

City, University of London Institutional Repository

Citation: Filho, Gilberto Amado de Azevedo Cysneiros (2011). Software Traceability for

Multi-Agent Systems Implemented Using BDI Architecture. (Unpublished Doctoral thesis,
City University London)

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1115/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Software Traceability for Multi-
Agent Systems implemented using

BDI Architecture

Gilberto A. de A. Cysneiros Filho

A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy at City University London

City University London

Department of Computing

June 2011

Volume 2

[2]

Contents

Volume 1
Contents .. 2
Figures... 7
Tables .. 9
Acknowledgements ... 10
Declaration .. 11
Abstract ... 12
Chapter 1 - Introduction .. 13

1.2 Hypotheses .. 20
1.3 Objectives ... 20
1.4 Contributions... 21
1.5 Thesis Outline ... 22

Chapter 2 - Literature Survey on Traceability .. 24
2.1 Traceability Reference Models and Meta-Models .. 27
2.2 Traceability Approaches to Capture Trace Relations ... 33
2.2.1 Formal Approaches .. 34
2.2.2 Process Oriented Approaches .. 34
2.2.3 Information Retrieval Approaches ... 36
2.2.4 String Matching Approaches ... 39
2.2.5 Rule Based Approaches ... 40
2.2.6 Run-time approaches ... 43
2.2.7 Hypermedia and Information Integration approaches 44
2.3 Representation, Recording and Maintenance of Traceability Relations 45
2.4 Visualisation of Traceability Relations ... 46
2.5 Use of Traceability Relations .. 47
2.6 Traceability Approaches for Multi-Agent Systems .. 49
2.7 Performance Measures .. 50
2.8 Implication of tools that infer trace relations .. 51
2.9 Summary ... 52

Chapter 3 - Traceability Reference Model .. 54
3.1 Overview of the Reference Model .. 54
3.2 Multi-agent Oriented Artefacts ... 56
3.2.1 i* Framework ... 56
3.2.2 Prometheus ... 60
3.2.3 JACK.. 67
3.3 Traceability Relations ... 73
3.3.1 Traceability Relations between i* and Prometheus ... 74
3.2.2 Traceability Relations between Prometheus and JACK 86
3.4 Summary ... 95

Chapter 4 - Traceability Framework ... 96
4.1. Overview of the Framework .. 96
4.2 Traceability and Completeness Checking Rules ... 101
Type 1: .. 104

[3]

Type 2: .. 112
Type 3: .. 114
4.3 Extended Functions ... 116
4.3.1 Completeness checking functions .. 117
4.3.2 XQuery functions ... 119
4.3.3 XQueryJACKFunctions ... 121
4.3.4 XQueryPDTFunctions ... 122
4.3.5 XQuerySimilarityFunctions ... 123
4.3.6 XQuerySynonymsFunctions .. 125
4.3.7 XQueryTAOMFunctions ... 128
4.4 Retratos Tool ... 129
4.5 Discussion ... 139
4.6 Summary ... 140

Chapter 5 - Evaluation and Results ... 141
5.1 Criteria for Evaluation .. 142
5.2 Automatic Teller Machine .. 143
5.2.1 Overview of the Case Study .. 143
5.2.2 Artefacts ... 145
5.2.3 Evaluation .. 146
5.3 Air Traffic Control Environment .. 155
5.3.1 Overview of the Case Study .. 155
5.3.2 Artefacts ... 156
5.3.3 Evaluation .. 157
5.4 Electronic Bookstore ... 164
5.4.1 Overview of the Case Study .. 164
5.4.2 Artefacts ... 165
5.4.3 Evaluation .. 167
5.5 Discussion ... 168
5.6 Threats of Validity .. 170
5.7 Summary ... 172

Chapter 6 - Conclusion and Future Works ... 173
6.1 Overall Conclusions .. 173
6.2 Hypotheses .. 178
6.3 Objectives ... 181
6.4 Contributions... 182
6.5 Future Work .. 183
6.5 Final Remarks ... 186
Bibliography ... 187

Volume 2
Contents .. 2
Figures... 7
Tables .. 12
Appendix A - Extended Functions .. 15

A.1.1 Completeness checking functions ... 16
A.1.2 XQuery functions .. 22

[4]

A.1.3 XQueryJACKFunctions .. 30
A.1.4 XQueryPDTFunctions .. 32
A.1.4.1 ActorHasCapability function ... 34
A.1.4.2 FieldTokenizer function ... 35
A.1.4.3 GetAttributeValue function .. 36
A.1.4.4 GetIncludedFields function .. 37
A.1.4.5 GetInformationCarried function .. 38
A.1.4.6 GetPDTFileName ... 38
A.1.4.7 GetPrometheusElements .. 39
A.1.4.8 GetPrometheusSubElements .. 40
A.1.4.9 GetPrometheusStepScenarios .. 41
A.1.4.10 GetPrometheusSubGoalsElements... 42
A.1.4.11 GetPrometheusSubGoalElements .. 43
A.1.4.12 GetPrometheusUsesData .. 44
A.1.4.13 IsACapabilityThatTheAgentIncludes .. 44
A.1.4.14 IsADataProducedByTheRole ... 44
A.1.4.15 IsADataThatTheAgentReads ... 44
A.1.4.16 IsADataThatTheAgentWrites .. 44
A.1.4.17 IsADataThatTheCapabilityReads .. 45
A.1.4.18 IsADataThatTheCapabilityWrites ... 45
A.1.4.19 IsADataThatThePlanReads .. 45
A.1.4.20 IsADataThatThePlanWrites ... 45
A.1.4.21 IsADataUsedByTheRole .. 45
A.1.4.22 IsADataThatTheAgentAchieves .. 45
A.1.4.23 IsAGoalThatTheCapabilityAchieves ... 46
A.1.4.24 IsAGoalThatThePlanAchieves... 46
A.1.4.25 IsAGoalThatTheAgentAchieves .. 46
A.1.4.26 IsAGoalThatTheCapabilityAchieves ... 46
A.1.4.27 IsAMessageThatTheAgentReceives .. 46
A.1.4.28 IsAMessageThatTheAgentSends ... 47
A.1.4.29 IsAMessageThatTheCapabilityReceives ... 47
A.1.4.30 IsAMessageThatTheCapabilitySends .. 47
A.1.4.31 IsAMessageThatTheReceives .. 47
A.1.4.32 IsAMessageThatThePlanReceives ... 47
A.1.4.33 IsAMessageThatThePlanSends .. 48
A.1.4.34 IsAMessageThatTriggersThePlan .. 48
A.1.4.35 IsAnActionThatTheAgentPerforms ... 48
A.1.4.36 IsAnActionThatTheCapabilityPerforms .. 48
A.1.4.37 IsAnActionThatThePlanPerforms .. 48
A.1.4.38 IsAPerceptThatTheAgentResponds ... 49
A.1.4.39 IsAPerceptThatTheCapabilityResponds .. 49
A.1.4.40 IsAPerceptThatThePlanResponds .. 49
A.1.4.41 IsAPerceptThatTheCapabilityResponds .. 49
A.1.4.42 IsAPerceptThatThePlanResponds .. 49
A.1.4.43 IsAPerceptThatTheCapabilityResponds .. 50
A.1.4.44 IsAPerceptThatThePlanResponds .. 50

[5]

A.1.4.45 IsAPlanThatTheAgentIncludes .. 50
A.1.4.46 IsAPlanThatTheCapabilityIncludes ... 50
A.1.4.47 IsAPlanTheRoleUses ... 51
A.1.4.48 IsARoleThatTheAgentIncludes ... 51
A.1.4.49 IsTrigger ... 51
A.1.5 XQuerySimilarityFunctions .. 51
A.1.6 XQuerySynonymsFunctions ... 64
A.1.7 XQueryTAOMFunctions .. 69

Appendix B – Automated Teller Machine .. 73
B.1 Introduction .. 73
B.2 Organizational Models ... 74
B.3 Prometheus Models .. 76
B.4 JACK Code .. 78
B.5 JACK Code in XML .. 86
B.6 Evaluation... 95

Appendix C – Air Traffic Control Environment ... 105
C.1 Introduction .. 105
C.2 Organizational Models ... 106
C.3 Prometheus Models .. 107
C.4 JACK Code .. 113
C.5 Code in XML ... 128
C.6 Evaluation... 140

Appendix D – Electronic Bookstore Case Study .. 155
D.1 JACK Agent vs Prometheus Goal .. 155
D.2 JACK Agent vs Prometheus Role .. 157
D.3 JACK Agent vs Prometheus Agent .. 158
D.4 JACK Agent vs Prometheus Capability ... 159
D.5 JACK Agent vs Prometheus Plan .. 160
D.6 JACK Agent vs Prometheus Percept ... 162
D.7 JACK Agent vs Prometheus Action ... 164
D.8 JACK Agent vs Prometheus Message (sends) ... 165
D.9 JACK Agent vs Prometheus Message (receives) ... 166
D.10 JACK Agent vs Prometheus Data (uses) ... 167
D.11 JACK Agent vs Prometheus Data (creates) ... 168
D.12 JACK Plan vs Prometheus Goal .. 168
D.13 JACK Plan vs Prometheus Role ... 169
D.14 JACK Plan vs Prometheus Agent .. 170
D.15 JACK Plan vs Prometheus Capability ... 172
D.16 JACK Plan vs Prometheus Plan ... 174
D.17 JACK Plan vs Prometheus Percept .. 178
D.18 JACK Plan vs Prometheus Action (Sends) .. 179
D.19 JACK Plan vs Prometheus Message (Sends) ... 180
D.20 JACK Plan vs Prometheus Message (Receives) .. 182
D.21 JACK Plan vs Prometheus Data (Uses) ... 184
D.22 JACK Plan vs Prometheus Data (Creates) ... 185
D.23 JACK BeliefSet vs Prometheus Role (Creates) ... 185

[6]

D.24 JACK BeliefSet vs Prometheus Role (Uses) ... 185
D.25 JACK BeliefSet vs Prometheus Role (Creates) ... 186
D.26 JACK BeliefSet vs Prometheus Agent (Uses) ... 187
D.27 JACK BeliefSet vs Prometheus Capability (Creates) .. 187
D.28. JACK BeliefSet vs Prometeus Capabilitity (Uses) ... 188
D.29 JACK BeliefSet vs Prometheus Plan (Creates) .. 189
D.30 JACK BeliefSet vs Prometheus Plan (Uses) .. 189
D.31 JACK BeliefSet vs Prometheus Data ... 190
D.32 JACK Event vs Prometheus Agent (sends) .. 191
D.33 JACK Event vs Prometheus Agent (receives) ... 192
D.34 JACK Event vs Prometheus Capability (sends) ... 193
D.35. JACK Event vs Prometheus Capability (receives) ... 193
D.36 JACK Event vs Prometheus Plan (sends) .. 194
D.37 JACK Event vs Prometheus Plan (receives) .. 196
D.38 JACK Event vs Prometheus Message .. 197

Appendix E – Introduction to BDI architecture .. 199
E.1 Agent Architectures .. 199
E.2 BDI Architecture .. 199

Appendix F - Traceability Relations between i* and Prometheus 202
Appendix G - Traceability Relations between Prometheus and JACK 243

[7]

Figures
Figure A.1 Calling getPDTFileName extended function in Java ... 16
Figure A.2 List of strings .. 19
Figure A.3 getDocSourceMissingElement function .. 20
Figure A.4 getIDMissingElement function example ... 21
Figure A.5 getNameMissingElement function example .. 21
Figure A.6 getNumberOfMissingElement function example .. 22
Figure A.7 Arrival Sequencing Capability and ATL SD Resource ... 24
Figure A.8 capabilityUsesSDResource function example .. 25
Figure A.9 hasUses function example .. 26
Figure A.10 contains function example .. 27
Figure A.11 Using contains function .. 28
Figure A.12 getAttributeValue function example ... 28
Figure A.13 hasRelation function example .. 29
Figure A.14 stringTokenizer function example... 30
Figure 4.15 stringTokenizerByUpperCase function example ... 30
Figure A.16 getBeliefSetFields function example ... 31
Figure A.17 ActorHasCapability function example ... 35
Figure A.18 fieldTokenizer function example ... 36
Figure A.19 getAttributeValue function example ... 36
Figure A.20 getIncludesFields function example ... 37
Figure A.21 getInformationCarried function example ... 38
Figure A.22 getPrometheusElements function example ... 39
Figure A.23 getPrometheusSubElements function example ... 40
Figure A.24 getPrometheusStepScenarios function example ... 41
Figure A.25 getPrometheusSubGoals function example .. 42
Figure A.26 getPrometheusSubGoalsElements function example .. 43
Figure A.27 hasUses function example .. 53
Figure A.28 hasUses function example .. 54
Figure A.29 creates function example .. 54
Figure A.30 creates function example .. 55
Figure A.31 overlaps function example .. 56
Figure A.32 overlaps function example .. 57
Figure A.33 isPositiveSimilar function example ... 58
Figure A.34 isSimilar function example ... 59
Figure A.35 isSimilarByOverlaps function example .. 60
Figure A.36 isSimilarDataAndBeliefSet function example ... 61
Figure A.37 isSimilarSDResourceAndMessage function example ... 62
Figure A.38 SomeOverlap function example .. 63
Figure A.39 stringTokenizerByUpperCase function example .. 64
Figure A.40 contains function example .. 65
Figure A.41 isSynonyms function ... 66
Figure A.42 stringTokenizer function example... 67
Figure A.43 isSynonyms function example ... 68
Figure A.44 getSubGoalsAndTask function example ... 70
Figure A.45 getSubGoalsAndTask function example ... 71
Figure A.46 getAttributeValue function example ... 72
Figure B.1 Strategic Dependency model for the Automatic Teller Machine .. 75
Figure B.2 Strategic Rationale Model for the Automatic Teller Machine .. 76
Figure B.3 ATM Goal diagram .. 76
Figure B.4 ATM System Overview diagram ... 77
Figure B.5 – Atm Agent Overview Diagram .. 78
Figure B.6 Bank Agent Overview diagram ... 78
Figure B.7 Atm agent ... 80

[8]

Figure B.8 BankAgent agent .. 80
Figure B.9 Accounts beliefSet .. 81
Figure B.10 Accounts beliefSet .. 82
Figure B.11 Withdraw event ... 83
Figure B.12 WithdrawResponse event .. 83
Figure B.13 WithdrawRequest event .. 84
Figure B.14 WithdrawApproved plan... 84
Figure B.15 WithdrawCash plan .. 85
Figure B.16 WithdrawRejected plan .. 85
Figure B.17 WithdrawApproved plan... 86
Figure B.18 Atm agent in XML .. 88
Figure B.19 BankAgent in XML ... 88
Figure B.20 Accounts beliefSet in XML ... 90
Figure B.21 Balances beliefSet in XML ... 91
Figure B.22 ProcessWithdraw plan in XML .. 92
Figure B.23 WithdrawApproved plan in XML ... 92
Figure B.24 WithdrawCash plan in XML ... 93
Figure B.25 WithdrawRejected plan in XML ... 93
Figure B.26 Withdraw event in XML .. 94
Figure B.27 WithdrawResponse in XML .. 94
Figure B.29 Fields of the Accounts beliefSet .. 99
Figure B.30 Accounts beliefSet .. 99
Figure B.31 Balances beliefSet .. 99
Figure B.32 Balances descriptor ...100
Figure B.33 ProcessWithdraw plan ..101
Figure B.34 Process Withdraw descriptor ..101
Figure B.35 WithdrawApproved plan..102
Figure B.36 Withdraw Approved descriptor ...102
Figure B.37 WithdrawCash plan ...103
Figure B.38 Withdraw Cash descriptor...103
Figure B.39 WithdrawReject plan ...103
Figure B.40 Withdraw Rejected descriptor ...104
Figure C.1 Strategic Dependency model for Air Traffic Environment ..106
Figure C.2 Strategic Rationale model for Air Traffic Environment ..107
Figure C.3 Goal diagram for Air Traffic Environment ...108
Figure C.4 Traffic Feeding Capability ..109
Figure C.5 Arrival Sequencing Capability ..109
Figure C.6 Runway Assigning Capability ...110
Figure C.7 Flying Capability ..110
Figure C.8 Traffic Feeding Capability ..111
Figure C.9 Arrival Sequencing Capability ..111
Figure C.10 Runway Assigning Capability ...112
Figure C.11 Flying Capability ..113
Figure C.12 Aircraft agent ..113
Figure C.13 Airport agent ...114
Figure C.14 Feeder agent ...114
Figure C.15 Runway agent ..114
Figure C.16 LandingInfo beliefSet ..115
Figure C.17 RunwayInfo beliefSet ...116
Figure C.18 ArrivalSequencing capability ..116
Figure C.19 Flying Capability ..117
Figure C.20 Runway Assigning Capability ...117
Figure C.21 TrafficFeeding capability ..118
Figure C.22 AircraftEvent event ...119
Figure C.23 Approaching event ..120
Figure C.24 EnterControlArea ..120

[9]

Figure C.25 TrafficEvent event ...121
Figure C.26 AssignSlot plan ..121
Figure C.27 FollowApproach plan ...122
Figure C.28 InitialApproach plan ...122
Figure C.29 MonitorAircraft plan ...123
Figure C.30 RequestSlot plan ..124
Figure C.31 RunwayAssign plan ...125
Figure C.32 RunwayRequest plan ...126
Figure C.33 Takeoff plan ..127
Figure C.34 TakeoffDiscard plan ..127
Figure C.35 Traffic plan ..128
Figure C.36 Aircraft agent in XML ...128
Figure C.37 Airport agent in XML ..129
Figure C.38 TrafficFeeding agent in XML ..129
Figure C.39 Runway agent in XML ...129
Figure C.40 LandingInfo beliefSet in XML ...130
Figure C.41 RunwayInfo beliefSet in XML ..131
Figure C.42 AssignSlot plan in XML ...131
Figure C.43 FollowApproach plan in XML ..131
Figure C.44 InitialApproach plan in XML ..132
Figure C.45 MonitorAircraft plan in XML ..132
Figure C.46 RequestSlot plan in XML ...134
Figure C.47 RunwayAssign plan in XML ..134
Figure C.48 Takeoff plan in XML ...135
Figure C.49 TakeoffDiscard plan in XML ...135
Figure C.50 Traffic plan in XML ...135
Figure C.51 RunwayRequest plan in XML ..136
Figure C.52 AircraftEvent event in XML ..136
Figure C.53 Approaching event in XML ...137
Figure C.54 EnterControlArea event in XML ...137
Figure C.55 TrafficEvent event in XML ..138
Figure C.56 ArrivalSequencing capability in XML ...138
Figure C.57 Flying capability in XML ..139
Figure C.58 RunwayAssigning capability in XML ..139
Figure C.59 TrafficFeeding capability in XML ...140
Figure C.60 Air Traffic Control Environment i* model version 1 ..147
Figure C.61 Prometheu goal diagram...147
Figure E.1 A generic BDI architecture ...201
Figure F.1 Prometheus Goal vs SD Goal overlaps dependency ...206
Figure F.2 Monitor Shipment task dependency ...207
Figure F.3 Monitor delivery goal in Prometheus ..207
Figure F.4 Prometheus Goal vs Actor depends on traceability relation ...208
Figure F.5 Prometheus Goal vs SR Goal overlaps traceability relation ...209
Figure F.6 Prometheus Goal vs SR Task overlaps traceability relation ...210
Figure F.7 Prometheus Role vs SD Goal uses traceability relation ..210
Figure F.8 Prometheus Role vs SD Resources uses relation ...211
Figure F.9 Prometheus Role vs SD Task contributes relation ..212
Figure F.10 Prometheus Role vs Actor contributes relation ...213
Figure F.11 Prometheus Role vs SR Goal achieves traceability relation ...213
Figure F.12 Prometheus Role vs SR Resource uses relation ...214
Figure F.13 Prometheus Role vs SR Resource creates relation ..215
Figure F.14 Prometheus Role vs SR Task achieves traceability relation ..215
Figure F.15 Prometheus Agent vs SD Goal achieves traceability relation ...216
Figure F.16 Prometheus Agent vs SR Resource uses traceability relation ...216
Figure F.17 Prometheus Agent vs SD Task achieves traceability relation ...217
Figure F.18 Prometheus Agent vs Istar Actor overlaps traceability relation ...217

[10]

Figure F.19 Prometheus Agent vs SR Goal achieves traceability relation ...218
Figure F.20 Prometheus Agent vs SR Resource uses traceability relation ...219
Figure F.21 Prometheus Agent vs SR Resource creates traceability relation ...219
Figure F.22 Prometheus Agent vs SR Task achieves traceability relation ..220
Figure F.23 Prometheus Capability vs SD Goal contributes traceability relation221
Figure F.24 Prometheus Capability vs SD Resource uses traceability relation ...221
Figure F.25 Prometheus Capability vs SD Task contributes traceability relation222
Figure F.26 Prometheus Capability vs Actor composed relation ...223
Figure F.27 Prometheus Capability vs SR Goal contributes traceability relation223
Figure F.28 Prometheus Capability vs SR Resource uses traceability relation ..224
Figure F.29 Prometheus Capability vs SR Resoource creates traceability relation224
Figure F.30 Prometheus Capability vs SR Resource uses traceability relation ..225
Figure F.31 Prometheus Plan vs SD Goal contributes traceability relation ..225
Figure F.32 Prometheus Plan vs SD Resource uses traceability relation ...226
Figure F.33 Prometheus Plan vs SD Task achieves traceability relation ...227
Figure F.34 Prometheus vs Actor creates traceability relation ..228
Figure F.35 Prometheus Plan vs SR Goal achieves traceability relation ...228
Figure F.36 Prometheus Plan vs SR Resource uses traceability relation ...229
Figure F.37 Prometheus Plan vs SR Resource creates traceability relation ..229
Figure F.38 Prometheus Plan vs SR Task achieves traceability relation..230
Figure F.39 Prometheus Percept vs SD Resource overlaps traceability relation230
Figure F.40 Prometheus Action vs SR Task overlaps traceability relation ...231
Figure F.41 Prometheus Data vs SD Goal contributes traceability relation ..232
Figure F.42 Prometheus Data vs SD Task contributes traceability relation ..233
Figure F.43 Prometheus Data vs Actor uses traceability relation ..234
Figure F.44 Prometheus Data vs SR Goal uses traceability relation ...235
Figure F.45 Prometheus Data vs SR Resource overlaps traceability relation ..235
Figure F.46 Prometheus Data vs SR Task uses traceability relation ..236
Figure F.47 Order Book Scenario ...237
Figure F.48 Strategic Rationale Diagram for the Electronic Bookstore actor ...238
Figure F.49 Prometheus Scenario vs SD Task depends traceability relation ...239
Figure F.50 Prometheus Scenario vs Actor depends traceability relation ..239
Figure F.51 Prometheus Scenario vs SR Goal compose traceability relation ..240
Figure F.52 Prometheus Scenario vs SR Resource creates traceability relation ..241
Figure F.53 Prometheus Scenario vs SR Resource uses traceability relation ..241
Figure F.54 Prometheus Scenario vs SR Task composed traceability relation ...242
Figure F.55 Prometheus Message vs SD Resource overlaps traceability relation242
Figure G.1 JACK Agent vs Prometheus Goal achieves traceability relation ..245
Figure G.2 JACK Agent vs Prometheus Role uses traceability relation ...246
Figure G.3 JACK Agent vs Prometheus Agent overlaps traceability relation ..246
Figure G.4 JACK Agent vs Prometheus Capability uses traceability relation ..247
Figure G.5 JACK Agent vs Prometheus Plan uses traceabilty relation ..247
Figure G.6 JACK Agent vs Prometheus Percept uses traceability relation ..248
Figure G.7 JACK Agent vs Prometheus Action creates traceability relation ..249
Figure G.8 JACK Agent vs Prometheus Message sends traceability relation ...249
Figure G.9 JACK Agent vs Prometheus Message receives traceability relation ..250
Figure G.10 JACK Agent vs Prometheus Message receives traceability relation250
Figure G.11 JACK Agent vs Prometheus Date creates traceability relation ..251
Figure G.12 JACK Plan vs Prometheus Goal ...251
Figure G.13 JACK Plan vs Prometheus Role uses traceability relation ...252
Figure G.14 JACK Plan vs Prometheus Agent uses traceability relation ...253
Figure G.15 JACK Plan vs Prometheus Capability uses traceability relation..253
Figure G.16 JACK Plan vs Prometheus Plan overlaps traceability relation ..254
Figure G.17 JACK Plan vs Prometheus Percept uses traceability relation ..254
Figure G.18 JACK Plan vs Prometheus Action creates traceability relation ...255
Figure G.19 JACK Plan vs Prometheus Message sends traceability relation ..255

[11]

Figure G.20 JACK Plan vs Prometheus Message receives traceability relation ..256
Figure G.21 JACK Plan vs Prometheus Data uses traceability relation ..256
Figure G.22 JACK Plan vs Prometheus Data creates traceability relation ..257
Figure G.23 JACK Belief vs Prometheus Role creates relation ..257
Figure G.24 JACK Belief vs Prometheus Role uses traceability relation ...258
Figure G.25 JACK BeliefSet vs Prometheus Agent creates traceability relation ..258
Figure G.26 JACK BeliefSet vs Prometheus Agent uses traceability relation ..259
Figure G.27 JACK BeliefSet vs Prometheus Capability creates traceability relation260
Figure G.28 JACK BeliefSet vs Prometheus Capability uses traceability relation260
Figure G.29 JACK BeliefSet vs Prometheus Plan creates traceability relation ..261
Figure G.30 JACK BeliefSet vs Prometheus uses traceability relation ...262
Figure G.31 JACK BeliefSet vs Prometheus Data overlaps traceability relation262
Figure G.32 JACK Event vs Prometheus Agent receives traceability relation ...263
Figure G.33 JACK Event vs Prometheus Agent sends traceability relation ..263
Figure G.34 JACK Event vs Prometheus Capability ...264
Figure G.35 JACK Event vs Prometheus Capability receives relation ...264
Figure G.36 JACK Event vs Prometheus Plan sends traceability relation ...265
Figure G.37 JACK Event vs Prometheus Plan receives traceability relation ...266
Figure G.38 JACK Event vs Prometheus Message overlaps traceability relation266

[12]

Tables
Table A.1- Completeness checking functions ... 17
Table A.2 XQuery functions ... 23
Table A.3 XQueryJACKFunctions .. 31
Table A.4 XQueryPDTFunctions .. 34
Table A.5 XQuerySimilarityFunctions.. 52
Table A.6 XQuerySynonyms Function example .. 64
Table A.7 XQueryTAOMFunctions .. 69
Table B.1 Traceability relations identified manually ... 96
Table B.2 Traceability relations identified by the tool ... 98
Table B.3 Missing Information ... 98
Table C.1 Traceability relations identified manually ..142
Table C.2 Traceability relations identified by the tool ..144
Table C.3 Missing relations identified by the tool ...145
Table C.4 Missing relations between SD Goal and Prometheus Goal ..146
Table C.5 Missing relations between SR Goal and Prometheus Goal ..146
Table C.6 Missing relations between SR Plan and Prometheus Goal ...147
Table C.7 Missing relations between Prometheus Goal and SD/SR Task or SD/SR Goal148
Table C.8 Missing relations between SD Resource and Prometheus Percept ...148
Table C.9 Missing relations between SD Goal and a Prometheus Agent ..149
Table C.10 Missing relation between a SR Goal and an Agent ...149
Table C.11 Missing relations between a SR Task and an Agent ...149
Table C.12 Missing relations between a SD Goal and a Prometheus Plan ..150
Table C.13 Missing relations between a SR Goal and a Prometheus Plan ...150
Table C.14 Missing relations between a SR Task and Prometheus Plan ..150
Table C.15 Missing links between a SD Goal and Prometheus Capability ...151
Table C.16 Missing links between a SR Goal and Prometheus Capability ...151
Table C.17 Missing relations between a SR Task and Prometheus Capability ...151
Table C.18 Traceability relations between i* and Prometheus ..154
Table C.19 Missing relations between JACK and Prometheus ...154
Table D.1 Relations identified manually between Prometheus Goal and JACK Agent156
Table D.2 Relations identified by the tool between Prometheus Goal and JACK Agent157
Table D.3 Relations identified manually between Prometheus Role and JACK Agent157
Table D.4 Relations identified by the tool between Prometheus Role and JACK Agent158
Table D.5 Relations identified manually between Prometheus Agent and JACK Agent158
Table D.6 Relations identified by the tool between Prometheus Agent and JACK Agent158
Table D.7 Relations identified manually Prometheus Capability and JACK Agent159
Table D.8 Relations identified by the tool between Prometheus Capability and JACK Agent160
Table D.9 Relations identified manually between Prometheus Plan and JACK Agent161
Table D.10 Relations identified by the tool between Prometheus Plan and JACK Agent162
Table D.11 Relations identified manually between Prometheus Percept and JACK Agent163
Table D.12 Relations identified by the tool between Prometheus Percept and JACK Agent163
Table D.13 Missing traceability relations between Prometheus Percept and JACK Agent164
Table D.14 Relations identified manually between Prometheus Action and JACK Agent164
Table D.15 Relations identified by the tool between Prometheus Action and JACK Agent165
Table D.16 Relations identified manually between Prometheus Message and JACK Agent166
Table D.17 Relations identified by the tool between Prometheus Message and JACK Agent166
Table D.18 Relations identified manually between Prometheus Message and JACK Agent167
Table D.19 Relations identified by the tool between Prometheus Message and JACK Agent167
Table D.20 Relations identified manually between Prometheus Data and JACK Agent168
Table D.21 Relations identified by the tool between Prometheus Data and JACK Agent168
Table D.22 Relations identified manually between Prometheus Data and JACK Agent168
Table D.23 Relations identified by the tool between Prometheus Data and JACK Agent168

[13]

Table D.24 Relations identified manually between JACK Plan and Prometheus Goal169
Table D.25 Relations identified by the tool between Prometheus Goal and JACK Plan169
Table D.26 Relations identified manually between JACK Plan and Prometheus Role170
Table D.27 Relations identified by the tool between Prometheus Role and JACK Plan170
Table D.28 Relations identified manually between JACK Plan and Prometheus Agent171
Table D.29 Relations identified by the tool between Prometheus Agent and JACK Plan172
Table D.30 Relations identified manually between JACK Plan and Prometheus Capability173
Table D.31 Relations identified by the tool between Prometheus Capability and JACK Plan174
Table D.32 Relations identified manually between Prometheus Plan and JACK Plan175
Table D.33 Relations identified by the tool between Prometheus Plan and JACK Plan175
Table D.34 Missing relation ..176
Table D.35 Missing relation ..176
Table D.36 Wrong relation ..176
Table D.37 Missing relation ..177
Table D.38 Wrong relation ..177
Table D.39 Missing relations ..177
Table D.40 Missing relation ..178
Table D.41 Relations not identified by the tool ...178
Table D.42 Relations identified manually between JACK Plan and Prometheus Percept179
Table D.43 Relations identified by the tool between Prometheus Percept and JACK Plan179
Table D.44 Relations identified manually between JACK Plan and Prometheus Action180
Table D.45 Relations identified by the tool between Promehteus Action and JACK Plan180
Table D.46 Relations identified manually between JACK Plan and Prometheus Message181
Table D.47 Relations identified by the tool between Prometheus Message and JACK Plan181
Table D.48 Relations identified manually between JACK Plan and Prometheus Message183
Table D.49 Relations identified by the tool between Prometheus Message and JACK Plan183
Table D.50 Relations identified manually between JACK Plan and Prometheus Data184
Table D.51 Relations identified by tool between JACK Plan and Prometheus Data184
Table D.52 Relations identified manually between JACK Plan and Prometheus Data185
Table D.53 Relations identified manually between JACK BeliefSet and Promtheus Role185
Table D.54 Relations identified by the tool between Prometheus Role and JACK BeliefSet185
Table D.55 Relations identified manually between JACK BeliefSet and Prometheus Role186
Table D.56 – Relations identified by the tool between JACK BeliefSet and Prometheus Role186
Table D.57 Relations identified manually between JACK BeliefSet and Prometheus Agent186
Table D.58 Relations identified by the tool between Prometheus Role ...186
Table D.59 Relations identified manually between JACK BeliefSet and Prometheus Agent187
Table D.60 Relations identified by the tool between Prometheus Agent and JACK BeliefSet187
Table D.61 Relations identified manually between Prometheus Capability and JACK BeliefSet188
Table D.62 Relations identified by the tool between Prometheus Capability and JACK BeliefSet188
Table D.63 Relations identified manually between Prometheus Capability and JACK BeliefSet188
Table D.64 Relations identified by the tool between Prometheus Capability and JACK BeliefSet189
Table D.65 Relations identified manually between Prometheus Plan and JACK189
Table D.66 Relations identified by the tool between Prometheus Plan and JACK BeliefSet189
Table D.67 Relations identified manually between Prometheus Plan and JACK BeliefSet190
Table D.68 Relations identified by the tool between Prometheus Plan and JACK BeliefSet190
Table D.69 Relations between JACK BeliefSet and Prometheus Data ..191
Table D.70 Relations between Prometheus Data and JACK BeliefSet ..191
Table D.71 Relations between JACK Event and Prometheus Agent ...192
Table D.72 Relations between JACK Event and Prometheus Agent ...192
Table D.73 Relations between JACK Event and Prometheus Capability ..193
Table D.74 Relations identified manually between JACK Event and Prometheus Capability194
Table D.75 Relations identified manually between JACK Event and Prometheus Plan195
Table D.76 Relations identified by the tool between Prometheus Message and Prometheus Plan196
Table D.77 Relations identified manually between JACK Event and Prometheus Plan197
Table D.78 Relations identified by the tool between Prometheus Plan and JACK Event197
Table D.79 Relations between JACK Event and Prometheus Message ...198

[14]

Table D.80 Relations between Prometheus Message and JACK Event ...198
Table F.1 Relations between Prometheus and i* SD ...204
Table F.2 Relations between Prometheus and i*SR elements ...205
Table G.1 Traceability Relations Types between Prometheus and JACK Artefacts244
Table G.2 Traceability Relations Types between Prometheus and JACK Artefacts244

[15]

Appendix A - Extended Functions

The lists of functions are grouped in seven classes:

 XQueryCompletenessCheckingFunctions - contains a list of methods in Java that

extend XQuery to perform completeness checking.

 XQueryFunctions – contains a list of methods in Java that extend XQuery with

general functionalities.

 XQueryJACKFunctions - provides a list of methods in Java that that extends XQuery

with functions to manipulate elements in the JACK XML file.

 XQueryPDTFunctions - provides a list of methods in Java that extends XQuery with

functions to manipulate elements created by the PDT tool version 3.2.

 XQuerySimilarityFunctions – includes a list of methods in Java that extends XQuery

with functions to compare the similarity between elements in the models.

 XQuerySynonymsFunctions – contains a list of methods in Java that extends XQuery

with functions to verify if names of elements in the models are synonyms.

 XQueryTAOMFunctions – provides a list of methods in Java that extends XQuery

with functions to manipulate elements in the i* model created using the TAOM tool.

To use an XQuery extended function implemented in a Java class, it is necessary first to

declare the class name that includes the function and then call the function wanted. For

instance, before to be able to call getPDTFileName function included in the

XQueryPDTFunctions class the user has first to define a namespace and associated it with

XQueryPDTFunctions class and then call the function wanted using the namespace given.

Figure A.1 shows an example when the pdt namespace is associated to the

XQueryPDTFunction class in Java (declare namespace pdt = java:retratos.XQueryPDTFunctions). The

getPDTFileName function is invoked using the namespace followed by colon and the function

name (pdt:getPDTFileName()).

[16]

Figure A.1 Calling getPDTFileName extended function in Java

The next sections describe functions implemented in Java to extend XQuery in more detail.

A.1.1 Completeness checking functions

Table A.1 shows a list of methods in the XQueryCompletenessCheckingFunctions class that

extend XQuery with functions to perform completeness checking. We are going to describe in

detail and give some examples of the most complex and important functions in next sections.

declare namespace pdt = "java:retratos.XQueryPDTFunctions"; ….

let $pdtDoc := doc(pdt:getPDTFileName())

[17]

Table A.1- Completeness checking functions

Method Summary
boolean completenessChecking(ArrayList<TraceElement> list1,

ArrayList<TraceElement> list2)
 Verify if list2 contains elements with the same (or synonyms) name of
elements in the list1 Elements in list1 that it does not have an element in list2
with the same name (or synonyms) are added to ArrayList missingElements

double getDegreeOfCompleteness()
 Returns degree of similarity between two elements.

String getDocSourceMissingElement(int i)
 Returns document file name from the source element that is missing to
be represented in the target document.

String getDocSourceMissingElementA(int i)
 Returns name of the element that is missing to be represented in the
target document.

String getIDMissingElement(int i)
 Returns id of the missing element.

String getIDMissingElementA(int i)
 Returns id from source element that is missing to be represented in the
target document.

String getNameMissingElement(int i)
 Returns name of the missing element.

String getNameMissingElementA(int i)
 Returns name of the element that is missing to be represented in the
target document.

int getNumberOfElements()
 Returns number of an element that is missing to be represented in the
target document.

int getNumberOfElements(ArrayList<TraceElement> elements)
 Returns the size of the ArrayList elements

int getNumberOfMissingElements()
 Returns the size of ArrayList missingElement minus one

int getNumberOfMissingElementsA()
 Returns the size of the ArrayList elements

String getTypeOfMissingElement(int i)
 Returns type of the missing element.

String getTypeOfMissingElementA(int i)
 Returns the name of the type from source element that is missing to be
represented in the target document.

String getTypeTargetMissingElement(int i)
 Returns document file name from the target element that is missing to be
represented

[18]

A.1.1.1 CompletenessChecking functions

The completenessCheching function can be used to verify the similiraty between two lists of

elements. The function receives two lists of element and compares if names of the elements

are synonyms. For instance, in the Figure A.2, we have the ListA that contains “Login

outgoing delivery”, “Calculate delivery time estimates”, and “Get delivery options” and the

ListB that contains “Obtain Delivery Options”, “Compute Delivery Estimates” and “Place

Delivery Request”. The function completenessCheching checks if each element of the ListA

has a synonyms in the ListB. In the Figure A.5, “Get delivery options” is synonyms to “Obtain

Delivery Options”, and “Calculate delivery time estimates” is synonyms to “Compute Delivery

Time Estimates”. The “Login outgoing delivery” does not have synonyms in the List B. The

“Login outgoing delivery” element is added to a list the missing elements.

[19]

Figure A.2 List of strings

 A.1.1.2 GetDegreeOfCompleteness function

The getDegreeOfCompleteness function returns the value of degreeOfCompleteness field.

ListA

name=“Login
outgoing delivery”

name=“Get delivey
options”

name=“Calculate
delivery time

estimates”

completenessChecking(listA, listB)

true

Element0

Element0

id=55

doc=“ElectronicBooks
tore.pd”

type=“Goal”

Element1

Element2

ListB

name=“Obtain
Delivery Options”

Element0

id=75

doc=“ElectronicBooks
tore.pd”

type=“Goal”

Element1

Element2

name=“Compute
Delivery Time

Estimates”

name=“Place
Delivery
Request”

type=“Goal”

id=55

doc=“ElectronicBooks
tore.pd”

name=“Login
outgoing delivery”

missingElements

[20]

A.1.1.3 GetDocSourceMissingElement

The getDocSourceMissingElement function receives as parameter an integer that represents

the index of the missing element and returns a String with the name of the document that

contains the element that is missing. For instance, in the Figure A.3 the Element0 (index equal

0) is part of the ElectronicBookstore.pd document. If the getDocSourceMissingElement

function is called passing the value equal 0 then getDocSourceMissingElement function

returns the “ElectronicBookstore.pd” string value.

Figure A.3 getDocSourceMissingElement function

A.1.1.4 GetIDMissingElement

The getIDMissingElement function receives as parameter an integer that represents the index of

the missing element and returns a String with the id of the element that is missing. For

instance, in the Figure A.4 the Element0 (index equal 0) has id equal to 0. If the

getIDMissingElement function is called passing the value equal 0 then function returns the value

55.

missingElements

Elementn…

getDocSourceMissingElement(0)

“ElectronicBookstore.pd”

Element0

type=“Goal” id=55

doc=“ElectronicBooks
tore.pd” name=“Login

outgoing delivery”

[21]

Figure A.4 getIDMissingElement function example

A.1.1.5 GetNameMissingElement

The getNameMissingElement function receives as parameter an integer that represents the index

of the missing element and returns a String with the name of the element that is missing. For

instance, in the Figure A.5 if the getNameMissingElement function is called passing the value

equal 0 then function returns the “Login outgong delivery” string value.

Figure A.5 getNameMissingElement function example

missingElements

Elementn
…

getIDMissingElement(0)

“55”

Element0

type=“Goal”
id=55

doc=“ElectronicBooks
tore.pd” name=“Login

outgoing delivery”

missingElements

Elementn…

getNameMissingElement(0)

“Login outgoing delivery”

Element0

type=“Goal” id=55

doc=“ElectronicBooks
tore.pd” name=“Login

outgoing delivery”

[22]

A.1.1.6 GetNumberOfMissingElement

The getNumberOfMissingElement function returns the size of ArrayList missingElement minus

one. For instance, in the Figure A.6 the getNumberOfMissingElement function returns the

value n-1.

Figure A.6 getNumberOfMissingElement function example

A.1.1.7 GetDocSourceMissingElementA

return XQueryFunctions.sourceMissingElements.get(i).getDoc();

 A.1.2 XQuery functions

Method Summary
boolean capabilityUsesSDResource(TinyNodeImpl capability,

TinyNodeImpl resource)
 Check if the Capability in Prometheus uses a SD Resource in
i*.

boolean capabilityUsesSRResource(TinyNodeImpl capability,
TinyNodeImpl resource)
 Check if the Capability in Prometheus uses a SR Resource in
i*.

boolean clr()
 Reset value of class variables used to perform completeness

missingElements

Elementn…

getNumberOfMissingElement()

n-1

Element0

type=“Goal” id=55

doc=“ElectronicBooks
tore.pd”

name=“Login
outgoing delivery”

[23]

Table A.2 XQuery functions

A.1.2.1 CapabilityUsesSDResource function

The capabilityUsesSDResource function checks if a capability uses a SD Resource. The

function receives as a parameter TinyNodeImpl capability and TinyNodeImpl resource that

represents a XML Node in the Saxon tool. For instance, the Figure A.7 shows the Arrival

Sequencing Capability and the ATL SD Resource. The Arrival Sequencial Capability contains

the Aircraft Event message. If you call the capabilityUsesSDResource function (see Figure

A.8) and pass as argument the Arrival Sequencing Capability TinyNodeImpl and the ATL

TinyNodeImpl, the function recovers all messages that the capability contains and then checks

if there is some overlaps relation between the id of a message and the id of the SD resource

using the isOverlap function.

checking: numberOfElements , missingElements,
numberOfMissingElements and sourceMissingElements

boolean contains(ArrayList<String> list1,
ArrayList<String> list2)
 Check if the ArrayList of Strings list1 contains all the strings
in the ArrayList of Strings list2

boolean contains(String word, ArrayList<String> wordList)
 Check if the ArrayList of String wordList contains the String
word.

String getAttributeValue(TinyNodeImpl node, attributeName)
 Returns the value of an attribute of an XML Element in
Saxon The method compares if any of the messages that the
Capability sends or receives has an overlaps relations with the SR
Resource.

String getTraceabilityFileName()
 It returns a String of tokens.

boolean hasRelation(elementID, String relationType,
String type)
 Check if there is a specific type of relations between an
element in which the id is equal to elementID and any element
with the same type as type

ArrayList<String> stringTokenizer(String str)
 It returns a String of tokens.

ArrayList<String> stringTokenizerByUpperCase(String str)
 It returns a String of tokens.

[24]

Figure A.7 Arrival Sequencing Capability and ATL SD Resource

Aircraft Event Request Slot Plan

mutex

ATL
Slot Allocated

Information Carried

Arrival Sequencing Capability

ATL

SD Resource

[25]

Figure A.8 capabilityUsesSDResource function example

A.1.2.2 CapabilityUsesSRResource function

The capabilityUsesSRResource function checks if a capability uses a SR Resource. The

function receives as a parameter TinyNodeImpl capability and TinyNodeImpl resource that

represents a XML Node in the Saxon tool. For instance, the Figure A.9 shows the Flying

Capability and the Landing Information SR Resource. If you call the

<object type="Capability" id="14">
 <base type="Entity">
 <field name="name">Arrival Sequencing</field>
…
</object>

 <TroposClasses
 xmi:id="_BHHSkF5wEd6A7vkLk-vUcQ"
 name="ATL" … />

capabilityUsesSDResource (capability,resource)

call isOverlap (“7”, "_BHHSkF5wEd6A7vkLk-vUcQ”)

<object type="Message" id="7">
 <base type="Interaction">
 <base type="Entity">
 <field name="name">Aircraft Event</field>
 </base>
 …
 </base>
</object>

true

[26]

capabilityUsesSRResource function and pass as argument the Flying Capability TinyNodeImpl

and the LandingInformation TinyNodeImpl.

Figure A.9 hasUses function example

A.1.2.3 Contains function

Contains function receives as parameter a String word and an ArrayList of String wordList and

check if the Arraylist wordList contains the String word. The function uses the WordNet

dictionary to check for synonyms words. Figure A.10 shows that the contains function returns

true when it is invoked passing as parameter the String “Get” and the list of Strings wordList

that consists of “Obtain”, “Delivery” and “Options”. The list of Strings wordList contains the

“Get” string because “Get” and “Obtain” are synonyms.

<Traceability>
 <TraceabilityRelation type="uses">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

hasUses(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,SaxonInterface.xpath

true

[27]

Figure A.10 contains function example

A.1.2.4 Contains function

Contains function check if the ArrayList of Strings List A contains all the strings in the

ArrayList of Strings List B. To each String in the List A the contains function call the other

contains function explained in the section A.1.2.3 passing the String in the List A and the List

B as parameter. If all the Strings in the List A are contained in the List B then function returns

true. For instance, in the Figure A.11 List B does not contain List A. List B contains “Get

delivery options”, and “Calculate Delivery time estimates” Strings, but not contain “Login

outgoing delivery” string.

wordList

“Delivery”

“Options” “Obtain”

contains (“Get”, wordList)

true

[28]

Figure A.11 Using contains function

A.1.2.4 GetAttributeValue function

The getAttributeValue function returns the value of an attribute of an XML Element in Saxon.

The function receives two parameters a TinyNodeImpl node and String attributeName. The

node represents a XML element in the Saxon. For instance, the Figure A.12 shows a

TinyNodeImpl node in Saxon that represents the object element in XML. If you call the

getAttributeValue function and pass as parameter node and the String “type” then the function

returns the value “Agent” as result.

Figure A.12 getAttributeValue function example

List A

Login outgoing
delivery

Get delivery
options

Calculate delivery
time estimates

List B

Obtain Delivery
Options

Compute Delivery
Time Estimates

Place Delivery
Request

<object type=”Agent” id = “44”>
</object>

node

type = “Agent” id = “44”

getAttributeValue(node,“type”)

“Agent”

[29]

A.1.2.5 GetTraceabilityFileName function

The getTraceabilityFileName function returns the output filename defined in the project

definition and that is used to store the traceability relations.

A.1.2.6 HasRelation function

The hasRelation function checks if two elements have a traceability relation. The function

receives the id of the elements to be checked and the type of traceability relation. Figure A.13

shows an example when the hasRlation function is called to check if elements with id =

"_PsspBiQyEd6fbcmFsKI3Cw" and id = "40" have a uses traceability relation.

Figure A.13 hasRelation function example

A.1.2.7 stringTokenizer function

The stringTokenizer function receives as parameter a String and break down the string into

tokens using as delimiters spaces, ‘_’, ‘-‘, ‘(‘, and ‘)’. In the Figure A.14 a list contained “Get”,

“Delivery” and “Options” String is returned as result when function stringTokenizer function is

called passing as parameter “Get Delivery Options” String.

<Traceability>
 <TraceabilityRelation type="uses">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

hasRelation(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,”uses”)

true

[30]

Figure A.14 stringTokenizer function example

A.1.2.8 stringTokenizerByUpperCase function

The stringTokenizerByUpperCase function receives as parameter a String and break down the

String into tokens using spaces and upper case letters as delimiters. Figure A.15 shows an

example when the stringTokenizerByUpperCase function is called and “GetDeliveryOptiions”

String is passed as parameter. As result the stringTokenizerByUpperCase function returns a list

of Strings that consists of “Get”, “Delivery” and “Options”.

A.1.3 XQueryJACKFunctions

Method Summary
ArrayList<Field> getBeliefSetFields(java.lang.String id)

 It returns an ArrayList with the list of fields of a beliefSet.

List

“Delivery”

“Options” “Get”

stringTokenizerByUpperCase(“GetDeliveryOptions”)

Figure 4.15 stringTokenizerByUpperCase function example

List

“Delivery”

“Options” “Get”

stringTokenizer(“Get Delivery Options”)

[31]

String getJACKFileName()
 It returns the name of the file that contains the JACK code in
XML.

Table A.3 XQueryJACKFunctions

A.1.3.1 getBeliefSetFields function

The getBeliefSetFields function receives as parameter an id of a beliefSet in Prometheus created

using the PDT tool and returns a list of Field elements. Figure A.16 shows an example when

the getBeliefSetFields function is called and integer 58 is passed as parameter. The getBeliefSetFields

function returns a list with the included fields.

List

Field1Field0

<object type="Data" id="58">
 <base type="Entity">
 <field name="name">landing_info</field>
 …
 </base>
 <field name="dataType">LandingInfo</field>
 <field name="includedFields">
 String runway,long ATL
 </field>
…
</object>

getBeliefSetFields(58)

fieldname=“runway”

fieldType=“String”

fieldname=“ATL”

fieldType=“long”

Figure A.16 getBeliefSetFields function example

[32]

A.1.3.2 getJACKFileName function

The getJACKFileName function returns the filename that contains the xml representation of the

JACK code. The JACK filename is defined during the creation of project.

A.1.4 XQueryPDTFunctions

Method Summary
boolean actorHasCapability(String actorID, String capabilityID)

 Finds all agents in Prometheus that uses the Capability and check
if there is an overlaps traceability relation between the Actor and the
Agent.

Field fieldTokenizer(String s, String token)
 Receives a String token and returns a Field object.

String getAttributeValue(TinyNodeImpl node, String attributeName)
 Returns the value of an attribute of an XML Element in Saxon

ArrayList<Field> getIncludedFields(String id)
 It returns an ArrayList of Fields with the includedFields of a
beliefSet in Prometheus.

ArrayList<String> getInformationCarried(String id)
 It returns an ArrayList of Strings with informationCarried of a
Percept

String getPDTFileName()
 Returns the PDT filename

ArrayList<TraceEl
ement>

getPrometheusElements(String id, String type,
ArrayList<TraceElement> subElements)
 It returns an ArrayList of sub-elements of an element in PDT.

ArrayList<TraceEl
ement>

getPrometheusStepScenarios(String id,
ArrayList<TraceElement> subElements)
 Retrieve steps from a Scenario in Prometheus (e.g.

ArrayList<TraceEl
ement>

getPrometheusSubElements(TinyNodeImpl node, String type)
 It returns an ArrayList of sub-elements of an element in PDT.

ArrayList<TraceEl
ement>

getPrometheusSubGoals(ArrayList<TraceElement> goalsName,
String goalID)
 Retrieve sub-goals of a goal in PDT

ArrayList<TraceEl
ement>

getPrometheusSubGoals(TinyNodeImpl node)
 Retrieve sub-goals of a goal in the Prometheus model created by
the PDT tool

ArrayList<TraceEl
ement>

getPrometheusUsesData(String id,
ArrayList<TraceElement> subElements)
 Retrieves a list of data used by an element (e.g.

boolean isACapabilityThatTheAgentIncludes(String agentID,

[33]

String capabilityID)
 Verify if an agent includes a Capability

boolean isADataProducedByTheRole(String dataID, String roleID)
 Verifies if a data is produced by a role in Prometheus

boolean isADataThatTheAgentReads(String dataID, String id)
 Verifies if an agent reads data in Prometheus

boolean isADataThatTheAgentWrites(String dataID, String id)
 Verifies if a agent writes a data in Prometheus

boolean isADataThatTheCapabilityReads(String dataID,
String capabilityID)
 Verifies if the capability reads a data in Prometheus

boolean isADataThatTheCapabilityWrites(String dataID,
String capabilityID)
 Verifies if the capability writes data in Prometheus

boolean isADataThatThePlanReads(String dataID, String planID)
 Verifies if a data is read by a plan in Prometheus

boolean isADataThatThePlanWrites(String dataID, String planID)
 Verifies if a plan writes a data in Prometheus

boolean isADataUsedByTheRole(String dataID, String roleID)
 Verifies if a data is used by the role in Prometheus

boolean isAGoalThatTheAgentAchieves(String goalID, String id)
 Verifies an agent achieves a goal

boolean isAGoalThatTheCapabilityAchieves(String capabilityID,
String goalID)
 Verifies if a capability achieves a goal in Prometheus

boolean isAGoalThatThePlanAchieves(String goalID, String planID)
 Verifies is a plan achieves a goal

boolean isAMessageThatTheAgentReceives(String messageID,
String agentID)
 Verifies if an agent receives a message in Prometheus

boolean isAMessageThatTheAgentSends(String messageID,
String agentID)
 Verifies the agent sends a message in Prometheus

boolean isAMessageThatTheCapabilityReceives(String messageID,
String capabilityID)
 Verifies the capability receives a message in Prometheus

boolean isAMessageThatTheCapabilitySends(String messageID,
String capabilityID)
 Verifies if the capability sends a message in Prometheus

boolean isAMessageThatThePlanReceives(String messageID,
String planID)
 Verifies if a plan receives a message in Prometheus

boolean isAMessageThatThePlanSends(String messageID,

[34]

String planID)
 Verifies if the plan sends a message in Prometheus

boolean isAMessageThatTriggersThePlan(String messageID,
String planID)
 Verifies if the message triggers a plan in Prometheus

boolean isAnActionThatTheAgentPerforms(String actionID, String id)
 Verifies an agent performs an action in Prometheus

boolean isAnActionThatTheCapabilityPerforms(String actionID,
String capabilityID)
 Verifies if a capability performs an action in Prometheus

boolean isAnActionThatThePlanPerforms(String actionID, String id)
 Verifies a plan performs an action in Prometheus

boolean isAPerceptThatTheAgentResponds(String perceptID,
String id)
 Verifies if an agent responds to a percept in Prometheus

boolean isAPerceptThatTheCapabilityResponds(String perceptID,
String id)
 Verifies if a capability responds to a percept in Prometheus

boolean isAPerceptThatThePlanResponds(String perceptID, String id)
 Verifies if the plan responds to the percept in Prometheus

boolean isAPlanThatTheAgentIncludes(String planID, String id)
 Verify if an agent includes an plan

boolean isAPlanThatTheCapabilityIncludes(String planID,
String capabilityID)
 Verifies if a capability includes a plan in Prometheus

boolean isAPlanTheRoleUses(String planID, String roleID)
 Verify if role uses a plan in Prometheus

boolean isARoleThatTheAgentIncludes(String roleID, String id)
 Verifies is an agent includes a role

boolean isTrigger(String planId, String eventName)
 Verifies if a plan triggers an event

Table A.4 XQueryPDTFunctions

A.1.4.1 ActorHasCapability function

The actorHasCapability function checks if an actor in i* has a traceability relation with a

capability in Prometheus. The function receives as parameter the id of an actor and the id of a

capability then retrieves all agents that implement the capability. If any of the agents that

implement the capability has an overlap traceability with the actor then the actorHasCapability

function returns true. In the Figure the actorHasCapability function is invoked by passing 44 and

,"_8pRv4FyvEd6qIOGYcZQlag" as parameter. The function retrieves all the agents that

[35]

includes the capability and then call isOverlap function to check if there is an overlaps

traceability relation between the Aircraft agent in Prometheus (id = 43) and the Aircraft actor

i*.

Figure A.17 ActorHasCapability function example

A.1.4.2 FieldTokenizer function

The fieldTokenizer function receives two Strings as parameter, s that contains information about

the field and token that contains information how the field is structured and therefore can be

divided into tokens. Figure shows an example when the fieldTokenizer function is called using as

parameter the Strings “long ATL” and “space” as parameter. The fieldTokenizer function break

down the String using spaces as delimiter and returns a Field element.

<object type="Agent" id="43">
 <base type="Entity">
 <field name="name">Aircraft</field>
…
 <field name="includedCapabilities"><list>
 <object type="Capability" id="44">
 <base type="Entity">
 <field name="name">Flying</field>
…
</object>

actorHasCapability(44,"_8pRv4FyvEd6qIOGYcZQlag”)

true

<TroposClasses xmi:id="_8pRv4FyvEd6qIOGYcZQlag"
name="Aircraft" "/>

Call isOverlap(43,"_8pRv4FyvEd6qIOGYcZQlag”)

[36]

A.1.4.3 GetAttributeValue function

The getAttributeValue function returns the value of an attribute of an XML Element in Saxon.

The function receives two parameters a TinyNodeImpl node and String attributeName. The

node represents a XML element in the Saxon. For instance, the Figure shows a TinyNodeImpl

node in Saxon that represents the object element in XML. If you call the getAttributeValue

function and pass as parameter node and the String “type” then the function returns the value

“Agent” as result.

Field

type=“long”name =“ATL”

fieldTokenizer(“long ATL”, “space”)

Figure A.18 fieldTokenizer function example

<object type=”Agent” id = “44”>
</object>

node

type = “Agent” id = “44”

getAttributeValue(node,“type”)

“Agent”

Figure A.19 getAttributeValue function example

[37]

A.1.4.4 GetIncludedFields function

The getIncludedFieds function receives the id of an element in Prometheus and returns the

included fields Strings as parameter, s contains information about the fields and token contains

information how the fields are structured and can be divided into tokens. The shows an

example when the getIncludedFields function is called by passing the parameter 35 that is the id

of the runway_info Data in Prometheus. The function retrieves the information that contains

the included fields of the Data and then call the fieldTokenizer function. The fieldTokenizer

function returns a list with the Fields of the Data.

<object type="Data" id="35">
 <base type="Entity">
 <field name="name">runway_info</field>
 <field name="description"></field>
 <field name="uniqueId">35</field>
 </base>
 <field name="dataType">RunwayInfo</field>
 <field name="includedFields">
 long ATL,String aircraft,long ETA,boolean booking
 </field>
…
</object>

getIncludedFields(35)

call fieldTokenizer(“long ATL,String aircraft,long
ETA,boolean booking, “,”)

List

Field0 Field3

fieldType=“long”

fieldName=“ATL”

fieldType=“boolean”

fieldName=“booking”

…

Figure A.20 getIncludesFields function example

[38]

A.1.4.5 GetInformationCarried function

The getInformationCarried function receives the id of an element in Prometheus and returns the

information carried by the element. Figure A.21 shows an example when the

getInformationCarried function is called passing as an argument the id equal 7 that is related to the

Aircraft Event message. The function retrieves the information carried by the message and

returns a list with the Strings “ATL”, and “Slot Allocated”.

A.1.4.6 GetPDTFileName

The getPDTFileName function returns the name of the PDT filename that has been defined

during the creation of the project.

<object type="Message" id="7">
 <base type="Interaction">
 <base type="Entity">
 <field name="name">Aircraft Event</field>
 <field name="description"></field>
 <field name="uniqueId">9</field>
 </base>
 <field name="informationCarried">ATL, Slot
Allocated</field>
…
</object>

getInformationCarried(7)

List

“ATL” “Slot Allocated …

Figure A.21 getInformationCarried function example

[39]

A.1.4.7 GetPrometheusElements

The getPrometheusElements function receives as parameter a String with the id of an element, a

String with the types of sub-elements to be retrieved, and a list with sub-elements in case the

function has been called recursively or null. The getPrometheusElements function returns an

ArrayList of sub-elements of an element in Prometheus created using PDT tool.

<object type="Plan" id="8">
 <base type="Entity">
 <field name="name">TakeOff Discard</field>
 <field name="description"></field>
 <field name="uniqueId">36</field>
 </base>
 <field name="triggers"><list>
 <object ref="7"/>
 …
 <field name="goals">
 <list>
 <object type="Goal" id="9">
 <base type="Entity">
 …
</object>

list

name=“ATL”

getPrometheusElements(8,“Goal”)

TraceElement

id=“8” type=“goal”

doc=“AirTrafficControl.pd”

Figure A.22 getPrometheusElements function example

[40]

A.1.4.8 GetPrometheusSubElements

The getPrometheusSubElements function receives TinyNodeImpl node that represents an XML

Element in Prometheus and a String type that represents the type of subelements to be

retrieved. If the type is equal to “step” the getPrometheusStepScenarios function is called. If the

type is equal to “readBy” the getPrometheusUsesData function is called, otherwise the

getPrometheusElements function is called. The function returns a list of sub-elements.

<object type="Plan" id="8">
 <base type="Entity">
 <field name="name">TakeOff Discard</field>
 <field name="description"></field>
 <field name="uniqueId">36</field>
 </base>
 <field name="triggers"><list>
 <object ref="7"/>
 …
 <field name="goals">
 <list>
 <object type="Goal" id="9">
 <base type="Entity">
 …
</object>

list

name=“ATL”

getPrometheusSubElements(node,“Goal”)

TraceElement

id=“8” type=“goal”

doc=“AirTrafficControl.pd”

Call getPrometheusSubElements(8 ,“Goal”)

Figure A.23 getPrometheusSubElements function example

[41]

A.1.4.9 GetPrometheusStepScenarios

The getPrometheusStepScenarios function receives as parameter a String with the id of an

element and a list of TraceElement in case the function has been called recursively, otherwise

null.

<object type="Scenario" id="1023">
 <base type="Entity">
 <field name="name">Add Customer scenario</field>
 <field name="steps"><list>
 …
 <field name="step"><object ref="91"/></field> …
 <field name="step"><object ref="32"/></field>
…
</object>

<object type="Goal" id="91">
 <base type="Entity">
 <field name="name">Register New Customer</field>
 …
</object>

<object type="Percept" id="32">
 <base type="Interaction">
 <base type="Entity">
 <field name="name">New Customer</field>
…
</object>

getPrometheusStepScenarios(“1023”,null)

list

Element0

id=“91” id=“32”

Element1

Figure A.24 getPrometheusStepScenarios function example

[42]

A.1.4.10 GetPrometheusSubGoalsElements

The getPrometheusSubGoalsElements function receives as parameter a String with the id of a goal

element and a list with sub-elements in case the function has been called recursively otherwise

null. The getPrometheusSubGoalsElements function returns an ArrayList of sub-goals of an

element in Prometheus created using PDT tool.

<object type="Goal" id="32">
 …
 <field name="name">Landing</field>
 …
 <field name="subGoals"><list>
 <object type="Goal" id="33">
 …
 <field name="name">Initiate Aircraft Approach</field>
 </object>
 <object type="Goal" id="34">
 …
 <field name="name">Follow Approach Goal</field>
 </object>
 </list>
</object>

list

Element0

id=“33” id=“34”

Element1

getPrometheusSubGoalsElements(null,32)

Figure A.25 getPrometheusSubGoals function example

[43]

A.1.4.11 GetPrometheusSubGoalElements

The getPrometheusSubGoals function receives a TinyNodeImpl node that represents a XML

Element in Prometheus.The getPrometheusSubGoals calls getPrometheusSubGoals and pass the id of

goal which sub-elements are required. The function returns a list of sub-goals.

<object type="Goal" id="32">
 …
 <field name="name">Landing</field>
 …
 <field name="subGoals"><list>
 <object type="Goal" id="33">
 …
 <field name="name">Initiate Aircraft Approach</field>
 </object>
 <object type="Goal" id="34">
 …
 <field name="name">Follow Approach Goal</field>
 </object>
 </list>
</object>

list

Element0

id=“33” id=“34”

Element1

getPrometheusSubGoalsElements(node,)

getPrometheusSubGoalsElements(32, null)

Figure A.26 getPrometheusSubGoalsElements function example

[44]

A.1.4.12 GetPrometheusUsesData

The getPrometheusUsesData function retrieves a list of data used by an element (e.g. Agent,

Capability, and Plan) in Prometheus. The getPrometheusUsesData function receveis a String id as

parameter that identify the element (e.g. Agent, Capability and Plan) and ArrayList of sub-

elements that is used when the function is called recursively.

A.1.4.13 IsACapabilityThatTheAgentIncludes

The isACapabilityThatTheAgentIncludes function verifies if an agent includes a Capability. The

isACapabilityThatTheAgentIncludes receives an id that identifies an Agent and the id that identifies

the capability. If the agent includes the capability then isACapabilityThatTheAgentIncludes

function returns true.

A.1.4.14 IsADataProducedByTheRole

The isADataProducedByTheRole function verifies if a data is produced by a role in Prometheus.

The isADataProducedByTheRole function receives as parameter the id of a data in Prometheus,

the id of a role in Prometheus. The isADataProducedByTheRole function returns ture if the data

has been produced by the role

A.1.4.15 IsADataThatTheAgentReads

The isADataThatTheAgentReads function verifies if a data is read by a plan in Prometheus. The

function receives the id of a data in Prometheus and the id of a plan in Prometheus. The

isADataThatTheAgentReads function returns true if the data is read by a plan.

A.1.4.16 IsADataThatTheAgentWrites

The isADataThatTheAgentWrites function verifies if an agent writes a data in Prometheus. The

isADataThatTheAgentWrites function receives as parameter the id of data in Prometheus and the

id of an agent in Prometheus. The isADataThatTheAgentWrites function returns true if the agent

writes a data.

[45]

A.1.4.17 IsADataThatTheCapabilityReads

The isADataThatTheCapabilityReads function verifies if the capability reads a data in

Prometheus. The isADataThatTheCapabilityReads function receives a parameter the id of data in

Prometheus and the id of capability in Prometheus. The isADataThatTheCapabilityReads

function returns true if the capability reads a data.

A.1.4.18 IsADataThatTheCapabilityWrites

The isADataThatTheCapabilityReads function verifies if the capability writes a data in

Prometheus. The isADataThatTheCapabilityReads function receives as parameter the id of a data

and the id of a capability. The isADataThatTheCapabilityReads function returns true if the

capability writes the data.

A.1.4.19 IsADataThatThePlanReads

The isADataThatThePlanReads function verifies if a data is read by a plan in Prometheus. The

isADataThatThePlanReads function receives as parameter the id of a data in Prometheus and the

id of a plan in Prometheus. The isADataThatThePlanReads function returns true if the data is

read by the plan.

A.1.4.20 IsADataThatThePlanWrites

The isADataThatThePlanWrites function verifies if a plan writes a data in Prometheus. The

function receives as parameter the id of data in Prometheus and the id of a plan in

Prometheus. The isADataThatThePlanWrites function returns true if the plan writes the data.

A.1.4.21 IsADataUsedByTheRole

The isADataUsedByTheRole function verifies if a data is used by the role in Prometheus. The

isADataUsedByTheRole function receives the id of a data in Prometheus and the id of a role in

Prometheus. The isADataUsedByTheRole function returns true if the data is used by the role.

A.1.4.22 IsADataThatTheAgentAchieves

The isADataTheAgentAchieves function verifies if a agent writes a data in Prometheus. The

isADataTheAgentAchieves function receives as parameter the id of a data in Prometheus and the

[46]

id of an agent in Prometheus. The isADataTheAgentAchieves function returns true if the agent

writes the data

A.1.4.23 IsAGoalThatTheCapabilityAchieves

The isAGoalThatTheCapabilityAchieves function verifies if a capability achieves a goal in

Prometheus. The isAGoalThatTheCapabilityAchieves function receives the id of the capability in

Prometheus and the id of a goal in Prometheus. The isAGoalThatTheCapabilityAchieves function

returns true if the capability achieves the goal.

A.1.4.24 IsAGoalThatThePlanAchieves

The isAGoalThatThePlanAchieves function verifies is a plan achieves a goal. The

isAGoalThatThePlanAchieves function receives the id of a goal in Prometheus and the id of a

plan in Prometheus. The isAGoalThatThePlanAchieves function returns true if the goal is

achieved by the plan.

A.1.4.25 IsAGoalThatTheAgentAchieves

The isGoalThatTheAgentAchieves function verifies is an agent includes a role. The

isGoalThatTheAgentAchieves function receives as parameter the id of a role in Prometheus and

the id of an agent in Prometheus. The function returns true if the agent includes the role.

A.1.4.26 IsAGoalThatTheCapabilityAchieves

The isGoalThatTheCapabilityAchieves function verifies if the capability achieves a goal in

Prometheus. The isGoalThatTheCapabilityAchieves function receives as parameter the id of the

capability in Prometheus and the id of a goal in Prometheus. The

isGoalThatTheCapabilityAchieves returns true if the capability achieves the goal.

A.1.4.27 IsAMessageThatTheAgentReceives

The isAMessageThatTheAgentReceives function verifies if an agent receives a message in

Prometheus. The isAMessageThatTheAgentReceives function receives the id of a message in

Prometheus and the id of an agent in Prometheus. The isAMessageThatTheAgentReceives function

returns true if the agent receives the message.

[47]

A.1.4.28 IsAMessageThatTheAgentSends

The isAMessageThatTheAgentSends function verifies if an agent sends a message in Prometheus.

The isAMessageThatTheAgentSends function receives the id of the message in Prometheus and

the id of an agent in Prometheus. The isAMessageThatTheAgentSends function returns true if the

agent sends the message

A.1.4.29 IsAMessageThatTheCapabilityReceives

The isAMessageThatTheCapabilityReceives function verifies if a capability in Prometehus receives a

message in Prometheus. The isAMessageThatTheCapabilityReceives function receives the id of a

message in Prometheus and the id of a capability in Prometheus. The

isAMessageThatTheCapabilityReceives function returns true if the capability receives the message.

A.1.4.30 IsAMessageThatTheCapabilitySends

The isAMessageThatTheCapabilitySends function verifies if the capability sends a message in

Prometheus. The isAMessageThatTheCapabilitySends function receives as parameter the id of a

message in Prometheus and the id of a capability in Prometheus. The

isAMessageThatTheCapabilitySends function returns true if the capability sends a message.

A.1.4.31 IsAMessageThatTheReceives

The isAMessageThatTheCapabilitySends function verifies if a plan receives a message in

Prometheus. The isAMessageThatTheCapabilitySends function receives the id of a message in

Prometheus and the id of a plan in Prometheus. The isAMessageThatTheCapabilitySends function

returns true if the plan receives the message.

A.1.4.32 IsAMessageThatThePlanReceives

The isAMessageThatThePlanReceives function verifies if a plan receives a message in Prometheus.

The isAMessageThatThePlanReceives function receives an id of a message in Prometheus and the

id of a plan in Prometheus. The isAMessageThatThePlanReceives function returns true if the plan

receives the message.

[48]

A.1.4.33 IsAMessageThatThePlanSends

The isAMessageThatThePlanSends function verifies if the plan sends a message in Prometheus.

The isAMessageThatThePlanSends function receives the id of a message in Prometheus and the id

of a plan in Prometheus. The isAMessageThatThePlanSends function returns true if the plan

sends the message.

A.1.4.34 IsAMessageThatTriggersThePlan

The isAMessageThatTriggersThePlan function verifies if the message triggers a plan in

Prometheus. The isAMessageThatTriggersThePlan function receives the id of a message in

Prometheus and the id of a plan in Prometheus. The isAMessageThatTriggersThePlan function

returns true if the message triggers the plan.

A.1.4.35 IsAnActionThatTheAgentPerforms

The isAnActionThatTheAgentPerforms function verifies if an agent performs an action in

Prometheus. The isAnActionThatTheAgentPerforms function receives the id of an action in

Prometheus and the id of an agent in Prometheus. The isAnActionThatTheAgentPerforms returns

true if the agent performs the action.

A.1.4.36 IsAnActionThatTheCapabilityPerforms

The isAnActionThatTheCapabilityPerforms function verifies if a capability performs an action in

Prometheus. The isAnActionThatTheCapabilityPerforms function receives an id of an action in

Prometheus and the id of a capability in Prometheus. The isAnActionThatTheCapabilityPerforms

function returns true if the capability performs the action.

A.1.4.37 IsAnActionThatThePlanPerforms

The isAnActionThatThePlanPerforms function verifies if a plan performs an action in

Prometheus. The isAnActionThatThePlanPerforms function receives the id of an action in

[49]

Prometheus and the id of plan in Prometheus. The isAnActionThatThePlanPerforms function

returns true if the agent performs the action.

A.1.4.38 IsAPerceptThatTheAgentResponds

The isAPerceptThatTheAgentResponds function verifies if an agent responds to a percept in

Prometheus. The isAPerceptThatTheAgentResponds function receives the id of a percept in

Prometheus and the id of an agent in Prometheus. The isAPerceptThatTheAgentResponds function

returns true if the agent responds to the percept.

A.1.4.39 IsAPerceptThatTheCapabilityResponds

The isAPerceptThatTheCapabilityResponds function verifies if a capability responds to a percept in

Prometheus. The isAPerceptThatTheCapabilityResponds function receives the id of a percept in

Prometheus and the id of a capability in Prometheus. The isAPerceptThatTheCapabilityResponds

function returns true if the capability responds to the percept.

A.1.4.40 IsAPerceptThatThePlanResponds

The isAPerceptThatThePlanResponds function verifies if the plan responds to the percept in

Prometheus. The isAPerceptThatThePlanResponds function receives the id of a percept in

Prometheus and the id of a plan in Prometheus. The isAPerceptThatThePlanResponds function

returns true if the plan responds to the percept.

A.1.4.41 IsAPerceptThatTheCapabilityResponds

The isAPerceptThatTheCapabilityResponds function verifies if a capability responds to a percept in

Prometheus. The isAPerceptThatTheCapabilityResponds function receives the id of a percept in

Prometheus and the id of a capability in Prometheus. The isAPerceptThatTheCapabilityResponds

function returns true if the capability responds to the percept.

A.1.4.42 IsAPerceptThatThePlanResponds

[50]

The isAPerceptThatThePlanResponds function verifies if the plan responds to the percept in

Prometheus. The isAPerceptThatThePlanResponds function receives the id of a percept in

Prometheus and the id of a plan in Prometheus. The isAPerceptThatThePlanResponds function

returns true if the plan responds to the percept.

A.1.4.43 IsAPerceptThatTheCapabilityResponds

The isAPerceptThatTheCapabilityResponds function verifies if a capability responds to a percept in

Prometheus. The isAPerceptThatTheCapabilityResponds function receives the id of a percept in

Prometheus and the id of a capability in Prometheus. The isAPerceptThatTheCapabilityResponds

function returns true if the capability responds to the percept.

A.1.4.44 IsAPerceptThatThePlanResponds

The isAPerceptThatThePlanResponds function verifies if the plan responds to the percept in

Prometheus. The isAPerceptThatThePlanResponds function receives the id of a percept in

Prometheus and the id of a plan in Prometheus. The isAPerceptThatThePlanResponds function

returns true if the plan responds to the percept.

A.1.4.45 IsAPlanThatTheAgentIncludes

The isAPlanThatTheAgentIncludes function verifies if an agent includes a plan in Prometheus.

The isAPlanThatTheAgentIncludes function receives the id of a plan in Prometheus and id of an

agent in Prometehus. The isAPlanThatTheAgentIncludes function returns true if the agent

includes the plan.

A.1.4.46 IsAPlanThatTheCapabilityIncludes

The isAPlanThatTheCapabilityIncludes function verifies if a capability includes a plan in

Prometheus. The isAPlanThatTheCapabilityIncludes function receives the id of a plan in

Prometheus and the id of a capability in Prometheus. The isAPlanThatTheCapabilityIncludes

function returns true if the capability includes the plan.

[51]

A.1.4.47 IsAPlanTheRoleUses

The isAPlanTheRoleUses function verifies if a role in Prometheus uses a plan in Prometheus.

The isAPlanTheRoleUses function receives the id of a plan in Prometheus and the id of a role I

Prometheus. The isAPlanTheRoleUses function returns true if the role uses the plan.

A.1.4.48 IsARoleThatTheAgentIncludes

The isARoleThatTheAgentIncludes function verifies is an agent in Prometheus includes a role in

Prometheus. The isARoleThatTheAgentIncludes function receives as parameter the id of a role

and the id of an agent. The isARoleThatTheAgentIncludes function returns true if the agent

includes the role.

A.1.4.49 IsTrigger

The isTrigger function verifies if a plan triggers an event. The isTrigger function receives the id of

a plan in Prometheus and the name of an event. The isTrigger function returns true if the event

triggers the plan.

A.1.5 XQuerySimilarityFunctions

Method Summary
boolean creates(String idA, String idB)

 Verifies if there is a creates traceability relation between two elements
boolean creates(String idA, String idB, Document outputDoc,

XPath xpath)
 Verifies if there is a creates traceability relation between two elements

boolean hasUses(String idA, String idB)
 Verifies if there is uses traceability relation between two elements

boolean hasUses(String idA, String idB, Document outputDoc,
XPath xpath)
 Verifies if there is an uses traceability relation between two elements

boolean isOverlap(String idA, String idB)

[52]

 Verify if two elements has an overlaps traceability relation
boolean isOverlap(String idA, String idB, Document outputDoc,

XPath xpath)
 Check if two elements has an overlaps relation

boolean isPositiveSimilar(ArrayList<TraceElement> list1,
ArrayList<TraceElement> list2, double threshold)

boolean isSimilar(java.util.ArrayList<TraceElement> list1,
java.util.ArrayList<TraceElement> list2, double threshold)

boolean isSimilarAgentAgent(TinyNodeImpl node1, TinyNodeImpl node2,
double threshold)

int isSimilarByOverlaps(ArrayList<TraceElement> list1,
ArrayList<TraceElement> list2)

boolean isSimilarByOverlaps(ArrayList<TraceElement> list1,
ArrayList<TraceElement> list2, double threshold)

boolean isSimilarCapabilityCapability(TinyNodeImpl node1,
TinyNodeImpl node2, double threshold)

boolean isSimilarDataAndBeliefSet(TinyNodeImpl node1,
TinyNodeImpl node2, double threshold)

boolean isSimilarPlanPlan(TinyNodeImpl node1, TinyNodeImpl node2,
double threshold)

boolean isSimilarSDResourceAndMessage(TinyNodeImpl node1, String node2)

boolean someOverlap(java.lang.String elem,
java.util.ArrayList<TraceElement> list)

Table A.5 XQuerySimilarityFunctions

A.1.5.1 HasUses function

The hasUses function check if two elements have an uses traceability relation. The function

receives the id of the elements to be compared, the document that contains the traceability

relation and an XPath object to execute the evaluation. Figure 4.30 shows an example when

the hasUses function is called to check if elements with id = "_PsspBiQyEd6fbcmFsKI3Cw" and

id = "40" have a uses traceability relation.

[53]

A.1.5.2 HasUses function

The hasUses function check if two elements have an uses traceability relation. The function

receives the id of the elements to be compared. The hasUses function call hasUses function

explained in the Section A.1.5.1. Figure A.28 shows an example when the hasUses function is

called to check if elements with id = "_PsspBiQyEd6fbcmFsKI3Cw" and id = "40" have a uses

traceability relation.

<Traceability>
 <TraceabilityRelation type="uses">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

hasUses(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,SaxonInterface.xpath

true

Figure A.27 hasUses function example

[54]

A.1.5.3 Creates function

The creates functions check if two elements have a creates traceability relation. The function

receives the id of the elements to be compared, the document that contains the traceability

relations and XPath object to execute the evaluation. Figure A.29 shows an example when the

creates function is called to check if elements with id = "_PsspBiQyEd6fbcmFsKI3Cw" and id =

"40" have a creates traceability relation.

<Traceability>
 <TraceabilityRelation type="creates">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

creates(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,SaxonInterface.xpath

true

<Traceability>
 <TraceabilityRelation type="creates">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

hasUses(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,SaxonInterface.xpath

true

Figure A.28 hasUses function example

Figure A.29 creates function example

[55]

A.1.5.4 Creates function

The creates function check if two elements have a creates traceability relation. The function

receives the id of the elements to be compared. The creates function call creates function explained

in the Section A.1.5.3. Figure A.30 shows an example when creates function is called to check if

elements with id = "_PsspBiQyEd6fbcmFsKI3Cw" and id = "40" have a creates traceability

relation.

A.1.5.5 IsOverlap function

The overlaps functions check if two elements have a creates traceability relation. The function

receives the id of the elements to be compared, the document that contains the traceability

relation and a XPath object to execute the evaluation. Figure A.31 shows an example when the

overlaps function is called to check if elements with id = "_PsspBiQyEd6fbcmFsKI3Cw" and id =

"40" have isOverlap traceability relation.

<Traceability>
 <TraceabilityRelation type="creates">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

Call creates(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,
 SaxonInterface.xpathpath)

true

creates(“PsspBiQyEd6fbcmFsKI3Cw”,”40”)

Figure A.30 creates function example

[56]

A.1.5.6 IsOverlap function

The isOverlap function checks if two elements have an overlaps traceability relation. The function

receives the id of the elements to be compared. The isOverlap function call isOverlap function

explained in the Section A.1.5.5. Figure shows an example when the function is called to check

if elements with id = "_PsspBiQyEd6fbcmFsKI3Cw" and id = "40" have isOverlap traceability

relation.

<Traceability>
 <TraceabilityRelation type="creates">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

overlaps(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,SaxonInterface.xpath

true

Figure A.31 overlaps function example

[57]

A.1.5.7 IsPositiveSimilar function

The isPositiveSimilar function receives two lists of elements and compare if the number of

elements in the list1 which names are synonyms to elements in the list2 is greater than a

threshold. If list1 is empty then isPositiveSimilar function returns true. In the Figure A.33, the

isPositiveSimilar function is called passing list1 and list2 as parameter. The function compares if

the name of each element in the list1 has a synonyms in the list2. The only elements in the list1

that does not have a synonym in the list2 is “Login outgoing delivery” therefore the percentage

of elements in the list1 that has a synonym in the list2 is 66.7 that is greater than 40

(threshold).

<Traceability>
 <TraceabilityRelation type="overlaps">
 <Element … id="_PsspBiQyEd6fbcmFsKI3Cw"/>
 <Element … id="40" />
 </TraceabilityRelation>
 …
</Traceability>

Call overlaps(“PsspBiQyEd6fbcmFsKI3Cw”,”40”,outputDoc,
 SaxonInterface.xpathpath)

true

overlaps(“PsspBiQyEd6fbcmFsKI3Cw”,”40”)

Figure A.32 overlaps function example

[58]

A.1.5.8 IsSimilar function

The isSimilar function receives two lists of elements and compare if the number of elements in

the list1 which names are synonyms to elements in the list2 is greater than a threshold. If the

list1 is empty then isSimilar function returns true. In the Figure A.34, the isSimilar function is

called passing list1 and list2 as parameter. The function compares if the name of each element

in the list1 has a synonyms in the list2. The only element in the list1 that does not have a

list1

Element0 Element2

Element1

name=“Get
delivery options”

name=“Calculate
delivery time

estimates”

list2

Element0 Element2

Element1

name=“Place
Delivery Request”

name=“Compute
Delivery Time

Estimates”

name=“Obtain
Delivery Options”

isPositiveSimilar(listA , listB, 40)

true

foreach (a in listA)
 foreach (b in listB)
 call isSynonyms(a,b)

synonyms

synonyms

…
isSynonyms(“Get delivery options”, “Obtain Delivery Options”)

name=“Login
outgoing delivery”

Figure A.33 isPositiveSimilar function example

[59]

synonym in the list2 is “Login outgoing delivery” therefore the percentage of elements in the

list1 that has a synonym in the list2 is 66.7 that is greater than 40 (threshold).

A.1.5.9 IsSimilarByOverlaps

The isSimilarByOverlaps function receives two lists of elements and returns the number of

elements in the list1 that has an overlaps traceability relation with any element in the list2.

ListA

Element0 Element2

Element1

name=“Get
delivery options”

name=“Calculate
delivery time

estimates”

ListB

Element0 Element2

Element1

name=“Place
Delivery Request”

name=“Compute
Delivery Time

Estimates”

name=“Obtain
Delivery Options”

isSimilar(listA , listB, 40)

true

foreach (a in listA)
 foreach (b in listB)
 call isSynonyms(a,b)

synonyms

synonyms

…
isSynonyms(“Get delivery options”, “Obtain Delivery Options”)

name=“Login
outgoing delivery”

Figure A.34 isSimilar function example

[60]

The isSimilarByOverlaps function call isOverlap function explained in the A.1.5.6 section. If

an element in the list1 does not have an overlaps relation then the element is added to the list of

missing elements.

list1

Element0 Element2

Element1

name=“Get
delivery options”

name=“Calculate
delivery time

estimates”

list2

Element0 Element2

Element1

name=“Place
Delivery Request”

name=“Compute
Delivery Time

Estimates”

name=“Obtain
Delivery Options”

isSimilarByOverlaps(list1 , list2)

2

foreach (a in list1)
 foreach (b in list2)
 call isOverlap(a,b)

synonyms

synonyms

name=“Login
outgoing delivery”

Element0

type=“Goal”

id=55

doc=“ElectronicBooks
tore.pd”

name=“Login
outgoing delivery”

missingElements

Figure A.35 isSimilarByOverlaps function example

[61]

A.1.5.10 IsSimilarDataAndBeliefSet

The isSimilarDataAndBeliefSet function receives two TinyNodeImpl nodes that represent a

Prometheus data in XML and a JACK beliefSet in XML. The function compares if a data and

a beliefset are similar based on the name of the fields of the data and the beliefset. If the

percentage of the name of the fields that are synonyms are greater than a threshold then the

method returns true.

true

<beliefSet id="b1" type="LandingInfo" extends="ClosedWorld">
 <field declarationType="value"
 type="String" name="runway"/>
 <field declarationType="value"
 type="long" name="ATL"/>
 …
</beliefSet>

<object type="Data" id="58">
 <base type="Entity">
 <field name="name">landing_info</field>
 <field name="description"></field>
 <field name="uniqueId">7</field>
 </base>
 <field name="dataType">LandingInfo</field>
 <field name="includedFields">String runway,
 long ATL</field>
…
</object>

isSimilarDataAndBeliefSet(node1 , node2, 50)

foreach (b in listOfBeliefSet)
 foreach (f in includedFields)
 isSynonyms(b,f)

isSynonyms(“runway”,”runway”)
isSynonyms(“ATL”,”ATL”)

listOfIncludedFields = getIncludedFields(b1)

listOfBeliefSetFields = getBeliefSets (58)

Figure A.36 isSimilarDataAndBeliefSet function example

[62]

A.1.5.11 IsSimilarSDResourceAndMessage

The isSimilarSDResourceAndMessage function receives a TinyNodeImpl node that represents a

SD Resource and a String with the id of the Prometheus message. The

isSimilarSDResourceAndMessage function calls getInformationCarried function to retrieve the

information carried by the message. Then the isSimilarSDResourceAndMessage function calls

isSynonyms function (explained in the A.1.6.3 Section) to check if the information carried by the

message is synonyms to the name of the SDResource.

isSimilarSDResourceAndMessage(node1, “ATL”)

true

<TroposClasses
xsi:type="it.itc.sra.taom4e.model.core.informalcore.formalcore
:FResource" name="ATL" />

<object type="Message" id="43">
 <base type="Interaction">
 <base type="Entity">
 <field name="name">Enter Control Area</field>
 …
 <field name="informationCarried">ATL, Slot
Allocated</field>
</object>

Call isSynonyms(“ATL”, “ATL”)

Call getAttributeValue(node1,”id”)

Call getInformationCarried(43)

Figure A.37 isSimilarSDResourceAndMessage function example

[63]

A.1.5.12 SomeOverlap

The someOverlap function receives a String id that represents the identifier of an element and a

list of TraceElement. The function verifies if there is any overlaps traceability relation between

the element idenfied by id and any of the elements in the TraceElement list.

someOverlap(“30”, list)

true

30
list

Element0

Element1

Element2

<Traceability>
 <TraceabilityRelation … type="overlaps">
 <Element id="_Wl_JgFywEd6qIOGYcZQlag"… />
 <Element id="30" />
 </TraceabilityRelation>
<Traceability>

id = “30” id = “49”
id = “60”

foreach (l in list)
 foreach (f in includedFields)
 isomeOverlap(“30” l.getId())

isOverlap(“30”, “30”)

Figure A.38 SomeOverlap function example

[64]

A.1.6 XQuerySynonymsFunctions

Method Summary
boolean contains(ArrayList<String> list1, ArrayList<String> list2)

boolean contains(String word, ArrayList<String> wordList)

boolean isSynonyms(String str1, String str2)

ArrayList<

String>
stringTokenizer(String str)

ArrayList<
String>

stringTokenizerByUpperCase(String str)

Table A.6 XQuerySynonyms Function example

A.1.6.1 StringTokenizerByUpperCase function

The stringTokenizerByUpperCase function receives as parameter a String str and it breaks down

the string into tokens using spaces and upper case letters as delimiters. Figure A.39 shows an

example when the “GetDeliveryOptions” String is passed as parameter to the

stringTokenizerByUpperCase function. As result, the stringTokenizerByUpperCase function returns a

list of strings that consists of “Get”, “Delivery” and “Options”.

List

“Delivery”

“Options” “Get”

stringTokenizerByUpperCase(“GetDeliveryOptions”)

Figure A.39 stringTokenizerByUpperCase function example

[65]

A.1.6.2 Contains function

The contains function receives as parameter a String word and an ArrayList of String wordList and

check if the Arraylist wordList contains the String word. The function uses the WordNet

dictionary to check for synonyms words. Figure A.40 shows that the contains function returns

true when it is invoked passing as parameter the String “Get” and the list of Strings wordList

that consists of “Obtain”, “Delivery” and “Options”. The list of Strings wordList contains the

“Get” string because “Get” and “Obtain” are synonyms.

Figure A.40 contains function example

A.1.6.3 IsSynonyms function

The isSynonyms function receives as parameter two Strings str1 and str2. The isSynonyms function

uses the stringTokenizerByUpperCase (see A.1.6.1 section) function to break str1 and str2 in two

lists of words, wordList1 and wordList2. The contains function (see A.1.6.2 Section) is used to

verify if wordList2 contains each word in wordList1.

wordList

“Delivery”

“Options” “Obtain”

contains (“Get”, wordList)

true

[66]

wordList1

“Delivery”

“Options” “Get”

isSynonyms(“Get Delivery Options”, “Obtain Delivery Options”)

wordList2

“Delivery”

“Options” “Obtain”

 call stringTokenizerByUpperCase (“Get Delivery Options”)
 call stringTokenizerByUpperCase (“Obtain Delivery Options”)

 call contains(“Get”, wordList2)
 call contains(“Delivery”, wordList2)
 call contains(“Options”, wordList2)

true

Figure A.41 isSynonyms function

[67]

A.1.6.4 StringTokenizer function

The stringTokenizer function receives as parameter a String and break down the string into

tokens using as delimiters spaces, ‘_’, ‘-‘, ‘(‘, and ‘)’. A list contained “Get”, “Delivery” and

“Options” String is returned as result when function stringTokenizer function is called passing as

parameter “Get Delivery Options” String.

A.1.6.5 Contains function

The contains function receives as parameter Strings list1 and list2 and then call contains

functions (see Section A.1.6.2.) to check if elements in the list1 are contained by the list2.

Figure A.43 shows an example where list1 consists of the Get”, “Delivery” and “Options”

Strings and list2 consists of “Obtain”, “Delivery”, and “Option” Strings. The contains function

returns true when it is invoked and list1 and list2 are passed as parameter.

List

“Delivery”

“Options” “Get”

stringTokenizer(“Get Delivery Options”)

Figure A.42 stringTokenizer function example

[68]

list1

“Delivery”

“Options” “Get”

isSynonyms(“Get Delivery Options”, “Obtain Delivery Options”)

list2

“Delivery”

“Options” “Obtain”

 call contains(“Get”, wordList2)
 call contains(“Delivery”, wordList2)
 call contains(“Options”, wordList2)

true

Figure A.43 isSynonyms function example

[69]

A.1.7 XQueryTAOMFunctions

Method Summary
String getAttributeValue(TinyNodeImpl node,

String attributeName)

ArrayList<TraceEleme
nt>

getSubElements(ArrayList<TraceElement> subElements
, String subElementId)

ArrayList<TraceEleme
nt>

getSubElements(TinyNodeImpl node)

ArrayList<TraceEleme
nt>

getSubGoalsAndTask(ArrayList<TraceElement> subElem
ents, String subElementId)

ArrayList<TraceEleme
nt>

getSubGoalsAndTask(TinyNodeImpl node)

String getTAOMFileName()

 Table A.7 XQueryTAOMFunctions

A.1.7.1 GetSubGoalsAndTask function

The getSubGoalsAndTak function receives an id of an element in i* and returns the sub-goals

and sub-tasks that are part of means-end and decomposition links. If a sub-element has sub-

elements then the function calls itself recursively. For instance, Figure A.45 shows an example

when the function is called to retrieve sub-elements of the Landing task (xmi:id =

“_4cvccCQkEd6fbcmFsKI3Cw”) in i*. The function returns a list of elements that consists

of the Assign Slot, Initiate Approach and Follow Approach elements.

[70]

Figure A.44 getSubGoalsAndTask function example

A.1.7.2 GetSubGoalsAndTask function

The getSubGoalsAndTask function receives as parameter a TinyNodeImpl node that represents

an XML node element in Saxon. The function calls getSubGoalsAndTask function explained in

the Section 4.1.7.1 and returns a list of sub-goals and sub-tasks that are a part of means-end

and decomposition links. Figure A.45 shows an example when the getSubGoalAndTask function

is called to retrieve the sub-elements of the node that contains the Landing task in i*. The

Landing

Follow
Approach

Assign Slot
Initiate

Approach

<TroposClasses xmi:id ="_4cvccCQkEd6fbcmFsKI3Cw”
name="Landing"…/>

List

Element0 Element2

name=“Assign Slot”

doc=“AirTrafficEnvir

onment.tropos”

type=“Task”

id=“_6-

avACQkEd6fbcmFsKI3Cw”

getSubGoalsAndTask(_4cvccCQkEd6fbcmFsKI3Cw, null)

<TroposClasses xmi:id =" _6-avACQkEd6fbcmFsKI3Cw”

name="AssignSlot"…/>

…

[71]

function returns a list of elements contained Assign Slot, Initiate Approach and Follow

Approach.

Figure A.45 getSubGoalsAndTask function example

A.1.7.3 GetSubElements function

The getSubElements function receives an id of an element in i* and returns the sub-elements that

are part of means-end and decomposition links. If a sub-element has sub-elements then the

function calls itself recursively. The getSubElements function behaviour is similar to the

getSubGoalsAndTask function explained in the Section 4.1.7.1., except that it returns all types of

sub-elements.

<TroposClasses xmi:id ="_4cvccCQkEd6fbcmFsKI3Cw”
name="Landing"…/>

getSubGoalsAndTask(node)

call getSubGoalsAndTask(_4cvccCQkEd6fbcmFsKI3Cw, null)

List

Element0 Element2

name=“Assign Slot”

doc=“AirTrafficEnvir
onment.tropos”

type=“Task”

id=“_6-
avACQkEd6fbcmFsKI3Cw”

<TroposClasses xmi:id =" _6-avACQkEd6fbcmFsKI3Cw”
name="AssignSlot"…/>

…

[72]

A.1.7.4 GetSubElements function

The getSubElements function receives as parameter a TinyNodeImpl node that represents an XML

node element in Saxon. The function calls getSubElements function explained in the Section

A.1.7.3 and returns a list of sub-elements that are a part of means-end and decomposition links.

A.1.7.5 GetAttributeValue function

The getAttributeValue function returns the value of an attribute of an XML Element in Saxon.

The function receives two parameters a TinyNodeImpl node and String attributeName. The node

represents a XML element in the Saxon. For instance, Figure A.46 shows a TinyNodeImpl node

in Saxon that represents the object XML element shown in the Figure A.47. If you call the

getAttributeValue function and pass as parameter node and the String “type” then the function

returns the value “Agent” as result.

A.1.7.6 GetTAOMFile function

The getTAOMFile functions returns the TAOM filename defined during the creation of the

project and that is used to generate traceability relations between i* elements.

<object type=”Agent” id = “44”>
</object>

TinyNodeImpl node

type = “Agent” id = “44”

getAttributeValue(node, “type”)

Figure A.46 getAttributeValue function example

[73]

Appendix B – Automated Teller Machine

B.1 Introduction
This document describes the development of a multi-agent system to implement the

Automated Teller Machine (ATM) used as a case study to evaluate our approach to generate

traceability relations automatically and to identify missing elements between artefacts created

during the development of a multi-agent system.

Automated Teller Machines (ATMs) allow customers to carry out bank transactions without

the assistance of a teller such as withdraw cash, change PIN, make a payment, check balance,

print statement, and transfer money. The customer needs to insert a card in the ATM machine

and enter a PIN code to use one of services provided by the ATM machine. When the

customer inserts the card the system reads the card details and shows a screen asking for a PIN

number. The customer enters the PIN number and then the system validates the PIN number.

If the PIN number is correct the system shows a screen with the services available for the

customer.

If the customer selects withdraw cash option, the system shows withdraw cash screen. The

customer enters the amount of money that he/she would like to withdraw and then the system

processes the cash withdraw. The system requests to the Bank authorization to the cash

withdraw. If the Bank approve the cash withdraw, the ATM machine dispenses the amount of

cash requested by the customer and prints a receipt. If the Bank does not approve the cash

withdraw, the ATM machine shows a message given details why the cash withdraw was not

authorized.

 If the customer selects to change the PIN number, the ATM machine shows a screen where

the customer can enters a new PIN number. After the customer enters the new PIN number,

the ATM sends the new PIN number to the Bank. If the customer selects to make a payment,

the ATM shows a screen where the customer can enter details about the payment. The ATM

sends details about the payment to the Bank execute the payment. If the customer selects the

balance account, the ATM requests the balance to Bank and then shows the balance on the

screen. If the customer selects to print statement, the ATM requests the transactions done by

the customers to the Bank and then prints the transactions details. If the customer selects to

[74]

transfer money, the ATM shows a screen where the customer can enter details about the

account to transfer money and amount to transfer. The ATM sends the details about the

money transfer to the Bank to execute the transfer.

Support Staff periodically performs maintenance on the ATM machine. Support Staff replaces

tonner when receives alert of low quantity of tonner. Support Staff deposit more cash into the

ATM machine when receives alert of low quantity of cash. Support Staff put in more paper for

the printer when alerted of paper out. Support Staff performs maintenance when alerted of

paper jam.

The remainder of this document describes the development of the ATM case study and its

evaluation. The ATM case study was developed using i* framework to model the

organizational environment, Prometheus methodology to create the system specification,

analysis and design models and JACK Intelligent Agent language to implement the multi-agent

system. To evaluate our approach we use precision and recall measures to show the

effectiveness of the traceability recovery by the approach and used the missing element

information identified by the tool to complete the models and to fix inconsistencies (e.g. to fix

discrepancies between names given by the elements).

B.2 Organizational Models
The Automatic Teller Machine environment is composed of the ATM, Bank, Support Staff,

Power Supply, and Customer actors. Figure B.1 shows the actors and its strategic

dependencies relationships. The Customer actor depends on ATM actor to have Withdraw

Cash, Transfer Money, Make a Payment, Show Services Available, Check Balance, Print

Statement, and Change PIN goals accomplished. The Customer depends on the ATM to have

Balance, Receipt, Statement, and Cash resources provided by the ATM actor. The ATM actor

depends on the Bank actor to have Provide Services, Process Withdraw, and Authorization

Response goals achieved. The ATM actor depends on the Support Staff actor to have Execute

Maintenance goal accomplished. The Support Staff actor depends on the ATM actor to have

Alert Low Quantity of Tonner, Alert Low Quantity of Cash, Alert Paper Jam, and Alert Paper

Out goals achieved.

[75]

Figure B.1 Strategic Dependency model for the Automatic Teller Machine

Figure B.2 shows a partial Strategic Rationale model for the Automatic Teller Machine. Figure

B.2 describes in more detail how the ATM actor achieves the Withdraw Cash goal

dependency. The ATM actor performs Request Withdraw and Process Request Response

tasks in order to achieve Withdraw Cash goal. The ATM actor depends on the Bank actor to

send Authorization Response in order to execute Process Request Response task. If the Bank

approves the cash withdraw the ATM actor performs the Approve Withdraw task and if the

Bank rejects the cash withdraw the ATM performs Reject Withdraw task. The ATM actor uses

Cash and Receipt resources and executes Eject Card and Show Withdraw Message Approved

tasks to complete the Approve Withdraw task. The ATM actor performs Eject Card and Show

Withdraw Request Rejected tasks in order to complete Reject Withdraw task. The Bank needs

balances and accounts resource information to have Process Withdraw goal achieved.

[76]

Figure B.2 Strategic Rationale Model for the Automatic Teller Machine

B.3 Prometheus Models
Figure B.3 shows the Goal diagram for the ATM system. In the top level, we have the

Withdraw Money goal that is refined by the Authorize Withdraw goal that is decomposed in

Request Approved or Requested Rejected.

Figure B.3 ATM Goal diagram

The Automatic Teller Machine application consists of a multi-agent systems composed of two

agents: Atm and Bank. Figure B.4 shows a System Overview Diagram for the Automatic Teller

Machine multi-agent system. The Atm agent perceives when a customer inserts a card,

requests to withdraw cash and selects to print a statement represented in diagram by the Card

Inserted, Withdraw Percept, and Print Statement percepts. The Atm agent process information

from the Withdraw Percept and it posts a Withdraw message. The Atm agent handles the

[77]

Withdraw message and it sends a Withdraw Request message passing amount, account and pin

information details to the Bank agent. The Bank agent handles the Withdraw Request message

and replies to the Atm agent with WithdrawResponse passing balance and approval/rejection

information details to the Atm agent. The Atm agent executes Show Message Remove Cash,

Dispense Cash, Print Receipt, and Eject Card actions if the Bank agent approved the cash

withdraw and it executes Eject Card and Show Message Request Rejected actions if the Bank

agent rejected the cash withdraw.

Figure B.4 ATM System Overview diagram

Figure B.5 and B.6 show the Agent Overview diagrams for the Atm and Bank agents,

respectively. In the Figure B.5, the Withdraw Cash plan handles the Withdraw message and

sends Withdraw Request message to the Bank agent. In the Figure B.5, the Process Withdraw

plan handles Withdraw Request message, reads the account details, modifies the balance if

there is sufficient funds and posts a Withdraw Response message with the new balance and the

approval information or the rejection information if the withdraw has failed because

insufficient funds in the account. In the Figure B.5, the Withdraw Approved and Withdraw

Rejected plans handle the Withdraw Response message. If the withdraw has been approved,

the Withdraw Approved plan is selected to handle the Withdraw Response message otherwise

the Withdraw Rejected plan is selected. The Withdraw Approved handles the Withdraw

Response message and executes Eject Card, Dispense Cash, Show Message Remove Cash, and

Print Receipt actions. The Withdraw Rejected plan handles Withdraw Response message and

executes the Eject Card and Show Message Request Rejected actions.

[78]

Figure B.5 – Atm Agent Overview Diagram

Figure B.6 Bank Agent Overview diagram

B.4 JACK Code
The multi-agent system was implemented using JACK Agent Language. The system consists

of Atm and BankAgent agents, Accounts and Balances beliefsets, Withdraw,

WithdrawRequest, and WithdrawResponse events, ProcessWithdraw, WithdrawApproved,

WithdrawCash, and WithdrawRejected plans.

Figure B.7 shows Atm agent. The Atm agent is part of the package agent and it uses

aos.jack.jak.core, gui.AtmClient, and AtmInterface packages. The Atm agent handles Withdraw

and WithdrawResponse events. The Atm agent sends WithdrawRequest event and posts

Withdraw events. The Atm agent uses WithdrawCash, WithdrawApproved, and

WithdrawRejected plans. The Atm agent has AtmInterface, account, pin, amount, and bank

attributes. The Atm agent implements getHardware, getAccount, and statement methods.

[79]

package agents;

import aos.jack.jak.core.*;
import gui.AtmClient;
import gui.AtmInterface;

public agent Atm extends Agent implements AtmClient {

 #handles event Withdraw;
 #handles event WithdrawResponse;
 #sends event WithdrawRequest;
 #posts event Withdraw request;

 #uses plan WithdrawCash;
 #uses plan WithdrawApproved;
 #uses plan WithdrawRejected;

 private AtmInterface hardware;
 private int account;
 private int pin;
 private int amount;
 private String bank;

 public Atm(String n, AtmInterface h, String b) {
 super(n);
 bank = b;
 hardware = h;
 h.register((AtmClient)this);
 }

 /* The AtmClient implementation */
 public AtmInterface getHardware(){
 return hardware;
 }

[80]

Figure B.7 Atm agent

Figure B.8 shows BankAgent agent. The BankAgent agent is part of the agents package

(package agents). The BankAgent agent handles WithdrawRequest event and uses

ProcessWithdraw plan. The BankAgent agent contains accounts and balances beliefSets.

 public int getAmount(){
 return amount;
 }
 public String getBank(){
 return bank;
 }
 public void insertCard(int account, int pin){
 this.account = account;
 this.pin = pin;
 }
 public void withdraw(int amount){
 this.amount = amount;
 postEvent(request.withdraw());
 }

 public void statement(){
 throw new Error("statement() is not implemented.");
 }
}

package agents;

public agent BankAgent extends Agent {

 #sends event WithdrawResponse response;

 #handles event WithdrawRequest;
 #uses plan ProcessWithdraw;

 #private data Accounts accounts("accounts.dat");
 #private data Balances balances("balances.dat");

 public BankAgent(String n){
 super(n);
 try {
 if (accounts.nFacts() <= 0) {
 accounts.add(10, 10);
 balances.add(10, 1000);
 }
 } catch (Exception e) {}
 }
}

Figure B.8 BankAgent agent

[81]

Figure B.9 shows Accounts beliefSet that contains account and pin fields and the query

function query. The account field is declared as key field. The Accounts beliefSet implements

addfact, newfact, endfact, delfact, modfact, moddb callback methods.

package agents;

public beliefset Accounts extends OpenWorld {

 #key field int account;
 #value field int pin;

 #indexed query query(int i, int j);

 public void addfact(Tuple t, BeliefState d){
 System.err.println("Accounts: addfact " + t.toString() +
 ":" + d.toString());
 }

 public void newfact(Tuple t, BeliefState d, BeliefState old){
 System.err.println("Accounts: newfact " + t.toString() +
 ":" + d.toString() + ":" + old.toString());
 }

 public void endfact(Tuple t, BeliefState old, BeliefState d){
 System.err.println("Accounts: endfact " + t.toString() +
 ":" + old.toString() + ":" + d.toString());
 }

 public void delfact(Tuple t, BeliefState d){
 System.err.println("Accounts: delfact " + t.toString() +
 ":" + d.toString());
 }

 public void modfact(Tuple t, BeliefState d, Tuple tr, Tuple fl){
 String s;
 System.err.println("Accounts: endfact " + t.toString() +
 ":" + d.toString());
 if (tr == null)
 s = "null";
 else
 s = tr.toString();
 System.err.println("\t"+ s + ":true");
 if (fl == null)
 s = "null”
 else
 s = fl.toString();
 System.err.println("\t"+ s + ":false");
 }

 public void moddb(){
 write("new_accounts.dat");
 System.err.println("Accounts:"+"moddb");
 }
}

Figure B.9 Accounts beliefSet

[82]

Figure B.10 shows Balances beliefSet that contains account and balance fields and the query

function query. The account field is declared as key field. The Balances beliefSet implements

addfact, newfact, endfact, delfact, modfact, moddb callback methods.

package agents;

public beliefset Balances extends OpenWorld {

 #key field int account;
 #value field int balance;

 #indexed query query(int i, logical int j);

 public void addfact(Tuple t, BeliefState d){
 System.err.println("Balances: addfact " + t.toString() +
 ":" + d.toString());
 }

 public void newfact(Tuple t, BeliefState d, BeliefState old){
 System.err.println("Balances: newfact " + t.toString() +
 ":" + d.toString() + ":" + old.toString());
 }

 public void endfact(Tuple t, BeliefState old, BeliefState d){
 System.err.println("Balances: endfact " + t.toString() +
 ":" + old.toString() + ":" + d.toString());
 }

 public void delfact(Tuple t, BeliefState d){
 System.err.println("Balances:"+"delfact " + t.toString() +
 ":" + d.toString());
 }

 public void modfact(Tuple t, BeliefState d, Tuple tr, Tuple fl){
 String s;
 System.err.println("Balances:"+"endfact " + t.toString() +
 ":" + d.toString());
 if (tr == null)
 s = "null";
 else
 s = tr.toString();
 System.err.println("\t"+ s + ":true");
 if (fl == null)
 s = "null";
 else
 s = fl.toString();
 System.err.println("\t"+ s + ":false");
 }

 public void moddb(){
 write("new_balances.dat");
 System.err.println("Balances: "+"moddb");
 }
}

Figure B.10 Accounts beliefSet

[83]

Figure B.11 shows Withdraw event that implements withdraw posting method.

Figure B.12 shows WithdrawResponse event that contains approved, and balance data

members and implements approval and rejection posting methods.

Figure B.13 shows WithdrawRequest event that contains account, pin and amount data

members and implements withdraw posting method.

package agents;

import aos.jack.jak.core.*;

event Withdraw extends Event {
 #posted as
 withdraw() {
 Jak.log.log("Withdraw:withdraw created");
 }
}

Figure B.11 Withdraw event

package agents;

import aos.jack.jak.core.Jak;

public event WithdrawResponse extends MessageEvent {

 public boolean approved;
 public int balance;

 #posted as
 approval(int balance){
 Jak.log.log("WithdrawResponse:approval created");
 this.approved = true;
 this.balance = balance;
 message = "approved";
 }

 #posted as
 rejection(){
 Jak.log.log("WithdrawResponse:rejection created");
 this.approved = false;
 this.balance = 0;
 message = "rejected";
 }
}

Figure B.12 WithdrawResponse event

[84]

Figure B.14 shows WithdrawApproved plan that handles WithdrawApproved event and

uses AtmClient agent declaration. The WithdrawApproved implements context method and

body reasoning method.

package agents;

import aos.jack.jak.core.Jak;

event WithdrawRequest extends MessageEvent {
 public int account;
 public int pin;
 public int amount;

 #posted as
 withdraw(int account, int pin, int amount) {
 Jak.log.log("WithdrawRequest:withdraw created");
 this.account = account;
 this.pin = pin;
 this.amount = amount;
 message = "withdraw["+account+","+pin+"]";
 }
}

import gui.AtmClient;
import gui.AtmInterface;

public plan WithdrawApproved extends Plan {

 #handles event WithdrawResponse event;
 #uses agent implementing AtmClient atmc;

 context() {
 event.approved;
 }

 #reasoning method
 body(){
 AtmInterface hardware = atmc.getHardware();
 hardware.message("Remove your cash");
 hardware.dispense(atmc.getAmount());
 @sleep(5.0);
 hardware.receipt(atmc.getAccount(),event.balance);
 @sleep(5.0);
 hardware.eject();
 }
}

Figure B.14 WithdrawApproved plan

Figure B.13 WithdrawRequest event

[85]

Figure B.15 shows WithdrawCash plan that handles Withdraw event, sends

WithdrawRequest event and uses AtmClient agent declaration. The WithdrawCash plan

implements context method and body reasoning methods.

Figure B.16 shows WithdrawRejected plan that handles WithdrawResponse event and uses

AtmClient agent declaration. The WithdrawRejected plan implements relevant method and

body reasoning method.

package agents;

import gui.AtmInterface;
import gui.AtmClient;

public plan WithdrawCash extends Plan {
 #handles event Withdraw event;
 #uses agent implementing AtmClient atmc;

 context() {
 atmc.getHardware().cardInserted();
 }

 #sends event WithdrawRequest request;
 #reasoning method
 body(){
 @send(atmc.getBank(), request.withdraw(atmc.getAccount(),

atmc.getPin(), atmc.getAmount())
);
 }
}

package agents;

import gui.AtmInterface;
import gui.AtmClient;

public plan WithdrawRejected extends Plan {
 #handles event WithdrawResponse event;
 #uses agent implementing AtmClient atmc;

 static boolean relevant(WithdrawResponse event){
 return !event.approved;
 }
 #reasoning method
 body(){
 AtmInterface hardware = atmc.getHardware();
 hardware.message("Request rejected");
 @sleep(5.0);
 hardware.eject();
 atmc.getHardware().eject();}}

Figure B.15 WithdrawCash plan

Figure B.16 WithdrawRejected plan

[86]

Figure B.17 shows ProcessWithdraw plan that handles WithdrawRequest event, posts

WithdrawResponse event, reads accounts beliefset, and modifies balances beliefset. The

ProcessWithdraw implements body and fail reasoning methods.

B.5 JACK Code in XML
This section show the JACK code presented in the Section 4 converted in XML format. The

Figure B.18 shows Atm agent in XML.

<agent id="ag1" name="Atm" extends="Agent" implements="AtmClient">
 <import>gui.AtmClient</import>
 <import>aos.jack.jak.core.*</import>
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent>Withdraw</handlesEvent>
 <handlesEvent>WithdrawResponse</handlesEvent>

package agents;
public plan ProcessWithdraw extends Plan {
 #handles event WithdrawRequest event;

 #posts event WithdrawResponse response;
 #reads data Accounts accounts;
 #modifies data Balances balances;

 #reasoning method
 body(){
 logical int balance;
 int new_balance;
 (event.amount >= 0);
 try {
 if (!accounts.query(event.account,event.pin))
 System.err.println("accouts query failed");
 (accounts.query(event.account,event.pin) &&
 balances.query(event.account,balance));
 (event.amount <= balance.getValue());
 new_balance = (balance.getValue() - event.amount);
 balances.add(event.account,new_balance);
 @send(event.from,response.approval(new_balance));
 }
 catch (Exception e) {
 Jak.log.log(("ProcessWithdraw caught exception" + e));
 e.printStackTrace();
 (false == true);
 }
 }
 #reasoning method
 fail(){
 @send(event.from,response.rejection());
 }
}

Figure B.17 WithdrawApproved plan

[87]

 <sendsEvent type="WithdrawRequest"/>
 <postsEvent type="Withdraw" ref="request"/>
 <usesPlan> WithdrawCash</usesPlan>
 <usesPlan>WithdrawApporoved</usesPlan>
 <usesPlan>WithdrawRejected</usesPlan>
 <attribute type="AtmInterface" ref="hardware"/>
 <attribute type="int" ref="account"/>
 <attribute type="int" ref="pin"/>
 <attribute type="int" ref="amount"/>
 <attribute type="String" ref="bank"/>
 <constructor>
 <parameter type="String" ref="n"/>
 <parameter type="AtmInterface" ref="h"/>
 <parameter type="String" ref="b"/>
 <body>
 <![CDATA[
 super(n);
 bank = b;
 hardware = h;
 h.register((AtmClient)this);
]]>
 </body>
 </constructor>
 <method name="getHardware" returnType="AtmInterface">
 <body>
 <![CDATA[
 return hardware;
]]>
 </body>
 </method>
 <method name="getAccount" returnType="int">
 <body>
 <![CDATA[
 return account;
]]>
 </body>
 </method>
 <method name="getPin" returnType="int">
 <body>
 <![CDATA[
 return pin;
]]>
 </body>
 </method>
 <method name="getAmount" returnType="int">
 <body>
 <![CDATA[
 return amount;
]]>
 </body>
 </method>
 <method name="getBank" returnType="String">
 <body>
 <![CDATA[
 return bank;
]]>
 </body>
 </method>

[88]

Figure B.18 Atm agent in XML

Figure B.19 shows BankAgent agent in XML.

 <method name="insertCard" returnType="void">
 <parameter type="int" ref="account"/>
 <parameter type="int" ref="pin"/>
 <body>
 <![CDATA[
 this.account = account;
 this.pin = pin;
]]>
 </body>
 </method>
 <method name="withdraw" returnType="void">
 <parameter type="int" ref="amount"/>
 <body>
 <![CDATA[
 this.amount = amount;
 postEvent(request.withdraw());
]]>
 </body>
 </method>
 <method name="statement" returnType="void">
 <parameter type="int" ref="amount"/>
 <body>
 <![CDATA[
 throw new Error("statement() is not implemented.");
]]>
 </body>
 </method>
</agent>

<agent id="ag2" name="BankAgent" extends="Agent" >
 <sendsEvent type="WithdrawResponse" ref="response" />
 <handlesEvent>WithdrawRequest</handlesEvent>
 <privateData beliefType="Accounts" belieName="accounts"/>
 <privateData beliefType="Balances" belieName="balances"/>
 <constructor>
 <parameter type="String" ref="n"/>
 <body>
 <![CDATA[
 super(n);
 try {
 if (accounts.nFacts() <= 0) {
 accounts.add(10, 10);
 balances.add(10, 1000);
 }
 } catch (Exception e) {}
]]>
 </body>
 </constructor>
</agent>

Figure B.19 BankAgent in XML

[89]

Figure B.20 shows Accounts beliefSet.

<beliefSet id="b1" type="Accounts" extends="OpenWorld">
 <field declarationType="key" type="int" name="account"/>
 <field declarationType="value" type="int" name="pin"/>
 <indexedQuery methodName="query">
 <parameters>
 <parameter type="int" members="normal" ref="i"/>
 <parameter type="int" members="normal" ref="j"/>
 </parameters>
 </indexedQuery>
 <method name="addfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <parameter type="BeliefState" ref="was"/>
 <body>
 <![CDATA[
 System.err.println("Accounts: addfact " + t.toString() +
 ":" + d.toString());
]]>
 </body>
 </method>
 <method name="newfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <parameter type="BeliefState" ref="old"/>
 <body>
 <![CDATA[
 System.err.println("Accounts: newfact " + t.toString()
 + ":" + d.toString() + ":" + old.toString());
]]>
 </body>
 </method>
 <method name="endfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="old"/>
 <parameter type="BeliefState" ref="d"/>
 <body>
 <![CDATA[
 System.err.println("Accounts: endfact " + t.toString() +
 ":" + old.toString() + ":" + d.toString());
]]>
 </body>
 </method>
 <method name="delfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <body>
 <![CDATA[
 System.err.println("Accounts: delfact " + t.toString() +
 ":" + d.toString());
]]>
 </body>
 </method>
 <method name="modfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <parameter type="Tuple" ref="tr"/>
 <parameter type="Tuple" ref="fl"/>

[90]

Figure B.20 Accounts beliefSet in XML

Figure B.21 shows Balances beliefSet in XML.

 <body>
 <![CDATA[
 String s;
 System.err.println("Accounts: endfact " + t.toString() +
 ":" + d.toString());
 if (tr == null)
 s = "null";
 else
 s = tr.toString();
 System.err.println("\t"+ s + ":true");
 if (fl == null)
 s = "null";
 else
 s = fl.toString();
 System.err.println("\t"+ s + ":false");
]]>
 </body>
</method>
<method name="moddb" returnType="void">
 <body>
 <![CDATA[
 write("new_accounts.dat");
 System.err.println("Accounts:"+"moddb");
]]>
 </body>
 </method>
</beliefSet>

<beliefSet id="b2" type="Balances" extends="OpenWorld">
 <field declarationType="key" type="int" name="account"/>
 <field declarationType="value" type="int" name="balance"/>
 <indexedQuery methodName="query">
 <parameters>
 <parameter type="int" members="normal" ref="i"/>
 <parameter type="int" members="logical" ref="j"/>
 </parameters>
 </indexedQuery>
 <method name="addfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <body>
 <![CDATA[
 System.err.println("Balances: addfact " + t.toString() +
 ":" + d.toString());
]]>
 </body>
 </method>
 <method name="newfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <parameter type="BeliefState" ref="old"/>
 <body>
 <![CDATA[
 System.err.println("Balances: newfact " + t.toString() +
 ":" + d.toString() + ":" + old.toString());
]]>
 </body>
 </method>

[91]

Figure B.21 Balances beliefSet in XML

Figure B.22 shows ProcessWithdraw plan in XML.

 <method name="endfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="old"/>
 <parameter type="BeliefState" ref="d"/>
 <body>
 <![CDATA[
 System.err.println("Balances: endfact " + t.toString() +
 ":" + old.toString() + ":" + d.toString());
]]>
 </body>
 </method>
 <method name="delfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <body>
 <![CDATA[
 System.err.println("Balances:"+"delfact " + t.toString() +
 ":" + d.toString());
]]>
 </body>
 </method>
 <method name="modfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="d"/>
 <parameter type="Tuple" ref="tr"/>
 <parameter type="Tuple" ref="fl"/>
 <body>
 <![CDATA[
 String s;
 System.err.println("Balances:"+"endfact " + t.toString() +
 ":" + d.toString());
 if (tr == null)
 s = "null";
 else
 s = tr.toString();
 System.err.println("\t"+ s + ":true");
 if (fl == null)
 s = "null";
 else
 s = fl.toString();
 System.err.println("\t"+ s + ":false");
]]>
 </body>
 </method>
 <method name="moddb" returnType="void">
 <body>
 <![CDATA[
 write("new_balances.dat");
 System.err.println("Balances: "+"moddb");
]]>
 </body>
 </method>
 </beliefSet>

[92]

The Figure 23 shows WithdrawApproved plan in XML.

The Figure 24 shows WithdrawCash plan in XML.

<plan id="p1" name="ProcessWithdraw" extends="Plan">
 <handlesEvent type="WithdrawRequest" ref="event"/>
 <postsEvent type="WithdrawResponse" ref="response"/>
 <readsData type="Accounts" ref="accounts"/>
 <modifiesData type="Balances" ref="balances"/>
 <body>
 <![CDATA[
 logical int balance;
 int new_balance;
 (event.amount >= 0);
 try {
 if (!accounts.query(event.account,event.pin))
 System.err.println("accouts query failed");
 (accounts.query(event.account,event.pin) &&
 balances.query(event.account,balance));
 (event.amount <= balance.getValue());
 new_balance = (balance.getValue() - event.amount);
 balances.add(event.account,new_balance);
 @send(event.from,response.approval(new_balance));
 }
 catch (Exception e) {
 Jak.log.log(("ProcessWithdraw caught exception" + e));
 e.printStackTrace();
 (false == true);
 }
]]>
 </body>
 <fail>
 <![CDATA[
 @send(event.from,response.rejection());
]]>
 </fail>
</plan>

Figure B.22 ProcessWithdraw plan in XML

<plan id="p2" name="WithdrawApproved" extends="Plan">
 <handlesEvent type="WithdrawResponse" ref="event"/>
 <usesAgent type="AtmClient" ref="atmc"/>
 <context>
 <![CDATA[
 event.approved;
]]>
 </context>
 <body>
 <![CDATA[
 AtmInterface hardware = atmc.getHardware();
 hardware.message("Remove your cash");
 hardware.dispense(atmc.getAmount());
 @sleep(5.0);
 hardware.receipt(atmc.getAccount(),event.balance);
 @sleep(5.0);
 hardware.eject();
]]>
 </body>
</plan>

Figure B.23 WithdrawApproved plan in XML

[93]

Figure B.25 shows WithdrawRejected plan in XML.

Figure B.26 shows Withdraw event in XML.

<plan id="p3" name="WithdrawCash" extends="Plan">
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent type="Withdraw" ref="event"/>
 <sendsEvent type="WithdrawRequest" ref="request"/>;
 <usesAgent type="AtmClient" ref="atmc"/>
 <context>
 <![CDATA[
 atmc.getHardware().cardInserted();
]]>
 </context>
 <body>
 <![CDATA[
 @send(atmc.getBank(),
 request.withdraw(atmc.getAccount(),

atmc.getPin(),atmc.getAmount()));
]]>
 </body>
</plan>

Figure B.24 WithdrawCash plan in XML

<plan id="p4" name="WithdrawRejected" extends="Plan">
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent type="WithdrawResponse" ref="event"/>
 <usesAgent type="AtmClient" ref="atmc"/>
 <relevant>
 <![CDATA[
 atmc.getHardware().cardInserted();
]]>
 </relevant>
 <context>
 <![CDATA[
 return !event.approved;
]]>
 </context>
 <body>
 <![CDATA[
 @send(atmc.getBank(),
 request.withdraw(atmc.getAccount(), atmc.getPin(),
 atmc.getAmount()));
]]>
 </body>
</plan>

Figure B.25 WithdrawRejected plan in XML

[94]

Figure B.27 shows WithdrawResponse event in XML

<event id="ev1" type="Withdraw" extends="Event">
 <import>aos.jack.jak.core.*</import>
 <posted methodName="withdraw">
 <![CDATA[
 Jak.log.log("Withdraw:withdraw created");
]]>
 </posted>
</event>
<event id="ev2" type="WithdrawRequest" extends="MessageEvent">
 <import>aos.jack.jak.core.Jak</import>
 <field visibility="public" type="account" name="account"/>
 <field visibility="public" type="int" name="pin"/>
 <field visibility="public" type="int" name="amount"/>
 <posted methodName="withdraw">
 <parameter type="int" name="account"/>
 <parameter type="int" name="pin"/>
 <parameter type="int" name="amount"/>
 <![CDATA[
 Jak.log.log("WithdrawRequest:withdraw created");
 this.account = account;
 this.pin = pin;
 this.amount = amount;
 message = "withdraw["+account+","+pin+"]";
]]>
 </posted>
</event>

<event id="ev3" type="WithdrawResponse" extends="Event">
 <import>aos.jack.jak.core.Jak</import>
 <field visibility="public" type="boolean" name="approved"/>
 <field visibility="public" type="int" name="balance"/>
 <posted methodName="approval">
 <![CDATA[
 Jak.log.log("WithdrawResponse:approval created");
 this.approved = true;
 this.balance = balance;
 message = "approved";
]]>
 </posted>
 <posted methodName="rejection">
 <![CDATA[
 Jak.log.log("WithdrawResponse:rejection created");
 this.approved = false;
 this.balance = 0;
 message = "rejected";
]]>
 </posted>
</event>

Figure B.26 Withdraw event in XML

Figure B.27 WithdrawResponse in XML

[95]

B.6 Evaluation
To evaluate our approach we identified traceability relations manually (see Table B.1) and

compared the results with traceability relations identified by the tool (see Table B.2). 31 correct

traceability relations had been identified by the tool and 33 traceability relations were missing.

The precision and recall calculated were 100% and 48,43%, respectively.

Type Prometheus Message JACK Event
overlaps Withdraw Request WithdrawRequest
overlaps Withdraw Response WithdrawResponse
overlaps Withdraw Withdraw
Type Prometheus Data JACK BeliefSet

overlaps Balances Balances
overlaps Account Accounts
Type Prometheus Plan JACK Plan

overlaps Process Withdraw ProcessWithdraw
overlaps Withdraw Approved WithdrawApproved
overlaps Withdraw Rejected WithdrawRejected
overlaps Withdraw Cash WithdrawCash
Type Prometheus Agent JACK Agent

overlaps Bank BankAgent
overlaps Atm Atm
Type Prometheus Goal JACK Agent

achieves Authorize Withdraw BankAgent
achieves Request Rejected Atm
achieves Withdraw Money Atm
achieves Request Approved Atm
Type Prometheus Plan JACK Agent
uses Process Withdraw BankAgent
uses Withdraw Approved Atm
uses Withdraw Rejected Atm
uses Withdraw Cash Atm

Type Prometheus Percept JACK Agent
uses Withdraw Percept Atm
uses Card Inserted Atm
uses Print Statement Atm

Type Prometheus Action JACK Agent
uses Show Message Request Rejected Atm
uses Eject Card Atm
uses Print Receipt Atm
uses Dispense Cash Atm
uses Show Message Remove Cash Atm

Type Prometheus Message JACK Agent
receives Withdraw Request BankAgent
receives Withdraw Response Atm
receives Withdraw Atm
sends Withdraw Response BankAgent
sends Withdraw Request Atm
Type Prometheus Goal JACK Plan

achieves Authorize Withdraw ProcessWithdraw
achieves Request Approved WithdrawApproved
achieves Request Rejected WithdrawRejected
achieves Withdraw Money WithdrawCash
Type Prometheus Agent JACK Plan
uses Bank ProcessWithdraw
uses Atm WithdrawApproved

[96]

uses Atm WithdrawRejected
uses Atm WithdrawCash

Type Prometheus Percept JACK Plan
uses Withdraw Percept WithdrawCash

Type Prometheus Action JACK Plan
creates Eject Card WithdrawApproved
creates Print Receipt WithdrawApproved
creates Dispense Cash WithdrawApproved
creates Show Message Remove Cash WithdrawApproved
creates Show Message Request Rejected WithdrawRejected
creates Eject Card WithdrawRejected
Type Prometheus Message JACK Plan
sends Withdraw Response ProcessWithdraw
sends Withdraw Request WithdrawCash

receives Withdraw Request ProcessWithdraw
receives Withdraw Response WithdrawApproved
receives Withdraw Response WithdrawRejected
receives Withdraw WithdrawCash
Type Prometheus Data JACK Plan
uses accounts ProcessWithdraw

creates balances ProcessWithdraw
Type Prometheus Plan JACK BeliefSet
uses Process Withdraw Accounts

creates Process Withdraw Balances
Type Prometheus Agent JACK Event
sends Atm WithdrawRequest
sends Bank WithdrawResponse

receives Bank WithdrawRequest
receives Atm WithdrawResponse
receives Atm Withdraw
Type Prometheus Plan JACK Event
sends Withdraw Cash WithdrawRequest
sends Process Withdraw WithdrawResponse

Table B.1 Traceability relations identified manually

Rule ID Type Prometheus Message JACK Event
rulePJ1a overlaps Withdraw Request WithdrawRequest
rulePJ1a overlaps Withdraw Response WithdrawResponse
rulePJ1a overlaps Withdraw Withdraw
Rule ID Type Prometheus Data JACK BeliefSet
rulePJ2a overlaps Balances Balances
rulePJ2a overlaps Account Accounts
Rule ID Type Prometheus Plan JACK Plan
rulePJ3a overlaps Process Withdraw ProcessWithdraw
rulePJ3a overlaps Withdraw Approved WithdrawApproved
rulePJ3a overlaps Withdraw Rejected WithdrawRejected
rulePJ3a overlaps Withdraw Cash WithdrawCash
Rule ID Type Prometheus Agent JACK Agent
rulePJ4a overlaps Bank BankAgent
rulePJ4a overlaps Atm Atm
Rule ID Type Prometheus Goal JACK Agent
rulePJ5a achieves Authorize Withdraw BankAgent
rulePJ5a achieves Request Rejected Atm
rulePJ5a achieves Withdraw Money Atm
rulePJ5a achieves Request Approved Atm
Rule ID Type Prometheus Plan JACK Agent
rulePJ9a uses Process Withdraw BankAgent

[97]

rulePJ9a uses Withdraw Approved Atm
rulePJ9a uses Withdraw Rejected Atm
rulePJ9a uses Withdraw Cash Atm
Rule ID Type Prometheus Percept JACK Agent
rulePJ10a uses Withdraw Percept Atm
rulePJ10a uses Card Inserted Atm
rulePJ10a uses Print Statement Atm
Rule ID Type Prometheus Action JACK Agent
rulePJ11a uses Show Message Request Rejected Atm
rulePJ11a uses Eject Card Atm
rulePJ11a uses Print Receipt Atm
rulePJ11a uses Dispense Cash Atm
rulePJ11a uses Show Message Remove Cash Atm
Rule ID Type Prometheus Message JACK Agent
rulePJ12a receives Withdraw Request BankAgent
rulePJ12a receives Withdraw Response Atm
rulePJ12a receives Withdraw Atm
rulePJ12b sends Withdraw Response BankAgent
rulePJ12b sends Withdraw Request Atm
Rule ID Type Prometheus Goal JACK Plan
rulePJ14a achieves Authorize Withdraw ProcessWithdraw
rulePJ14a achieves Request Approved WithdrawApproved
rulePJ14a achieves Request Rejected WithdrawRejected
rulePJ14a achieves Withdraw Money WithdrawCash
Rule ID Type Prometheus Agent JACK Plan
rulePJ15a uses Bank ProcessWithdraw
rulePJ15a uses Atm WithdrawApproved
rulePJ15a uses Atm WithdrawRejected
rulePJ15a uses Atm WithdrawCash
Rule ID Type Prometheus Percept JACK Plan
rulePJ17a uses Withdraw Percept WithdrawCash
Rule ID Type Prometheus Action JACK Plan
rulePJ18a creates Eject Card WithdrawApproved
rulePJ18a creates Print Receipt WithdrawApproved
rulePJ18a creates Dispense Cash WithdrawApproved
rulePJ18a creates Show Message Remove Cash WithdrawApproved
rulePJ18a creates Show Message Request Rejected WithdrawRejected
rulePJ18a creates Eject Card WithdrawRejected
Rule ID Type Prometheus Message JACK Plan
rulePJ19a sends Withdraw Response ProcessWithdraw
rulePJ19a sends Withdraw Request WithdrawCash
rulePJ19c receives Withdraw Request ProcessWithdraw
rulePJ19c receives Withdraw Response WithdrawApproved
rulePJ19c receives Withdraw Response WithdrawRejected
rulePJ19c receives Withdraw WithdrawCash
Rule ID Type Prometheus Data JACK Plan
rulePJ20a uses accounts ProcessWithdraw
rulePJ20b creates balances ProcessWithdraw
Rule ID Type Prometheus Plan JACK BeliefSet
rulePJ24a uses Process Withdraw Accounts
rulePJ24b creates Process Withdraw Balances
Rule ID Type Prometheus Agent JACK Event
rulePJ31a sends Atm WithdrawRequest
rulePJ31a sends Bank WithdrawResponse
rulePJ31b receives Bank WithdrawRequest
rulePJ31b receives Atm WithdrawResponse
rulePJ31b receives Atm Withdraw
Rule ID Type Prometheus Plan JACK Event
rulePJ33a sends Withdraw Cash WithdrawRequest

[98]

rulePJ33a sends Process Withdraw WithdrawResponse

Table B.2 Traceability relations identified by the tool

To show how missing elements identified by the tool can assist in the software development

process we used the information of missing elements (Table B.3) to complete the models and

to fix inconsistencies (e.g. to fix discrepancies between names given by the elements). The

completeness checking rules showed that they were missing relations between JACK BeliefSet

and Prometheus Data, JACK Plan and Prometheus Plan, Prometheus Plan and JACK Plan,

Prometheus Goal and JACK Agent.

Rule ID JACK BeliefSet Prometheus Data
RulePJ2cc1 Accounts
RulePJ2cc1 Balances
Rule ID JACK Plan Prometheus Plan

RulePJ3cc1 ProcessWithdraw
RulePJ3cc1 WithdrawApproved
RulePJ3cc1 WithdrawCash
RulePJ3cc1 WithdrawRejected
Rule ID Prometheus Plan JACK Plan

RulePJ3cc2 Withdraw Approved
RulePJ3cc2 Process Withdraw
RulePJ3cc2 Withdraw Cash
RulePJ3cc2 Withdraw Rejected
Rule ID Prometheus Goal JACK Agent

RulePJ5cc1 Request Approved
RulePJ5cc1 Request Rejected
RulePJ5cc1 Withdraw Money
RulePJ5cc1 Authorize Withdraw
Rule ID Prometheus Message JACK Agent

RulePJ12cc1 Withdraw

Table B.3 Missing Information

Table B.3 shows that the RuleP2cc1 rule identified that is missing a traceability relations

between Accounts and Balances beliefSets in JACK and some data in Prometheus. We look

what data in Prometheus could be related to Accounts beliefSet and conclude that Accounts

beliefSet in JACK should be related to Accounts data in Prometheus. BeliefSets in JACK and

data in Prometheus are related when the name of the beliefSet and the name of data are

synonyms and included fields/aspects properties of the data is similar to the fields in the

beliefSet. Figure B.28 shows that Accounts beliefSet has account and pin fields and no

included fields/aspects properties has been defined to the Accounts data (see Figure B.29).

[99]

Figure B.29 Fields of the Accounts beliefSet

The same way, we look what data in Prometheus could be related to Balances beliefSet and

we concluded that Balances beliefSet in JACK should be related to Balances data in

Prometheus. Figure B.31 shows that Balances beliefSet has account and balance fields and

no included fields/aspects properties has been defined to the Balances data (see Figure

B.32).

<beliefSet id="b1" type="Accounts" extends="OpenWorld">
 <field declarationType="key" type="int" name="account"/>
 <field declarationType="value" type="int" name="pin"/>
...
</beliefSet>

Figure B.30 Accounts beliefSet

<beliefSet id="b1" type="Balances" extends="OpenWorld">
 <field declarationType="key" type="int" name="account"/>
 <field declarationType="value" type="int" name="balance"/>
...
</beliefSet>

Figure B.31 Balances beliefSet

[100]

We added accounts and balances to the included fields/aspects to the Balances data in

Prometheus.

Table B.3 shows that the RulePJ3cc1 rule identified that there are missing traceability relations

between ProcessWithdraw, WithdrawApproved, WithdrawCash and WithdrawRejected

plans in JACK and plans in Prometheus. Table B.3 also shows that the RulePJ3cc2 rule

identified that there are missing traceability relations between Process Withdraw, Withdraw

Approved, Withdraw Cash and Withdraw Rejected plans in Prometheus and plans in

JACK. Based on this information we can determine that are missing traceability relations

between ProcessWithdraw in JACK and ProcessWithdraw in Prometheus. Plans in JACK

and plans in Prometheus are related when the name of the plan in JACK and the name of plan

in Prometheus are synonyms, and the name of the element that triggers the plan in

Prometheus and the name of the event that the plan in JACK handles are synonyms.

Figure B.32 Balances descriptor

[101]

We observed that ProcessWithdraw plan in JACK handles WithdrawRequest event (see

Figure B.33) while no trigger properties has been defined to the Process Withdraw plan in

Prometheus (see Figure B.34).

<plan id="p1" name="ProcessWithdraw" extends="Plan">
<handlesEvent type="WithdrawRequest" ref="event"/>
...
</plan>

Figure B.33 ProcessWithdraw plan

Figure B.34 Process Withdraw descriptor

[102]

We added Withdraw Request message to the triggers properties of the Process Withdraw

plan. In the same way, we identified that a traceability relations between ProcessWithdraw

plan in JACK and ProcessWithdraw plan in Prometheus was missing. We identified that the

WithdrawRequest plan in JACK handles WithdrawResponse event (see Figure B.35) while

no trigger properties has been defined to the Withdraw Approved plan in Prometheus (see

Figure B.36).

We added Withdraw Response message to the triggers properties of the Withdraw

Approved plan. A traceability relation was also missing between Withdraw Cash plan in

JACK and Withdraw Cash in Prometheus.

<plan id="p2" name="WithdrawApproved" extends="Plan">
 <handlesEvent type="WithdrawResponse" ref="event"/>
...
</plan>

Figure B.35 WithdrawApproved plan

Figure B.36 Withdraw Approved descriptor

[103]

We found that WithdrawCash plan in JACK handles Withdraw event (see Figure B.37)

while no trigger properties has been defined to the Withdraw Cash plan in Prometheus

(see Figure B.38).

We added Withdraw message to the triggers properties of the Withdraw Cash plan. A

traceability relation was missing between Withdraw Rejected plan in JACK and

Withdraw Rejected plan in Prometheus. We found that WithdrawRejected plan in JACK

handles WithdrawResponse event (see Figure B.39) while no trigger properties has been

defined to the Withdraw Rejected plan in Prometheus (see Figure B.40).

<plan id="p3" name="WithdrawCash" extends="Plan">
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent type="Withdraw" ref="event"/>
...
</plan>

<plan id="p4" name="WithdrawRejected" extends="Plan">
 <import>gui.AtmClient</import>
 <import>gui.AtmInterface</import>
 <handlesEvent type="WithdrawResponse" ref="event"/> ...
</plan>

Figure B.37 WithdrawCash plan

Figure B.39 WithdrawReject plan

Figure B.38 Withdraw Cash descriptor

[104]

Figure B.40 Withdraw Rejected descriptor

We added Withdraw Response message to the triggers properties of the Withdraw

Rejected plan.

Table B.3 shows that the RulePJ5cc1 rule identified that is missing a traceability relation

between Request Approved, Request Rejected, Withdraw Money and Authorize

Withdraw goals in Prometheus and some agent in JACK. We look in the Prometheus and

found that we haven’t defined what Prometheus agents achieve Request Approved,

Request Rejected, Withdraw Money and Authorize Withdraw goals. We updated the

model and defined that Request Approved, Request Rejected, and Withdraw Money

goals in Prometheus are achieved by Atm agent and Authorize Withdraw is achieved by

Bank agent.

We run the prototype tool again and compared the results with relations identified by the tool

calculate precision and recall again. We found the 33 traceability relations that were missing

and the precision and recall calculated were 100% and 100%, respectively.

 [105]

Appendix C – Air Traffic Control Environment

C.1 Introduction
This section describes the development of a multi-agent system to implement the Air Traffic

Control Environment used as a case study to evaluate our approach to generate traceability

relations automatically and to identify missing elements between artefacts created during the

development of a multi-agent system.

Air traffic congestion is a global issue and several air traffic management systems have already

been built to alleviate this problem [Liunberg 1992]. The air control environment consists of a

system that implements arrival sequencing for an airport. The main goal of an air control

environment is to find the best landing time for an aircraft in order to alleviate congestion and

its associated delays.

A feeder airport has the responsibility to process traffic of aircrafts. A Feeder airport contains

information about all aircraft schedule arrivals that consists of the call sign (unique identifier of

an aircraft used in the radio communications), booking time, ETA (Estimate Times of Arrival)

to use for booking, the arrival time at destination control area, and the ETA at control area

entrance. The feeder airport waits until the booking time has passed and then sends the

information to destination airport. A feeder aircraft receives update information about

schedule changes such as a takeoff discard of an aircraft.

An aircraft sends a message to the airport when enter control area of the airport destination

and waits until a runway has been allocated. To find the best landing time for an aircraft, the

airport manager first queries all runway managers for the “best landing time” for an aircraft

and then chooses one. After the airport manager notifies the decision to the runway manager

and to the aircraft. In order to maximizing landing, faster aircraft that arrive later to the airport

control area, push out earlier already assigned slower aircraft. A new bidding occurs to allocate

a runway slot for the slower aircraft. During the approaching to landing, the aircraft test

continually to see if the runaway still allocated for landing until the landing time (ATL) has

passed.

 [106]

C.2 Organizational Models
The Air Traffic Environment is composed of Aircraft, Airport, Feeder and Runway actors.

Figure C.1 shows the actors and its strategic dependencies relationships. The Aircraft actor

depends on the Airport actor to have ATL resource provided. The Feeder actor depends on

the Airport actor to have Find Best Landing Time for an Aircraft goal achieved. The Airport

depends on Runway actor to have Allocate Runway Slot goal achieved. The Airport actor

depends on Runway actor to have Slot Allocated resource provided.

Figure C.1 Strategic Dependency model for Air Traffic Environment

The Landing task of the Aircraft actor is decomposed on Assign Slot, Initiate Approach and

Follow Approach tasks. The Follow Approach task uses Landing Information resource and

the Assign Slot task depends on the Airport actor to provide the ATL resource in order to

perform Assign Slot task.

The Process Schedule for a Feeder task of the Feeder actor is decomposed on TakeOff and

TakeOffDiscard tasks. The TakeOff task is decomposed on Request Booking task. The

Request Booking task depends on the Airport actor to achieve Find Best Landing Time for an

Aircraft goal.

 [107]

The Airport actor performs Request Runway task as means to achieve Find Best Landing

Time for an Aircraft goal. The Request Runway task uses ATL resource and it depends on

Runway actor to achieve Allocate Runway Slot goal and to provide the Slot Allocated resource.

The Runway actor performs Respond Runway Request task as means to achieve Allocate

Runway Slot goal. The Respond Runway Request task uses Slot Allocated resource.

Figure C.2 Strategic Rationale model for Air Traffic Environment

C.3 Prometheus Models
Figure C.3 shows the Goal diagram for the Air Traffic Control Environment. In the top level,

we have Landing, Find Best Land Time for an Aircraft, Schedule Arrival for a Feeder, Process

Schedule for a Feeder, Assign Runway, Request Slot, and Assign Slot. The Find Best Land

time for an Aircraft goal is refined by Query Best Landing Time from All Runway Manager

and Push Out goals. The Landing goal is refined by Initiate Aircraft Approach and Progresses

an aircraft to Landing goals.

 [108]

Figure C.3 Goal diagram for Air Traffic Environment

The Air Traffic Control Environment application consists of a multi-agent systems composed

of four agents: Aircraft, Airport, Feeder, and Runway.

The Feeder agent has the Traffic Feeding capability. The Traffic Feeding capability overview

diagram is shown in the Figure C.4. The Traffic Feeding capability handles Aircraft Event and

Traffic Event events, sends Aircraft Event event, contains the Schedule data, and uses Traffic,

Takeoff, and Takeoff Discard plan.

Traffic and Takeoff plans handle Traffic Event message. Initially, a Traffic Event message is

posted when the Feeder agent is created. The Traffic Event message contains information

(schedule rows) about all aircraft schedule arrivals that consists of the call sign (unique

identifier of an aircraft used in the radio communications), booking time, ETA (Estimate

Times of Arrival) to use for booking, the arrival time at destination control area, and the ETA

at control area entrance. To each schedule row in the Traffic Event message, the Traffic plan

wait until the booking time has passed and then post a Traffic Event message passing the

schedule row, airport and destination. This time the Traffic Event message is handled by the

Takeoff plan. The Takeoff plan sends a booking request (Aircraft Event message) to the

Airport. The Takeoff plan waits for the arrival time of the aircraft to then creates an Aircraft

agent. The Takeoff Discard plan handles Aircraft Event message sent back from the Airport

agent for the booking.

 [109]

Figure C.4 Traffic Feeding Capability

The Airport agent has the Arrival Sequencing capability (see Figure C.5). The Arrival

Sequencing capability contains the Request Slot Plan plan and the Semaphore data. The

Request Slot Plan plan handles the Aircraft Event message and propagates it to all available

runways in order to find the best one and then notifies the decision to the runway and to the

aircraft.

Figure C.5 Arrival Sequencing Capability

The Runway agent has the Runway Assigning capability (see Figure C6). The Runway

Assigning capability contains Runway Request and Runway Assign plans, RunwayInfo data

and handles the Aircraft Event message. The Runway Request plan handles the Aircraft Event

message sent from the Airport agent. The Runway Request plan checks all runway assignments

to find the first slot that is not used or used to a slower aircraft (slower aircraft are push out).

The Aircraft agent sends an Aircraft Event message assigning the runway chosen. The Runway

Assign plan handles this Aircraft Event message and allocates the slot to the runway. If the slot

is already occupied then it is re-allocated and then an Aircraft Event message is sent to the

Airport agent requesting a new booking to the Aircraft that has been push out. An Aircraft

Event message is also sent to the Aircraft agent confirming the allocation of the runway.

 [110]

Figure C.6 Runway Assigning Capability

The Aircraft agent has the Flying capability (see Figure C.7). The Flying capability uses

Monitor Aircraft, Initial Approach, Follow Approach, and Assign Slot Plan plans, has

LandingInfo data, and handles Aircraft Event, Enter Control Area, Approaching messages;

post Enter Control Area, Approaching events. The Monitor Aircraft plan handles Enter

Control Area message. The Monitor Aircraft plan sends an Aircraft Event message confirming

landing at arrival ETA and post Approaching message. Initially, the Initial Approach plan

handles the Approaching message. The Initial Approach plan wait until the runway has been

allocated and then post an Approaching message. This time, the Follow Approach message

handles the Approaching message and test continually to see if the runaway still allocated for

landing until the landing time (ATL) has passed. The Assign Slot plan handles the notification

of Aircraft Event message sent by the Airport passing the runway information that the Aircraft

has been allocated. The Assign Slot plan adds a new fact to the LandingInfo beliefset with the

runway and ATL data.

Figure C.7 Flying Capability

 [111]

Traffic and Takeoff plans handle Traffic Event message. Initially, a Traffic Event message is

posted when the Feeder agent is created. The Traffic Event message contains information

(schedule rows) about all aircraft schedule arrivals that consists of the call sign (unique

identifier of an aircraft used in the radio communications), booking time, ETA (Estimate

Times of Arrival) to use for booking, the arrival time at destination control area, and the ETA

at control area entrance. To each schedule row in the Traffic Event message, the Traffic plan

wait until the booking time has passed and then post a Traffic Event message passing the

schedule row, airport and destination. This time the Traffic Event message is handled by the

Takeoff plan. The Takeoff plan sends a booking request (Aircraft Event message) to the

Airport and wait for the arrival time of the aircraft then creates an Aircraft agent. The Takeoff

Discard plan handles Aircraft Event message sent back from the Airport agent for the

booking.

Figure C.8 Traffic Feeding Capability

The Airport agent has the Arrival Sequencing capability (see Figure C.9). The Arrival

Sequencing capability contains the Request Slot Plan and the Semaphore data. The Request

Slot Plan plan handles the Aircraft Event message and propagates it to all available runways in

order to find the best one and then notifies the decision to the runway and the aircraft.

Figure C.9 Arrival Sequencing Capability

 [112]

The Runway agent has the Runway Assigning capability (see Figure C.10). The Runway

Assigning capability contains Runway Request and Runway Assign plans, RunwayInfo data

and handles the Aircraft Event message. The Runway Request plan handles the Aircraft Event

message sent from the Airport agent. The Runway Request plan checks all runway assignments

to find the first slot that is not used or used to a slower aircraft (slower aircraft are push out).

The Aircraft agent sends an Aircraft Event message assigning the runway chosen. The Runway

Assign plan handles this Aircraft Event message and allocates the slot to the runway. If the slot

is already occupied then it is re-allocated and then an Aircraft Event message is sent to the

Airport agent requesting a new booking to the Aircraft that has been push out. An Aircraft

Event message is also sent to the Aircraft agent confirming the allocation of the runway.

Figure C.10 Runway Assigning Capability

The Aircraft agent has the Flying capability (see Figure C.11). The Flying capability uses

Monitor Aircraft, Initial Approach, Follow Approach, and Assign Slot Plan plans, has

LandingInfo data, and handles Aircraft Event, Enter Control Area, Approaching messages;

post Enter Control Area, Approaching events. The Monitor Aircraft plan handles Enter

Control Area message. The Monitor Aircraft plan sends an Aircraft Event message confirming

landing at arrival ETA and post Approaching message. Initially, the Initial Approach plan

handles the Approaching message. The Initial Approach plan wait until the runway has been

allocated and then post an Approaching message. This time, the Follow Approach message

handles the Approaching message and test continually to see if the runaway still allocated for

landing until the landing time (ATL) has passed. The Assign Slot plan handles the notification

of Aircraft Event message sent by the Airport passing the runway information that the Aircraft

has been allocated. The Assign Slot plan adds a new fact to the LandingInfo beliefset with the

runway and ATL data.

 [113]

Figure C.11 Flying Capability

C.4 JACK Code
The multi-agent system was implemented using JACK Agent Language. The system consists

of Aircraft, Airport, Feeder and Runway agents, LandingInfo and RunwayInfo beliefSets,

ArrivalSequencing, Flying, RunwayAssigning and TrafficFeeding capabilities, AircraftEvent,

Approaching, EnterControlArea, and TrafficEvent events, AssignSlot, FollowApproach,

InitialApproach, MonitorAircraft, RequestSlot, RunwayAssign, RunwayRequest, Takeoff,

TakeoffDiscard, and Traffic plans.

Figure C.12 shows Aircraft agent. The Aircraft agent has Flying capability.

Figure C.13 shows Airport agent. The Airport agent has ArrivalSequencing capability.

/** Aircraft agents. */
agent Aircraft extends Agent {
 #has capability Flying fly;

 Aircraft(String id,String airport,long eta){
 super(id);
 fly.start(id,airport,eta);
 }
}

Figure C.12 Aircraft agent

 [114]

Figure C.14 shows Feeder agent. The Feeder agent has ArrivalSequencing capability.

Figure C.15 shows Runway agent. The Runway agent has RunwayAssigning capability.

import java.util.Hashtable;
import aos.jack.jak.event.TracedMessageEvent;

/** Airport agents.*/
agent Airport extends Agent {

 #has capability ArrivalSequencing seq;

 Airport(String name,String [] runway){
 super(name);

 for (int i = 0; i<runway.length; i++)
 new Runway(runway[i],i);
 seq.enable(runway);
 TracedMessageEvent.tracer.start(this);
 }
}

Figure C.13 Airport agent

/** The Feeder agents model source airports and other "sources of
 aircraft". Each feeder agent has it's own schedule. */
agent Feeder extends Agent {
 #has capability TrafficFeeding feed;

 Feeder(String name,String destination){
 super(name);
 feed.load(name,destination);
 }
}

Figure C.14 Feeder agent

import aos.jack.jak.event.TracedMessageEvent;

/**Runway agents.*/
agent Runway extends Agent {
 #has capability RunwayAssigning assign;

 Runway(String name,int index){
 super(name);
 assign.setName(name,index);
 TracedMessageEvent.tracer.start(this);
 }

}

Figure C.15 Runway agent

 [115]

Figure C.16 shows LandingInfo beliefSet that contains runway and ATL fields and the query

function get.

Figure C.17 shows RunwayInfo beliefSet that contains ATL, aircraft, ETA, and booking

fields. The ATL field is declared as key field. The RunwayInfo beliefSet has gui member field

of Stack. The RunwayInfo beliefSet contains query function usingSlot and slotUsed. The

RunwayInfo beliefSet implements newfact, and delfact callback methods.

import aos.jack.jak.util.timer.DilationController;

/** Relation RunwayInfo is used for keeping the current usage of a
runway. */

beliefset RunwayInfo extends ClosedWorld {
 #key field long ATL;
 #value field String aircraft;
 #value field long ETA;
 #value field boolean booking;

 Stack gui;

 void setName(String name,int index) {
 gui = new Stack(name,index);
 }

 #indexed query
 usingSlot(logical long ATL,
 String aircraft,
 logical long ETA,
 logical boolean booking);

 #indexed query
 slotUsed(long ATL,
 logical String aircraft,
 logical long ETA,
 logical boolean booking);

 public void newfact(Tuple t,BeliefState is,BeliefState was)
 {
 if (gui == null)
 return;

/** Relation LandingInfo is used to keep the landing
information. */
beliefset LandingInfo extends ClosedWorld {
 #value field String runway;
 #value field long ATL;

 #linear query get(logical String runway,logical long ATL);
}

Figure C.16 LandingInfo beliefSet

 [116]

Figure C.17 RunwayInfo beliefSet

Figure C.18 shows ArrivalSequencing capability that handles AircraftEvent event, has

mutex data and uses RequestSlot plan. The ArrivalSequencing capability has runways

member array of Strings. The ArrivalSequencing capability implements getRunways() and

enable() methods.

Figure C.19 shows Flying capability that handles AircraftEvent, EnterControlArea, and

Approaching events, has LandingInfo data. The Flying capability sends AircraftEvent

event, and post EnterControlArea and Approaching events. The Flying capability uses

MoniotrAircraft, FollowApproach, InitialApproach, and AssignSlot plans.

 RunwayInfo__Tuple info = (RunwayInfo__Tuple)t;
 gui.addRow(info.ATL, info.aircraft+
 " ["+DilationController.timeString(info.ETA)+"]");
 }

 public void delfact(Tuple t, BeliefState was) {
 if (gui == null)
 return;
 RunwayInfo__Tuple info = (RunwayInfo__Tuple)t;
 gui.removeRow(info.ATL);
 }
}

import aos.jack.util.thread.Semaphore;

/** The ArrivalSequencing capability contains the handling of
landing requests from aircraft through negotiation with available
runways for an appropriate landing allocation.
*/
public capability ArrivalSequencing extends Capability {

 #handles external event AircraftEvent;
 #private data Semaphore mutex();
 #uses plan RequestSlot;

 String [] runways;

 String [] getRunways(){
 return runways;
 }

 void enable(String [] runways){
 this.runways = runways;
 mutex.signal();
 }
}

Figure C.18 ArrivalSequencing capability

 [117]

Figure C.20 shows RunwayAssigning capability that handles AircraftEvent event, has

RunwayInfo data and uses RunwayRequest and RunwayAssign plans. The

RunwayAssigning capability has SLOTGAP constant and implements slotTime and

/** The Flying capability contains the tracking of the
approach from when the aircraft enters the destination
airport control area. */

public capability Flying extends Capability {

 #private data LandingInfo landing_info();
 #handles external event AircraftEvent;
 #sends event AircraftEvent;
 #handles event EnterControlArea;
 #handles event Approaching;

 #posts event EnterControlArea enter;
 #posts event Approaching follow;

 void start(String id,String airport,long eta){
 postEvent(enter.start(id,airport,eta));
 }

 #uses plan MonitorAircraft;
 #uses plan FollowApproach;
 #uses plan InitialApproach;
 #uses plan AssignSlot;
}

/** The RunwayAssigning capability contains the bidding side of the
runway assignment negotiation. */
public capability RunwayAssigning extends Capability {

 #handles external event AircraftEvent;
 #private data RunwayInfo runway_info();
 final static long SLOTGAP = 180000; // 3 minutes = 180000
milliseconds

 static long slotTime(long time {
 long x = time/SLOTGAP;
 return (x+1)*SLOTGAP;
 }

 void setName(String name,int index){
 runway_info.setName(name,index);
 }

 #uses plan RunwayRequest;
 #uses plan RunwayAssign;
}

Figure C.19 Flying Capability

Figure C.20 Runway Assigning Capability

 [118]

setName methods.

Figure C.21 shows TrafficFeeding capability that handles AircraftEvent and TrafficEvent

event, posts TrafficEvent, sends AircraftEvent, has Schedule data and uses Traffic,

Takeoff, and TakeoffDiscard plans. RunwayRequest and RunwayAssign plans. The

RunwayAssigning capability has gui member field of TrafficGUI and implements load

method.

Figure C.22 shows Aircraft event has run aircraft, ETA, ATL, booking, and mode data

members and implements assign and confirm posting methods. The AircraftEvent event has

REQUEST, ASSIGN, and NOTIFIES constants and implements name and toString

methods.

import aos.jack.jak.util.timer.DilationController;

/**
 The event AircraftEvent is used in the messaging between aircraft
 and airport.
*/
event AircraftEvent extends TracedMessageEvent {
 String runway;
 String aircraft;
 long ETA;
 long ATL;

Figure C.21 TrafficFeeding capability

/** The TrafficFeeding capability contains the processing of a
 departure schedule.
*/
capability TrafficFeeding extends Capability {

 #handles external event AircraftEvent;
 #sends event AircraftEvent request;
 #handles event TrafficEvent;
 #private data Schedule schedule();
 #uses plan Traffic;
 #uses plan Takeoff;
 #uses plan TakeoffDiscard;

 TrafficGUI gui;

 #posts event TrafficEvent traffic;

 void load(String name,String destination){
 System.err.println("Feed from "+name+" opened.");
 schedule.load(name+".dat",new TrafficGUI(name));
 postEvent(traffic.open(name,destination));
 }
}

 [119]

Figure C.22 AircraftEvent event

#posted as
 request(String aircraft,long ATL,long ETA,boolean booking){
 this.runway = null;
 this.aircraft = aircraft;
 this.ATL = ATL;
 this.ETA = ETA;
 this.booking = booking;
 mode = REQUEST;
 message =
 (booking? "Booking " : "Request ")+
 name(aircraft)+
 " ETA= "+DilationController.timeString(ETA);
 }

 #posted as
 assign(String runway,long ATL,String aircraft,long ETA,boolean
booking) {
 this.runway = runway;
 this.aircraft = aircraft;
 this.ATL = ATL;
 this.ETA = ETA;
 mode = ASSIGN;
 this.booking = booking;
 message =
 name(aircraft)+
 (booking? " booked " : " assigned ")
 +name(runway)+" "+
 DilationController.timeString(ATL);
 }

 #posted as
 confirm(String runway,long ATL,String aircraft){
 this.runway = runway;
 this.aircraft = aircraft;
 this.ATL = ATL;
 mode = NOTIFY;
 message =
 "Scheduled "+
 name(aircraft)+" "+
 DilationController.timeString(ATL);
 }

 static String name(String a){
 int i = a.indexOf('@');
 return (i == -1)? a : a.substring(0,i);
 }

 public String toString(){
 return message;
 }
}

 [120]

Figure C.23 shows Approaching event. The Approaching event has runway, aircraft, ETA,

ATL, booking, and mode data members and implements assign and confirm posting

methods. The AircraftEvent event has REQUEST, ASSIGN, and NOTIFIES constants

and implements name and toString methods.

Figure C.24 shows EnterControlArea event. The EnterControlArea event has id, airport,

and eta data members and implements start posting methods.

/** The Approaching event marks for an aircraft the period from
entering the control area of the destination airport to the landing
of the aircraft. */

event Approaching extends BDIGoalEvent {

 logical String runway;
 logical long ATL;

 #posted as
 approach(logical String runway,logical long ATL)
 {
 this.runway = runway;
 this.ATL = ATL;
 }

 #set behavior ApplicableExclusion none ;
/* defines how failed plans are excluded from being applicable. The
value is "none" or one or both of "failed" and "rank". "none" means
that plan failure is forgotten immediately, and a failed plan will
turn up as applicable (if it is). */

}

Figure C.23 Approaching event

/** The EnterControlArea event marks for an aircraft that it enters
the control area of the destination airport. */
event EnterControlArea extends Event {
 String id;
 String airport;
 long eta;

 #posted as
 start(String id,String airport,long eta){
 this.id = id;
 this.airport = airport;
 this.eta = eta;
 }
}

Figure C.24 EnterControlArea

 [121]

Figure C.25 shows TrafficEvent event. The TrafficEvent event has row, airport,

destination, mode, data members and SCHEDULE and AIRCRAFT constants. The

TrafficEvent event implements open and run methods.

Figure C.26 shows AssignSlot plan. The AssignSlot plan handles AircraftEvent event and

modifies LandingInfo data. The AssignSlot plan implements body reasoning method.

/** A TrafficEvent event marks events in the feeder traffic. An
initial TrafficEvent.SCHEDULE is posted at agent construction, and
then TrafficEvent.AIRCRAFT events are posted for the schedule rows.*/
event TrafficEvent extends Event {

 ScheduleRow row;
 String airport;
 String destination;
 int mode;
 final static int SCHEDULE = 0;
 final static int AIRCRAFT = 1;

 #posted as
 open(String airport,String destination){
 this.airport = airport;
 this.destination = destination;
 mode = SCHEDULE;
 }

 #posted as
 run(ScheduleRow row,String airport,String destination){
 this.row = row;
 this.airport = airport;
 this.destination = destination;
 mode = AIRCRAFT;
 }
}

Figure C.25 TrafficEvent event

/** The plan AssignSlot digests an ATL notification from the airport
by updating the landing_info belief.*/

plan AssignSlot extends Plan {

 #handles event AircraftEvent ev;
 #modifies data LandingInfo landing_info;

 static boolean relevant(AircraftEvent ev){
 return ev.mode == AircraftEvent.NOTIFY;
 }
 body(){
 landing_info.add(ev.runway,ev.ATL);
 }
}

Figure C.26 AssignSlot plan

 [122]

Figure C.27 shows FollowApproach plan. The FollowApproach plan handles Approaching

event and reads LandingInfo data. The FollowApproach plan implements body and

maintain reasoning methods.

Figure 28 shows InitialApproach plan. The InitialApproach plan handles Approaching
event, posts Approaching event and reads LandingInfo data. The InitialApproach plan
implements context and body reasoning methods.

Figure C.28 shows InitialApproach plan. The InitialApproach plan handles Approaching

event, posts Approaching event and reads LandingInfo data. The InitialApproach plan

implements context and body reasoning methods.

import aos.jack.jak.util.timer.DilationController;

/** The FollowApproach plan progresses an aircraft to landing when a
landing allocation is provided.*/
plan FollowApproach extends Plan {

 #handles event Approaching ev;
 #reads data LandingInfo landing_info;

 context(){
 landing_info.get(ev.runway,ev.ATL);
 }

 body(){
 System.err.println(agent.name()+" following approach to runway "+
ev.runway+" at "+DilationController.timeString(ev.ATL.getValue()));
 @maintain(landing_info.get(ev.runway,ev.ATL),
 @waitFor(afterMillis(ev.ATL.getValue())));
 }
}

Figure C.27 FollowApproach plan

/** The InitialApproach plan progresses an aircraft to landing during
the initial phase when the landing allocation is not yet provided. */
plan InitialApproach extends Plan {

 #handles event Approaching ev;
 #posts event Approaching land;
 #reads data LandingInfo landing_info;

 context(){
 landing_info.nFacts() == 0;
 }

 body(){
 logical String r;
 logical long a;
 @waitFor(landing_info.get(r,a));
 @achieve(landing_info.get(ev.runway,ev.ATL) &&
 afterMillis(ev.ATL.getValue()),
 land.approach(ev.runway,ev.ATL));
 }
}

Figure C.28 InitialApproach plan

 [123]

Figure C.29 shows MonitorAircraft plan. The MonitorAircraft plan handles EnterControlArea

event, sends AircraftEvent event, posts Approaching event and reads LandingInfo data. The

MonitorAircraft plan has runway and ATL field members and implements body reasoning

method.

Figure C.30 shows RequestSlot plan. The RequestSlot plan handles AircraftEvent event, sends

AircraftEvent event, posts Approaching event and reads LandingInfo data. The

MonitorAircraft plan has runway and ATL field members and implements body reasoning

method.

import aos.jack.util.thread.Semaphore;

/** Plan RequestSlot handles an AircraftEvent.REQUEST by propagating it
to all available runways, collecting all their suggestions, choosing
the best one, and then notifying the runway and aircraft concerned.*/

plan RequestSlot extends Plan {

 #handles event AircraftEvent ev;
 static boolean relevant(AircraftEvent ev){
 return ev.mode == AircraftEvent.REQUEST;
 }
 #uses interface ArrivalSequencing env;
 #modifies data Semaphore mutex;

import aos.jack.jak.util.timer.DilationController;

/** The MonitorAircraft plan is invoked for monitoring the flight of
an arriving aircraft, from entering the control area to its landing.*/

plan MonitorAircraft extends Plan {

 #handles event EnterControlArea ev;
 #sends event AircraftEvent req;
 #posts event Approaching land;
 #reads data LandingInfo landing_info;
 logical String runway;
 logical long ATL;

 body(){
 // Confirm landing at arrival ETA
 @send(ev.airport,req.request(ev.id,ev.eta,ev.eta,false));
 @achieve(landing_info.get(runway,ATL) &&

 afterMillis(ATL.getValue()),land.approach(runway,ATL));

 System.err.println(ev.id+" landed on runway "+runway.getValue()
 +" for "+DilationController.timeString(ATL.getValue())+ " at "+
 DilationController.timeString(getAgent().timer.getTime()));
 }
}

Figure C.29 MonitorAircraft plan

 [124]

Figure C.30 RequestSlot plan

 long pushed_ETA = 0;
 long ATL = -1;
 String runway;

 body(){
 System.err.println("Recevied"+ev);
 if (env.runways == null)
 throw new Error("There are no runways??");
 AircraftEvent query =
 ev.request(ev.aircraft,ev.ATL,ev.ETA,ev.booking);
 @waitFor(mutex.planWait());
 System.err.println("Issuing"+ev);
 sendRequests(query);
 receiveReplies(query);
 notifyResult();
 mutex.signal();
 }

 #reasoning method
 sendRequests(AircraftEvent query){
 for (int i=0; i<env.runways.length; i++)
 @send(env.runways[i], query);
 }

 #reasoning method
 receiveReplies(AircraftEvent query){
 for (int i=0; i<env.runways.length; i++) {
 @waitFor(query.replied());
 AircraftEvent r = (AircraftEvent)query.getReply();
 if (betterSlot(r)) {
 runway = r.from;
 ATL = r.ATL;
 pushed_ETA = r.ETA;
 }
 }
 }

 boolean betterSlot(AircraftEvent ev){
 if ((ATL == -1) || (ev.ATL < ATL))
 return true;
 if (ev.ATL > ATL)
 return false;
 if (pushed_ETA == 0)
 return false;
 if (ev.ETA == 0)
 return true;
 return (ev.ETA > pushed_ETA);
 }

 #reasoning method
 notifyResult(){
 @send(runway,ev.assign(runway,ATL,ev.aircraft,ev.ETA,ev.booking));
 @send(ev.from,ev.confirm(runway,ATL,ev.aircraft));
 }
}

 [125]

Figure C.31 shows RunwayAssign plan. The RunwayAssign plan modifies RunwayInfo

data and implements body reasoning method.Figure C.31 shows RunwayRequest plan.

Figure C.32 shows RunwayRequest plan handles AircraftEvent event reads RunwayInfo

data, uses RunwayAssigning interface and reads RunwayInfo data and implements

relevant, body, freeSlot, runway_info.remove, cleanUp, and timestring reasoning

methods.

import aos.jack.jak.util.timer.DilationController;
/** The RunwayRequest plan responds to an AircraftEvent.REQUEST by
 suggesting an allocation for this runway. The allocation inspects
 all time slots from the given ETA, to find the first that is
 unused, or used with an allocation of "lesser importance".
 + If this request is an early booking, then it may push a previous
 earlier booking if this ETA is prior to the earlier booking's
 ETA.
 + If this request is the arrival request, then it may push an
 earlier booking (regardless), or a previous arrival assignment if
 this ETA is prior to the previous assignment's ETA.*/

Figure C.31 RunwayAssign plan

/**The RunwayAssign plan responds to an AircraftEvent.ASSIGN by
 filling an allocation for this runway. If the allocation slot is
 already occupied, the occupant is re-scheduled. Also, the aircraft
 getting an allocation is notified.*/

plan RunwayAssign extends Plan {

 #handles event AircraftEvent ev;

 static boolean relevant(AircraftEvent ev)
 {
 return ev.mode == AircraftEvent.ASSIGN;
 }

 #modifies data RunwayInfo runway_info;

 body(){
 logical String ac;
 logical long eta;
 logical boolean booking;
 if (runway_info.slotUsed(ev.ATL,ac,eta,booking)) {
 System.err.println("PUSH "+ac.getValue()+" by
"+ev.aircraft);
 @send(ev.from,
 ev.request(ac.getValue(),ev.ATL, eta.getValue(),
 booking.getValue()));
 }
 runway_info.add(ev.ATL,ev.aircraft,ev.ETA,ev.booking);
 @send(ev.from,ev.confirm(agent.name(),ev.ATL,ev.aircraft));
 }
}

 [126]

Figure C.32 RunwayRequest plan

plan RunwayRequest extends Plan {

 #handles event AircraftEvent ev;
 #reads data RunwayInfo runway_info;
 #uses interface RunwayAssigning env;

 static boolean relevant(AircraftEvent ev){
 return ev.mode == AircraftEvent.REQUEST;
 }

 long pushed_eta = 0; // Local data assigned by freeSlot()

 body(){
 String me = agent.name();
 long t;
 cleanUp(ev.aircraft);
 for (t = env.slotTime(ev.ETA); true; t += env.SLOTGAP) {
 if (freeSlot(t))
 break;
 }
 @reply(ev,ev.assign(me,t,ev.aircraft,pushed_eta,ev.booking));
 }

 #reasoning method
 freeSlot(long t){
 logical long eta;
 logical String ac;
 logical boolean booking;
 pushed_eta = 0;
 if (runway_info.slotUsed(t,ac,eta,booking)) {
 System.err.println(" Check against "+ac.getValue()+
 " with eta "+timestring(eta));
 pushed_eta = eta.getValue();
 if (ev.booking)
 booking.getValue() && (ev.ETA < eta.getValue());
 else
 booking.getValue() || (ev.ETA < eta.getValue());
 }
 }

 #reasoning method
 cleanUp(String ac){
 logical long atl;
 logical long eta;
 logical boolean b;
 if (runway_info.usingSlot(atl,ac,eta,b)) {
 runway_info.remove(atl.getValue(),ac,eta.getValue(),b.getValue());
 }
 }

 String timestring(logical long x) throws LogicException{
 return DilationController.timeString(x.getValue());
 }
}

 [127]

Figure C.33 shows Takeoff plan. The Takeoff plan handles TrafficEvent event and sends

AircraftEvent event. The Takeoff plan implements body reasoning methods.

Figure C.34 shows TakeoffDiscard plan. The TakeoffDiscard plan handles AircraftEvent

event and implements relevant and body reasoning methods.

import aos.jack.jak.util.timer.DilationController;

/** The Takeoff plan handles a SceduleRow for a Feeder. It first issues
a booking request for the aircraft concerned. Then it waits until the
aircraft is in the destination airport's control area, at which time it
constructs an Aircraft agent.*/

plan Takeoff extends Plan {

 #handles event TrafficEvent ev;
 static boolean relevant(TrafficEvent ev){
 return ev.mode == TrafficEvent.AIRCRAFT;
 }

 #sends event AircraftEvent landing;
 body(){
 @send(ev.destination,
 landing.request(ev.row.callsign,
 ev.row.booking_ETA,
 ev.row.booking_ETA,
 true));
 System.err.println("Sent "+ev.row);
 @waitFor(afterMillis(ev.row.arrival));
 System.err.println("Arriving "+ev.row);
 new Aircraft(ev.row.callsign,ev.destination,ev.row.arrival_ETA);
 }
}

Figure C.33 Takeoff plan

/** The TakeoffDiscard plan is a handler for the AircraftEvent.ASSIGN
message returned from the airport for the booking, though it is never
relevant, because we don't care about the on-router behaviour. */

plan TakeoffDiscard extends Plan {

 #handles event AircraftEvent ev;

 static boolean relevant(AircraftEvent ev){
 return false;
 }

 body() {}
}

Figure C.34 TakeoffDiscard plan

 [128]

Figure C.35 shows Traffic plan. The Traffic plan handles TrafficEvent event and reads

Schedule data. The Traffic plan contains started, time and callsign member fields.

TheTraffic plan implements relevant and body reasoning methods.

C.5 Code in XML
Figure C.36 shows Aircraft agent in XML.

import java.util.*;
import aos.jack.jak.util.timer.DilationController;

/** The Traffic plan processes the Schedule for a Feeder.*/
plan Traffic extends Plan {

 #handles event TrafficEvent traffic;
 #reads data Schedule schedule;
 static boolean relevant(TrafficEvent traffic) {
 return traffic.mode == TrafficEvent.SCHEDULE;
 }

 Hashtable started = new Hashtable();
 long time = -1;
 String callsign;

 body(){
 String airport = traffic.airport;
 String destination = traffic.destination;

 for (ScheduleRow r = schedule.rows; r != null; r = r.next) {
 @waitFor(afterMillis(r.booking));
 System.err.println("Processing "+r);
 @post(traffic.run(r,airport,destination));
 }
 }
}

Figure C.35 Traffic plan

<agent id="ag1" name="Aircraft" extends="Agent">
 <hasCapability type="Flying" ref="fly"/>
 <constructor>
 <parameter type="String" ref="id"/>
 <parameter type="String" ref="airport"/>
 <parameter type="long" ref="eta"/>
 <body>
 <![CDATA[
 super(id);
 fly.start(id, airport, eta);
]]>
 </body>
 </constructor>
</agent>

Figure C.36 Aircraft agent in XML

 [129]

Figure C.37 shows Airport agent in XML.

Figure C.38 shows Feeder agent in XML.

Figure C.39 shows Runway agent in XML.

<agent id="ag2" name="Airport" extends="Agent" >
 <import>java.util.Hashtable</import>
 <import>aos.jack.jak.event.TraceMessageEvent</import>
 <hasCapability type="ArrivalSequencing" ref="seq" />
 <constructor>
 <parameter type="String" ref="name"/>
 <parameter type="String []" ref="runway"/>
 <body>
 <![CDATA[
 super(name);

 for (int i = 0; i<runway.length; i++)
 new Runway(runway[i],i);
 seq.enable(runway);
 TracedMessageEvent.tracer.start(this);
]]>
 </body>
 </constructor>
</agent>

Figure C.37 Airport agent in XML

<agent id="ag3" name="Feeder" extends="Agent" >
 <hasCapability type="TrafficFeeding" ref="feed" />
 <constructor>
 <parameter type="String" ref="name"/>
 <parameter type="String []" ref="destination"/>
 <body>
 <![CDATA[
 super(name);
 feed.load(name,destination);
]]>
 </body>
 </constructor>
</agent>

Figure C.38 TrafficFeeding agent in XML

<agent id="ag4" name="Runway" extends="Agent" >
 <hasCapability type="RunwayAssigning" ref="assign" />
 <constructor>
 <parameter type="String" ref="name"/>
 <parameter type="int" ref="index"/>
 <body>
 <![CDATA[
 super(name);
 assign.setName(name,index);
 TracedMessageEvent.tracer.start(this);
]]>
 </body>
 </constructor>
</agent>

Figure C.39 Runway agent in XML

 [130]

Figure C.40 shows LandingInfo beliefSet in XML.

Figure C.41 shows RunwayInfo beliefSet in XML.

<beliefSet id="b2" type="RunwayInfo" extends="ClosedWorld">
 <field declarationType="key" type="long" name="ATL"/>
 <field declarationType="value" type="String" name="aircraft"/>
 <field declarationType="value" type="long" name="ETA"/>
 <field declarationType="value" type="boolean" name="booking"/>
 <field declarationType="normal" type="Stack" name="gui" />
 <method name="setName" returnType="void">
 <parameter type="String" ref="name"/>
 <parameter type="int" ref="index"/>
 <body> <![CDATA[gui = new Stack(name,index);]]></body>
 </method>
 <indexedQuery methodName="usingSlot">
 <parameters>
 <parameter type="long" members="logic" ref="ATL"/>
 <parameter type="String" members="normal" ref="aircraft"/>
 <parameter type="long" members="logical" ref="ETA"/>
 <parameter type="boolean" members="logical" ref="booking"/>
 </parameters>
 </indexedQuery>
 <indexedQuery methodName="slotUsed">
 <parameters>
 <parameter type="long" members="normal" ref="ATL"/>
 <parameter type="String" members="normal" ref="aircraft"/>
 <parameter type="long" members="normal" ref="ETA"/>
 <parameter type="boolean" members="logical" ref="booking"/>
 </parameters>
 </indexedQuery>
 <method name="newfact" returnType="void">
 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="is"/>
 <parameter type="BeliefState" ref="was"/>
 <body>
 <![CDATA[
 if (gui == null)
 return;
 RunwayInfo__Tuple info = (RunwayInfo__Tuple)t;
 gui.addRow(info.ATL,info.aircraft+ "
["+DilationController.timeString(info.ETA)+"]");
]>
 </body>
 </method>

<beliefSet id="b1" type="LandingInfo" extends="ClosedWorld">
 <field declarationType="value" type="String" name="runway"/>
 <field declarationType="value" type="long" name="ATL"/>
 <linearQuery methodName="get">
 <parameters>
 <parameter type="String" members="logic" ref="runway"/>
 <parameter type="long" members="logic" ref="ATL"/>
 </parameters>
 </linearQuery>
</beliefSet>

Figure C.40 LandingInfo beliefSet in XML

 [131]

Figure C.41 RunwayInfo beliefSet in XML

Figure C.42 shows AssignSlot beliefSet in XML.

The Figure 43 shows FollowApproach plan in XML.

Figure C.43 shows FollowApproach plan in XML.

 <parameter type="Tuple" ref="t"/>
 <parameter type="BeliefState" ref="was"/>
 <body>
 <![CDATA[
 if (gui == null)
 return;
 RunwayInfo__Tuple info = (RunwayInfo__Tuple)t;
 gui.removeRow(info.ATL);
]]>
 </body>
 </method>
</beliefSet>

<plan id="p1" name="AssignSlot" extends="Plan">
 <handlesEvent type="AircraftEvent" ref="ev"/>
 <postsEvent type="WithdrawResponse" ref="response"/>
 <modifiesData type="LandingInfo" ref="landing_info"/>
 <body>
 <![CDATA[landing_info.add(ev.runway,ev.ATL);]]>
 </body>
 <relevant>
 <parameter type="Aircraft" ref="ev"/>
 <body>
 <![CDATA[return ev.mode == AircraftEvent.NOTIFY;]]>
 </body>
 </relevant>
</plan>

Figure C.42 AssignSlot plan in XML

<plan id="p2" name="FollowApproach" extends="Plan">
 <import>import aos.jack.jak.util.timer.DilationController;</import>
 <handlesEvent type="Approaching" ref="ev"/>
 <readsData type="LandingInfo" ref="landing_info"/>
 <context>
 <![CDATA[landing_info.get(ev.runway,ev.ATL);]]>
 </context>
 <body>
 <![CDATA[System.err.println(agent.name()+" following approach to
runway "+ev.runway+" at "+
DilationController.timeString(ev.ATL.getValue()));
 @maintain(landing_info.get(ev.runway,ev.ATL),
 @waitFor(afterMillis(ev.ATL.getValue())));
]]>
 </body>
</plan>

Figure C.43 FollowApproach plan in XML

 [132]

Figure C.44 shows InitialApproach plan in XML.

Figure C.45 shows MonitorAircraft plan in XML.

Figure C.46 shows RequestSlot plan in XML.

<plan id="p3" name="InitialApproach" extends="Plan">
 <handlesEvent type="Approaching" ref="ev"/>
 <postsEvent type="Approaching" ref="land"/>;
 <readsData type="LandingInfo" ref="landing_info"/>
 <context>
 <![CDATA[landing_info.nFacts() == 0;]]>
 </context>
 <body>
 <![CDATA[
 logical String r;
 logical long a;
 @waitFor(landing_info.get(r,a));
 @achieve(landing_info.get(ev.runway,ev.ATL) &&
 afterMillis(ev.ATL.getValue()),
 land.approach(ev.runway,ev.ATL));
]]>
 </body>
</plan>

Figure C.44 InitialApproach plan in XML

<plan id="p4" name="MonitorAircraft" extends="Plan">
 <import>import aos.jack.jak.util.timer.DilationController</import>
 <handlesEvent type="EnterControlArea" ref="ev"/>
 <sendsEvent type="AircraftEvent" ref="ref"/>
 <postsEvent type="Approaching" ref="land"/>
 <readsData type="LandingInfo" ref="landing_info"/>
 <field type="String" members="logical" name="runway"/>
 <field type="long" members="logical" name="ATL"/>
 <body>
 <![CDATA[
 // Confirm landing at arrival ETA
 @send(ev.airport,req.request(ev.id,ev.eta,ev.eta,false));
 @achieve(landing_info.get(runway,ATL) &&
 afterMillis(ATL.getValue()),
 land.approach(runway,ATL));
 System.err.println(ev.id+" landed on runway "+
 runway.getValue()+" for "+
 DilationController.timeString(ATL.getValue())+
 " at "+
DilationController.timeString(getAgent().timer.getTime()));
]]>
 </body>
</plan>

Figure C.45 MonitorAircraft plan in XML

 [133]

<plan id="p5" name="RequestSlot" extends="Plan">
 <import>import aos.jack.util.thread.Semaphore</import>
 <handlesEvent type="AircraftEvent" ref="ev"/>
 <relevant>
 <parameter type="AircraftEvent" ref="ev" />
 <body> return ev.mode == AircraftEvent.REQUEST; </body>
 </relevant>
 <usesInterface type="ArrivalSequencing" ref="ev"/>
 <modifiesData type="Semaphore" ref="mutex"/>
 <parameter type="long" ref="pushed_ETA" value="0"/>
 <parameter type="long" ref="ATL" value="-1"/>
 <parameter type="String" ref="runway"/>
 <body>
 <![CDATA[
 System.err.println("Recevied"+ev);
 if (env.runways == null)
 throw new Error("There are no runways??");
 AircraftEvent query =
ev.request(ev.aircraft,ev.ATL,ev.ETA,ev.booking);
 @waitFor(mutex.planWait());
 System.err.println("Issuing"+ev);
 sendRequests(query);
 receiveReplies(query);
 notifyResult();
 mutex.signal();
]]>
 </body>
 <reasoningMethod name="sendRequests" returnType="void">
 <parameter type="AircraftEvent" ref="query"/>
 <body>
 <![CDATA[
 for (int i=0; i<env.runways.length; i++)
 @send(env.runways[i], query);
]]>
 </body>
 </reasoningMethod>
 <reasoningMethod name="receiveReplies" returnType="void">
 <parameter type="AircraftEvent" ref="query"/>
 <body>
 <![CDATA[
 for (int i=0; i<env.runways.length; i++) {
 @waitFor(query.replied());
 AircraftEvent r = (AircraftEvent)query.getReply();
 if (betterSlot(r)) {
 runway = r.from;
 ATL = r.ATL;
 pushed_ETA = r.ETA;
 }
 }
]]>
 </body>
 </reasoningMethod>
 <method name="betterSlot" returnType="boolean">
 <body>
 <![CDATA[
 if ((ATL == -1) || (ev.ATL < ATL))
 return true;

 [134]

Figure C.46 RequestSlot plan in XML

Figure C.47 shows RunwayAssign plan in XML.

The Figure 48 shows Takeoff plan in XML.

The Figure 48 shows Takeoff plan in XML.

Figure C.48 shows Takeoff plan in XML.

 if (ev.ATL >ATL)
 return false;
 if (ev.ETA == 0)
 return true;
 return (ev.ETA > pushed_ETA);
]]>
 </body>
 </method>
 <reasoningMethod name="notifyResult" returnType="void">
 <parameter type="AircraftEvent" ref="query"/>
 <body>
 <![CDATA[
 @send(runway,ev.assign(runway,ATL,ev.aircraft,
 ev.ETA,ev.booking));

 @send(ev.from,ev.confirm(runway,ATL,ev.aircraft));
]]>
 </body>
 </reasoningMethod>
</plan>

<plan id="p6" name="RunwayAssign" extends="Plan">
 <handlesEvent type="AircraftEvent" ref="ev"/>
 <relevant type="AircraftEvent" ref="ev">
 <body>
 <![CDATA[return ev.mode == AircraftEvent.ASSIGN;]]>
 </body>
 </relevant>
 <modifiesData type="RunwayInfo" ref="runway_info"/>
 <body>
 <![CDATA[
 logical String ac;
 logical long eta;
 logical boolean booking;
 if (runway_info.slotUsed(ev.ATL,ac,eta,booking)) {
 System.err.println("PUSH "+ac.getValue()+" by "+ev.aircraft);
 @send(ev.from, ev.request(ac.getValue(),
 ev.ATL, eta.getValue(),booking.getValue()));}

 runway_info.add(ev.ATL,ev.aircraft,ev.ETA,ev.booking);
 @send(ev.from,ev.confirm(agent.name(),ev.ATL,ev.aircraft));
]]>
 </body>
</plan>

Figure C.47 RunwayAssign plan in XML

 [135]

Figure C.49 shows TakeoffDiscard plan in XML.

The Figure C.50 shows Traffic plan in XML.

<plan id="p7" name="Takeoff" extends="Plan">
 <handlesEvent type="TrafficEvent" ref="ev"/>
 <sendsEvent type="AircraftEvent" ref="landing"/>
 <relevant>
 <parameter type="TrafficEvent" name="ev"/>
 </relevant>
 <body>
 <![CDATA[
 @send(ev.destination,
 landing.request(ev.row.callsign,
 ev.row.booking_ETA,
 ev.row.booking_ETA,
 true));
 System.err.println("Sent "+ev.row);
 @waitFor(afterMillis(ev.row.arrival));
 System.err.println("Arriving "+ev.row);
 new
Aircraft(ev.row.callsign,ev.destination,ev.row.arrival_ETA);
]]>
 </body>

Figure C.48 Takeoff plan in XML

<plan id="p8" name="TakeoffDiscard" extends="Plan">
 <handlesEvent type="AircraftEvent" ref="ev"/>
 <sendsEvent type="AircraftEvent" ref="landing"/>
 <relevant>
 <parameter type="AircraftEvent" name="ev"/>
 </relevant>
 <body>
 <![CDATA[]]>
 </body>
</plan>

Figure C.49 TakeoffDiscard plan in XML

<plan id="p9" name="Traffic" extends="Plan">
 <handlesEvent type="TrafficEvent" ref="traffic"/>
 <sendsEvent type="AircraftEvent" ref="landing"/>
 <readsData type="Schedule" ref="schedule" />
 <relevant>
 <parameter type="TrafficEvent" name="traffic"/>
 <body>
 <![CDATA[
 return traffic.mode == TrafficEvent.SCHEDULE;
]]>
 </body>
 </relevant>
 <body><![CDATA[]]></body>
</plan>

Figure C.50 Traffic plan in XML

 [136]

The Figure C.51 shows RunwayRequest plan in XML.

The Figure 52 shows AircraftEvent event in XML.

The Figure 53 shows Approaching event in XML.

The Figure C.52 shows AircraftEvent event in XML.

The Figure C.53 shows Approaching event in XML.

<plan id="p10" name="RunwayRequest" extends="Plan">
 <handlesEvent type="AircraftEvent" ref="ev"/>
 <sendsEvent type="AircraftEvent" ref="landing"/>
 <readsData type="RunwayInfo" ref="runway_info" />
 <relevant>
 <parameter type="AircraftEvent" name="ev"/>
 <body>
 <![CDATA[
 String me = agent.name();
 long t;
 cleanUp(ev.aircraft);
 for (t = env.slotTime(ev.ETA); true; t += env.SLOTGAP) {
 if (freeSlot(t))
 break;

 }
@reply(ev,ev.assign(me,t,ev.aircraft,pushed_eta,ev.booking));

]]>
 </body>
 </relevant>
 <body>
 <![CDATA[
 String me = agent.name();
 long t;
 cleanUp(ev.aircraft);
 for (t = env.slotTime(ev.ETA); true; t += env.SLOTGAP) {
 if (freeSlot(t))
 break;
 }
 @reply(ev,ev.assign(me,t,ev.aircraft,pushed_eta,ev.booking));
]]>
 </body>
</plan>

Figure C.51 RunwayRequest plan in XML

<event id="ev1" type="AircraftEvent" extends="Event">
 <import>aos.jack.jak.core.*</import>
 <posted methodName="withdraw">
 <![CDATA[Jak.log.log("Withdraw:withdraw created");]]>
 </posted>
</event>

Figure C.52 AircraftEvent event in XML

 [137]

The Figure C.54 shows EnterControlArea event in XML.

The Figure C.55 shows TrafficEvent event in XML.

Figure C.53 Approaching event in XML

<event id="ev3" type="EnterControlArea" extends="Event">
 <import>aos.jack.jak.core.Jak</import>
 <field visibility="public" type="boolean" name="approved"/>
 <field visibility="public" type="int" name="balance"/>
 <posted methodName="approval">
 <![CDATA[
 Jak.log.log("WithdrawResponse:approval created");
 this.approved = true;
 this.balance = balance;
 message = "approved";
]]>
 </posted>
 <posted methodName="rejection">
 <![CDATA[
 Jak.log.log("WithdrawResponse:rejection created");
 this.approved = false;
 this.balance = 0;
 message = "rejected";
]]>
</posted>
</event>

Figure C.54 EnterControlArea event in XML

<event id="ev2" type="Approaching" extends="MessageEvent">
 <import>aos.jack.jak.core.Jak</import>
 <field visibility="public" type="account" name="account"/>
 <field visibility="public" type="int" name="pin"/>
 <field visibility="public" type="int" name="amount"/>
 <posted methodName="withdraw">
 <parameter type="int" name="account"/>
 <parameter type="int" name="pin"/>
 <parameter type="int" name="amount"/>
 <![CDATA[
 Jak.log.log("WithdrawRequest:withdraw created");
 this.account = account;
 this.pin = pin;
 this.amount = amount;
 message = "withdraw["+account+","+pin+"]";
]]>
 </posted>
</event>

 [138]

The Figure C.56 shows ArrivalSequencing capability in XML.

<event id="ev4" type="TrafficEvent" extends="Event">
 <field type="ScheduleRow" name="row"/>
 <field type="String" name="airport"/>
 <field type="String" name="destination"/>
 <field type="int" name="mode"/>
 <field scope="static" type="int" name="SCHEDULE" value="0" />
 <field scope="static" type="int" name="AIRCRAFT" value="1" />
 <posted methodName="open">
 <parameter type="String" ref="airport"/>
 <parameter type="String" ref="destination"/>
 <![CDATA[
 this.airport = airport;
 this.destination = destination;
 mode = SCHEDULE;
]]>
 </posted>
 <posted methodName="run">
 <parameter type="ScheduleRow" ref="row"/>
 <parameter type="String" ref="airport"/>
 <parameter type="String" ref="destination"/>
 <![CDATA[
 this.row = row;
 this.airport = airport;
 this.destination = destination;
 mode = AIRCRAFT;
]]>
 </posted>
</event>

Figure C.55 TrafficEvent event in XML

<capability id="c1" name="ArrivalSequencing" extends="Capability">
 <handlesEvent type="AircraftEvent"/>
 <privateData type="Semaphore" ref="mutex"/>
 <usesPlan type="RequestSlot"/>
 <field type="String []" name="runways"/>
 <method name="getRunways" returnType="String []">
 <body>
 <![CDATA[
 return runways;
]]>
 </body>
 </method>
 <method name="enable" returnType="String []">
 <body>
 <![CDATA[
 this.runways = runways;
 mutex.signal();
]]>
 </body>
 </method>
</capability>

Figure C.56 ArrivalSequencing capability in XML

 [139]

The Figure C.57 shows Flying capability in XML.

The Figure C.58 shows RunwayAssigning capability in XML.

<capability id="c2" name="Flying" extends="Capability">
 <privateData type="LandingInfo" ref="landing_info"/>
 <handlesEvent type="AircraftEvent"/>
 <sendsEvent type="AircraftEvent"/>
 <handlesEvent type="EnterControlArea"/>
 <handlesEvent type="Approaching"/>
 <postEvent type="EnterControlArea" ref="enter"/>
 <postEvent type="Approaching" ref="follow"/>
 <usesPlan type="MonitorAircraft"/>
 <usesPlan type="FollowApproach"/>
 <usesPlan type="InitialApproach"/>
 <usesPlan type="AssignSlot"/>
 <method name="start" returnType="void">
 <parameter type="String" ref="id"/>
 <parameter type="String" ref="airport"/>
 <parameter type="long" ref="eta"/>
 <body>
 <![CDATA[
 postEvent(enter.start(id,airport,eta));
]]>
 </body>
 </method>
</capability>

Figure C.57 Flying capability in XML

<capability id="c3" name="RunwayAssigning" extends="Capability">
 <usesPlan type="RunwayRequest"/>
 <usesPlan type="RunwayAssign"/>
 <handlesEvent type="AircraftEvent"/>
 <privateData type="RunwayInfo" ref="runway_info()"/>
 <field type="long" name="SLOTGAP" value="180000"/>
 <method name="slotTime" returnType="long">
 <parameter type="long" ref="time"/>
 <body>
 <![CDATA[
 long x = time/SLOTGAP;
 return (x+1)*SLOTGAP;
]]>
 </body>
 </method>
 <method name="setName" returnType="void">
 <parameter type="String" ref="name"/>
 <parameter type="int" ref="index"/>
 <body>
 <![CDATA[runway_info.setName(name,index);]]>
 </body>
 </method>
</capability>

Figure C.58 RunwayAssigning capability in XML

 [140]

The Figure C.59 shows TrafficFeeding capability in XML

C.6 Evaluation
To evaluate our approach we identified traceability relations manually (see Table C.1) and

compared the results with traceability relations identified by the tool (see Table C.2). 31 correct

traceability relations had been identified by the tool and 31traceability relations were missing.

The precision and recall calculated were 73.8% and 50%, respectively.

SD Goal Goal
Allocate Runway Slot Allocate Runway Slot

Find Best Landing Time for an Aircraft Landing
Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft

SR Goal Goal
Allocate Runway Slot Allocate Runway Slot

Find Best Landing Time for an Aircraft Landing
Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft

SR Task Goal
Query Best Landing Time from All Runway

Manager
Query Best Landing Time from All Runway

Manager
Query Best Landing Time from All Runway

Manager Landing

Respond Runway Request Respond Runway Request

Landing Query Best Landing Time from All Runway
Manager

Landing Landing

<capability id="c4" name="TrafficFeeding" extends="Capability">
 <handlesEvent type="AircraftEvent"/>
 <sendsEvent type="AircraftEvent" ref="request"/>
 <handlesEvent type="TrafficEvent"/>
 <privateData type="Schedule" ref="schedule()"/>
 <usesPlan type="Traffic"/>
 <usesPlan type="Takeoff"/>
 <usesPlan type="TakeoffDiscard"/>
 <field type="TrafficGUI" name="gui"/>
 <postsEvent type="TrafficEvent" ref="traffic"/>
 <method name="load" returnType="void">
 <parameter type="String" ref="name"/>
 <parameter type="String" ref="destination"/>
 <body>
 <![CDATA[
 System.err.println("Feed from "+name+" opened.");
 schedule.load(name+".dat",new TrafficGUI(name));
 postEvent(traffic.open(name,destination));
]]>
 </body>
 </method>
</capability>

Figure C.59 TrafficFeeding capability in XML

 [141]

Assign Slot Assign Slot
Initiate Approach Initiate Aircraft Approach
Follow Approach Follow Approach Goal

Process Schedule for a Feeder Process Schedule for a Feeder
Request Booking Request Booking

PushOut Push Out
TakeOff TakeOff Goal
Actor Agent
Aircraft Aircraft
Feeder Feeder
Airport Airport
Runway Runway

SD Resource Message
Slot Allocated Aircraft Event

ATL Aircraft Event
SR Resource Data

Landing Information landing_info
SD Goal Agent

Allocate Runway Slot Airport
Allocate Runway Slot Runway

Find Best Landing Time for an Aircraft Aircraft
SR Goal Agent

Allocate Runway Slot Airport
Allocate Runway Slot Runway

Find Best Landing Time for an Aircraft Aircraft
SR Task Agent

Query Best Landing Time from All Runway
Manager Airport

Query Best Landing Time from All Runway
Manager Runway

Respond Runway Request Runway
Landing Airport
Landing Runway

Assign Slot Aircraft
Initiate Approach Aircraft
Follow Approach Aircraft

Process Schedule for a Feeder Feeder
Request Booking Aircraft

PushOut Feeder
TakeOff Feeder

SD Goal Capability
Allocate Runway Slot Runway Assigning

Find Best Landing Time for an Aircraft Flying
SR Goal Capability

Allocate Runway Slot Runway Assigning
Find Best Landing Time for an Aircraft Flying

SR Task Capability
Query Best Landing Time from All Runway

Manager Arrival Sequencing

Query Best Landing Time from All Runway
Manager Flying

Respond Runway Request Runway Assigning

 [142]

Landing Arrival Sequencing
Landing Flying

Assign Slot Flying
Initiate Approach Flying
Follow Approach Flying

Process Schedule for a Feeder Traffic Feeding
Request Booking Traffic Feeding

PushOut Traffic Feeding
TakeOff Traffic Feeding

SR Resource Plan
Landing Information Monitor Aircraft
Landing Information Follow Approach
Landing Information Initial Approach
Landing Information Monitor Aircraft
Landing Information Follow Approach
Landing Information Assign Slot Plan

Actor Capability
Aircraft Flying
Feeder Traffic Feeding
Airport Arrival Sequencing
Runway Runway Assigning

SR Task Plan
Query Best Landing Time from All Runway

Manager Runway Request

Respond Runway Request Runway Assign
Landing Runway Request

Assign Slot Assign Slot Plan
Initiate Approach Initial Approach
Follow Approach Follow Approach

Process Schedule for a Feeder Traffic
Request Booking Takeoff

PushOut Takeoff Discard
TakeOff Takeoff

SR Goal Plan
Allocate Runway Slot Request Slot Plan

Find Best Landing Time for an Aircraft Monitor Aircraft
SR Resource Capability

Landing Information Flying
Landing Information Flying

SR Resource Agent
Landing Information Aircraft
Landing Information Aircraft

Table C.1 Traceability relations identified manually

Rule ID Type SD Goal Goal

rule1 overlaps Find Best Landing Time for an
Aircraft Find Best Land Time for an Aircraft

rule1 overlaps Find Best Landing Time for an
Aircraft Landing

Rule ID Type SR Goal Goal

 [143]

rule3a overlaps Find Best Landing Time for an
Aircraft Find Best Land Time for an Aircraft

rule3a overlaps Find Best Landing Time for an
Aircraft Landing

Rule ID Type SR Task Goal

rule4a overlaps Landing Query Best Landing Time from All Runway
Manager

rule4a overlaps Landing Progresses an aircraft to Landing
rule4a overlaps Landing Landing
rule4a overlaps Assign Slot Assign Slot
rule4a overlaps Initiate Approach Initiate Aircraft Approach
rule4a overlaps Process Schedule for a Feeder Process Schedule for a Feeder

Rule ID Type Actor Agent
rule49a overlaps Aircraft Aircraft
rule49a overlaps Feeder Feeder
rule49a overlaps Airport Airport
rule49a overlaps Runway Runway

Rule ID Type SR Resource Data
rule52 overlaps Landing Information landing_info

Rule ID Type SD Goal Agent

rule12 implements Find Best Landing Time for an
Aircraft Aircraft

Rule ID Type SR Goal Agent

rule16 implements Find Best Landing Time for an
Aircraft Aircraft

Rule ID Type SR Task Agent
rule18 implements Landing Aircraft
rule18 implements Landing Runway
rule18 implements Assign Slot Aircraft
rule18 implements Initiate Approach Aircraft
rule18 implements Process Schedule for a Feeder Feeder

Rule ID Type SR Resource Plan
rule53a uses Landing Information Monitor Aircraft
rule53a uses Landing Information Follow Approach
rule53a uses Landing Information Initial Approach
rule53b creates Landing Information Monitor Aircraft
rule53b creates Landing Information Follow Approach
rule53b creates Landing Information Assign Slot Plan

Rule ID Type Actor Capability
rule56 composedOf Aircraft Flying
rule56 composedOf Feeder Traffic Feeding
rule56 composedOf Airport Arrival Sequencing
rule56 composedOf Runway Runway Assigning

Rule ID Type SR Task Plan
rule57 achieves Landing Runway Request
rule57 achieves Landing Follow Approach
rule57 achieves Assign Slot Assign Slot Plan
rule57 achieves Initiate Approach Initial Approach
rule57 achieves Process Schedule for a Feeder Traffic

Rule ID Type SR Goal Plan

rule58 achieves Find Best Landing Time for an
Aircraft Monitor Aircraft

 [144]

Rule ID Type SR Resource Capability
rule54a uses Landing Information Flying
rule54b creates Landing Information Flying

Rule ID Type SR Resource Agent
rule55a uses Landing Information Aircraft
rule55b creates Landing Information Aircraft

Table C.2 Traceability relations identified by the tool

To show how missing elements identified by the tool can assist in the software development

process we used the information of missing elements (Table C.3) to complete the models and

to fix inconsistencies (e.g. to fix discrepancies between names given by the elements).

Rule ID SD Goal Goal
rule1cc Allocate Runway Slot

Rule ID SR Goal ---
rule3cc Allocate Runway Slot

Rule ID SR Plan Prometheus Goal || Prometheus Plan ||
Prometheus Role || Prometheus Action

rule4cc Request Runway
rule4cc Respond Runway Request
rule4cc Follow Approach
rule4cc Request Booking
rule4cc TakeOff Discard
rule4cc TakeOff

Rule ID Prometheus Goal SD Task | SD Goal | SR Task | SD Goal
rule4cc1 Request Slot
rule4cc1 Schedule Arrival for a Feeder
rule4cc1 Assign Runway
rule4cc1 Push Out
Rule ID Goal Agent

rule12
Rule ID SD Resource Percept | Message
rule50cc Slot Allocated
rule50cc ATL
Rule ID SD Goal Agent
rule59cc1 Allocate Runway Slot
Rule ID SR Goal Agent
rule59cc3 Allocate Runway Slot
Rule ID SR Task Agent
rule59cc4 Request Runway
rule59cc4 Respond Runway Request
rule59cc4 Follow Approach
rule59cc4 Request Booking
rule59cc4 TakeOff Discard
rule59cc4 TakeOff
Rule ID SD Goal Plan
rule60cc1 Allocate Runway Slot
Rule ID SR Goal Plan

 [145]

rule60cc3 Allocate Runway Slot
Rule ID SR Task Plan
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Follow Approach
rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff
Rule ID SD Goal Capability
rule60cc1 Allocate Runway Slot

rule60cc1 Find Best Landing Time for an
Aircraft

Rule ID SR Goal Capability
rule60cc3 Allocate Runway Slot

rule60cc3 Find Best Landing Time for an
Aircraft

Rule ID SR Task Capability
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Landing
rule60cc4 Assign Slot
rule60cc4 Initiate Approach
rule60cc4 Follow Approach
rule60cc4 Process Schedule for a Feeder
rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff

Table C.3 Missing relations identified by the tool

We run the tool against the new i* model shown in the Figure C.60 and the new Prometheus

model.

The number of correct relations identified was 31, the number of missing elements identified

was 31 and the number of wrong relations was 11. The precision and recall calculated was

73,8% and 50% respectively.

Several missing elements were identified by the completeness checking rules. The

completeness checking rule rule1cc shows that there is a missing traceability relation between

Allocate Runway Slot SD Goal and a Prometheus goal (see Table C.4). The rule rule3cc shows

that there is a missing traceability relation between Allocate Runway Slot SR Goal and a

Prometheus goal (see Table C.5).

The rule rule4cc1 shows that any relation between Request Slot Prometheus goal and a SD

Task, or SD Goal, or SR Task, or SR Goal was identified (see Table C.4 and Table C.5). The

 [146]

action taken to correct this discrepancy was to rename the name of Request Slot goal in the

Prometheus model to Allocate Runway Slot.

Rule ID SD Goal Goal
rule1cc Allocate Runway Slot

Table C.4 Missing relations between SD Goal and Prometheus Goal

Rule ID SR Goal Goal
Rule3cc Allocate Runway Slot

Table C.5 Missing relations between SR Goal and Prometheus Goal

We changed the name of Request Slot to Allocate Runway Slot to fix the discrepancy between

names and the relation was identified.

Rule rule4cc shows that there are missing traceability relations between Request Runway,

Respond Runway Request, Follow Approach, Request Booking, TakeOff Discard, TakeOff

SR Tasks and Prometheus Goals (see Table C.3). We added Request Booking and TakeOff

Goal goals in the Prometheus to complete the model. After analysing the models, we identified

that there is a missing relation between Follow Approach SR Task in i* and Progress an

aircraft to Landing in Prometheus model. To fix the discrepancy between the names given, we

changed the name in the Prometheus model from Progress an aircraft to Landing to Follow

Approach Goal. The Figure C.60 and Figure C.61 show i* model and Prometheus goal

diagram updated.

 [147]

Figure C.60 Air Traffic Control Environment i* model version 1

Figure C.61 Prometheu goal diagram

Rule ID SR Task Prometheus Goal
rule4cc Request Runway
rule4cc Respond Runway Request
rule4cc Follow Approach
rule4cc Request Booking
rule4cc TakeOff Discard
rule4cc TakeOff

Table C.6 Missing relations between SR Plan and Prometheus Goal

 [148]

The rule rule4cc1 shows that there are missing traceability relations between Request Slot,

Schedule Arrival for a Feeder, Assign Runway, Push Out goals in Prometheus and SD Task, or

SD Goal, or SR Task, or SR Goal (see Table C.7).

Rule ID Prometheus Goal SD Task | SD Goal |
SR Task | SD Goal

rule4cc1 Request Slot
rule4cc1 Schedule Arrival for a Feeder
rule4cc1 Assign Runway
rule4cc1 Push Out

Table C.7 Missing relations between Prometheus Goal and SD/SR Task or SD/SR Goal

There is a discrepancy between the names given to the TakeOff Discard SR Task and Push

Out goal in Prometheus. We changed the name of the SR Task from TakeOff Discard to Push

Out in the i* model. There is also a discrepancy between the names given to Respond Runway

Request SR Task and Assign Runway in Prometheus. We changed the name of the Assign

Runway goal in Prometheus to Respond Runway Request. No traceability relation was found

between Schedule Arrival for a Feeder Prometheus goal and a SD Task, or SD Goal, or SR

Task, or SR Goal. We decide to remove it from the Prometheus model. The Schedule Arrival

for a Feeder is similar to the Process Schedule for a Feeder goal (another action could be to

add a SR goal in the in i* model that would have a means-end relationship with the Process

Schedule for a Feeder). The traceability relation between Request Runway SR Task in i* and

Query Best Landing Time from All Runway Manager was not identified by the tool. In order

to fix this discrepancy between names we changed the name from Runway Request in the i*

model to Query Best Landing Time from All Runway Manager.

The rule rule50cc shows that any traceability relation was identified between Slot Allocated and

ATL SD Resource in i* and a Percept or a Message in Prometheus (see Table C.8). We

identified that the carried information ATL and Slot Allocated for the Aircraft Event message

was missing. We fix the incompleteness adding ATL and Slot Allocated to the carried

information property of Aircraft Event message.

Rule ID SD Resource Percept | Message
rule50cc Slot Allocated
rule50cc ATL

Table C.8 Missing relations between SD Resource and Prometheus Percept

 [149]

Rule rule59cc1 shows that any traceability relation was found between Allocate Runway Slot

SD goal and a Prometheus agent (see Table C.9) and the rule rule59cc3 shows that any

traceability relation was identified between Allocate Runway Slot SR goal and a Prometheus

agent (see Table C.10). We added to the list of goals achieved by the Runway Prometheus

agent the Allocate Runway Slot (named before by Request Slot).

Rule ID SD Goal Agent
rule59cc1 Allocate Runway Slot

Table C.9 Missing relations between SD Goal and a Prometheus Agent

Rule ID SR Goal Agent
rule59cc3 Allocate Runway Slot

Table C.10 Missing relation between a SR Goal and an Agent

Table C.11 shows missing relations between Request Runway, Respond Runway Request,

Follow Approach, Request Booking, TakeOff Discard, and Take Off SR Tasks and agents in

Prometheus. We added Query Best Landing Time from All Runway Manager (before named

as Request Runway) to the list of goals achieved by Airport Prometheus Agent. No action was

necessary for Request Runway Request and Follow Approach. The goal name changed from

Assign Runway to Respond Runway Request and from Progresses an aircraft to Landing to

Follow Approach resolved the incompleteness. We added Request Booking to the list of goals

achieved by Aircraft Prometheus Agent and TakeOff and Push Out to the list of goals

achieved by the Feeder Prometheus Agent.

Rule ID SR Task Agent
rule59cc4 Request Runway

rule59cc4 Respond Runway Request

rule59cc4 Follow Approach

rule59cc4 Request Booking

rule59cc4 TakeOff Discard

rule59cc4 TakeOff

Table C.11 Missing relations between a SR Task and an Agent

Table C.12 shows missing relations between Allocate Runway Slot SD Goal and plans in

Prometheus and the table C.13 shows missing relations between Allocate Runway Slot SR goal

 [150]

and a plan in Prometheus. Any action was necessary because the change of the Request Slot

goal name to Allocate Runway Slot fixed the incompleteness.

Rule ID SD Goal Plan
rule60cc1 Allocate Runway Slot

Table C.12 Missing relations between a SD Goal and a Prometheus Plan

Rule ID SR Goal Plan
rule60cc3 Allocate Runway Slot

Table C.13 Missing relations between a SR Goal and a Prometheus Plan

Table C.14 shows missing relations between Request Runway, Respond Runway Request,

Follow Approach, Request Booking, TakeOff Discard, and Take Off SR Tasks and plans in

Prometheus. We added Query Best Landing Time from All Runway Manager (before named

as Request Runway) to the list of goals achieved by Airport. No action was necessary for

Request Runway Request and Follow Approach. The goal name changed from Assign Runway

to Respond Runway Request and from Progresses an aircraft to Landing to Follow Approach

resolved the incompleteness. We added Request Booking and TakeOff to the list of goals

achieved by TakeOff Prometheus Agent. We added Push Out to the list of goals achieved by

the Takeoff Discard Prometheus Plan.

Rule ID SR Task Plan
rule60cc4 Request Runway

rule60cc4 Respond Runway Request

rule60cc4 Follow Approach

rule60cc4 Request Booking

rule60cc4 TakeOff Discard

rule60cc4 TakeOff

Table C.14 Missing relations between a SR Task and Prometheus Plan

Table C.15 shows missing relations between Allocate Runway Slot and Find Best Landing

Time for an Aircraft SD goals and Prometheus capabilities. Table C.16 shows missing relations

between Allocate Runway Slot and Find Best Landing Time for an Aircraft SR goals and

capabilities in Prometheus. We added Allocate Runway Slot goal to the list of goals achieved

by Runway Assigning and Find Best Landing Time for an Aircraft to the list of goals achieved

by Arrival Sequencing.

 [151]

Rule ID SD Goal Capability
rule60cc1 Allocate Runway Slot

rule60cc1 Find Best Landing Time for an Aircraft

Table C.15 Missing links between a SD Goal and Prometheus Capability

Rule ID SR Goal Capability
rule60cc3 Allocate Runway Slot

rule60cc3 Find Best Landing Time for an Aircraft

Table C.16 Missing links between a SR Goal and Prometheus Capability

Table C.17 shows missing relations between Request Runway, Respond Runway Request,

Landing, Assign Slot, Initiate Approach, Follow Approach, Process Schedule for a Feeder,

Request Booking, TakeOff Discard, TakeOff SR tasks in i* and Prometheus Capabilities. We

added Query Best Landing Time from All Runway Manager to the list of goals achieved by

Arrival Sequencing capability. We added Respond Runway Request to the list of goals achieved

by Runway Assigning. We added Landing, Assign Slot, Initiate Aircraft Approach, and Follow

Approach to the list of goals achieved by Flying capability. We added Process Schedule for a

Feeder, Request Booking, Push Out and Take Off Goal to the list of goals achieved by the

Feeder capability.

Rule ID SR Task Capability
rule60cc4 Request Runway

rule60cc4 Respond Runway Request

rule60cc4 Landing

rule60cc4 Assign Slot

rule60cc4 Initiate Approach

rule60cc4 Follow Approach

rule60cc4 Process Schedule for a
Feeder

rule60cc4 Request Booking

rule60cc4 TakeOff Discard

rule60cc4 TakeOff

Table C.17 Missing relations between a SR Task and Prometheus Capability

 [152]

After to complete the model and run the traceability tool again the number of correct relations

identified was 65, the number of missing elements identified was 4 and the number of wrong

relations was 18. The precision and recall calculated was 78,82% and 94,36%, respectively.

Rule ID SD Goal Goal
rule1 Allocate Runway Slot Allocate Runway Slot
rule1 Find Best Landing Time for an Aircraft Landing
rule1 Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft

Rule ID SR Goal Goal
rule3a Allocate Runway Slot Allocate Runway Slot
rule3a Find Best Landing Time for an Aircraft Landing
rule3a Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft

Rule ID SR Task Goal

rule4a Query Best Landing Time from All
Runway Manager

Query Best Landing Time from All Runway
Manager

rule4a Query Best Landing Time from All
Runway Manager Landing

rule4a Respond Runway Request Respond Runway Request

rule4a Landing Query Best Landing Time from All Runway
Manager

rule4a Landing Landing
rule4a Assign Slot Assign Slot
rule4a Initiate Approach Initiate Aircraft Approach
rule4a Follow Approach Follow Approach Goal
rule4a Process Schedule for a Feeder Process Schedule for a Feeder
rule4a Request Booking Request Booking
rule4a PushOut Push Out
rule4a TakeOff TakeOff Goal

Rule ID Actor Agent
rule49a Aircraft Aircraft
rule49a Feeder Feeder
rule49a Airport Airport
rule49a Runway Runway

Rule ID SD Resource Message
rule50 Slot Allocated Aircraft Event
rule50 ATL Aircraft Event

Rule ID SR Resource Data
rule52 Landing Information landing_info

Rule ID SD Goal Agent
rule12 Allocate Runway Slot Airport
rule12 Allocate Runway Slot Runway
rule12 Find Best Landing Time for an Aircraft Aircraft

Rule ID SR Goal Agent
rule16 Allocate Runway Slot Airport
rule16 Allocate Runway Slot Runway
rule16 Find Best Landing Time for an Aircraft Aircraft

Rule ID SR Task Agent

rule18 Query Best Landing Time from All
Runway Manager Airport

rule18 Query Best Landing Time from All Runway

 [153]

Runway Manager
rule18 Respond Runway Request Runway
rule18 Landing Airport
rule18 Landing Runway
rule18 Assign Slot Aircraft
rule18 Initiate Approach Aircraft
rule18 Follow Approach Aircraft
rule18 Process Schedule for a Feeder Feeder
rule18 Request Booking Aircraft
rule18 PushOut Feeder
rule18 TakeOff Feeder

Rule ID SD Goal Capability
rule19 Allocate Runway Slot Runway Assigning
rule19 Find Best Landing Time for an Aircraft Flying

Rule ID SR Goal Capability
rule23 Allocate Runway Slot Runway Assigning
rule23 Find Best Landing Time for an Aircraft Flying

Rule ID SR Task Capability

rule25 Query Best Landing Time from All
Runway Manager Arrival Sequencing

rule25 Query Best Landing Time from All
Runway Manager Flying

rule25 Respond Runway Request Runway Assigning
rule25 Landing Arrival Sequencing
rule25 Landing Flying
rule25 Assign Slot Flying
rule25 Initiate Approach Flying
rule25 Follow Approach Flying
rule25 Process Schedule for a Feeder Traffic Feeding
rule25 Request Booking Traffic Feeding
rule25 PushOut Traffic Feeding
rule25 TakeOff Traffic Feeding

Rule ID SR Resource Plan
rule53a Landing Information Monitor Aircraft
rule53a Landing Information Follow Approach
rule53a Landing Information Initial Approach
rule53b Landing Information Monitor Aircraft
rule53b Landing Information Follow Approach
rule53b Landing Information Assign Slot Plan

Rule ID Actor Capability
rule56 Aircraft Flying
rule56 Feeder Traffic Feeding
rule56 Airport Arrival Sequencing
rule56 Runway Runway Assigning

Rule ID SR Task Plan

rule57 Query Best Landing Time from All
Runway Manager Runway Request

rule57 Respond Runway Request Runway Assign
rule57 Landing Runway Request
rule57 Assign Slot Assign Slot Plan
rule57 Initiate Approach Initial Approach

 [154]

rule57 Follow Approach Follow Approach
rule57 Process Schedule for a Feeder Traffic
rule57 Request Booking Takeoff
rule57 PushOut Takeoff Discard
rule57 TakeOff Takeoff

Rule ID SR Goal Plan
rule58 Allocate Runway Slot Request Slot Plan
rule58 Find Best Landing Time for an Aircraft Monitor Aircraft

Rule ID SR Resource Capability
rule54a Landing Information Flying
rule54b Landing Information Flying

Rule ID SR Resource Agent
rule55a Landing Information Aircraft
rule55b Landing Information Aircraft

Table C.18 Traceability relations between i* and Prometheus

Rule ID JACK BeliefSet Prometheus Data
RulePJ2cc1 LandingInfo
RulePJ2cc1 RunwayInfo
Rule ID Prometheus Goal JACK Agent

RulePJ5cc1 Request Slot
RulePJ5cc1 Process Schedule for a Feeder
RulePJ5cc1 Schedule Arrival for a Feeder
RulePJ5cc1 Query Best Landing Time from All Runway Manager
RulePJ5cc1 Assign Runway
RulePJ5cc1 Find Best Land Time for an Aircraft
RulePJ5cc1 Push Out
RulePJ5cc1 Progresses an aircraft to Landing
RulePJ5cc1 Initiate Aircraft Approach
RulePJ5cc1 Assign Slot
RulePJ5cc1 Landing
Rule ID Prometheus Message JACK Agent

RulePJ12cc1 Traffic Event
RulePJ12cc1 Enter Control Area

Table C.19 Missing relations between JACK and Prometheus

 [155]

Appendix D – Electronic Bookstore Case Study
This document describes the development of a multi-agent system to implement the

Electronic Bookstore (EB) used as a case study to evaluate our approach to generate

traceability relations automatically and to identify missing elements between artefacts created

during the development of a multi-agent system.

D.1 JACK Agent vs Prometheus Goal
Table D.1 shows the traceability relations identified manually between Prometheus Goal and

JACK Agent and the table D.2 shows the traceability relations identified by the tool between

Prometheus Goal and JACK Agent identified by the tool. Relations between a Prometheus

Goal and a JACK Agent found by the tool are based on previous relations identified between

Prometheus Agents and JACK Agents and relations defined in the Prometheus model

between Prometheus Goals and Prometheus Agents. The number of relations identified

manually is 38, the number of relations identified by the tool is 38, and the number of correct

relations is 38. The precision and recall calculated is 100%.

The reason why precision and recall are equal to 100% is because the tool had identified

previously all the relations between Prometheus Agents and JACK Agents completely and

correctly and all the relations between Prometheus Goals and Prometheus Agents had been

completed defined.

Prometheus Goal JACK Agent
Retrieve Item Details Stock Manager

Register New Customer Customer Relations
Calculate Delivery Time and Price Delivery Manager

Check Availability Stock Manager
Perform Keyword Search Stock Manager
Perform Advanced Search Stock Manager

Find BestSellers Stock Manager
Find Book Details Stock Manager

Find Books by Category Stock Manager
Find New Releases Stock Manager
Find Special Offers Stock Manager

Find Categories Stock Manager
Find Top Ten BestSellers Stock Manager
Show New Customer Page Sales Assistant

Show Updated Basket Sales Assistant
Show Delivery Time and Price Options Sales Assistant

Show Top Ten BestSellers Sales Assistant
Show Order Confirmation Sales Assistant

 [156]

Table D.1 Relations identified manually between Prometheus Goal and JACK Agent

Rule ID Prometheus Goal JACK Agent
rulePJ5a Show Contact Information SalesAssistant
rulePJ5a Show Help Information SalesAssistant
rulePJ5a Show User Details SalesAssistant
rulePJ5a Show Account Details Page SalesAssistant
rulePJ5a Show Advanced Search Result SalesAssistant
rulePJ5a Show Advanced Search Form SalesAssistant
rulePJ5a Show Books Details Page SalesAssistant
rulePJ5a Show Books by Category Page SalesAssistant
rulePJ5a Show LogIn Page SalesAssistant
rulePJ5a Proceed To CheckOut SalesAssistant
rulePJ5a Show Categories Page SalesAssistant
rulePJ5a Show Top Ten BestSellers SalesAssistant
rulePJ5a Show Order Confirmation SalesAssistant
rulePJ5a Show Delivery Time and Price Options SalesAssistant
rulePJ5a Show Keyword Search Result SalesAssistant
rulePJ5a Show Updated Basket SalesAssistant
rulePJ5a Show Best Sellers Page SalesAssistant
rulePJ5a Show New Releases SalesAssistant
rulePJ5a Show Special Offers Page SalesAssistant
rulePJ5a Update Basket SalesAssistant
rulePJ5a Show Basket Page SalesAssistant
rulePJ5a Show New Customer Page SalesAssistant
rulePJ5a Get Customer Details CustomerRelations
rulePJ5a Validate User CustomerRelations
rulePJ5a Register New Customer CustomerRelations
rulePJ5a Calculate Delivery Time and Price DeliveryManager
rulePJ5a Process Payment PaymentProcessor
rulePJ5a Find Books by Category StockManager
rulePJ5a Find Top Ten BestSellers StockManager
rulePJ5a Perform Keyword Search StockManager
rulePJ5a Perform Advanced Search StockManager

Show Account Details Page Sales Assistant
Proceed To CheckOut Sales Assistant

Update Basket Sales Assistant
Get Customer Details Customer Relations

Show User Details Sales Assistant
Show Advanced Search Form Sales Assistant
Show Advanced Search Result Sales Assistant

Show Basket Page Sales Assistant
Show Best Sellers Page Sales Assistant
Show Book Details Page Sales Assistant

Show Books by Category Page Sales Assistant
Show Top Ten BestSellers Sales Assistant
Show Contact Information Sales Assistant

Show Help Information Sales Assistant
Show Keyword Search Result Sales Assistant

Show New Releases Sales Assistant
Show Password Assistance Sales Assistant

Show LogIn Page Sales Assistant
Show Special Offers Page Sales Assistant

Show Categories Page Sales Assistant
Validate User Customer Relations

Process Payment Payment Processor

 [157]

rulePJ5a Retrieve Item Details StockManager
rulePJ5a Check Availability StockManager
rulePJ5a Find BestSellers StockManager
rulePJ5a Find Book Details StockManager
rulePJ5a Find New Releases StockManager
rulePJ5a Find Special Offers StockManager
rulePJ5a Find Categories StockManager

Table D.2 Relations identified by the tool between Prometheus Goal and JACK Agent

D.2 JACK Agent vs Prometheus Role
Table D.3 shows the traceability relations identified manually between Prometheus Role and

JACK Agent and table D.4 shows the traceability relations identified by the tool between

Prometheus Role and JACK Agent. Relations between a Prometheus Role and a JACK Agent

found by the tool are based on previous relations identified between Prometheus Agents and

JACK Agents and relations defined in the Prometheus model between Prometheus Role and

Prometheus Agents. The number of relations identified manually is 9, and the number of

relations identified by the tool is 9. The precision and recall calculated is 100%.

The reason why precision and recall are equal to 100% is because the tool had identified

previously all the relations between Prometheus Agents and JACK Agents completely and

correctly and all the relations between Prometheus Roles and Prometheus Agents had been

completed defined.

Prometheus Role JACK Agent
Customer Management SalesAssistant
Order Management SalesAssistant
Product Information Management SalesAssistant
Shop Information Management SalesAssistant
Customer Relationship Management CustomerRelations
Stock Management StockManager
Search Management StockManager
Service Delivery Management DeliveryManager
Payment Management PaymentProcessor

Table D.3 Relations identified manually between Prometheus Role and JACK Agent

Rule ID Prometheus Role JACK Agent
rulePJ6a Shop Information Managment SalesAssistant
rulePJ6a Product Information Management SalesAssistant
rulePJ6a Order Management SalesAssistant
rulePJ6a Customer Management SalesAssistant
rulePJ6a Customer Relationship CustomerRelations

 [158]

Management
rulePJ6a Service Delivery Management DeliveryManager
rulePJ6a Payment Management PaymentProcessor
rulePJ6a Stock Management StockManager
rulePJ6a Search Management StockManager

Table D.4 Relations identified by the tool between Prometheus Role and JACK Agent

D.3 JACK Agent vs Prometheus Agent
Table D.5 shows the traceability relations identified manually between Prometheus Role and

JACK Agent and table D.6 shows the traceability relations identified by the tool between

Prometheus Role and JACK Agent. The number of relations identified manually is 5, and the

number of relations identified by the tool is 5. The precision and recall calculated is 100%.

Prometheus Agent JACK Agent
Customer Relations CustomerRelations
Delivery Manager DeliveryManager
Payment Processor PaymentProcessor
Sales Assistant SalesAssistant
Stock Manager StockManager
 DispatcherAgent

Table D.5 Relations identified manually between Prometheus Agent and JACK Agent

Rule ID Prometheus Agent JACK Agent
rulePJ4a Sales Assistant SalesAssistant
rulePJ4a Customer Relations CustomerRelations
rulePJ4a Delivery Manager DeliveryManager
rulePJ4a Payment Processor PaymentProcessor
rulePJ4a Stock Manager StockManager

Table D.6 Relations identified by the tool between Prometheus Agent and JACK Agent

 [159]

D.4 JACK Agent vs Prometheus Capability

Table D.7 shows the traceability relations identified manually between Prometheus Capability

and JACK Agent and table D.8 shows the traceability relations identified by the tool between

Prometheus Capability and JACK Agent. The number of relations identified manually is 39,

and the number of relations identified by the tool is 39. The precision and recall calculated is

100%.

Prometheus Capability JACK Agent
Add Customer Capability CustomerRelations
Add Customer Response Capability SalesAssistant
Add Item to Basket Capability StockManager
Add Item To Basket Response Capability SalesAssistant
Advanced Search Capability StockManager
Advanced Search Response Capability SalesAssistant
Calculate Delivery Time and Price Capability DeliveryManager
Check Stock Capability StockManager
Find BestSellers Capability StockManager
Find Book Details Capability StockManager
Find Books by Category Capability StockManager
Find New Releases Capability StockManager
Find Special Offers Capability StockManager
Find Subjects Category Capability StockManager
Find Top Ten BestSellers Capability StockManager
Get Delivery Options Response Capability SalesAssistant
Keyword Search Capability StockManager
Keyword Search Response Capability SalesAssistant
Log Out Response Capability SalesAssistant
LogIn Response Capability SalesAssistant
Place Order Response Capability SalesAssistant
Proceed To Check Out Response Capability SalesAssistant
Retrieve Customer Details Capability CustomerRelations
Show Account Detail Response Capability SalesAssistant
Show Advanced Search Form Response Capability SalesAssistant
Show Basket Response Capability SalesAssistant
Show BestSellers Response Capability SalesAssistant
Show Book Details Response Capability SalesAssistant
Show Books by CategoryResponse Capability SalesAssistant
Show Bookstore Main Page Response Capability SalesAssistant
Show Contact Information Response Capability SalesAssistant
Show Help Information Response Capability SalesAssistant
Show New Releases Response Capability SalesAssistant
Show SignIn Form Response Capability SalesAssistant
Show Special Offers Response Capability SalesAssistant
Show Subjects Response Capability SalesAssistant
SignIn Capability CustomerRelations
Update Basket Response Capability SalesAssistant
Validate Credit Card Capability Payment Processor

Table D.7 Relations identified manually Prometheus Capability and JACK Agent

 [160]

Rule ID Prometheus Capability JACK Agent
rulePJ8a Add Customer Response Capability SalesAssistant
rulePJ8a Get Delivery Options Response Capability SalesAssistant
rulePJ8a LogIn Response Capability SalesAssistant
rulePJ8a Place Order Response Capability SalesAssistant
rulePJ8a Add Item To Basket Response Capability SalesAssistant
rulePJ8a Advanced Search Response Capability SalesAssistant
rulePJ8a Keyword Search Response Capability SalesAssistant
rulePJ8a Show Books by CategoryResponse Capability SalesAssistant
rulePJ8a Show Book Details Response Capability SalesAssistant
rulePJ8a Log Out Response Capability SalesAssistant
rulePJ8a Show Bookstore Main Page Response Capability SalesAssistant
rulePJ8a Show BestSellers Response Capability SalesAssistant
rulePJ8a Show New Releases Response Capability SalesAssistant
rulePJ8a Show Special Offers Response Capability SalesAssistant
rulePJ8a Show Subjects Response Capability SalesAssistant
rulePJ8a Proceed To Check Out Response Capability SalesAssistant
rulePJ8a Show Account Detail Response Capability SalesAssistant
rulePJ8a Show Advanced Search Form Response Capability SalesAssistant
rulePJ8a Show Basket Response Capability SalesAssistant
rulePJ8a Show Contact Information Response Capability SalesAssistant
rulePJ8a Show Help Information Response Capability SalesAssistant
rulePJ8a Show SignIn Form Response Capability SalesAssistant
rulePJ8a Update Basket Response Capability SalesAssistant
rulePJ8a Add Customer Capability CustomerRelations
rulePJ8a Retrieve Customer Details Capability CustomerRelations
rulePJ8a SignIn Capability CustomerRelations
rulePJ8a Calculate Delivery Time and Price Capability DeliveryManager
rulePJ8a Validate Credit Card Capability PaymentProcessor
rulePJ8a Check Stock Capability StockManager
rulePJ8a Add Item to Basket Capability StockManager
rulePJ8a Advanced Search Capability StockManager
rulePJ8a Keyword Search Capability StockManager
rulePJ8a Find Books by Category Capabability StockManager
rulePJ8a Find Book Details Capability StockManager
rulePJ8a Find Top Ten BestSellers Capability StockManager
rulePJ8a Find BestSellers Capability StockManager
rulePJ8a Find New Releases Capability StockManager
rulePJ8a Find Special Offers Capability StockManager
rulePJ8a Find Subjects Category Capability StockManager

Table D.8 Relations identified by the tool between Prometheus Capability and JACK Agent

D.5 JACK Agent vs Prometheus Plan
Table D.9 shows the traceability relations identified manually between Prometheus Plan and

JACK Agent and table D.10 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Agent. The number of relations identified manually is 39, and the

number of relations identified by the tool is 39. Precision and recall calculated is 100%.

 [161]

Prometheus Plan JACK Agent
Add Item to Basket Plan StockManager
Add New Customer CustomerRelations
Calculate Delivery Time and Price Plan DeliveryManager
Check Stock StockManager
Execute Advanced Search StockManager
Execute Keyword Search StockManager
Find BestSellers Plan StockManager
Find Book Details Plan StockManager
Find Books by Category Plan StockManager
Find New Releases Plan StockManager
Find Special Offers Plan StockManager
Find Subjects StockManager
Find Top Ten BestSellers Plan StockManager
Respond Add Customer Request SalesAssistant
Respond Add Item to Basket Request SalesAssistant
Respond Get Delivery Options Request SalesAssistant
Respond Log Out Request SalesAssistant
Respond Place Order Request SalesAssistant
Respond SignIn Request SalesAssistant
Respond to Proceed to CheckOut Request SalesAssistant
Respond Update Basket Request SalesAssistant
Retrieve Customer Details CustomerRelations
Show Account SalesAssistant
Show Advanced Search Form Plan SalesAssistant
Show Advanced Search Result Plan SalesAssistant
Show Basket Plan SalesAssistant
Show BestSellers Plan SalesAssistant
Show Book Details SalesAssistant
Show Books by Category Plan SalesAssistant
Show Bookstore Main PagePlan SalesAssistant
Show Contact Information Plan SalesAssistant
Show Help Information Plan SalesAssistant
Show Keyword Search Result Plan SalesAssistant
Show New Releases Plan SalesAssistant
Show SignIn form SalesAssistant
Show Special Offers Plan SalesAssistant
Show Subjects Plan SalesAssistant
Sign In CustomerRelations
Validate Credit Card PaymentProcessor

Table D.9 Relations identified manually between Prometheus Plan and JACK Agent

Rule ID Prometheus Plan JACK Agent
rulePJ9a Respond Add Customer Request SalesAssistant
rulePJ9a Respond Get Delivery Options

Request
SalesAssistant

rulePJ9a Respond SignIn Request SalesAssistant
rulePJ9a Respond Place Order Request SalesAssistant
rulePJ9a Respond Add Item to Basket

Request
SalesAssistant

rulePJ9a Show Advanced Search Result SalesAssistant

 [162]

Plan
rulePJ9a Show Keyword Search Result

Plan
SalesAssistant

rulePJ9a Show Books by Category Plan SalesAssistant
rulePJ9a Show Book Details SalesAssistant
rulePJ9a Respond Log Out Request SalesAssistant
rulePJ9a Show Bookstore Main Page Plan SalesAssistant
rulePJ9a Show BestSellers Plan SalesAssistant
rulePJ9a Show New Releases Plan SalesAssistant
rulePJ9a Show Special Offers Plan SalesAssistant
rulePJ9a Show Subjects Plan SalesAssistant
rulePJ9a Respond to Proceed to CheckOut

Request
SalesAssistant

rulePJ9a Show Account SalesAssistant
rulePJ9a Show Advanced Search Form

Plan
SalesAssistant

rulePJ9a Show Basket Plan SalesAssistant
rulePJ9a Show Contact Information Plan SalesAssistant
rulePJ9a Show Help Information Plan SalesAssistant
rulePJ9a Show SignIn Form SalesAssistant
rulePJ9a Respond Update Basket Request SalesAssistant
rulePJ9a Add New Customer CustomerRelations
rulePJ9a Retrieve Customer Details CustomerRelations
rulePJ9a Sign In CustomerRelations
rulePJ9a Calculate Delivery Time and

Price Plan
DeliveryManager

rulePJ9a Validate Credit Card PaymentProcessor
rulePJ9a Check Stock StockManager
rulePJ9a Add Item to Basket Plan StockManager
rulePJ9a Execute Advanced Search StockManager
rulePJ9a Execute Keyword Search StockManager
rulePJ9a Find Books by Category Plan StockManager
rulePJ9a Find Book Details Plan StockManager
rulePJ9a Find Top Ten BestSellers Plan StockManager
rulePJ9a Find BestSellers Plan StockManager
rulePJ9a Find New Releases Plan StockManager
rulePJ9a Find Special Offers Plan StockManager
rulePJ9a Find Subjects StockManager

Table D.10 Relations identified by the tool between Prometheus Plan and JACK Agent

D.6 JACK Agent vs Prometheus Percept
Table D.11 shows the traceability relations identified manually between Prometheus Plan and

JACK Agent and table D.12 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Agent. The number of relations identified manually is 24, and the

number of relations identified by the tool is 15. Precision and recall calculated is 100% and

62.50%, respectively. The reason why recall is low it is because the rule rulePJ10a only capture

 [163]

Percepts defined on the System Overview Diagram. Table D.13 shows the information about

missing traceability relations between Prometheus Percept and JACK Agent.

Prometheus Percept JACK Agent
Account Details Request SalesAsssistant
Advanced Search Form Request SalesAsssistant
Basket Plan Request SalesAsssistant
BestSellers Page SalesAsssistant
Book Added to Basket SalesAsssistant
Book Details Page SalesAsssistant
Bookstore Page SalesAsssistant
Categories Request SalesAsssistant
CheckOut Request SalesAsssistant
Contact Information Page SalesAsssistant
Get Delivery Options Page SalesAsssistant
Help Information Page SalesAsssistant
Get Delivery Options Page SalesAsssistant
Help Information Page SalesAsssistant
Log Out Page SalesAsssistant
New Advanced Search SalesAsssistant
New Customer SalesAsssistant
New Keyword Search SalesAsssistant
New Releases Page SalesAsssistant
Place Order Request SalesAsssistant
SignIn Page SalesAsssistant
Special Offers Page SalesAsssistant
Subjects Page SalesAsssistant
Update Basket Request SalesAsssistant

Table D.11 Relations identified manually between Prometheus Percept and JACK Agent

Rule ID Prometheus Percept JACK Agent
rulePJ10a New Advanced Search SalesAssistant
rulePJ10a Advanced Search Form Request SalesAssistant
rulePJ10a Basket Plan Request SalesAssistant
rulePJ10a BestSellers Page SalesAssistant
rulePJ10a New Keyword Search SalesAssistant
rulePJ10a CheckOut Request SalesAssistant
rulePJ10a Account Details Request SalesAssistant
rulePJ10a Get Delivery Options Page SalesAssistant
rulePJ10a Categories Request SalesAssistant
rulePJ10a SignInPage SalesAssistant
rulePJ10a Bookstore Page SalesAssistant
rulePJ10a New Customer SalesAssistant
rulePJ10a Log Out Page SalesAssistant
rulePJ10a Book Added to Basket SalesAssistant
rulePJ10a Place Order Request SalesAssistant

Table D.12 Relations identified by the tool between Prometheus Percept and JACK Agent

Rule ID Prometheus Percept JACK Agent
RulePJ10cc1 New Advanced Search
RulePJ10cc1 Advanced Search Form Request
RulePJ10cc1 Basket Plan Request
RulePJ10cc1 BestSellers Page
RulePJ10cc1 New Keyword Search
RulePJ10cc1 CheckOut Request
RulePJ10cc1 Account Details Request
RulePJ10cc1 Get Delivery Options Page

 [164]

RulePJ10cc1 Categories Request
RulePJ10cc1 SignInPage
RulePJ10cc1 Bookstore Page
RulePJ10cc1 New Customer
RulePJ10cc1 Log Out Page
RulePJ10cc1 Book Added to Basket
RulePJ10cc1 Place Order Request
RulePJ10cc1 Book Details Page
RulePJ10cc1 New Releases Page
RulePJ10cc1 Special Offers Page
RulePJ10cc1 Subjects Page
RulePJ10cc1 Contact Information Page
RulePJ10cc1 Help Information Page
RulePJ10cc1 SignIn Page
RulePJ10cc1 Update Basket Request

Table D.13 Missing traceability relations between Prometheus Percept and JACK Agent

D.7 JACK Agent vs Prometheus Action
Table D.14 shows the traceability relations identified manually between Prometheus Plan and

JACK Agent and table D.15 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Agent. The number of relations identified manually is 18, and the

number of relations identified by the tool is 10. The precision and recall calculated is 100% and

55.55%, respectively. The reason why recall is low it is because the rule rulePJ11a only capture

Actions defined on the System Overview Diagram.

Action JACK Agent
Show Account Details Page Action SalesAsssistant
Show Advanced Search Form Page SalesAsssistant
Show Advanced Search Result Page SalesAsssistant
Show Basket Page Action SalesAsssistant
Show BestSellers Page SalesAsssistant
Show Book Details Page Action SalesAsssistant
Show Books by Category Page Action SalesAsssistant
Show Bookstore Home Page SalesAsssistant
Show Bookstore Page SalesAsssistant
Show CheckOut Page SalesAsssistant
Show Contact Information Page SalesAsssistant
Show Delivery Options Page SalesAsssistant
Show Help Information Page SalesAsssistant
Show Keyword Search Result Page SalesAsssistant
Show New Releases Page SalesAsssistant
Show Sign In Form Page SalesAsssistant
Show Special Offers Page Action SalesAsssistant
Show Subjects Page SalesAsssistant

Table D.14 Relations identified manually between Prometheus Action and JACK Agent

Rule ID Prometheus Action JACK Agent
rulePJ11a Show Basket Page Action SalesAssistant
rulePJ11a Show Advanced Search Form SalesAssistant

 [165]

Page
rulePJ11a Show CheckOut Page SalesAssistant
rulePJ11a Show Advanced Search Result

Page
SalesAssistant

rulePJ11a Show Keyword Search Result
Page

SalesAssistant

rulePJ11a Show BestSellers Page SalesAssistant
rulePJ11a Show Delivery Options Page SalesAssistant
rulePJ11a Show Bookstore Home Page SalesAssistant
rulePJ11a Show Sign In Form Page SalesAssistant
rulePJ11a Show Account Details Page

Action
SalesAssistant

Table D.15 Relations identified by the tool between Prometheus Action and JACK Agent

D.8 JACK Agent vs Prometheus Message (sends)
Table D.16 shows the traceability relations identified manually between Prometheus Plan and

JACK Agent and table D.17 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Agent. The number of relations identified manually is 33, and the

number of relations identified by the tool is 4. The precision and recall calculated is 100% and

12.12%, respectively. The reason why recall is low it is because the rule rulePJ12b only capture

Message defined on the System Overview Diagram.

Prometheus Message (Sends) JACK Agent
AdvancedSearch Request SalesAssistant
Advanced Search Response StockManager
Authorization Request SalesAssistant
Authorization Response PaymentProcessor
BestSellers Request SalesAssistant
BestSeller Response StockManager
Book Avalaible StockManager
Add to Basket Response StockManager
Book Details Request SalesAssistant
Book Details Response StockManager
Add to Basket Request SalesAssistant
Book Not Avalaible StockManager
Book Request SalesAssistant
Books by Category Request SalesAssistant
Books by Category Response StockManager
Add Customer Request SalesAssistant
Delivery Time and Price Response DeliveryManager
User Details Request SalesAssistant
Delivery Time and Price Request SalesAssistant
Keyword Search Request SalesAssistant
Keyword Search Response StockManager
New Releases Request SalesAssistant
New Releases Response StockManager

 [166]

Add Customer Response CustomerRelations
Special Offers Request SalesAssistant
Special Offers Response StockManager
Subjects Request SalesAssistant
Subjects Response StockManager
Top Ten BestSellers Request SalesAssistant
Top Ten BestSellers Response StockManager
User Details Response CustomerRelations
User Login Request SalesAssistant
User Login Response CustomerRelations

Table D.16 Relations identified manually between Prometheus Message and JACK Agent

Rule ID Prometheus Message JACK Agent
rulePJ12b Add Customer Request SalesAssistant
rulePJ12b Add to Basket Request SalesAssistant
rulePJ12b Add Customer Response CustomerRelations
rulePJ12b Add to Basket Response StockManager

Table D.17 Relations identified by the tool between Prometheus Message and JACK Agent

D.9 JACK Agent vs Prometheus Message (receives)
Table D.18 shows the traceability relations identified manually between Prometheus Plan and

JACK Agent and table D.19 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Agent. The number of relations identified manually is 34, and the

number of relations identified by the tool is 5. The precision and recall calculated is 100% and

14.70%, respectively. The reason why recall is low it is because the rule rulePJ12a only capture

Message defined on the System Overview Diagram.

Prometheus Message (Receives) JACK Agent

AdvancedSearch Request StockManager
Advanced Search Response SalesAssistant
Authorization Request PaymentProcessor
Authorization Response SalesAssistant
BestSellers Request StockManager
BestSeller Response SalesAssistant
Book Avalaible SalesAssistant
Add to Basket Response SalesAssistant
Book Details Request StockManager
Book Details Response SalesAssistant
Add to Basket Request StockManager
Book Not Avalaible SalesAssistant
Book Request StockManager
Books by Category Request StockManager
Books by Category Response SalesAssistant
Add Customer Request CustomerRelations

 [167]

Delivery Time and Price Response SalesAssistant
User Details Request CustomerRelations
Delivery Time and Price Request DeliveryManager
Keyword Search Request StockManager
Keyword Search Response SalesAssistant
New Releases Request StockManager
New Releases Response SalesAssistant
Add Customer Response SalesAssistant
Special Offers Request StockManager
Special Offers Response SalesAssistant
Subjects Request StockManager
Subjects Response SalesAssistant
Top Ten BestSellers Request StockManager
Top Ten BestSellers Response SalesAssistant
User Details Response SalesAssistant
User Login Request CustomerRelations
User Login Response SalesAssistant
WebSession Request SalesAssistant

Table D.18 Relations identified manually between Prometheus Message and JACK Agent

Rule ID Prometheus Message JACK Agent
rulePJ12a WebSession Request SalesAssistant
rulePJ12a Add Customer Response SalesAssistant
rulePJ12a Add to Basket Response SalesAssistant
rulePJ12a Add Customer Request CustomerRelations
rulePJ12a Add to Basket Request StockManager

Table D.19 Relations identified by the tool between Prometheus Message and JACK Agent

D.10 JACK Agent vs Prometheus Data (uses)

Table D.20 shows the traceability relations identified manually between Prometheus Data and

JACK Agent and table D.21 shows the traceability relations identified by the tool between

Prometheus Data and JACK Agent. The number of relations identified manually is 8, and the

number of relations identified by the tool is 4. The precision and recall calculated is 100% and

50%, respectively. The reason why recall is low it is because the rule rulePJ13a only capture

Percepts defined on the System Overview Diagram.

Prometheus Data (Uses) JACK Agent
CustomerDB CustomerRelations
CourierDB DeliveryManager
BooksDB StockManager
StockDB StockManager
BestSellersDB StockManager

 [168]

ReleasesDB StockManager
SpecialOffers StockManager
Categories StockManager

Table D.20 Relations identified manually between Prometheus Data and JACK Agent

Rule ID Prometheus Data JACK Agent
rulePJ13a customers CustomerRelations
rulePJ13a courier DeliveryManager
rulePJ13a books StockManager
rulePJ13a categories StockManager

Table D.21 Relations identified by the tool between Prometheus Data and JACK Agent

D.11 JACK Agent vs Prometheus Data (creates)

Table D.22 shows the traceability relations identified manually between Prometheus Data and

JACK Agent and table D.23 shows the traceability relations identified by the tool between

Prometheus Data and JACK Agent. The number of relations identified manually is 1, and the

number of relations identified by the tool is 1. The precision and recall calculated is 100%.

Prometheus Data (Creates) JACK Agent
CustomerDB CustomerRelations

Table D.22 Relations identified manually between Prometheus Data and JACK Agent

Table D.23 Relations identified by the tool between Prometheus Data and JACK Agent

D.12 JACK Plan vs Prometheus Goal

Table D.24 shows the traceability relations identified manually between JACK Plan and

Prometheus Goal and table D.25 shows the traceability relations identified by the tool between

JACK Plan and Prometheus Goal. The number of relations identified manually is 39, and the

number of relations identified by the tool is 4. The precision and recall calculated is 100% and

10.25%, respectively.

JACK Plan Prometheus Goal
AddBookToBasket Retrieve Item Details
RegisterCustomer Register New Customer
CalculateDeliveryPriceAndTime Calculate Delivery Time and

Rule ID Prometheus Data JACK Agent
rulePJ13b customers CustomerRelations

 [169]

Price
CheckStock Check Availability
ExecuteAdvancedSearch Perform Keyword Search
SearchBooksByKeyword Perform Advanced Search
FindBestSellers Find BestSellers
FindBookDetails Find Book Details
FindBooksByCategory Find Books by Category
FindNewReleases Find New Releases
FindSpecialOffers Find Special Offers
FindSubjects Find Categories
FindTopTenBestSellers Find Top Ten BestSellers
RespondAddCustomerRequest Show New Customer Page
RespondAddToBasketRequest Show Updated Basket
RespondGetDeliveryOptionsRequest Show Delivery Time and

Price Optiions
RespondLogOutRequest Show Top Ten BestSellers
RespondPlaceOrderRequest Show Order Confirmation
RespondSignInRequest Show Account Details Page
RespondProceedToCheckOutRequest Proceed To CheckOut
RespondUpdateBasketRequest Update Basket
GetCreditCardDetails Get Customer Details
ShowAccount Show User Details
ShowAdvancedSearchForm Show Advanced Search Form
ShowAdvancedSearchResult Show Advanced Search

Result
ShowBasket Show Basket Page
ShowBestSellers Show Best Sellers Page
ShowBookDetails Show Book Details Page
ShowBooksByCategory Show Books by Category

Page
ShowWebSite Show Top Ten BestSellers
ShowContactInfo Show Contact Information
ShowHelpInfo Show Help Information
ShowBooksByKeyword Show Keyword Search Result
ShowNewReleases Show New Releases
ShowSignInForm Show LogIn Page
ShowSpecialOffers Show Special Offers Page
ShowSubjects Show Categories Page
SignIn Validate User
ValidateCreditCard Process Payment

Table D.24 Relations identified manually between JACK Plan and Prometheus Goal

Rule ID Prometheus Goal JACK Plan
rulePJ14a Show Delivery Time and Price Options RespondGetDeliveryOptionsRequest
rulePJ14a Show Updated Basket RespondAddToBasketRequest
rulePJ14a Perform Advanced Search ExecuteAdvancedSearch
rulePJ14a Show Advanced Search Result ShowAdvancedSearchResult

Table D.25 Relations identified by the tool between Prometheus Goal and JACK Plan

D.13 JACK Plan vs Prometheus Role
Table D.26 shows the traceability relations identified manually between JACK Plan and

Prometheus Role and table D.27 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Plan. The number of relations identified manually is 39, and the

 [170]

number of relations identified by the tool is 4. The precision and recall calculated is 100% and

10.25%, respectively.

JACK Plan Prometheus Role
AddBookToBasket Search Management
RegisterCustomer Customer Relationship Management
CalculateDeliveryPriceAndTime Service Delivery Management
CheckStock Search Management
ExecuteAdvancedSearch Stock Management
SearchBooksByKeyword Stock Management
FindBestSellers Stock Management
FindBookDetails Stock Management
FindBooksByCategory Stock Management
FindNewReleases Stock Management
FindSpecialOffers Stock Management
FindSubjects Stock Management
FindTopTenBestSellers Stock Management
RespondAddCustomerRequest Customer Management
RespondAddToBasketRequest Order Management
RespondGetDeliveryOptionsRequest Order Management
RespondLogOutRequest Shop Information Managment
RespondPlaceOrderRequest Order Management
RespondSignInRequest Customer Management
RespondProceedToCheckOutRequest Order Management
RespondUpdateBasketRequest Order Management
GetCreditCardDetails Customer Relationship Management
ShowAccount Customer Management
ShowAdvancedSearchForm Product Information Management
ShowAdvancedSearchResult Product Information Management
ShowBasket Order Management
ShowBestSellers Product Information Management
ShowBookDetails Product Information Management
ShowBooksByCategory Product Information Management
ShowWebSite Shop Information Management
ShowContactInfo Shop Information Management
ShowHelpInfo Shop Information Management
ShowBooksByKeyword Product Information Management
ShowNewReleases Product Information Management
ShowSignInForm Customer Management
ShowSpecialOffers Product Information Management
ShowSubjects Product Information Management
SignIn Customer Relationship Management
ValidateCreditCard Payment Management

Table D.26 Relations identified manually between JACK Plan and Prometheus Role

Rule ID Prometheus Role JACK Plan
rulePJ34a Order Management RespondGetDeliveryOptionsRequest
rulePJ34a Order Management RespondAddToBasketRequest
rulePJ34a Stock Management ExecuteAdvancedSearch
rulePJ34a Product Information Management ShowAdvancedSearchResult

Table D.27 Relations identified by the tool between Prometheus Role and JACK Plan

D.14 JACK Plan vs Prometheus Agent
Table D.28 shows the traceability relations identified manually between JACK Plan and

Prometheus Agent and table D.29 shows the traceability relations identified by the tool

 [171]

between JACK Plan and Prometheus Agent. The number of relations identified manually is

39, and the number of relations identified by the tool is 34 (the table contains 35 relations, but

two of the relations identified by the tool represent the same relation). The precision and recall

calculated is 91.17% and 79.49%, respectively.

JACK Plan Prometheus Agent
AddBookToBasket Stock Manager
RegisterCustomer Customer Relations
CalculateDeliveryPriceAndTime Delivery Manager
CheckStock Stock Manager
ExecuteAdvancedSearch Stock Manager
SearchBooksByKeyword Stock Manager
FindBestSellers Stock Manager
FindBookDetails Stock Manager
FindBooksByCategory Stock Manager
FindNewReleases Stock Manager
FindSpecialOffers Stock Manager
FindSubjects Stock Manager
FindTopTenBestSellers Stock Manager
RespondAddCustomerRequest Sales Assistant
RespondAddToBasketRequest Sales Assistant
RespondGetDeliveryOptionsRequest Sales Assistant
RespondLogOutRequest Sales Assistant
RespondPlaceOrderRequest Sales Assistant
RespondSignInRequest Sales Assistant
RespondProceedToCheckOutRequest Sales Assistant
RespondUpdateBasketRequest Sales Assistant
GetCreditCardDetails Customer Relations
ShowAccount Sales Assistant
ShowAdvancedSearchForm Sales Assistant
ShowAdvancedSearchResult Sales Assistant
ShowBasket Sales Assistant
ShowBestSellers Sales Assistant
ShowBookDetails Sales Assistant
ShowBooksByCategory Sales Assistant
ShowWebSite Sales Assistant
ShowContactInfo Sales Assistant
ShowHelpInfo Sales Assistant
ShowBooksByKeyword Sales Assistant
ShowNewReleases Sales Assistant
ShowSignInForm Sales Assistant
ShowSpecialOffers Sales Assistant
ShowSubjects Sales Assistant
SignIn Customer Relations
ValidateCreditCard Payment Processor
DefaultRequestHandler Dispatcher Agent
SelectSession Dispatcher Agent
ShowNewCustomerForm Sales Assistant
RespondModifyAddressAndPaymentFormRequest Sales Assistant
Monitor Session Dispatcher Agent
RespondViewAllOrdersRequest Sales Assistant

Table D.28 Relations identified manually between JACK Plan and Prometheus Agent

Rule ID Prometheus Agent JACK Plan
rulePJ15a Sales Assistant RespondAddCustomerRequest
rulePJ15a Sales Assistant RespondGetDeliveryOptionsRequest
rulePJ15a Customer Relations RespondSignInRequest

 [172]

rulePJ15a Customer Relations ShowSignInForm
rulePJ15a Customer Relations SignIn
rulePJ15a Sales Assistant RespondSignInRequest
rulePJ15a Payment Processor ValidateCreditCard
rulePJ15a Sales Assistant RespondPlaceOrderRequest
rulePJ15a Sales Assistant RespondViewAllOrdersRequest
rulePJ15a Sales Assistant RespondAddToBasketRequest
rulePJ15a Stock Manager ExecuteAdvancedSearch
rulePJ15a Sales Assistant ShowAdvancedSearchResult
rulePJ15a Stock Manager FindBooksByCategory
rulePJ15a Sales Assistant ShowBookByCategory
rulePJ15a Stock Manager FindBookDetails
rulePJ15a Sales Assistant ShowBookDetails
rulePJ15a Stock Manager FindBestSellers
rulePJ15a Stock Manager FindTopTenBestSellers
rulePJ15a Sales Assistant RespondLogOutRequest
rulePJ15a Stock Manager FindBestSellers
rulePJ15a Sales Assistant ShowBestSellers
rulePJ15a Stock Manager FindNewReleases
rulePJ15a Sales Assistant ShowNewReleases
rulePJ15a Stock Manager FindSpecialOffers
rulePJ15a Sales Assistant ShowSpecialOffers
rulePJ15a Stock Manager FindSubjects
rulePJ15a Sales Assistant ShowSubjects
rulePJ15a Sales Assistant RespondProceedToCheckOutRequest
rulePJ15a Sales Assistant ShowAccount
rulePJ15a Sales Assistant ShowAdvancedSearchForm
rulePJ15a Sales Assistant ShowBasket
rulePJ15a Sales Assistant ShowContactInfo
rulePJ15a Sales Assistant ShowHelpInfo
rulePJ15a Sales Assistant ShowSignInForm
rulePJ15a Sales Assistant RespondUpdateBasketRequest

Table D.29 Relations identified by the tool between Prometheus Agent and JACK Plan

D.15 JACK Plan vs Prometheus Capability
Table D.30 shows the traceability relations identified manually between JACK Plan and

Prometheus Capability and table D.31 shows the traceability relations identified by the tool

between JACK Plan and Prometheus Capability. The number of relations identified manually

is 39, and the number of relations identified by the tool is 35. The number of corrects relations

identified by the tool is 31 and the number of relations missing is 8. The number of relations

identified wrong is 4. Pecision and recall calculated is 88.57% and 79.49%, respectively.

JACK Plan Prometheus Capability
AddBookToBasket Add Item to Basket Capability
RegisterCustomer Add Customer Capability
CalculateDeliveryPriceAndTime Calculate Delivery Time and Price Capability
CheckStock Check Stock Capability
ExecuteAdvancedSearch Advanced Search Capability
SearchBooksByKeyword Keyword Search Capability
FindBestSellers Find BestSellers Capability
FindBookDetails Find Book Details Capability
FindBooksByCategory Find Books by Category Capability
FindNewReleases Find New Releases Capability
FindSpecialOffers Find Special Offers Capability

 [173]

FindSubjects Find Subjects Category Capability
FindTopTenBestSellers Find Top Ten BestSellers Capability
RespondAddCustomerRequest Add Customer Response Capability
RespondAddToBasketRequest Add Item To Basket Response Capability
RespondGetDeliveryOptionsRequest Get Delivery Options Response Capability
RespondLogOutRequest Log Out Response Capability
RespondPlaceOrderRequest Place Order Response Capability
RespondSignInRequest Login Response Capability
RespondProceedToCheckOutRequest Proceed To Check Out Response Capability
RespondUpdateBasketRequest Update Basket Response Capability
GetCreditCardDetails Retrieve Customer Details Capability
ShowAccount Show Account Detail Response Capability
ShowAdvancedSearchForm Show Advanced Search Form Response Capability
ShowAdvancedSearchResult Advanced Search Response Capability
ShowBasket Show Basket Response Capability
ShowBestSellers Show BestSellers Response Capability
ShowBookDetails Show Book Details Response Capability
ShowBooksByCategory Show Books by CategoryResponse Caapability
ShowWebSite Show Bookstore Main Page Response Capability
ShowContactInfo Show Contact Information Response Capability
ShowHelpInfo Show Help Information Response Capability
ShowBooksByKeyword Keyword Search Response Capability
ShowNewReleases Show New Releases Response Capability
ShowSignInForm Show SignIn Form Response Capability
ShowSpecialOffers Show Special Offers Response Capability
ShowSubjects Show Subjects Response Capability
SignIn SignIn Capability
ValidateCreditCard Validate Credit Card Capability

Table D.30 Relations identified manually between JACK Plan and Prometheus Capability

Rule ID Prometheus Capability JACK Plan
rulePJ16a Add Customer Response Capability RespondAddCustomerRequest
rulePJ16a Get Delivery Options Response

Capability
RespondGetDeliveryOptionsRequest

rulePJ16a SignIn Capability RespondSignInRequest
rulePJ16a SignIn Capability ShowSignInForm
rulePJ16a SignIn Capability SignIn
rulePJ16a LogIn Response Capability RespondSignInRequest
rulePJ16a Validate Credit Card Capability ValidateCreditCard
rulePJ16a Place Order Response Capability RespondPlaceOrderRequest
rulePJ16a Place Order Response Capability RespondViewAllOrdersRequest
rulePJ16a Add Item To Basket Response Capability RespondAddToBasketRequest
rulePJ16a Advanced Search Capability ExecuteAdvancedSearch
rulePJ16a Advanced Search Response Capability ShowAdvancedSearchResult
rulePJ16a Find Books by Category Capabability FindBooksByCategory
rulePJ16a Show Books by CategoryResponse

Capability
ShowBookByCategory

rulePJ16a Find Book Details Capability FindBookDetails
rulePJ16a Show Book Details Response Capability ShowBookDetails
rulePJ16a Find Top Ten BestSellers Capability FindBestSellers
rulePJ16a Find Top Ten BestSellers Capability FindTopTenBestSellers
rulePJ16a Log Out Response Capability RespondLogOutRequest
rulePJ16a Find BestSellers Capability FindBestSellers
rulePJ16a Show BestSellers Response Capability ShowBestSellers
rulePJ16a Find New Releases Capability FindNewReleases
rulePJ16a Show New Releases Response Capability ShowNewReleases
rulePJ16a Find Special Offers Capability FindSpecialOffers
rulePJ16a Show Special Offers Response Capability ShowSpecialOffers
rulePJ16a Find Subjects Category Capability FindSubjects
rulePJ16a Show Subjects Response Capability ShowSubjects
rulePJ16a Proceed To Check Out Response

Capability
RespondProceedToCheckOutRequest

rulePJ16a Show Account Detail Response
Capability

ShowAccount

 [174]

rulePJ16a Show Advanced Search Form Response
Capability

ShowAdvancedSearchForm

rulePJ16a Show Basket Response Capability ShowBasket
rulePJ16a Show Contact Information Response

Capability
ShowContactInfo

rulePJ16a Show Help Information Response
Capability

ShowHelpInfo

rulePJ16a Show SignIn Form Response Capability ShowSignInForm
rulePJ16a Update Basket Response Capability RespondUpdateBasketRequest

Table D.31 Relations identified by the tool between Prometheus Capability and JACK Plan

D.16 JACK Plan vs Prometheus Plan

Table D.32 shows the traceability relations identified manually between JACK Plan and

Prometheus Plan and table D.33 shows the traceability relations identified by the tool between

JACK Plan and Prometheus Plan. The number of relations identified manually is 39, and the

number of relations identified by the tool is 35. The number of relations identified correctly is

31, the number of relations missing is 8 and the number of relations identified incorrectly by

the tool is 4. Precision and recall calculated is 88.57% and 79.49%, respectively.

Prometheus Plan JACK Plan
Add Item to Basket Plan AddBookToBasket
Add New Customer RegisterCustomer
Calculate Delivery Time and Price Plan CalculateDeliveryPriceAndTime
Check Stock CheckStock
Execute Advanced Search ExecuteAdvancedSearch
Execute Keyword Search SearchBooksByKeyword
Find BestSellers Plan FindBestSellers
Find Book Details Plan FindBookDetails
Find Books by Category Plan FindBooksByCategory
Find New Releases Plan FindNewReleases
Find Special Offers Plan FindSpecialOffers
Find Subjects FindSubjects
Find Top Ten BestSellers Plan FindTopTenBestSellers
Respond Add Customer Request RespondAddCustomerRequest
Respond Add Item to Basket Request RespondAddToBasketRequest
Respond Get Delivery Options Request RespondGetDeliveryOptionsRequest
Respond Log Out Request RespondLogOutRequest
Respond Place Order Request RespondPlaceOrderRequest
Respond SignIn Request RespondSignInRequest
Respond to Proceed to CheckOut Request RespondProceedToCheckOutRequest
Respond Update Basket Request RespondUpdateBasketRequest
Retrieve Customer Details GetCreditCardDetails
Show Account ShowAccount
Show Advanced Search Form Plan ShowAdvancedSearchForm
Show Advanced Search Result Plan ShowAdvancedSearchResult
Show Basket Plan ShowBasket
Show BestSellers Plan ShowBestSellers
Show Book Details ShowBookDetails
Show Books by Category Plan ShowBooksByCategory
Show Bookstore Main PagePlan ShowWebSite
Show Contact Information Plan ShowContactInfo
Show Help Information Plan ShowHelpInfo

 [175]

Show Keyword Search Result Plan ShowBooksByKeyword
Show New Releases Plan ShowNewReleases
Show SignIn form ShowSignInForm
Show Special Offers Plan ShowSpecialOffers
Show Subjects Plan ShowSubjects
Sign In SignIn
Validate Credit Card ValidateCreditCard
 DefaultRequestHandler
 SelectSession
 ShowNewCustomerForm
 RespondModifyAddressAndPaymentFormRequest
 Monitor Session
 RespondViewAllOrdersRequest

Table D.32 Relations identified manually between Prometheus Plan and JACK Plan

Rule ID Prometheus Plan JACK Plan
rulePJ3a Respond Add Customer Request RespondAddCustomerRequest
rulePJ3a Respond Get Delivery Options Request RespondGetDeliveryOptionsRequest
rulePJ3a Sign In RespondSignInRequest
rulePJ3a Sign In ShowSignInForm
rulePJ3a Sign In SignIn
rulePJ3a Respond SignIn Request RespondSignInRequest
rulePJ3a Validate Credit Card ValidateCreditCard
rulePJ3a Respond Place Order Request RespondPlaceOrderRequest
rulePJ3a Respond Place Order Request RespondViewAllOrdersRequest
rulePJ3a Respond Add Item to Basket Request RespondAddToBasketRequest
rulePJ3a Execute Advanced Search ExecuteAdvancedSearch
rulePJ3a Show Advanced Search Result Plan ShowAdvancedSearchResult
rulePJ3a Find Books by Category Plan FindBooksByCategory
rulePJ3a Show Books by Category Plan ShowBookByCategory
rulePJ3a Find Book Details Plan FindBookDetails
rulePJ3a Show Book Details ShowBookDetails
rulePJ3a Find Top Ten BestSellers Plan FindBestSellers
rulePJ3a Find Top Ten BestSellers Plan FindTopTenBestSellers
rulePJ3a Respond Log Out Request RespondLogOutRequest
rulePJ3a Find BestSellers Plan FindBestSellers
rulePJ3a Show BestSellers Plan ShowBestSellers
rulePJ3a Find New Releases Plan FindNewReleases
rulePJ3a Show New Releases Plan ShowNewReleases
rulePJ3a Find Special Offers Plan FindSpecialOffers
rulePJ3a Show Special Offers Plan ShowSpecialOffers
rulePJ3a Find Subjects FindSubjects
rulePJ3a Show Subjects Plan ShowSubjects
rulePJ3a Respond to Proceed to CheckOut Request RespondProceedToCheckOutRequest
rulePJ3a Show Account ShowAccount
rulePJ3a Show Advanced Search Form Plan ShowAdvancedSearchForm
rulePJ3a Show Basket Plan ShowBasket
rulePJ3a Show Contact Information Plan ShowContactInfo
rulePJ3a Show Help Information Plan ShowHelpInfo
rulePJ3a Show SignIn Form ShowSignInForm
rulePJ3a Respond Update Basket Request RespondUpdateBasketRequest

Table D.33 Relations identified by the tool between Prometheus Plan and JACK Plan

Table D.34 shows a traceability relation that is not identified by the tool. The reason why the

tool did not identified the relation is because the element that triggers the Check Stock plan in

 [176]

Prometheus is Book Request message and the event that triggers the CheckStock plan in

JACK is BookRequired and Book Request and BookRequired are not identified as

synonymous by the isTrigger function.

Prometheus Plan JACK Plan
Check Stock CheckStock

Table D.34 Missing relation

Table D.35 shows a traceability relation that is not identified by the tool. The reason why the

tool did not identified the relation is because the element that triggers the Calculate Delivery

Time and Price Plan plan in Prometheus is Delivery Time and Price Request message and the

event that triggers the CalculateDeliveryPriceAndTime plan in JACK is

GetDeliveryInformationMessage and Get Delivery Information and Delivery Time and Price

Request are not been identified as synonymous by the isTrigger function.

Prometheus Plan JACK Plan
Calculate Delivery Time and Price Plan CalculateDeliveryPriceAndTime

Table D.35 Missing relation

Table D.36 shows a traceability relation that is not identified by the tool. The element that

triggers Sign In plan in Prometheus is WebSession Request message and the event that triggers

the RespondSignInRequest plan in JACK is WebSessionRequest. Sign In and

RespondSignInRequest are synonyms by the syn:isSynonyms function.

The element that triggers Sign In plan in Prometheus is WebSession Request message and the

event that triggers the ShowSignInForm plan in JACK is WebSessionRequest. Sign In and

RespondSignInRequest are synonyms by the syn:isSynonyms function.

rule ID Prometheus Plan JACK Plan
rulePJ3a Sign In RespondSignInRequest
rulePJ3a Sign In ShowSignInForm

Table D.36 Wrong relation

Table D.37 shows a traceability relation that is incorrectly identified by the tool. The element

that triggers Find Top Ten BestSellers Plan plan in Prometheus is WebSession Request

 [177]

message and the event that triggers the FindBestSellers plan in JACK is WebSessionRequest.

Find Top Ten BestSellers Plan and FindBestSellers are synonyms by the syn:isSynonyms
function.

rule ID Prometheus Plan JACK Plan
rulePJ3a Find Top Ten BestSellers Plan FindBestSellers

Table D.37 Missing relation

Table D.38 shows a traceability relation that is incorrectly identified by the tool. The element

that triggers Respond Place Order Request Plan plan in Prometheus is WebSession Request

message and the event that triggers the RespondViewAllOrdersRequest plan in JACK is

WebSessionRequest. Respond Place Order Request and RespondViewAllOrdersRequest are

synonyms by the syn:isSynonyms function (Place and Order are synonymous).

rule ID Prometheus Plan JACK Plan
rulePJ3a Respond Place Order Request RespondViewAllOrdersRequest

Table D.38 Wrong relation

Table D.39 and table D.40 show traceability relations missing between plan in JACK and plan

in Prometheus and between plan in Prometheus and plans in JACK, respectively. Table D.41

shows traceability relations that are not identified by the tool, but they were identified

manually.

Rule ID JACK Plan Prometheus Plan
RulePJ3cc1 AddBookToBasket
RulePJ3cc1 CalculateDeliveryPriceAndTime
RulePJ3cc1 CheckStock
RulePJ3cc1 GetCreditCardDetails
RulePJ3cc1 MonitorSession
RulePJ3cc1 RespondModifyAddressAndPaymentFormRequest
RulePJ3cc1 SearchBooksByKeyword
RulePJ3cc1 SelectSession
RulePJ3cc1 ShowBooksByKeyword
RulePJ3cc1 ShowNewCustomerForm

Table D.39 Missing relations

Rule ID Prometheus Plan JACK Plan
RulePJ3cc1 Add New Customer
RulePJ3cc1 Retrieve Customer Details
RulePJ3cc1 Calculate Delivery Time and Price Plan
RulePJ3cc1
RulePJ3cc1
RulePJ3cc1 Check Stock
RulePJ3cc1 Add Item to Basket Plan

 [178]

RulePJ3cc1 Execute Keyword Search
RulePJ3cc1 Show Keyword Search Result Plan
RulePJ3cc1 Show Bookstore Main Page Plan

Table D.40 Missing relation

Prometheus Plan JACK Plan
Add Item to Basket Plan AddBookToBasket
Add New Customer RegisterCustomer
Calculate Delivery Time and Price Plan CalculateDeliveryPriceAndTime
Retrieve Customer Details GetCreditCardDetails
Show Bookstore Main PagePlan ShowWebSite
Show Keyword Search Result Plan ShowBooksByKeyword

Table D.41 Relations not identified by the tool

D.17 JACK Plan vs Prometheus Percept

Table D.42 shows the traceability relations identified manually between JACK Plan and

Prometheus Percept. Table D.43 shows the traceability relations identified by the tool between

JACK Plan and Prometheus Percept. The number of relations identified manually is 23, and

the number of relations identified by the tool is 22. The number of relations identified

correctly by the tool is 21 and the number of relations missing is 2. The number of relations

identified incorrectly by the tool is 1. Precision and recall calculated is 95.45% and 91.30%,

respectively.

JACK Plan Prometheus Percept
RespondAddCustomerRequest New Customer
RespondAddToBasketRequest Book Added to Basket
RespondGetDeliveryOptionsRequest Get Delilvery Options Page
RespondLogOutRequest Log Out Page
RespondPlaceOrderRequest Place Order Request
RespondSignInRequest SignInPage
RespondProceedToCheckOutRequest CheckOut Request
RespondUpdateBasketRequest Update Basket Request
GetCreditCardDetails
ShowAccount Account Details Request
ShowAdvancedSearchForm Advanced Search Form Request
ShowAdvancedSearchResult New Advanced Search
ShowBasket Basket Plan Request
ShowBestSellers BestSellers Page
ShowBookDetails Book Details Page
ShowBooksByCategory Categories Request
ShowWebSite Bookstore Page
ShowContactInfo Contact Information Page
ShowHelpInfo Help Information Page
ShowBooksByKeyword New keyword Search
ShowNewReleases New Releases Page
ShowSignInForm SignIn Page
ShowSpecialOffers Special Offers Page
ShowSubjects Subjects Page

 [179]

Table D.42 Relations identified manually between JACK Plan and Prometheus Percept

Rule ID Prometheus Percept JACK Plan
rulePJ17a New Customer RespondAddCustomerRequest
rulePJ17a Get Delivery Options Page RespondGetDeliveryOptionsRequest
rulePJ17a SignInPage RespondSignInRequest
rulePJ17a Place Order Request RespondPlaceOrderRequest
rulePJ17a Place Order Request RespondViewAllOrdersRequest
rulePJ17a Book Added to Basket RespondAddToBasketRequest
rulePJ17a New Advanced Search ShowAdvancedSearchResult
rulePJ17a Categories Request ShowBookByCategory
rulePJ17a Book Details Page ShowBookDetails
rulePJ17a Log Out Page RespondLogOutRequest
rulePJ17a BestSellers Page ShowBestSellers
rulePJ17a New Releases Page ShowNewReleases
rulePJ17a Special Offers Page ShowSpecialOffers
rulePJ17a Subjects Page ShowSubjects
rulePJ17a CheckOut Request RespondProceedToCheckOutRequest
rulePJ17a Account Details Request ShowAccount
rulePJ17a Advanced Search Form Request ShowAdvancedSearchForm
rulePJ17a Basket Plan Request ShowBasket
rulePJ17a Contact Information Page ShowContactInfo
rulePJ17a Help Information Page ShowHelpInfo
rulePJ17a SignIn Page ShowSignInForm
rulePJ17a Update Basket Request RespondUpdateBasketRequest

Table D.43 Relations identified by the tool between Prometheus Percept and JACK Plan

D.18 JACK Plan vs Prometheus Action (Sends)
Table D.44 shows the traceability relations identified manually between JACK Plan and

Prometheus Action. Table D.45 shows the traceability relations identified by the tool between

JACK Plan and Prometheus Action. The number of relations identified manually is 22, and the

number of relations identified by the tool is 21. The number of relations identified correctly is

20 and number of relations missing is 2. The number of relations identified incorrectly by the

tool is 1. Precision and recall calculated is 95.23% and 90.00%, respectively.

JACK Plan Prometheus Action
RespondAddCustomerRequest Show Account Details Page Action
RespondAddToBasketRequest
RespondGetDeliveryOptionsRequest Show Delivery Options Page
RespondLogOutRequest Show Bookstore Home Page
RespondPlaceOrderRequest Show Account Details Page Action
RespondSignInRequest Show Sign In Form Page
RespondSignInRequest Show Account Details Page Action
RespondProceedToCheckOutRequest Show CheckOut Page
RespondUpdateBasketRequest Show Basket Page Action
ShowAccount Show Account Details Page Action
ShowAdvancedSearchForm Show Advanced Search Form Page
ShowAdvancedSearchResult Show Advanced Search Result Page
ShowBestSellers Show BestSellers Page
ShowBookDetails Show Book Details Page Action
ShowBooksByCategory Show Books by Category Action
ShowWebSite Show Bookstore Page
ShowContactInfo Show Contact Information Page

 [180]

ShowHelpInfo Show Help Information Page
ShowBooksByKeyword Show Keyword Search Result Page
ShowNewReleases Show New Releases Page
ShowSignInForm Show Sign In Form Page
ShowSpecialOffers Show Special Offers Page Action
ShowSubjects Show Subjects Page

Table D.44 Relations identified manually between JACK Plan and Prometheus Action

Rule ID Prometheus Action JACK Plan
rulePJ18a Show Account Details Page Action RespondAddCustomerRequest
rulePJ18a Show Delivery Options Page RespondGetDeliveryOptionsRequest
rulePJ18a Show Account Details Page Action RespondSignInRequest
rulePJ18a Show Sign In Form Page RespondSignInRequest
rulePJ18a Show Account Details Page Action RespondPlaceOrderRequest
rulePJ18a Show Account Details Page Action RespondViewAllOrdersRequest
rulePJ18a Show Advanced Search Result Page ShowAdvancedSearchResult
rulePJ18a Show Books by Category Page Action ShowBookByCategory
rulePJ18a Show Book Details Page Action ShowBookDetails
rulePJ18a Show Bookstore Home Page RespondLogOutRequest
rulePJ18a Show BestSellers Page ShowBestSellers
rulePJ18a Show New Releases Page ShowNewReleases
rulePJ18a Show Special Offers Page Action ShowSpecialOffers
rulePJ18a Show Subjects Page ShowSubjects
rulePJ18a Show CheckOut Page RespondProceedToCheckOutRequest
rulePJ18a Show Account Details Page Action ShowAccount
rulePJ18a Show Advanced Search Form Page ShowAdvancedSearchForm
rulePJ18a Show Contact Information Page ShowContactInfo
rulePJ18a Show Help Information Page ShowHelpInfo
rulePJ18a Show Sign In Form Page ShowSignInForm
rulePJ18a Show Basket Page Action RespondUpdateBasketRequest

Table D.45 Relations identified by the tool between Promehteus Action and JACK Plan

D.19 JACK Plan vs Prometheus Message (Sends)
Table D.46 shows the traceability relations identified manually between JACK Plan and

Prometheus Message. Table D.47 shows the traceability relations identified by the tool

between JACK Plan and Prometheus Message. The number of relations identified manually is

34, and the number of relations identified by the tool is 30. The number of relations identified

correctly is 25 and number of relations is 9. The number of relations identified incorrectly by

the tool is 5. Precision and recall calculated is 88.33% and 73.52%, respectively.

JACK Plan (Sends) Prometheus Message
AddBookToBasket Add to Basket Response
RegisterCustomer Add Customer Response
CalculateDeliveryPriceAndTime Delivery Time and Price Response
CheckStock Book Avalaible
CheckStock Book Not Avalaible
ExecuteAdvancedSearch Advanced Search Response
SearchBooksByKeyword Keyword Search Response
FindBestSellers BestSellers Response
FindBookDetails Book Details Response
FindBooksByCategory Books by Category Response
FindNewReleases New Releases Response

 [181]

FindSpecialOffers Special Offers Response
FindSubjects Subjects Response
FindTopTenBestSellers Top Ten BestSellers Response
RespondAddCustomerRequest Add Customer Request
RespondAddToBasketRequest Add to Basket Request
RespondGetDeliveryOptionsRequest User Details Request
RespondGetDeliveryOptionsRequest Delivery Time and Price Request
RespondLogOutRequest Top Ten BestSellers Request
RespondPlaceOrderRequest Authorization Request
RespondPlaceOrderRequest Book Request
RespondSignInRequest User Login Request
GetCreditCardDetails User Details Response
ShowAdvancedSearchResult Advanced Search Request
ShowBestSellers BestSellers Request
ShowBookDetails Book Details Request
ShowBooksByCategory Books by Category Request
ShowWebSite Top Ten BestSellers Request
ShowBooksByKeyword Keyword Search Request
ShowNewReleases New Releases Request
ShowSpecialOffers Special Offers Request
ShowSubjects Subjects Request
SignIn User Login Response
ValidateCreditCard Authorization Response

Table D.46 Relations identified manually between JACK Plan and Prometheus Message
Rule ID Prometheus Message JACK Plan

rulePJ19a Add Customer Request RespondAddCustomerRequest
rulePJ19a User Details Request RespondGetDeliveryOptionsRequest
rulePJ19a Delivery Time and Price Request RespondGetDeliveryOptionsRequest
rulePJ19a User Login Response RespondSignInRequest
rulePJ19a User Login Response ShowSignInForm
rulePJ19a User Login Response SignIn
rulePJ19a User Login Request RespondSignInRequest
rulePJ19a Authorization Response ValidateCreditCard
rulePJ19a Authorization Request RespondPlaceOrderRequest
rulePJ19a Book Request RespondPlaceOrderRequest
rulePJ19a Authorization Request RespondViewAllOrdersRequest
rulePJ19a Book Request RespondViewAllOrdersRequest
rulePJ19a Add to Basket Request RespondAddToBasketRequest
rulePJ19a Advanced Search Response ExecuteAdvancedSearch
rulePJ19a Advanced Search Request ShowAdvancedSearchResult
rulePJ19a Books by Category Response FindBooksByCategory
rulePJ19a Books by Category Request ShowBookByCategory
rulePJ19a Book Details Response FindBookDetails
rulePJ19a Book Details Request ShowBookDetails
rulePJ19a Top Ten BestSellers Response FindBestSellers
rulePJ19a Top Ten BestSellers Response FindTopTenBestSellers
rulePJ19a Top Ten BestSellers Request RespondLogOutRequest
rulePJ19a BestSellers Response FindBestSellers
rulePJ19a BestSellers Request ShowBestSellers
rulePJ19a New Releases Response FindNewReleases
rulePJ19a New Releases Request ShowNewReleases
rulePJ19a Special Offers Response FindSpecialOffers
rulePJ19a Special Offers Request ShowSpecialOffers
rulePJ19a Subjects Response FindSubjects
rulePJ19a Subjects Request ShowSubjects

Table D.47 Relations identified by the tool between Prometheus Message and JACK Plan

 [182]

D.20 JACK Plan vs Prometheus Message (Receives)
Table D.48 shows the traceability relations identified manually between JACK Plan and

Prometheus Message. Table D.49 shows the traceability relations identified by the tool

between JACK Plan and Prometheus Message. The number of relations identified manually is

34, and the number of relations identified by the tool is 30. The number of relations identified

correctly is 25 and number of relations missing is 9. The number of relations identified

incorrectly by the tool is 5. Precision and recall calculated is 88.33% and 73.52%, respectively.
JACK Plan (Receives) Prometheus Message
AddBookToBasket Add to Basket Request
RegisterCustomer Add Customer Request
CalculateDeliveryPriceAndTime Delivery Time and Price Request
CheckStock Book Request
ExecuteAdvancedSearch Advanced Search Request
SearchBooksByKeyword Keyword Search Request
FindBestSellers BestSellers Request
FindBookDetails Book Details Request
FindBooksByCategory Books by Category Request
FindNewReleases New Releases Request
FindSpecialOffers Special Offers Request
FindSubjects Subjects Request
FindTopTenBestSellers Top Ten BesSellers Request
RespondAddCustomerRequest WebSession Request
RespondAddCustomerRequest Add Customer Response
RespondAddToBasketRequest WebSession Request
RespondAddToBasketRequest Add to Basket Response
RespondGetDeliveryOptionsRequest WebSession Request
RespondGetDeliveryOptionsRequest Delivery Time and Price Response
RespondGetDeliveryOptionsRequest User Details Response
RespondLogOutRequest WebSession Request
RespondLogOutRequest Top Ten BestSellers Response
RespondPlaceOrderRequest WebSession Request
RespondPlaceOrderRequest Authorization Response
RespondPlaceOrderRequest Book Avalaible
RespondPlaceOrderRequest Book Not Avalaible
RespondSignInRequest WebSession Request
RespondSignInRequest User Login Response
RespondProceedToCheckOutRequest WebSession Request
RespondUpdateBasketRequest WebSession Request
GetCreditCardDetails User Details Request
ShowAccount WebSession Request
ShowAdvancedSearchForm WebSession Request
ShowAdvancedSearchResult WebSession Request
ShowAdvancedSearchResult Advanced Search Response
ShowBasket WebSession Request
ShowBestSellers WebSession Request
ShowBestSellers BestSellers Response
ShowBookDetails WebSession Request
ShowBookDetails Book Details Response
ShowBooksByCategory WebSession Request
ShowBooksByCategory Books by Category Response
ShowWebSite WebSession Request
ShowWebSite Top Ten BestSellers Response
ShowContactInfo WebSession Request
ShowHelpInfo WebSession Request
ShowBooksByKeyword WebSession Request
ShowBooksByKeyword Keyword Search Response
ShowNewReleases WebSession Request
ShowNewReleases New Releases Response
ShowSignInForm WebSession Request

 [183]

ShowSpecialOffers WebSession Request
ShowSpecialOffers Special Offers Response
ShowSubjects WebSession Request
ShowSubjects Subjects Response
SignIn User Login Request
ValidateCreditCard Authorization Request

Table D.48 Relations identified manually between JACK Plan and Prometheus Message

Prometheus Message JACK Plan
Add Customer Response RespondAddCustomerRequest
User Details Response RespondGetDeliveryOptionsRequest
Delivery Time and Price Response RespondGetDeliveryOptionsRequest
User Login Response RespondSignInRequest
Authorization Response RespondPlaceOrderRequest
Book Avalaible RespondPlaceOrderRequest
Book Not Avalaible RespondPlaceOrderRequest
Authorization Response RespondViewAllOrdersRequest
Book Avalaible RespondViewAllOrdersRequest
Book Not Avalaible RespondViewAllOrdersRequest
Add to Basket Response RespondAddToBasketRequest
Advanced Search Response ShowAdvancedSearchResult
Books by Category Response ShowBookByCategory
Book Details Response ShowBookDetails
Top Ten BestSellers Response RespondLogOutRequest
BestSellers Response ShowBestSellers
New Releases Response ShowNewReleases
Special Offers Response ShowSpecialOffers
Subjects Response ShowSubjects
WebSession Request RespondAddCustomerRequest
WebSession Request RespondGetDeliveryOptionsRequest
User Login Request RespondSignInRequest
User Login Request ShowSignInForm
User Login Request SignIn
WebSession Request RespondSignInRequest
Authorization Request ValidateCreditCard
WebSession Request RespondPlaceOrderRequest
WebSession Request RespondViewAllOrdersRequest
WebSession Request RespondAddToBasketRequest
Advanced Search Request ExecuteAdvancedSearch
WebSession Request ShowAdvancedSearchResult
Books by Category Request FindBooksByCategory
WebSession Request ShowBookByCategory
Book Details Request FindBookDetails
WebSession Request ShowBookDetails
Top Ten BestSellers Request FindBestSellers
Top Ten BestSellers Request FindTopTenBestSellers
WebSession Request RespondLogOutRequest
BestSellers Request FindBestSellers
WebSession Request ShowBestSellers
New Releases Request FindNewReleases
WebSession Request ShowNewReleases
Special Offers Request FindSpecialOffers
WebSession Request ShowSpecialOffers
Subjects Request FindSubjects
WebSession Request ShowSubjects
WebSession Request RespondProceedToCheckOutRequest
WebSession Request ShowAccount
WebSession Request ShowAdvancedSearchForm
WebSession Request ShowBasket
WebSession Request ShowContactInfo
WebSession Request ShowHelpInfo
WebSession Request ShowSignInForm
WebSession Request RespondUpdateBasketRequest

Table D.49 Relations identified by the tool between Prometheus Message and JACK Plan

 [184]

D.21 JACK Plan vs Prometheus Data (Uses)

Table D.51 shows the traceability relations identified manually between JACK Plan and

Prometheus Data. Table D.52 shows the traceability relations identified by the tool between

JACK Plan and Prometheus Data. The number of relations identified manually is 19, and the

number of relations identified by the tool is 12. The number of relations identified correctly is

10 and number of relations missing is 9. The number of relations identified incorrectly by tool

is 2. Precision and recall calculated is 83.33% and 52.63%, respectively.

JACK Plan (Uses) Prometheus Data
AddBookToBasket BooksDB
CalculateDeliveryPriceAndTime CourierDB
CheckStock BooksDB
CheckStock StockDB
ExecuteAdvancedSearch BooksDB
ExecuteAdvancedSearch StockDB
SearchBooksByKeyword BooksDB
SearchBooksByKeyword StockDB
FindBestSellers BestSellersDB
FindBookDetails StockDB
FindBookDetails BooksDB
FindBooksByCategory BooksDB
FindBooksByCategory StockDB
FindNewReleases NewReleasesDB
FindSpecialOffers SpecialOffersDB
FindSubjects CategoriesDB
FindTopTenBestSellers BestSellersDB
GetCreditCardDetails CustomerDB
SignIn CustomerDB

Table D.50 Relations identified manually between JACK Plan and Prometheus Data

Rule ID Prometheus Data JACK Plan
rulePJ20a customers RespondSignInRequest
rulePJ20a customers ShowSignInForm
rulePJ20a customers SignIn
rulePJ20a books ExecuteAdvancedSearch
rulePJ20a stock ExecuteAdvancedSearch
rulePJ20a books FindBooksByCategory
rulePJ20a stock FindBookDetails
rulePJ20a bestsellers FindBestSellers
rulePJ20a bestsellers FindTopTenBestSellers
rulePJ20a bestsellers FindBestSellers
rulePJ20a new releases FindNewReleases
rulePJ20a special offers FindSpecialOffers
rulePJ20a categories FindSubjects

Table D.51 Relations identified by tool between JACK Plan and Prometheus Data

 [185]

D.22 JACK Plan vs Prometheus Data (Creates)
Table D.52 shows the traceability relations identified manually between JACK Plan and

Prometheus Data. The number of relations identified manually is 1, and the number of

relations identified by the tool is 0. Therefore, the precision and recall calculated is 100.0% and

0%, respectively.

JACK Plan (Creates) Prometheus Data
RegisterCustomer CustomerDB

Table D.52 Relations identified manually between JACK Plan and Prometheus Data

D.23 JACK BeliefSet vs Prometheus Role (Creates)

Table D.53 shows traceability relations identified manually between JACK BeliefSet and

Prometheus Role. Table D.54 shows traceability relations identified by the tool between

Prometheus Role and JACK BeliefSet. The number of relations identified manually is 1, and

the number of relations identified by the tool is 2. Therefore, precision and recall calculated is

50.0% and 100%, respectively.

JACK BeliefSet Prometheus Role
CustomerDB Customer Relationship Management

Table D.53 Relations identified manually between JACK BeliefSet and Promtheus Role

Rule ID Prometheus Role JACK BeliefSet
rulePJ21b Customer Relationship Management CustomerDB
rulePJ21b Customer Relationship Management CustomerOrderDB

Table D.54 Relations identified by the tool between Prometheus Role and JACK BeliefSet

D.24 JACK BeliefSet vs Prometheus Role (Uses)
Table D.55 shows traceability relations identified manually between Prometheus Role and

JACK BeliefSet. Table D.56 shows traceability relations identified by the tool between

Prometheus Role and JACK BeliefSet. The number of relations identified manually is 10, and

the number of relations identified by the tool is 11. Therefore, precision and recall calculated is

90.90% and 100%, respectively.

 [186]

Prometheus Role JACK BeliefSet
Stock Management BooksDB
Stock Management StockDB
Stock Management BestSellersDB
Stock Management NewReleasesDB
Stock Management SpecialOffersDB
Stock Management CategoriesDB
Search Management BooksDB
Search Management StockDB
Service Delivery Management CourierDB
Customer Relations Management CustomerDB

Table D.55 Relations identified manually between JACK BeliefSet and Prometheus Role

Rule ID Prometheus Role JACK BeliefSet
rulePJ21a Stock Management BooksDB
rulePJ21a Search Management BooksDB
rulePJ21a Customer Relationship Management CustomerDB
rulePJ21a Customer Relationship Management CustomerOrderDB
rulePJ21a Service Delivery Management CourierDB
rulePJ21a Stock Management StockDB
rulePJ21a Search Management StockDB
rulePJ21a Stock Management CategoriesDB
rulePJ21a Stock Management BestSellersDB
rulePJ21a Stock Management NewReleasesDB
rulePJ21a Stock Management SpecialOffersDB

Table D.56 – Relations identified by the tool between JACK BeliefSet and Prometheus Role

D.25 JACK BeliefSet vs Prometheus Role (Creates)
Table D.57 shows traceability relations identified manually between JACK BeliefSet and

Prometheus Agent. Table D.58 shows traceability relations identified by the tool between

Prometheus Role and JACK BeliefSet. The number of relations identified manually is 1, and

the number of relations identified by the tool is 2. Therefore, precision and recall calculated is

50% and 100%, respectively.

JACK BeliefSet Prometheus Role
CustomerDB Customer Relationship Management

Table D.57 Relations identified manually between JACK BeliefSet and Prometheus Agent

Rule ID Prometheus Role JACK BeliefSet
rulePJ21b Customer Relationship Management CustomerDB
rulePJ21b Customer Relationship Management CustomerOrderDB

Table D.58 Relations identified by the tool between Prometheus Role

 [187]

D.26 JACK BeliefSet vs Prometheus Agent (Uses)

Table D.59 shows traceability relations identified manually between JACK BeliefSet and

Prometheus Agent. Table D.60 shows traceability relations identified by the tool between

Prometheus Agent and JACK BeliefSet. The number of relations identified manually is 8, and

the number of relations identified by the tool is 5. Therefore, precision and recall calculated is

80% and 50%, respectively.

JACK BeliefSet Prometheus Agent
BestSellersDB Stock Manager
BooksDB Stock Manager
CategoriesDB Stock Manager
CourierDB Delivery Manager
CustomerDB Customer Relations
NewReleasesDB Stock Manager
SpecialOffersDB Stock Manager
StockDB Stock Manager
CustomerOrderDB
Session.bel

Table D.59 Relations identified manually between JACK BeliefSet and Prometheus Agent

Rule ID Prometheus Agent JACK BeliefSet
rulePJ22a Customer Relations CustomerDB
rulePJ22a Customer Relations CustomerOrderDB
rulePJ22a Delivery Manager CourierDB
rulePJ22a Stock Manager BooksDB
rulePJ22a Stock Manager CategoriesDB

Table D.60 Relations identified by the tool between Prometheus Agent and JACK BeliefSet

D.27 JACK BeliefSet vs Prometheus Capability (Creates)

Table D.61 shows traceability relations identified manually between Prometheus Capability and

JACK BeliefSet. Table D.62 shows traceability relations identified by the tool between

Prometheus Capability and JACK BeliefSet. The number of relations identified manually is 1,

and the number of relations identified by the tool is 2. Therefore, precision and recall

calculated is 50% and 100%, respectively.

 [188]

Prometheus Capability JACK BeliefSet
Add Customer Capability CustomerDB

Table D.61 Relations identified manually between Prometheus Capability and JACK BeliefSet

Rule ID Prometheus Capability JACK BeliefSet
rulePJ23b Add Customer Capability CustomerDB
rulePJ23b Add Customer Capability CustomerOrderDB

Table D.62 Relations identified by the tool between Prometheus Capability and JACK BeliefSet

D.28. JACK BeliefSet vs Prometeus Capabilitity (Uses)

Table D.63 shows traceability relations identified manually between Prometheus Capability and

JACK BeliefSet. Table D.64 shows traceability relations identified by the tool between

Prometheus Capability and JACK BeliefSet. The number of relations identified manually is 19,

and the number of relations identified by the tool is 21. The number of relations identified

correctly is 19, the number of relations missing is 0, and the number of relations identified

incorrectly is 2. Precision and recall calculated is 90.47% and 100%, respectively.

Prometheus Capability JACK BeliefSet
Add Item to Basket Capability BookDB
Retrieve Customer Details Capability CustomerDB
SignIn Capability CustomerDB
Calculate Delivery Time and Price Capability CourierDB
Advanced Search Capability BookDB
Advanced Search Capability StockDB
Keyword Search Capability StockDB
Keyword Search Capability BookDB
Find Top Ten BestSellers Capability BestSellersDB
Check Stock Capability StockDB
Check Stock Capability BookDB
Find BestSellers Capability BestSellersDB
Find Books by Category Capability BookDB
Find Books by Category Capability StockDB
Find Book Details Capability StockDB
Find Book Details Capability BookDB
Find New Releases Capability NewReleasesDB
Find Special Offers Capability SpecialOffersDB
Find Subjects Category Capability CategoriesDB

Table D.63 Relations identified manually between Prometheus Capability and JACK BeliefSet

Rule ID Prometheus Capability JACK BeliefSet
rulePJ23a Add Item to Basket Capability BooksDB
rulePJ23a Check Stock Capability BooksDB
rulePJ23a Advanced Search Capability BooksDB
rulePJ23a Keyword Search Capability BooksDB
rulePJ23a Find Books by Category Capabability BooksDB
rulePJ23a Find Book Details Capability BooksDB
rulePJ23a Retrieve Customer Details Capability CustomerDB
rulePJ23a SignIn Capability CustomerDB
rulePJ23a Retrieve Customer Details Capability CustomerOrderDB

 [189]

rulePJ23a SignIn Capability CustomerOrderDB
rulePJ23a Calculate Delivery Time and Price

Capability
CourierDB

rulePJ23a Check Stock Capability StockDB
rulePJ23a Advanced Search Capability StockDB
rulePJ23a Keyword Search Capability StockDB
rulePJ23a Find Books by Category Capabability StockDB
rulePJ23a Find Book Details Capability StockDB
rulePJ23a Find Subjects Category Capability CategoriesDB
rulePJ23a Find Top Ten BestSellers Capability BestSellersDB
rulePJ23a Find BestSellers Capability BestSellersDB
rulePJ23a Find New Releases Capability NewReleasesDB
rulePJ23a Find Special Offers Capability SpecialOffersDB

Table D.64 Relations identified by the tool between Prometheus Capability and JACK BeliefSet

D.29 JACK BeliefSet vs Prometheus Plan (Creates)
Table D.65 shows traceability relations identified manually between Prometheus Plan and

JACK BeliefSet. Table D.66 shows traceability relations identified by the tool between

Prometheus Plan and JACK BeliefSet. The number of relations identified manually is 1, and

the number of relations identified by the tool is 2. The number of relations identified correctly

is 1, the number of relations missing is 0, and the number of relations identified incorrectly is

1. Precision and recall calculated is 50% and 100%, respectively.

Prometheus Plan JACK BeliefSet
Add New Customer CustomerDB

Table D.65 Relations identified manually between Prometheus Plan and JACK

Rule ID Prometheus Plan JACK BeliefSet
rulePJ24b Add New Customer CustomerDB
rulePJ24b Add New Customer CustomerOrderDB

Table D.66 Relations identified by the tool between Prometheus Plan and JACK BeliefSet

D.30 JACK BeliefSet vs Prometheus Plan (Uses)
Table D.67 shows traceability relations identified manually between Prometheus Plan and

JACK BeliefSet. Table D.68 shows traceability relations identified by the tool between

Prometheus Plan and JACK BeliefSet. The number of relations identified manually is 19, and

the number of relations identified by the tool is 21. The number of relations identified

correctly is 19, the number of relations missing is 0, and the number of relations identified

incorrectly is 2. Precision and recall calculated is 90.47% and 100%, respectively.

 [190]

Prometheus Plan JACK BeliefSet
Add Item to Basket Plan BookDB
Calculate Delivery Time and Price Plan CourierDB
Check Stock StockDB
Check Stock BookDB
Execute Advanced Search BooksDB
Execute Advanced Search StockDB
Execute Keyword Search BooksDB
Execute Keyword Search StockDB
Find BestSellers Plan BestSellersDB
Find Book Details Plan StockDB
Find Book Details Plan BookDB
Find Books by Category Plan BookDB
Find Books by Category Plan StockDB
Find New Releases Plan NewReleasesDB
Find Special Offers Plan SpecialOffersDB
Find Subjects CategoriesDB
Find Top Ten BestSellers Plan BestSellersDB
Retrieve Customer Details CustomerDB
Sign In CustomerDB

Table D.67 Relations identified manually between Prometheus Plan and JACK BeliefSet

Rule ID Prometheus Plan JACK BeliefSet
rulePJ24a Retrieve Customer Details CustomerDB
rulePJ24a Sign In CustomerDB
rulePJ24a Retrieve Customer Details CustomerOrderDB
rulePJ24a Sign In CustomerOrderDB
rulePJ24a Calculate Delivery Time and Price Plan CourierDB
rulePJ24a Check Stock BooksDB
rulePJ24a Add Item to Basket Plan BooksDB
rulePJ24a Execute Advanced Search BooksDB
rulePJ24a Execute Keyword Search BooksDB
rulePJ24a Find Books by Category Plan BooksDB
rulePJ24a Find Book Details Plan BooksDB
rulePJ24a Check Stock StockDB
rulePJ24a Execute Advanced Search StockDB
rulePJ24a Execute Keyword Search StockDB
rulePJ24a Find Books by Category Plan StockDB
rulePJ24a Find Book Details Plan StockDB
rulePJ24a Find Top Ten BestSellers Plan BestSellersDB
rulePJ24a Find BestSellers Plan BestSellersDB
rulePJ24a Find New Releases Plan NewReleasesDB
rulePJ24a Find Special Offers Plan SpecialOffersDB
rulePJ24a Find Subjects CategoriesDB

Table D.68 Relations identified by the tool between Prometheus Plan and JACK BeliefSet

D.31 JACK BeliefSet vs Prometheus Data
Table D.69 shows traceability relations identified manually between Prometheus Data and

JACK BeliefSet. Table D.70 shows traceability relations identified by the tool between

Prometheus Data and JACK BeliefSet. The number of relations identified manually is 8, and

the number of relations identified by the tool is 9. The number of relations identified correctly

is 8, the number of relations missing is 0, and the number of relations identified incorrectly is

1. Precision and recall calculated is 88.88% and 100%, respectively.

 [191]

Prometheus Data JACK BeliefSet
BestSellersDB BestSellersDB
BookDB BooksDB
CategoriesDB CategoriesDB
CourierDB CourierDB
CustomerDB CustomerDB
NewReleasesDB NewReleasesDB
SpecialOffersDB SpecialOffersDB
StockDB StockDB
 CustomerOrderDB
 Session.bel

Table D.69 Relations between JACK BeliefSet and Prometheus Data

Rule ID Prometheus Data JACK BeliefSet
rulePJ2a BookDB BooksDB
rulePJ2a StockDB StockDB
rulePJ2a BestSellersDB BestSellersDB
rulePJ2a NewReleasesDB NewReleasesDB
rulePJ2a SpecialOffersDB SpecialOffersDB
rulePJ2a CategoriesDB CategoriesDB
rulePJ2a CustomerDB CustomerDB
rulePJ2a CustomerDB CustomerOrderDB
rulePJ2a CourierDB CourierDB

Table D.70 Relations between Prometheus Data and JACK BeliefSet

D.32 JACK Event vs Prometheus Agent (sends)

Table D.71 shows traceability relations identified manually between JACK Event and

Prometheus Agent. The number of relations identified manually is 33, and the number of

relations identified by the tool is 0.

JACK Event Prometheus Agent
AdvancedSearchRequest SalesAssistant
AdvancedSearchResponse StockManager
AuthorizationRequest SalesAssistant
AuthorizationResponse PaymentProcessor
BestSellersRequest SalesAssistant
BestSellersResponse StockManager
BookAvalaible StockManager
BookDetails StockManager
BookDetailsRequest SalesAssistant
BookDetailsResponse StockManager
BookInBasket SalesAssistant
BookNotAvalaible StockManager
BookRequired SalesAssistant
BooksByCategoryRequest SalesAssistant
BooksByCategoryResponse StockManager
CustomerDetails SalesAssistant
DeliveryOptionsInformation DeliveryManager
DeliveryOptionsRequest SalesAssistant
GetDeliveryInformationMessage SalesAssistant
KeywordSearchRequest SalesAssistant
KeywordSearchResponse StockManager
NewReleasesRequest SalesAssistant
NewReleasesResponse StockManager
RegisterCustomerResponse CustomerRelations
SessionAccess

 [192]

SpecialOffersRequest SalesAssistant
SpecialOffersResponse StockManager
SubjectsRequest SalesAssistant
SubjectsResponse StockManager
TopTenBestSellersRequest SalesAssistant
TopTenBestSellersResponse StockManager
UserDetails CustomerRelations
UserLoginRequest SalesAssistant
UserLoginResponse CustomerRelations
WebDispatch

Table D.71 Relations between JACK Event and Prometheus Agent

D.33 JACK Event vs Prometheus Agent (receives)
Table D.72 shows traceability relations identified manually between JACK Event and

Prometheus Agent. The number of relationss identified manually is 33, and the number of

relations identified by the tool is 0.

JACK Event Prometheus Agent
AdvancedSearchRequest StockManager
AdvancedSearchResponse SalesAssistant
AuthorizationRequest PaymentProcessor
AuthorizationResponse SalesAssistant
BestSellersRequest StockManager
BestSellersResponse SalesAssistant
BookAvalaible SalesAssistant
BookDetails SalesAssistant
BookDetailsRequest StockManager
BookDetailsResponse SalesAssistant
BookInBasket StockManager
BookNotAvalaible SalesAssistant
BookRequired StockManager
BooksByCategoryRequest StockManager
BooksByCategoryResponse SalesAssistant
CustomerDetails CustomerRelations
DeliveryOptionsInformation SalesAssistant
DeliveryOptionsRequest CustomerRelations
GetDeliveryInformationMessage DeliveryManager
KeywordSearchRequest StockManager
KeywordSearchResponse SalesAssistant
NewReleasesRequest StockManager
NewReleasesResponse SalesAssistant
RegisterCustomerResponse SalesAssistant
SessionAccess DispatcherAgent
SpecialOffersRequest StockManager
SpecialOffersResponse SalesAssistant
SubjectsRequest StockManager
SubjectsResponse SalesAssistant
TopTenBestSellersRequest StockManager
TopTenBestSellersResponse SalesAssistant
UserDetails SalesAssistant
UserLoginRequest CustomerRelations
UserLoginResponse SalesAssistant
WebDispatch DispatcherAgent
 SalesAssistant
RegisterCustomerResponse

Table D.72 Relations between JACK Event and Prometheus Agent

 [193]

D.34 JACK Event vs Prometheus Capability (sends)

Table D.73 shows traceability relations identified manually between JACK Event and

Prometheus Agent. Table D.74 shows traceability relations identified by the tool between

JACK Event and Prometheus Capability. The number of relations identified manually is 33,

and the number of relations identified by the tool is 0.

JACK Event Prometheus Capability
AdvancedSearchRequest Advanced Search Response Capability
AdvancedSearchResponse Advanced Search Capability
AuthorizationRequest Place Order Response Capability
AuthorizationResponse Validate Credit Card Capability
BestSellersRequest Show BestSellers Response Capability
BestSellersResponse Find BestSellers Capability
BookAvalaible Check Stock Capability
BookDetails Add Item to Basket Capability
BookDetailsRequest Show Book Details Response Capability
BookDetailsResponse Find Book Details Capability
BookInBasket Add Item to Basket Response Capability
BookNotAvalaible Check Stock Capability
BookRequired Place Order Response Capability
BooksByCategoryRequest Show Books by CategoryResponse

Capability
BooksByCategoryResponse Find Books by Category Capability
CustomerDetails Add Customer Response Capability
DeliveryOptionsInformation Calculate Delivery Time and Price

Capability
DeliveryOptionsRequest Get Delivery Options Response Capability
GetDeliveryInformationMessage Get Delivery Options Response Capability
KeywordSearchRequest Keyword Search Response Capability
KeywordSearchResponse
NewReleasesRequest Show New Releases Response Capability
NewReleasesResponse Find New Releases Capability
RegisterCustomerResponse Add Customer Capability
SessionAccess
SpecialOffersRequest Show Special Offers Response Capability
SpecialOffersResponse Find Special Offers Capability
SubjectsRequest Show Subjects Response Capability
SubjectsResponse Find Subjects Category Capability
TopTenBestSellersRequest Show Bookstore Main Page Response

Capability
TopTenBestSellersResponse Find Top Ten BestSellers Capability
UserDetails Retrieve Customer Details Capability
UserLoginRequest Login Response Capability
UserLoginResponse SignIn Capability
WebDispatch

RegisterCustomerResponse

Table D.73 Relations between JACK Event and Prometheus Capability

D.35. JACK Event vs Prometheus Capability (receives)

Table D.74 shows traceability relations identified manually between JACK Event and

Prometheus Capability. Table D.74 shows traceability relations identified by the tool between

 [194]

JACK Event and Prometheus Capability. The number of relations identified manually is 33,

and the number of relations identified by the tool is 0.

JACK Event Prometheus Capability

AdvancedSearchRequest Advanced Search Capability
AdvancedSearchResponse Advanced Search Response

Capability
AuthorizationRequest Validate Credit Card Capability
AuthorizationResponse Place Order Response Capability
BestSellersRequest Find BestSellers Capability
BestSellersResponse Show BestSellers Response

Capability
BookAvalaible Place Order Response Capability
BookDetails Add Item to Basket Capability
BookDetailsRequest Find Book Details Capability
BookDetailsResponse Show Book Details Response

Capability
BookInBasket Add Item to Basket Capability
BookNotAvalaible Place Order Response Capability
BookRequired Check Stock Capability
BooksByCategoryRequest Find Books by Category Capability
BooksByCategoryResponse Show Books by CategoryResponse

Capability
CustomerDetails Add Customer Capability
DeliveryOptionsInformation Get Delivery Options Response

Capability
DeliveryOptionsRequest Retrieve Customer Details
GetDeliveryInformationMessage Calculate Delivery Time and Price

Capability
KeywordSearchRequest Keyword Search Capability
KeywordSearchResponse Keyword Search Response

Capability
NewReleasesRequest Find New Releases Capability
NewReleasesResponse Show New Releases Response

Capability
RegisterCustomerResponse Add Customer Response Capability
SessionAccess
SpecialOffersRequest Find Special Offers Capability
SpecialOffersResponse Show Special Offers Response

Capability
SubjectsRequest Find Subjects Category Capability
SubjectsResponse Show Subjects Response Capability
TopTenBestSellersRequest Find Top Ten BestSellers Capability
TopTenBestSellersResponse Show Bookstore Main Page

Response Capability
UserDetails Get Delivery Options Response

Capability
UserLoginRequest SignIn Capability
UserLoginResponse LogIn Response Capability

Table D.74 Relations identified manually between JACK Event and Prometheus Capability

D.36 JACK Event vs Prometheus Plan (sends)

Table D.75 shows traceability relations identified manually between JACK Event and

Prometheus Plan. Table D.76 shows traceability relations identified by the tool between JACK

Event and Prometheus Plan. The number of relations identified manually is 33, and the

 [195]

number of relations identified by the tool is 0. Precision and recall calculated is 100% and

55.88%, respectively.

JACK Event Prometheus Plan
AdvancedSearchRequest Show Advanced Search Result Plan
AdvancedSearchResponse Execute Advanced Search
AuthorizationRequest Respond Place Order Request
AuthorizationResponse Validate Credit Card
BestSellersRequest Show BestSellers Plan
BestSellersResponse Find BestSellers Plan
BookAvalaible Check Stock
BookDetails Add Item to Basket Plan
BookDetailsRequest Show Book Details
BookDetailsResponse Find Book Details Plan
BookInBasket Respond Add Item to Basket Request
BookNotAvalaible Check Stock
BookRequired Respond Place Order Request
BooksByCategoryRequest Show Books by Category Plan
BooksByCategoryResponse Find Books by Category Plan
CustomerDetails Respond Add Customer Request
DeliveryOptionsInformation Calculate Delivery Time and Price Plan
DeliveryOptionsRequest Respond Get Delivery Options Request
GetDeliveryInformationMessage Respond Get Delivery Options Request
KeywordSearchRequest Show Keyword Search Result Plan
KeywordSearchResponse Keyword Search Response
NewReleasesRequest Show New Releases Plan
NewReleasesResponse Find New Releases Plan
RegisterCustomerResponse Add New Customer
SessionAccess
SpecialOffersRequest Show Special Offers Plan
SpecialOffersResponse Find Special Offers Plan
SubjectsRequest Show Subjects Plan
SubjectsResponse Find Subjects
TopTenBestSellersRequest Respond Log Out Request
 Show Bookstore Main Page Plan
TopTenBestSellersResponse Find Top Ten BestSellers Plan
UserDetails Retrieve Customer Details
UserLoginRequest Respond SignIn Request
UserLoginResponse Sign In
WebDispatch

RegisterCustomerResponse

Table D.75 Relations identified manually between JACK Event and Prometheus Plan

JACK Event Prometheus Message Prometheus Plan

rulePJ33a Respond Get Delivery Options Request UserDetails
rulePJ33a Retrieve Customer Details UserDetails
rulePJ33a Respond SignIn Request UserLoginRequest
rulePJ33a Sign In UserLoginResponse
rulePJ33a Respond Place Order Request AuthorizationRequest
rulePJ33a Validate Credit Card AuthorizationResponse
rulePJ33a Respond Place Order Request BookDetailsRequest
rulePJ33a Respond Place Order Request BooksByCategoryRequest
rulePJ33a Check Stock BookAvalaible
rulePJ33a Check Stock BookNotAvalaible
rulePJ33a Show Advanced Search Result Plan AdvancedSearchRequest
rulePJ33a Execute Advanced Search AdvancedSearchResponse
rulePJ33a Show Keyword Search Result Plan KeywordSearchRequest
rulePJ33a Execute Keyword Search KeywordSearchResponse
rulePJ33a Show Books by Category Plan BooksByCategoryRequest
rulePJ33a Find Books by Category Plan BooksByCategoryResponse

 [196]

rulePJ33a Show Book Details BookDetails
rulePJ33a Show Book Details BookDetailsRequest
rulePJ33a Find Book Details Plan BookDetails
rulePJ33a Find Book Details Plan BookDetailsResponse
rulePJ33a Respond Log Out Request BestSellersRequest
rulePJ33a Show Bookstore Main Page Plan BestSellersRequest
rulePJ33a Respond Log Out Request TopTenBestSellersRequest
rulePJ33a Show Bookstore Main Page Plan TopTenBestSellersRequest
rulePJ33a Find Top Ten BestSellers Plan BestSellersResponse
rulePJ33a Find Top Ten BestSellers Plan TopTenBestSellersResponse
rulePJ33a Show BestSellers Plan BestSellersRequest
rulePJ33a Show BestSellers Plan TopTenBestSellersRequest
rulePJ33a Find BestSellers Plan BestSellersResponse
rulePJ33a Find BestSellers Plan TopTenBestSellersResponse
rulePJ33a Show New Releases Plan NewReleasesRequest
rulePJ33a Find New Releases Plan NewReleasesResponse
rulePJ33a Show Special Offers Plan SpecialOffersRequest
rulePJ33a Find Special Offers Plan SpecialOffersResponse SubjectsRequest
rulePJ33a Show Subjects Plan SpecialOffersResponse SubjectsRequest
rulePJ33a Find Subjects SubjectsResponse

Table D.76 Relations identified by the tool between Prometheus Message and Prometheus Plan

D.37 JACK Event vs Prometheus Plan (receives)
Table D.77 shows traceability relations identified manually between JACK Event and

Prometheus Plan. Table D.78 shows traceability relations identified by the tool between JACK

Event and Prometheus Plan. The number of relations identified manually is 34, and the

number of relations identified by the tool is 19. Precision and recall calculated is 100% and

55.88%, respectively.
JACK Event Prometheus Plan

AdvancedSearchRequest Execute Advanced Search
AdvancedSearchResponse Show Advanced Search Result Plan
AuthorizationRequest Validate Credit Card Capability
AuthorizationResponse Respond Place Order Request
BestSellersRequest Find BestSellers Plan
BestSellersResponse Show BestSellers Plan
BookAvalaible Respond Place Order Request
BookDetails Respond Add Item to Basket Request
BookDetailsRequest Find Book Details Plan
BookDetailsResponse Show Book Details
BookInBasket Add Item to Basket Plan
BookNotAvalaible Respond Place Order Request
BookRequired Check Stock
BooksByCategoryRequest Find Books by Category Plan
BooksByCategoryResponse Show Books by Category Plan
CustomerDetails Add New Customer
DeliveryOptionsInformation Respond Get Delivery Options Request
DeliveryOptionsRequest Retrieve Customer Details
GetDeliveryInformationMessage Calculate Delivery Time and Price Plan
KeywordSearchRequest Execute Keyword Search
KeywordSearchResponse Show Keyword Search Result Plan
NewReleasesRequest Find New Releases Plan
NewReleasesResponse Show New Releases Plan
RegisterCustomerResponse Respond Add Customer Request
SessionAccess
SpecialOffersRequest Find Special Offers Plan
SpecialOffersResponse Show Special Offers Plan

 [197]

SubjectsRequest Find Subjects
SubjectsResponse Show Subjects Plan
TopTenBestSellersRequest Find Top Ten BestSellers Plan
TopTenBestSellersResponse Respond Log Out Request
TopTenBestSellersResponse Show Bookstore Main Page
UserDetails Respond Get Delivery Options Request
UserLoginRequest Sign In
UserLoginResponse Respond SignIn Request
WebDispatch

Table D.77 Relations identified manually between JACK Event and Prometheus Plan

Rule ID Prometheus Plan JACK Event
rulePJ33b Respond Get Delivery Options Request UserDetails
rulePJ33b Respond SignIn Request UserLoginResponse
rulePJ33b Respond Place Order Request AuthorizationResponse
rulePJ33b Show Advanced Search Result Plan AdvancedSearchResponse
rulePJ33b Show Keyword Search Result Plan KeywordSearchResponse
rulePJ33b Show Books by Category Plan BooksByCategoryResponse
rulePJ33b Show Book Details BookDetails
rulePJ33b Show Book Details BookDetailsResponse
rulePJ33b Respond Log Out Request BestSellersResponse
rulePJ33b Show Bookstore Main Page Plan BestSellersResponse
rulePJ33b Respond Log Out Request TopTenBestSellersResponse
rulePJ33b Show Bookstore Main Page Plan TopTenBestSellersResponse
rulePJ33b Show BestSellers Plan BestSellersResponse
rulePJ33b Show BestSellers Plan TopTenBestSellersResponse
rulePJ33b Show New Releases Plan NewReleasesResponse
rulePJ33b Show Special Offers Plan SpecialOffersResponse SubjectsRequest
rulePJ33b Show Subjects Plan SubjectsResponse

Table D.78 Relations identified by the tool between Prometheus Plan and JACK Event

D.38 JACK Event vs Prometheus Message

Table D.79 shows traceability relations identified manually between JACK Event and

Prometheus Message. Table D.80 shows traceability relations identified by the tool between

JACK Event and Prometheus Message. The number of relations identified manually is 33, and

the number of relations identified by the tool is 36. The number of relations identified

correctly is 26 and the number of relation missing is 10. The number of relations identified

incorrectly by the tool is 10. Precision and recall calculated is 72.22% and 78.78%, respectively.

JACK Event Prometheus Message
AdvancedSearchRequest AdvancedSearch Request
AdvancedSearchResponse Advanced Search Response
AuthorizationRequest Authorization Request
AuthorizationResponse Authorization Response
BestSellersRequest BestSellers Request
BestSellersResponse BestSeller Response
BookAvalaible Book Avalaible
BookDetails Add to Basket Response
BookDetailsRequest Book Details Request
BookDetailsResponse Book Details Response
BookInBasket Add to Basket Request

 [198]

Table D.79 Relations between JACK Event and Prometheus Message
Rule ID Prometheus Message JACK Event
rulePJ1a User Details Request UserDetails
rulePJ1a User Details Response UserDetails
rulePJ1a User Login Request UserLoginRequest
rulePJ1a User Login Response UserLoginResponse
rulePJ1a Authorization Request AuthorizationRequest
rulePJ1a Authorization Response AuthorizationResponse
rulePJ1a Book Request BookDetailsRequest
rulePJ1a Book Request BooksByCategoryRequest
rulePJ1a Book Avalaible BookAvalaible
rulePJ1a Book Avalaible BookNotAvalaible
rulePJ1a Book Not Avalaible BookAvalaible
rulePJ1a Book Not Avalaible BookNotAvalaible
rulePJ1a Advanced Search Request AdvancedSearchRequest
rulePJ1a Advanced Search Response AdvancedSearchResponse
rulePJ1a Keyword Search Request KeywordSearchRequest
rulePJ1a Keyword Search Response KeywordSearchResponse
rulePJ1a Books by Category Request BooksByCategoryRequest
rulePJ1a Books by Category Response BooksByCategoryResponse
rulePJ1a Book Details Request BookDetails
rulePJ1a Book Details Request BookDetailsRequest
rulePJ1a Book Details Response BookDetails
rulePJ1a Book Details Response BookDetailsResponse
rulePJ1a Top Ten BestSellers Request BestSellersRequest
rulePJ1a Top Ten BestSellers Request TopTenBestSellersRequest
rulePJ1a Top Ten BestSellers Response BestSellersResponse
rulePJ1a Top Ten BestSellers Response TopTenBestSellersResponse
rulePJ1a BestSellers Request BestSellersRequest
rulePJ1a BestSellers Request TopTenBestSellersRequest
rulePJ1a BestSellers Response BestSellersResponse
rulePJ1a BestSellers Response TopTenBestSellersResponse
rulePJ1a New Releases Request NewReleasesRequest
rulePJ1a New Releases Response NewReleasesResponse
rulePJ1a Special Offers Request SpecialOffersRequest
rulePJ1a Special Offers Response SpecialOffersResponse
rulePJ1a Subjects Request SubjectsRequest
rulePJ1a Subjects Response SubjectsResponse

Table D.80 Relations between Prometheus Message and JACK Event

BookNotAvalaible Book Not Avalaible
BookRequired Book Request
BooksByCategoryRequest Books by Category Request
BooksByCategoryResponse Books by Category Response
CustomerDetails Add Customer Request
DeliveryOptionsInformation Delivery Time and Price Response
DeliveryOptionsRequest User Details Request
GetDeliveryInformationMessage Delivery Time and Price Request
KeywordSearchRequest Keyword Search Request
KeywordSearchResponse Keyword Search Response
NewReleasesRequest New Releases Request
NewReleasesResponse New Releases Response
RegisterCustomerResponse Add Customer Response
SessionAccess
SpecialOffersRequest Special Offers Request
SpecialOffersResponse Special Offers Response
SubjectsRequest Subjects Request
SubjectsResponse Subjects Response
TopTenBestSellersRequest Top Ten BestSellers Request
TopTenBestSellersResponse Top Ten BestSellers Response
UserDetails User Details Response
UserLoginRequest User Login Request
UserLoginResponse User Login Response
WebDispatch
 WebSession Request

 [199]

Appendix E – Introduction to BDI architecture
This appendix gives an introduction to the BDI architecture. Initially, we present different

types of agent architecture used to build multi-agents and then we describe in detail the BDI

architecture that was used by our research.

E.1 Agent Architectures
Agent architectures can be general classified in three types: deliberative architectures, reactive

architectures, hybrid architectures.

Reactive architectures do not maintain a symbolic representation of the environment and

actions are performed using rules. Agents are situated in the environment and perceive the

environment. Depending of the event that occurs in the environment a rule is executed and

actions are performed.

In the deliberative architecture, a symbolic representation of the environment is created and

the agent performs actions to manipulate these symbols. The actions performed are based on

logical reasoning using theorem provers [Genesereth1987]. The drawback of this architecture

is that it is difficult to represent real world using a symbolic representation and that logic

reasoning to determine what action to perform is a very resource and time consuming task.

Several multi-agent systems use a deliberative architecture to support reasoning and some of

them are based on the BDI architecture [Bratman1988]. BDI architectures have been

proposed to address the problem of resource boundedness. In our research, we focus on the

BDI architecture. The three mains reasons that we choose the BDI architecture is because

they are based on folk philosophy to explain rational reasoning (therefore it is easier to

understand the main concepts), has been formalised by logic theories (that can be used to

demonstrate programs), and it has been implemented several times (e.g. PRS, JACK, and

JADEX). We give more details about the BDI architecture in the next section.

Hybrid architectures combine deliberative and reactive behaviour. Examples of hybrid

architectures are: TouringMachines, and INTERRRAP [Luck2004].

E.2 BDI Architecture

 [200]

The BDI architecture is based on the philosophy theory proposed by Bratman [Bratman1988].

Bratman explain human rational action in terms of beliefs, desires and intentions. Beliefs

represent information that we have about the environment, desires represent the state of

affairs that we want to achieve and intentions represent desires that we had committed to

achieve.

Accordingly to Bratman human practical reasoning is divided in two parts. First, we decide

what we want to achieve (desires) and second we decide how to achieve our desires. The

process to decide how to achieve our desires is decomposed in two parts. First we generate

plans choosing a sequence of actions from a set of possible actions then we select what plan to

execute based on our beliefs. For instance, I decide that I want go to see a movie at Leicester

Square after work. The first thing that I should do is to select what movie I want to see and

then to choose what cinema and time I want to see the movie. I buy a ticket to see the movie

at 6.30pm. I still have to decide how to go from my work to Leicester Square. My possible

actions are cycle, walk, take the underground or take the bus. I would like go to the cinema by

walking, but I have to finish writing a document by today. I don’t know what time I can leave

the work and it is raining, so I wait until the end of the day to take my decision how to go to

the cinema.

Bratman also points out to the problem of resource boundeness that means that the making

decision process of humans or computers takes place under limited amount of time. Suppose

that I finish writing my document at 6.00pm. I go to a Journey Planner system to check how

long takes to go from my work to the cinema. It takes thirteen minutes cycling, twenty and

nine minutes using the tube, fifty minutes by bus and fourteen minutes walking. It is raining so

I decide to take the tube. There is no much time between the time that I had finished writing

my document and the time that I have to take the tube. If I take too much time deliberating

how to go to the cinema, to take the tube it would be not anymore an option to be considered

because it would be too late to arrive on time.

Bratman also declares that intentions are persistent. If when I arrive at the tube station I realise

that there are some delays on the trains. I will not give up on my intention to watch the movie.

For instance, I can re-consider to cycle or select a new plan such as to take a taxi. To consider

when and how agents should drop intentions Rao describes in [Rao1991] three strategies: blind

 [201]

commitment, single-minded commitment and open-minded commitment. In blind

commitment an agent continues to maintain the intention until it has been achieved. When an

agent uses the single-minded commitment it will continue to maintain the intention until it has

been achieved or it is impossible to achieve. In the open-minded commitment, an agent will

maintain the intention until it has been achieved or the intention still compatible with others

intentions.

The Figure E.1 shows a generic BDI architecture. A BDI agent is situated in an environment,

receive inputs from the environment (events) and perform actions (output). An agent is

composed of beliefs, desires, intentions and one interpreter. The interpreter continually selects

what desires to commit (i.e. create intentions), select options how to achieve the desire,

execute the option selected, drop successful and impossible intentions, perceive the

environment and perform actions.

Figure E.1 A generic BDI architecture

The BDI model has been implemented several times. Examples of implementation are PRS,

dMARS, JAM, JACK, and Jadex.

action (output)

Intentions

Interpreter

Beliefs

Desires

input (events)
environment

 [202]

Appendix F - Traceability Relations between i* and
Prometheus

This appendix describes traceability relations between i* and Prometheus elements

We have identified seven different types of traceability relations between the various elements

in the models used in our approach. The types of traceability relations are overlaps, contributes to,

uses, creates, achieves, depends on, and composed of. We present below descriptions of these different

types of relations.

 Overlaps – in this type of relation, an element e1 overlaps with an element e2 (an

element e2 overlaps with an element e1), if e1 and e2 refer to elements with common

aspects of the agent software development. As shown in Tables F.1 and F.2, an overlaps

relation may hold between a) goal in Prometheus and SD goal in i*; b) goal in

Prometheus and and a SD task; c) an agent in Prometheus and an actor in i* d) a

percept in Prometheus and a SD resource in i*; d) a message in Prometheus and a SD

resource in i*; e) a goal in Prometheus and a SR goal in i*; f) a goal in Prometheus and

a SR task in i*; g) an action in Prometheus and a SR task in i*; h) a data in Prometheus

and a SR Resource in i*.

 Contributes (Contributed by) - in this type of relation, an element e1 contributes to an

element e2, if e1 helps to achieve or realise another element e2. As shown in Tables

F.1 and F.2, a contributes relation may hold between a) role in Prometheus and a SD

goal in i*; b) a role in Prometheus and a SD Task in i*; c) a role in Prometheus and

actor in i*; d) a capability in Prometheus and a SD goal in i*; e) a capability in

Prometheus and a SD task in i*; f) a data in Prometheus and a SD goal in i*; g) a data

in Prometheus and a SD task in i*; h) a capability in Prometheus and a SR goal in i*.

 Uses (Used by) - in this type of relation, an element e1 uses an element e2, if e1

requires the existence of e2 in order to achieve its objective. As shown in Tables F.1

and F.2, a contributes relation may hold between a) a role in Prometheus and a SD

 [203]

resource in i*; b) an agent in Prometheus and a SD resource in i*; c) a capability in

Prometheus and a SD resource in i*; d) a plan in Prometheus and a SD resource in i*;

e) a data in Prometheus and an actor in i*; f) a role in Prometheus and a SR resource in

i*; g) an agent in Prometheus and a SR goal in i*; h) a capability in Prometheus and a

SR resource in i*; i) a plan in Prometheus and a SR goal in i*; j) a data in Prometheus

and a SR resource in i*.

 Creates (Created by) - in this type of relation an element e1 creates an element e2, if e1

generates element e2. As shown in Tables F.1 and F.2, a creates relation may hold

between a) a plan in Prometheus and an actor in i*; b) role in Prometheus and SR

resource in i*; c) an agent in Prometheus and a SR resource in i*; d) a capability in

Prometheus and a SR resource in i*; e) a plan in Prometheus and a SR resource in i*; f)

a scenario in Prometheus and a SR resource in i*.

 Achieves (Achieved by) - in this type of relation an element e1 achieves an element e2,

if e1 meets the expectations and needs of e2. As shown in Tables F.1 and F.2, a achieves

relation may hold between a) an agent in Prometheus and a SD goal in i*; b) an agent

in Prometheus and a SD task in i*; c) a plan in Prometheus and a SD goal in i*; d) a

plan in Prometheus and a SD task in i*; e) a role in Prometheus and a SR goal in i*; f) a

role in Prometheus and a SR task in i*; g) an agent in Prometheus and a SR task in i*;

h) a capability in Prometheus and a SR task in i*; i) a plan in Prometheus and and a SR

task in i*.

 Depends on (Is Dependent) - in this type of relation an element e1 depends on an

element e2, if the existence of e1 relies on the existence of e2, or if changes in e2 have

to be reflected in e1. As shown in Tables F.1 and F.2, a depends relation may hold

between a) a goal in Prometheus and an actor in i*; b) a scenario in Prometheus and a

SD goal in i*; c) a scenario in Prometheus and an actor in i*.

 Composed of - in this type of relation and element e1 is composed of an element e2, if

e1 is a complex element formed by element e2. As shown in Tables F.1 and F.2, a

depends relation may hold between a) a capability in Prometheus and an actor in i*; b) a

scenario in Prometheus and a SD resource; c) a scenario in Prometheus and a SR goal

 [204]

in i*; d) a scenario in Prometheus and a SR task in i*; e) a scenario in Prometheus and

a SR goal in i*; f) a scenario in Prometheus and a SR task in i*.

Tables F.1 and F.2 present the different types of traceability relations for the main types of

elements in i* SD model and Prometheus models, and i* SR model and Prometheus models,

respectively. In Tables F.1 and F.2, apart from overlaps relations that are bi-directional, the

direction of a relation is represented from a row [i] to a column [j] (e.g. “Prometheus role

contributes to SD goal”). We do not consider i* soft goals in Tables F.1 and F.2 since soft

goals are concerned with non-functional aspects of a system while elements in Prometheus are

concerned with functional aspects of a system. We define below the various types of

traceability relations and give some examples from the perspective of each specific pair of

artefacts that are associated.

i*

Prometheus
SD Goal SD Resource SD Task Actor

Goal Overlaps --- Overlaps Is Dependent

Role Contributes to Uses Contributes to Contributes to

Agent Achieves Uses Achieves Overlaps

Capability Contributes to Uses Contributes to Compose

Plan Achieves Uses Achieves Created by

Percept --- Overlaps --- ---

Data Contributes to --- Contributes to Is Used

Scenario Depends on Composed of Depends on Is Dependent

Message --- Overlaps --- ---

Table F.1 Relations between Prometheus and i* SD

i*

Prometheus
SR Goal SR Resource SR Task

Goal Overlaps --- Overlaps

Role Achieves Uses Creates Achieves

Agent Achieves Uses Creates Achieves

Capability Contributed by Uses Creates Achieves

Plan Achieves Uses Creates Achieves

 [205]

Table F.2 Relations between Prometheus and i*SR elements

 Prometheus Goal vs SD Goal – A goal g1 in Prometheus has an overlaps traceability

relation with a SD goal g2 in i* if the name of the goal g1 is synonyms to the name of

the goal g2 and the number of sub-elements of the Prometheus goal g1 that is similar to

the sub-goals and sub-tasks of the goal g2 is greater than a threshold (e.g. 40%) or the

number of sub-elements of the Prometheus goal g1 that is similar to the sub-goals and

sub-tasks of the goal g2 is greater than a threshold (e.g. 60%). For instance, Browse Book

SD goal in i* has a synonyms name to Browse book goal in Prometheus (see Figure F.1).

Browse Book SD goal is decomposed on Browse By Special Offer, Browse By BestSeller, Browse

By Category, Browse by New Releases sub-goals and Browse book goal is decomposed on

Browse By category, Browse by new release, Browse by bestseller, and Browse by special offer sub-

tasks. The degree of similiraty between the sub-elments of Browse Book SD goal and

Browse Book Prometheus goal is equal to 100% because Browse By Special Offer, Browse By

BestSeller, Browse By Category, Browse by New Releases sub-tasks are synonyms to Browse by

category, Browse by new release, Browse by bestseller, Browse by special offer sub-goals,

respectively. Therefore there is a traceability relation between Browse Book Prometheus

goal and Browse book SD goal.

Action --- --- Overlaps

Data Used by Overlaps Used by

Scenario Composed of Uses Creates Composed of

 [206]

Figure F.1 Prometheus Goal vs SD Goal overlaps dependency

 Prometheus Goal vs SD Task – A goal g1 in Prometheus has an overlaps traceability

relation with a SD task t1 in i* if the name of the goal g1 is synonyms to the name of

the task t2 and the number of sub-elements of the Prometheus goal g1 that is similar to

the sub-goals and sub-tasks of the task t1 is greater than a threshold (e.g. 40%) or the

number of sub-elements of the Prometheus goal g1 that is similar to the sub-goals and

sub-tasks of the task t1 is greater than a threshold (e.g. 60%). For instance, Monitor

Shipment SD task in i* (see Figure F.2) has a synonyms name to Monitor delivery goal in

Prometheus (see Figure F.3). Monitor Shipment SD task is decomposed in Determine

Delivery Status Location, Update Delivery Status, and Log Delivery Problem sub-tasks and

Monitor delivery Prometheus goal is decomposed in Determine delivery status, Update delivery

status and Log delivery problems. The degree of similiraty between the sub-elments of Find

Best Land Time for an Aircraft SD goal and Find Best Land Time for an Aircraft Prometheus

goal is equal to 50%, Query Best Landing Time from All Runway Manager sub-task is

synonyms to Query Best Landing Time from All Runway Manager sub-goal. Therefore there

is a traceability relation between Find Best Land Time for an Aircraft Prometheus goal and

Find Best Landing Time for an Aircraft SD goal.

 [207]

Figure F.2 Monitor Shipment task dependency

Figure F.3 Monitor delivery goal in Prometheus

 Prometheus Goal vs Actor – A goal g1 in Promethues has a depends on traceability

relation with an actor a1 in i* when the goal g1 has an overlaps traceability relation with a

goal g2 in i* and the actor depends on that goal g2. For instance, Browse Book SD goal

has an overlaps traceability relation with Browse book goal in Prometheus (see Figure

F.4). Therefore, an depends on traceability relation is created between the Customer

actor in i* and browse book goal in Prometheus.

 [208]

Figure F.4 Prometheus Goal vs Actor depends on traceability relation

 Prometheus Goal vs SR Goal – A goal g1 in Prometheus has an overlaps traceability

relation with a SR goal g2 in i* if the name of the goal g1 is synonyms to the name of

the goal g2 and the number of sub-elements of the Prometheus goal g1 that is similar to

the sub-goals and sub-task of the goal g2 is greater than a threshold (e.g. 40%) or the

number of sub-elements of the Prometheus goal g1 that is similar to the sub-goals and

sub-tasks of the goal g2 is greater than a threshold (e.g. 60%). For instance, Browse Book

SR goal in i* has a synonyms name to Browse book goal in Prometheus (see Figure F.5).

Browse Book SR goal is decomposed on Browse By Special Offer, Browse By BestSeller, Browse

By Category, Browse by New Releases sub-tasks and Browse book goal is decomposed on

Browse By category, Browse by new release, Browse by bestseller, and Browse by special offer sub-

goals. The degree of similiraty between the sub-elments of Browse Book SR goal and

Browse Book Prometheus goal is equal to 100% because Browse By Special Offer, Browse By

BestSeller, Browse By Category, Browse by New Releases sub-goals are synonyms to Browse by

category, Browse by new release, Browse by bestseller, Browse by special offer sub-tasks,

respectively. Therefore there is a traceability relation between Browse Book Prometheus

goal and Browse book SR goal.

 [209]

Figure F.5 Prometheus Goal vs SR Goal overlaps traceability relation

 Prometheus Goal vs SR Task – A goal g1 in Prometheus has an overlaps traceability

relation with a SR task t1 in i* if the name of the goal g1 is synonyms to the name of the

task t1 and the number of sub-elements of the Prometheus goal g1 that is similar to the

sub-goals and sub-task of the task t1 is greater than a threshold (e.g. 40%) or the

number of sub-elements of the Prometheus goal g1 that is similar to the sub-goals and

sub-tasks of the task t1 is greater than a threshold (e.g. 60%). For instance, Organize

Delibery SR task in i* has a synonyms name to Arrange delivery goal in Prometheus (see

Figure F.6). Organize Delivery SR task is decomposed on Obtain Delivery Options, Compute

Delivery Time Estimates, Place Delivery Request sub-tasks and Arrange delivery goal is

decomposed on Log outgoing delivery, Calculate delivery time estimates, and Get delivery options.

Get delivery options is synonyms to Obtain Delivery Options and Calculate delivery time estimates

is synonyms to Compute Delivery Time Estimates. The percentage of sub-goals of the

Arrange delivery goal that is similar to the sub-tasks or sub-goals of the Organize Delivery is

66.7% that is greater than the threshold of 60%. Therefore, there is an overlaps

traceability relation between Arrange delivery Prometheus goal and Organize Delivery SR

task.

 [210]

Figure F.6 Prometheus Goal vs SR Task overlaps traceability relation

 Prometheus Role vs SD Goal – a Prometheus Role r1 in Prometheus has a contributes

traceability relation with a SD Goal g1 when the role includes a goal g2 that has an

overlaps traceability relation with the goal g1. For instance, Book Finding role includes

Browse book goal that has an overlaps traceability relation with Browse book SD Goal (see

Figure F.7). Therefore, there is a contributes traceability relation between Browse Book SD

Goal and Book Finding role.

Figure F.7 Prometheus Role vs SD Goal uses traceability relation

 Prometheus Role vs SD Resource - a Prometheus Role r1 has an uses traceability

relation with a SD Resource r2 when the role r1 includes a percept p1 that has an overlaps

 [211]

traceability relation with the SD Resource r1 in i*. For instance, Purchasing role in

Prometheus includes Credit Card Details percept that has an overlaps traceability with

Credit Card Details SD resource (see Figure F.8). Therefore, there is an uses traceability

relation between Purchasing role and Credit Card Details SD resource.

Figure F.8 Prometheus Role vs SD Resources uses relation

 [212]

 Prometheus Role vs SD Task – a Prometheus Role r1 in Prometheus has a contributes

traceability relation with a SD Task t1 when the role includes a goal g1 that has an

overlaps traceability relation with the task t1. For instance, Delivery Management role in

Prometheus includes Monitor delivery goal that has an overlaps traceability relation

with Monitor Shipment SD task (see Figure F.9). Therefore, there is a contributes

traceability relation between Delivery Management and Monitor Shipment.

Figure F.9 Prometheus Role vs SD Task contributes relation

 Prometheus Role vs Actor – role r1 in Prometheus has a contributes to traceability

relation with an actor a1 in i* when there is an overlaps traceability relation between the

actor and an agent a2 and the agent a2 includes the role r1. For instance, the Stock

Manager agent in Prometheus has an overlaps traceability relation with Stock Manager

actor in i* and the Stock Manager agent plays the Stock Management role (see Figure

F.10). Therefore, there is a contributes traceability relation between Stock Mangement

role in Prometheus and Stock Manager actor in i*.

 [213]

Figure F.10 Prometheus Role vs Actor contributes relation

 Prometheus Role vs SR Goal – a Prometheus Role r1 in Prometheus has an achieves

traceability relation with a SR Goal g1 when the role includes a goal g2 that has an

overlaps traceability relation with the goal g1. For instance, the Book Finding role

achieves the Browse book goal in Prometheus and the Browse book goal in

Prometheus has an overlaps traceability relation with Browse Book SR goal in i* (see

Figure F.11). Therefore, there is an achieves traceability relation between Book Finding

role in Prometheus and Browse Book SR Goal in i*.

Figure F.11 Prometheus Role vs SR Goal achieves traceability relation

 [214]

 Prometheus Role vs SR Resource (uses) – a Prometheus Role r1 in Prometheus has an

uses traceability relation with a SR Resource r1 when the role uses a data d1 that has an

overlaps traceability relation with the SR Resource r1 in i*. For instance, Delivery

Handling role uses CourierDB data in Prometheus and CourierDB data has an

overlaps traceability relation with Courier DB SR data in i* (see Figure F.12).

Therefore, there is an uses traceability relation between Courier DB SR data and

CourierDB data in Prometheus.

Figure F.12 Prometheus Role vs SR Resource uses relation

 Prometheus Role vs SR Resource (creates) – a Prometheus Role r1 in Prometheus has

creates traceability relation with a SR Resource r1 when the role produces a data d1 that

has an overlaps traceability relation with the SR Resource r1 in i*. For instance,

Purchasing role produces Customer Order data in Prometheus and Customer Order

SR resource in i* has an overlaps traceability relation with Customer Order data (see

Figure F.13). Therefore, there is a creates traceability relation between Purchasing role

and Customer Order data.

 [215]

Figure F.13 Prometheus Role vs SR Resource creates relation

 Prometheus Role vs SR Task (achieves) - a role r1 in Prometheus has an achieves

traceability relation with a SR task t1 when the SR task t1 has an overlaps traceability

relation with a goal g1 in Prometheus and the role r1 achieves the goal g1. For instance,

Delivery Handling role achieves Arrange delivery goal in Prometheus and Organize

Delivery SR task in i* has an overlaps traceability relation with Arrange delivery goal

(see Figure F.14). Therefore, there is an achieves traceability relation between Delivery

Handling role and Organize Delivery SR task.

Figure F.14 Prometheus Role vs SR Task achieves traceability relation

 Prometheus Agent vs SD Goal – an agent a1 in Prometheus has an achieves

traceability relation with a SD Goal g1 when the Prometheus agent a1 achieves a goal

g2 and the goal g2 has an overlaps traceability relation with the goal g1. For instance,

Stock Manager agent achieves Browse book goal in Prometheus and Browse book goal

 [216]

in Prometheus has an overlaps traceability relation with Browse Book SD Goal (see

Figure F.15). Therefore, there is a achieves traceability relation between Stock Manager

agent in Prometheus and Browse Book SD goal in i*.

Figure F.15 Prometheus Agent vs SD Goal achieves traceability relation

 Prometheus Agent vs SD Resource – an agent a1 in Prometheus has an uses traceability

relation with a SD Resource r1 in i* when the agent receives a message m1 that has an

overlaps traceability relation with the SD Resource r1 or when the agent receives a

percept p1 that has an overlaps traceability relation with the SD Resource r1. For

instance, Stock Manager agent receives Keyword Search percept in Prometheus and

Keyword Search SD Resource has an overlaps traceability relation with Keyword

Search percept (see Figure F.16). Therefore, there is an uses traceability relation

between Stock Manager agent in Prometheus and Keyword Search SD Resource in i*.

Figure F.16 Prometheus Agent vs SR Resource uses traceability relation

 [217]

 Prometheus Agent vs SD Task – an agent a1 in Prometheus has an achieves traceability

relation with a SD Task t1 when the Prometheus agent a1 includes a goal g2 that has an

overlaps traceability relation with the SD Task in i*. For instance, Delivery Manager

agent in Prometheus achieves Monitor delivery goal in Prometheus and Monitor

delivery goal in Prometheus has an overlaps traceability relation with Monitor

Shipment SD task (see Figure F.17). Therefore, there is an achieves traceability relation

between Delivery Manager agent in Prometheus and Monitor Shipment SR task in i*.

Figure F.17 Prometheus Agent vs SD Task achieves traceability relation

 Prometheus Agent vs Istar Actor – an agent a1 in Prometheus has an overlaps

traceability relation with an actor in i* when the name of the agent in Prometheus is

synonyms to the name of actor in i*. For instance, the name of the Delivery Manager

actor in i* is synonyms to the name of the Delivery Manager agent in Prometheus (see

Figure F.18). Therefore, there is a overlaps traceability relation between Delivery

Manager actor in i* and Delivery Manager agent in Prometheus.

Figure F.18 Prometheus Agent vs Istar Actor overlaps traceability relation

 [218]

 Prometheus Agent vs SR Goal – an agent a1 in Prometheus has an achieves traceability

relation with a SR Goal g1 in i* when the agent a1 achieves a goal g1 in Prometheus that

has an overlaps traceability relation with the SR Goal g1 in i*. For instance, Stock

Manager agent achieves Browse book goal in Prometheus and Browse book goal in

Prometheus has an overlaps traceability relation with Browse Book SR goal in i* (see

Figure F.19). Therefore, there is an achieves traceability relation between Stock

Manager agent in Prometheus and Browse Book SR goal in i*.

Figure F.19 Prometheus Agent vs SR Goal achieves traceability relation

 Prometheus Agent vs SR Resource (uses) – an agent a1 in Prometheus has a uses

traceability relation with a SR Resource r1 in i* when the Agent reads a data in

Prometheus that has an overlaps traceability relation with the SR Resource r1. For

instance, Delivery Manager agent uses Couier data that has an overlaps traceability

relation with Courier DB SR Resource (see Figure F.20). Therefore, there is a uses

traceability relation between Delivery Manager agent and Courier DB SR Resource in i*.

 [219]

Figure F.20 Prometheus Agent vs SR Resource uses traceability relation

 Prometheus Agent vs SR Resource (creates) – an agent a1 in Prometheus has a creates

traceability relation with a SR Resource r1 in i* when the Agent writes on data in

Prometheus that has an overlaps traceability with the SR Resource r1. For instance,

Stock Manager agent writes on Customer Order data and Customer Order data has an

overlaps traceability relation Customer SR Resource (see Figure F.21). Therefore, there

is a creates traceability relation between Stock Manager agent in Prometheus and

Customer Order SR Resource in i*

Figure F.21 Prometheus Agent vs SR Resource creates traceability relation

 [220]

 Prometheus Agent vs SR Task – an agent a1 in Prometheus has an achieves traceability

relation with a SR Task t1 in i* if an agent a1 includes a goal g1 that has an overlaps

traceabilty relation with the task t1. For instance, Delivery Manager agent in

Prometheus achieves Arrange delivery goal in Prometheus and Organize Delivery SR

task has an overlaps traceability relation with Arrange delivery goal in Prometheus (see

Figure F.22). Therefore, there is an achieves traceability relation between Delivery

Manager agent in Prometheus and Organize Delivery SR task.

Figure F.22 Prometheus Agent vs SR Task achieves traceability relation

 Prometheus Capability vs SD Goal – a capability c1 in Prometheus has a contributes

traceability relation with a SD Goal g1 when the capability c1 includes a plan p1 that

achieves a goal g1 that has an overlaps traceability relation with the SD Goal g1. For

instance, the Arrival Sequencing capability includes Request Slot Plan plan in Prometheus.

The Request Slot Plan plan achieves Allocate Runway Slot goal in Prometheus (see

Figure F.23). Allocate Runway Slot goal in Prometheus has an overlaps traceability

relations with Allocate Runway Slot SD goal. Therefore, there is a contributes

traceability relation between Arrival Sequencing capability and Allocate Runway Slot

SR plan.

 [221]

Figure F.23 Prometheus Capability vs SD Goal contributes traceability relation

 Prometheus Capability vs SD Resource – a capability c1 in Prometheus has a uses

traceability relation with a SD Resource r1 in i* when the capability receives a message

m1 that has an overlaps traceability relation with the SD Resource r1, or when the

capability receives a percept p1 that has an overlaps traceability relation with the SD

Resource r1. For instance, Arrival Sequencing capability receives Aircraft message (see

Figure F.24). AircraftEvent message has an overlaps traceability relation with Slot

Allocated SD resource. Therefore, there is an uses traceability relation between

ArrrivalSequencing capability and Slot Allocated SD resource.

Figure F.24 Prometheus Capability vs SD Resource uses traceability relation

 [222]

 Prometheus Capability vs SD Task – a capability c1 in Prometheus has a contributes

traceability relation with a SD task t1 when the capability c1 includes a plan p1 that

achieves a goal g1 that has an overlaps traceability relation with the SD Task t1. For

instance, Delivery Monitoring capability includes Monitor Delivery Plan that achieves

Monitor delivery (see Figure F.25). Monitor delivery goal in Prometheus has an

overlaps traceability relation with Monitor Shipment SD task.

Figure F.25 Prometheus Capability vs SD Task contributes traceability relation

 Prometheus Capability vs Actor – an actor a1 in i* has a composed of traceability relation

with a capability c1 when there is an overlaps traceability relation between the actor a1

and an agent a1 and the agent a1 includes the capability c1. For instance, the Airport

actor in i* has an overlaps traceability relation with the Airport agent in Prometheus and

the Airport agent includes ArrivalSequencing capability (see Figure F.26). Therefore, there

is a composed of traceability relation between Airport actor and ArrivalSequencing capability.

 [223]

Figure F.26 Prometheus Capability vs Actor composed relation

 Prometheus Capability vs SR Goal - a capability c1 in Prometheus has a contributes

traceability relation with a SR Goal g1 when the capability c1 includes a plan p1 that

achieves a goal g1 that has an overlaps traceability relation with the SR Goal g1. For

instance, Runway Assigning capability in Prometheus includes Runway Assign plan that

achieves Allocate Runway Slot goal (see Figure F.27). The Allocate Runway Slot goal in

Prometheus has an overlaps traceability relation with Allocate Runway Slot SR Goal in i*.

Therefore there is a contributes traceability relation between Runway Assigning capability

and Allocate Runway Slot SR Goal in i*.

Figure F.27 Prometheus Capability vs SR Goal contributes traceability relation

 Prometheus Capability vs SR Resource (uses) – a capability c1 in Prometheus has an

uses traceability relation with a SR Resource r1 in i* when the Capability reads a data in

Prometheus that has an overlaps traceability with the SR Resource r1. For instance, Flying

capability reads Landing Information data that has an overlaps traceability relation with

Landing Information SR Resource (see Figure F.28). Therefore, there is an uses

traceability relation between Landing Information SR Resource and Flying capability.

 [224]

Figure F.28 Prometheus Capability vs SR Resource uses traceability relation

 Prometheus Capability vs SR Resource (creates) – a capability c1 in Prometheus has a

creates traceability relation with a SR Resource r1 in i* when the Capability writes on

data in Prometheus that has an overlaps traceability with the SR Resource r1 (see Figure

F.29). For instance, Flying capability writes Landing Information data that has an overlaps

traceability relation with Landing Information SR Resource. Therefore, there is a creates

traceability relation between Landing Information SR Resource and Flying capability.

Figure F.29 Prometheus Capability vs SR Resoource creates traceability relation

 Prometheus Capability vs SR Task – a capability c1 in Prometheus has an achieves

traceability relation with a SR Task t1 when the capability c1 includes a plan p1 that

achieves a goal g1 that has an overlaps traceability relation with the SR Task t1. For

instance, the Flying capability in Prometheus includes Initiate Approach plan that achieves

Initiate Aircraft Approach goal (see Figure F.30). The Initiate Aircraft Approach goal in

Prometheus has an overlaps traceability relation with Initiate Approach SR Task in i*.

 [225]

Therefore there is an overlaps traceability relation between Flying capability and Initiate

Approach SR Task in i*.

Figure F.30 Prometheus Capability vs SR Resource uses traceability relation

 Prometheus Plan vs SD Goal – a plan p1 in Prometheus has an achieves traceability

relation with the SD Goal g1 when the plan p1 achieves a goal g2 in Prometheus and

there is an overlaps traceability relation between the SD Goal g1 and the goal g2 in

Prometheus. For instance, RequestSlot plan in Prometheus achieves Allocate Runway

Slot goal and Allocate Runway Slot goal in Prometheus has an overlaps traceability

relation with Allocate Runway Slot SD goal in i* (see Figure F.31). Therefore, there is

an achieves traceability relation between RequestSlot plan in Prometheus and Allocate

Runway Slot SD Goal.

Figure F.31 Prometheus Plan vs SD Goal contributes traceability relation

 [226]

 Prometheus Plan vs SD Resource – a plan p1 in Prometheus has an uses traceability

relation with the SD Resource r1 when there is a plan p1 that receives a message m1 that

has an overlaps traceability relation with the resource r1. For instance, RequestSlot plan

in Prometheus receives AircraftEvent message (see Figure F.32). AircraftEvent

message in Prometheus has an overlaps traceability relation with Slot Allocated SD

resource. Therefore, there is an uses traceability relation between RequestSlot plan and

Slot Allocated SD resource.

Figure F.32 Prometheus Plan vs SD Resource uses traceability relation

 Prometheus Plan vs SD Task - a plan p1 in Prometheus has an achieves traceability

relation with the SD task t1 when the plan p1 achieves a goal g1 in Prometheus and

there is an overlaps traceability relation between the SD task t1 and the goal g1 in

Prometheus. For instance, Monitor Delivery Plan plan in Prometheus achieves

Monitor delivery goal in Prometheus and Monitor delivery goal in Prometheus has an

overlaps traceability relation with Monitor Shipment SD task (see Figure F.33).

Therefore, there is an achieves traceability relation between Monitor Delivery Plan

plan and Monitor Shipment SD task in i*.

 [227]

Figure F.33 Prometheus Plan vs SD Task achieves traceability relation

 Prometheus Plan vs Actor – a plan p1 in Prometheus has a creates traceability relation

with an actor a1 when the actor a1 contains a SR task t1 or SR goal g1 that has an overlaps

traceability relation with a goal g1 that the plan p1 achieves or when the actor a1

satisfies a goal dependency or task dependency whtere the goal or task have an

overlaps traceability relation with the Prometheus goal g1. For instance, Runway actor

satisfies Allocate Runway Slot goal dependency and RequestSlot plan in Prometheus

achieves Allocate Runway Goal that has an overlaps traceability relation with Allocate

Runway Slot goal (see Figure F.34). Therefore, there is a creates traceability relation

between Runway actor in i* and RequestSlot plan in Prometheus.

 [228]

Figure F.34 Prometheus vs Actor creates traceability relation

 Prometheus Plan vs SR Goal – a plan p1 in Prometheus has an achieves traceability

relation with a SR Goal g1 in i* when the plan p1 achieves a goal g1 that has overlaps

traceability relation with the SR Goal g1. For instance, Request Slot Plan plan in

Prometheus achieves Allocate Runway Slot goal and Allocate Runway Slot goal in

Prometheus has an overlaps traceability relation with Allocate Runway Slot SR goal in

i* (see Figure E.35). Therefore, there is an achieves traceability relation between

Request Slot Plan plan in Prometheus and Allocate Runway Slot SR goal.

Figure F.35 Prometheus Plan vs SR Goal achieves traceability relation

 Prometheus Plan vs SR Resource (uses) – a plan p1 in Prometheus has an uses

traceability relation with a SR Resource r1 in i* when the plan p1 reads a data d1 that has

an overlaps traceability relation with the SR Resource r1. For instance, Monitor Aircraft

 [229]

plan reads Landing Information data and Landing Information SR Resource has an

overlaps traceability relation with Landing Information data in Prometheus (see Figure

F.36). Therefore, there is an uses traceability relation between Monitor Aircraft plan and

Landing Information SR Resource.

Figure F.36 Prometheus Plan vs SR Resource uses traceability relation

 Prometheus Plan vs SR Resource (creates) - a plan p1 in Prometheus has a creates

traceability relation with a SR Resource r1 in i* when the plan p1 writes a data d1 that

has an overlaps traceability relation with the SR Resource r1. For instance, Assign Slot

Plan writes landing_info data that has an overlaps traceability relation with Landing

Information SR resource (see Figure F.37). Therefore, there is a creates traceability

relation between Assign Slot Plan plan in Prometheus and Landing Information SR

resource.

Figure F.37 Prometheus Plan vs SR Resource creates traceability relation

 Prometheus Plan vs SR Task – a plan p1 in Prometheus has an achieves traceability

relation with a SR Task t1in i* when the plan p1 achieves a goal g1 that has overlaps

traceability relation with the SR Task t1.. For instance, Initiate Approach plan achieves

 [230]

Initiate Aircraft Approach goal and Initiate Aircraft Approach goal has an overlaps

traceability relation wtih Initiate Approach SR task (see Figure F.38). Therefore, there

is an achieves traceability relation between Initiate Approach plan in Prometheus and

Initiate Approach SR task

Figure F.38 Prometheus Plan vs SR Task achieves traceability relation

 Prometheus Percept vs SD Resource – a percept p1 in Promehteus has an overlaps

traceability relation with a SD resource r1 in i* when the name of percept p1 is

synonyms to the name to the SD Resource r1. For instance, the name of the Credit Card

Details SD Resource is synonyms to the name of Credit Card Details percept in

Prometheus (see Figure F.39). Therefore, there is an overlaps traceability relation

between Credit Card Details SD Resource and Credit Card Details percept.

Figure F.39 Prometheus Percept vs SD Resource overlaps traceability relation

 Prometheus Action vs SR Task – an action a1 in Prometheus has an overlaps traceability

relation with a SR Task t1 in i* when the name of the action a1 is synonyms to the

 [231]

name to the SR Task t1. For instance, the name of Place Delivery Request action is

synonyms to the name of the Place Delivery Request SR task (see Figure F.40). Therefore,

there is an overlaps traceability relation between Place Delivery Request action and Place

Delivery Request SR Task.

Figure F.40 Prometheus Action vs SR Task overlaps traceability relation

 Prometheus Data vs SD Goal – a data d1 in Prometheus has a contributes traceability

relation with a SD Goal g1 in i* when some of the sub-resources of the SD Goal g1 has

an overlaps traceabilty relation with the data d1. For instance, Customer Order SR

resource is sub-resource of the Buy Book SD goal and Customer Order SR Resource

has an overlaps traceability relation with Customer Order Prometheus data (see Figure

F.41). Therefore, there is a contributes traceability relation between Customer Order

data in Prometheus and Buy Book SD goal in i*.

 [232]

Figure F.41 Prometheus Data vs SD Goal contributes traceability relation

 Prometheus Data vs SD Task - a data d1 in Prometheus has a contributes traceability

relation with a SD Task t1 in i* when some of the sub-resources of the SD Goal g1 has

an overlaps traceabilty relation with the data d1. For instance, balances SD resource in i*

is an sub-resource of the Process Withdraw SD task and balances SD resource has an

overlaps traceability relation wtih balances data in Prometheus (see Figure F.42).

Therefore, there is a contributes traceability relation between balances data in

Prometheus and Process Withdraw SD task in i*.

 [233]

Figure F.42 Prometheus Data vs SD Task contributes traceability relation

 Prometheus Data vs Actor – a data d1 in Prometheus has a uses traceability relation

with an actor a1 when the actor a1 has a SR Resource r1 that has an overlaps traceability

relation with the data d1. For instance, Electronic Bookstore actor in i* has Customer

Order SR resource and Customer Order SR resource has an overlaps traceability

relation with Customer Order data in Prometheus (see Figure F.43). Therefore, there is

an uses traceability relation between Electronic Bookstore in i* and Customer Order

data in Prometheus.

 [234]

Figure F.43 Prometheus Data vs Actor uses traceability relation

 Prometheus Data vs SR Goal - a data d1 in Prometheus has an uses traceability relation

with a SR Goal g1 in i* when some of the sub-resources of the SR Goal g1 has an

overlaps traceabilty relation with the data d1. For instance, Customer Order SR resource

in i* is a sub-resource of Buy Book SR goal and Customer Order SR resource has an

overlaps traceability relation with Customer Order data in Prometheus (see Figure

F.44). Therefore, there is an uses traceability relation between Buy Book SR goal and

Customer Order data in Prometheus.

 [235]

Figure F.44 Prometheus Data vs SR Goal uses traceability relation

 Prometheus Data vs SR Resource – a data d1 in Prometheus has an overlaps traceability

relation with a SR Resource r1 in i* when the name of the data d1 is synonyms to the

name of the SR Resource. For instance, Customer Order SR resource has a synonyms

name to the of the Customer Order data in Prometheus (see Figure F.45) Therefore,

there is an overlaps traceability relation between Customer Order SR resource and

Customer Order data in Prometheus.

Figure F.45 Prometheus Data vs SR Resource overlaps traceability relation

 Prometheus Data vs SR Task – a data d1 in Prometheus has an uses traceability relation

with a SR Task t1 in i* when some of the sub-resources of the SR Task t1 has an overlaps

traceabilty relation with the data d1. For instance, balances SR resource in i* is a sub-

 [236]

resource of the Process Withdraw and balances SR resource has an overlaps

traceability relation with balances data in Prometheus (see Figure F.46). Therefore,

there is an uses traceability relation between Process Withdraw SR task and balances

data in Prometheus.

Figure F.46 Prometheus Data vs SR Task uses traceability relation

 Prometheus Scenario vs SD Goal – a scenario s1 in Prometheus has a depends on

traceability relation with a SD Goal g1 in i* when the number of sub-elements of the

goal g1 that has an overlaps tracebility relation with the steps of the scenario s1 is greater

than a threshold (e.g. 80%) and the name of the scenario is synonyms to the name of

the SD Goal. For instance, Order book scenario (see Figure F.47) is composed of the

following steps: Get delivery options goal, Calculate delivery time estimates goal,

Present information goal, Delivery Choice percept, Get credit card details goal, Credit

Card Details percept, Execute bank transaction action, Place delivery request action,

Log delivery problems goal, Update customers orders goal, Send book order action .

Buy Book SD goal (see Figure F.48) is decomposed in Place Order Online SR task,

Place Order By Phone SR task, Send Book Order Confirmation SR task, Update

Customer Orders SR task, Customer Order SR task, Make Payment SR task, Perform

Bank Transaction SR task, Transaction Accepted SR task, Transaction Rejected SR

task, Obtain Credit Card Details SR task, Delivery Handling SR task, Fill Pending

Order SR task, Organize Delivery SR task, Log Outgoing Delivery SR task, Place

Delivery Request SR task, Compute Delivery Time Estimates SR task, and Obtain

Delivery Options SR task, Postal DB SR resource, Courier DB SR resource. Get

 [237]

delivery option goal in Prometheus has an overlaps relation with Obtain Delivery

Options SR task, Calculate delivery time has an overlaps traceabilty relation with

estimates goal and Compute Delivery Time Estimates SR task, Delivery choice percept

has an overlaps traceability relation with Delivery Choice SD resource, Get credit card

details goal has an overlaps traceability with Obtain Credit Card Details SR task, Credit

Card Details percept has an overlaps traceability Credit Card Details SD resource,

Execute bank transaction action has an overlaps traceability relation with Perform

Bank Transaction SR task, Place delivery request action has an overlaps traceability

relation with Place Delivery Request SR task, Log delivery problems goal has an

overlaps traceability relation with Log Delivery Problems SR task, Update custome

orders goal has an overlaps traceability relation wtih Update Customer Orders SR task,

Send book order action has an overlaps traceability relation with Send Book Order

Confirmation SR task. Therefore, there is a depends traceability relation between Order

book scenario and Buy Book SD goal since 90,90% of steps of the Order book

scenario has an overlaps traceability relation with sub-elements of the Buy Book SD

goal and Order book and Buy Book are synnomys .

Figure F.47 Order Book Scenario

 [238]

Figure F.48 Strategic Rationale Diagram for the Electronic Bookstore actor

 Prometheus Scenario vs SD Resource – a scenario s1 in Prometheus has a composed of

traceability relation with a SD Resource r1 when one of the steps of the scenario s1 has

an overlaps traceability with the SD Resource r1. For instance, the Order book scenario

(see Figure F.47) has the Credit Card Details step that has an overlaps traceability relation

with the Credit Card Details SD Resource in i*. Therefore, there is a composed of

traceability relation between Order book scenario and Credit Card Details.

 Prometheus Scenario vs SD Task – a scenario s1 in Prometheus has a depends on

traceability relation with a SD Task t1 in i* when the number of sub-elements of the

goal t1 that has an overlaps tracebility relation with the steps of the scenario s1 is greater

than a threshold (e.g. 80%) and the name of the scenario is synonyms to the name of

the SD task. For instance, Monitor delivery scenario (see Figure F.49) is composed of

Determine delivery status goal, Log delivery problems goal and Update delivery status

goal. Monitor Shipment SD task (see Figure F.48) is decomposed on Determine

Delivery Status and Location SR task, Log Delivery Problems SR task, and Update

Delivery Status SR task. Determine delivery status has an overlaps traceability relation

with Determine Delivery Status and Location SR task, Log delivery problems goal has

an overlaps traceability relation with Log Delivery Problems SR task and Update

delivery status goal has an overlaps traceability relation with Update Delivery Status SR

task. Therefore, there is a depends traceability relation between Monitor delivery

 [239]

scenario and Monitor Shipment SD goal since 100% of steps of the Order book

scenario has an overlaps traceability relation with sub-elements of the Monitor

Shipment SD goal and Monitor Shipment and Monitor delivery are synnomys .

Figure F.49 Prometheus Scenario vs SD Task depends traceability relation

 Prometheus Scenario vs Actor – a scenario s1 has a depends on traceability relation with

an actor a1 when there is an agent a2 in Prometheus realises the scenario s1 and it has an

overlaps traceability relation with the actor a1. For instance Aircraft agent in Prometheus

has an overlaps traceability relation with Aircraft actor in i* and Aircraf agent realises

Landing scenario (see Figure F.50). Therefore, there is a depends traceability relation

between Landing scenario in Prometheus and Aircraft actor in i*.

Figure F.50 Prometheus Scenario vs Actor depends traceability relation

 [240]

 Prometheus Scenario vs SR Goal – a scenario s1 in Prometheus has a composed

traceability relation with a SR Goal g1 in i* when a step of the scenario s1 and the goal

g1 has an overlaps traceability relation. For instance, Assign Slot SR goal has an

overlaps traceability with Assign Slot step of the Landing scenario (see Figure F.51).

Therefore, there is a composed traceability relation between Landing scenario and

Assign Slot SR goal.

Figure F.51 Prometheus Scenario vs SR Goal compose traceability relation

 Prometheus Scenario vs SR Resource – a scenario s1 in Prometheus has a creates

traceability relation with a SR resource r1 in i* when one of the steps of the scenario s1

writes on data that has an overlaps tracebility relation with resource r1. For instance,

Update customer orders step writes on Customer Order data that has an overlaps

traceability relation with Customer Order SR resource (see Figure F.52). Therefore,

there is a creates traceability relation between Order book scenario and Customer

Order SR resource.

 [241]

Figure F.52 Prometheus Scenario vs SR Resource creates traceability relation

 Prometheus Scenario vs SR Resource – a scenario s1 in Prometheus has an uses

traceability relation with a SR resource r1 in i* when one of the steps of the scenario s1

reads a data that has an overlaps tracebility relation with resource r1. For instance,

Progresses an aircraft to Landing step reads landing_info data that has overlaps

traceability relation with Landing Information SR resource (see Figure F.53).

Therefore, there is a uses traceability relation between Landing scenario and Landing

Information SR resource.

Figure F.53 Prometheus Scenario vs SR Resource uses traceability relation

 [242]

 Prometheus Scenario vs SR Task - a scenario s1 in Prometheus has a composed

traceability relation with a SR Task t1 in i* when a step of the scenario s1 and the task t1

has an overlaps traceability relation. For instance, Initiate Approach SR task has an

overlaps traceability with Initiate Aircraft Approach step of the Landing scenario (see

Figure F.54). Therefore, there is a composed traceability relation between Landing

scenario and Initiate Aircraft SR task.

Figure F.54 Prometheus Scenario vs SR Task composed traceability relation

 Prometheus Message vs SD Resource – a message m1 in Prometheus has an overlaps

traceability relation with a SD resource r1 when the message m1 has an carried

information that is synonyms to the name of the SD resource r1. For instance, Aircraft

Event message has carry Slot Allocated information that is synonyms to Slot Allocated

SR resource (see Figure F.55). Therefore, there is an overlaps traceability relation

between AircraftEvent message in Prometheus and Slot Allocated SD resource r1.

Figure F.55 Prometheus Message vs SD Resource overlaps traceability relation

 [243]

Appendix G - Traceability Relations between
Prometheus and JACK

This appendix describes traceability relations between Prometheus and JACK elements.

We have identified seven different types of traceability relations between the various elements

in the models used in our approach. The types of traceability relations are overlaps, contributes to,

uses, creates, achieves, depends on, and composed of. We present below descriptions of these different

types of relations.

 Overlaps – in this type of relation, an element e1 overlaps with an element e2 (an

element e2 overlaps with an element e1), if e1 and e2 refer to elements with common

aspects of the agent software development. As shown in Tables 3.3 and 3.4, an overlaps

relation may hold between a) an agent in JACK and an agent in Prometheus; b) a plan

in JACK and a plan in Prometheus; c) a beliefSet in JACK and a data in Prometheus;

an event in JACK and Prometheus message.

 Uses (Used by) - in this type of relation, an element e1 uses an element e2, if e1

requires the existence of e2 in order to achieve its objective. As shown in Tables 3.3

and 3.4, a contributes relation may hold between a) an agent in JACK and a role in

Prometheus; b) a plan in JACK and a role in Prometheus; c) a plan in JACK and a

capability in Prometheus; d) a beliefSet in JACK and a role in Prometheus; e) a

beliefSet in JACK and a capability in Prometheus;

 Creates (Created by) - in this type of relation an element e1 creates an element e2, if e1

generates element e2. As shown in Tables 3.3 and 3.4, a creates relation may hold

between a) a plan in Prometheus and an actor in i*; b) role in Prometheus and SR

resource in i*; c) an agent in Prometheus and a SR resource in i*; d) a capability in

Prometheus and a SR resource in i*; e) a plan in Prometheus and a SR resource in i*; f)

a scenario in Prometheus and a SR resource in i*.

 [244]

 Achieves (Achieved by) - in this type of relation an element e1 achieves an element e2,

if e1 meets the expectations and needs of e2. As shown in Tables 3.3 and 3.4, a achieves

relation may hold between a) an agent in JACK and a goal in Prometheus; b) a plan in

JACK and a goal in Prometheus.

 Sends (Is Sent by) – in this type of relation an element e1 sends an element e2, if e1 is

responsible to create an element and send this element to another element e2. As

shown in Tables 3.3 and 3.4, a sends relation may hold between a) an event in JACK

and an agent in Prometheus; b) an event in JACK and a capability in Prometheus; c)

an agent in JACK and a message in Prometheus.

 Receives (Is Received by) – in this type of relation an element e1 receives an element

e2, if e1 receives an element created by another element e2. As shown in Tables 3.3

and 3.4, a receives relation may hold between a) an event in JACK and an agent in

Prometheus; b) an event in JACK and a capability in Prometheus; c) an agent in JACK

and a message in Prometheus; d) an event in JACK and a plan in Prometheus.

Tables G.1 and G.2 present different types of traceability relations for the main types of

elements in Prometheus and JACK models. Tables G.1 and G.2, apart from overlaps relations

that are bi-directional, the direction of a relation is represented from a row[i] to a column[j]

(e.g. “An agent in JACK achieves a goal in Prometheus”).

Prometheus
JACK Goal Role Agent Capability

Agent Achieves Uses Overlaps Uses
Plan Achieves Used by Is Used by Used by

BeliefSet --- Creates/Uses Creates/Uses Creates/Uses

 Event --- --- Is Sent by/ Is
Received by

Is Sent by/ Is
Received by

Table G.1 Traceability Relations Types between Prometheus and JACK Artefacts

Prometheus
JACK

Plan Percept Action Message Data

Agent Uses Uses Creates Send/Receives Uses/Creates
Plan Overlaps Uses Creates Send/Receives Uses/Creates

BeliefSet Creates/Uses --- --- --- Overlaps
Event Send/Receives --- --- Overlaps ---

Table G.2 Traceability Relations Types between Prometheus and JACK Artefacts

 [245]

 JACK Agent vs Prometheus Goal – an agent a1 in JACK has an achieves traceability

relation with a goal g1 in Prometheus when there is overlap traceability relation between

the JACK agent a1 and an agent in Prometheus a2 and the goal g1 is one of the goals

that the Prometheus agent a2 achieves. For instance, Sales Assistant agent in

Prometheus has an overlaps traceability relation with the SalesAssistant agent in JACK

and the Sales Assistant agent in Prometheus achieves the Respond Add Customer Request

goal in Prometheus (see Figure G.1). Therefore, there is an achieves relation between the

SalesAssistant agent in JACK and the Respond Add Customer Request goal in Prometheus.

Figure G.1 JACK Agent vs Prometheus Goal achieves traceability relation

 JACK Agent vs Prometheus Role - an agent a1 in JACK has a uses traceability relation

with a role r1 in Prometheus when there is an overlaps traceability relation between

JACK agent a1 and an agent in Prometheus a2 and the role r1 is one of the roles that the

Prometheus agent a2 includes. For instance, Sales Assistant agent in Prometheus has an

overlaps traceability relation with the SalesAssistant agent in JACK and the Sales

Assistant agent in Prometheus includes Order Management role (see Figure G.2).

Therefore, there is an uses traceability relation between SalesAssistant agent in JACK

and Order Management role in Prometheus.

 [246]

Figure G.2 JACK Agent vs Prometheus Role uses traceability relation

 JACK Agent vs Prometheus Agent - an agent a1 in JACK have an overlaps traceability

relation with an agent a2 in Prometheus when the name of the agent a1 in JACK is

synonyms to the name of the agent a2 in Prometheus. For instance, Sales Assistant

agent in Prometheus has synonyms name to SalesAssistant agent in JACK (see Figure

G.3). Therefore there is an overlaps traceability relation between Sales Assistant agent

in Prometheus and SalesAssistant agent in JACK.

Figure G.3 JACK Agent vs Prometheus Agent overlaps traceability relation

 JACK Agent vs Prometheus Capability – an agent in JACK has uses traceability relation

when there is overlap traceability relation between a JACK agent and a Prometheus

agent and the Prometheus agent has the Prometheus capability. For instance, Runway

agent in Prometheus has an overlaps traceability relation with Runway agent in JACK

and Runway agent in Prometheus has ArrivalSequencing capability (see Figure G.4).

 [247]

Therefore, there is an uses traceability relation between Runway agent in JACK and

ArrivalSequencing capability in Prometheus.

Figure G.4 JACK Agent vs Prometheus Capability uses traceability relation

 JACK Agent vs Prometheus Plan – an agent a1 in JACK has uses traceability relation

with a plan p1 in Prometheus when there is overlap traceability relation between the

JACK agent a1 and a Prometheus agent a2 in Prometheus and the agent a2 includes the

plan p1 in Prometheus. For instance, BankAgent agent in JACK has an overlaps

traceability relation with Bank agent in Prometheus and Bank agent in Prometheus

uses Process Withdraw plan (see Figure G.5). Therefore, there is an uses traceability

relation between BankAgent in JACK and Process Withdraw plan in Prometheus.

Figure G.5 JACK Agent vs Prometheus Plan uses traceabilty relation

 JACK Agent vs Prometheus Percept – an agent a1 in JACK has uses traceability relation

with a percept p1 in Prometheus when there is an overlaps traceability relation between

the agent a1 in JACK and an agent a2 in Prometheus and the Prometheus agent a2 in

 [248]

Prometheus responds to the percept p1. For instance, Bank agent in Prometheus has

an overlaps traceability relation with BankAgent agent in JACK and Bank agent

responds Withdraw Percept percept (see Figure G.6). Therefore, there is an uses

traceability relation between BankAgent in JACK and Withdraw Percept in

Prometheus.

Figure G.6 JACK Agent vs Prometheus Percept uses traceability relation

 JACK Agent vs Prometheus Action - an agent ag1 in JACK has creates traceability

relation with an action a1 in Prometheus when there is an overlaps traceability relation

between the agent ag1 in JACK and an agent ag2 in Prometheus and the Prometheus

agent ag2 in Prometheus includes the action a1. For instace, Bank agent in Prometheus

has an overlaps traceability relation with BankAgent in JACK and BankAgent

performs Dispense Cash action (see Figure G.7). Therefore, there is a creates

traceability relation between BankAgent agent in JACK and Dispense Cash.

 [249]

Figure G.7 JACK Agent vs Prometheus Action creates traceability relation

 JACK Agent and Prometheus Message (sends) – an agent ag1 in JACK has sends

traceability relation with a message m1 in Prometheus when there is an overlaps

traceability relation between the agent ag1 in JACK and an agent ag2 in Prometheus

and the Prometheus agent ag2 in Prometheus sends the message m1. For instance, Bank

agent in Prometheus has an overlaps traceability relation with BankAgent in JACK and

Bank agent in Prometheus sends Withdraw Response message (see Figure G.8).

Therefore, there is a sends traceability relation between BankAgent in JACK and

Withdraw Response message in Prometheus.

Figure G.8 JACK Agent vs Prometheus Message sends traceability relation

 JACK Agent vs Prometheus Message (receives) – an agent ag1 in JACK has receives

traceability relation with a message m1 in Prometheus when there is an overlaps

traceability relation between the agent ag1 in JACK and an agent ag2 in Prometheus

and the Prometheus agent ag2 in Prometheus receives the message m1. For instance,

Bank agent in Prometheus has an overlaps traceability relation with BankAgent in

JACK and Bank agent in Prometheus receives Withdraw Request message (see Figure

 [250]

G.9). Therefore, there is a receives traceability relation between BankAgent in JACK

and Withdraw Request message in Prometheus.

Figure G.9 JACK Agent vs Prometheus Message receives traceability relation

 JACK Agent and Prometheus Data (uses) - an agent ag1 in JACK has uses traceability

relation with a data d1 in Prometheus when there is an overlaps traceability relation

between the agent ag1 in JACK and an agent ag2 in Prometheus and the Prometheus

agent ag2 uses the data d1. For instance, Bank agent in Prometheus has an overlaps

traceability relation with BankAgent in JACK and Bank agent in Prometheus has

balances data (see Figure G.10). Therefore, there is an uses traceability relation

between BankAgent in JACK and balances data in Prometheus.

Figure G.10 JACK Agent vs Prometheus Message receives traceability relation

 JACK Agent vs Prometheus Data (creates) - an agent ag1 in JACK has creates traceability

relation with a data d1 in Prometheus when there is an overlaps traceability relation

between the agent ag1 in JACK and an agent ag2 in Prometheus and the Prometheus

 [251]

agent ag2 creates the data d1. For instace, Bank agent in Prometheus has an overlaps

traceability relation with BankAgent in JACK and Bank agent in Prometheus creates

balances data in Prometheus (see Figure G.11). Therefore, there is a creates traceability

relation between BankAgent in JACK and balances data in Prometheus.

Figure G.11 JACK Agent vs Prometheus Date creates traceability relation

 JACK Plan vs Prometheus Goal – a plan p1 in JACK has achieves traceability relation

with a goal g1 in Prometheus when there is an overlaps traceability relation between the

plan p1 in JACK and the plan p2 in Prometheus and the Prometheus plan p2 achieves the

goal g1. For instance, Withdraw Cash plan in Prometheus has an overlaps traceability

relation with WithdrawCash plan in JACK and Withdraw Cash plan achieves

Withdraw Money goal in Prometheus (see Figure G.12). Therefore, there is an

achieves traceability relation between WithdrawCash plan in JACK and Withdraw

Money goal in Prometheus.

Figure G.12 JACK Plan vs Prometheus Goal

 [252]

 JACK Plan vs Prometheus Role – a plan p1 in JACK has uses traceability relation with a

role r1 in Prometheus when there is an overlaps traceability relation between the plan p1

in JACK and a plan p2 in Prometheus and the Prometheus role includes the plan p2

(see Figure G.13). For instance, Book Finding role in Prometheus includes Find Best

Sellers plan that has an overlaps traceability relation with FindBestSellers plan in

JACK. Therefore, there is an uses traceability relation between Book Finding role in

Prometheus and FindBestSellers plan in JACK.

Figure G.13 JACK Plan vs Prometheus Role uses traceability relation

 JACK Plan vs Prometheus Agent - a plan p1 in JACK has uses traceability relation with

an agent a1 in Prometheus when there is an overlaps traceability relation between the

plan p1 in JACK and a plan p2 in Prometheus and the Prometheus agent a1 includes the

plan p2. For instance, Atm agent in Prometheus uses Withdraw Cash plan that has an

overlaps traceability relation with WithdrawCash plan in JACK (see Figure G.14).

Therefore, there is an uses traceability relation between Atm agent in Prometheus and

WithdrawCash plan in JACK.

 [253]

Figure G.14 JACK Plan vs Prometheus Agent uses traceability relation

 JACK Plan vs Prometheus Capability - a plan p1 in JACK has uses traceability relation

with a capability c1 in Prometheus when there is an overlaps traceability relation between

the plan p1 in JACK and a plan p2 in Prometheus and the Prometheus capability uses

the plan p2. For instance, ArrivalSequencing capability has Request Slot Plan plan and

Request Slot Plan plan has an overlaps traceability relation with RequestSlot plan in

JACK (see Figure G.15). Therefore, there is an uses traceability relation between

ArrivalSequencing capability and Request Slot plan in JACK.

Figure G.15 JACK Plan vs Prometheus Capability uses traceability relation

 JACK Plan vs Prometheus Plan – a plan in Prometheus and a plan in JACK have an

overlaps traceability relation when the name of the plan in JACK is synonyms to the name

of the plan in Prometheus and name of the message that triggers the plan has to be

synonyms to the name of the event. The name of the message that triggers the plan has

to be synonyms to the name of the event. For instance, Request Slot Plan in Prometheus

has synonyms name to RequestSlot plan in JACK (see Figure G.16). Therefore, there

is an overlaps traceability relation between Request Slot Plan plan and RequestSlot plan

in JACK.

 [254]

Figure G.16 JACK Plan vs Prometheus Plan overlaps traceability relation

 JACK Plan vs Prometheus Percept - a plan pl1 in JACK has an uses traceability

relation with a percept p1 when there is a plan pl2 in Prometheus that has an overlaps

traceability relation with the plan pl1 and the plan pl2 responds to the percept p1. For

instance, Withdraw Cash plan in Prometheus responds to the Withdraw Percept

percept and WithdrawCash plan in JACK has an overlaps traceability relation with

Withdraw Cash plan in Prometheus (see Figure G.17). Therefore, there is an uses

traceability relation between WithdrawCash plan in JACK and Withdraw Percept

percept in Prometheus.

Figure G.17 JACK Plan vs Prometheus Percept uses traceability relation

 JACK Plan vs Prometheus Action (creates)- a plan p1 in JACK has creates traceability

relation with an action a1 in Prometheus when there is an overlaps traceability relation

between the plan p1 in JACK and a plan p2 in Prometheus and the Prometheus p2

performs the action a1. For instance, Withdraw Approved plan in Prometheus has an

overlaps traceability relation with WithdrawApproved plan in JACK and Withdraw

Approved plan in Prometheus performs Dispense Cash action (see Figure G.18).

Therefore, there is a creates traceability relation between WithdrawApproved plan in

JACK and Dispense Cash action in Prometheus.

 [255]

Figure G.18 JACK Plan vs Prometheus Action creates traceability relation

 JACK Plan vs Prometheus Message (sends) – a plan p1 in JACK has a sends traceability

relation with a message m1 in Prometheus when there is an overlaps traceability relation

between the plan p1 in JACK and a plan p2 in Prometheus and the Prometheus plan p2

sends the message m1. For instance, Withdraw Cash plan in Prometheus has an overlaps

traceability relation with WithdrawCash plan in JACK and Withdraw Cash plan in

Prometheus sends Withdraw Request message (see Figure G.19). Therefore, there is a

sends traceability relation between WithdrawCash plan in JACK and Withdraw

Request message in Prometheus.

Figure G.19 JACK Plan vs Prometheus Message sends traceability relation

 JACK Plan vs Prometheus Message (receives) – a plan p1 in JACK has sends traceability

relation with a message m1 in Prometheus when there is an overlaps traceability relation

between the plan p1 in JACK and a plan p2 in Prometheus and the Prometheus plan p2

receives the message m1. For instance, Withdraw Cash plan in Prometheus has an

overlaps traceability relation with WithdrawCash plan in JACK and Withdraw Cash

plan in Prometheus receives Withdraw message (see Figure G.20). Therefore, there is a

receives traceability relation between WithdrawCash plan in JACK and Withdraw

message in Prometheus.

 [256]

Figure G.20 JACK Plan vs Prometheus Message receives traceability relation

 JACK Plan vs Prometheus Data (uses) - a plan p1 in JACK has uses traceability relation

with a data d1 in Prometheus when there is an overlaps traceability relation between the

plan p1 in JACK and a plan p2 in Prometheus and the Prometheus plan p2 uses the data

d1. For instance, Execute Advanced Search plan in Prometheus has an overlaps traceability

relation with ExecuteAdvancedSearch plan in JACK and Execute Advanced Search plan in

Prometheus reads or modifies BooksDB data in Prometheus. Therefore, there is an uses

traceability relation between ExecuteAdvancedSearch plan in JACK and BooksDB

data in Prometheus. For instance, Process Withdraw plan in Prometheus and

ProcessWithdraw plan in JACK has an overlaps traceability relation and Process

Withdraw plan in Prometheus reads accounts data (see Figure G.21). Therefore, there

is an uses traceability relation between ProcessWithdraw plan in JACK and accounts

data in Prometheus.

Figure G.21 JACK Plan vs Prometheus Data uses traceability relation

 JACK Plan vs Prometheus Data (creates) - a plan p1 in JACK has creates traceability

relation with a data d1 in Prometheus when there is an overlaps traceability relation

 [257]

between the plan p1 in JACK and a plan p2 in Prometheus and the Prometheus plan p2

creates the data d1. For instance, Process Withdraw plan in Prometheus has an overlaps

traceability relation with ProcessWithdraw plan in JACK and ProcessWithdraw plan

writes on balances data (see Figure G.22). Therefore, there is a creates traceability

relation between ProcessWithdraw plan in JACK and balances data in Prometheus.

Figure G.22 JACK Plan vs Prometheus Data creates traceability relation

 JACK Belief vs Prometheus Role (creates) – a role r1 in Prometheus has creates

traceability relation with a beliefSet b1 in Prometheus when there is an overlaps

traceability relation between the beliefSet b1 in Prometheus and a data d2 in JACK and

role r1 writes on the beliefSet b1. For instance, Customer Relation Management role in

Prometheus writes on CustomerDB data and CustomerDB data in Prometheus has an

overlaps traceability relation with CustomerDB beliefSet in JACK (see Figure G.23).

Therefore, there is a creates traceability relation between Custormer Relation Management

role in Prometheus and CustomerDB beliefSet in JACK.

Figure G.23 JACK Belief vs Prometheus Role creates relation

 [258]

 JACK Belief vs Prometheus Role (uses) – a role r1 in Prometheus has uses traceability

relation with a beliefSet b1 in Prometheus when there is an overlaps traceability relation

between the beliefSet b1 in JACK and a data d2 in Prometheus and the role r1 reads the

data d1. For instance, Purchasing role in Prometheus reads CustomerDB data and

CustomerDB data has an overlaps traceability relation with CustomerDB beliefSet in

JACK (see Figure G.24). Therefore, there is an uses traceability relation between

Purchasing role and CustomerDB beliefSet in JACK.

Figure G.24 JACK Belief vs Prometheus Role uses traceability relation

 JACK Belief vs Prometheus Agent (creates) – an agent a1 in Prometheus has a creates

traceability relation with a beliefSet b1 in JACK when there is an overlaps traceability

relation between the beliefSet b1 in JACK and a data d1 in Prometheus and the agent a1

writes on the data d1. For instance, Atm agent in Prometheus writes on balances data

and balances data in Prometheus has overlaps traceability with Balances beliefSet in

JACK (see Figure G.25). Therefore, there is a creates traceability relation between Atm

agent and Balances beliefSet.

Figure G.25 JACK BeliefSet vs Prometheus Agent creates traceability relation

 [259]

 JACK Belief vs Prometheus Agent (uses) – an agent a1 in Prometheus has uses

traceability relation with a beliefSet b1 in Prometheus when there is an overlaps

traceability relation between the data d1 in Prometheus and a belilefSet b2 in JACK and

the agent a1 in Prometheus writes on the data d1. For instance, Customer Relations agent

in Prometheus writes on the CustomerDB data and there is an overlaps traceability

relation between CustomerDB in Prometheus and CustomerDB in JACK. (see Figure

G.26). Therefore, there is an uses traceability relation between Atm agent in

Prometheus and Accounts beliefSet in JACK.

Figure G.26 JACK BeliefSet vs Prometheus Agent uses traceability relation

 JACK Belief vs Prometheus Capability (creates) – a capability c1 in Prometheus has

creates traceability relation with a beliefSet b1 in Prometheus when the capability c1

writes on a data d1 and there is an overlaps traceability relation between the data d1 in

Prometheus and the belilefSet b1 in JACK. For instance, ArrivalSequencing capability

in Prometheus writes on runway_info data and runway_info data in Prometheus has

an overlaps traceability relation with RunwayInfo beliefSet in JACK (see Figure G.27).

Therefore, there is a creates traceability relation between ArrivalSequencing capability

in Prometheus and RunwayInfo beliefSet in JACK.

 [260]

Figure G.27 JACK BeliefSet vs Prometheus Capability creates traceability relation

 JACK Belief vs Prometheus Capability (uses) –. a capability c1 in Prometheus has an uses

traceability relation with a beliefSet b1 in Prometheus when the capability c1 reads a

data d1 and there is an overlaps traceability relation between the data d1 in Prometheus

and the belilefSet b1 in JACK. For instance, ArrivalSequencing capability in

Prometheus reads runway_info data and runway_info data in Prometheus has an

overlaps traceability relation with RunwayInfo beliefSet in JACK (see Figure G.28).

Therefore, there is a creates traceability relation between ArrivalSequencing capability

in Prometheus and RunwayInfo beliefSet in JACK.

Figure G.28 JACK BeliefSet vs Prometheus Capability uses traceability relation

 [261]

 JACK Belief vs Prometheus Plan (creates) – a plan p1 in Prometheus has creates

traceability relation with a beliefSet b1 in JACK when there is an overlaps traceability

relation between the beliefSet b1 in JACK and a data d1 in Prometheus and the plan p1

in Prometheus writes on the data d1. For instance, Process Withdraw plan in

Prometheus writes on balances data and balances data in Prometheus has an overlaps

traceability relation with Balances beliefSet in JACK (see Figure G.29). Therefore,

there is a creates traceability relation between Process Withdraw plan in Prometheus

and Balances beliefSet in JACK.

Figure G.29 JACK BeliefSet vs Prometheus Plan creates traceability relation

 JACK Belief vs Prometheus Plan (uses) – a plan p1 in Prometheus has uses traceability

relation with a beliefSet b1 in Prometheus when there is an overlaps traceability relation

between the beliefSet b1 in JACK and a data d1 in Prometheus and the plan p1 in

Prometheus reads the data d1. For instance, Process Withdraw plan in Prometheus

reads balances data and balance data in Prometheus has an overlaps traceability

relation with Balances beliefSet in JACK (see Figure G.30). Therefore, there is an uses

traceability relation between Process Withdraw plan in Prometheus and Balances

beliefSet in JACK.

 [262]

Figure G.30 JACK BeliefSet vs Prometheus uses traceability relation

 JACK BeliefSet vs Prometheus Data - A data in Prometheus and a beliefSet in JACK

has an overlaps traceability relation when the name of the data is synonyms to the name

of the beliefSet and if the name of the the fields of the data and the beliefset are similar

(see Figure G.31). For instance, the name of accounts data in Prometheus is synonyms

to the name of Accounts beliefSet in JACK and the fieds of the Accounts beliefSet

(account and pin) are similar to the fields of the accounts data in Prometheus.

Figure G.31 JACK BeliefSet vs Prometheus Data overlaps traceability relation

 JACK Event vs Prometheus Agent (receives) – an agent a1 in Prometheus has a receives

traceability relation with an event e1 in JACK when there is a message m1 in

Prometheus that has an overlaps traceability relation with an event e1 and the

Prometheus agent a1 receives the message m1. For instance, Bank agent in Prometheus

receives Withdraw Request message and Withdraw Request message in Prometheus

 [263]

has an overlaps traceability relation with WithdrawRequest event in JACK (see Figure

G.32). Therefore, there is a receives traceability relation between Bank agent in

Prometheus and WithdrawRequest event in JACK.

Figure G.32 JACK Event vs Prometheus Agent receives traceability relation

 JACK Event vs Prometheus Agent (sends) – an agent a1 in Prometheus has a sends

traceability relation with an event e1 in JACK when there is a message m1 in

Prometheus that has an overlaps traceability relation with an event e1 and the

Prometheus agent a1 sends the message m1. For instance, Bank agent in Prometheus

sends Withdraw Response message and Withdraw Response message in Prometheus

has an overlaps traceability relation with WithdrawResponse event in JACK (see

Figure G.33). Therefore, there is a sends traceability relation between Bank agent in

Prometheus and WithdrawRequest event in JACK

Figure G.33 JACK Event vs Prometheus Agent sends traceability relation

 JACK Event vs Prometheus Capability (sends) – a capability c1 in Prometheus has a

sends traceability relation with an event e1 in JACK when there is a message m1 that has

an overlaps traceability relation with an event e1 and the capability c1 includes the

 [264]

message m1. For instance, Traffic Feeding capability in Prometheus sends

AircraftEvent message and AircraftEvent message in Prometheus has an overlaps

traceability relation with AircraftEvent in JACK (see Figure G.34). Therefore, there is

a sends traceability relation between Traffic Feeding capability in Prometheus and

AircraftEvent in JACK.

Figure G.34 JACK Event vs Prometheus Capability

 JACK Event vs Prometheus Capability (receives) – a capability c1 in Prometheus has a

receives traceability relation with an event e1 in JACK when there is a message m1 that

has an overlaps traceability relation with an event e1 and the capability c1 receives the

message m1. For instance, Flying capability in Prometheus receives Enter Control Area

message and Enter Control Area message in Prometheus has an overlaps traceability

relation with EnterControlArea event in JACK (see Figure G.35). Therefore, there is a

receives traceability relation between Flying capability in Prometheus and

EnterControlArea event in JACK.

Figure G.35 JACK Event vs Prometheus Capability receives relation

 [265]

 JACK Event vs Prometheus Plan (sends) – a plan p1 in Prometheus has a sends

traceability relation with an event e1 in JACK when there is a message m1 that has an

overlaps traceability relation with an event e1 and the plan p1 sends the message m1. For

instance, Process Withdraw plan in Prometheus sends Withdraw Response message

and Withdraw Response message in Prometheus has an overlaps traceability relation

with WithdrawResponse event in JACK (see Figure G.36). Therefore, there is a sends

traceability relation between Process Withdraw plan in Prometheus and

WithdrawResponse event in JACK.

Figure G.36 JACK Event vs Prometheus Plan sends traceability relation

 JACK Event vs Prometheus Plan (receives) – a plan p1 in Prometheus has a receives

traceability relation with an event e1 in JACK when there is a message m1 that has an

overlaps traceability relation with an event e1 and the plan p1 includes the message m1.

For instance, Process Withdraw plan in Prometheus receives Withdraw Request

message and Withdraw Request message in Prometheus has an overlaps traceability

relation with WithdrawRequest event in JACK (see Figure G.37). Therefore, there is

an receives traceability relation between Process Withdraw plan in Prometheus and

WithdrawRequest event in JACK.

 [266]

Figure G.37 JACK Event vs Prometheus Plan receives traceability relation

 JACK Event vs Prometheus Message (overlaps) – an event e1 in JACK have an overlaps

traceability relation with a message m1 if the name of type of the event is synonyms to

the name of the message in Prometheus. For instance, Withdraw Request message in

Prometheus has a synonyms name to WithdrawRequest event in JACK (see Figure

G.38). Therefore, there is an overlaps traceability relation between Withdraw Request

message and WithdrawRequest event in JACK.

Figure G.38 JACK Event vs Prometheus Message overlaps traceability relation

