therefore, there is an achieves relation between the

SalesAssistant agent in JACK and the Respond Add Customer Request goal in Prometheus.

Figure 3.36 JACK Agent vs. Prometheus Goal achieves traceability relation

A plan p1 in JACK has an achieves traceability relation with a goal g1 in Prometheus when there

is an overlaps traceability relation between the plan p1 in JACK and the plan p2 in Prometheus

and the Prometheus plan p2 achieves the goal g1. For instance, Withdraw Cash plan in

Prometheus has an overlaps traceability relation with WithdrawCash plan in JACK and

Withdraw Cash plan achieves Withdraw Money goal in Prometheus (see Figure 3.37).

Therefore, there is an achieves traceability relation between WithdrawCash plan in JACK and

Withdraw Money goal in Prometheus.

 [93]

Figure 3.37 JACK Plan vs. Prometheus Goal achieves traceability relation

 Sends (Is Sent by) – As shown in Tables 3.3 and 3.4, a sends relation may hold

between a) an event in JACK and an agent in Prometheus; b) an event in JACK and a

capability in Prometheus; c) an agent in JACK and a message in Prometheus.

In order to illustrate, consider the situation in which an agent ag1 in JACK has sends traceability

relation with a message m1 in Prometheus when there is an overlaps traceability relation between

the agent ag1 in JACK and an agent ag2 in Prometheus and the Prometheus agent ag2 in

Prometheus sends the message m1. For instance, Bank agent in Prometheus has an overlaps

traceability relation with BankAgent in JACK and Bank agent in Prometheus sends Withdraw

Response message (see Figure 3.38). Therefore, there is a sends traceability relation between

BankAgent in JACK and Withdraw Response message in Prometheus.

Figure 3.38 JACK Agent vs. Prometheus Message sends traceability relation

A plan p1 in JACK has a sends traceability relation with a message m1 in Prometheus when

there is an overlaps traceability relation between the plan p1 in JACK and a plan p2 in

Prometheus and the Prometheus plan p2 sends the message m1. For instance, Withdraw Cash

 [94]

plan in Prometheus has an overlaps traceability relation with WithdrawCash plan in JACK and

Withdraw Cash plan in Prometheus sends Withdraw Request message (see Figure 3.39).

Therefore, there is a sends traceability relation between WithdrawCash plan in JACK and

Withdraw Request message in Prometheus.

Figure 3.39 JACK Plan vs. Prometheus Message sends traceability relation

 Receives (Is Received by) - As shown in Tables 3.3 and 3.4, a receives relation may

hold between a) an event in JACK and an agent in Prometheus; b) an event in JACK

and a capability in Prometheus; c) an agent in JACK and a message in Prometheus; d)

an event in JACK and a plan in Prometheus.

In order to illustrate, consider the situation in which a plan p1 in JACK has sends traceability

relation with a message m1 in Prometheus when there is an overlaps traceability relation

between the plan p1 in JACK and a plan p2 in Prometheus and the Prometheus plan p2

receives the message m1. For instance, Withdraw Cash plan in Prometheus has an overlaps

traceability relation with WithdrawCash plan in JACK and Withdraw Cash plan in

Prometheus receives Withdraw message (see Figure 3.40). Therefore, there is a receives

traceability relation between WithdrawCash plan in JACK and Withdraw message in

Prometheus.

 [95]

Figure 3.40 JACK Plan vs. Prometheus Message receives traceability relation

A plan p1 in JACK has a sends traceability relation with a message m1 in Prometheus when

there is an overlaps traceability relation between the plan p1 in JACK and a plan p2 in

Prometheus and the Prometheus plan p2 sends the message m1. For instance, Withdraw Cash

plan in Prometheus has an overlaps traceability relation with WithdrawCash plan in JACK and

Withdraw Cash plan in Prometheus sends Withdraw Request message (see Figure 3.41).

Therefore, there is a sends traceability relation between WithdrawCash plan in JACK and

Withdraw Request message in Prometheus.

Figure 3.41 JACK Plan vs. Prometheus Message sends traceability relation

3.4 Summary
This chapter described a traceability reference model for multi-agent systems developed using

i* framework, Prometheus methodology, and JACK language. It presented an overview of i*

framework, Prometheus methodology, and JACK language with its main documents,

diagrams, and artefacts. It also presented various types of traceability relations that exist

between these artefacts and gave examples of some of these traceability relations. Other

examples of the various types of traceability relations are described in Appendices F and G.

 [96]

Chapter 4 - Traceability Framework

In this chapter we present our rule-based traceability framework. to support (i) automatic

generation of traceability relations between heterogeneous software models created during the

development of multi-agent systems, and (ii) identification of missing elements in these various

software models created during the development of multi-agent systems (completeness

checking).

In section 4.1, we give an overview of the framework. We show the main components of the

framework and explain the process of how traceability relations are created and missing

information are identified by the framework. We describe how to create rules to generate

traceability relations and to identify missing elements. We present a general template for our

rules and explain in detail the different parts of a rule. We give examples of different types of

rules to create traceability relations and identify missing elements for both i* and Prometheus

models and Prometheus and JACK models. In section 4.2, we describe different functions that

we have developed to support the rules to perform completeness checking, to verify if names

of elements in the models are synonyms, to compare similarities between elements in the

models, and to manipulate elements in PDT, TAOME and JACK models. Finally, section 4.3

describes the prototype tool that we have developed to support our traceability framework.

4.1. Overview of the Framework
Our framework is intended to support automatic creation of traceability relations and

completeness checking of multi-agent systems developed using models as primary engineering

artefacts throughout the engineering lifecycle of multi-agent systems. In particular, our

framework can support organisational i* models created using TAOME4E tool (TAOME4E,

2008); Prometheus model created using PDT tool (PDT, 2010), (Padgham, et al., 2005); and

code specifications implemented using JACK (Agent Oriented Software Limited, 2010).

We have adopted a rule-based approach due to the facts that (a) rules can automate and assist

with decision making: if the condition of a rule is satisfied then an action is executed; and (b)

rules can facilitate the generation of traceability relations and identification of missing

elements: actions can be used to create traceability relations between software artefacts and to

identify missing elements.

 [97]

In order to support the heterogeneity of models and tools used during the software

development life cycle we assume the models to be represented in XML. We have chosen

XML as the basis of our approach due to several reasons: (a) XML has become the de facto

language to support data interchange among heterogeneous tools and applications, (b) the

existence of large number of applications that use XML to represent information internally or

as a standard export format, and (c) to allow the use of XQuery as a standard way of

expressing traceability rules. Moreover, our approach combines models in i* and Prometheus

and code in JACK, therefore, requires a common representation of these models.

We use an extended version of XQuery (XQuery, 2010) to represent the rules. XQuery is an

XML-based query language that has been widely used for manipulating, retrieving, and

interpreting information from XML documents. Apart from the embedded functions offered

by XQuery, it is possible to add new functions. We have extended XQuery (a) to support

representation of the consequence part of the rules, i.e. the actions to be taken when the

conditions are satisfied; and (b) to support extra functions to (i) cover some of the traceability

relations being proposed and (ii) completeness checking of the models. We describe in detail

the list of functions created in Java to extend XQuery in the section 4.2.

Figure 4.1 presents an overview of our framework. As shown in the figure, initially, the models

of our concern represented in their native format are generated using proprietary tools (e.g.

TAOME4E (TAOME4E, 2008), PDT (PDT, 2010), (Padgham, et al., 2005), or any diagram

editor tool. These models are translated into XML format (XML_based Models) by using a

Model Translator component based on XML Schemas proposed for the models, whenever the

tools used to create the models do not generate them directly in XML.

 [98]

Figure 4.1: Overview of traceability framework

The XML based models and rules are used as inputs to the

Traceability_Completeness_Checking Engine component to generate traceability relations

between the models and to identify missing elements based on the rules. The engine also uses

WordNet (WordNet, 2010) to support the identification of synonyms between the names of

elements in the models. The WordNet is important component because in general naming

conventions can change from high-level goal model (e.g. i*) to low-level representations (e.g.

JACK code).

As an example of the use of WordNet, consider the function isSynonym that we propose as an

extension of XQuery (see Section 4.2 for more details). This function receives two terms as

parameters and checks if these two terms are synonyms. Each parameter term is transformed

into its root tem by using WordNet stemmer facility and is associated to a list of synonym

terms based on WordNet. The isSynonym function verifies if at least one element in the list of

synonyms of the first parameter term matches an element in the list of synonyms of the

second term. In positive case, the terms in the parameters of the function are considered

synonyms. For instance, suppose that isSynonyms function receives Arrange and Organize as

parameters. The WordNet returns a list of synonyms to Organize (e.g. {arrange, systematize

adapt, adjust, be responsible for, catalogue, classify, codify,...}) and a list of synonyms to

Arrange (e.g. align, array, class, classify, file, fix up, form, group, line up, methodize,

organize,...}) Arrange is synonyms to Organize and classify appears in the list of synonyms of

Arrange and Organize. Therefore, WordNet considers Arrange and Organize as synonyms.

The isSynonym function also ignores code conventions. For instance, if in Prometheus model

is defined an agent as Bank and in the implementation is defined an agent as JACKBank. The

Rules

Native Format
Models

Model Translator

XML_based
Models

Traceability_Complete
ness_Checking Engine

Rule
Engineer

Developers

Tools

Traceability_Relations
_Missing_Elements

WordNet

 [99]

two names are considered synonyms because JACKBank contains Bank and Bank is the same

word as Bank.

The traceability relations and identified missing elements are represented in an XML document

(Traceability_Relations_Missing_Elements document). The use of a separated document to

represent the traceability relations and missing elements is important to preserve the original

models, to allow the use of these models by other applications and tools, and to allow the

generated relations to be used to support the identification of other traceability relations that

depend on the existence of previously identified relations (i.e. primitive and dependent

relations, as described in Chapter 3). As shown in the Figure 4.1, the

Traceability_Relations_Missing_Elements document is used as input to the

Traceability_Completeness_Checking Engine component in order to support the generation

of dependent traceability relations.

For instance, you can define a rule where the condition is that if a task in the Strategic

Rationale (SR) model of an actor that represents a multi-agent system and a goal in

Prometheus are similar, then a traceability relation can be created between the SR task in i* and

the goal in Prometheus. Figure 4.2 shows an example of how the

Traceability_Completeness_Checking Engine component processes the rule between Arrange

delivery goal in Prometheus and Organize Delivery SR task in i*.

The rule checks first if the words used to give the name for the goal in Prometheus are

synonyms to the words used to give the name for the SR task. Arrange is synonyms to

Organize accordingly to WordNet dictionary and delivery and Delivery are the same word.

Then the rule checks if the sub-goals of the Arrange delivery goal in Prometheus and the sub-

goals and sub-tasks of the Organize Delivery SR task are similar. The similarity is calculated based

on the names given to the elements and a threshold. In this particular case, the threshold is

50% that means that more than fifty percent of the names given to the sub-goals of Arrange

delivery goal in Prometheus have to match (i.e. to be synonyms) to the names given to the sub-

tasks or sub-goals of the Organize Delivery SR task in i*. Get delivery options is synonyms to Obtain

Delivery Options and Calculate delivery time estimates is synonyms to Compute Delivery Time Estimates.

The percentage of sub-goals of the Arrange delivery goal that is similar to the sub-tasks or sub-

goals of the Organize Delivery is 66.7% that is greater than the threshold of 50%. Therefore, an

 [100]

overlaps traceability relation is created between Arrange delivery Prometheus goal and Organize

Delivery SR task (see Figure 4.2). Get and Obtain, Calculate and Compute are synonyms in the

WordNet dictionary.

Figure 4.2 Example of the use of rule in our approach

The Login outgoing delivery sub-goal of the Arrange delivery goal does not match with any of sub-

tasks or sub-goals of the Organize Delivery SR task in i*. This information is represented as

missing element.

It is worth noting that the tool does not enforce the analyst to complete the models after

missing elements have been detected. The analyst can decide to use the information about

missing elements to rectify the model or not to change the model. As in the example in Figure

4.2, the analyst could use the information about Login outgoing delivery that has been

identified by the tool as missing and create a sub-task Login outgoing delivery of Organize

Delivery SR Task. Similarly, the analyst could add a sub-goal Place Delivery Request to

Arrange delivery goal, or decide that this information is not derived from the higher level

model (i.e. i* model) and, therefore, not add the sub-goal Place Delivery Request.

During software development, models are built representing different views on a software

system. For instance, i* represent organizational environment view of the system while goal

modelling in Prometheus represent system specification of the multi-agent system. Some of

goals in i* might not be implemented by the multi-agent system specified in Prometheus. It

Arrange delivery

Login outgoing
delivery

Get delivery
options

Calculate delivery
time estimates

Organize Delivery

Obtain Delivery
Options

Compute Delivery
Time Estimates

Place Delivery
Request

overlaps

synonyms

synonyms

synonyms

Goal SR Task

 [101]

can happen that some information detailed appear in Prometheus goal model that is not

present in the i* model. That is the reason that we do not enforce completeness. It is up the

analyst to decide the level of detail that the models contain.

4.2 Traceability and Completeness Checking Rules
As described above, our framework is based on the use of rules to create traceability relations

and to identify missing elements. Figure 4.3 presents a general template for our rules. As

shown in Figure 4.3, a rule is composed of two main parts. The first part defines properties of

the rule and the second part contains the XQuery code used to create traceability relations and

to identify missing elements. We explain below the different parts in a rule.

Part 1: It consists of the rule identification and contains a unique identifier (id), a priority of the

rule (priority) indicating if this is a primitive rule (priority = 1) or dependent rule (priority >1),

the type of the rule (type), the type of the source element to be traced (elemTypeA), the type of

the target element to be traced (elemTypeB), and a brief description of the rule (description). The

priority of the rule is used to identify if the rule is primitive or dependent and to assist with the

execution of the rules; i.e., rules with priority 1 are executed before rules with priority 2, and

rules with priority 2 are executed before rules with priority 3, since rules with greater priority

depend on the existence of the relations generated by rules with lower priority.

Part 2: The second part of the rule contains valid XQuery code and is composed of other sub-

parts.

Sub-part 2.1 (DECLARE): It contains declaration of namespaces, variables, documents, and

sequence of elements used by a rule, as described below. The declaration of the documents

and sequence of elements are described by using XPath expressions.

 Namespace declarations – They are used to declare namespace of functions that have

been implemented in Java to extend XQuery functionalities (see Section 4.2). For

instance, the following statement in XQuery declares that all functions defined in the

java:retratos.XQueryPDTFunctions class can be used by of the XQuery code (e.g.

getPDTFileName).

o declare namespace pdt = "java:retratos.XQueryPDTFunctions";

 [102]

 Variable and Document declarations – They define a sequence of elements that are

used by the rule and the names of the source and target documents to be compared by

a rule. The following statements in XQuery show examples of variable declarations. In

the first statement, the $prometheusDoc variable is assigned to the value of the name

of a document that is returned by the getPDTFileName function in Java. In the

second statement, the $prometheusGoals variable is assigned to the value returned

after executing the XPath expression. More specifically, the $prometheusGoals

variable is assigned to a sequence of goal elements (//object[@type='Goal']) from the

document assigned to the variable $prometheusDoc.

o let $prometheusDoc := doc(pdt:getPDTFileName())

o let $prometheusGoals := $prometheusDoc//object[@type='Goal']

Sub-part 2.2 (ITERATION): It uses a FLWOR (FOR, LET, WHERE, ORDER BY,

RETURN) expression in XQuery. The expression is composed of three parts. The first part

selects elements defined in the variables (binding elements), the second part defines conditions

to the rule, and the third part specifies actions to be executed. The actions can be concerned

with the creation of traceability relation or the identification of missing elements in the models.

 Binding element – it consist of binding elements of a sequence to variables. For

instance, the following statement binds elements of sequence in $SRTasks to the

$SRTask variable and elements of the sequence in $prometheusGoal to

$prometheusGoal variable.

o for $SRTask in $SRTasks, $prometheusGoal in $prometheusGoals

 Condition – it defines the condition part of the rule that should be satisfied. Conditions

can be defined by the where expression clause of a for clause in XQuery or by the test

expression part of an if-then-else expression in XQuery. The condition part of the rule

uses XQuery built-in functions and expressions, and the Java extra functions that we

have developed. These extras functions contribute to the generation of the traceability

relations and the identification of missing elements (see Section 4.2).

 [103]

 Action: Traceability Relation Generation – it consist of returning an XML element to

the Traceability_Completeness_Checking_Engine component that includes

information about the traceability relation created. It contains the type of relation (type),

an identifier of the rule that created the relation (ruleID), a percentage that indicates the

level of confidence in the relation created (degreeOfCompleteness) and the information

about the source and target element related. The source and target elements contain

the location of the document where the element is stored (doc), type (type), name (name),

and id (id) of the element. The degreeOfCompleteness represents the percentage of the

condition of the rule that has been satisfied. For instance, in Figure 4.2 an overlaps

traceability relation has been created between Organize Delivery SR task and Arrange

Delivery SR task. This overlaps traceability relation has a degreeOfCompleteness of

66.7% that represents that only 66.7% of the condition of the rule has been satisfied.

Although the traceability relation has been created, some elements are missing, or there

are some discrepancies of names between sub-elements of the Organize Delivery SR

task and sub-elements of Arrange delivery goal.

 Action: Missing Element Information Identification – it consist of returning an XML

element to the Traceability_Completeness_Checking_Engine component describing

information about missing elements in the models being compared. It contains

information about the type (typeSource), name (nameSource), id (idSource), and document

(docSource) of the element to which a representation is missing in the target document,

and information about the type (typeTarget) and document (docTarget) of the missing

element.

 [104]

Figure 4.3 Rule Template

Our traceability rule template supports the definition of three types of traceability rules,

namely:

Type 1: rules to create traceability relations and identify missing elements;

Type 2: rules to create traceability relations, and

Type 3: rules to identify missing elements.

We present below examples of these types of traceability rules

Type 1:

<Rule id="ruleID" priority="priorityNumber" type="relationType"
 elementTypeA="typeSourceElement" elementTypeB="typeTargetElement"
 description="descriptionText">
 <XQuery>
 <![CDATA[
 //DECLARE
 // Namespace declarations
 declare namespace name = "java:className";

 // Variable declarations
 let $variableName := XPathExpression

 // ITERATION
 //Binding elements
 for $elem1 in $seq1,
 $elem2 in $seq2,

 $elemn in $seqn
 // Condition
 f1(f1+1…(f1+j(·))…)
 // Action
 // Traceability Link Generation
 <TraceabilityRelation type="relationType" ruleID="ruleID"

degreeOfCompleteness="similarityMeasure">
 <Element doc="path" type="elementType" name="elementName"
 id="elementID">
 </Element>
 <Element…></Element>

 // Missing Element Information Generation
 <MissingElement typeSource="typeSourceElement“

 idSource="sourceElementID"
nameSource="sourceElementName"
docSource="documentPath"

 typeTarget="typeTargetElement"
 docTarget="documentPath">

 </MissingElement>
]]>

 [105]

Figure 4.4 presents an example of a rule (Rule 4) to create traceability relations and identify

missing elements between SR task in i* and goals in Prometheus. In order to facilitate

explanation, we divide the rule in Figure 4.4 in several parts.

<Rule id="Rule4"
 priority="1"
 type="overlaps"
 elementTypeA="SR Task"
 elementTypeB="Prometheus Goal"
 description="Rule identify traceability relations between SR Tasks in i* and Goals in
 Prometheus">
 <XQuery>
 <![CDATA[

declare namespace f = "java:retratos.XQueryFunctions";
declare namespace syn = "java:retratos.XQuerySynonymsFunctions";
declare namespace sim = "java:retratos.XQuerySimilarityFunctions";
declare namespace cc = "java:retratos.XQueryCompletenessCheckingFunctions";
declare namespace pdt = "java:retratos.XQueryPDTFunctions";
declare namespace taom = "java:retratos.XQueryTAOMFunctions";
declare namespace xmi="http://www.omg.org/XMI";
let $istarDoc := doc(taom:getTAOMFileName())
let $prometheusDoc := doc(pdt:getPDTFileName())
let $systemActor := $istarDoc//TroposClasses[@xsi:type=
 'it.itc.sra.taom4e.model.core.informalcore.formalcore:FActor' and
 @isSystem='true']
let $SRTasks := $istarDoc//TroposClasses[@xsi:type='
 it.itc.sra.taom4e.model.core.informalcore.formalcore:FPlan' and
 @Actor=$systemActor/@xmi:id]

 let $prometheusGoals := $prometheusDoc//object[@type='Goal']
 for $SRTask in $SRTasks, $prometheusGoal in $prometheusGoals
 return
 if (f:clr() and syn:isSynonyms($SRTask/@name,
 $prometheusGoal/base/field[@name='name']/text()) and
 sim:isPositiveSimilar(pdt:getPrometheusSubElements($prometheusGoal,
 "subGoals"), taom:getSubGoalsAndTask($SRTask),40.0))
 then
 <TraceabilityRelation type="overlaps" ruleID="rule4a"
 degreeOfCompleteness="{cc:getDegreeOfCompleteness()}">
 <Element doc="{taom:getTAOMFileName()}" name="{$SRTask/@name}"
 type="SR Task" id="{$SRTask/@xmi:id}">
 </Element>
 <Element doc="{pdt:getPDTFileName()}" type="Goal"
 name="{$prometheusGoal/base/field[@name='name']/text()}"
 id="{$prometheusGoal/@id
 {
 for $i in (0 to cc:getNumberOfMissingElements())
 return
 <MissingElement typeSource="SR Task"
 idSource="{cc:getIDMissingElement($i)}"
 nameSource="{cc:getNameMissingElement($i)}"

 [106]

Figure 4.4 Rule4

 name="{$prometheusGoal/base/field[@name='name']/text()}"
 id="{$prometheusGoal/@id
 {
 for $i in (0 to cc:getNumberOfMissingElements())
 return
 <MissingElement typeSource="SR Task"
 idSource="{cc:getIDMissingElement($i)}"
 nameSource="{cc:getNameMissingElement($i)}"
 docSource="{taom:getTAOMFileName()}"
 typeTarget="Goal"
 docTarget="{pdt:getPDTFileName()}">
 </MissingElement>
 }
 </Element>
 </TraceabilityRelation>
 else

 if (f:clr() and
 sim:isSimilar(pdt:getPrometheusSubElements($prometheusGoal,
 "subGoals"),taom:getSubGoalsAndTask($topLevelGoal),60.0))

 then
 <TraceabilityRelation type="overlaps" ruleID="rule1b"
 degreeOfCompleteness="{cc:getDegreeOfCompleteness()}">
 <Element doc="{taom:getTAOMFileName()}"
 name="{$topLevelGoal/@name}"
 type="SD Goal"
 id="{$topLevelGoal/@xmi:id}">
 </Element>
 <Element doc="{pdt:getPDTFileName()}" type="Goal"
 name="{$prometheusGoal/base/field[@name='name']/text()}"
 id="{$prometheusGoal/@id}">
 {
 for $i in (0 to cc:getNumberOfMissingElements())
 return
 <MissingElement
 typeSource="SR Task"
 idSource="{cc:getIDMissingElement($i)}"
 nameSource="{cc:getNameMissingElement($i)}"
 docSource="{cc:getDocSourceMissingElement($i)}"
 typeTarget="{cc:getTypeTargetMissingElement($i)}"
 docTarget="{pdt:getPDTFileName()}">
 </MissingElement>
 }
 </Element>
 </TraceabilityRelation>
 else
 ""
]]>
 </XQuery>
</Rule>

 [107]

Figure 4.5 shows the main element of the rule (i.e. <Rule>) and its properties such as (i)

unique identifier (i.e. Rule4), (ii) priority of execution of the rule (i.e. “1”), (iii) type of the

relation created by the rule (i.e. “overlaps”), (iv) source element (i.e. “SR Task”), (v) target

element (i.e. “Prometheus Goal”), and (vi) description of the rule (i.e. “Rule identify

traceability relations between SR Tasks in i* and Goals in Prometheus”).

Figure 4.6 shows the namespace declaration part of the rule. Each rule contains an XQuery

element (i.e. <XQuery>) with the XQuery code. To avoid the text inside the XQuery element

to be parsed by the XML parser, the XQuery is enclosed with a CDATA section. The

declaration part defines namespaces used by the rule. For instance, the namespace f, syn, sim, cc,

pdt, and taom allows the XQuery code to access functions implemented in XQueryFunctions,

XQuerySynonymsFunctions, XQuerySimilarityFunctions,

XQueryCompletenessCheckingFunctions, XQueryPDTFunctions, and

XQueryTAOMFunctions classes, respectively. Section 4.2 provides a complete list with all the

extended functions implemented in Java. Example of a function that is implemented in

XQuerySynonymsFunctions class and is used in the Rule4, is isSynonyms function. A special

case is the xmi namespace that is used to allow XPath expressions access elements defined in

the i* model created by the TAOME4E tool.

Figure 4.5 Rule4 Header

<XQuery> <![CDATA[
declare namespace f = "java:retratos.XQueryFunctions";
declare namespace syn = "java:retratos.XQuerySynonymsFunctions";
declare namespace sim = "java:retratos.XQuerySimilarityFunctions";
declare namespace cc = "java:retratos.XQueryCompletenessCheckingFunctions";
declare namespace pdt = "java:retratos.XQueryPDTFunctions";
declare namespace taom = "java:retratos.XQueryTAOMFunctions";
declare namespace xmi="http://www.omg.org/XMI";

Figure 4.6 Namespace declarations

<Rule id="Rule4"
 priority="1"
 type="overlaps"
 elementTypeA="SR Task"
 elementTypeB="Prometheus Goal"
 description="Rule identify traceability relations between SR Tasks in i* and Goals in
 Prometheus">
 <XQuery>
 <![CDATA[…
]]>
 </XQuery>
</Rule>

 [108]

Figure 4.7 shows variable declarations for the Rule4. The first two statements assign to

variables $istarDoc and $prometheusDoc the location of the i* model and Prometheus model,

respectively. The third statement assigns to $systemActor variable a sequence of actors in i* that

represent software systems (i.e. isSystem property equals ‘true’). The fourth statement assigns to

$SRTasks variable a sequence of SR tasks in i* of an actor that represent a software system.

The fifth statement assigns to the $prometheusGoal variable a sequence goal elements from

the Prometheus model.

Figure 4.8 shows the iteration part of Rule4. The for clause generates a sequence of tuples

between SR tasks in i* ($SRTasks) and goals in Prometheus ($prometheusGoals). The condition

part of the rule is defined using if-then-else clauses.

The first condition (first if clause) checks if the name of a SR task in the tuple is synonyms

(isSynonyms function) with the name of the goal in Prometheus, and if the sub-elements of the

goals in Prometheus are similar (isPositiveSimilar function) to the sub-elements of SR tasks in i*.

The isPositiveSimilar function receives three parameters, namely (a) a list of sub-goals of a goal

in Prometheus, (b) a list of goals and sub-tasks of a SR task in i*, and (c) a threshold value (i.e.

40.0) that defines the degree of similarity that has to be achieved if the function returns true

value. The second condition (second if clause in the else part of the first if clause) uses the

isSimilar function to compare the similarity between sub-elements of a Prometheus goal and

sub-tasks and sub-goals of a SR task in i*. The difference between the isPositiveSimilar function

and the isSimilar function is that the isPositivieSimilar function returns true if any of the list of

sub-elements is empty. For instance, if the goal in Prometheus does not have sub-goals then

isPositiveSimilar function always returns true. The reason why the threshold used by the second

condition (i.e. 60.0) in the isSimilar function is greater than the threshold used by the first

let $istarDoc := doc(taom:getTAOMFileName())
let $prometheusDoc := doc(pdt:getPDTFileName())
let $systemActor :=
 $istarDoc//TroposClasses[@xsi:type='it.itc.sra.taom4e.model.core.informalcore.formalcore:FActor'
 and @isSystem='true']
let $SRTasks :=
 $istarDoc//TroposClasses[@xsi:type='it.itc.sra.taom4e.model.core.informalcore.formalcore:FPlan'
 and @Actor=$systemActor/@xmi:id]
let $prometheusGoals := $prometheusDoc//object[@type='Goal']

Figure 4.7 Variable declarations

 [109]

condition is because the condition is only based on the sub-elements. Therefore, we assume

that the number of sub-elements that have to be similar in the second case (when name of a

SR task in the tuple is not synonyms to the name of the goal in Prometheus) has to be greater

than in the case of the first condition.

Figure 4.9 shows the results of the traceability relation created by Rule4. The rule creates a

TraceabilityRelation element when the condition of the rule holds. It returns an element in XML

that is added to the Traceability_Relations_Missing_Elements file. The TraceabilityRelation

element contains the type of relation that is created by the rule (i.e. “overlaps”), the identifier

of the rule (i.e. “rule4a”), and the degree of completeness between the source and target

elements that satisfies the rule condition.

In Figure 4.9, the degree of completeness is obtained from the getDegreeOfCompleteness function

and it is calculated based on the similarities of the sub-elements of a SR task and a Prometheus

goal. A traceability relation contains two elements related to the source and target elements

that are related. In Figure 4.10, the first element refers to the SR task and contains as attributes

(a) the name of the document that has the SR task that it is obtained from the

getTAOMFileName function; (b) the name of the element that is obtained from the XPath

expression ($SRTask/@name); (c) the type of the element that is “SR task”; and (d) the id of

the element that is retrieved from the XPath expression ($SRTask/@xmi:id). The second

element refers to the Prometheus goal and has similar properties: (a) the name of the

document that contains the Prometheus goal and it is obtained from the getPDTFileName

for $SRTask in $SRTasks, $prometheusGoal in $prometheusGoals
 return
 if (f:clr() and
 syn:isSynonyms($SRTask/@name,$prometheusGoal/base/field[@name='name']/text()) and
 sim:isPositiveSimilar(pdt:getPrometheusSubElements($prometheusGoal,"subGoals"),
 taom:getSubGoalsAndTask($SRTask),40.0))
 then
 …
 else
 if (f:clr() and
 sim:isSimilar(pdt:getPrometheusSubElements($prometheusGoal,"subGoals"),
 taom:getSubGoalsAndTask($SRTask),60.0))
 then
 …
 else

""
Figure 4.8 Condition part

 [110]

function; (b) the name of the element that is obtained from the XPath expression

($prometheusGoal/base/field[@name='name']/text()); (c) the type of the element that is

“Prometheus Goal”; and (d) the id of the element that is retrieved from the XPath expression

($prometheusGoal/@id).

Figure 4.10 shows an overlaps traceability relation created by the rule4a between Organize

Delivery SR task and Arrange delivery goal in Prometheus with a degree of completeness of

66.7%. The degree of completeness is obtained from the getDegreeOfCompleteness function and it

is calculated based on the similarities of the sub-elements of Organize Delivery SR task and

Arrange delivery goal in Prometheus. Arrange delivery has three sub-goals (i.e., Get delivery

options, Log outgoing delivery and Calculate delivery), while Organise Delivery SR task has three sub-

tasks (i.e., Obtain Delivery Options and Compute Delivery Time Estimates, and Place Delivery Request).

Get delivery options is synonyms to Obtain Delivery Options and Calculate delivery time estimates is

synonyms to Compute Delivery Time Estimates. A sub-task concerned with sub-goal Log outgoing

delivery is missing and the degree of completeness in this case is 2/3 = 66.7% (two out of

three sub-tasks are similar to sub-goals).

Figure 4.9 Traceability Relation Creation

<TraceabilityRelation
 type="overlaps"
 ruleID="rule4a"
 degreeOfCompleteness="{cc:getDegreeOfCompleteness()}">
 <Element
 doc="{taom:getTAOMFileName()}"
 name="{$SRTask/@name}"
 type="SR Task"
 id="{$SRTask/@xmi:id}">
 </Element>
 <Element doc="{pdt:getPDTFileName()}"
 type="Prometheus Goal"
 name="{$prometheusGoal/base/field[@name='name']/text()}"
 id="{$prometheusGoal/@id}">
 …
 </Element>
 </TraceabilityRelation>

<TraceabilityRelation ruleID="rule4a” type="overlaps" degreeOfCompleteness="66,7">
 <Element doc="c:/ElectronicBookStore.pd" type="Goal" name="Arrange delivery" id="104"/>
 <Element doc="c:/ElectronicBookshop.tropos" type="SR Task" name="Organize Delivery"
 id="_ZYFmBVnqEduALZ_6XdllYA">
 <MissingElement>...</Missing Element>
 </Element>
 <Element doc="c:/ElectronicBookStore.pd" type="Goal" name="Arrange delivery" id="104"/>
</TraceabilityRelation>

Figure 4.10 Traceability Relation between Arrange delivery and Organize delivery

 [111]

Figure 4.11 shows the results of the identified missing elements created by Rule4. The Missing

Element contains the following attributes: (a) the type of the source element to which a

representation is missing from the target document (i.e. SR Task); (b) the id of the source

element to which a representation is missing from the target document that is retrieved from

getIDMissingElement($i) function; (c)the name of the element to which a representation is

missing from the target document that is obtained from getNameMissingElement($i) function; (d)

the name of the document from the source element that is retrieved by getTAOMFileName

function; (e) type of the target element (i.e. “Prometheus Goal”); and (f) name of the target

document received from the getPDTFileName() function.

Figure 4.12 shows an example of the LogOutgoingDelivery goal in Prometheus that is missing in

the i* model. In this case there are two possibilities to restore the models for the missing

element. The first possibility is to create a sub-task or sub-goal of the Organize Delivery SR

task named “LogOutgoingDelivery” in the i* model. The second possibility is to change the

name given to a sub-task or sub-goal of the Organize Delivery SR task that should have a

name that is synonym to “LogOutgoingDelivery”. Based on this information and analysing the

model (see Figure 4.2) the user can conclude that one sub-task or sub-goal named

“LogOutgoingDelivery” is missing and should be created in the i* model.

Figure 4.11 Generation of Missing Element

Figure 4.12 Log Outgoing Delivery Missing Element

<TraceabilityRelation ruleID="rule4a” type="overlaps“ degreeOfCompleteness="66,7">
…
 <MissingElement docSource=="c:/users/by916/ElectronicBookStore.pd"
 typeSource="Goal"
 nameSource=" Log Outgoing Delivery"
 idSource="98 "
 typeTarget="SR Task or SR Goal"/>
 …
</TraceabilityRelation>

<MissingElement
 typeSource="SR Task"
 idSource="{cc:getIDMissingElement($i)}"
 nameSource="{cc:getNameMissingElement($i)}"
 docSource="{taom:getTAOMFileName()}"
 typeTarget="Prometheus Goal"
 docTarget="{pdt:getPDTFileName()}">
 </MissingElement>

 [112]

Type 2:

Figure 4.13 shows an example of a rule (Rule49) that identifies overlaps traceability relations

between actors in i* and agent in Prometheus. Here, we do not describe in details the

declarations of namespaces and variables since they are similar to these declarations in Rule4

(see Figure 4.4). As shown in Figure 4.13, the main difference for the declaration of variables

between Rule49 and Rule4 are variable $systemActors, which contains all actors in i* and

$prometheusAgents that contains all agents in Prometheus.

<Rule id="Rule49" priority="1" type="overlaps" elementTypeA="Istar Actor"
 elementTypeB="Prometheus Agent"
 description="Rule identify traceability relations between Actors in i* and Agents in Prometheus">
 <XQuery>
 <![CDATA[
 declare namespace f = "java:retratos.XQueryFunctions";
 declare namespace syn = "java:retratos.XQuerySynonymsFunctions";
 declare namespace sim = "java:retratos.XQuerySimilarityFunctions";
 declare namespace cc = "java:retratos.XQueryCompletenessCheckingFunctions";
 declare namespace pdt = "java:retratos.XQueryPDTFunctions";
 declare namespace taom = "java:retratos.XQueryTAOMFunctions";
 declare namespace xmi="http://www.omg.org/XMI";

 let $istarDoc := doc(taom:getTAOMFileName())
 let $systemActors := $istarDoc//TroposClasses[@xsi:type=
 'it.itc.sra.taom4e.model.core.informalcore.formalcore:FActor'
 and @isSystem='true']
 let $prometheusDoc := doc(pdt:getPDTFileName())
 let $prometheusAgents := $prometheusDoc//object[@type='Agent']
 for $systemActor in $systemActors, $prometheusAgent in $prometheusAgents
 return
 if (f:clr() and
 syn:isSynonyms($systemActor/@name,

$prometheusAgent/base/field[@name='name']/text()))
 then
 <TraceabilityRelation type="overlaps" ruleID="rule49a"
 degreeOfCompleteness="{cc:getDegreeOfCompleteness()}">
 <Element doc="{taom:getTAOMFileName()}"
 name="{$systemActor/@name}"
 type="Actor" id="{$systemActor/@xmi:id}">
 </Element>
 <Element doc="{pdt:getPDTFileName()}" type="Agent"
 name="{$prometheusAgent/base/field[@name='name']/text()}"

id="{$prometheusAgent/@id}">
 </Element>
 </TraceabilityRelation>
 else
 ""
]]>
 </XQuery>
</Rule>

Figure 4.13 Rule49

 [113]

Figure 4.14 shows the iteration part of the Rule49. The for clause generates a sequence of

tuples between actors in i* ($systemActors) and agents in Prometheus ($prometheusAgent). The

condition part of the rule is defined using if-then-else clause. The condition checks if the name

of an actor in the tuple is synonyms (isSynonyms function) to the name of the agent in the tuple.

The action part of the rule, creates a TraceabilityRelation when the condition is satisfied (i.e.,

when the name of the actor is synonyms to the name of the agent). The content of element

Element is similar to the content described in the Rule4 for element Element.

In order to illustrate Rule49, consider Airport agent in Prometheus and Airport actor in i* (see

Figure 4.15). Since the Airport actor has a synonyms name to Airport agent, an overlaps

traceability relation is created between Airport actor in i* and Airport agent in Prometheus (see

Figure 4.16).

Figure 4.14 Iteration part of the Rule15

for $systemActor in $systemActors, $prometheusAgent in $prometheusAgents
 return
 if (f:clr() and
 syn:isSynonyms($systemActor/@name,

$prometheusAgent/base/field[@name='name']/text()))
 then
 <TraceabilityRelation type="overlaps" ruleID="rule49a"
 degreeOfCompleteness="{cc:getDegreeOfCompleteness()}">
 <Element doc="{taom:getTAOMFileName()}"
 name="{$systemActor/@name}"
 type="Actor" id="{$systemActor/@xmi:id}">
 </Element>
 <Element doc="{pdt:getPDTFileName()}" type="Agent"
 name="{$prometheusAgent/base/field[@name='name']/text()}"

id="{$prometheusAgent/@id}">
 </Element>
 </TraceabilityRelation>
 else
 ""

Figure 4.15 Airport agent in Prometheus and Airport actor in i*

Figure 4.16 Traceability relation between Airport agent and Airport actor

<TraceabilityRelation ruleID="rule49a" degreeOfCompleteness="100" type="overlaps">
 <Element id="_9GxkMFyvEd6qIOGYcZQlag" name="Airport"
 doc="file:///C:/ElectronicBookstore2.tropos" type="Actor"/>
 <Element id="132" name="Airport" doc="file:///C:/AirTrafficControl2.pd" type="Agent"/>
</TraceabilityRelation>

 [114]

Type 3:

Figure 4.17 shows an example of a rule (Rule 4cc) that identifies missing elements

(completeness checking) between SR tasks of an actor in i* model and Prometheus model.

Here, we do not describe in details the declarations of namespaces and variables since they are

similar to these declarations in Rule4 (see Figure 4.5). As shown in Figure 4.17, the main

difference for the declaration of variables between Rule4 and Rule4cc, are variable

$overlapsLink, which contains a sequence of overlaps relations between all SR tasks in i* and

elements in the Prometheus model, and variable $SRPlans, which contains all SR tasks in i*

model.

Figure 4.17 Rule4cc

Figure 4.18 shows the iteration part of the Rule4cc. The for clause iterates on all tasks in

SRPlans variable. The condition part of the rule verifies if there are no overlaps traceability

relations between SR tasks in i* and an element in Prometheus model. The action part of the

rule, creates a MissingElement when the condition is verified (i.e., when there are no overlaps

relations between SR tasks and Prometheus elements). The content of element

MissingElement is similar to the content described in the Rule4 for element MissingElement.

<Rule id="Rule4cc" priority="2" type="overlaps"
 elementTypeA="SR Plan"
 elementTypeB="Prometheus Goal"
 description="Check if every SR Task that a system actor has to achieve is represented as goal in
Prometheus">
 <XQuery>
 <![CDATA[
 declare namespace xmi="http://www.omg.org/XMI";
 declare namespace f = "java:retratos.XQueryFunctions";
 declare namespace pdt = "java:retratos.XQueryPDTFunctions";
 declare namespace taom = "java:retratos.XQueryTAOMFunctions";

 let $istarDoc := doc(taom:getTAOMFileName())
 let $systemActor := $istarDoc//TroposClasses[@xsi:type=
 'it.itc.sra.taom4e.model.core.informalcore.formalcore:FActor'
 and @isSystem='true']
 let $SRPlans := istarDoc//TroposClasses[@xsi:type=
 'it.itc.sra.taom4e.model.core.informalcore.formalcore:FPlan'
 and @Actor=$systemActor/@xmi:id]
 let $traceabilityDoc := doc(f:getTraceabilityFileName())
 let $overlapsLink := $traceabilityDoc//TraceabilityRelation[@type=
 'overlaps']/Element[@type='SR Task']
 …
]]> </XQuery></Rule>

 [115]

Figure 4.18 Iteration part of the Rule4cc

In order to illustrate Rule4CC, consider an extract of the i* SR model and Prometheus goal

model for the Air Traffic Control System1, given in Figure 4.19. Figure 4.20 shows the results

of executing Rule4cc for the Request Runway SR task in i* and Prometheus goal for the

models presented in Figure 4.19. In this case, there are two possibilities to rectify the models.

One possibility is concerned with the creation of a goal in Prometheus named “Request

Runway”. The other possibility is concerned with discrepancy between the name given to a

goal in Prometheus that should have an overlaps relation with the “Request Runway” SR task

in i*. After analysis of the Prometheus model (see Appendix C), it is necessary to create a goal

in Prometheus named “Request Runway”.

1 A full description of these models are presented in Appendix D.

for $SRPlan in $SRPlans
 where (not(some $link in $overlapsLink satisfies $link/@id =$SRPlan/@xmi:id))
 return
 <TraceabilityRelation
 type="overlaps"
 ruleID="rule4cc"
 degreeOfCompleteness="0">
 <MissingElement
 typeSource="SR Plan"
 idSource="{$SRPlan/@id}"
 docSource="{taom:getTAOMFileName()}"
 typeTarget="Prometheus Goal "
 docTarget="{pdt:getPDTFileName()}">
 </MissingElement>
 </TraceabilityRelation>

Figure 4.19 Airport SR model and ATCE Prometheus Goal

 [116]

<TraceabilityRelation ruleID="rule4cc" degreeOfCompleteness="0" type="overlaps">
 <MissingElement docTarget="c:/AirTrafficControl1.pd"
 idSource="_Oj5iYFywEd6qIOGYcZQlag"
 nameSource="Request Runway"
 typeSource="SR Task"
 docSource="C:/ElectronicBookstore1.tropos"
 typeTarget="Prometheus Goal”/>
</TraceabilityRelation>

Figure 4.20 Request Runway goal missing in Prometheus

4.3 Extended Functions
As described in Subsection 4.1, our framework uses different functions that we have

developed to support the rules. These functions are classified in seven classes of functions, as

described below.

 XQueryCompletenessCheckingFunctions class – It contains a list of methods in Java

that extends XQuery to perform completeness checking.

 XQueryFunctions class – It contains a list of methods in Java that extends XQuery

with general functionalities such as returns the name of traceability file name

(getTraceabilityFileName function) and returns the value of an attribute of an XML

Element in Saxon (getAttributeValue function).

 XQueryJACKFunctions class - It provides a list of methods in Java that that extends

XQuery with functions to manipulate elements in the JACK XML file.

 XQueryPDTFunctions class – It provides a list of methods in Java that extends

XQuery with functions to manipulate elements created by the PDT tool version 3.2.

 XQuerySimilarityFunctions class – It includes a list of methods in Java that extends

XQuery with functions to compare similarities between elements in the models.

 XQuerySynonymsFunctions class – It contains a list of methods in Java that extends

XQuery with functions to verify if names of elements in the models are synonyms.

 [117]

 XQueryTAOMFunctions class – It provides a list of methods in Java that extends

XQuery with functions to manipulate elements in i* models created using the

TAOME4E tool.

To use an XQuery extended function implemented in a Java class, it is necessary to first

declare the class name that includes the function and then call the function wanted, as shown

in the examples in section 4.2. Figure 4.21 shows an example when the pdt namespace is

associated to XQueryPDTFunction class in Java (declare namespace pdt =

java:retratos.XQueryPDTFunctions). The getPDTFileName function is invoked using the namespace

followed by colon and the function name (pdt:getPDTFileName()).

Figure 4.21 Calling getPDTFileName extended function in Java

In the next sub-section we describe the functions in the different classes of functions that we

have developed to support the framework.

4.3.1 Completeness checking functions

XQueryCompletenessCheckingFunctions class extends XQuery with functions to perform

completeness checking. The main function is completenessChecking that verify if a list of elements

A contains elements that are synonyms to a list B. The getDegreeOfCompleteness function returns

the degree of similarity between the two lists. For instance, if all elements in list A are

synonyms to elements in list B then the function returns 1.00 and if no elements in list A is

synonyms to list A then the function returns 0. The class also contains functions to returns the

filename that contains elements in list A that are missing to be represented in list B (i.e. there is

no synonyms in list B), to returns the number of elements, name, id, type of elements in list A

In order to illustrate, consider the completenessChecking function that verifies if two lists of

elements are similar. The function receives two lists of elements and returns true if the names

of the elements in the lists are synonyms and returns false otherwise. Figure 4.22 shows ListA

with element names “Login outgoing delivery”, “Calculate delivery time estimates”, and “Get

delivery options”, and ListB with element names “Obtain Delivery Options”, “Compute

Delivery Estimates” and “Place Delivery Request”. The completenessCheching function

declare namespace pdt = "java:retratos.XQueryPDTFunctions"; ….

let $pdtDoc := doc(pdt:getPDTFileName())

 [118]

checks if each element of ListA has a synonyms in ListB. In the Figure 4.22, “Get delivery

options” is synonym of “Obtain Delivery Options”, and “Calculate delivery time estimates” is

synonym of “Compute Delivery Time Estimates”. Since “Login outgoing delivery” does not

have a synonym element in List B.

Figure 4.22 List of strings

ListA

name=“Login
outgoing delivery”

name=“Get delivey
options”

name=“Calculate
delivery time

estimates”

completenessChecking(listA, listB)

true

Element0

Element0

id=55

doc=“ElectronicBooks
tore.pd”

type=“Goal”

Element1

Element2

ListB

name=“Obtain
Delivery Options”

Element0

id=75

doc=“ElectronicBooks
tore.pd”

type=“Goal”

Element1

Element2

name=“Compute
Delivery Time

Estimates”

name=“Place
Delivery
Request”

type=“Goal”

id=55

doc=“ElectronicBooks
tore.pd”

name=“Login
outgoing delivery”

missingElements

 [119]

The “Login outgoing delivery” element is added to a list the missing elements (i.e. class

variable of the XQueryFunctions class).

4.3.2 XQuery functions

XQueryFunctions class extends XQuery with general functionalities. XQueryFunctions class

contains functions to check if a capability in Prometheus uses a SD Resource in i*, to check if

a capability in Prometheus uses a SR Resource in i*, to initialize variables used by the created

functions, to check if a list A of Strings contains all the elements of a list B of Strings, to check

if a list A of Strings contains a specific String, to return the value of an attribute of an XML

Element in Saxon, to return the name of filename of the file that contains the traceability

relations, and to check if an element has an certain type of relation.

In order to illustrate, consider the capabilityUsesSDResource function. This function checks if

a capability uses a SD resource in the i* model. The function receives as a parameter a

TinyNodeImpl element (i.e. XML Node in the Saxon tool) that represents a capability in XML

and TinyNodeImpl element (i.e. Node in the Saxon tool) that represents a SD resource in

XML and returns true if the capability includes a message that has an overlaps traceability

relation with a SD resource. Figure 4.23 shows an example of ATL SD resource and Arrival

Sequencing capability that includes Aircraft Event message. The ATL SD resource has an

overlaps traceability relation with Aircraft Event message. If you call capabilityUsesSDResource

function (see Figure 4.24) and pass as argument the Arrival Sequencing capability element in

XML and the ATL SR Resource element in XML, the function first recovers all messages that

the capability contains and then checks if there is some overlaps traceability relation between

message and SD resource using the isOverlap function (see Section 4.2 to the description of the

isOverlap function).

 [120]

Figure 4.23 Arrival Sequencing Capability and ATL SD Resource

Aircraft Event Request Slot Plan

mutex ATL
Slot Allocated

Information Carried

Arrival Sequencing

ATL

SD Resource

overlaps

 [121]

Figure 4.24 capabilityUsesSDResource function example

4.3.3 XQueryJACKFunctions

XQueryJACKFunctions class extends XQuery with functions to manipulate elements in the

JACK XML file. The XQueryJACKFunctions class contains a function that return the list of

fields of a beliefSet in JACK and a function that returns the name of the file that contains the

JACK code in XML.

In order to illustrate, consider the getBeliefSetFields function. This function receives as parameter

the id of a beliefSet in Prometheus created using the PDT tool and returns a list of Field

elements of this beliefSet. Figure 4.25 shows an example when the getBeliefSetFields function is

<object type="Capability" id="14">
 <base type="Entity">
 <field name="name">Arrival Sequencing</field>
…
</object>

 <TroposClasses
 xmi:id="_BHHSkF5wEd6A7vkLk-vUcQ"
 name="ATL" … />

capabilityUsesSDResource (capability,resource)

call isOverlap (“7”, "_BHHSkF5wEd6A7vkLk-vUcQ”)

<object type="Message" id="7">
 <base type="Interaction">
 <base type="Entity">
 <field name="name">Aircraft Event</field>
 </base>
 …
 </base>
</object>

true

 [122]

called with id=58 (the id of landing_info data in Prometheus). The getBeliefSetFields function

returns a list with the included fields.

4.3.4 XQueryPDTFunctions

XQueryPDTFunctions class extends XQuery with functions to manipulate elements created

by the PDT tool version 3.2. XQueryPDTFunctions contains functions to find all actors in i*

that uses a capability in Prometheus, to return included fields of a beliefSet in Prometheus, to

return information carried of a percept in Prometheus, to return the filename of the file that

contains the PDT file, to return sub-elements of an element in PDT, to return the steps of a

scenario, to return sub-goals of a goal in PDT, return a list of the data used by an element in

Prometheus, to verify if elements in Prometheus has relations (e.g. if a data is produced by a

role in Prometheus).

List

Field1Field0

<object type="Data" id="58">
 <base type="Entity">
 <field name="name">landing_info</field>
 …
 </base>
 <field name="dataType">LandingInfo</field>
 <field name="includedFields">
 String runway,long ATL
 </field>
…
</object>

getBeliefSetFields(58)

fieldname=“runway”

fieldType=“String”

fieldname=“ATL”

fieldType=“long”

Figure 4.25 getBeliefSetFields function example

 [123]

In order to illustrate, consider getIncludedFields function. This function receives as parameter the

id of an element in Prometheus and returns a list of Fields that contains information about the

type and name of each included field. Figure 4.26 shows an example when the getIncludedFields

function is called with id = 35 (the id of the runway_info data in Prometheus). The

getIncludedFields function calls fieldTokenizer function passing as parameter a String containing

included fields, and a String containing “,” that is the delimiter used to separate the included

fields. The fieldTokenizer function returns a list of Fields that contains the information about the

include fields (e.g. fieldType=“long”, fieldName=“ATL”).

4.3.5 XQuerySimilarityFunctions

The XQuerySimilarityFunctions class that extends XQuery with functions to compare

similarities between elements in the models. The XQuerySimilarityFunction contains functions

<object type="Data" id="35">
 <base type="Entity">
 <field name="name">runway_info</field>
 <field name="description"></field>
 <field name="uniqueId">35</field>
 </base>
 <field name="dataType">RunwayInfo</field>
 <field name="includedFields">
 long ATL,String aircraft,long ETA,boolean booking
 </field>
…
</object>

getIncludedFields(35)

call fieldTokenizer(“long ATL,String aircraft,long
ETA,boolean booking”, “,”)

List Field0

Field3

fieldType=“long”

fieldName=“ATL”

fieldType=“boolean”

fieldName=“booking”

…

Figure 4.26 getIncludesFields function example

 [124]

to verify if there is a creates traceability between two elements, verify if there is a creates

traceability relation between two elements, to verify if there is an uses traceability relation

between two elements, to verify if there is an overlaps traceability relation between two

elements, to compare if two list of elements are similar, to count the number of elements in list

that are similar to elements in the list B based on overlaps traceability relation, compare if two

list of elements are similar based on overlaps traceability relations, to compare if a capability in

JACK is similar to a capability in Prometheus, to compare if a data in Prometheus is similar to

a beliefSet in JACK, to compare if a SD resource in i* is similar to a message in Prometheus,

to verify if an element has an overlaps traceability relation with any element in a list A.

In order to illustrate, consider the isSimilar function. This function receives two lists of

elements and verifies if the number of elements in the list1 that have names that are synonym

to the names of elements in list2, is greater than a threshold. If the list1 is empty then isSimilar

function returns true. In order to illustrate, consider the example in Figure 4.27. The function

compares if the name of each element in list1 has a synonym with elements in list2. The only

element in list1 that does not have a synonym in list2 is “Login outgoing delivery”. In this case,

the percentage of elements in list1 that has a synonym in list2 is 66.7 that are greater than the

threshold (i.e. 40).

 [125]

4.3.6 XQuerySynonymsFunctions

The XQuerySynonymsFunctions class extends XQuery with functions to verify if names of

elements in the models are synonyms. The XQuerySynonymsFunctiions class contains

function to verify if a list A of strings contains another list B of strings based on synonyms, to

verify if a list A of strings contains a string based on synonyms, to verify if two strings are

synonyms, to break down a string into tokens.

In order to illustrate, consider isSynonyms function. This function receives as parameters str1

and str2 Strings. The isSynonyms function uses stringTokenizerByUpperCase function to break str1

and str2 in two lists of words, wordList1 and wordList2. The isSynonyms function call contains

function to each word in wordList1 to verify if the word is contained in the wordList2. A word

w is contained in the wordList2, if w is synonyms to a word in wordList2. Figure 4.28 shows

ListA

Element0 Element2

Element1

name=“Get
delivery options”

name=“Calculate
delivery time estimates”

ListB

Element0 Element2

Element1

name=“Place
Delivery Request”

name=“Compute Delivery
Time Estimates”

name=“Obtain
Delivery Options”

isSimilar(listA , listB, 40)

true

foreach (a in listA)
 foreach (b in listB)
 call isSynonyms(a,b)

synonyms
synonyms

…
isSynonyms(“Get delivery options”, “Obtain Delivery Options”)

name=“Login
outgoing delivery”

Figure 4.27 isSimilar function example

 [126]

an example when isSynonyms function receives as parameter “Get Delivery Options” and

“Obtain Delivery Options” Strings. The isSynonyms function uses stringTokenizerByUpperCase

function to break “Get Delivery Options” and “Obtain Delivery Options” in two lists of

words, {“Get”,“Delivery”,“Options”} and {“Obtain”, “Delivery”, “Options”}. The isSynonyms

function call contains function to Get, Delivery, and Options to verify if they are contained in

{“Obtain”, “Delivery”, “Options”}. Figure 4.29 shows an example when isSynonyms function

call contains function passing “Get” and {“Obtain”, “Delivery”, “Options”} as parameter. Get

is synonyms to “Obtain”, therefore the function returns true.

 [127]

wordList1

“Delivery”
“Options”“Get”

isSynonyms(“Get Delivery Options”, “Obtain Delivery Options”)

wordList2

“Delivery
“Options”“Obtain”

 call stringTokenizerByUpperCase (“Get Delivery Options”)
 call stringTokenizerByUpperCase (“Obtain Delivery Options”)

 call contains(“Get”, wordList2)
 call contains(“Delivery”, wordList2)
 call contains(“Options”, wordList2)

true

wordList

“Delivery”

“Options” “Obtain”

contains (“Get”, wordList)

true

Figure 4.28 isSynonyms function example

Figure 4.29 contains function example

 [128]

4.3.7 XQueryTAOMFunctions

The XQueryTAOMFunctions class extends XQuery with functions to manipulate elements

created by TAOM tool version 3.2. The XQueryTAOMFunctions class contains function to

return the attribute value of an element in TAOME, to return a list of sub-elements of an

element, to return a list of sub-goals and sub-tasks of an element and a function to return the

filename of the file that contains the TAOME file.

In order to illustrate, consider the getSubGoalsAndTask function. This function receives an id of

an element in i* and returns the sub-goals and sub-tasks that are part of means-end and

decomposition links with the i* element. If a sub-element has sub-elements then the function

calls itself recursively. Figure 4.30 shows an example when the function is called to retrieve

sub-elements of the Landing task (xmi:id = “_4cvccCQkEd6fbcmFsKI3Cw”) in i*. The

function returns a list of elements that consists of the Assign Slot, Initiate Approach and

Follow Approach elements.

 [129]

Figure 4.30 getSubGoalsAndTask function example

4.4 Retratos Tool
In order to support our traceability framework, we have developed a prototype tool to identify

missing elements and automatically generate traceability relations between i* and Prometheus,

and between Prometheus and JACK code, called Retratos. Retratos tool (see Figure 4.31)

allows the user to create a new project and to define the location of models and rules that will

be used during the generation of traceability relations and identification of missing elements.

Retratos tool supports also functionalities to generate reports of the traceability relations and

Landing

Follow
Approach

Assign Slot
Initiate

Approach

<TroposClasses xmi:id ="_4cvccCQkEd6fbcmFsKI3Cw”
name="Landing"…/>

List

Element0 Element2

name=“Assign Slot”

doc=“AirTrafficEnvironment.tropos”

type=“Task”

id=“_6-avACQkEd6fbcmFsKI3Cw”

getSubGoalsAndTask(_4cvccCQkEd6fbcmFsKI3Cw, null)

<TroposClasses xmi:id =" _6-avACQkEd6fbcmFsKI3Cw”
name="AssignSlot"…/>

…

 [130]

to visualise rules defined in the project, as well as an editor to create new rules. The rest of this

section describes how to use Retratos tool.

Figure 4.31 Retratos main menu

To start to use the tool the user has to select the File menu option followed (see Figure 4.32)

by the menu item New Project.

Figure 4.32 Creating a New Project

When the user selects the option New Project, a new window opens where the user can enter

the file name of the models and the rule used by the tool to generate traceability relations and

to identify missing elements. For instance, Figure 4.33 shows a new project created where the

user has entered airTrafficControl.tropos, airTrafficControl.pd, and rules.rul file names to

generate traceability relations and identify missing elements between airTrafficControl.tropos

(i* model) and airTrafficControl.pd (Prometheus model) using the rules defined in the

rules.rul file.

Figure 4.33 New Project window

 [131]

To generate traceability relations and to identify missing elements the user can select Run

menu option followed by the menu item Run (see Figure 4.34). The prototype tool executes

the project rules and it creates an output.xml file that contains traceability relations and the

missing elements.

Figure 4.34 Creating traceability relations and identifying missing elements

For instance, Figure 4.35 shows part of an output.xml file that contains the traceability

relation and missing information created by the prototype tool.

<?xml version="1.0" encoding="ISO-8859-1"?>
<Traceability>
 <TraceabilityRelation

 ruleID="rule1"
 degreeOfCompleteness="100"
 type="overlaps">

 <Element
 id="_vdOtUCQwEd6fbcmFsKI3Cw"
 name="Find Best Landing Time for an Aircraft"

 doc="file:///C:/airTrafficControl.tropos"
 type="SD Goal"/>
 <Element

 id="49"
 name="Find Best Land Time for an Aircraft"

 doc="file:///C:/airTraffic.pd"
 type="Prometheus Goal"/>
 </TraceabilityRelation>
 <TraceabilityRelation
 ruleID="rule1"
 degreeOfCompleteness="100"
 type="overlaps">
 <Element
 id="_vdOtUCQwEd6fbcmFsKI3Cw"
 name="Find Best Landing Time for an Aircraft"
 doc="file:///C:/airTrafficControlEnvironment3.tropos"
 type="SD Goal"/>
 <Element
 id="113"
 name="Landing"
 doc="file:///C:/airTraffic.pd"
 type="Prometheus Goal"/>
</TraceabilityRelation>
....
</Traceability>

Figure 4.35 output.xml file

 [132]

The tool allows the user to generate html reports from the output.xml file that contains the

traceability relations. The user can select the menu item to generate a simple html report (see

Figure 4.36) that contains the id of rule, the type of the element source and target, and the

name of the source and target elements.

Figure 4.36 – HTML Generator sub-menu item

Figure 4.37 shows part of the output generated by the tool when the user has selected the

HTMLGenerator menu item after the output.xml file has been created (see Figure 4.38).

Root element of the doc is Traceability
Total no of traceability relations : 85
<table class="sofT" cellspacing="0">
<td colspan="3" class="TopHed"> Traceability Relations Types between
Prometheus and JACK Artefacts</td>
<tr>
 <td class="helpHed">Rule ID</td>
 <td class="helpHed">SD Goal</td>
 <td class="helpHed">Goal</td>
</tr>
<tr>
 <td class="helpBod">rule1</td>
 <td class="helpBod">Allocate Runway Slot</td>
 <td class="helpBod">Allocate Runway Slot</td>
</tr>
<tr>
 <td class="helpBod">rule1</td>
 <td class="helpBod">Find Best Landing Time for an Aircraft</td>
 <td class="helpBod">Landing</td>
</tr>
<tr>
 <td class="helpBod">rule1</td>
 <td class="helpBod">Find Best Landing Time for an Aircraft</td>
 <td class="helpBod">Find Best Land Time for an Aircraft</td>
</tr>
<tr>
 <td class="helpHed">Rule ID</td>
 <td class="helpHed">SR Goal</td>
 <td class="helpHed">Goal</td>
</tr>
<tr>
 <td class="helpBod">rule3a</td>
 <td class="helpBod">Allocate Runway Slot</td>
 <td class="helpBod">Allocate Runway Slot</td>
</tr> ...

Figure 4.37 Simple HTML Report

 [133]

The user can combine the template shown in Figure 4.38 together with the retratos.css file (see

Figure 4.39) to present the result generated by the HTMLGenerator.

For instance, Figure 4.40 shows when the html report generated by the tool (see Figure 4.39) is

included in the HTML template (see Figure 4.38).

<html>
<head>
<link rel=stylesheet href="./retratos.css">
<title>Completeness Checking Rules between i* and
Prometheus Models</title>
</head>
<body>
 // To add file generated by the HTMLGenerator tool
</body>
</html>

table.helpT {
text-align: center; font-family: Verdana; font-weight: normal;
font-size: 11px; color: #404040; width: 500px;
background-color: #fafafa; border: 1px #6699CC solid;
border-collapse: collapse; border-spacing: 0px;}

td.TopHed {
border-bottom: 2px solid #6699CC; border-left: 1px solid #6699CC;
text-align: center; text-indent: 5px; font-family: Verdana;
font-weight: bold; font-size: 14px; color: #404040;
padding-top: 6px; padding-bottom: 6px;}

td.helpHed {
border-bottom: 2px solid #6699CC; border-left: 1px solid #6699CC;
text-align: center; text-indent: 5px; font-family: Verdana;
font-weight: bold; font-size: 11px; color: #404040; }

td.helpHedLeft {
border-bottom: 1px solid #6699CC; border-left: 1px solid #6699CC;
text-align: center; text-indent: 5px; font-family: Verdana;
font-weight: bold; font-size: 11px; color: #404040; }

Figure 4.38 HTML Template

Figure 4.39 – retratos.css file

 [134]

Figure 4.40 HTML Report using HTML template and retratos.css file

The user can also select the menu item to generate html report with the type of relations (see

Figure 4.41) that contains the id of the rule, the type of the element source and target, and the

name of the source and target elements.

Figure 4.41 HTMLGeneratorWith Types menu item

Figure 4.42 shows part of the output generated by the tool when the user has selected the

HTMLGenerator menu item after the output.xml file has been created (see Figure 4.35).

 [135]

The user can also combine the template shown in Figure 4.50 together with the retratos.css

file (see Figure 4.39) to present the result generated by the HTMLGeneratorWithTypes.

Figure 4.43 shows when the html report generated by the tool (see Figure 4.42) is included in

the HTML template (see Figure 4.38).

Root element of the doc is Traceability
Total no of traceability relations : 85
<table class="sofT" cellspacing="0">
<td colspan="4" class="TopHed">
Traceability Relations Types between Prometheus and JACK Artefacts
</td>
<tr>
 <td class="helpHed">Rule ID</td>
 <td class="helpHed">Type</td>
 <td class="helpHed">SD Goal</td>
 <td class="helpHed">Goal</td>
</tr>
<tr>
 <td class="helpBod">rule1</td>
 <td class="helpBod">overlaps</td>
 <td class="helpBod">Allocate Runway Slot</td>
 <td class="helpBod">Allocate Runway Slot</td>
</tr>
<tr>
 <td class="helpBod">rule1</td>
 <td class="helpBod">overlaps</td>
 <td class="helpBod">Find Best Landing Time for an Aircraft</td>
 <td class="helpBod">Landing</td>
</tr>
<tr>
 <td class="helpBod">rule1</td>
 <td class="helpBod">overlaps</td>
 <td class="helpBod">Find Best Landing Time for an Aircraft</td>
 <td class="helpBod">Find Best Land Time for an Aircraft</td>
</tr>
<tr>
 <td class="helpHed">Rule ID</td>
 <td class="helpHed">Type</td>
 <td class="helpHed">SR Goal</td>
 <td class="helpHed">Goal</td>
</tr><tr>
 <td class="helpBod">rule3a</td>
 <td class="helpBod">overlaps</td>
 <td class="helpBod">Allocate Runway Slot</td>
 <td class="helpBod">Allocate Runway Slot</td>
</tr>

Figure 4.42 HTML Report with Types

 [136]

Figure 4.43 HTML Report with types using HTML template and retratos.css file

The tool provides functionalities to visualize rules defined in the project and to create new

rules. The user can select the menu item Rules->Create New Rules-

>IstarPrometheusRule to create a new rule to generate traceability relations between i* and

Prometheus elements and to identify missing elements (see Figure 4.44).

Figure 4.44 IstarPrometheusRule menu item

Figure 4.45 shows the rule editor used to create Rule1 to identify traceability relations between

SD goals in i* and goals in Prometheus with priority equal to one.

 [137]

Figure 4.45 IstarPrometheus rule editor

The user can select the menu item Rules->Create New Rules->PrometheusJACKRule to

create a new rule to generate traceability relations between i* and Prometheus elements and to

identify missing elements (see Figure 4.46).

Figure 4.46 PrometheusJACKRule menu item

Figure 4.47 shows the rule editor used to create the Rule1 to identify traceability relations

between SD goals in i* and goals in Prometheus with priority equal to one.

 [138]

Figure 4.47 PrometheusJACK rule editor

The user can select the menu item Rules->Show Rules (see Figugre 4.48) to visualize the

rules used in the project.

Figure 4.48 Show Rules menu item

Figure 4.49 shows the rule viewer that shows the Rule1 to identify traceability relations

between SD goals in i* and goals in Prometheus with priority equal to one.

Figure 4.49 Rule Viewer

 [139]

4.5 Discussion

Our work is similar to the work in (Spanoudakis, et al., 2004), (Jirapanthong, et al., 2005),

(Jirapanthong, et al., 2009) given that it is based on the use of rules to generate traceability

relations between software artefacts. However, our work differs from these approaches with

respect to (i) the domain to which the work is applied (i.e., multi-agent systems), (ii) the way

that rules are specified and created, and (iii) the fact that it covers several phases of the

software development life-cycle (i.e., early requirements, design, and implementation phases).

The types of traceability relations used in our work are different from the ones suggested in

(Spanoudakis, et al., 2004) and (Jirapanthong, et al., 2009) given that they are concerned with

software models generated when using i* framework, Prometheus methodology, and JACK

language. Moreover, our work does not make use of grammatical roles of the terms that exist

in the software models since the documents of our concern do not have textual descriptions in

the form of sentences and paragraphs, as found in requirements specifications. Instead, our

work relies on rules that are based on the semantics of the artefacts and their relations. We use

WordNet dictionary to implement the synonym function as in Jirapanthong’s (Jirapanthong, et

al., 2009) work. However, in Jirapanthong’s work a term is passed to a function that retrieves a

list of synonyms for that term, while in our work we use a function to compare if all the terms

used in an artefact, or a property, are synonyms to all the terms used to define another artefact

or property. Our work also uses rules expressed in XML with embedded code in XQuery as in

the case of (Jirapanthong, et al., 2009). However, in our framework, the rules also support

completeness checking that can indentify missing elements in the models and can assist with

the completion of the models and fix discrepancies of names initially given to the elements.

Other differences are concerned with the use of a special attribute called

degreeOfCompleteness in traceability relations to measure the level of confidence on the

generated relations; and the use of XQuery to define the action to be executed if the condition

part of a rule is satisfied. Furthermore, we believe that the use of XQuery to specify rules is

simpler than the use of the XML-based mark-up language adopted in the work in

(Spanoudakis, et al., 2003), (Spanoudakis, et al., 2004).

Our work differs from the work in (Reiss, 2006) in various ways: (a) our rules identify specific

types of traceability relations and missing elements, instead of general consistency rules; (b) our

rules are described in an XML-based language in order to assist with the manipulation of XML

 [140]

elements; and (c) our artefacts are concerned with agent oriented software models, instead of

object-oriented models.

The work presented in (Alves-Foss, et al., 2002) is similar to our approach given that our

approach also uses XML to represent elements and traceability relations. Our approach uses

XQuery to define traceability rules while in Alves-Foss’ approach, rules are represented using

XSL.

4.6 Summary
In this chapter we have presented our rule-based traceability framework to support automatic

generation of different types of traceability relations and identification of missing elements

between different types of software models generated during the development of Agent

Oriented Systems. We have presented an overview of our framework, the different types of

rules used to support the generation of traceability relations and identification of missing

elements, extra functions that we have created to support the rules, and a description of a tool

that we have developed.

 [141]

Chapter 5 - Evaluation and Results

We evaluate our approach through three case studies namely (a) Automatic Teller Machine

(ATM), (b) Air Traffic Control Environment (ATCE), and (c) Electronic Bookstore (EB)

systems.

The selection of the case studies was based on the need to have a large size case study to

demonstrate scalability and the effectiveness of the tool in terms of recall and precision, to

have a medium size case study to demonstrate completeness checking and to have a small size

case to validate the rules. Initially, we identified the EB case study presented in (Padgham, et

al., 2004) that is a typical example of commerce electronic application. The ATCE case study is

a typical application of multi-agent systems. The ATM is small case study in a well known

application area.

The ATM system is composed of design models in Prometheus and code implemented in

JACK. The code used came from examples provided by AOS (http://www.agent-

software.com.au/products/jack/documentation_and_instructi/index.html). The Prometheus

model was build based on this code. The ATM is small case study that helps to demonstrate

the approach and show the approach is working.

The ATCE is composed of i*, Prometheus models and JACK code. The code used came from

examples provided by AOS (http://www.agent-

software.com.au/products/jack/documentation_and_instructi/index.html). The Prometheus

model was build based on these code and the i* model was build based on the Prometheus

model and documentation of Air Traffic Control Systems (Ljungberg, et al., 1992). The ATCE

was selected to demonstrate how the approach can use the information about the missing

elements to fix discrepancies between names given to elements in the different documents and

to improve completeness between software artefacts created during the development of multi-

agent systems.

The EB systems is composed of i* models, Prometheus design models, and JACK code. The

Prometheus model was based on the case study presented in (Padgham, et al., 2004). The i*

model was produced based on the general knowledge how a bookstore works and the JACK

 [142]

code was created based on the Prometheus model. The EB system is a medium-size scale case

study that was used to demonstrate that the approach can automatically generate traceability

relations.

We describe below the criteria for evaluating the work, an overview of the case studies, and the

results of the evaluation for each case study.

5.1 Criteria for Evaluation

Our work has been evaluated in order to demonstrate the hypotheses presented in Chapter 1.

More specifically, the work has been evaluated to demonstrate that the approach

(a) can automatically generate traceability relations for documents created during the

development of multi-agent systems

(b) can automatically identify missing elements in the documents created during the

development of multi-agent systems

(c) can use the information about missing elements to fix discrepancies between names

given to elements in the different documents and to improve completeness between

software artefacts created during the development of multi-agent systems

(d) can use the information about missing elements to improve the number of traceability

relations identified by the tool in other iterations

In order to evaluate hypotheses (a), we measured the recall and precision of the traceability

relations generated by the tool. The use of recall and precision measures to evaluate tools to

support automatic generation of traceability relations have been advocated in the literature

(Marcus, et al., 2003), (Marcus, et al., 2005), (Spanoudakis, et al., 2004), (De Lucia, et al., 2004).

We used the following standard defection of recall and precision given in (Marcus, et al., 2003).

 Precision =
M

MT || ∩

 [143]

Recall =
T

MT || ∩

where,

T is the number of traceability relations identified by the tool;

M is the number of traceability relations identified manually by the user (we assume that the

user find all correct relations);

|T ∩ M| is the number of common traceability relations identified by the tool and by the
user.

In order to evaluate hypotheses (b), we measure the recall and precision of the models used in

our case study, identify the missing elements, amend the models used in our case studies based

on the identified missing elements, and measure the recall and precision of the amended

models in order to verify if there have been changes in the recall and precision measures.

In order to evaluate (c), we present some examples where the information about missing

elements was used to fix discrepancies between names given to elements in the different

abstract levels of documentation and to improve completeness between software artefacts

created during the development of multi-agent systems.

In order to evaluate (d), we complete the models using the information about missing elements

and create a new set of the models. We use the tool to identify traceability relations in the new

created models, and measure recall and precision. We compare the results of recall and

precision with the previous results obtained for recall and precision.

In the next sections we present the Automatic Teller Machine, Air Traffic Control

Environment, and Electronic Bookstore case studies, with the results of their evaluation.

5.2 Automatic Teller Machine
5.2.1 Overview of the Case Study

This subsection describes the development of a multi-agent system to implement the

Automated Teller Machine (ATM) used as one of the case study in this thesis report. The

Automated Teller Machine (ATM) allows customers to carry out bank transactions without the

assistance of a teller. Examples of these transactions are: withdraw of cash, change of PIN,

execution of a payment, checking of account’s balance, printing statement, and transfer of

 [144]

money. The customer needs to insert a card in the ATM machine and enter a PIN code to use

one of the services provided by the ATM machine. When the customer inserts the card the

system reads the card details and shows a screen asking for a PIN number. The customer

enters the PIN number which is validated by the system. If the PIN number is correct the

system shows a screen with the services available for the customer. If the PIN number is not

correct the system requests the number again to the customer up to three times, when the card

is retained by the system.

When the customer selects withdraw cash option, the system shows withdraw cash screen. The

customer enters the amount of money that he/she would like to withdraw and then the system

processes the cash withdraw. The system requests the Bank authorization to execute the cash

withdraw. If the Bank approves the cash withdraw, the ATM machine dispenses the amount

of cash requested by the customer and prints a receipt. If the Bank does not approve the cash

withdraw, the ATM machine shows a message given details why the cash withdraw was not

authorized.

If the customer selects to change the PIN number, the ATM machine shows a screen where

the customer can enters a new PIN number. After the customer enters the new PIN number,

the ATM sends the new PIN number to the Bank.

 If the customer selects to make a payment, the ATM shows a screen where the customer can

enter details about the payment. The ATM sends details about the payment to the Bank to

execute the payment.

If the customer selects the balance account, the ATM requests the balance to the Bank and

then shows the balance on the screen.

If the customer selects to print a statement, the ATM requests the transactions done by the

customer to the Bank and then prints the details of the transactions.

 [145]

If the customer selects to transfer money, the ATM shows a screen where the customer can

enter details about the account to where transfer the money and the amount to be transferred.

The ATM sends the details about the money transfer to the Bank to execute the transfer.

Support Staff of the Bank periodically performs maintenance on the ATM machine. The

Support Staff are responsible to replace tonner when necessary, deposit cash into the ATM

machine when a low quantity of cash is received, add paper for the printer when alerted, and

perform other types of printer maintenance when necessary.

The ATM case study used in our work was developed using (a) Prometheus methodology to

create the system specification, analysis, and design models, and (b) JACK language to

implement the system.

The ATM case study was used in two different experiments. Firstly, we used the tool to

measure recall and precision and to execute completeness checking between Prometheus

models and JACK code. Secondly, we rectified the models based on the results of the

completeness checking execution and used the tool to measure new recall and precision of the

rectified models.

The next sections describe in detail the development of the ATM case study and its evaluation.

The ATM case study used in our work was developed using Prometheus methodology to

create the system specification, analysis and design models; and JACK language to implement

the system.

5.2.2 Artefacts

The Automatic Teller Machine (ATM) application case study consists of a multi-agent system

composed of two agents, namely ATM and Bank agents. It is composed of the following

Prometheus diagrams: (i) one Goal Overview diagram, (ii) one System Overview diagram, and

(iii) two Agent Overview Diagram.

Table 5.1 shows the number of elements vs. types of elements in Prometheus used in the

ATM case study.

 [146]

Type of the element Number of Elements
Agent 2
Action 5
Data 2
Goal 4

Message 3
Percept 3

Plan 4

Table 5.1 ATM elements in Prometheus

Table 5.2 shows the number of elements vs. types of elements in JACK used in the ATM case

study.

Type of the element Number of Elements
Agent 2

BeliefSet 5
Event 2
Plan 4

Table 5.2 ATM elements in JACK

The full representations of Prometheus diagrams and JACK code in XML for this case study

are shown in Appendix B.

5.2.3 Evaluation

The ATM case study was used to evaluate our work in order to:

 measure recall and precision of our tool;

 identify missing elements;

 show how the identified missing elements can support the development of the

system by increasing its recall.

It is important highlight that this case study was used to demonstrate the performance of the

tool in discovering and correcting defects in the models.

In order to demonstrate the above, we have (i) identified traceability relations between the

models manually, (ii) identified traceability relations between the models using our tool, (iii)

measured recall and precision by comparing the results in (i) and (ii), (iv) identified missing

 [147]

elements using our tool, (v) used the results in (iv) to manually complete the models creating a

new set of the models, (vi) used the tool to identify traceability relations and missing elements

in the new models created in (iv), and (vii) measured the recall and precision of the results in

(vi).

Our experiment has been conducted using 47 traceability rules to identify traceability relations

between Prometheus elements and JACK code and 16 completeness checking rules to identify

missing elements between Prometheus elements and JACK code, for the ATM case study.

Table 5.3 shows the results of our experiments for (i), (ii) and (iii) activities.

Number of relations identified by the engine |T| 31
Number of relations identified by the user |M| 64
Number of missing relations 33
Number of incorrect relations 0
Number of relations that intercept T and M 31
Recall 50%
Precision 100%

Table 5.3 Results of experiments for the ATM case study

As shown in Table 5.3, the experiment achieved 50% of recall and 100% of precision. The

table also shows that there were 33 missing traceability relations and 0 incorrect traceability

relations. The tool also returns information about missing traceability relations due to the

absence of the elements related to these relations in the models. The missing relations

identified by the tool are shown in Table 5.4. The number of missing relations identified by the

tool can be lower (i.e. 15) than the number of missing relations identified manually (i.e. 33).The

data of the traceability relations identified manually and by the tool is shown in the Appendix

C.

We used the information of the missing elements identified by the tool (see Table 5.4) to fix

inconsistencies and complete the models. As shown in Table 5.4, there were missing relations

between (a) JACK BeliefSet and Prometheus Data, (b) JACK Plan and Prometheus Plan, (c)

Prometheus Plan and JACK Plan, (d) Prometheus Goal and JACK Agent, and (e) Prometheus

Message and JACK Agent.

 [148]

Rule ID JACK BeliefSet Prometheus Data
RulePJ2cc1 Accounts
RulePJ2cc1 Balances
Rule ID JACK Plan Prometheus Plan

RulePJ3cc1 ProcessWithdraw
RulePJ3cc1 WithdrawApproved
RulePJ3cc1 WithdrawCash
RulePJ3cc1 WithdrawRejected
Rule ID Prometheus Plan JACK Plan

RulePJ3cc2 Withdraw Approved
RulePJ3cc2 Process Withdraw
RulePJ3cc2 Withdraw Cash
RulePJ3cc2 Withdraw Rejected
Rule ID Prometheus Goal JACK Agent

RulePJ5cc1 Request Approved
RulePJ5cc1 Request Rejected
RulePJ5cc1 Withdraw Money
RulePJ5cc1 Authorize Withdraw
Rule ID Prometheus Message JACK Agent

RulePJ12cc1 Withdraw

Table 5.4 Missing Information

More specifically, Table 5.4 shows that RulePJ2cc1 rule identifies missing traceability relations

between Accounts and Balances beliefSets in JACK and some data in Prometheus. We look

what data in Prometheus could be related to Accounts beliefSet and conclude that Accounts

beliefSet in JACK should be related to Accounts data in Prometheus. BeliefSets in JACK and

data in Prometheus are related when the name of the beliefSet and the name of data are

synonyms and included fields/aspects properties of the data is similar to the fields in the

beliefSet. Figure 5.1 and 5.2 shows that Accounts beliefSet has account and pin fields and no

included fields/aspects properties has been defined to the Accounts data .

Figure 5.1 Fields of the Accounts beliefSetAccounts Descriptor

<beliefSet id="b1" type="Accounts" extends="OpenWorld">
 <field declarationType="key" type="int" name="account"/>
 <field declarationType="value" type="int" name="pin"/>
...
</beliefSet>

 [149]

Similarly, we look what data in Prometheus could be related to Balances beliefSet. We

concluded that Balances beliefSet in JACK should be related to Balances data in

Prometheus. Figure 5.3 and 5.4 shows that Balances beliefSet has account and balance fields

and no included fields/aspects properties has been defined to the Balances data.

Figure 5.3 Balances beliefSet

Figure 5.2 Accounts Descriptor

<beliefSet id="b1" type="Balances" extends="OpenWorld">
 <field declarationType="key" type="int" name="account"/>
 <field declarationType="value" type="int" name="balance"/>
...
</beliefSet>

 [150]

We added accounts and balances to the included fields/aspects to the Balances data in

Prometheus.

Table 5.4 also shows (i) that RulePJ3cc1 rule identifies that there are missing traceability

relations between ProcessWithdraw, WithdrawApproved, WithdrawCash and

WithdrawRejected plans in JACK and plans in Prometheus; and (ii) that RulePJ3cc2 rule

identifies that there are missing traceability relations between Process Withdraw, Withdraw

Approved, Withdraw Cash and Withdraw Rejected plans in Prometheus and plans in

JACK. Based on this information we can determine that there are missing traceability relations

between ProcessWithdraw in JACK and ProcessWithdraw in Prometheus. Plans in JACK

and plans in Prometheus are related when the name of the plan in JACK and the name of plan

in Prometheus are synonyms, and the name of the element that triggers the plan in

Prometheus and the name of the event that the plan in JACK handles are synonyms.

Figure 5.4 Balances descriptor

<plan id="p1" name="ProcessWithdraw" extends="Plan">
<handlesEvent type="WithdrawRequest" ref="event"/>
...
</plan>

Figure 5.5 ProcessWithdraw plan

 [151]

We observed that ProcessWithdraw plan in JACK handles WithdrawRequest event (see

Figure 5.5) while no trigger properties has been defined to the Process Withdraw plan in

Prometheus (see Figure 5.6).

We added Withdraw Request message to the triggers properties of the Process Withdraw

plan. Similarly, we identified that a traceability relations between ProcessWithdraw plan in

JACK and ProcessWithdraw plan in Prometheus was missing. We identified that the

WithdrawRequest plan in JACK handles WithdrawResponse event (see Figure 5.7) while

no trigger properties has been defined to the Withdraw Approved plan in Prometheus (see

Figure 5.12).

We added Withdraw Response message to the triggers properties of the Withdraw

Approved plan.

Figure 5.6 Process Withdraw descriptor

<plan id="p2" name="WithdrawApproved" extends="Plan">
 <handlesEvent type="WithdrawResponse" ref="event"/>
...
</plan>

Figure 5.7 WithdrawApproved plan

 [152]

The experiment also shows that a traceability relation was also missing between Withdraw

Cash plan in JACK and Withdraw Cash in Prometheus. We found that WithdrawCash plan

in JACK handles Withdraw event (see Figure 5.9) while no trigger properties has been defined

to the Withdraw Cash plan in Prometheus (see Figure 5.10).

Figure 5.8 Withdraw Approved descriptor

<plan id="p3" name="WithdrawCash" extends="Plan">
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent type="Withdraw" ref="event"/>
...
</plan>

Figure 5.9 WithdrawCash plan

 [153]

 Figure 5.10 Withdraw Cash descriptor

We added Withdraw message to the triggers properties of the Withdraw Cash plan. A

traceability relation was also missing between Withdraw Rejected plan in JACK and

Withdraw Rejected plan in Prometheus. We found that WithdrawRejected plan in JACK

handles WithdrawResponse event (see Figure 5.11) while no trigger properties has been

defined to the Withdraw Rejected plan in Prometheus (see Figure 5.12).

<plan id="p4" name="WithdrawRejected" extends="Plan">
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent type="WithdrawResponse" ref="event"/>
...
</plan>

Figure 5.11 WithdrawRejected plan

 [154]

We added Withdraw Response message to the triggers properties of the Withdraw Rejected

plan.

Table 5.4 also shows that RulePJ5cc1 rule identifies missing traceability relations between

Request Approved, Request Rejected, Withdraw Money and Authorize Withdraw goals

in Prometheus and some agents in JACK. We examined Prometheus models and found that

we have not defined that Prometheus agents are supposed to achieve Request Approved,

Request Rejected, Withdraw Money and Authorize Withdraw goals. We updated the

model and defined that Request Approved, Request Rejected, and Withdraw Money goals

in Prometheus are achieved by Atm agent and Authorize Withdraw is achieved by Bank

agent.

Table 5.5 shows the results of our experiment after rectifying the documents and running the

tool for the new versions of the models.

As shown in Table 5.5, the experiment achieved 100% of recall and 100% of precision,

demonstrating an increase in the recall with respect to the initial results in the Table 5.3.

Number of relations identified by the engine |T| 64
Number of relations identified by the user |M| 64
Number of missing relations 0
Number of incorrect relations 0
Number of relations that intercept T and M 64
Recall 100%
Precision 100%

Table 5.5 Results of the experiments for the new models of the ATM case study

Figure 5.12 Withdraw Rejected descriptor

 [155]

5.3 Air Traffic Control Environment
5.3.1 Overview of the Case Study

This subsection describes the development of a multi-agent system to implement the Air

Traffic Control Environment used as a second case study in this thesis report. Air traffic

congestion is a global issue and several air traffic management systems have already been built

to alleviate this problem (Ljungberg, et al., 1992).

The air control environment consists of a system that implements arrival schedules at an

airport. The main goal of an air control environment is to find the best landing time for an

aircraft in order to alleviate congestion and its associated delays. A Feeder airport has the

responsibility to process traffic of aircrafts. A Feeder airport contains information about all

aircraft schedule arrivals that consists of the call sign (unique identifier of an aircraft used in

the radio communications), booking time, ETA (Estimate Times of Arrival) to use for

bookings, the arrival time at destination control area, and the ETA at control area entrance.

The feeder airport waits until the booking time has passed and then sends the information to

destination airport. A feeder aircraft receives update information about schedule changes such

as a takeoff discard of an aircraft.

An aircraft sends a message to the airport when it enters a control area of the airport

destination and waits until a runway has been allocated. To find the best landing time for an

aircraft, the airport manager first queries all runway managers for the “best landing time” for

an aircraft and then chooses one of them. After this, the airport manager notifies the decision

to the runway manager and to the aircraft. In order to maximize the number of aircrafts that

can land, faster aircraft that arrive later to the airport control area, push out earlier already

assigned slower aircraft. A new bidding occurs to allocate a runway slot for the slower aircrafts.

During the approaching to landing, the aircraft verifies continually if the runaway is still

available for the aircraft to land until the landing time (ATL) has passed.

The next sections describe in detail the development of the Air Traffic Control Environment

case study and its evaluation. The Air Traffic Control Environment case study used in our

work was developed using i* framework to model the organizational environment,

 [156]

Prometheus methodology to create the system specification, analysis and design models and

JACK language to implement the system.

5.3.2 Artefacts

The Air Traffic Control Environment case study has been modelled using one Goal Overview

diagram (see Figure 5.17) and four Capabilty Overview Diagrams (see Figure 5.19, Figure 5.20,

Figure 5.21, and Figure 5.22). It is composed of four agents, namely Aircraft, Airport, Feeder,

and Runway agents.

Table 5.6 shows the number of elements vs. types of elements in Prometheus used in the Air

Traffic Control Environment case study.

Type of the element Number of Elements
Agent 4

Capability 4
Goal 11

Message 4
Plan 10

Table 5.6 ATCE elements in Prometheus

Table 5.7 shows the number of elements vs. types of elements in i* contained in the Air

Traffic Control Environment case study.

Type of the element Number of Elements
Actor 4

Goal dependency 2
Resource dependency 3

Task 10
Goal 2

Resource 3
Table 5.7 ATCE elements in i*

Table 5.8 shows the number of elements vs. types of elements in JACK used in the Air Traffic

Control Environment case study.

Type of the element Number of Elements
Agent 4

BeliefSet 2
Capability 4

Event 4
Plan 10

Table 5.8 ATCE elements in JACK

 [157]

5.3.3 Evaluation

The Air Traffic Control Environment case study was used to evaluate our work in order to:

 measure recall and precision of our tool;

 identify missing elements;

 show how the identified missing elements can support the development of the

system by increasing its recall.

It is important highlight that this case study was used to demonstrate the performance of the

tool in discovering and correcting defects in the models.

In order to demonstrate the above, we have (i) identified traceability relations between the

models manually, (ii) identified traceability relations between the models using our tool, (iii)

measure recall and precision by comparing the results in (i) and (ii), (iv) identified missing

elements using our tool, (v) use the results in (iv) to manually to complete the models creating

a new set of the models, (vi) use the tool to identify traceability relations and missing elements

in the new models created in (iv), and (vii) measure the recall and precision of the results in

(vi).

Our experiment has been conducted using 47 rules to identify traceability relations between

Prometheus model and JACK code, 16 rules to identify missing elements between Prometheus

elements and JACK code, 40 rules to identify traceability relations between i* model and

Prometheus model, and 18 rules to identify missing elements between i* and Prometheus.

Table 5.9 shows the results of our experiments between Prometheus model and JACK code

for (i), (ii) and (iii) activities.

Table 5.10 shows the results of our experiments between i* model and Prometheus model for

(i), (ii), and (iii) activities.

Number of relations identified by the engine |T| 125
Number of relations identified by the user |M| 153
Number of missing relations 34
Number of incorrect relations 6
Number of relations that intercept T and M 119

 [158]

Recall 77.78%
Precision 95.2%

Table 5.9 Results of the experiments between Prometheus model and JACK code

Number of relations identified by the engine |T| 42
Number of relations identified by the user |M| 62
Number of missing relations 31
Number of incorrect relations 11
Number of relations that intercept T and M 31
Recall 50%
Precision 73.8%

Table 5.10 Results of the experiments between i* model and Prometheus model

The missing traceability relations between Prometheus model and JACK code returned by the

tool are shown in Table 5.11. The data of the traceability relations identified manually and by

the tool is shown in the Appendix D.

Rule ID JACK BeliefSet Prometheus Data
RulePJ2cc1 LandingInfo
RulePJ2cc1 RunwayInfo
Rule ID Prometheus Goal JACK Agent

RulePJ5cc1 Request Slot
RulePJ5cc1 Process Schedule for a Feeder
RulePJ5cc1 Schedule Arrival for a Feeder
RulePJ5cc1 Query Best Landing Time from All Runway Manager
RulePJ5cc1 Assign Runway
RulePJ5cc1 Find Best Land Time for an Aircraft
RulePJ5cc1 Push Out
RulePJ5cc1 Progresses an aircraft to Landing
RulePJ5cc1 Initiate Aircraft Approach
RulePJ5cc1 Assign Slot
RulePJ5cc1 Landing
Rule ID Prometheus Message JACK Agent

RulePJ12cc1 Traffic Event
RulePJ12cc1 Enter Control Area

 Table 5.11 Missing relations between JACK code and Prometheus model

In order to show how missing elements identified by the tool can assist with the software

development process (cases (iv) and (v)), missing relations given by the tool (see Table 5.11) fix

inconsistencies (e.g. to fix discrepancies between names given by the elements). As shown in

Table 5.11, there are missing relations between (a)JACK BeliefSet and Prometheus Data,

(b)Prometheus Goal and JACK Agent, and (c) Prometheus Message and JACK Agent.

 [159]

The rule RulePJ2cc1 identified that no overlaps traceability relations between LandingInfo and

RunwayInfo beliefSet in JACK and Prometheus data has been found. Based on this

information, we analysed the Prometheus model and then we concluded that included field

properties for RunwayInfo (i.e. long ATL, String aircraft, long ETA, booking Boolean) and

LandingInfo (i.e. String runway, long ATL) beliefsets in Prometheus model were missing to be

defined.

The rule RulePJ5cc1 shows that no achieves traceability relations between Request Slot,

Process Schedule for a Feeder, Schedule Arrival for a Feeder, Query Best Landing Time from

All Runway Manager, Assign Runway, Find Best Land Time for an Aircraft, Push Out,

Progresses an aircraft to Landing, Initiate Aircraft Approach, Assign Slot, and Landing goals

and Prometheus have been found (see Table 5.11). The goals achieved by an agent in

Prometheus have not been defined in the model.

Table 5.12 shows the results of our experiment after rectifying the models and running the

tool for the new versions of the models. As shown in Table 5.12, the experiment achieved

100% of recall and 100% of precision, demonstrating an increase in the recall with respect to

the initial results in Table 5.9.

Number of relations identified by the engine |T| 153
Number of relations identified by the user |M| 153
Number of missing relations 0
Number of incorrect relations 0
Number of relations that intercept T and M 153
Recall 100%
Precision 100%

Table 5.12 Results of the experiments for the new models of the ATCE case study

The missing relations between Prometheus model and i* model returned by the tool are

shown in Table 5.13. The data of the traceability relations identified manually and by the tool is

shown in the Appendix D.

Rule ID SD Goal Goal
rule1cc Allocate Runway Slot

Rule ID SR Goal ---
rule3cc Allocate Runway Slot

Rule ID SR Plan Prometheus Goal || Prometheus Plan ||

 [160]

Prometheus Role || Prometheus Action
rule4cc Request Runway
rule4cc Respond Runway Request
rule4cc Follow Approach
rule4cc Request Booking
rule4cc TakeOff Discard
rule4cc TakeOff

Rule ID Prometheus Goal SD Task | SD Goal | SR Task | SD Goal
rule4cc1 Request Slot
rule4cc1 Schedule Arrival for a Feeder
rule4cc1 Assign Runway
rule4cc1 Push Out
Rule ID Goal Agent

rule12
Rule ID SD Resource Percept | Message
rule50cc Slot Allocated
rule50cc ATL
Rule ID SD Goal Agent
rule59cc1 Allocate Runway Slot
Rule ID SR Goal Agent
rule59cc3 Allocate Runway Slot
Rule ID SR Task Agent
rule59cc4 Request Runway
rule59cc4 Respond Runway Request
rule59cc4 Follow Approach
rule59cc4 Request Booking
rule59cc4 TakeOff Discard
rule59cc4 TakeOff
Rule ID SD Goal Plan
rule60cc1 Allocate Runway Slot
Rule ID SR Goal Plan
rule60cc3 Allocate Runway Slot
Rule ID SR Task Plan
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Follow Approach
rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff
Rule ID SD Goal Capability
rule60cc1 Allocate Runway Slot

rule60cc1 Find Best Landing Time for an
Aircraft

Rule ID SR Goal Capability
rule60cc3 Allocate Runway Slot

rule60cc3 Find Best Landing Time for an
Aircraft

Rule ID SR Task Capability
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Landing

 [161]

rule60cc4 Assign Slot
rule60cc4 Initiate Approach
rule60cc4 Follow Approach
rule60cc4 Process Schedule for a Feeder
rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff

Table 5.13 Missing relations between i* and Prometheus model

The completeness checking rule rule1cc shows that there is a missing traceability relation

between Allocate Runway Slot SD Goal and a Prometheus goal. The rule rule3cc shows that

there is a missing traceability relation between Allocate Runway Slot SR Goal and a

Prometheus goal.

The rule rule4cc1 shows that no relation between Request Slot Prometheus goal and a SD

Task, or SD Goal, or SR Task, or SR Goal has been found. The action taken to correct this

discrepancy was to rename the name of Request Slot goal in the Prometheus model to Allocate

Runway Slot. We changed the name of Request Slot to Allocate Runway Slot to fix the

discrepancy between names and the traceability relation was identified.

The rule rule4cc shows that there are missing traceability relations between Request Runway,

Respond Runway Request, Follow Approach, Request Booking, TakeOff Discard, TakeOff

SR Tasks and Prometheus Goals. We added Request Booking and TakeOff Goal goals in the

Prometheus to complete the model. After analysing the models, we identified that there is a

missing relation between Follow Approach SR Task in i* and Progress an aircraft to Landing

in Prometheus model. To fix the discrepancy between the names given, we changed the name

in the Prometheus model from Progress an aircraft to Landing to Follow Approach Goal.

The rule rule4cc1 shows that there are missing traceability relations between Request Slot,

Schedule Arrival for a Feeder, Assign Runway, Push Out goals in Prometheus and SD Task, or

SD Goal, or SR Task, or SR Goal. There is a discrepancy between the names given to the

TakeOff Discard SR Task and Push Out goal in Prometheus. We changed the name of the SR

Task from TakeOff Discard to Push Out in the i* model. There is also a discrepancy between

the names given to Respond Runway Request SR Task and Assign Runway in Prometheus.

We changed the name of the Assign Runway goal in Prometheus to Respond Runway

Request. No traceability relation was found between Schedule Arrival for a Feeder Prometheus

 [162]

goal and a SD Task, or SD Goal, or SR Task, or SR Goal. We decide to remove it from the

Prometheus model. The Schedule Arrival for a Feeder is similar to the Process Schedule for a

Feeder goal (another action could be to add a SR goal in the in i* model that would have a

means-end relations with the Process Schedule for a Feeder). The traceability relation between

Request Runway SR Task in i* and Query Best Landing Time from All Runway Manager was

not identified by the tool. In order to fix this discrepancy between names we changed the

name from Runway Request in the i* model to Query Best Landing Time from All Runway

Manager.

The rule rule50cc shows that no traceability relation was identified between Slot Allocated and

ATL SD Resource in i* and a Percept or a Message in Prometheus. We identified that the

carried information ATL and Slot Allocated for the Aircraft Event message was missing. We

fix the incompleteness adding ATL and Slot Allocated to the carried information property of

Aircraft Event message.

The rule rule59cc1 shows that no traceability relation was identified between Allocate Runway

Slot SD Goal and a Prometheus Agent and the rule rule59cc3 shows that no traceability

relation was identified between Allocate Runway Slot SR Goal and a Prometheus Agent. We

added to the list of goals achieved by the Runway Prometheus Agent the Allocate Runway Slot

(named before by Request Slot).

The rule rule59cc4 shows that no traceability relation was identified between Request Runway,

Respond Runway Request, Follow Approach, Request Booking, TakeOff Discard, and Take

Off SR Tasks and agents in Prometheus. We added Query Best Landing Time from All

Runway Manager (before named as Request Runway) to the list of goals achieved by Airport

Prometheus Agent. No action was necessary for Request Runway Request and Follow

Approach. The goal name changed from Assign Runway to Respond Runway Request and

from Progresses an aircraft to Landing to Follow Approach resolved the incompleteness. We

added Request Booking to the list of goals achieved by Aircraft Prometheus Agent and

TakeOff and Push Out to the list of goals achieved by the Feeder Prometheus Agent.

Rule rule60cc1 shows that a relation is missing between Allocate Runway Slot SD goal and a

Prometheus plan and rule rule60cc3 shows that a relation is missing between Allocate Runway

 [163]

Slot SR goal and Prometheus plan. No action was necessary because the change of the Request

Slot goal name to Allocate Runway Slot fixed the inconsistency.

Rule rule60cc4 shows that relations are missing between Request Runway, Respond Runway

Request, Follow Approach, Request Booking, TakeOff Discard, and Take Off SR Tasks and

plans in Prometheus. We added Query Best Landing Time from All Runway Manager (before

named as Request Runway) to the list of goals achieved by Airport. No action was necessary

for Request Runway Request and Follow Approach. The goal name changed from Assign

Runway to Respond Runway Request and from Progresses an aircraft to Landing to Follow

Approach resolved the incompleteness. We added Request Booking and TakeOff to the list of

goals achieved by TakeOff Prometheus Agent. We added Push Out to the list of goals

achieved by the Takeoff Discard Prometheus Plan.

Rule rule60cc1 shows that relations are missing between Allocate Runway Slot and Find Best

Landing Time for an Aircraft SD Goal and a Prometheus Capability. The rule60cc3 shows that

relations are missing between Allocate Runway Slot and Find Best Landing Time for an

Aircraft SR Goal and a Prometheus Capability. We added Allocate Runway Slot goal to the list

of goals achieved by Runway Assigning and Find Best Landing Time for an Aircraft to the list

of goals achieved by Arrival Sequencing.

Rule rule60cc4 shows that relations are missing between Request Runway, Respond Runway

Request, Landing, Assign Slot, Initiate Approach, Follow Approach, Process Schedule for a

Feeder, Request Booking, TakeOff Discard, TakeOff SR Tasks in i* and Prometheus

Capability. We added Query Best Landing Time from All Runway Manager to the list of goals

achieved by Arrival Sequencing capability. We added Respond Runway Request to the list of

goals achieved by Runway Assigning. We added Landing, Assign Slot, Initiate Aircraft

Approach, and Follow Approach to the list of goals achieved by Flying capability. We added

Process Schedule for a Feeder, Request Booking, Push Out and Take Off Goal to the list of

goals achieved by the Feeder capability.

Table 5.14 shows the results of our experiment after rectifying the models and running the

tool for the new versions of the models. As shown in Table 5.14, the experiment achieved

 [164]

78.82% of recall and 94.36% of precision, demonstrating an increase in the recall with respect

to the initial results in Table 5.10.

We can observe also that the number identified by the user has changed from 62 to 71. This

occurs because the i* model and Prometheus model were modified by the creating of new

elements and by consequence new relations were identified.

Number of relations identified by the engine |T| 85
Number of relations identified by the user |M| 71
Number of missing relations 4
Number of incorrect relations 18
Number of relations that intercept T and M 67
Recall 94.36%
Precision 78.82%

Table 5.14 Results of the experiments for the new models of the ATCE case study

5.4 Electronic Bookstore
5.4.1 Overview of the Case Study

This section describes the development of a multi-agent system to implement an Electronic

Bookstore used as the third case study in this thesis report. The Electronic Bookstore allows

the main tasks of buying and delivering books.

More specifically, the Electronic Book store allows a customer to browse the catalogue of

books, buy books, search for books, and check the books delivery status. A customer starts a

new order by selecting a book from the catalogue page or from the search result to a book.

The customer specifies the quantity of books required and adds the book to the basket. The

customer can continue to add more books to the order. He can also cancel the order entirely.

Once the customer is satisfied with her (or his) selections, he (or she) checks out the order by

entering a credit card number, name, billing address, and shipping address. The system sends a

message to the credit card company to process the charge. If the credit card company

approves the charge, the shipping clerk (person that pack an order) receives a shipping order

and a label on their printer. The delivery company receives a message that an order will be

ready for pickup. The shipping clerk packs the order and scans the barcode to indicate if the

shipment is packed. The delivery company sends back a message to confirm when the order

will be picked up. A shipment clerk records each shipment picked up by the delivery company.

 [165]

The delivery company notifies the bookstore when the order has been delivered to the

customer. The bookstore then e-mails the customer to inform that the order has been (or

shortly will be) delivered.

The stock manager is a person that manages and controls the bookstore stock. The stock

manager requests for new items from publishers, stores received books, purchases new books,

updates catalogue of books, and controls inventory.

The sales manager is a person responsible for controlling the sale process and provides

customers services before, during and after a purchase. The tasks realised by a sales manager is

to keep prices competitive, reply to customer enquiries, and guarantee high level of customer

satisfaction.

The Electronic Bookstore case study was used in two different experiments. Firstly, we used

the tool to identify traceability relations between i* and Prometheus model (Cysneiros, et al.,

2007a) (Cysneiros, et al., 2007b). Secondly, we used the tool to identify traceability relations

and to execute completeness checking between Prometheus model and JACK code. Although,

we had used the same example for both experiments, the Prometheus model used by the

second experiment is much more elaborated and reflects the implementation of the Electronic

Bookstore in JACK.

The next sections describe in detail the development of the Electronic Bookstore case study

and its evaluation. The Electronic Bookstore case study used in our work was developed using

i* framework to model the organizational environment, Prometheus methodology to create

the system specification, analysis and design models and JACK language to implement the

system.

5.4.2 Artefacts

In i*, the Electronic Bookstore case study has been modelled using one Strategic Dependency

model (see Figure 5.23) and one Strategic Rationale model (see Figure 5.24).

Table 5.15 shows the number of elements vs. types of elements in i* contained in the

Electronic Bookstore case study.

 [166]

Type of the element Number of Elements
Actor 7

Goal dependency 14
Resource dependency 4

Task 29
Goal 14

Resource 3

Table 5.15 EB elements in i*

In Prometheus, the Electronic Bookstore has been modelled using one Goal Overview

diagram (see Figure 5.25), one Role Model diagram (see Figure 5.26), one System Overview

diagram (see Figure 5.1), one Use Case scenario (see Figure 5.27), five Agents Overview

diagrams, and 39 Capability Overview diagrams.

Table 5.16 shows the number of elements vs. types of elements in Prometheus used in the

Electronic Bookstore case study.

Type of the element Number of Elements
Action 18
Agent 6

Capability 39
Data 8
Goal 37

Message 34
Percept 23

Plan 39
Scenario 25

Table 5.16 EB elements in Prometheus

Table 5.17 shows the number of elements vs. types of elements in JACK used in the

Electronic Bookstore case study.

Type of the element Number of Elements
Agent 6

BeliefSet 10
Event 37
Plan 52

Table 5.17 EB elements in Prometheus

 [167]

The representation of Prometheus diagrams and JACK code in XML are presented in

Appendix D.

5.4.3 Evaluation

The Electronic Bookstore case study was used to evaluate our work in order to:

 measure recall and precision of our tool;

 identify missing elements;

 show the use of the approach in a medium to large scale size example.

It is important highlight that this case study was used to demonstrate the performance of the

tool in discovering trace relations.

In order to demonstrate the above, we have (i) identified traceability relations between the

models manually, (ii) identified traceability relations between the models using our tool, (iii)

measured recall and precision by comparing the results in (i) and (ii).

Our experiment has been conducted using 23 rules to identify traceability relations between i*

model and Prometheus model, 47 rules to identify traceability relations between Prometheus

model and JACK code, and 16 rules to identify missing elements between Prometheus

elements and JACK code.

Table 5.18 shows the results of our experiments between i* and Prometheus models for (i), (ii),

and (iii) activities.

Table 5.18 shows the results of the experiment. As shown in the table, the experiment

achieved 86,36% of recall and 89,41% of precision.

Number of relations identified by the engine |T| 85
Number of relations identified by the user |M| 88
Number of missing relations 12
Number of incorrect relations 9
Number of relations that intercept T and M 76
Recall 86,36%
Precision 89,41%

Table 5.18 Evaluation Results

 [168]

We have noticed that in our work the lower precision measurements occur when comparing

goals and tasks in i* SR and SD models with goals in Prometheus. This is due to the fact that

this comparison takes into consideration the similarity between sub-elements of goals and

tasks in i* and sub-elements of goals in Prometheus, for the sub-elements in the various levels

of the hierarchy. For instance, a sub-goal (or sub-task) E11 of a goal E1 in i* may be

incorrectly related to a goal E2 in Prometheus when the sub-elements of E2 match the sub-

elements of E11. However, in reality, the similarity exists between E1 and E2, instead of E11

and E2.

As an example, consider i* task “Place Order Online” in Figure 2 and Prometheus goal

“Arrange delivery” in Figure 3. An overlaps traceability relation is created between these two

elements given the fact that the sub-elements of “Arrange delivery” match sub-elements of

“Place Order Online”, although these elements do not refer to common aspects. We are

currently changing some of our rules to avoid this situation.

Table 5.19 shows the results of our experiments between Prometheus model and JACK code

for (i), (ii) and (iii) activities. The precision and recall calculated were 78,03% and 72,77%.

Number of relations identified by the engine |T| 651
Number of relations identified by the user |M| 698
Number of missing relations 190
Number of incorrect relations 60
Number of relations that intercept T and M 591
Recall 72,77 %
Precision 78,03 %

Table 5.19 Evaluation Results

The data of the traceability relations identified manually and by the tool is shown in Appendix

D.

5.5 Discussion
The measurements for recall and precision from the above case studies are encouraging and

comparable to recall and precision measurements achieved by other approaches that support

automatic generation of traceability relations (Antoniol, et al., 2002), (Jirapanthong, et al.,

 [169]

2005), (Spanoudakis, et al., 2004), although these approaches deal with different types of

models.

We recognized that the ideal it would have been used case studies that had been completely

developed by third parties. The lack of these case studies make necessary to us develop some

parts of the case studies. Although, we recognized the need to evaluate the approach with case

studies developed completely by third parties that does not invalidate the results obtained. We

developed the case studies using Prometheus methodology therefore we expected that other

analysts would arrive to similar models if they had followed the methodology. It was also

important to observe even when recall were low the missing element information helped to

improve the recall. That makes us to conclude that even when the recall results are low the

approach can helps to improve recall.

One question that could be raised is how the trace relations that are found manually can be

used as a reference point to calculate recall and precision when these relations are derived from

models inferred by the tool that are flawed and then stimulates changes to. The answer to that

question is that the tool does not identify what is incorrect in the models. The tool identifies

what is missing. The changes are to complete the models. We calculate recall and precision

before this model are changed and then after these models have been changed. It works as two

different experiments. Some of changes does not affect the number of relations identified

manually since they are properties that are missing and the user had how to it. For instance, in

Figure 5.6 the Process Withdraw plan receives the Withdraw Request message. The message is

not defined as trigger to the Process Withdraw plan, but it is only message received by the plan

the analyst can infer that message triggers the plan.

We also demonstrated for the ATM and ATCE case studies that the information about the

missing elements was useful to fix discrepancies between names given to elements in the

different abstract levels of documentation and to complete the models. The measurements for

recall and precision of the amended models improved in comparison with the measurements

for recall and precision for the original models.

Our experience has demonstrated that the implementation of the traceability and completeness

checking rules is time-consuming. However, rules created for one case study for certain types

 [170]

of documents can be used for other cases studies for the same types of documents. Therefore,

the created rules can be applied to other multi-agent systems developed using i*, Prometheus,

and JACK language.

The number of missing element rules implemented was not extensive. We believe that more

rules could have been created to make the process of amending the model automatically.

When we create rules to identify traceability relations we have to define an ideal threshold to

the degree of similarity between two elements required in order to create a traceability relation.

This ideal threshold is not known and can interfere with the precision and recall measures. We

did not make an exhaustive study to identify the ideal threshold for the various situations.

5.6 Threats of Validity
The threats for validity in the results of our evaluation are concerned with the fact that the

analysis of the recall and precision of the work was performed by the same person that

developed the traceability reference model for the documents of our concern, and the

traceability and consistency checking rules. We discuss below the process in which we

developed the traceability reference model and the rules, and how the above fact does not

invalidate the results of the evaluation of the work.

In our work, the traceability reference model was created based on different types of

traceability relations already proposed in the literature and the semantic of the different

elements in the agent-oriented models used in our work. Therefore, the reference model was

not adjusted to provide better recall and precision results, but was created independently of

any foreseen results.

The traceability and consistency checking rules were created for the different types of

traceability relations that we identified in the reference model taking into consideration the

semantics of the various elements in the agent-oriented models and syntactic ways for

describing the elements. Moreover, the specific models used to evaluate the work were chosen

from different domains with different degrees of complexity in order to demonstrate a certain

level of generalisation of the work when used in different examples. Furthermore, some of the

models used in the case studies were provided by third parties such as the Prometheus model

 [171]

for Electronic Bookstore case study and the JACK code for the ATM and ATCE case studies.

To construct the other models in the case study, we used the Prometheus methodology which

is a well adopted methodology to develop agent-oriented systems, instead of creating the

models in a way that will benefit the results of the evaluation.

Although the analysis of the results was executed by the same person that created the

traceability and consistency checking rules, the analysis considered the results provided by the

tool and the results of identifying the traceability relations manually. In the evaluation the

assumption was that the traceability relations and completeness checking identified manually

are the correct ones, and that the tool should try to identify, as much as possible, the same

results as the ones manually identified. Therefore, it was necessary to have a person with good

knowledge of the case studies and the traceability reference model to identify the traceability

relations and missing elements manually. Moreover, during the evaluation of the work, the

rules were not modified to improve recall and precision. Therefore, the person that created the

rules did not interfere with the results of the experiments.

Another relevant point is concerned with the validity of scale of the work. More specifically,

we are interested in evaluating if the success of the results of the work could be replicated in

other case studies. We have evaluated the approach in three different cases chosen with

distinct degrees of complexity and size in order to demonstrate that the approach scales and

can used in different domains and case studies. The results of our evaluation were similar

independently of the size, complexity, and type of the case studies.

In the work, we assume that analysts and programmers when creating software models in

general, and agent-oriented models in particular, can miss the description of certain properties,

elements, or relations between elements. To demonstrate that our work can support

completeness checking we analyse the suggestions made by the tool about missing elements,

modified the models used in the experiments with information about missing elements

provided by our tool that were correct, and run the traceability generation again to identify

relations involving the missing elements. We also use the modified documents to manually

identify any new set of relations involving the new added elements and calculate recall and

precision measures for the new sets of manually identified relations and the relations generated

by the tool. Therefore, the new set of manually identified traceability relations that are used as

 [172]

reference to calculate recall and precision are based on analysis and verification of the

suggestions returned by the tool.

5.7 Summary
This chapter have presented the results of evaluating our framework using three case studies

namely (a) Automatic Teller Machine (ATM), (b) Air Traffic Control Environment (ACTE),

and Electronic Bookstore (EB) systems. We describe the criteria for evaluation used to

demonstrate the hypotheses of our research. For each case study, we presented a brief

description, the created artefacts, and the results of the evaluation. Finally, we discussed the

results obtained and compared these with other approaches.

 [173]

Chapter 6 - Conclusion and Future Works

In this chapter, we present the conclusions, findings, and future works of this thesis report. In

Section 6.1, we describe what was presented in this thesis. Section 6.2 shows how we achieve

our hypotheses. Section 6.3 reviews the objectives of our work. In Section 6.4, we describe the

contributions of this thesis. Section 6.5 shows possible directions for future works. Finally,

Section 6.5 gives some final remarks.

6.1 Overall Conclusions
This thesis presented an approach to automatically identify traceability relations and missing

elements in software models created during the development of multi-agent systems. In

particular, we concentrate our work in software models generated when using i* framework to

represent the early requirements phase, Prometheus methodology to create analysis and design

models, and JACK language to implement multi-agent systems.

Initially, in Chapter 2 we presented an overview of the software traceability research area. We

defined what is software traceability, why traceability is important, and surveyed the main types

of approaches to capture traceability relations semi- and automatically. We also discussed

about the different classifications that have been proposed for different types of traceability

relations and the various traceability reference models proposed in the literature. We reviewed

some techniques to visualise, maintain, and use traceability relations.

In Chapter 3, we described the traceability reference model used in our work. First, we

described the methodology that we based our work to develop multi-agent systems with its

main software models and artefacts. Second, we defined different types of traceability relations

associated with the artefacts of our concern and give some examples of these traceability

relations. We proposed nine different types of traceability relations for artefacts composing the

models i* framework, Prometheus methodology, and the JACK language specifications. These

traceability relation types are: satisfiability dependency, overlaps, evolution, implements,

refinement, containment, similar, and different.

In Chapter 4, we presented our rule-based traceability framework to support (a) automatic

generation of traceability relations of the types identified in Chapter 3 and (b) automatic

 [174]

identification of missing elements in the models of our concern. Our approach is rule-based

and makes use of traceability and completeness checking rules specified in an extension of

XQuery language. These rules support the identification of traceability relations and missing

elements in the models generated during the development of multi-agent systems. We gave an

overview of the traceability framework and explained the process on how to use the

framework. We presented the traceability and completeness checking rules and gave some

examples of these rules. We specified a list of functions created in Java to extend XQuery in

order to specify traceability and completeness checking rules. We also described the prototype

tool that we have developed to support the traceability framework.

In Chapter 5, we evaluated our traceability framework in three different case studies, namely

(a) Automatic Teller Machine (ATM), (b) Air Traffic Control Environment (ATCE), and (c)

Electronic Bookstore (EB) systems. We evaluated our work in terms of recall and precision

measurements. We also evaluated how the identification of missing elements by our

framework can increase precision of the traceability relations after amending the models with

the information identified about the missing elements. The recall and precision measurements

in our evaluation were encouraging and comparable to recall and precision measurements

achieved by other approaches that support automatic generation of traceability relations

(Antoniol, et al., 2002), (Jirapanthong, et al., 2005), (Spanoudakis, et al., 2004), although these

approaches deal with different types of models and case studies.

Table 6.1 shows a summary of the results of recall and precision of our experiments. As shown

in the table, recall measurements range between 50% – 100 % and precision measurements

range between 73.80% – 100%. The headings of the columns in the first row of the table

represent each of the different case studies and their respective executions, as explained below.

 ATM1 ATM2 ATCE1 ATCE2 ATCE3 ATCE4 EB1 EB2

Recall 50% 100% 77.78% 100% 50% 94.36% 86.36% 72.77%

Precision 100% 100% 95.20% 100% 73.80% 78.82% 89.41% 78.03%

Table 6.1 – Results of the experiments

ATM1 – results of the first round of experiments between Prometheus model and JACK code

for the Automated Teller Machine case study.

 [175]

ATM2 – results of the second round of experiments between Prometheus model and JACK

code for the Automated Teller Machine case study, after amending the models based on the

identified missing elements in the first round of the experiments (ATM1).

ATCE1 – results of the first round of experiments between Prometheus model and JACK

code for the Air Traffic Control Environment case study.

ATCE2 – results of the second round of experiments between Prometheus model and JACK

code for the Air Traffic Control Environment case study, after amending the models based on

the identified missing elements in the first round of the experiments (ATCE1).

ATCE3– results of the first round of experiments between i* and Prometheus models for the

Air Traffic Control Environment case study.

ATCE4 – results of the second round of experiments between i* and Prometheus models for

the Air Traffic Control Environment case study, after amending the models based on the

identified missing elements in the first round of the experiments (ATCE3).

EB1 – results of the first round of experiments between i* and Prometheus models for the

Electronic Bookstore case study.

EB2 – results of the first round of experiments between Prometheus model and JACK code

for the Electronic Bookstore case study.

The results of recall and precision measurements in our evaluation are encouraging and

comparable in terms of absolute values with the recall and precision measurements achieved

by other approaches that support automatic generation of traceability relations (Marcus, et al.,

2003), (Zisman, et al., 2002), (Zisman, et al., 2003), (Spanoudakis, et al., 2004). It has to be

noted, however, that these other approaches consider different types of documents and

different case studies.

For example, in (Zisman, et al., 2002), (Zisman, et al., 2003), (Spanoudakis, et al., 2004), the

authors evaluated their rule-based approach for automatic generation of traceability relations in

a case study of a family of software-intensive TV systems and in a case study for a university

 [176]

course management system composed of requirements documents, use case models, and

analysis object models represented as a UML class diagram. In this work, the results of recall

and precision measurements range between 50% and 95% for a family of software-intensive

TV systems and for a university course management system case studies used to evaluate a rule

based approach proposed in (Zisman, et al., 2002), (Zisman, et al., 2003), (Spanoudakis, et al.,

2004) . Traceability relations identified were between requirements statements, use cases, and

analysis object model. Recall measurements range between 65.4% – 92.0% and precision

measurements range between 81.0 – 90.5% (See Table 6.2) for a mobile phone product line

system case study used to evaluate a rule base approach proposed in (Jirapanthong, et al.,

2005). Traceability relations were identified between feature, subsystem, process, use cases,

class diagram, statechart, and sequence diagrams used to represent a product line system.

 Case 1 Case 2 Case 3 Case 4 Case 5 Average

Precision 90.5 89.8 81.6 81.0 83.4 85.3

Recall 92.0 90.6 85.4 65.4 83.4 83.3

Table 6.2 Results of the experiments

It is difficult to compare results of precision and recall measurements obtained from

experiments using information retrieval techniques to identify traceability relations with recall

and precision measurements from experiments using rule base approaches, since precision and

recall values depend on the use of threshold or cut point values.

To select candidate traceability relations, these approaches consider traceability relations

between artefacts that have a degree of similarity greater than a pre-defined threshold or make

use of cut points of ranked traceability relations in which only the n top best ranked relations

are selected. However, the specification of threshold values is difficult, because recall improves

with the increment of the threshold, but precision deteriorates with the decrement of the

threshold. Similarly, the decision of what should be the cut point is also difficult, since recall

improves with the increment of the cut point, but precision deteriorates with the increment of

the cut point. In general, an initial threshold (or cut point) value is selected and this value is

modified (incremented or decremented) until an ideal value is found.

 [177]

Table 6.3 shows recall and precision measurements when the threshold is equal to 0.60%,

equal to 0.65%, and 0.70% for an experiment with a case study of the LEDA system (Library

of Efficient Data types and Algorithms) used to evaluate an information retrieval approach

applying Latent Semantic Indexing method (LSI) (Marcus, et al., 2003). Recall is equal to

42.98% and precision is equal to 71.01% when the threshold is equal to 0.60%. Recall is equal

to 53.97% and precision is equal to 59.65% when the threshold is equal to 0.65%. Recall is

equal to 42.63% and precision is equal to 71.05% when the threshold is equal to 0.70%. Table

6.4 show recall and precision measurements when a cut point is used to select the candidate

relations. Recall is equal to 59.65% and precision is equal to 77.27%, is equal to 53.98% and

precision is equal to 83.33%, 40.53% and precision is equal to 93.86%, is equal to 30.97% and

precision is equal to 95.61% when the cut point is equal to 1, 2, 3 and 4, respectively.

Threshold Precision Recall

0.60 42.98% 71.01%

0.65 53.97% 59.65%

0.70 71.05% 42.63%

Table 6.3 – Results of LEDA case study using threshold

Cut Point Precision Recall

1 77.27% 59.65%

2 53.98% 83.33%

3 40.53% 93.86%

4 30.97% 95.61%

Table 6.4 Results of the experiments

As shown in the table 6.1, our framework achieves positive results, with 100% of recall and

precision in some specific cases. Moreover, apart from automatic generation of traceability

relations, our framework also allows automatic identification of missing elements between the

models (completeness checking) and, therefore, provides a better support for the development

of multi-agent systems. The results of our experiments have demonstrated our hypotheses (see

Chapter 6.2).

 [178]

6.2 Hypotheses

In this section, we review the hypotheses of our work described in Chapter 1 and show how

we achieved our initial hypotheses. Here, we present the hypotheses again for your reference.

Hypothesis: We can use rules to identify traceability relations between software artefacts created during the

development of multi-agent systems using a model driven approach.

We demonstrated the hypothesis using recall and precision measurements. A possible threat of

validity is that in our experiments the same person that created the diagrams is the same

person that created the rules. We believe that our findings would be similar even if the person

that created the rules was different from the person that created the diagrams. This is

supported by the fact that the rules are created based on the Prometheus methodology and the

person that created the diagrams follows the Prometheus methodology. Another person

following Prometheus methodology would follow the same guidelines and arrive to similar

results.

We have developed a framework and a prototype tool based on the use of several rules to

support the automatic generation of nine different types of traceability relations in software

models created when using the i* framework, Prometheus methodology, and JACK language.

The evaluation of our work showed high level results for recall (50%-100%) and precision

(73.8%-100%) measurements.

As defined in the Section 5.1, precision is the percentage of correct relations identified by the

tool and recall is the percentage of relevant relations identified by the tool. Therefore, precision

and recall measures were used to demonstrate that the tool can identify traceability relations

between software artefacts created during the development of multi-agent systems modelled

using i* framework, Prometheus methodology, and JACK language.

Table 6.1 show recall and precision measurement for Automatic Teller Machine (ATM), Air

Traffic Control Environment (ATM), and Electronic Bookstore (EB) case studies. The lowest

value of recall is 50% for ATM1 and ATCE3 that represent recall measurements before to use

the missing elements information to complete the models and to fix discrepancies between

names. All the other recall measurements are above 70%. After to use the missing elements

 [179]

information to complete the models and to fix the discrepancies of names for the ATM and

ATCE case studies, the lowest recall measurement value is 72.77% for EB2 where the

information about missing elements were not used to complete the models and to fix

discrepancies between names.

The lowest value of precision is 73.80% for ATCE3 case study. All the other precision

measurements are above 78%. After to use the missing elements information to complete the

models and to fix the discrepancies between names for the case studies, the lowest precision

measurement value is 78.03% for EB2 case study.

As discussed, measures of recall and precision for Automatic Teller Machine (ATM), Air

Traffic Control Environment (ATM), and Electronic Bookstore (EB) case studies were

encouraging and comparable to recall and precision measurements achieved by other

approaches that support automatic generation of traceability relations (Antoniol, et al., 2002),

(Jirapanthong, et al., 2005), (Spanoudakis, et al., 2004).

Hypothesis: We can use rules to identify missing elements between software artefacts created during the

development of multi-agent systems using a model driven approach.

We created several rules to support the automatic identification of missing elements in

software models created when using the i* framework, Prometheus methodology, and JACK

language. The ATM and ATCE case studies were used to demonstrate this hypothesis. The

table 5.4 shows a list of missing elements to the ATM case study and tables 5.11 and 5.13 show

a list of missing elements to the ATCE case study.

Hypothesis: We can use the information about missing elements to fix discrepancies between names given to

elements in the different abstract levels of documentation and to improve completeness between software artefacts

created during the development of multi-agent systems using a model driven approach.

Our framework and prototype tool adopts a process in which information about the identified

missing elements is used to amend the models and the new versions of the models are used to

generate new traceability relations.

 [180]

For instance in the ATCE case study, the rule rule4cc shows that there is a missing traceability

relations between Follow Approach and a Prometheus Goal. After analysing the models, we

identified that there is a missing relation between Follow Approach SR Task in i* and Progress

an aircraft to Landing in Prometheus model. To fix the discrepancy between the names given,

we changed the name in the Prometheus model from Progress an aircraft to Landing to

Follow Approach Goal.

Hypothesis: We can use the information about missing elements to improve the number of traceability

relations identified by our approach.

The results of generating traceability relations in the amended models, based on the identified

missing elements by our framework and tool, show an increase in the precision and recall

measurements in our case studies. Table 6.5, Table 6.6, and Table 6.7 show that the number of

traceability relations increase when the information about the missing elements is used to

amend the models and to fix discrepancies in names of the artefacts, for our three case studies.

More specifically, Table 6.5 shows that the number of traceability relations increases from 31

to 64 with recall measurement increasing from 50% to 100%, for the Automatic Teller

Machine case study. In this case there was no change of precision measurements given an

initial 100% measurement.

ATM1 ATM2

Recall 50% 100%

Precision 100% 100%

Relations 31 64

Table 6.5 Number of traceability relations identified for the ATM case study

Table 6.6 shows that the number of traceability relations increases from 125 to 153 with recall

measurements increasing from 77.78% to 100% and precision measurements increasing from

95.20 to 100%, for the Airtrafic Control Environment case study.

ATCE1 ATCE2

Recall 77.78% 100%

Precision 95.20% 100%

Relations 125 153

Table 6.6 Number of traceability relations identified for ATCE case study

 [181]

Table 6.7 shows that the number of traceability relations increases from 42 to 85 with recall

measurement increasing from 50% to 94.36% and precision measurement increasing from

73.8.0 to 78.82%, for the Eletronic Bookstore case study.

ATCE3 ATCE4

Recall 50% 94.36%

Precision 73.80% 78.82%

Relations 42 85

Table 6.7 Number of traceability relations identified for the ATCE case study

6.3 Objectives

In this section, we review the objectives of our work described in Chapter 1. Here, we present

the objectives again for your reference.

Objective 1: To define traceability relation types

We defined nine different types of traceability relation for artefacts in the software models

created when using i* framework, Prometheus methodology, and JACK code specifications.

These traceability relation types are: overlaps, contributes, uses, creates, achieves, depends on,

composed of, send and receives.

Objective 2: To create a reference model that defines traceability relations between artefacts in

i* and Prometheus and between artefacts in Prometheus and JACK code.

We created a traceability reference model for traceability relations between i* and Prometheus

artefacts and a traceability reference model for traceability relations between Prometheus and

JACK code artefacts.

Objective 3: To create a set of rules to identify missing elements and traceability relations

between i* and Prometheus artefacts

Objective 4: To create a set of rules to identify missing elements and traceability relations

between i* and Prometheus artefacts and between Prometheus and JACK artefacts.

 [182]

We created a set of traceability and completeness checking rules to identify traceability

relations and missing elements between (a) i* and Prometheus artefacts and (b) Prometheus

and JACK code artefacts.

Objective 5: To develop a prototype tool to identify missing elements and that automatically

generates traceability relations between i* and Prometheus and between Prometheus and

JACK code models. A prototype tool has been implemented.

Objective 6: To evaluate the approach in several case studies

We evaluated the framework and prototype tool in three different small to large-size case

studies, namely (a) Automatic Teller Machine (ATM), (b) Air Traffic Control Environment

(ATCE), and (c) Electronic Bookstore (EB) systems. Each of these case studies demonstrated

a different aspect of our work.

6.4 Contributions
The work described in this thesis contributes in general to the broader area of agent oriented

software engineering in three main aspects. More specifically, it provides a traceability

reference model for documents generated during the development of multi-agent systems, it

supports the automatic generation of nine different types of traceability relations between the

various artefacts created during the development of multi-agent systems, and it supports

completeness checking of these various artefacts.

As discussed in (Ramesh, et al., 2001), (Dick, 2002), (Spanoudakis, et al., 2005), a traceability

reference model in which the semantic of traceability relations are specified helps with the

execution of richer analysis about traceability relations and assists with certain software

engineering activities such as maintenance, impact analysis, and reuse. To the best of our

knowledge, no traceability reference model that covers all the stages of the development life-

cycle of multi-agent systems based on the use of i* framework, Prometheus methodology, and

JACK code has been proposed.

Pinto et al. proposed a traceability reference model for the Tropos methodology (Pinto, et al.,

2005). This reference model offers a higher level of granularity for the types of traceability

relations when compared to our traceability reference model.

 [183]

We developed a rule-based approach to automatically generate traceability relations and

identify missing elements in software artefacts produced during the development of multi-

agent systems using i* framework, Prometheus methodology, and JACK code.

The developed work uses an attribute to indicate the level of confidence in a generated

traceability relation (degreeOfCompleteness) between two artefacts. This information can be used

to support analysis of the related artefacts.

Our approach also executes completeness checking. The approach executes completeness

checking in two different ways. The first method is to identify what elements are missing to be

created in the target model from the source model perspective, or vice-versa. The second

method is when traceability relations are created between two elements and some

incompleteness is found because some discrepancies of names, properties, sub-elements or

relations are missing.

6.5 Future Work

The work presented in this thesis opens a number of possible directions for further

investigations. We describe in this section future work that needs to be developed in order to

improve the approach and increase its benefits.

 Traceability visualisation tool

 GUI tool to support completeness checking

 Evolution of traceability relations

 Translator between JACK code in XML

 Support for other modelling and programming languages

 Graphical editor for traceability rules tool to support customisation of rules

 Graphical tool to support the creation of rules

 [184]

Traceability visualisation tool

In our research, we only address the problem of identifying traceability relations. We believe

that it would be beneficial to extend our framework and tool to support visualisation of

traceability relations. Our experience has shown that a large number of traceability relations

can be generated for the various models and it will be important to have a better way of

visualising and manipulating these relations. The current version of our tool allows the creation

of HTML reports of traceability relations to be displayed on a browser, but this is very limited.

Marcus et al. discuss and propose in (Marcus, et al., 2003) a set of high level requirements for a

tool that support visualisation of traceability relations such as i) allow the user to browse the

traceability relations through various types of user interactions; ii) allow the user to add,

remove, and modify properties of existing traceability relation and their related artefacts; iii)

integration with tools used to develop, test and maintain the system; iv) capture and maintain

browsing history for traceability relations; v) provide comprehensive configuration

management and change tracking facilities; vi) support various data representation formats; vii)

support user querying and filtering of the traceability relations; viii) offer flexible and user

customizable view of the traceability data; ix) provide tools to analyse and summarize the data

on the traceability process and relations.

GUI tool to support for completeness checking activity

In our approach, we only point out the missing information and discrepancies between names

of the elements. The action to complete the models or to fix the discrepancies has to be done

manually. We believe that a tool could be developed to support in the activity of complete the

models and to fix the discrepancies suggesting actions or even executing actions semi-

automatically or automatically.

Evolution of traceability relations

We did not address the problem of evolution of the traceability relations in our research. There

are several works that address this problem (Cleland-Huang, et al., 2003), (Sharif, et al., 2007),

(Murta, et al., 2006a), (Murta, et al., 2006b). One solution it would be to investigate if our

approach could be integrated with one of those approaches.

 [185]

Translator between JACK code in XML

Some work has been done in the direction to create a translator to transform JACK code in

plain/text into XML format. The implementation of the translator has not been completed. A

translator to transform JACK code in plain/text into XML format has been implemented as

part of a final year project by an undergraduate student. The tool does not cover all the

elements in JACK language that is required by our approach and the XML does not fit

completely to the requirements of our approach. We could modify the tool created to meet the

requirements of our approach.

Support for other modelling and programming languages

One of the challenges in the development of multi-agent systems is to provide support to the

vast number of methodologies, platforms, tools, and languages available to develop multi-

agent systems. Our approach supports models created when using i* framework, Prometheus

methodology, and JACK code. In particular, the traceability and completeness checking rules

used in our work can supports i* models created using TAOME tool (TAOME4E, 2008) and

Prometheus model created using PDT tool (PDT, 2010). Moreover, the use of an XML and

XQuery-based approach has shown that it is possible to deal with heterogeneous models

generated by different tools and with different semantics. We believe that our approach is

general enough to be adapted for other types of artefacts that may be generated when using

other methodologies, frameworks, or platforms for the development of multi-agent systems.

Graphical editor for tool to support customisation of rules

We believe that different organizations, projects and stakeholders have different needs in terms

of traceability. In our approach, we created a traceability reference model that can be

customised to specific needs. The tool could allow the user to select the rules to use in a

project and provide mechanisms to select what rules to use based on specific criterion such as

type of relations, or artefacts. At the present, no support is provided to the selection of the

rules. The user has to manually create a file with all the rules that are executed by the tool.

 [186]

Graphical tool to support the creation of rules

Our approach relies on the use of traceability and completeness checking rules specified in an

extension of XQuery. We agree that the creation of these rules is not a straight forward activity

and requires knowledge of XQuery, and use of some extra functions. To make the approach

more flexible, it would be interesting to provide an editor to support the creation of traceability

and completeness checking rules using graphical approaches such as the functionality provided

by Microsoft Access to support the creation of queries graphically (Microsoft Corp., 2010). We

provide a template for the rules that can be used as a basis of a rule tool editor.

6.5 Final Remarks
During the development of multi-agent systems a large number of artefacts are produced and

the relation between these artefacts is complex and difficult to identify manually. This thesis

presented an approach to support automatic generation of traceability relations and to support

completeness checking between software artefacts created during the development of multi-

agent systems using the BDI architecture. Chapter 2 we presented an overview of the software

traceability research area. In Chapter 3, we described the traceability reference model used in

our work. Chapter 4 described our rule-based traceability framework to support (a) automatic

generation of traceability relations of the types identified in Chapter 3 and (b) automatic

identification of missing elements in the models of our concern based. In Chapter 5, we

evaluated our traceability framework in three different case studies, namely (a) Automatic

Teller Machine (ATM), (b) Air Traffic Control Environment (ATCE), and (c) Electronic

Bookstore (EB) systems.

 [187]

Bibliography

Agent Oriented Software Limited. (2010). JACK white paper. Retrieved December,

2010, from http://www.aosgrp.com/downloads/JACK_WhitePaper_UKAUS.pdf

Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., & Shaham-Gafni, Y. (2006). Model

traceability. IBM Systems Journal, 45(3), 515-526.

Almeida, J., Iacob, M., & Eck, P. (2007). Requirements traceability in model-driven

development: Applying model and transformation conformance. Information Systems

Frontiers, 9(4), 327-342.

Alves-Foss, J., Conte de Leon, D., & Oman, P. (2002). Experiments in the use of XML to

enhance traceability between object-oriented design specifications and source code.

Proceedings of the 35th Annual Hawaii International Conference on System Sciences

(HICSS'02) – Volume 9.

Amazon.com. (2010). Help. Retrieved December, 2010, from

http://www.amazon.com/gp/help/customer/display.html

Antoniol, G., Canfora, G., & de Lucia, A. (1999). Maintaining traceability during object-

oriented software evolution: A case study. Proceedings of the IEEE International

Conference on Software Maintenance, 211-219.

Antoniol, G., Caprile, B., Potrich, A., & Tonella, P. (2001) Design-code Traceability

Recovery: Selecting the basic linkage properties. Science of Computer Programming, 40,

213-234.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering

traceability links between code and documentation, IEEE Transactions on Software

Engineering, 28 (10), 970-983.

Asuncion, H., François, F., & Taylor, R. (2007). An end-to-end industrial software

traceability tool. Proceedings of the the 6th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, Dubrovnik, Croatia.

 [188]

Berenbach, B. (2007). Managing traceability with software models. Proceedings of the

4th ACM International Workshop on Traceability in Emerging Forms of Software

Engineering (GCT/TEFSE’07), Lexington, KY, USA.

Bordini, R., Hubner, J., & Vieira, R. (2005). Jason and the golden fleece of agent-

oriented programming. In R. H. Bordini, M. Dastani, J. Dix & A. El Fallah Seghrouchni

(Eds.), Multi-agent programming: Languages, platforms and applications. (pp. 3-37).

New York: Springer.

Borland. (2010). CaliberRM. Retrieved December, 2010, from

http://www.borland.com/us/products/caliber/

Bratman, M., Israel, D., & Pollack, M. (1988). Plans and resource-bounded practical

reasoning. Computational Intelligence, 4(3), 349-355.

Bratman, M. (1999). Intentions, plans and practical reason. Cambridge University Press.

Burge, J. & Brown, D. (2007). Supporting requirements traceability with rationale.

Proceedings of the 4th ACM International Workshop on Traceability in Emerging Forms

of Software Engineering (GCT/TEFSE’07), Lexington, KY, USA.

Busetta, P., Rönnquist, R., Hodgson, A., & Lucas, A. (1999). JACK Intelligent Agents -

components for intelligent agents in Java. AgentLink Newsletter, 2, 2-5.

Carnegie Mellon. (2010). Capability Maturity Model Integration. Retrieved December,

2010, from http://www.sei.cmu.edu/cmmi/

Castro J., Kolp M. & Mylopoulos J. (2002). Towards requirements-driven information

systems engineering: The Tropos project. Information System, 27(6), 365-389.

Castro-Herrera, C. & Cleland-Huang, J. (2007). Towards a unified process for automated

traceability. Proceedings of the 4th ACM International Workshop on Traceability in

Emerging Forms of Software Engineering (GCT/TEFSE’07), Lexington, KY, USA.

Cleland-Huang, J., Chang, C., & Christensen, M. (2003). Event-based traceability for

managing evolutionary change. IEEE Trans. Software Eng., 29(9), 796-810.

Cleland-Huang, J., Dekhtyar, A., & Hayes, J. (2007). Problem statements and grand

challenges. (COET-GCT-06-01-0.9). Center of Excellence for Traceability.

 [189]

Cockburn, A. Writing effective use cases (2000). Addison-Wesley Professional.

Cysneiros, G., Zisman, A., & Spanoudakis, G. (2003). A traceability approach for i* and

UML models. Proceedings of 2nd International Workshop on Software Engineering for

Large-Scale Multi-Agent Systems - ICSE 2003, Portland, USA.

Cysneiros, G. & Zisman, A. (2007). Traceability for agent-oriented design models and

code. Proceedings of the 4th ACM International Workshop on Traceability in Emerging

Forms of Software Engineering (GCT/TEFSE’07), Lexington, KY, USA.

Cysneiros, G. & Zisman, A. (2007). Tracing agent-oriented systems. Proceedings of the

The Nineteenth International Conference on Software Engineering and Knowledge

Engineering (SEKE'2007), Boston, Massachusetts, USA, 552-558.

Cysneiros, G., & Zisman, A. (2008). Traceability and completeness checking for agent-

oriented systems. Proceedings of the 2008 ACM Symposium on Applied Computing,

Fortaleza, Ceara, Brazil. 71-77.

Dagenais, B., Breu, S., Warr, F. W., & Robillard, M. P. (2007). Inferring structural

patterns for concern traceability in evolving software. Proceedings of the Twenty-Second

IEEE/ACM International Conference on Automated Software Engineering, Atlanta,

Georgia, USA. 254-263.

Davis A. (1990). The analysis and specification of systems and software requirements.

Systems and Software Requirements Engineering. IEEE Computer Society Press, 119-

144.

De Lucia, A., Fasano, F., Oliveto, R., & Tortora, G. (2004). Enhancing an artefact

management system with traceability recovery features. Proceedings of the 20th IEEE

International Conference on Software Maintenance, 306-315.

Lucia, A. D., Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering traceability links

in software artifact management systems using information retrieval methods. ACM

Trans.Softw.Eng.Methodol., 16(4).

 [190]

De Lucia, A., Oliveto, R., & Tortora, G. (2008). Adams re-trace: Traceability link

recovery via latent semantic indexing. Proceedings of the 30th International Conference

on Software Engineering, Leipzig, Germany. 839-842.

DeLoach, S. (2001). Analysis and design using MaSE and agentTool. Proceedings of the

12th Midwest Artificial Intelligence and Cognitive Science Conference.

Dick, J. (2002). Rich Traceability. Proceedings of the 1st International Workshop on

Traceability for Emerging forms of Software Engineering . Edinburgh, UK

d'Inverno, M., Luck, M., Georgeff, M., Kinny, D., & Wooldridge, M. (2004). The

dMARS architecture: A specification of the distributed multi-agent reasoning system.

Journal of Autonomous Agents and Multi-Agent Systems, 5-53.

Duan, C. & Cleland-Huang, J. (2007). Clustering support for automated tracing.

Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated

Software Engineering, Atlanta, Georgia, USA. 244-253.

Egyed, A. (2003). A scenario-driven approach to trace dependency analysis. IEEE

Transactions on Software Engeneering, 29(2), 116.

Egyed, A. & Grünbacher, P. (2005). Supporting software understanding with automated

requirements traceability. International Journal of Software Engineering and Knowledge

Engineering, 15, 783-810.

Fiutem, R. & Antoniol, G. (1998). Identifying design-code inconsistencies in object

oriented software: A case study. Proceedings of the International Conference on

Software Maintenance, 94-102.

Fletcher, J. & Cleland-Huang, J. (2007). Utilizing softgoal traceability patterns to monitor

design goals. Proceedings of the 4th ACM International Workshop on Traceability in

Emerging Forms of Software Engineering (GCT/TEFSE’07), Lexington, KY, USA.

Frisch, A. (2002). Essential System Administration (3rd ed.). O' Reilly.

Genesereth, M. R. & Nilsson, N. J. (1987). Logical foundations of artificial intelligence.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

 [191]

Goknil, A., Kurtev I. & Berg, K. (2008). Change impact analysis based on formalization

of trace relations for requirements. Proceedings of the ECMDA Traceability Workshop.

Berlin, Germany.

Gotel, O. & Finkelstein, A. (1994). An analysis of the requirments traceability problem.

Proceedings of the 1st International Conference on Requirements Engineering. 94-101.

Gotel, O. & Morris, S. (2007). From Farm to Fork or a Bite of the Unknown: Learning

from the Food Industry. Proceedings of the 4th ACM International Workshop on

Traceability in Emerging Forms of Software Engineering (GCT/TEFSE’07), Lexington,

KY, USA.

Gotel, O. (2008). yTraceability – Putting the ‘y’ first. Requirements Quarterly: The

Newsletter of the Requirements Engineering Specialist Group of the British Computer

Society. RQ50.

Grechanik, M., McKinley, K. S., & Perry, D. E. (2007). Recovering and using use-case-

diagram-to-source-code traceability links. Proceedings of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Dubrovnik, Croatia. 95-104.

Han, J. (2001). TRAM: A tool for requirements and architecture management.

Proceedings of the 24th Australasian Computer Science Conference. 60-68.

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., & Howard, S. (2004). Helping analysts trace

requirements: An objective look. Proceedings of the 12th IEEE International

Requirements Engineering Conference (RE), 249-259.

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook, E. A., Vadlamudi, S., & April, A.

(2007). REquirements TRacing on target (RETRO): Improving software maintenance

through traceability recovery. ISSE, 3(3), 193-202.

Hollings, D., Kieran, S., & Kelleher, J. (2005). Representing Requirements Traceability

Using XML Topic Maps. (Report CS05-20-00). Department of Computer, University of

Cape Town Science.

 [192]

Howden, N., Ronnquist, R., Hodgson, A., & Lucas, A. (2001). JACK intelligent agents -

summary of an agent infrastructure. Proceedings of the 5th ACM International

Conference on Autonomous Agents.

Huber, M. J. (1999). JAM: A BDI-theoretic mobile agent architecture. Proceedings of the

Third Annual Conference on Autonomous Agents, Seattle, Washington, United States.

236-243.

Huget, M. P., Odell, J., Nodine, M. M., Cranefield, S., Levy, R., & Padgham, L. (2003).

Fipa modeling: Interaction diagrams. (FIPA Working Draft, version 2003-07-02).

Foundation for Intelligent Physical Agent.

IBM Rational. (2010). Rational DOORS. Retrieved December, 2010, from http://www-

01.ibm.com/software/awdtools/doors/

IBM Rational. (2010). Rational RequisitePro. Retrieved December, 2010, from

http://www-01.ibm.com/software/awdtools/reqpro/

Ingrand, F. F., Georgeff, M. P., & Rao, A. S. (1992). An architecture for real-time

reasoning and system control. IEEE Expert, 7(6), 34-44.

ISO. (2010). ISO Standards. Retrieved December, 2010, from

http://www.iso.org/iso/iso_catalogue.htm

Jirapanthong, W. & Zisman, A. (2005). Supporting product line development through

traceability. Proceedings of the 12th Asia-Pacific Software Engineering Conference, 506-

514.

Jirapanthong, W. & Zisman, A. (2009). XTraQue: Traceability for product line systems.

Software and Systems Modeling, 8(1), 117-144.

Kagdi, H. & Maletic J. (2007). Software repositories: A source for traceability links.

Proceedings of the 4th ACM International Workshop on Traceability in Emerging Forms

of Software Engineering (GCT/TEFSE’07), Lexington, KY, USA.

Kritzinger P. & Krüger H. (2008). Software Traceability using Latent Semantic Analysis

and Relevance Feedback. (Report CS05-20-00). Department of Computer, University of

Cape Town Science.

 [193]

Kurtev, I., Dee, M., Göknil, A., & Berg, K. G. v. d. (2007). Traceability-based change

management in operational mappings. Proceedings of the ECMDA Traceability

Workshop 2007, 57-67.

Lindvall, M. & Sandahl, K. (1996). Practical implications of traceability. Software

Practice and Experience, 26(10), 1161-1180.

Liu, D., Marcus, A., Poshyvanyk, D., & Rajlich, V. (2007). Feature location via

information retrieval based filtering of a single scenario execution trace. Proceedings of

the Twenty-Second IEEE/ACM International Conference on Automated Software

Engineering, Atlanta, Georgia, USA. 234-243.

Ljungberg, M. & Lucas, A. (1992). The OASIS air traffic management system.

Proceedings of the Second Pacific Rim International Conference on Artificial

Intelligence.

Lormans, M. & Van Deursen, A. (2006). Can LSI help reconstructing requirements

traceability in design and test? Proceedings of the Conference on Software Maintenance

and Reengineering, 47-56.

Luck M., Ashri R., & d'Inverno M. (2004). Agent-Based Software Development. Artech

House Publishers.

Maletic, J. I., Munson, E. V., Marcus, A., & Nguyen, T. N. (2003). Using a hypertext

model for traceability link conformance analysis. Proceedings of the 2nd Int. Workshop

on Traceability in Emerging Forms of Software Engineering, 47-54.

Marcus, A., Maletic, J., & Sergeyev, A. (2005). Recovery of traceability links between

software documentation and source code. International Journal of Software Engineering

and Knowledge Engineering,15 (5), 811-836.

Marcus, A. & Maletic, J. (2003). Recovering documentation-to-source-code traceability

links using latent semantic indexing. Proceedings of the 25th International Conference

on Software Engineering, Portland, Oregon. 125-135.

 [194]

Marcus, A., Maletic, J. I., & Sergeyev, A. (2005). Recovery of traceability links between

software documentation and source code. International Journal of Software Engineering

and Knowledge Engineering, 15(4), 811-836.

Mohan, K., Xu P., & Ramesh. (2008). B. Improving the change management process:

Traceability meets configuration management. Communications of the ACM, 51(5): 59-

64.

Murta, L. G. P., van der Hoek, A., & Werner, C. M. L. (2006). ArchTrace: Policy-based

support for managing evolving architecture-to-implementation traceability links.

Proceedings of the 21st IEEE/ACM International Conference on Automated Software

Engineering, 135-144.

Murta L., van der Hoek A. & Werner C. (2006). ArchTrace: A tool for keeping in sync

architecture and its implementation. Proceedings of the Brazilian Symposium on Software

Engineering (SBES).

OMG. (2010). UML 2.2 Specification. (Formal/2009-02-02). Retrieved December, 2010,

from http://www.omg.org/spec/UML/2.3/

Padgham L. & Winikoff M. (2004). Developing intelligent agent systems: A practical

guide. John Wiley and Sons.

Padgham, L., Thangarajah, J., & Winikoff, M. (2005). Tool support for agent

development using the prometheus methodology. Proceedings of the Fifth International

Conference on Quality Software, 383-388.

Padgham, L., Thangarajah, J., & Winikoff, M. (2007). AUML protocols and code

generation in the prometheus design tool. Proceedings of the 6th International Joint

Conference on Autonomous Agents and Multiagent Systems, Honolulu, Hawaii.

PDT. (2010). Prometheus Design Tool (PDT). Retrieved December, 2010, from

http://www.cs.rmit.edu.au/agents/docs.shtml

Perini, A., & Susi, A. (2005). Automating model transformations in agent-oriented

modelling. Proceedings of of 6th International Workshop AOSE.

 [195]

Pinheiro, F. A. C. & Goguen, J. A. (1996). An object-oriented tool for tracing

requirements. IEEE Software, 13(2), 52-64.

Pinto, R., Silva, C. & Castro J. (2005). Support for requirement traceability: The Tropos

case. Proceedings of the 19th Brazilian Symposium on Software Engineering.

Pohl, K. (1996). Process-centered requirements engineering. John Wiley & Sons, Inc.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In

R. H. Bordini, M. Dastani, J. Dix & A. El Fallah Seghrouchni (Eds.), Multi-Agent

Programming: Languages, Platforms and Applications. Springer.

Poshyvanyk, D. & Marcus, A. (2007). Using traceability links to assess and maintain the

quality of software documentation. Proceedings of the 4th ACM International Workshop

on Traceability in Emerging Forms of Software Engineering (GCT/TEFSE’07),

Lexington, KY, USA.

Ramesh, B. & Jarke, M. (2001). Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering, 27(1), 58-93.

Rao, A. & Georgeff, M. (1992). An abstract architecture for rational agents. Proceedings

of Knowledge Representation and Reasoning (KRgR-92), 439-442.

Rao, A. S. & Georgeff, M. P. (1995). BDI agents: From theory to practice. Proceedings

of First International Conference on Multi-Agent Systems, 312-319.

Rao, A. S. & Georgeff, M. P. (1998). Decision procedures for BDI logics.

J.Log.Comput., 8(3), 293-342.

Ravichandar, R., Arthur, J., & Pérez-Quiñones M. (2007). Pre-requirement apecification

traceability: bridging the complexity gap through capabilities. Proceedings of the 4th

ACM International Workshop on Traceability in Emerging Forms of Software

Engineering (GCT/TEFSE’07).

Reiss, S. P. (2006). Incremental maintenance of software artifacts. IEEE Transaction on

Software Engineering, 32(9), 682-697.

 [196]

Rilling, J., Witte, R., & Yongang Zhang Y. (2007). Automatic traceability recovery: An

ontological approach. Proceedings of the 4th ACM International Workshop on

Traceability in Emerging Forms of Software Engineering (GCT/TEFSE’07).

Rumbaugh, J., Booch, G., & Jacobson I. (1999). Unified Modelling Language Reference

Manual. Addison-Wesley.

Sharif, B. & Maletic J. (2007). Using fine-grained differencing to evolve traceability

links, Proceedings of the 4th ACM International Workshop on Traceability in Emerging

Forms of Software Engineering (GCT/TEFSE’07).

Sherba, S. & Anderson, K. (2003). A framework for managing traceability relationships

between requirements and architectures. Proceedings of the Second International

Workshop From Software Requirements to Architecture.

Sherba, S. (2005). Towards automating traceability: An incremental and scalable

approach. (Unpublished doctoral dissertation). University of Colorado at Boulder,

Boulder, USA.

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based

generation of requirements traceability relations. Journal of Systems and Software, 72(2),

105-127.

Spanoudakis, G. & Zisman, A. (2005). Software traceability: A roadmap. In S. Chang

(Eds.), Advances in Software Engineering and Knowledge: Recent Advances, Vol

III. World Scientific Publishing.

Spanoudakis, G., Garcez A., & Zisman A. (2003). Revising rules to capture requirements

traceability relations: A machine learning approach. Proceedings of the 5th International

Conference in Software Engineering and Knowledge Engineering.

Standish Group. (2003). What are your requirements? Standish Group.

Sudeikat, J., Braubach, L., Pokahr, A., & Lamersdorf, W. (2004). Evaluation of Agent–

Oriented software methodologies – examination of the gap between modeling and

platform. Proceedings of the Workshop on Agent Oriented Software Engineering.

 [197]

TAOME4E. (2008). Tool for agent oriented modeling. Retrieved March 2008, from

http://sra.itc.it/tools/taom4e/.

ten Hove, D., Göknil, A., Kurtev, I., van den Berg, K., & de Goede, K. (2009). Change

impact analysis for SysML requirements models based on semantics of trace relations.

Proceedings of the ECMDA Traceability Workshop, ECMDA-TW 2009, 17-28.

TopicMaps.Org. (2001). XML Topic Maps (XTM) 1.0 Specification, Pepper, S. and

Moore, G. (Eds), Retrieved from http://www.topicmaps.org/xtm/1.0/

Toranzo, M. & Castro, J. (1999). A comprehensive traceability model to support the

design of interactive systems. Proceedings of the II Workshop on Interactive System

Design and Object Models.

Toranzo, M., Castro, J., & Mello, E. (2002). Uma proposta para melhorar o rastreamento

de requisitos. Proceedings of the Workshop on Requirements Engineering.

van den Berg, K., Conejero, J. M., & Hernández, J. (2006). Analysis of crosscutting

across software development phases based on traceability. Proceedings of the 2006

International Workshop on Early Aspects at ICSE, Shanghai, China. 43-50.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided tour.

Proceedings of the Fifth IEEE International Symposium on Requirements Engineering.

Vanhooff, B. & Berbers, Y. (2005). Supporting modular transformation units with precise

transformation traceability metadata. Proceedings of the ECMDA Traceability Workshop.

Wooldridge, M. (2002). An introduction to multiagent systems. John Wiley & Sons Ltd.

Wooldridge, M. & Jennings, N. (1995). Intelligent agents: theory and practice.

Knowledge Engineering Review, 115-152.

Wooldridge, M. (2000). Reasoning about Rational Agents. The MIT Press.

Wooldridge, M., Jennings, N., & Kinny D. (2000). The Gaia Methodology for Agent-

Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent

Systems, 3(3), 285-312.

WordNet. (2010). About WordNet. Retrieved December, 2010, from

http://wordnet.princeton.edu/

 [198]

XML. (2010). XML Techonology. Retrieved December, 2010, from

http://www.w3.org/standards/xml/

XQuery. (2010). Query. Retrieved December, 2010, from

http://www.w3.org/standards/xml/query

Yu E. (1995). Modelling Strategic Relationships for Process Reengineering.

(Unpublished doctoral dissertation). Department of Computing, University of Toronto,

Toronto, Canada.

Zisman, A., Spanoudakis, G., Pérez-miñana, E., & Krause, P. (2002) Towards a

Traceability Approach for Product Families Requirements. Proceedings of the 3rd ICSE

Workshop on Software Product Lines: Economics, Architectures, and Implications.

Zisman, A., Spanoudakis, G., Pérez-miñana, E., & Krause, P. (2003). Tracing software

requirements artefacts. Proceedings of the 2003 International Conference on Software

Engineering Research and Practice (SERP'03).

Zou, X., Settimi, R., & Cleland-Huang, J. (2006). Phrasing in dynamic requirements trace

retrieval. Proceedings of the 30th Annual International Computer Software and

Applications Conference.

Zou X., Settimi R., & Cleland-Huang J. (2007). Term-based enhancement factors for

improving automated requirement trace retrieval. Proceedings of the 4th ACM

International Workshop on Traceability in Emerging Forms of Software Engineering

(GCT/TEFSE’07).

