IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Filho, Gilberto Amado de Azevedo Cysneiros (2011). Software Traceability for
Multi-Agent Systems Implemented Using BDI Architecture. (Unpublished Doctoral thesis,
City University London)

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1115/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Software Traceability for Multi-

Agent Systems implemented using
BDI Architecture

Gilberto A. de A. Cysneiros Filho

A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy at City University London

City University London
Department of Computing

June 2011

Volume 2

Contents

Volume 1
LO10] 01 (=T 01 £ T TP TP P TR PP PPN 2
I UIES. ettt b e bRt bRt b e Re e b be et e beareene et 7
TADIES ..ttt 9
ACKNOWIBAGEIMENTS.......viiiiiieciieie ettt sttt b e e beere et nreens 10
D =Tol -V LA o] o PSPPSR 11
F N 0L 1 (o) SRS 12
Chapter 1 - INTrOQUCTIONceiieieiice et b 13
1.2 HYPOTNESES ...ttt 20
1.3 ODJECHIVES ...ttt bbbt sb et e et e e b ene s 20
1.4 CONITDULIONS. ...ttt bbbt e eneas 21
1.5 THESIS OULHNE ...t 22
Chapter 2 - Literature Survey on Traceabilityccccoveiiiiiiiiiicc e 24
2.1 Traceability Reference Models and Meta-Models..........c.cccvviveieieiiniiciciene, 27
2.2 Traceability Approaches to Capture Trace Relations...........ccccocevevviivevcnieinne, 33
2.2.1 FOrmMal APPrOACNES........ciiiiiiiiiie ittt 34
2.2.2 Process Oriented APPrOACHESccoiiiieieieiieie st 34
2.2.3 Information Retrieval APProaches.........cccooviieiiiieiiiiiinisiee e 36
2.2.4 String Matching APPrOACHEScoovi i 39
2.2.5 Rule Based APPrOACHESccviieiiiieie et 40
2.2.6 RUN-TIME @PPIrOACNESooviiieiiee s 43
2.2.7 Hypermedia and Information Integration approachescccecevervnernnenne. 44
2.3 Representation, Recording and Maintenance of Traceability Relations............. 45
2.4 Visualisation of Traceability Relations...........cccooiiiiininiii e 46
2.5 Use of Traceability Relations...........cccvvvieiiiiiiiiicicie s 47
2.6 Traceability Approaches for Multi-Agent SYStemSc.cccovvvveeiierenesineriesenn 49
2.7 Performance IMBASUIES..........ccuuieeieiiesiieee sttt 50
2.8 Implication of tools that infer trace relations...........cc.ccoveviviiene s, 51
2.9 SUMIMAIY ..ottt e bt e st e e s e e e st e et e e s sbe e s e e e bneennneeas 52
Chapter 3 - Traceability Reference MOdel..........cccoviiiiiiiiiiieieseee e 54
3.1 Overview of the Reference Model ... 54
3.2 Multi-agent Oriented ArtefactS........ccoeeeiiiiiie e 56
321 1% FraMEWOIK ...ttt 56
3.2.2 PrOMELNEUS.......eeutiitieiiie sttt bbbt 60
BL2. B3 JACK ettt r et e 67
3.3 Traceability REIAtIONScc.oiiiiiieie e 73
3.3.1 Traceability Relations between i* and Prometheus...........ccccccoveveiiivciecnenne. 74
3.2.2 Traceability Relations between Prometheus and JACKcccceeviviiieieinnnne. 86
34 SUMIMAIY L.ttt b ettt e bt e e s ae e e srb e e st e e enbe e e nbe e e beeenraeens 95
Chapter 4 - Traceability FrameWOrK..........ccccoieiiiiiiiie i 96
4.1. Overview of the FrameworkK ...t 96
4.2 Traceability and Completeness Checking RUIES...........ccccevevieiiiieneiccieee, 101
B I3/ L= T PP PRSP 104

(2]

L LA USSP PR PP OPR PP 112

LI LR TSP UP PP PP OPR PP 114
4.3 EXtENDEd FUNCHIONS. ...ttt 116
4.3.1 Completeness checking fUNCHIONS.cccooiiiiiiiiine e 117
4.3.2 XQUETY TUNCLIONSc.uiiiiiiieiiieie st 119
4.3.3 XQUENYJACKFUNCLIONScviiiiiiiiiiieie ettt 121
4.3.4 XQUEIYPDTFUNCLIONS ...ovviiviiiieie sttt nne s 122
4.3.5 XQUerySimilarityFUNCLIONScccoviiiiiiieie i 123
4.3.6 XQUErySYNONYMSFUNCHIONScc.ciuiiiiiiiieiesieseeiee e 125
4.3.7 XQUErYTAOMPFUNCHIONSveivieiiiiieiiesie et 128
4.4 REtratos TOOL......ccuiiiieieiieiiiiiiiese e 129
4.5 DISCUSSION ...evviitie et ete ettt e te e ae et te et e e e e teebeesteeaeesbeeseesteeseennaenreenns 139
4.6 SUMMAIY ...ttt ettt ettt ettt e bt et e e beenbe e be e 140
Chapter 5 - Evaluation and RESUILS...........ccoiieiiiiiiiiise s 141
5.1 Criteria for EVAIUALIONcooiiiiieieiicee s 142
5.2 Automatic Teller MaChingc.ooe i 143
5.2.1 Overview of the Case STUAYcccoeeririiiieie e 143
5.2.2 ANETACTS .ottt 145
5.2.3 EVAIUALIONvvvieiiciecc ettt 146
5.3 Air Traffic Control ENVIFONMENT ... 155
5.3.1 Overview Of the Case STUAYccceiiiirriiiiie e 155
5.3.2 AIETACES ... 156
5.3 EVAIUALION ...t 157
5.4 E1eCtroniC BOOKSEIOIE.cciuiiiiiiiie ittt 164
5.4.1 Overview 0Of the Case STUAYccccoeereriiieie e 164
5.4.2 ANETACTS ...t e 165
5. 4.3 EVAIUALION ...t 167
5.5 DIHSCUSSION ...ttt ettt ettt st et e e st se et s be e e stesbe e e st e eba et e beaneenaennean 168
5.6 Threats of Validitycccooiiiiiiiiieic e 170
5.7 SUMIMAIY ..ttt sttt sttt b e be e e b e e nnbe e snbeesnneas 172
Chapter 6 - Conclusion and FULUre WOTKScccooveiiiiiiiienisisee e 173
6.1 OVerall CONCIUSIONS.cuiiiiiiiiie e e 173
8.2 HYPOLNESES ...ttt st be et 178
5.3 ODJECLIVES ...ttt bttt st e ene e 181
6.4 CONTIIDULIONS. ...ttt bbb 182
6.5 FULUIE WOTKcvieieie ettt e ee e nee s 183
6.5 FINAl REMAIKSot 186
BIDHOGIaphY ... 187
Volume 2
(O00] 1 (<] 0 USROS PP PRSP 2
I UIES. ettt bbb Rt bRt b e Re et be et e beare et e 7
1= 0] =TSRSS 12
Appendix A - EXtended FUNCHIONS.coiiiiiiiieie e 15
A.1.1 Completeness checking fFUNCHIONS..........c.ooiiiiiieiiiinie e 16
A.L.2 XQUETY TUNCLIONS ...ttt 22

A.1.3 XQUEINYJACKFUNCHIONS ...ttt 30

A.L1.4 XQUEINYPDTRUNCLIONSoveiiieiieitieie ettt 32
A.1.4.1 ActorHasCapability fUNCHION ..ot 34
A.1.4.2 FieldTokenizer fUNCHION ..o 35
A.1.4.3 GetAttributeValue FUNCHION.........coiiiiic 36
A.1.4.4 GetIncludedFields fUNCHION.........oooiiiiiiie e 37
A.1.45 GetIinformationCarried fUNCLIONccoiiiiiiiiiiiee e 38
A.L.4.6 GEtPDTRIIENAME. ..ot 38
A.1.4.7 GetPrometheUSEIEMENTSc.coiiiiiiiicic s 39
A.1.4.8 GetPrometheUSSUDEIEMENTS..........ccciiiiiiiiiicee e 40
A.1.4.9 GetPrometheUSSIEPSCENAIIOSveveirierieiirieie et 41
A.1.4.10 GetPrometheusSUbGOalSEIEMENTS........cccoieiirieriiiee e 42
A.1.4.11 GetPrometheusSUDGOAIEIEMENTScccoieiieiiriiiee e 43
A.1.4.12 GetPrometheUSUSESDALA.ccveieiierieie e 44
A.1.4.13 IsACapabilityThatThe AgentInCludes ..., 44
A.1.4.14 1sADataProducedByTheROIe...........cooiiiiiiiie e 44
A.1.4.15 IsADataThatThe AgentReadSccoveiiiiiiiierir e 44
A.1.4.16 ISADataThatThe AGENTWIILEScveiviiieie e 44
A.1.4.17 IsADataThatTheCapabilityReadsccccceviriiiieneiieene e 45
A.1.4.18 IsADataThatTheCapabilityWIItescccvevieiiiiieiesiciee e 45
A.1.4.19 IsADataThatThePlanReads...........cccooereiiiriiirie e 45
A.1.4.20 ISADataThatThePlanWIILESccoviiiiieieisese s 45
A.1.4.21 ISADataUsedBYTheROIE..........cooiiiiiieeceeee s 45
A.1.4.22 1ISADataThatThe AgeNtACNIBVESooiiiiiieee e 45
A.1.4.23 IsSAGoal ThatTheCapability AChIEVES ..o, 46
A.1.4.24 1ISAG0al ThatThePlanAChIBVES. ..o 46
A.1.4.25 ISAG0al ThatThe AgeNtACHIEVES........c.eciiee e 46
A.1.4.26 1sAGoal ThatTheCapability AChIEVESccveieiiiiie e, 46
A.1.4.27 1ISAMessage That The AgENtRECEIVESccveieriiiiiie e 46
A.1.4.28 ISAMessage ThatThe AgeNntSENdSccoiviverieiiiiieiie e 47
A.1.4.29 IsAMessageThatTheCapabilityReCEIVESccccvvieieieniieenie e 47
A.1.4.30 IsAMessageThatTheCapabilitySENdS..........ccevvereiiieiirnenieie e 47
A.1.4.31 ISAMessage That TNERECEIVES.........ccciiiiiieieie e 47
A.1.4.32 ISAMessageThatThePIanRECRIVES........ccccoeiieieniiiee e 47
A.1.4.33 ISAMessageThatThePlanSends.........ccccooeieenininie e, 48
A.1.4.34 IsAMessageThatTriggersThePlan...........ccocoeiiiiii s 48
A.1.4.35 ISAnActionThatThe AgentPerforms..........cocooeirieniiieie e 48
A.1.4.36 IsAnActionThatTheCapabilityPerforms ... 48
A.1.4.37 ISAnActionThatThePlanPerforms. ... 48
A.1.4.38 IsAPerceptThatThe AgentReSPONASccvvvveieiiiieic e, 49
A.1.4.39 IsAPerceptThatTheCapabilityReSpondsccovevviiveriereiieeiesesi e 49
A.1.4.40 IsAPerceptThatThePlanReSpONdS...........cceveiviiieiieie e 49
A.1.4.41 IsAPerceptThatTheCapabilityResponds..........ccoceveriieieieniniinne s 49
A.1.4.42 IsAPerceptThatThePlanReSPONS..........coveiiiieieiesieeiee e 49
A.1.4.43 IsAPerceptThatTheCapabilityResponds..........cccceverinieiininiinne s 50
A.1.4.44 1sAPerceptThatThePlanReSpONdS.ccoveieririenisieie e 50

[4]

A.1.4.45 ISAPlanThatThe AgentINCIUAESccoveiiiiiieie e 50

A.1.4.46 I1sAPlanThatTheCapabilityINCludes............ccooueeiiiiiiiiiee e, 50
A.L4A4T7 ISAPIANTNEROIEUSES ..ot e 51
A.1.4.48 ISARoleThatTheAgentINCIUEScoooiiiiiiiiii e 51
e g o o =] OSSOSO UT PR PP PO 51
A.15 XQuerySimilarityFUNCLIONSccoiiiiieiiie s 51
A.1.6 XQUerySynonymMSFUNCLIONSc.ciueiiiiierieiesieeriese et 64
A.L7 XQUEIYTAOMEFUNCLIONS ..ottt 69
Appendix B — Automated Teller Maching..........ccccvoeveiinieieiisiee s 73
B.L INrOGUCTION ...ttt ettt 73
B.2 Organizational MOUEIScoiiiiiiiiiiee e 74
B.3 Prometheus MOGEIScc.o i e 76
B4 JACK COUBvvieieieeieeiieieetee sttt ettt e s nsesse st seesne e eneeneeneasennenees 78
B.5 JACK COUE IN XML ...cviiiieiicisese e 86
B.6 EVAlUALION. ... 95
Appendix C — Air Traffic Control ENVIrONMENL............cocoiiiiiiiiiiiecreeeee e 105
(O R 11 (oo [0 Tox 1 o] o I TSROV U PP PP 105
C.2 Organizational MOGEIScc.oiviiiiiiiee e 106
C.3 Prometheus MOGEISccoreieieiiieiiese e 107
CLA JACK COE ...ttt bbbttt ne s 113
C.5 €0 1N XIML ..ttt bbb 128
C.6 EVAIUALION. ...ttt 140
Appendix D — Electronic Bookstore Case StUdYccooviirierieniiniinneneseese e 155
D.1 JACK Agent vS Prometheus GOal...........cocoiiiiiiiiiniiesesee e s 155
D.2 JACK Agent vS Prometheus ROIE..........coooiiiiiii s 157
D.3 JACK Agent vS Prometheus AGENL.........cooviiaiirininieiesesee e 158
D.4 JACK Agent vs Prometheus Capabilityccooeiiiiiinieiiiicie e 159
D.5 JACK Agent vs Prometheus Plancccvoieiiiieie i 160
D.6 JACK Agent vs Prometheus PErCePtccvivveiiiiiieieieceeie e 162
D.7 JACK Agent vs Prometheus ACHION.ccovueiiiieie i 164
D.8 JACK Agent vs Prometheus Message (SENAS)ccvvververinienienesieesesieeeesiesieens 165
D.9 JACK Agent vs Prometheus Message (FECEIVES).......uuiurrurrereerierieseeiesieseaeens 166
D.10 JACK Agent vs Prometheus Data (USES)ccvvreerueriereeriesiesieiesieseeiesieseesee s 167
D.11 JACK Agent vs Prometheus Data (Creates)cccovveeererierieeiieseerieseesieeie e 168
D.12 JACK Plan vs Prometheus Goalccocveeiiiiiiiiiiieeee e 168
D.13 JACK Plan vs Prometheus ROIE..........ccooiiiiiiiiiieees s 169
D.14 JACK Plan vs Prometheus AQENLcccooiriiiiriiiiiisieee e 170
D.15 JACK Plan vs Prometheus Capabilitycccocoieiiiiniiniiiee e 172
D.16 JACK Plan vs Prometheus Plan ... 174
D.17 JACK Plan vs Prometheus PerCept........cccviiiiiiiiiieiiiieie e 178
D.18 JACK Plan vs Prometheus ACtion (SeNnds)cccuvveveiviiiereiesierene e 179
D.19 JACK Plan vs Prometheus Message (SENAS)ccovviivereieieerieseseeiesie e 180
D.20 JACK Plan vs Prometheus Message (RECEIVES)oovvivreerenenieniesiiaieniesieans 182
D.21 JACK Plan vs Prometheus Data (USES)cereririrrieiisiieniesieseesie e sieeie e e 184
D.22 JACK Plan vs Prometheus Data (Creates)coovuerererienreenesesiesiesieeeesieseeans 185
D.23 JACK BeliefSet vs Prometheus Role (Creates)ocuveveierenieeneneciene e 185

[5]

D.24 JACK BeliefSet vs Prometheus Role (USES)cccevverieriniirieiieierie e 185

D.25 JACK BeliefSet vs Prometheus Role (Creates)ccoooereienenieneneeiene e 186
D.26 JACK BeliefSet vs Prometheus Agent (USES)cccerereririenieniieie e 187
D.27 JACK BeliefSet vs Prometheus Capability (Creates)ccccceeerervrienenieennenn 187
D.28. JACK BeliefSet vs Prometeus Capabilitity (USES)cccovevirireiinniiieieieee 188
D.29 JACK BeliefSet vs Prometheus Plan (Creates).........cccvuvveveieieeiiesesneiiesesieenns 189
D.30 JACK BeliefSet vs Prometheus Plan (USES)........cccovviiiveieieiieieiese e 189
D.31 JACK BeliefSet vs Prometheus Data............ccocuvirirenieiininiinesie e 190
D.32 JACK Event vs Prometheus Agent (SENAS).......ccccvivriereiiinieie e 191
D.33 JACK Event vs Prometheus Agent (FECEIVES)ovvrverierienieeieneeiesieseeie e 192
D.34 JACK Event vs Prometheus Capability (SENdS)........ccccvvurvieniniieienieienesieenns 193
D.35. JACK Event vs Prometheus Capability (reCeIVeS)ccoovvvvieririeiiiieeciee 193
D.36 JACK Event vs Prometheus Plan (SENS)occvverineriinin e 194
D.37 JACK Event vs Prometheus Plan (FECEIVES)ccerurrieriieeiiieeiee e 196
D.38 JACK Event vS Prometheus IMESSAgEccueiuerieiieriesieee e 197
Appendix E — Introduction to BDI architeCture...........ccocooeriiiiiiiiiiceece e 199
E.L1 AQENt AICNITECTIUIES ...ttt 199
E.2 BDI AICRITECIUIE ..ottt 199
Appendix F - Traceability Relations between i* and Prometheus.............cccccovvveveriennns 202
Appendix G - Traceability Relations between Prometheus and JACKcccccoeviennns 243

Figures

Figure A.1 Calling getPDTFileName extended function in JAVAc.cccervvernereeneineineesecseenn, 16
FIQUIE A.2 LISt OF SEEINQS ... eiiieieie ettt et re et e beste st e stesae st eneesseneesaeneeneesennes 19
Figure A.3 getDocSourceMissingElement fUNCLION............ccooiiiiiiince e 20
Figure A.4 getIDMissingElement function eXample.........ccocviveiiiiciiiic s 21
Figure A.5 getNameMissingElement function eXample.........c.coeoeriininnin e 21
Figure A.6 getNumberOfMissingElement function eXample ... 22
Figure A.7 Arrival Sequencing Capability and ATL SD RESOUICE...........ccccevuererierieriesieieieeeeeese e e 24
Figure A.8 capabilityUsesSDResource funCtion eXample ..o 25
Figure A.9 hasUses fuNCtion eXamMPIEccviiiieiiiie st et ens 26
Figure A.10 contains fUNCLioN EXAMPIE ..o e 27
Figure A.11 Using CONAINS fUNCLION.........cviiiiiiiecie sttt be bt e e sbaenre s 28
Figure A.12 getAttributeValue function eXamplecoviviiiiiiecice s 28
Figure A.13 hasRelation function BXamPIEcceoiiiiiii it re s 29
Figure A.14 stringTokenizer function EXamPle..........cccviiiiiiie e 30
Figure 4.15 stringTokenizerByUpperCase function eXample.........cocoovvviriinnene s 30
Figure A.16 getBeliefSetFields fUNCtioN EXamMPIE...........coviviiiiiiecice e 31
Figure A.17 ActorHasCapability function eXampleccovriiieiinieninnire e 35
Figure A.18 fieldTokenizer function eXample...........coieiiiiieii e 36
Figure A.19 getAttributeValue function eXamplec.coviviiiiiiecree e 36
Figure A.20 getincludesFields function eXample ..o 37
Figure A.21 getinformationCarried function eXample ..o 38
Figure A.22 getPrometheusElements function eXamplec.ccooovvviiierineiin s 39
Figure A.23 getPrometheusSubElements function example ..., 40
Figure A.24 getPrometheusStepScenarios function eXampleccccvevereieiere e 41
Figure A.25 getPrometheusSubGoals function eXample ..o 42
Figure A.26 getPrometheusSubGoalsElements function eXample...........ccovviieeiiiieie e 43
Figure A.27 hasUses fUNCLION EXAMPIEvivieiireie ettt ne e eens 53
Figure A.28 hasUses fUNCLION EXaMPIEcviiiiiic et e e e e sbeenre s 54
Figure A.29 creates fuNCLioN eXaMPIE......ccvii i 54
Figure A.30 creates fuNCLioN eXAMPIEvii et neens 55
Figure A.31 overlaps funCtion EXamMPIE.........cociiiiiiieiece e aens 56
Figure A.32 overlaps fuNCLION EXaMPI........cviiiiii e neeneens 57
Figure A.33 isPositiveSimilar function eXample ..o 58
Figure A.34 isSimilar function EXamMPIEccceiiii i ens 59
Figure A.35 isSimilarByOverlaps function eXample ..o 60
Figure A.36 isSimilarDataAndBeliefSet function eXample..........ccccveveiiiiei i 61
Figure A.37 isSimilarSDResourceAndMessage function example ... ivveveieiciercse e 62
Figure A.38 SomeOverlap funCtion eXamPpPle ..o 63
Figure A.39 stringTokenizerByUpperCase function eXampleccoovveiviininninsinsese e 64
Figure A.40 contains fUNCLiON EXAMPIE ..o 65
Figure A.4L1 iSSYNONYMS FUNCLIONo.viiiiiiiciesecc ettt b e ete e e sbe e e e nreeree s 66
Figure A.42 stringTokenizer funCtion eXamMPIE.........c.coeiiriiiriireeee e 67
Figure A.43 isSynonyms fUNCLION EXAMPIEciiiiiiiiie et sreere s 68
Figure A.44 getSubGoalsAndTask function eXamplec.ccveveiiiiecesice e s 70
Figure A.45 getSubGoalsAndTask function eXample ... 71
Figure A.46 getAttributeValue function eXamplec.cviviieiiiece e 72
Figure B.1 Strategic Dependency model for the Automatic Teller Machine..........cccccocvvvvvivicceiece e, 75
Figure B.2 Strategic Rationale Model for the Automatic Teller Maching.........ccccccoevviviiivivcie s 76
Figure B.3 ATM GOal iagramccvoiiiieiiiiece sttt ae sttt te st et b e e e e e e aneeseens 76
Figure B.4 ATM System OVErvIEW IagTaMccuieirieiirerieieieieieesieesres et nr et enens 77
Figure B.5 — Atm Agent OVErVIEW DIAQIaMcccovieiiiiiiieiiee ettt st enn e e e e ens 78
Figure B.6 Bank Agent OVEIVIEW IagIam..........ccceiieriereresineesesesiesiesiesee e stesaesaessesaessessessessesseseeseanessenss 78
L 0TI S A AN i I Vo 1= | RS PSSP 80

Figure B.8 BANKAGENT A0ENTceiiie ittt ettt teete s et e s b e s te st e sbe st et e s et enaesaeneaneeseens 80

Figure B.9 ACCOUNTS DEIETSELeiice ettt neens 81
Figure B.10 ACCOUNES DEHETSEEcviieiiicice e ettt e e ene e ens 82
Figure B.11 WIthOraw BVENL.......c.vciiiie et sttt et st et sae s ena e es e neesaeneeneeneenes 83
Figure B.12 WithdraWRESPONSE BVENT.........cviiiieiiieiirteisreeste ettt nn e en s 83
Figure B.13 WithdraWREQUESE BVENT........c.eiiiirireiesiesie ettt ettt esae e s eneeseeseeneesenns 84
Figure B.14 WithdrawWAPPIrOVEd PIAN.........coiiiiiiieiieese et 84
Figure B.15 WithdrawCash PIan...........cccoiiiiiiieiiie ittt sb e e sreenre s 85
Figure B.16 WithdrawRejJECted PIANciviiie et ens 85
Figure B.17 WithdrawApPProved PIAN...........cuiiieiiiii et eesbe e sre e s 86
Figure B.18 Atm agent iN XMLcvoiiiiiiceie ettt ta st ae et et te st et e aennesaessaneeseens 88
Figure B.19 BanKAGENT iN XML ..ottt 88
Figure B.20 Accounts DEHEFSEL IN XIMILociiiiiiicie ettt sbe s 90
Figure B.21 Balances DeliefSet iN XMLc.cviiiiiccsee e 91
Figure B.22 ProcessWithdraw plan in XIMLcccooiiiiiiiiiiiese ettt se e 92
Figure B.23 WithdrawApproved plan in XIMIL ...t 92
Figure B.24 WithdrawCash plan in XML.........ccciuieiieiiiieeeeeeee e 93
Figure B.25 WithdrawRejected plan in XMLccoooiiiiiiiiie et 93
Figure B.26 Withdraw eVENt iN XIML.......coccuiiiieiiiiiie ettt sae e eneesenns 94
Figure B.27 WithdrawReSPONSE IN XIMLcuiiieiiiiieiiiiie et ae e sbe e e ste e s 94
Figure B.29 Fields of the ACCOUNtS DEIIETSEL........c.coviiiicic e 99
Figure B.30 ACCOUNES DEIIETSELoovieiieieic e 99
Figure B.31 Balances DEIETSELcviiii it ens 99
Figure B.32 BalanCes AESCIIPIONuviiieiieeiesesestese e ste ettt sae e e sae e saesseees s esseneeseeseaseeresneasenes 100
Figure B.33 ProcessWithdraw PIANccvoiiiiiiiic sttt neas 101
Figure B.34 Process Withdraw eSCIIPLONcccvivieieriiie e st st et sae e sa e enesne e 101
Figure B.35 WithdrawWAPPIroVEd PIAN.........coeiiriiiiei s 102
Figure B.36 Withdraw Approved GESCIIPIONccviieieiie ettt sae e sreeneas 102
Figure B.37 WithdrawCash PIAN...........ccciiiiiiiicc s 103
Figure B.38 Withdraw Cash eSCriPIOr........cuiiiiiiiieie sttt ste s 103
Figure B.39 WithdrawREJECE PIANeciiiiie et ae s 103
Figure B.40 Withdraw Rejected AeSCIIPLONiiviiiiii ettt sbe e 104
Figure C.1 Strategic Dependency model for Air Traffic Environment..........cc.ccoce oo 106
Figure C.2 Strategic Rationale model for Air Traffic ENVIronment............cccoooovviiiniincincccee 107
Figure C.3 Goal diagram for Air Traffic ENVIFONMENT.........cccviiiiieie e 108
Figure C.4 Traffic Feeding Capability..........ccccviiiirieiiiiiie e 109
Figure C.5 Arrival Sequencing Capabilitycccccveiiiiieiiiiiii e 109
Figure C.6 Runway AsSigning Capabilityc.ccceiiiiiiiiieiesi s 110
Figure C.7 FIYING Capabilityc.covoiiiiiiiie et ene e 110
Figure C.8 Traffic Feeding Capability...........cccoeiiiiiiiiiie e 111
Figure C.9 Arrival Sequencing Capabilityccocviiviiriieiiiiisesese e 111
Figure C.10 Runway Assigning Capability ..o 112
Figure C.11 FIYiNG Capabilityc.ccooiiiiiiiiiise e sttt e ne e reeneane e 113
Figure C.12 AIFCIaft A0ENT ..ot s bbbt nr et 113
o T O R AN T g Lo A= To 1= | USRS SRRP 114
[0N O O T [T To 1= o S 114
FIguIre C.15 RUNWAY A0ENT......iiieitiiie ittt seese sttt e ta et e st e b et e e e e s beesaesae e s b e s te e beesaesbesneebeeneesteaneas 114
Figure C.16 LandingInfo DEHETSEL.........ocv i 115
Figure C.17 RUNWAYINTO DEIIETSEL........c.oiiiir s 116
Figure C.18 ArrivalSequencing Capability........c.ccovcoeiiiiiiiiiiii e 116
Figure C.19 FIYiNG Capabilityc.ccvoiiiiiiiiiiie et ne e reeneare e 117
Figure C.20 Runway AsSigning Capabilityccceciiiiiiiiiieiiiie it sre e 117
Figure C.21 TrafficFeeding Capability..........cccooiiiiiiiiie e 118
Figure C.22 AIFCraftEVENT BVENTc.oiviiiriicice et 119
Figure C.23 APProaChing BVENTciviieiiiie e este ettt ettt st et et sae st e e et e esaaneesseneaseareaaeare e 120
Figure C.24 ENterCONTIOIATEA.cccvii i ettt sttt sae e sae s e s e saeseesaeneareereeneare e 120

Figure C.25 TraffiCEVENT BVENTcci it e et ra e e e e e reeaeere e 121

Figure C.26 ASSIGNSIOt PIAN........ciiiieieiiee ettt sttt re st sae s ae e e seeneareereeneare e 121
Figure C.27 FOIIOWAPPIOACh PIANcveiiiiiii et ne s 122
Figure C.28 INItIalAPProaCh PIANooi i ne e ne e e 122
Figure C.29 MONItOrAINCraft PIAN..........oooiiiic s 123
Figure C.30 REQUESESIOL PIAN.........oieieiciei ettt sttt saeneareereeneare e 124
Figure C.31 RUNWAYASSIGN PIANcviiiiiiiiirccst bt 125
Figure C.32 RUNWAYREQUESE PIANcc.viiiiiiicie ettt et e e ste e 126
Figure C.33 TaKOT PIAN ..ottt e e re e renneare e 127
Figure C.34 TakeoffDISCArd PIAN.........cccviiiiiiiieie ettt e e saeaneas 127
Figure C.35 TraffiC Plan.......cvci i sttt teere e reeneere s 128
Figure C.36 AIrcraft agent in XIML ...t 128
Figure C.37 AIrport agent iN XIMLcuoiieieiieie ettt ettt b e te et sbe e besaeenaesneaneas 129
Figure C.38 TrafficFeeding agent in XML ..o s 129
Figure C.39 RUNWAY aQENT IN XIML.....cuiiieie ettt sttt be e sbe e e nte e 129
Figure C.40 LandingInfo BeliefSEt iN XIMLcvci it 130
Figure C.41 RunwayInfo DeliefSEt in XIML........ccuoi i 131
Figure C.42 AsSIgNSIOt PIaN iN XMLcoiiiiiiiiicce s re et neane s 131
Figure C.43 FOllowAPProach plan in XMLc.ccciviieiiriie e 131
Figure C.44 Initial Approach plan in XIMLccooiiiiiic et 132
Figure C.45 MonitorAircraft plan in XIML ..o e 132
Figure C.46 RequestSIOt Plan iN XIML........ccociiiiii e 134
Figure C.47 RunwayAsSign Plan iN XIMLcccciiiiiiiiiiie et n e neane s 134
Figure C.48 Takeoff Plan iN XIMLccvoviiiiie e sttt e e e eneane e 135
Figure C.49 TakeoffDiscard plan in XMLcccoeiiiiiiiiie st 135
Figure C.50 Traffic pPlan iN XIML.......cvoiiieicescse e sttt re e nnesne e 135
Figure C.51 RunwayRequESt PIan iN XIMLccuoiiiriineieinre e 136
Figure C.52 AircraftEVent eVENt iN XIVILcoviiiiii ittt 136
Figure C.53 Approaching eVENt iN XML ..o 137
Figure C.54 EnterControlArea eVENE iN XIMLccviiiiiiiiiiicsie e s 137
Figure C.55 TrafficEVENt VENT IN XMLccviiiiii ettt ne s 138
Figure C.56 ArrivalSequencing capability in XIML.........ccooiiiiiiiiie i e 138
Figure C.57 Flying capability iN XIMLccccviiiiiiiieieic ettt ne e 139
Figure C.58 RunwayAssigning capability in XIMLcccciiiiniiiiiiicieee s 139
Figure C.59 TrafficFeeding capability in XIML.........cccoviiiiiiiieiicic et 140
Figure C.60 Air Traffic Control Environment i* model VErsion 1c.cccccvooiivvviininniennsene e 147
Figure C.61 Prometheu goal diagram..........cccoiieiiiieiiiie ettt 147
Figure E.1 A generic BDI arChiteCUIEccvovueiiieeice ettt e et ne s ne s 201
Figure F.1 Prometheus Goal vs SD Goal overlaps dependencyccccvvvivriererienienenenene e 206
Figure F.2 Monitor Shipment task dePeNdENCYcc.ccveiiiiiiiiiiie e 207
Figure F.3 Monitor delivery goal in PrOmMEthEUS...........cveiiiiicicisc e 207
Figure F.4 Prometheus Goal vs Actor depends on traceability relation.............ccccovvviincincinciicee, 208
Figure F.5 Prometheus Goal vs SR Goal overlaps traceability relation.............cccccoovivvinineiiencnereeen, 209
Figure F.6 Prometheus Goal vs SR Task overlaps traceability relation.............cccovvvincinicniiiceine, 210
Figure F.7 Prometheus Role vs SD Goal uses traceability relation...........cccccovviiiiiiiiniiciesecne e 210
Figure F.8 Prometheus Role vs SD ResoUrces USeS Felation..........cocvccevvrerenenesenene e 211
Figure F.9 Prometheus Role vs SD Task contributes relationccccovveviiieniiiiiicic e 212
Figure F.10 Prometheus Role vs Actor contributes relation.............cccecveeiie i 213
Figure F.11 Prometheus Role vs SR Goal achieves traceability relationc.coccoveviiriiniincencnn, 213
Figure F.12 Prometheus Role vs SR Resource Uses relation..........cccocvivviveriiieenesie e 214
Figure F.13 Prometheus Role vs SR Resource creates relation...........ccovevicevieneceesienienesene e 215
Figure F.14 Prometheus Role vs SR Task achieves traceability relation............c.cccovviievivenniieiieeieinenn, 215
Figure F.15 Prometheus Agent vs SD Goal achieves traceability relation.............cccccooeviinirieicrsneecnnn, 216
Figure F.16 Prometheus Agent vs SR Resource uses traceability relation ..o, 216
Figure F.17 Prometheus Agent vs SD Task achieves traceability relationccccccceveviiniriir i, 217
Figure F.18 Prometheus Agent vs Istar Actor overlaps traceability relationccccocevvvvvieicieienenen, 217

9]

Figure F.19 Prometheus Agent vs SR Goal achieves traceability relationccccccceveviiniriiv s, 218

Figure F.20 Prometheus Agent vs SR Resource uses traceability relationcccccoceveveinicinsininnenennn, 219
Figure F.21 Prometheus Agent vs SR Resource creates traceability relation.............cccoccoveveieiviicincncnnn, 219
Figure F.22 Prometheus Agent vs SR Task achieves traceability relation.............ccccooceveviieiciiicinceen, 220
Figure F.23 Prometheus Capability vs SD Goal contributes traceability relationccc.cccovviininnn, 221
Figure F.24 Prometheus Capability vs SD Resource uses traceability relationcccccceevveeviiveivenennn, 221
Figure F.25 Prometheus Capability vs SD Task contributes traceability relation..............cccocvvniinenne. 222
Figure F.26 Prometheus Capability vs Actor composed relationcccvveveveeriiiiene e 223
Figure F.27 Prometheus Capability vs SR Goal contributes traceability relation.............cc.ccocvvvrvreienenn. 223
Figure F.28 Prometheus Capability vs SR Resource uses traceability relation...............c.cceevvverieicnnnennn. 224
Figure F.29 Prometheus Capability vs SR Resoource creates traceability relation............ccccccevevvvennenn, 224
Figure F.30 Prometheus Capability vs SR Resource uses traceability relation............ccccocoevniincincnne. 225
Figure F.31 Prometheus Plan vs SD Goal contributes traceability relationcccocviveviiienienicinenn, 225
Figure F.32 Prometheus Plan vs SD Resource uses traceability relation.............ccccoovveniinninninncnnn, 226
Figure F.33 Prometheus Plan vs SD Task achieves traceability relationccccooveviviviiiiceniesccinenn, 227
Figure F.34 Prometheus vs Actor creates traceability relation ..o 228
Figure F.35 Prometheus Plan vs SR Goal achieves traceability relation.............ccccccvvvniiniiniiiiiennn, 228
Figure F.36 Prometheus Plan vs SR Resource uses traceability relation............ccccooevveiiiiiicnc e, 229
Figure F.37 Prometheus Plan vs SR Resource creates traceability relationc.cccoeeeinieivicninnnennn, 229
Figure F.38 Prometheus Plan vs SR Task achieves traceability relation.........c..c.cccovvviivieniiceieicinen, 230
Figure F.39 Prometheus Percept vs SD Resource overlaps traceability relation.............cccceeveeviveivenenne, 230
Figure F.40 Prometheus Action vs SR Task overlaps traceability relation............c.cccccrvcnviniincincnnn, 231
Figure F.41 Prometheus Data vs SD Goal contributes traceability relation..............cccovvviiieiiiiinsnennn, 232
Figure F.42 Prometheus Data vs SD Task contributes traceability relationc.ccooeveivicivicninnnenn, 233
Figure F.43 Prometheus Data vs Actor uses traceability relation.............ccccoceveviiiiciinieene e 234
Figure F.44 Prometheus Data vs SR Goal uses traceability relationccccecevoereveiercisicie e 235
Figure F.45 Prometheus Data vs SR Resource overlaps traceability relation............c.ccccovovviniiicienenn, 235
Figure F.46 Prometheus Data vs SR Task uses traceability relation.............cccecevveiiiiiiiiie e, 236
Figure F.47 Order BOOK SCENAITO..........coveiiriiiriieri ettt 237
Figure F.48 Strategic Rationale Diagram for the Electronic Bookstore actorccccvevvvevienieiecnene. 238
Figure F.49 Prometheus Scenario vs SD Task depends traceability relation.............cccccevveiiveiniriineeennn, 239
Figure F.50 Prometheus Scenario vs Actor depends traceability relation.............cccccocevviveveniiiencinene, 239
Figure F.51 Prometheus Scenario vs SR Goal compose traceability relationccccceeeeivevvivcinenennn, 240
Figure F.52 Prometheus Scenario vs SR Resource creates traceability relation............cccccoveniiiinnnn, 241
Figure F.53 Prometheus Scenario vs SR Resource uses traceability relationcccceevevcvevieiiveieinenne, 241
Figure F.54 Prometheus Scenario vs SR Task composed traceability relation...........ccccoveeieiviininencnnn, 242
Figure F.55 Prometheus Message vs SD Resource overlaps traceability relationcccccceevveiiinennn, 242
Figure G.1 JACK Agent vs Prometheus Goal achieves traceability relation..........c.cccoevveviieviiicineecnnn, 245
Figure G.2 JACK Agent vs Prometheus Role uses traceability relationccoceoeveieiiiniecciincnee, 246
Figure G.3 JACK Agent vs Prometheus Agent overlaps traceability relationccccccceveieiiieieenenenn, 246
Figure G.4 JACK Agent vs Prometheus Capability uses traceability relation............cccccccevvievviivninnnnnnn, 247
Figure G.5 JACK Agent vs Prometheus Plan uses traceabilty relationcccoovveniniiniincincen, 247
Figure G.6 JACK Agent vs Prometheus Percept uses traceability relationcccccooeveveieiiicineeceenn, 248
Figure G.7 JACK Agent vs Prometheus Action creates traceability relation.............cc.cccevevniiiiniinnnn, 249
Figure G.8 JACK Agent vs Prometheus Message sends traceability relation..............ccccooevvivenienicinenn, 249
Figure G.9 JACK Agent vs Prometheus Message receives traceability relationccccooevevvivnivennnnn 250
Figure G.10 JACK Agent vs Prometheus Message receives traceability relationccccceevevviininennn. 250
Figure G.11 JACK Agent vs Prometheus Date creates traceability relationcccccoceveveieviiiicieenennn, 251
Figure G.12 JACK Plan vS Prometheus GOalccvriireiniiiiriiii e 251
Figure G.13 JACK Plan vs Prometheus Role uses traceability relation...........cccccccoevvviiiienccniicc e, 252
Figure G.14 JACK Plan vs Prometheus Agent uses traceability relation...........c..ccoovevveviniicencne e, 253
Figure G.15 JACK Plan vs Prometheus Capability uses traceability relation...............ccccocevvvieeiivnreinennn. 253
Figure G.16 JACK Plan vs Prometheus Plan overlaps traceability relation.............ccccoovvieivciviniinsnennn, 254
Figure G.17 JACK Plan vs Prometheus Percept uses traceability relation..............ccooecvioiiniiniincnne, 254
Figure G.18 JACK Plan vs Prometheus Action creates traceability relationc..ccocoovevvieicccienen, 255
Figure G.19 JACK Plan vs Prometheus Message sends traceability relationcccccccevcvveviierienennn, 255

[10]

Figure G.20 JACK Plan vs Prometheus Message receives traceability relationccccoeevvivnvenennn, 256

Figure G.21 JACK Plan vs Prometheus Data uses traceability relationc..ccocvevvivvinciiencne e, 256
Figure G.22 JACK Plan vs Prometheus Data creates traceability relation.............c.ccccevvvivnireiniinninnnennn, 257
Figure G.23 JACK Belief vs Prometheus Role creates relation...........ccocvevecviienv s 257
Figure G.24 JACK Belief vs Prometheus Role uses traceability relationc.coccovvervinincinciencnnn, 258
Figure G.25 JACK BeliefSet vs Prometheus Agent creates traceability relation.............cccevvevviinivenennn 258
Figure G.26 JACK BeliefSet vs Prometheus Agent uses traceability relation ..., 259
Figure G.27 JACK BeliefSet vs Prometheus Capability creates traceability relationccccceeevvvinnne. 260
Figure G.28 JACK BeliefSet vs Prometheus Capability uses traceability relation..............ccocoeviivvvennenn, 260
Figure G.29 JACK BeliefSet vs Prometheus Plan creates traceability relation..............cccccoeeviiieiennennn. 261
Figure G.30 JACK BeliefSet vs Prometheus uses traceability relation............cccooeeveveiiciiiniccn s, 262
Figure G.31 JACK BeliefSet vs Prometheus Data overlaps traceability relation............c.cccoceevvvviieninenn, 262
Figure G.32 JACK Event vs Prometheus Agent receives traceability relationcccoocvvvvieiieicninenn, 263
Figure G.33 JACK Event vs Prometheus Agent sends traceability relation...............ccocoovveniiniiicnnenn, 263
Figure G.34 JACK Event vs Prometheus Capability...........cccoeviiiiiiiiii i 264
Figure G.35 JACK Event vs Prometheus Capability receives relationc.ccovvevveveiicviccicciccsceceen, 264
Figure G.36 JACK Event vs Prometheus Plan sends traceability relationccccocvvvviniiniieiennnn, 265
Figure G.37 JACK Event vs Prometheus Plan receives traceability relation.............cccccooeeviviiviivnnenennn, 266
Figure G.38 JACK Event vs Prometheus Message overlaps traceability relation.............cccccoceevivnivennnnn, 266

[11]

Tables

Table A.1- Completeness checking fUNCLIONSc.cccciiieiiiiiic e 17
Table A.2 XQUETY TUNCLIONSocviririieie ittt 23
Table A.3 XQUEIYJACKFUNCLIONS.uiiiiiieiiiiteie et see et e st s be e be e b e sbaesaesraenaesseesbesree e 31
Table A4 XQUENYPDTFUNCHIONS.cviiviietieese st se s este sttt st ea e e s et aese e ebesbestesbestesae b ensesaesseneessensenens 34
Table A.5 XQUerySimilarityFUNCIIONS.ccoiiiieii ettt et sbe e 52
Table A.6 XQuerySynonyms FUNCION EXaMPIE..........cccvieiiiieie et 64
Table A.7 XQUErYTAOMPFUNCLIONSveuviieeiieieeeee sttt ete ettt te b e e e sae e b eesaess e e esaeneenenns 69
Table B.1 Traceability relations identified manually ... 96
Table B.2 Traceability relations identified by the t0Olc.ccoovviiii i 98
Table B.3 MisSiNG INFOrMALIONc.cuiiiiiiiiee et sreesbe e e 98
Table C.1 Traceability relations identified manuallycccccceoieieiiiii i 142
Table C.2 Traceability relations identified by the t00]cccocooiiiiiciicc e 144
Table C.3 Missing relations identified by the t00]............cccceiiii i 145
Table C.4 Missing relations between SD Goal and Prometheus Goalccccvvverereneieiieiieiceeesneeens 146
Table C.5 Missing relations between SR Goal and Prometheus Goalccccoovioeviinieniiiienineneceeens 146
Table C.6 Missing relations between SR Plan and Prometheus GOoal............ccccvvievirnienieiienenenesieeeienens 147
Table C.7 Missing relations between Prometheus Goal and SD/SR Task or SD/SR Goal............cccccoeueenens 148
Table C.8 Missing relations between SD Resource and Prometheus Percept..........ccccvvvvvvevenienienieinannens 148
Table C.9 Missing relations between SD Goal and a Prometheus Agent...........cocooverneineinenneinnecnnes 149
Table C.10 Missing relation between a SR Goal and an AgeNt..........ccevvvieiiiieeieiieie e 149
Table C.11 Missing relations between a SR Task and an AgeNtcccccveevievireierieieeie e 149
Table C.12 Missing relations between a SD Goal and a Prometheus Plancccoccooioiinenienencneiienens 150
Table C.13 Missing relations between a SR Goal and a Prometheus Plan.............cccccoevveieveveicccinsnennns 150
Table C.14 Missing relations between a SR Task and Prometheus Planc.cccoovvviviinienieneneneiennns 150
Table C.15 Missing links between a SD Goal and Prometheus Capability............c.ccccovvivenivniiisiiinennns 151
Table C.16 Missing links between a SR Goal and Prometheus Capabilityc..ccocvvvvieiienievniieiicinnnenens 151
Table C.17 Missing relations between a SR Task and Prometheus Capabilitycccocooveriincincnnnnn 151
Table C.18 Traceability relations between i* and Prometheus...........cccvvevieiiiir v 154
Table C.19 Missing relations between JACK and Prometheusccccvcvrviereieieieieeees s 154
Table D.1 Relations identified manually between Prometheus Goal and JACK Agent.........ccccceevvveieiinns 156
Table D.2 Relations identified by the tool between Prometheus Goal and JACK Agent...........ccccocvvivrvenns 157
Table D.3 Relations identified manually between Prometheus Role and JACK Agentcc.ccoevvevnrcennee 157
Table D.4 Relations identified by the tool between Prometheus Role and JACK Agentccccveevevennnns 158
Table D.5 Relations identified manually between Prometheus Agent and JACK Agentccccoevnvcennee 158
Table D.6 Relations identified by the tool between Prometheus Agent and JACK Agentccccvevereiinnne 158
Table D.7 Relations identified manually Prometheus Capability and JACK Agent..........cccoovvevvecviivnnennns 159
Table D.8 Relations identified by the tool between Prometheus Capability and JACK Agent.................... 160
Table D.9 Relations identified manually between Prometheus Plan and JACK Agent.........cccevvevivnnannns 161
Table D.10 Relations identified by the tool between Prometheus Plan and JACK Agent..........cc.cccevveeenee. 162
Table D.11 Relations identified manually between Prometheus Percept and JACK Agentc.cccevvvivnene 163
Table D.12 Relations identified by the tool between Prometheus Percept and JACK Agentc..ccce.ee 163
Table D.13 Missing traceability relations between Prometheus Percept and JACK Agent............cccceevnene 164
Table D.14 Relations identified manually between Prometheus Action and JACK Agentccccvevvevennns 164
Table D.15 Relations identified by the tool between Prometheus Action and JACK Agentc..ccccveveene 165
Table D.16 Relations identified manually between Prometheus Message and JACK Agent.............c.co..... 166
Table D.17 Relations identified by the tool between Prometheus Message and JACK Agent...........cccco.... 166
Table D.18 Relations identified manually between Prometheus Message and JACK Agent...........c..c....... 167
Table D.19 Relations identified by the tool between Prometheus Message and JACK Agent...........cccco..... 167
Table D.20 Relations identified manually between Prometheus Data and JACK Agent..........cccoevevvnveeennee 168
Table D.21 Relations identified by the tool between Prometheus Data and JACK Agent........ccccveveriviinns 168
Table D.22 Relations identified manually between Prometheus Data and JACK Agent...........ccccevvrvernenns 168
Table D.23 Relations identified by the tool between Prometheus Data and JACK Agent.........cccccccvvveernne 168

[12]

Table D.24 Relations identified manually between JACK Plan and Prometheus Goalc..c.cccevenanens 169

Table D.25 Relations identified by the tool between Prometheus Goal and JACK Plancccccoevvvnens 169
Table D.26 Relations identified manually between JACK Plan and Prometheus Role.............cccccovivinnens 170
Table D.27 Relations identified by the tool between Prometheus Role and JACK Plan...........ccccccvvevvvnens 170
Table D.28 Relations identified manually between JACK Plan and Prometheus Agent...........cccccccvveeenee. 171
Table D.29 Relations identified by the tool between Prometheus Agent and JACK Planc..ccccvevnene 172
Table D.30 Relations identified manually between JACK Plan and Prometheus Capability..................... 173
Table D.31 Relations identified by the tool between Prometheus Capability and JACK Plan................... 174
Table D.32 Relations identified manually between Prometheus Plan and JACK Plan.........c..ccccoevvivvvenns 175
Table D.33 Relations identified by the tool between Prometheus Plan and JACK Plan..........ccccccocveiiinnne 175
Table D.34 MiSSING FEIALION..........civiieieece e et e s te e st s aesbe e e e eneaneereereanens 176
Table D.35 MiSSING FEIATIONc..cuiiitiictire e 176
Table D.36 WIONG FEIALION........iiiii ettt e b sbe e b e se e beeseesbeeneesaeesbeareens 176
Table D.37 MiSSING FEIATIONc..cviiitiictiee ettt 177
Table D.38 WIONG FEIALION........ciiie et e s be e sbe e b e s se e beeseesbeensesaeesbeareens 177
Table D.39 MiSSING FEIALIONScveieieice ettt st st e st st be it e e eseannarearearens 177
Table D.40 MiSSING FEIATIONc..cviiiriictie ettt 178
Table D.41 Relations not identified by the 1001ccvoiiiiiii e 178
Table D.42 Relations identified manually between JACK Plan and Prometheus Percept..........c..ccocvvvnene 179
Table D.43 Relations identified by the tool between Prometheus Percept and JACK Plan............c..ccc...... 179
Table D.44 Relations identified manually between JACK Plan and Prometheus Action............cc.ccocvvvnens 180
Table D.45 Relations identified by the tool between Promehteus Action and JACK Plan.............cc.ccoce..... 180
Table D.46 Relations identified manually between JACK Plan and Prometheus Messagecc.cuvnene 181
Table D.47 Relations identified by the tool between Prometheus Message and JACK Plan.............c......... 181
Table D.48 Relations identified manually between JACK Plan and Prometheus Messagec.ccocvvevnene 183
Table D.49 Relations identified by the tool between Prometheus Message and JACK Plan.............c......... 183
Table D.50 Relations identified manually between JACK Plan and Prometheus Datac.cccceevnvnene 184
Table D.51 Relations identified by tool between JACK Plan and Prometheus Dataccccceevvvveiininnns 184
Table D.52 Relations identified manually between JACK Plan and Prometheus Datacc.ccoceveeinene 185
Table D.53 Relations identified manually between JACK BeliefSet and Promtheus Rolec.ccccoviiee 185
Table D.54 Relations identified by the tool between Prometheus Role and JACK BeliefSet..........ccccveuveene 185
Table D.55 Relations identified manually between JACK BeliefSet and Prometheus Rolec....c...... 186
Table D.56 — Relations identified by the tool between JACK BeliefSet and Prometheus Role.................... 186
Table D.57 Relations identified manually between JACK BeliefSet and Prometheus Agentc..c....... 186
Table D.58 Relations identified by the tool between Prometheus Role..........cccccveieiiiiiiiiiiiie i 186
Table D.59 Relations identified manually between JACK BeliefSet and Prometheus Agentc..cocveee 187
Table D.60 Relations identified by the tool between Prometheus Agent and JACK BeliefSet..................... 187
Table D.61 Relations identified manually between Prometheus Capability and JACK BeliefSet............... 188
Table D.62 Relations identified by the tool between Prometheus Capability and JACK BeliefSet............. 188
Table D.63 Relations identified manually between Prometheus Capability and JACK BeliefSet............... 188
Table D.64 Relations identified by the tool between Prometheus Capability and JACK BeliefSet............. 189
Table D.65 Relations identified manually between Prometheus Plan and JACKccccooeviiniieiinnnenns 189
Table D.66 Relations identified by the tool between Prometheus Plan and JACK BeliefSetc..c........ 189
Table D.67 Relations identified manually between Prometheus Plan and JACK BeliefSetcc.coev.eene 190
Table D.68 Relations identified by the tool between Prometheus Plan and JACK BeliefSetc..cccv.. 190
Table D.69 Relations between JACK BeliefSet and Prometheus Data............ccovevreiinicineiincninenccne 191
Table D.70 Relations between Prometheus Data and JACK BeliefSet..........cccooeiriiiiniienieneneicceeens 191
Table D.71 Relations between JACK Event and Prometheus AQENtcccvcvveveveiesinnesiesiesesesesesee e 192
Table D.72 Relations between JACK Event and Prometheus Agentcccveivrerinerineineinesenienens 192
Table D.73 Relations between JACK Event and Prometheus Capability...........cccccvivviiiveniniiiiiiiiiens 193
Table D.74 Relations identified manually between JACK Event and Prometheus Capability 194
Table D.75 Relations identified manually between JACK Event and Prometheus Planccccccoceiviiine 195
Table D.76 Relations identified by the tool between Prometheus Message and Prometheus Plan............. 196
Table D.77 Relations identified manually between JACK Event and Prometheus Plancccccocevee 197
Table D.78 Relations identified by the tool between Prometheus Plan and JACK Eventcccccvvevnens 197
Table D.79 Relations between JACK Event and Prometheus MEeSSage........coverververuervereerieriereereeieeeesennens 198

[13]

Table D.80 Relations between Prometheus Message and JACK EVENL.........ccccoovevevievieieievic e 198

Table F.1 Relations between Prometheus and i* SD........cccoiviviienirniiinnnne e 204
Table F.2 Relations between Prometheus and i*SR elementscccveoviieiceiiein s 205
Table G.1 Traceability Relations Types between Prometheus and JACK Artefacts.........ccccoevveeviiviivnnnnnns 244
Table G.2 Traceability Relations Types between Prometheus and JACK Artefacts.........ccccoovveevivivninannns 244

[14]

Appendix A - Extended Functions

The lists of functions are grouped in seven classes:

XQueryCompletenessCheckingFunctions - contains a list of methods in Java that

extend XQuery to perform completeness checking.

® XQueryFunctions — contains a list of methods in Java that extend XQuery with

general functionalities.

* XQueryJACKFunctions - provides a list of methods in Java that that extends XQuery

with functions to manipulate elements in the JACK XML file.

* XQueryPDTFunctions - provides a list of methods in Java that extends XQuery with

functions to manipulate elements created by the PDT tool version 3.2.

® XQuerySimilarityFunctions — includes a list of methods in Java that extends XQuery

with functions to compare the similarity between elements in the models.

* XQuerySynonymsFunctions — contains a list of methods in Java that extends XQuery

with functions to verify if names of elements in the models are synonyms.

* XQueryTTAOMFunctions — provides a list of methods in Java that extends XQuery

with functions to manipulate elements in the 7% model created using the TAOM tool.

To use an XQuery extended function implemented in a Java class, it is necessary first to
declare the class name that includes the function and then call the function wanted. For
instance, before to be able to call gPDTFieName function included in the
XQueryPDTFunctions class the user has first to define a namespace and associated it with
XQueryPDTFunctions class and then call the function wanted using the namespace given.
Figure A.1 shows an example when the pdt namespace is associated to the
XQueryPDTFunction class in Java (declare namespace pdt = java:retratos. XQueryPDTFunctions). The
getPDTFileName function is invoked using the namespace followed by colon and the function

name (pdt:getPDTFileName()).

[15]

declare namespace pdt = "java:retratos.XQueryPDTFunctions";
pace p J Y

let $pdtDoc := doc(pdt:getPDTFileName())

Figure A.1 Calling getPDTFileName extended function in Java

The next sections describe functions implemented in Java to extend XQuery in more detail.

A.1.1 Completeness checking functions

Table A.1 shows a list of methods in the XQueryCompletenessCheckingFunctions class that
extend XQuery with functions to perform completeness checking. We are going to describe in

detail and give some examples of the most complex and important functions in next sections.

[16]

Method Summary

boolean

double

String

String

String

String

String

String

int

int

int

int

String

String

String

completenessChecking(ArrayList<TraceElement> listl,
ArrayList<TraceElement> list2)

Verify if list2 contains elements with the same (or synonyms) name of
elements in the listl Elements in listl that it does not have an element in list2
with the same name (or synonyms) are added to ArrayList missingElements

getDegreeOfCompleteness()
Returns degree of similarity between two elements.

getDocSourceMissingElement(int i)
Returns document file name from the source element that is missing to
be represented in the target document.

getDocSourceMissingElementA(int 1)
Returns name of the element that is missing to be represented in the
target document.

getIDMissingElement(int i)
Returns id of the missing element.

getIDMissingElementA(int i)
Returns id from source element that is missing to be represented in the
target document.

getNameMissingElement(int i)
Returns name of the missing element.

getNameMissingElementA(int i)
Returns name of the element that is missing to be represented in the
target document.

getNumberOfElements()
Returns number of an element that is missing to be represented in the
target document.

getNumberOfElements(ArrayList<TraceElement> elements)
Returns the size of the ArrayL.ist elements

getNumberOfMissingElements()
Returns the size of ArrayList missingElement minus one

getNumberOfMissingElementsA()
Returns the size of the ArrayL.ist elements

getTypeOfMissingElement(int i)
Returns type of the missing element.

getTypeOfMissingElementA(int 1)
Returns the name of the type from source element that is missing to be
represented in the target document.

getTypeTargetMissingElement(int 1)
Returns document file name from the target element that is missing to be
represented

Table A.1- Completeness checking functions

[17]

A.1.1.1 CompletenessChecking functions

The completenessCheching function can be used to verify the similiraty between two lists of
elements. The function receives two lists of element and compares if names of the elements
are synonyms. For instance, in the Figure A.2, we have the ListA that contains “Login
outgoing delivery”, “Calculate delivery time estimates”, and “Get delivery options” and the
ListB that contains “Obtain Delivery Options”, “Compute Delivery Estimates” and “Place
Delivery Request”. The function completenessCheching checks if each element of the ListA
has a synonyms in the ListB. In the Figure A.5, “Get delivery options” is synonyms to “Obtain
Delivery Options”, and “Calculate delivery time estimates” is synonyms to “Compute Delivery
Time Estimates”. The “Login outgoing delivery” does not have synonyms in the List B. The

“Login outgoing delivery” element is added to a list the missing elements.

[18]

A.1.1.2 GetDegreeOfCompleteness function

doc="ElectronicBooks
tore.pd”

C Element, >

name="Login

name="Calculate
outgoing delivery”

delivery time

estimates” A‘»‘
name="Get delivey ; |
options” IR

doc="ElectronicBooks
tore.pd”

name="Place
Delivery
Request”

name="“Obtain
Delivery Options”

name="“Compute
Delivery Time
Estimates”

completenessChecking(listA, listB)

1)

true

type=“Goal”

doc="ElectronicBooks
tore.pd”

name=“Login
outgoing delivery”

Figure A.2 List of strings

The getDegreeOfCompleteness function returns the value of degreeOfCompleteness field.

[19]

A.1.1.3 GetDocSourceMissingElement

The getDocSourceMissingElement function receives as parameter an integer that represents
the index of the missing element and returns a String with the name of the document that
contains the element that is missing. For instance, in the Figure A.3 the Element, (index equal
0) is part of the ElectronicBookstore.pd document. If the getDocSourceMissingElement
function is called passing the value equal O then getDocSourceMissingElement function

returns the “ElectronicBookstore.pd” string value.

missingElements

type=“Goal”

name="“Login
outgoing delivery”

doc="ElectronicBooks
tore.pd”

getDocSourceMissingElement(0)

1

“ElectronicBookstore.pd”

Figure A.3 getDocSourceMissingElement function

A.1.1.4 GetIDMissingElement

The getl DMissingElement function receives as parameter an integer that represents the index of
the missing element and returns a String with the id of the element that is missing. For
instance, in the Figure A4 the Element, (index equal 0) has id equal to 0. If the

getlDMissingEllement function is called passing the value equal 0 then function returns the value

55.

[20]

missingElements

type=“Goal”
doc="ElectronicBooks
name="“Login tore.pd”
outgoing delivery”
getIDMissingElement(0)

il

u55"

Figure A.4 getIDMissingElement function example

A.1.1.5 GetNameMissingElement

The getNameMissingElement function receives as parameter an integer that represents the index
of the missing element and returns a String with the name of the element that is missing. For
instance, in the Figure A.5 if the gezNameMissingElement function is called passing the value

equal O then function returns the “Login outgong delivery” string value.

missingElements

type="“Goal”

name="“Login
outgoing delivery”

getNameMissingElement(0)

ags

“Login outgoing delivery”

doc="ElectronicBooks
tore.pd”

Figure A.5 getNameMissingElement function example

[21]

A.1.1.6 GetNumberOfMissingElement

The getINunberOfMissingElement function returns the size of Arraylist missingElement minus
one. For instance, in the Figure A.6 the getNumberOfMissingElement function returns the

value n-1.

missingElements

type=“Goal”

name="“Login
outgoing delivery”

doc="ElectronicBooks
tore.pd”

getNumberOfMissingElement()

1l

n-1

Figure A.6 getNumberOfMissingElement function example

A.1.1.7 GetDocSourceMissingElementA

return XQueryFunctions.sourceMissingElements.get(i).getDoc();
A.1.2 XQuery functions

Method Summary

boolean capabilityUsesSDResource(TinyNodelmpl capability,
TinyNodelmpl resource)

Check if the Capability in Prometheus uses a SD Resource in

i*.

boolean |capabi lityUsesSRResource(TinyNodelmpl capability,
TinyNodelmpl resource)

Check if the Capability in Prometheus uses a SR Resource in

I*.

boolean clr()
Reset value of class variables used to perform completeness

[22]

checking: numberOfElements , missingElements,
numberOfMissingElements and sourceMissingElements
boolean |contains(ArrayList<String> listl,
ArrayList<String> list2)
Check if the ArrayList of Strings listl contains all the strings
in the ArrayList of Strings list2

boolean contains(String word, ArrayList<String> wordList)
Check if the ArrayList of String wordL.ist contains the String
word.

String |getAttributeValue(TinyNodelmpl node, attributeName)
Returns the value of an attribute of an XML Element in
Saxon The method compares if any of the messages that the
Capability sends or receives has an overlaps relations with the SR
Resource.

String |getTraceabilityFileName()
It returns a String of tokens.
boolean |hasRelation(elementlD, String relationType,
String type)

Check if there is a specific type of relations between an
element in which the id is equal to elementID and any element
with the same type as type

ArrayList<String> stringTokenizer(String str)

It returns a String of tokens.

ArrayList<String> |stringTokenizerByUpperCase(String str)
It returns a String of tokens.

Table A.2 XQuery functions

A.1.2.1 CapabilityUsesSDResource function

The capabilityUsesSDResource function checks if a capability uses a SD Resource. The
function receives as a parameter TinyNodelmpl capability and TinyNodelmpl resource that
represents a XML Node in the Saxon tool. For instance, the Figure A.7 shows the Arrival
Sequencing Capability and the ATL SD Resource. The Arrival Sequencial Capability contains
the Aircraft Event message. If you call the capabilityUsesSDResource function (see Figure
A.8) and pass as argument the Arrival Sequencing Capability TinyNodeImpl and the ATL
TinyNodelmpl, the function recovers all messages that the capability contains and then checks
if there is some overlaps relation between the id of a message and the id of the SD resource

using the isOverlap function.

[23]

/

Arrival Sequencing Capability

Aircraft Event ——>(Request Slot Plan>

\

Slot Allocated

SD Resource

Figure A.7 Arrival Sequencing Capability and ATL SD Resource

[24]

<object type="'Capability" id="14">
<base type="Entity'>
<field name="name">Arrival Sequencing</field>

</object>
\\ <object type="'Message' id=""7"">
\ <base type="Interaction'>
", <base type="Entity'>
\ <field name=""name'">Aircraft Event</field>
. </base>
R </base>

. |</object>

Y <TroposClasses
\ xmi - id=""_BHHSKF5wWEd6A7vkLk-vUcQ""
N name="ATL" .. />

\ ’
A ’
A ’
Al ’
\ ’

capabilityUsesSDResource (capability, resou rce)

call isOverlap (77, " BHHSKF5WEdBA7VKLK-vUCQ™)

1L

true

Figure A.8 capabilityUsesSDResource function example

A.1.2.2 CapabilityUsesSRResource function

The capabilityUsesSRResource function checks if a capability uses a SR Resource. The
function receives as a parameter TinyNodelmpl capability and TinyNodelmpl resource that
represents a XML Node in the Saxon tool. For instance, the Figure A.9 shows the Flying

Capability and the ILanding Information SR Resource. If you «call the

[25]

capabilityUsesSRResource function and pass as argument the Flying Capability TinyNodeImpl
and the LandingInformation TinyNodelmpl.

<Traceability>
<TraceabilityRelation type="uses'>
<Element .. 1d=""_PsspBiQyEd6fbcmFsKI3Cw"/>
<Element .. id=""40" />
</TraceabilityRelation>

</Tréceabi lity>

S
S
RS

hasUses(“PsspBiQyEd6fbcmFsKI3Cw™”, 40, outputDoc, SaxonInterface.xpath

11

true

Figure A.9 hasUses function example

A.1.2.3 Contains function

Contains function receives as parameter a String word and an ArrayList of String wordList and
check if the Arraylist wordList contains the String word. The function uses the WordNet
dictionary to check for synonyms words. Figure A.10 shows that the contains function returns
true when it is invoked passing as parameter the String “Get” and the list of Strings wordList
that consists of “Obtain”, “Delivery” and “Options”. The list of Strings wordList contains the

“Get” string because “Get” and “Obtain” are synonyms.

[26]

wordList

“Delivery”

contains (“Get”, wordList)

1

true

Figure A.10 contains function example

A.1.2.4 Contains function

Contains function check if the ArrayList of Strings List A contains all the strings in the
ArrayList of Strings List B. To each String in the List A the contains function call the other
contains function explained in the section A.1.2.3 passing the String in the List A and the List
B as parameter. If all the Strings in the List A are contained in the List B then function returns
true. For instance, in the Figure A.11 List B does not contain List A. List B contains “Get
delivery options”, and “Calculate Delivery time estimates” Strings, but not contain “Login

outgoing delivery” string.

[27]

List A

Login outgoing
delivery
A

Calculate delivery
time estimates

: - Place Deliver
Obtain Delivery Request g
Options
N e Compute Delivery
-------- Time Estimates

Figure A.11 Using contains function

A.1.2.4 GetAttributeValue function

The getAttributeValue function returns the value of an attribute of an XML Element in Saxon.
The function receives two parameters a TinyNodelmpl node and String attributeName. The
node represents a XML element in the Saxon. For instance, the Figure A.12 shows a
TinyNodelmpl node in Saxon that represents the object element in XML. If you call the
getAttributeValue function and pass as parameter node and the String “type” then the function

returns the value “Agent” as result.

<object type="Agent” id = “44”>
</object>

type = “Agent”

getAttributeValue(node,“type”)

L

“Agent"

Figure A.12 getAttributeValue function example

[28]

A.1.2.5 GetTraceabilityFileName function

The gefTraceabilityFileName function returns the output filename defined in the project

definition and that is used to store the traceability relations.

A.1.2.6 HasRelation function

The hasRelation function checks if two elements have a traceability relation. The function
receives the id of the elements to be checked and the type of traceability relation. Figure A.13
shows an example when the basR/ation function is called to check if elements with id =

"_PsspBiQyEd6fbemFsKI3Cw" and id = "40" have a uses traceability relation.

<Traceability>
<TraceabilityRelation type="uses'>
<Element .. id:"_PsspBiQyEdebmesKI3Cw"/>
<Element .. id="'40" /> \
</TraceabilityRelation> \

</Tréceabi lity> '\

hasRelation(“PsspBiQyEd6fbcmFsKI3Cw™, 40, uses™)

1L

true

Figure A.13 hasRelation function example

A.1.2.7 stringTokenizer function

The stringTokenizer function receives as parameter a String and break down the string into
tokens using as delimiters spaces, *_’, -, °(, and). In the Figure A.14 a list contained “Get”,
“Delivery” and “Options” String is returned as result when function s#inglokenizer function is

called passing as parameter “Get Delivery Options” String.

[29]

stringTokenizer(“Get Delivery Options”)

“Delivery”

Figure A.14 stringTokenizer function example

A.1.2.8 stringTokenizerByUpperCase function

The stringlokenizerByUpperCase function receives as parameter a String and break down the
String into tokens using spaces and upper case letters as delimiters. Figure A.15 shows an
example when the s#inglokenizerByUpperCase function is called and “GetDeliveryOptiions”
String is passed as parameter. As result the stringTokenizerByUpperCase function returns a list

of Strings that consists of “Get”, “Delivery” and “Options”.

stringTokenizerByUpperCase(“GetDeliveryOptions”)

“Delivery”

Figure 4.15 stringTokenizerByUpperCase function example

A.1.3 XQueryJACKFunctions

Method Summary

ArrayList<Field> getBeliefSetFields(Java.lang.String id)
It returns an ArrayList with the list of fields of a beliefSet.

[30]

String |getJACKFi leName()

It returns the name of the file that contains the JACK code in
XML.

Table A.3 XQueryJACKFunctions
A.1.3.1 getBeliefSetFields function

The getBeliefSetFields function receives as parameter an id of a beliefSet in Prometheus created
using the PDT tool and returns a list of Field elements. Figure A.16 shows an example when
the gesBeliefSetlields function is called and integer 58 is passed as parameter. The gesBeliefSetFields

function returns a list with the included fields.

<object type='"Data" id="58">

<base type="Entity''> Y

<Ffield name:"name">landjng_info</field>

</base> \

<field name:"dataType">LandihgInfo</field>

<field name="includedFields"y

String runway,long ATL
</fTield> \

</ object> \

fieldname="runway”

fieldname=“ATL"

fieldType="String” fieldType="“long”

Figure A.16 getBeliefSetFields function example

A.1.3.2 getJACKFileName function

The get| ACKFileName function returns the filename that contains the xml representation of the

JACK code. The JACK filename is defined during the creation of project.

A.1.4 XQueryPDTFunctions

Method Summary

boolean

Field

actorHasCapability(String actorlID, String capabilitylD)

Finds all agents in Prometheus that uses the Capability and check
if there is an overlaps traceability relation between the Actor and the
Agent.

fieldTokenizer(String s, String token)

String

ArrayList<Field>

Receives a String token and returns a Field object.

getAttributevalue(TinyNodelmpl node, String attributeName)
Returns the value of an attribute of an XML Element in Saxon

getincludedFields(String id)

ArrayList<String>

String

ArrayList<TraceEl

It returns an ArrayList of Fields with the includedFields of a
beliefSet in Prometheus.

getiInformationCarried(String id)
It returns an ArrayList of Strings with informationCarried of a
Percept

getPDTFileName ()
Returns the PDT filename

getPrometheusElements(String id, String type,

ement>

ArrayList<TraceEl

ArrayList<TraceElement> subElements)
It returns an ArrayL.ist of sub-elements of an element in PDT.

getPrometheusStepScenarios(String id,

ement>

ArrayList<TraceEl

ArrayList<TraceElement> subElements)
Retrieve steps from a Scenario in Prometheus (e.g.

getPrometheusSubElements(TinyNodelmpl node, String type)

ement>

ArrayList<TraceEl

It returns an ArrayL.ist of sub-elements of an element in PDT.

getPrometheusSubGoals(ArrayList<TraceElement> goalsName,

ement>

ArrayList<TraceEl

String goallD)
Retrieve sub-goals of a goal in PDT

getPrometheusSubGoals(TinyNodelmpl node)

ement>

ArrayList<TraceEl

Retrieve sub-goals of a goal in the Prometheus model created by
the PDT tool

getPrometheusUsesData(String id,

ement>

boolean

ArrayList<TraceElement> subElements)
Retrieves a list of data used by an element (e.g.

isACapabilityThatTheAgentincludes(String agentliD,

[32]

String capabilitylD)
Verify if an agent includes a Capability
boolean | isADataProducedByTheRole(String datalD, String rolelD)
Verifies if a data is produced by a role in Prometheus

boolean | isADataThatTheAgentReads(String datalD, String id)
Verifies if an agent reads data in Prometheus

boolean |isADataThatTheAgentWrites(String datalD, String id)
Verifies if a agent writes a data in Prometheus
boolean |isADataThatTheCapabilityReads(String datalD,
String capabilitylD)
Verifies if the capability reads a data in Prometheus
boolean |isADataThatTheCapabilityWrites(String datalD,
String capabilitylD)
Verifies if the capability writes data in Prometheus
boolean | isADataThatThePlanReads(String datalD, String planlD)
Verifies if a data is read by a plan in Prometheus

boolean |isADataThatThePlanWrites(String datalD, String planlD)
Verifies if a plan writes a data in Prometheus

boolean | isADataUsedByTheRole(String datalD, String rolelD)
Verifies if a data is used by the role in Prometheus

boolean | isAGoalThatTheAgentAchieves(String goallD, String id)
Verifies an agent achieves a goal
boolean | isAGoalThatTheCapabilityAchieves(String capabilitylD,
String goallD)
Verifies if a capability achieves a goal in Prometheus

boolean | isAGoalThatThePlanAchieves(String goallD, String planliD)
Verifies is a plan achieves a goal
boolean | isAMessageThatTheAgentReceives(String messagelD,
String agentlD)
Verifies if an agent receives a message in Prometheus
boolean | isAMessageThatTheAgentSends(String messagelD,
String agentliD)
Verifies the agent sends a message in Prometheus
boolean | isAMessageThatTheCapabi lityReceives(String messagelD,
String capabilitylD)
Verifies the capability receives a message in Prometheus
boolean | isAMessageThatTheCapabilitySends(String messagelD,
String capabilitylD)
Verifies if the capability sends a message in Prometheus
boolean | isAMessageThatThePlanReceives(String messagelD,
String planlD)
Verifies if a plan receives a message in Prometheus

boolean | isAMessageThatThePlanSends(String messagelD,

[33]

String planlD)
Verifies if the plan sends a message in Prometheus
boolean | isAMessageThatTriggersThePlan(String messagelD,
String planlD)
Verifies if the message triggers a plan in Prometheus

boolean | isAnActionThatTheAgentPerforms(String actionlD, String id)
Verifies an agent performs an action in Prometheus
boolean |isAnActionThatTheCapabilityPerforms(String actionliD,
String capabilitylD)
Verifies if a capability performs an action in Prometheus
boolean | isAnActionThatThePlanPerforms(String actionlD, String id)
Verifies a plan performs an action in Prometheus
boolean | isAPerceptThatTheAgentResponds(String perceptlD,
String id)
Verifies if an agent responds to a percept in Prometheus
boolean | isAPerceptThatTheCapabi lityResponds(String perceptlD,
String id)
Verifies if a capability responds to a percept in Prometheus
boolean | isAPerceptThatThePlanResponds(String perceptlD, String id)
Verifies if the plan responds to the percept in Prometheus

boolean | isAPlanThatTheAgentincludes(String planlD, String id)
Verify if an agent includes an plan

boolean |isAPlanThatTheCapabilitylncludes(String planliD,
String capabilitylD)
Verifies if a capability includes a plan in Prometheus
boolean |isAPlanTheRoleUses(String planlD, String rolelD)
Verify if role uses a plan in Prometheus

boolean |isARoleThatTheAgentincludes(String rolelD, String id)
Verifies is an agent includes a role

boolean |isTrigger(String planld, String eventName)
Verifies if a plan triggers an event

Table A.4 XQueryPDTFunctions
A.1.4.1 ActorHasCapability function

The actorHasCapability function checks if an actor in 7% has a traceability relation with a
capability in Prometheus. The function receives as parameter the id of an actor and the id of a
capability then retrieves all agents that implement the capability. If any of the agents that
implement the capability has an overlap traceability with the actor then the actorHasCapability
function returns true. In the Figure the actorHasCapability function is invoked by passing 44 and

,""_8pRVv4FyvEd6ql0GYcZQlag™ as parameter. The function retrieves all the agents that

[34]

includes the capability and then call #sOverlap function to check if there is an overlaps

traceability relation between the Aircraft agent in Prometheus (id = 43) and the Aircraft actor

7*.

<object type="'Agent" id="43">
<base type="Entity''>
<fField name="name">Aircraft</field>

<fField name="includedCapabilities' ><list>
<object type="Capability" id:"44"
<base type= "Ent|ty">
<field name=' name">FIy|ng</f|eId>

;/obj ect> /

<TroposClasses xmi:id=" 8pF§v4Fvad6quGYCZQIag"
name="Aircraft" "/> / \

actorHasCapabil ity(4'4 ,_8pRv4FyvEd6qgl OGYCZQ lag™)

Call isOverlap(43,"_8pRv4FyvEd6qlOGYczQlag™)

1l

true

Figure A.17 ActorHasCapability function example

A.1.4.2 FieldTokenizer function

The fieldI'okenizer function receives two Strings as parameter, s that contains information about
the field and #ken that contains information how the field is structured and therefore can be
divided into tokens. Figure shows an example when the fie/d1okenizer function is called using as
parameter the Strings “long ATL” and “space” as parameter. The fieldTokenizer function break
down the String using spaces as delimiter and returns a Field element.

[35]

fieldTokenizer(“long ATL”, “space”)

4

Figure A.18 fieldTokenizer function example

A.1.4.3 GetAttributeValue function

The getAttributel alne function returns the value of an attribute of an XML Element in Saxon.
The function receives two parameters a TinyNodelmpl node and String attributeName. The
node represents a XML element in the Saxon. For instance, the Figure shows a TinyNodelmpl
node in Saxon that represents the object element in XML. If you call the gezA#tributel alue
function and pass as parameter node and the String “type” then the function returns the value

“Agent” as result.

<object type="Agent” id = “44”>
</object>

type = “Agent”

getAttributeValue(node,“type”)

L

“Agent”

[36]
Figure A.19 getAttributeValue function example

A.1.4.4 GetIincludedFields function

The getlncludedbieds function receives the id of an element in Prometheus and returns the
included fields Strings as parameter, s contains information about the fields and 7&en contains
information how the fields are structured and can be divided into tokens. The shows an
example when the getIncludedFields function is called by passing the parameter 35 that is the id
of the rumway_info Data in Prometheus. The function retrieves the information that contains
the included fields of the Data and then call the feldTokenizer function. The fieldTokenizer

function returns a list with the Fields of the Data.

<object type='"Data" id="'35">

<base type="Entity"> /

<Field name="name'">runway_info</field>

<field name="descrfption"></field>

<field name="uniqueld">35</field>
</base> K
<field name="dataType'>RunwaylInfo</field>
<field name="inclidedFields">

long ATL,String aircraft, long ETA,boolean booking

</field> /

Q/Obj ect> /

getlncludedFieIds(?;S)

call fieldTokenizer(“long ATL,String aircraft, long
ETA,boolean booking, “,”)

!

fieldType="boolean”

fieldType="long”
fieldName="booking”

fieldName=“ATL"

Figure A.20 getlncludesFields function example

[37]

A.1.4.5 GetiInformationCarried function

The getlnformationCarried function receives the id of an element in Prometheus and returns the
information carried by the element. Figure A.21 shows an example when the
getInformationCarried function is called passing as an argument the id equal 7 that is related to the
Aircraft Event message. The function retrieves the information carried by the message and

returns a list with the Strings “ATL”, and “Slot Allocated”.

<object type="'Message' id=""7"">
<base type:"lnteractionj$
<base type="Entity'>
<field name="name">Aircraft Event</field>
<field name="description'></field>
<field name="uniqueld">9</field>
</base> /
<fField name="infoymationCarried">ATL, Slot
Allocated</field> /

;/object> ‘

getl nformationCarried(?l)

“Slot Allocated

Figure A.21 getinformationCarried function example

A.1.4.6 GetPDTFileName

The gerPDTFileName function returns the name of the PDT filename that has been defined

during the creation of the project.

[38]

A.1.4.7 GetPrometheusElements

The getPromethensElements function receives as parameter a String with the id of an element, a
String with the types of sub-elements to be retrieved, and a list with sub-elements in case the
function has been called recursively or null. The getPromethensElements function returns an

ArrayList of sub-elements of an element in Prometheus created using PDT tool.

<object type="Plan" id="8">
<base type="Entity'>
<field name="name’">TakeOff Discard</field>
<field name="description'></field>
<field name="uniqueld'>36</field>
</base>
<field name="triggers'><list>
<object ref="7"/>

<field name="goals">
<list>
<object type="Goal" id="9">
<base type="Entity'>

</object>

getPrometheusElements(8,““Goal””)

1l
(2

TraceElement
doc="AirTrafficControl.pd”

Figure A.22 getPrometheusElements function example

type="goal”

[39]

A.1.4.8 GetPrometheusSubElements

The getPromethensSubElements function receives TinyNodelmpl node that represents an XML
Element in Prometheus and a String type that represents the type of subelements to be
retrieved. If the type is equal to “step” the gesPrometheusStepScenarios function is called. If the
type is equal to “readBy” the getPromethensUsesData function is called, otherwise the

getPromethensElements function is called. The function returns a list of sub-elements.

<object type="Plan" id="8">
<base type="Entity'>
<field name="name'>TakeOff Discard</field>
<fField name="description'"></field>
<fField name="uniqueld'>36</Ffield>
</base>
<field name="triggers'><list>
<object ref="7"/>

<field name="goals">
<list>
<object type="Goal" id="9">
<base type="Entity'>

</object>

)
\
\

getPrometheusSubEIements(n‘ode,“Goal")

Call getPrometheusSubElements(8 ,*“Goal’)

Iyt
<

TraceElement
doc="AirTrafficControl.pd”

type="goal”

Figure A.23 getPrometheusSubElements function example

[40]

A.1.4.9 GetPrometheusStepScenarios

The getPrometheusStepScenarios function receives as parameter a String with the id of an
element and a list of TraceElement in case the function has been called recursively, otherwise

null.

<object type="'Scenario" i1d="1023">
<base type="Entity'>
<field name="name">Add Customer scenario</field>
<field name="'steps"><list>

;field name="step'><object ref="91"/></field> ..
<field name="'step''><object ref;"32"/></field>

, /

</object> e /

<object type="Goal" id="91"> /
<base type="Entity'> J
<field name="name">Registey New Customer</field>

1
’

</object> /

’

7

<object type="Percept" id="32">
<base type="'Interaction'>
<base type="Entity'>
<field name="name">New Customer</field>

;/object>

getPrometheusStepScenarios(““1023”*,null)

1Ll
(i

Element, Element;

Figure A.24 getPrometheusStepScenarios function example

[41]

A.1.4.10 GetPrometheusSubGoalsElements

The getPromethensSubGoalsElements function receives as parameter a String with the id of a goal

element and a list with sub-elements in case the function has been called recursively otherwise

null. The getPrometheusS ubGoalsElements function returns an Arraylist of sub-goals of an
element in Prometheus created using PDT tool.

<object type="Goal" id:"3g">

<field name:"name">Landﬁpg</field>

gfield name:"subGoals"><iist>
<object type="Goal" id:"3$">

<field name=""name’

'>|nitﬁate Aircraft Approach</field>
</object> \
<object type="Goal" i1d="34">

<field name:"name">FoII¢W Approach Goal</fTield>
</object> ;
</list>

\

\

n \
</object> \
\
‘\
\

\

getPrometheusSubGoalsElements(null,32)

11

Element,

Element;

Figure A.25 getPrometheusSubGoals function example

[42]

A.1.4.11 GetPrometheusSubGoalElements

The getPrometheusSubGoals function receives a TinyNodelmpl node that represents a XML
Element in Prometheus.The getPromethensSubGoals calls getPromethensSubGoals and pass the id of

goal which sub-elements are required. The function returns a list of sub-goals.

<object type="'Goal" id="32">
;field name=""name'>Landing</field>

;field name=""subGoals"><list>
<object type="'Goal' id="33">

éfield name=""name">Initiate Aircraft Approach</field>
</object>
<object type="'Goal" id="34">

<field name="name''>Follow Approach Goal</field>
</object>
</list>
</object>

~
~
~
~
N

getPrometheusSubGoalsElements(node,)

getPrometheusSubGoalsElements(32, null)

1l

Element, Element;

Figure A.26 getPrometheusSubGoalsElements function example

[43]

A.1.4.12 GetPrometheusUsesData

The getPrometheusUsesData function retrieves a list of data used by an element (e.g. Agent,
Capability, and Plan) in Prometheus. The gePromethensUsesData function receveis a String id as
parameter that identify the element (e.g. Agent, Capability and Plan) and ArrayList of sub-

elements that is used when the function is called recursively.

A.1.4.13 IsACapabilityThatTheAgentincludes

The isACapabilityThatTheAgentIncludes function verifies if an agent includes a Capability. The
s ACapabilityThat TheAgentIncludes receives an id that identifies an Agent and the id that identifies
the capability. If the agent includes the capability then isACapabilityThatTheAgentIncludes

function returns true.

A.1.4.14 IsADataProducedByTheRole

The isADataProducedByTheRole function verifies if a data is produced by a role in Prometheus.
The isADataProducedByTheRole function receives as parameter the id of a data in Prometheus,
the id of a role in Prometheus. The zsADataProducedByTheRole function returns ture if the data

has been produced by the role

A.1.4.15 IsADataThatTheAgentReads

The isADataThatTheAgentReads function verifies if a data is read by a plan in Prometheus. The
function receives the id of a data in Prometheus and the id of a plan in Prometheus. The

1sADataThatTheAgentReads function returns true if the data is read by a plan.

A.1.4.16 IsADataThatTheAgentWrites

The isADataThatTheAgentWrites function verifies if an agent writes a data in Prometheus. The
1sADataThatTheAgentWrites function receives as parameter the id of data in Prometheus and the
id of an agent in Prometheus. The zsADataThatTheAgentWrites function returns true if the agent

writes a data.

[44]

A.1.4.17 IsADataThatTheCapabilityReads

The isADataThatTheCapabilityReads function verifies if the capability reads a data in
Prometheus. The isADataThatTheCapabilityReads function receives a parameter the id of data in
Prometheus and the id of capability in Prometheus. The #sADataThatTheCapabilityReads

function returns true if the capability reads a data.

A.1.4.18 IsADataThatTheCapabilityWrites

The isADataThatTheCapabilityReads function verifies if the capability writes a data in
Prometheus. The isADataThatTheCapabilityReads function receives as parameter the id of a data
and the id of a capability. The sADataThatTheCapabilityReads function returns true if the
capability writes the data.

A.1.4.19 IsADataThatThePlanReads

The isADataThatThePlanReads function verifies if a data is read by a plan in Prometheus. The
1sADataThatThePlanReads function receives as parameter the id of a data in Prometheus and the
id of a plan in Prometheus. The isADataThatThePlanReads function returns true if the data is

read by the plan.

A.1.4.20 IsADataThatThePlanWrites

The isADataThatThePlanWrites function verifies if a plan writes a data in Prometheus. The
function receives as parameter the id of data in Prometheus and the id of a plan in

Prometheus. The isADataThatThePlanWrites function returns true if the plan writes the data.

A.1.4.21 IsADataUsedByTheRole

The #s.ADataUsedByTheRole function verifies if a data is used by the role in Prometheus. The
1sADataUsedByTheRole function receives the id of a data in Prometheus and the id of a role in

Prometheus. The isADataUsedByTheRole function returns true if the data is used by the role.
A.1.4.22 IsADataThatTheAgentAchieves

The isADataTheAgentAchieves function verifies if a agent writes a data in Prometheus. The

1sADataTheAgentAchieves function receives as parameter the id of a data in Prometheus and the

[45]

id of an agent in Prometheus. The zADataTheAgentAchieves function returns true if the agent

writes the data

A.1.4.23 IsAGoalThatTheCapabilityAchieves

The AGoalThatTheCapabilityAchieves function verifies if a capability achieves a goal in
Prometheus. The is.AGoalThatTheCapabilityAchieves function receives the id of the capability in
Prometheus and the id of a goal in Prometheus. The is.AGoalThatTheCapabilityAchieves function

returns true if the capability achieves the goal.

A.1.4.24 IsAGoalThatThePlanAchieves

The AGoalThatThePlanAchieves function verifies is a plan achieves a goal. The
s AGoalThatThePlanAchieves function receives the id of a goal in Prometheus and the id of a
plan in Prometheus. The #sAGoallhatThePlanAchieves function returns true if the goal is

achieved by the plan.

A.1.4.25 IsAGoalThatTheAgentAchieves

The isGoalThatTheAgentAchieves function verifies is an agent includes a role. The
15GoalThatTheAgentAchieves function receives as parameter the id of a role in Prometheus and

the id of an agent in Prometheus. The function returns true if the agent includes the role.

A.1.4.26 IsAGoalThatTheCapabilityAchieves

The isGoalThatTheCapabilityAchieves function verifies if the capability achieves a goal in
Prometheus. The isGoalThatTheCapabilityAchieves function receives as parameter the id of the
capability in Prometheus and the id of a goal in Prometheus. The

15GoalThatTheCapabilityAchieves returns true if the capability achieves the goal.

A.1.4.27 IsAMessageThatTheAgentReceives

The isAMessageThatTheAgentReceives function verifies if an agent receives a message in
Prometheus. The isAMessageThatTheAgentReceives function receives the id of a message in
Prometheus and the id of an agent in Prometheus. The zsAMessageThatTheAgentReceives function

returns true if the agent receives the message.

[46]

A.1.4.28 IsAMessageThatTheAgentSends

The isAMessageThatTheAgentSends function verifies if an agent sends a message in Prometheus.
The sAMessageThatTheAgentSends function receives the id of the message in Prometheus and
the id of an agent in Prometheus. The isAMessageThatTheAgentSends function returns true if the

agent sends the message

A.1.4.29 IsAMessageThatTheCapabilityReceives

The isAMessageThatTheCapabilityReceives function verifies if a capability in Prometehus receives a
message in Prometheus. The isAMessageThatTheCapabilityReceives function receives the id of a
message in Prometheus and the id of a capability in Prometheus. The

s AMessageThatTheCapabilityReceives function returns true if the capability receives the message.

A.1.4.30 IsAMessageThatTheCapabilitySends

The isAMessageThatTheCapabilitySends function verifies if the capability sends a message in
Prometheus. The isAMessageThatTheCapabilitySends function receives as parameter the id of a
message in Prometheus and the id of a capability in Prometheus. The
1sAMessageThatTheCapabilitySends function returns true if the capability sends a message.

A.1.4.31 IsAMessageThatTheReceives

The isAMessageThatTheCapabilitySends function verifies if a plan receives a message in
Prometheus. The #sAMessageThatTheCapabilitySends function receives the id of a message in
Prometheus and the id of a plan in Prometheus. The iAMessageThatTheCapabilitySends function

returns true if the plan receives the message.

A.1.4.32 IsAMessageThatThePlanReceives

The isAMessageThatThePlanReceives function verifies if a plan receives a message in Prometheus.
The isAMessageThatThePlanReceives function receives an id of a message in Prometheus and the
id of a plan in Prometheus. The ZsAMessageThatThePlanReceives function returns true if the plan

receives the message.

[47]

A.1.4.33 IsAMessageThatThePlanSends

The wAMessageThatThePlanSends function verifies if the plan sends a message in Prometheus.
The isAMessageThatThePlanSends function receives the id of a message in Prometheus and the id
of a plan in Prometheus. The isAMessageThatThePlanSends function returns true if the plan

sends the message.

A.1.4.34 IsAMessageThatTriggersThePlan

The wAMessageThatTriggersThePlan function verifies if the message triggers a plan in
Prometheus. The iAMessageThatTriggersThePlan function receives the id of a message in
Prometheus and the id of a plan in Prometheus. The inAMessageThatTriggersThePlan function

returns true if the message triggers the plan.

A.1.4.35 IsAnActionThatTheAgentPerforms

The isAnActionThatTheAgentPerforms function verifies if an agent performs an action in
Prometheus. The zsAnActionThatTheAgentPerforms function receives the id of an action in
Prometheus and the id of an agent in Prometheus. The isAnActionThatTheAgentPerforms returns

true if the agent performs the action.
A.1.4.36 IsAnActionThatTheCapabilityPerforms

The wAnActionThatTheCapabilityPerforms function verifies if a capability performs an action in
Prometheus. The isAnActionThatTheCapabilityPerforms function receives an id of an action in
Prometheus and the id of a capability in Prometheus. The isAnActionThatTheCapabilityPerforms

function returns true if the capability performs the action.

A.1.4.37 IsAnActionThatThePlanPerforms

The isAnActionThatThePlanPerforms function verifies if a plan performs an action in

Prometheus. The zuAnActionThatThePlanPerforms function receives the id of an action in

[48]

Prometheus and the id of plan in Prometheus. The zAnActionThatThePlanPerforms function

returns true if the agent performs the action.

A.1.4.38 IsAPerceptThatTheAgentResponds

The isAPerceptThatTheAgentResponds function verifies if an agent responds to a percept in
Prometheus. The isAPerceptThatTheAgentResponds function receives the id of a percept in
Prometheus and the id of an agent in Prometheus. The zsAPerceptThatTheAgentResponds function

returns true if the agent responds to the percept.

A.1.4.39 IsAPerceptThatTheCapabilityResponds

The isAPerceptThatTheCapabilityResponds function verifies if a capability responds to a percept in
Prometheus. The #sAPerceptThatTheCapabilityResponds function receives the id of a percept in
Prometheus and the id of a capability in Prometheus. The zs.APerceptThatTheCapabilityResponds

function returns true if the capability responds to the percept.

A.1.4.40 IsAPerceptThatThePlanResponds

The isAPerceptThatThePlanResponds function verifies if the plan responds to the percept in
Prometheus. The #sAPerceptThatThePlanResponds function receives the id of a percept in
Prometheus and the id of a plan in Prometheus. The isAPerceptThatThePlanResponds function

returns true if the plan responds to the percept.
A.1.4.41 IsAPerceptThatTheCapabilityResponds

The isAPerceptThatTheCapabilityResponds function verifies if a capability responds to a percept in
Prometheus. The #sAPerceptThatTheCapabilityResponds function receives the id of a percept in
Prometheus and the id of a capability in Prometheus. The isAPerceptThatTheCapabilityResponds

function returns true if the capability responds to the percept.

A.1.4.42 IsAPerceptThatThePlanResponds

[49]

The #sAPerceptThatThePlanResponds function verifies if the plan responds to the percept in
Prometheus. The isAPerceptThatThePlanResponds function receives the id of a percept in
Prometheus and the id of a plan in Prometheus. The isAPerceptThatThePlanResponds function

returns true if the plan responds to the percept.

A.1.4.43 IsAPerceptThatTheCapabilityResponds

The zsAPerceptThatTheCapabilityResponds function verifies if a capability responds to a percept in
Prometheus. The #sAPerceptThatTheCapabilityResponds function receives the id of a percept in
Prometheus and the id of a capability in Prometheus. The zs.APerceptThatTheCapabilityResponds

function returns true if the capability responds to the percept.

A.1.4.44 IsAPerceptThatThePlanResponds

The isAPerceptThatThePlanResponds function verifies if the plan responds to the percept in
Prometheus. The isAPerceptThatThePlanResponds function receives the id of a percept in
Prometheus and the id of a plan in Prometheus. The isAPerceptThatThePlanResponds function

returns true if the plan responds to the percept.
A.1.4.45 IsAPlanThatTheAgentincludes

The isAPlanThatTheAgentIncludes function verifies if an agent includes a plan in Prometheus.
The isAPlanThatTheAgentIncludes function receives the id of a plan in Prometheus and id of an
agent in Prometehus. The zsAPlanThatTheAgentlncludes function returns true if the agent

includes the plan.

A.1.4.46 IsAPlanThatTheCapabilitylncludes

The isAPlanThatTheCapabilitylncludes function verifies if a capability includes a plan in
Prometheus. The isAPlanThatTheCapabilitylncludes function receives the id of a plan in
Prometheus and the id of a capability in Prometheus. The isAPlanThatTheCapabilityIncludes

function returns true if the capability includes the plan.

[50]

A.1.4.47 IsAPlanTheRoleUses

The 7s.APlanTheRoleUses function verifies if a role in Prometheus uses a plan in Prometheus.
The s APlanTheRoleUses function receives the id of a plan in Prometheus and the id of a role 1

Prometheus. The 7sAP/anTheRoleUses function returns true if the role uses the plan.

A.1.4.48 IsARoleThatTheAgentincludes

The isARoleThatTheAgentIncludes function verifies is an agent in Prometheus includes a role in
Prometheus. The ARoleThatTheAgentIncludes function receives as parameter the id of a role
and the id of an agent. The zARokThatTheAgentIncludes function returns true if the agent

includes the role.

A.1.4.49 IsTrigger

The isTrigger function verifies if a plan triggers an event. The zsTrgger function receives the id of
a plan in Prometheus and the name of an event. The zsTrgger function returns true if the event

triggers the plan.

A.1.5 XQuerySimilarityFunctions

Method Summary

boolean |creates(String idA, String idB)
Verifies if there is a creates traceability relation between two elements

boolean creates(String idA, String idB, Document outputDoc,
XPath xpath)

Verifies if there is a creates traceability relation between two elements

boolean hasUses(String idA, String idB)
Verifies if there is uses traceability relation between two elements

boolean hasUses(String idA, String idB, Document outputDoc,
XPath xpath)

Verifies if there is an uses traceability relation between two elements
boolean | isOverlap(String idA, String idB)

[51]

Verify if two elements has an overlaps traceability relation

boolean | isOverlap(String idA, String idB, Document outputDoc,
XPath xpath)
Check if two elements has an overlaps relation

boolean |isPositiveSimilar(ArrayList<TraceElement> listl,
ArrayList<TraceElement> list2, double threshold)

boolean |isSimilar(Java.util .ArrayList<TraceElement> listl,
Java.util _ArrayList<TraceElement> list2, double threshold)

boolean |isSimilarAgentAgent(TinyNodelmpl nodel, TinyNodelmpl node2,
double threshold)

int |isSimilarByOverlaps(ArrayList<TraceElement> listl,
ArrayList<TraceElement> list2)

boolean |isSimilarByOverlaps(ArrayList<TraceElement> listl,
ArrayList<TraceElement> list2, double threshold)

boolean |isSimilarCapabilityCapability(TinyNodelmpl nodel,
TinyNodelmpl node2, double threshold)

boolean |isSimilarDataAndBeliefSet(TinyNodelmpl nodel,
TinyNodelmpl node2, double threshold)

boolean |isSimilarPlanPlan(TinyNodelmpl nodel, TinyNodelmpl node2,
double threshold)

boolean |isSimilarSDResourceAndMessage(TinyNodelmpl nodel, String node2)

boolean |someOverlap(java.lang.String elem,
Java.util .ArrayList<TraceElement> list)

Table A.5 XQuerySimilarityFunctions
A.1.5.1 HasUses function

The hasUses function check if two elements have an wses traceability relation. The function
receives the id of the elements to be compared, the document that contains the traceability
relation and an XPath object to execute the evaluation. Figure 4.30 shows an example when
the hasUses function is called to check if elements with id = "_PsspBiQyEd6fbemFsKI3Cw'" and

id = "40" have a uses traceability relation.

[52]

<Traceability>
<TraceabilityRelation type="uses'>
<Element .. id=""_PsspBiQyEd6fbcmFsKI3Cw"/>
<Element .. §id="'40" />
</TraceabilityRelation>

</Tréceabi lity>

~
SS
S<
S

hasUses(““PsspBiQyEd6fbcmFsKI3Cw’,”?40”, oufffutDoc ,SaxonlInterface.xpath

1l

true

Figure A.27 hasUses function example

A.1.5.2 HasUses function

The hasUses function check if two elements have an uses traceability relation. The function
receives the id of the elements to be compared. The basUses function call hasUses function
explained in the Section A.1.5.1. Figure A.28 shows an example when the JasUses function is
called to check if elements with id = "_PsspBiQyEdofbemFsKI3Cw'" and id = "40" have a wuses

traceability relation.

[53]

<Traceability>
<TraceabilityRelation type='creates'>
<Element .. id=""_PsspBiQyEd6fbcmFsKI3Cw"/>
<Element .. §id="40" />
</TraceabilityRelation>

</Tréceabi lity>

hasUses(“PsspBiQyEd6TbcmFsKI3Cw’”, 40" ,outputDoc, Saxonlnterface.xpath

11

true

Figure A.28 hasUses function example

A.1.5.3 Creates function

The creates functions check if two elements have a creates traceability relation. The function
receives the id of the elements to be compared, the document that contains the traceability
relations and XPath object to execute the evaluation. Figure A.29 shows an example when the

creates function is called to check if elements with id = "_PsspBiQyEd6fbemFsKI3Cp'" and id =

"40" have a creates traceability relation.

<Traceability>
<TraceabilityRelation type="creates'>
<Element .. id=""_PsspBiQyEd6fbcmFsKI13Cw"/>
<Element .. id=""40" />
</TraceabilityRelation>

</Tréceabi lity>

~
N
~
~
N

creates(“PsspBiQyEd6fbcmFsKI3Cw™,”?40™, outputDoc, SaxonInterface.xpath

1l

trie

Figure A.29 creates function example
[54]

A.1.5.4 Creates function

The creates function check if two elements have a creates traceability relation. The function
receives the id of the elements to be compared. The creates function call creates function explained
in the Section A.1.5.3. Figure A.30 shows an example when creates function is called to check if
clements with id = "_PsspBiQyEd6foemsKI3Cy" and id = "40" have a creates traceability

relation.

<Traceability>
<TraceabilityRelation type='creates'>
<Element .. id=""_PsspBiQyEd6fbcmFsKI13Cw"/>
<Element .. id=""40" />
</TraceabilityRelation>

</Tréceabi lity>

creates(“PsspBiQyEd6fbcmFsKI3Cw”,”407") /

Call creates(“PsspBiQyEd6fbcmFsKl3Cw”,”40”,oufputDoc,
Saxonlnterface . xpathpath)

1l

true

Figure A.30 creates function example

A.1.5.5 IsOverlap function

The overlaps functions check if two elements have a creates traceability relation. The function
receives the id of the elements to be compared, the document that contains the traceability
relation and a XPath object to execute the evaluation. Figure A.31 shows an example when the
overlaps function is called to check if elements with id = "_PsspBiQyEd6fbemsKI3Cw'" and id =

"40" have #sOverlap traceability relation.

[55]

<Traceability>
<TraceabilityRelation type="creates'>
<Element .. id=""_PsspBiQyEd6fbcmFsKI13Cw"/>
<Element .. id="'40" />
</TraceabilityRelation>

</Tréceabi lity>

N
~

overlaps(“PsspBiQyEd6fbcmFsK13Cw™,”’40”, outputDoc, SaxonlInterface.xpath

1L

true

Figure A.31 overlaps function example

A.1.5.6 IsOverlap function

The isOverlap function checks if two elements have an over/aps traceability relation. The function
receives the id of the elements to be compared. The usOuverlap function call isOverlap function
explained in the Section A.1.5.5. Figure shows an example when the function is called to check
if elements with id = "_PsspBiQyEd6fbemFsKI3Cy'" and id = "40" have isOverlap traceability

relation.

[56]

<Traceability>
<TraceabilityRelation type="overlaps'>
<Element .. id=""_PsspBiQyEd6fbcmFsKI13Cw"/>
<Element .. id="40" />
</TraceabilityRelation>

</Tréceabi lity>

overlaps(“PsspBiQyEd6fbcmFsK13Cw™,’40) /

Call overlaps(“PsspBiQyEd6fbcmFsKI3Cw”,’40, o(JtputDoc ,
Saxonlnterface . xpathpath)

1l

true

Figure A.32 overlaps function example

A.l.5./ IsPosItivesimilar tunction

The #sPositiveSimilar function receives two lists of elements and compare if the number of
elements in the listl which names are synonyms to elements in the list2 is greater than a
threshold. If listl is empty then #sPositiveSimilar function returns true. In the Figure A.33, the
isPositiveSimilar function is called passing list] and list2 as parameter. The function compares if
the name of each element in the list] has a synonyms in the list2. The only elements in the list1
that does not have a synonym in the list2 is “Login outgoing delivery” therefore the percentage
of elements in the list]l that has a synonym in the list2 is 66.7 that is greater than 40
(threshold).

[57]

A= <>
/

v elmen >

name="“Obtain
name="Place
v Delivery Request”

Delivery Options”
name=“Compute

Delivery Time
Estimates”

A\ 4

name=“Login
outgoing delivery” v

name="“Calculate
delivery time
estimates”

name="“Get
delivery options”

synonyms

synonyms

isPositiveSimilar(listA , listB, 40)

foreach (a in listA)
foreach (b in listB)

call isSynonyms(a,b)

isSynonyms(“Get delivery options”, “Obtain Delivery Options™)

true

Figure A.33 isPositiveSimilar function example

A.1.5.8 IsSimilar function

The isSimilar function receives two lists of elements and compare if the number of elements in
the /ist1 which names are synonyms to elements in the /s72 is greater than a threshold. If the
list1 is empty then ZsSimilar function returns true. In the Figure A.34, the isSimilar function is
called passing list] and list2 as parameter. The function compares if the name of each element

in the listl has a synonyms in the list2. The only element in the listl that does not have a

[58]

synonym in the list2 is “Login outgoing delivery” therefore the percentage of elements in the

list] that has a synonym in the list2 is 66.7 that is greater than 40 (threshold).

v e > l
@ name="Obtain
name="Place
v Delivery Request”

Delivery Options”
name=“Compute

Delivery Time
Estimates”

\ 4

name="Login
outgoing delivery” v

name="Calculate
delivery time
estimates”

name=“Get
delivery options”

synonyms

synonyms

isSimilar(listA , listB, 40)

foreach (a in listA)
foreach (b in listB)

call isSynonyms(a,b)

isSynonyms(“Get delivery options”, “Obtain Delivery Options™)

true

Figure A.34 isSimilar function example

A.1.5.9 IsSimilarByOverlaps

The isSimilarByOverlaps function receives two lists of elements and returns the number of

elements in the list] that has an overlaps traceability relation with any element in the list2.

[59]

The isSimilarByOverlaps function call isOverlap function explained in the A.1.5.6 section. If

an element in the list] does not have an overlaps relation then the element is added to the list of

missing elements.

listl

Elementl

name="Obtain
Delivery Options”

name="Place
Delivery Request”

name="Get
delivery options”

name=‘“Login
outgoing delivery”

name="“Compute
Delivery Time
Estimates”

name="“Calculate
delivery time
estimates”

synonyms

synonyms

isSimilarByOverlaps(listl , list2)

foreach (a in listl)
foreach (b in list2)

call isoverlap(a,b)

missingElements

Element,

o= doc="ElectronicBooks
tore.pd”
name="Login
outgoing delivery”

Figure A.35 isSimilarByOverlaps function example

[60]

A.1.5.10 IsSimilarDataAndBeliefSet

The usSimilarDataAndBeliegfSet function receives two TinyNodelmpl nodes that represent a
Prometheus data in XML and a JACK beliefSet in XMIL. The function compares if a data and
a beliefset are similar based on the name of the fields of the data and the beliefset. If the
percentage of the name of the fields that are synonyms are greater than a threshold then the

method returns true.

<beliefSet id="bl" type="Landinglnfo”™ extends="ClosedWorld >
<field declarationType="value"
type="'String" name="runway'/>
<field declarationType="value"
type=""long" name="ATL"/>

</beliefSet>

T
\

<object type="Data" id="58">
<base type="Entity'>

<field name="name'¢landing_info</field>
<field name="deséription'></field>
<field name="uniqueld">7</field>

</base> v

<field name="dataTyp&'>Landinglnfo</Ffield>

<field name="includedFields>String runway,
long ATL</field>

;/object> Y

\

\ \
\

isSimiIarDataAndBeIiefSet(nédel , noan, 50)

listOfIncludedFields = getincludedFields(bl)

listOfBeliefSetFields = getBeliefSets (568)

foreach (b in listOfBeliefSet)
foreach (f in includedFields)
isSynonyms(b,f)

7 33

isSynonyms(““runway”’,”’runway’’)
isSynonyms(“ATL”,”ATL™)

1l

trie

Figure A.36 isSimilarDataAndBeliefSet function example
[61]

A.1.5.11 IsSimilarSDResourceAndMessage

The isSimilarS DResourceAndMessage function receives a TinyNodelmpl node that represents a
SD Resource and a String with the id of the Prometheus message. The
158imilarS DResonrce AndMessage function calls getInformationCarried function to retrieve the
information carried by the message. Then the #sSimilarS DResourceAndMessage function calls
1sSynonyms function (explained in the A.1.6.3 Section) to check if the information carried by the

message is synonyms to the name of the SDResource.

<TroposClasses
xsi:type=""it.itc.sra.taomde.model .core.informalcore.formalcore
:FResource™ name="ATL" />

<object type="Message' id="'43"">
<base type="Interaction’>
<base type="Entity'>
<field name=""name">Enter Control Area</field>
<field name=""informationCarried">ATL, Slot
Allocated</field>
</object>

~
~
~
~
~

isSimiIarSDResourceAndMessage(hodel, “ATL)

Call getAttributevalue(nodel,”id™)

Call getInformationCarried(43)

Call isSynonyms(“ATL”, “ATL™)

true

Figure A.37 isSimilarSDResourceAndMessage function example

[62]

A.1.5.12 SomeOverlap

The someOverlap function receives a String zd that represents the identifier of an element and a
list of TraceElement. The function verifies if there is any overlaps traceability relation between

the element idenfied by /4 and any of the elements in the TraceElement list.

Element,

<Traceability>

<TraceabilityRelation .. type="overlaps">
<Element id="_WI_JgFywEd6ql0OGYczQlag".. />
<Element id="30" />
</TraceabilityRelation>
<Traceability>

someOverlap(““30”, list)

foreach (I in list)
foreach (f in includedFields)
isomeOverlap(““30” 1._.getld())

isOverlap(*30”, *“307)

11

true

Figure A.38 SomeOverlap function example

[63]

A.1.6 XQuerySynonymsFunctions

Method Summary

boolean |contains(ArrayList<String> listl, ArrayList<String> list2)
boolean |contains(String word, ArrayList<String> wordList)
boolean |isSynonyms(String strl, String str2)

ArraylList< | stringTokenizer(String str)
String>

ArraylList< stringTokenizerByUpperCase(String str)
String>

Table A.6 XQuerySynonyms Function example
A.1.6.1 StringTokenizerByUpperCase function

The stringlokenizerByUpperCase function receives as parameter a String s# and it breaks down
the string into tokens using spaces and upper case letters as delimiters. Figure A.39 shows an
example when the “GetDeliveryOptions” String is passed as parameter to the
string LokenizerByUpperCase function. As result, the s#ringlokenizerByUpperCase function returns a

list of strings that consists of “Get”, “Delivery” and “Options”.

stringTokenizerByUpperCase(“GetDeliveryOptions”)

“Delivery”

Figure A.39 stringTokenizerByUpperCase function example

[64]

A.1.6.2 Contains function

The contains function receives as parameter a String word and an ArrayList of String wordl ist and
check if the Arraylist wordList contains the String word. The function uses the WordNet
dictionary to check for synonyms words. Figure A.40 shows that the contains function returns
true when it is invoked passing as parameter the String “Get” and the list of Strings wordList
that consists of “Obtain”, “Delivery” and “Options”. The list of Strings wordList contains the

“Get” string because “Get” and “Obtain” are synonyms.

wordList

“Delivery”

contains (“Get”, wordL.ist)

1

true

Figure A.40 contains function example

A.1.6.3 IsSynonyms function

The isSynonyms function receives as parameter two Strings s#77 and s#2. The #sSynonyms function
uses the stringlokenizerByUpperCase (see A.1.6.1 section) function to break s#7 and s#2 in two
lists of words, wordlistT and wordlist2. The contains function (see A.1.6.2 Section) is used to

verify if wordlist2 contains each word in wordlist1.

[65]

isSynonyms(“Get Delivery Options”, “Obtain Delivery Options™)

call stringTokenizerByUpperCase (“Get Delivery Options”)
call stringTokenizerByUpperCase (“Obtain Delivery Options”)

call contains(“Get”, wordList2)
call contains(“Delivery”, wordList2)
call contains(“Options”, wordL.ist2)

wordListl

“Delivery”

wordList2

“Delivery”

U

true

Figure A.41 isSynonyms function

[66]

A.1.6.4 StringTokenizer function

The stringlokenizer function receives as parameter a String and break down the string into
tokens using as delimiters spaces, ‘_’, -, (, and °)’. A list contained “Get”, “Delivery” and
“Options” String is returned as result when function s#ringlokenizer function is called passing as

parameter “Get Delivery Options” String.

stringTokenizer(“Get Delivery Options”)

“Delivery”

Figure A.42 stringTokenizer function example

A.1.6.5 Contains function

The contains function receives as parameter Strings /Zst1 and /isz2 and then call contains
functions (see Section A.1.6.2.) to check if elements in the /st7 are contained by the /sz2.
Figure A.43 shows an example where /st1 consists of the Get”, “Delivery” and “Options”
Strings and list2 consists of “Obtain”, “Delivery”, and “Option” Strings. The contains function

returns #7#e when it is invoked and list] and list2 are passed as parameter.

[67]

isSynonyms(“Get Delivery Options”, “Obtain Delivery Options™)

call contains(*“Get”, wordList2)
call contains(“Delivery”, wordList2)
call contains(“Options”, wordL.ist2)

“Delivery”

“Delivery”

U

true

Figure A.43 isSynonyms function example

[68]

A.1.7 XQueryTAOMFunctions

Method Summary

String

ArraylList<TraceEleme

getAttributeValue(TinyNodelmpl node,
String attributeName)

getSubElements(ArrayList<TraceElement> subElements

nt>

ArrayList<TraceEleme

, String subElementld)

getSubElements(TinyNodelmpl node)

nt>

ArrayList<TraceEleme

getSubGoalsAndTask(ArrayList<TraceElement> subElem

nt>

ArrayList<TraceEleme

ents, String subElementld)

getSubGoalsAndTask(TinyNodelmpl node)

nt>

String

getTAOMFileName ()

Table A.7 XQueryTAOMFunctions

A.1.7.1 GetSubGoalsAndTask function

The getSubGoalsAndTak function receives an id of an element in 7* and returns the sub-goals

and sub-tasks that are part of means-end and decomposition links. If a sub-element has sub-

elements then the function calls itself recursively. For instance, Figure A.45 shows an example

when the function is called to retrieve sub-elements of the Landing task (xmiid =

“_4cvecCQREd6fbemFsKI3Cw”) in 7%, The function returns a list of elements that consists

of the Assign Slot, Initiate Approach and Follow Approach elements.

[69]

<TroposClasses xmi:id ="_4cvecCQkEd6fbemFsKI3Cw”
name="Landing".../>

Assign Slot

getSubGoalsAndTask(_4cvecCQKEd6fbemEFsKI3Cw, null)

Follow
Approach

Initiate
Approach

name="“Assign Slot”

id=¢_6-
avACOKEd6fbcmFsKI3Cw”

doc=“AirTrafficEnvir

onment.tronos”

<TroposClasses xmi:id =" _6-avACQKEd6fbcmFsKI3Cw”

name="AssignSlot".../>

Figure A.44 getSubGoalsAndTask function example
A.1.7.2 GetSubGoalsAndTask function

The getSubGoalsAndIask function receives as parameter a TinyNodelmpl node that represents
an XML node element in Saxon. The function calls gezSubGoalsAndTask function explained in
the Section 4.1.7.1 and returns a list of sub-goals and sub-tasks that are a part of means-end
and decomposition links. Figure A.45 shows an example when the gezSubGoalAndTask function

is called to retrieve the sub-elements of the node that contains the Landing task in 7*. The

[70]

function returns a list of elements contained Assign Slot, Initiate Approach and Follow

Approach.

<TroposClasses xmi:id ="_4cvccCQKEd6focmFsKI3Cw”
name="Landing".../> <

~
~

<~
~

getSubGoalsAndTask(ndde)

A 4

call getSubGoalsAndTask(_4cvecCQkEd6fbcmFsKI3Cw, null)

1L
C o 3

type="“Task”

doc="AirTrafficEnvir
onment.tropos”

name="Assign Slot”

id="_6-
avACQKEd6fbcmFsKI3Cw”

<TroposClasses xmi:id =" _6-avACQKEd6focmFsKI3Cw”
name="AssignSlot".../>

Figure A.45 getSubGoalsAndTask function example
A.1.7.3 GetSubElements function

The getSubElements function receives an 74 of an element in 7* and returns the sub-elements that
are part of means-end and decomposition links. 1f a sub-element has sub-elements then the
function calls itself recursively. The getSubElements function behaviour is similar to the
getSubGoalsAndl ask function explained in the Section 4.1.7.1., except that it returns all types of
sub-elements.

[71]

A.1.7.4 GetSubElements function

The getSubElements function receives as parameter a 17zyNodelmpl node that represents an XML
node element in Saxon. The function calls getSubElements function explained in the Section

A.1.7.3 and returns a list of sub-elements that are a part of means-end and decomposition links.

A.1.7.5 GetAttributeValue function

The gezAttributel alue function returns the value of an attribute of an XML Element in Saxon.
The function receives two parameters a TznyNodelmpl/ node and String attributeName. The node
represents a XML element in the Saxon. For instance, Figure A.46 shows a T7nyNodelmp/ node
in Saxon that represents the object XML element shown in the Figure A.47. If you call the
getAttributel alue function and pass as parameter node and the String “type” then the function

returns the value “Agent” as result.

<object type="Agent” id = “44”>
</object>

N
~

getAttributeVaIue(nE)de, “type”)

TinyNodelmpl node
type = “Agent”

Figure A.46 getAttributeValue function example

A.1.7.6 GetTAOMFile function

The gefI’AOMFife functions returns the TAOM filename defined during the creation of the

project and that is used to generate traceability relations between 7 elements.

[72]

Appendix B — Automated Teller Machine

B.1 Introduction

This document describes the development of a multi-agent system to implement the
Automated Teller Machine (ATM) used as a case study to evaluate our approach to generate
traceability relations automatically and to identify missing elements between artefacts created

during the development of a multi-agent system.

Automated Teller Machines (ATMs) allow customers to carry out bank transactions without
the assistance of a teller such as withdraw cash, change PIN, make a payment, check balance,
print statement, and transfer money. The customer needs to insert a card in the ATM machine
and enter a PIN code to use one of services provided by the ATM machine. When the
customer inserts the card the system reads the card details and shows a screen asking for a PIN
number. The customer enters the PIN number and then the system validates the PIN number.
If the PIN number is correct the system shows a screen with the services available for the

customer.

If the customer selects withdraw cash option, the system shows withdraw cash screen. The
customer enters the amount of money that he/she would like to withdraw and then the system
processes the cash withdraw. The system requests to the Bank authorization to the cash
withdraw. If the Bank approve the cash withdraw, the ATM machine dispenses the amount of
cash requested by the customer and prints a receipt. If the Bank does not approve the cash
withdraw, the ATM machine shows a message given details why the cash withdraw was not

authorized.

If the customer selects to change the PIN number, the ATM machine shows a screen where
the customer can enters a new PIN number. After the customer enters the new PIN number,
the ATM sends the new PIN number to the Bank. If the customer selects to make a payment,
the ATM shows a screen where the customer can enter details about the payment. The ATM
sends details about the payment to the Bank execute the payment. If the customer selects the
balance account, the ATM requests the balance to Bank and then shows the balance on the
screen. If the customer selects to print statement, the ATM requests the transactions done by

the customers to the Bank and then prints the transactions details. If the customer selects to

[73]

transfer money, the ATM shows a screen where the customer can enter details about the
account to transfer money and amount to transfer. The ATM sends the details about the

money transfer to the Bank to execute the transfer.

Support Staff periodically performs maintenance on the ATM machine. Support Staff replaces
tonner when receives alert of low quantity of tonner. Support Staff deposit more cash into the
ATM machine when receives alert of low quantity of cash. Support Staff put in more paper for
the printer when alerted of paper out. Support Staff performs maintenance when alerted of
paper jam.

The remainder of this document describes the development of the ATM case study and its
evaluation. The ATM case study was developed using 7% framework to model the
organizational environment, Prometheus methodology to create the system specification,
analysis and design models and JACK Intelligent Agent language to implement the multi-agent
system. To evaluate our approach we use precision and recall measures to show the
effectiveness of the traceability recovery by the approach and used the missing element
information identified by the tool to complete the models and to fix inconsistencies (e.g. to fix

discrepancies between names given by the elements).

B.2 Organizational Models
The Automatic Teller Machine environment is composed of the ATM, Bank, Support Staff,

Power Supply, and Customer actors. Figure B.1 shows the actors and its strategic
dependencies relationships. The Customer actor depends on ATM actor to have Withdraw
Cash, Transfer Money, Make a Payment, Show Services Available, Check Balance, Print
Statement, and Change PIN goals accomplished. The Customer depends on the ATM to have
Balance, Receipt, Statement, and Cash resources provided by the ATM actor. The ATM actor
depends on the Bank actor to have Provide Services, Process Withdraw, and Authorization
Response goals achieved. The ATM actor depends on the Support Staff actor to have Execute
Maintenance goal accomplished. The Support Staff actor depends on the ATM actor to have
Alert Low Quantity of Tonner, Alert Low Quantity of Cash, Alert Paper Jam, and Alert Paper

Out goals achieved.

[74]

Figure B.1 Strategic Dependency model for the Automatic Teller Machine

Figure B.2 shows a partial Strategic Rationale model for the Automatic Teller Machine. Figure
B.2 describes in more detail how the ATM actor achieves the Withdraw Cash goal
dependency. The ATM actor performs Request Withdraw and Process Request Response
tasks in order to achieve Withdraw Cash goal. The ATM actor depends on the Bank actor to
send Authorization Response in order to execute Process Request Response task. If the Bank
approves the cash withdraw the ATM actor performs the Approve Withdraw task and if the
Bank rejects the cash withdraw the ATM performs Reject Withdraw task. The ATM actor uses
Cash and Receipt resources and executes Eject Card and Show Withdraw Message Approved
tasks to complete the Approve Withdraw task. The ATM actor performs Eject Card and Show
Withdraw Request Rejected tasks in order to complete Reject Withdraw task. The Bank needs

balances and accounts resource information to have Process Withdraw goal achieved.

[75]

e
Figure B.2 Strategic Rationale Model for the Automatic Teller Machine

B.3 Prometheus Models
Figure B.3 shows the Goal diagram for the ATM system. In the top level, we have the

Withdraw Money goal that is refined by the Authorize Withdraw goal that is decomposed in
Request Approved or Requested Rejected.

Withdraw Maney

ApID

Authorize Withdraw

Request Approved Request Rejected

Figure B.3 ATM Goal diagram

The Automatic Teller Machine application consists of a multi-agent systems composed of two
agents: Atm and Bank. Figure B.4 shows a System Overview Diagram for the Automatic Teller
Machine multi-agent system. The Atm agent perceives when a customer inserts a card,
requests to withdraw cash and selects to print a statement represented in diagram by the Card
Inserted, Withdraw Percept, and Print Statement percepts. The Atm agent process information

from the Withdraw Percept and it posts a Withdraw message. The Atm agent handles the

[76]

Withdraw message and it sends a Withdraw Request message passing amount, account and pin
information details to the Bank agent. The Bank agent handles the Withdraw Request message
and replies to the Atm agent with WithdrawResponse passing balance and approval/rejection
information details to the Atm agent. The Atm agent executes Show Message Remove Cash,
Dispense Cash, Print Receipt, and Eject Card actions if the Bank agent approved the cash
withdraw and it executes Eject Card and Show Message Request Rejected actions if the Bank

agent rejected the cash withdraw.

Mithdr aw Percepk

Withdraw Request

| Show Message Remowve Cash >

Dispense Cash

‘ithdraw Response

| Show Message Request Rejected >

Withdraw

Card Inserted
Print Staterent

Figure B.4 ATM System Overview diagram

Figure B.5 and B.6 show the Agent Overview diagrams for the Atm and Bank agents,
respectively. In the Figure B.5, the Withdraw Cash plan handles the Withdraw message and
sends Withdraw Request message to the Bank agent. In the Figure B.5, the Process Withdraw
plan handles Withdraw Request message, reads the account details, modifies the balance if
there is sufficient funds and posts a Withdraw Response message with the new balance and the
approval information or the rejection information if the withdraw has failed because
insufficient funds in the account. In the Figure B.5, the Withdraw Approved and Withdraw
Rejected plans handle the Withdraw Response message. If the withdraw has been approved,
the Withdraw Approved plan is selected to handle the Withdraw Response message otherwise
the Withdraw Rejected plan is selected. The Withdraw Approved handles the Withdraw
Response message and executes Eject Card, Dispense Cash, Show Message Remove Cash, and
Print Receipt actions. The Withdraw Rejected plan handles Withdraw Response message and

executes the Eject Card and Show Message Request Rejected actions.

[77]

= — o™
Wb =~ ‘Withdraw Percept -
i = L— = i

——)

| Show Message Remowe Cash >

Dispense Cash

(Withdraw Approved Print Receipt .____:ZZ:>

-
Wlthdrawheq;_lest Withdr-a;.-ﬁ_li':é;punse Eject Card ____::3"
“‘"‘"n-.n
[withdraw Rejected b
| Show Message Request Rejected ..':::Za.

Figure B.5 — Atm Agent Overview Diagram

Withé;éﬂﬁ ﬁéuﬁuest ————— Process Withdraw

withdraw ﬁéspunse

Figure B.6 Bank Agent Overview diagram

B.4 JACK Code

The multi-agent system was implemented using JACK Agent Language. The system consists
of Atm and BankAgent agents, Accounts and Balances beliefsets, Withdraw,
WithdrawRequest, and WithdrawResponse events, ProcessWithdraw, WithdrawApproved,
WithdrawCash, and WithdrawRejected plans.

Figure B.7 shows Atm agent. The Atm agent is part of the package agent and it uses
aos.jack.jak.core, gui. AtmClient, and AtmlInterface packages. The Atm agent handles Withdraw
and WithdrawResponse events. The Atm agent sends WithdrawRequest event and posts
Withdraw events. The Atm agent uses WithdrawCash, WithdrawApproved, and
WithdrawRejected plans. The Atm agent has Atmlnterface, account, pin, amount, and bank

attributes. The Atm agent implements getHardware, getAccount, and statement methods.

[78]

package agents;

import aos.jack.jak.core.*;
import gui.AtmClient;
import gui.AtmInterface;

public agent Atm extends Agent implements AtmClient {

#handles event Withdraw;
#handles event WithdrawResponse;
#sends event WithdrawRequest;
#posts event Withdraw request;

#uses plan WithdrawCash;
#uses plan WithdrawApproved;
#uses plan WithdrawRejected;

private Atmlnterface hardware;
private int account;

private int pin;

private int amount;

private String bank;

public Atm(String n, Atmlnterface h, String b) {
super(n);
bank = b;
hardware = h;
h.register((AtmClient)this);
¥

/* The AtmClient implementation */
public AtmInterface getHardware(){
return hardware;

}

[79]

public int getAmount(){
return amount;

}
public String getBank(){
return bank;

public void insertCard(int account, int pin){
this.account = account;
this.pin = pin;

public void withdraw(int amount){
this.amount = amount;
postEvent(request.withdraw());

public void statement(){
throw new Error('statement() is not implemented.™);

}
}

Figure B.7 Atm agent
Figure B.8 shows BankAgent agent. The BankAgent agent is part of the agents package

(package agents). The BankAgent agent handles WithdrawRequest event and uses

ProcessWithdraw plan. The BankAgent agent contains accounts and balances beliefSets.

package agents;
public agent BankAgent extends Agent {
#sends event WithdrawResponse response;

#handles event WithdrawRequest;
#uses plan ProcessWithdraw;

#private data Accounts accounts(accounts.dat™);
#private data Balances balances(balances.dat™);

public BankAgent(String n){
super(n);
try {
if (accounts.nFacts() <= 0) {
accounts.add(10, 10);
balances.add(10, 1000);

3}
} catch (Exception e) {}
}

Figure B.8 BankAgent agent

(80]

Figure B.9 shows Accounts beliefSet that contains account and pin fields and the query
function query. The account field is declared as key field. The Accounts beliefSet implements

addfact, newfact, endfact, delfact, modfact, moddb callback methods.

package agents;
public beliefset Accounts extends OpenWorld {

#key Tield int account;
#value field int pin;

#indexed query query(int i, int j);

public void addfact(Tuple t, BeliefState d){
System.err.printIn("Accounts: addfact " + t.toString() +
":" + d.toString(Q));
}

public void newfact(Tuple t, BeliefState d, BeliefState old){
System.err.printIn("*Accounts: newfact " + t.toString() +
"o+ d.toString() + ":" + old.toString());
}

public void endfact(Tuple t, BeliefState old, BeliefState d){
System.err.printIn(""Accounts: endfact " + t.toString() +
":" + old.toString() + ":" + d.toString());
}

public void delfact(Tuple t, BeliefState d){
System.err.printIn("*Accounts: delfact " + t.toString() +
"+ d.toString());
}

public void modfact(Tuple t, BeliefState d, Tuple tr, Tuple f1){
String s;
System.err.printIn("'Accounts: endfact " + t.toString() +
":" + d.tosString(Q));
if (tr == null)
s = "null";
else
s = tr.toString();
System.err_printIn(C'\t"+ s + ":true™);
it (f1 == null)
s = "null”
else
s = fl.toString();
System.err.printIn(C'\t"+ s + ":false');

}

public void moddb(){
write("'new_accounts.dat™);
System.err._printIn(C*'Accounts:*+"moddb™);

}

Figure B.9 Accounts beliefSet

Figure B.10 shows Balances beliefSet that contains account and balance fields and the query
function query. The account field is declared as key field. The Balances beliefSet implements

addfact, newfact, endfact, delfact, modfact, moddb callback methods.

package agents;
public beliefset Balances extends OpenWorld {

#key Tield int account;
#value field int balance;

#indexed query query(int i, logical int j);

public void addfact(Tuple t, BeliefState d){
System.err.printin(’'Balances: addfact " + t.toString() +
":" + d.toString(Q));
}

public void newfact(Tuple t, BeliefState d, BeliefState old){
System.err.printIn('Balances: newfact " + t.toString() +
"o+ d.toString() + ":" + old.toString());
}

public void endfact(Tuple t, BeliefState old, BeliefState d){
System.err.printin(’'Balances: endfact " + t.toString() +
":" + old.toString() + ":" + d.toString());
}

public void delfact(Tuple t, BeliefState d){
System.err.printIn('Balances:"+"delfact " + t.toString() +
"+ d.toString());
}

public void modfact(Tuple t, BeliefState d, Tuple tr, Tuple f1){
String s;
System.err.printin(Balances:"+"endfact " + t.toString() +
":" + d.tosString(Q));
if (tr == null)
s = "null";
else
s = tr.toString();
System.err_printIn(C'\t"+ s + ":true™);
it (f1 == null)
s = "null";
else
s = fl.toString();
System.err.printIn(C'\t"+ s + ":false');

}

public void moddb(){
write("'new_balances.dat™™);
System._err_printin(’'Balances: "+"moddb™);

}

(82]
Figure B.10 Accounts beliefSet

Figure B.11 shows Withdraw event that implements withdraw posting method.

package agents;
import aos.jack.jak.core.*;

event Withdraw extends Event {
#posted as
withdraw(Q) {
Jak.log.log("'Withdraw:withdraw created');
}

Figure B.11 Withdraw event

Figure B.12 shows WithdrawResponse event that contains approved, and balance data

members and implements approval and rejection posting methods.

package agents;
import aos.jack.jak.core.Jak;
public event WithdrawResponse extends MessageEvent {

public boolean approved;
public int balance;

#posted as

approval (int balance){
Jak.log.log('WithdrawResponse:approval created™);
this.approved = true;
this._balance = balance;
message = "approved’;

}

#posted as

rejection(Q{
Jak.log.log("'WithdrawResponse:rejection created™);
this.approved = false;
this.balance = 0;
message = "‘rejected";

}

Figure B.12 WithdrawResponse event

Figure B.13 shows WithdrawRequest event that contains account, pin and amount data

members and implements withdraw posting method.

(83]

package agents;
import aos.jack.jak.core.Jak;

event WithdrawRequest extends MessageEvent {
public int account;
public iInt pin;
public int amount;

#posted as

withdraw(int account, int pin, int amount) {
Jak.log.log("'WithdrawRequest:withdraw created');
this.account = account;
this.pin = pin;
this._amount = amount;
message = “‘withdraw["+account+","+pin+"]";

Figure B.13 WithdrawRequest event

Figure B.14 shows WithdrawApproved plan that handles WithdrawApproved event and
uses ArmClient agent declaration. The WithdrawApproved implements context method and

body reasoning method.

import gui.AtmClient;
import gui.Atminterface;

public plan WithdrawApproved extends Plan {

#handles event WithdrawResponse event;
#uses agent implementing AtmClient atmc;

context() {
event._approved;

}

#reasoning method

bodyO{
Atminterface hardware = atmc.getHardware();
hardware.message("'Remove your cash'™);
hardware.dispense(atmc.getAmount());
@sleep(5.0);
hardware.receipt(atmc.getAccount(),event_balance);
@sleep(5.0);
hardware.eject();

Figure B.14 WithdrawApproved plan

[84]

Figure B.15 shows WithdrawCash plan that handles Withdraw event, sends
WithdrawRequest event and uses ArmClient agent declaration. The WithdrawCash plan

implements context method and hody reasoning methods.

package agents;

import gui.Atminterface;
import gui.AtmClient;

public plan WithdrawCash extends Plan {
#handles event Withdraw event;
#uses agent implementing AtmClient atmc;

context() {
atmc.getHardware() .cardlnserted();
}

#sends event WithdrawRequest request;
#reasoning method
bodyO{
@send(atmc.getBank(), request.withdraw(atmc.getAccount(),
atmc.getPin(), atmc.getAmount())
)

Figure B.15 WithdrawCash plan
Figure B.16 shows WithdrawRejected plan that handles WithdrawResponse event and uses
ArmClient agent declaration. The WithdrawRejected plan implements relevant method and

body reasoning method.

package agents;

import gui.Atminterface;
import gui.AtmClient;

public plan WithdrawRejected extends Plan {
#handles event WithdrawResponse event;
#uses agent implementing AtmClient atmc;

static boolean relevant(WithdrawResponse event){
return levent._approved;

}

#reasoning method

body O{
AtmInterface hardware = atmc.getHardware();
hardware_message("'Request rejected™);
@sleep(5.0);
hardware.eject();
atmc.getHardware().eject(Q;}}

Figure B.16 WithdrawRejected plan

[85]

Figure B.17 shows ProcessWithdraw plan that handles WithdrawRequest event, posts
WithdrawResponse event, reads accounts beliefset, and modifies balances beliefset. The

ProcessWithdraw implements body and fail reasoning methods.

package agents;
public plan ProcessWithdraw extends Plan {
#handles event WithdrawRequest event;

#posts event WithdrawResponse response;
#reads data Accounts accounts;
#modifies data Balances balances;

#reasoning method
body O{
logical int balance;
int new_balance;
(event.amount >= 0);
try {
if (Taccounts.query(event.account,event.pin))
System.err.printIn(‘'accouts query failed™);
(accounts.query(event.account,event._pin) &&
balances.query(event._account,balance));
(event.amount <= balance.getValue());
new_balance = (balance.getValue() - event.amount);
balances.add(event.account,new_balance);
@send(event.from,response.approval (new_balance));

catch (Exception e) {
Jak.log.log((""ProcessWithdraw caught exception' + €));
e.printStackTrace();
(false == true);
}
+
#reasoning method
fail(Q{
@send(event.from,response.rejection());

}
}

Figure B.17 WithdrawApproved plan

B.5 JACK Code in XML
This section show the JACK code presented in the Section 4 converted in XML format. The

Figure B.18 shows Atm agent in XML.

<agent id="agl" name="Atm" extends="Agent" implements="AtmClient'>
<import>gui.AtmClient</import>
<import>aos.jack. jak.core.*</import>
<import>gui .AtmClient</import>
<import>gui .AtmInterface</import>
<handlesEvent>Withdraw</handlesEvent>
<handlesEvent>WithdrawResponse</handlesEvent>

[86]

<sendsEvent type="WithdrawRequest'' />
<postskEvent type="Withdraw" ref="request'/>
<usesPlan> WithdrawCash</usesPlan>
<usesPlan>WithdrawApporoved</usesPlan>
<usesPlan>WithdrawRe jected</usesPlan>
<attribute type="Atmlnterface" ref="hardware'/>
<attribute type="int" ref="account"/>
<attribute type="int" ref="pin"/>
<attribute type="int" ref="amount'/>
<attribute type="String"” ref="bank"/>
<constructor>
<parameter type="String" ref="n"/>
<parameter type="'Atmlnterface" ref="h"/>
<parameter type="String" ref="b"/>
<body>
<I[CDATAL
super(n);
bank = b;
hardware = h;
h_register((AtmClient)this);
11>
</body>
</constructor>
<method name="‘getHardware" returnType="Atminterface">
<body>
<I[CDATAL
return hardware;
11>
</body>
</method>
<method name='"'getAccount" returnType="int'>
<body>
<IV[CDATAL
return account;
11>
</body>
</method>
<method name="‘getPin" returnType="int">
<body>
<IV[CDATAL
return pin;
11>
</body>
</method>
<method name="‘getAmount' returnType="int">
<body>
<V[CDATAL
return amount;
11>
</body>
</method>
<method name="‘getBank' returnType="'String'>
<body>
<I[CDATAL
return bank;
11>
</body>
</method>

[87]

<method name="insertCard" returnType="'void">
<parameter type="int" ref="account'/>
<parameter type="int" ref="pin''/>
<body>
<I[CDATAL
this.account =
this.pin = pin;
11>
</body>
</method>
<method name="withdraw" returnType="void">
<parameter type="int" ref="amount'/>
<body>
<I[CDATAL
this.amount = amount;
postEvent(request.withdraw());
11>
</body>
</method>
<method name="'statement" returnType="void'>
<parameter type="int" ref="amount"/>
<body>
<I[CDATAL

account;

throw new Error(“'statement() is not implemented."

11>
</body>
</method>
</agent>

Figure B.18 Atm agent in XML
Figure B.19 shows BankAgent agent in XML.

<agent i1d="ag2" name='BankAgent' extends="'Agent" >
<sendsEvent type="WithdrawResponse" ref="'response" />
<handlesEvent>WithdrawRequest</handleskEvent>

<constructor>
<parameter type="String" ref="n"/>
<body>
<I[CDATAL
super(n);
try {
if (accounts.nFacts() <= 0) {
accounts.add(10, 10);
balances.add(10, 1000);

3
} catch (Exception e) {}
11>
</body>
</constructor>
</agent>

<privateData beliefType="Accounts" belieName="accounts'/>
<privateData beliefType=""Balances™ belieName="balances"/>

Figure B.19 BankAgent in XML

Figure B.20 shows Accounts beliefSet.

<beliefSet id="bl" type="Accounts" extends="OpenWorld'>
<field declarationType="key" type="int" name="account'/>
<field declarationType="value" type="int" name="pin"/>
<indexedQuery methodName="'query"'>
<parameters>
<parameter type="int" members="normal” ref="i"/>
<parameter type="int" members="normal” ref="j"/>
</parameters>
</indexedQuery>
<method name="addfact" returnType="void">
<parameter type="Tuple" ref="t"/>
<parameter type="BeliefState" ref="d"/>
<parameter type="BeliefState" ref="was'/>
<body>
<I[CDATAL
System.err.printIn("’Accounts: addfact ' + t.toString() +
o+ d.toString());
11>

</body>
</method>
<method name="newfact" returnType="void'">
<parameter type="Tuple" ref="t"/>
<parameter type="BeliefState" ref="d"/>
<parameter type="BeliefState" ref="old"/>
<body>
<V[CDATAL
System.err.printIn('Accounts: newfact ™ + t.toString()
+ " + d.toString() + ":" + old.toString());
11>

</body>
</method>
<method name="‘endfact" returnType="void'">
<parameter type="Tuple" ref="t'"/>
<parameter type="BeliefState" ref="old"/>
<parameter type="BeliefState" ref="d'"/>
<body>
<I[CDATAL
System.err.printIn(""Accounts: endfact " + t.toString() +
o'+ old.toString() + ":" + d.toString());
11>
</body>
</method>
<method name="'delfact" returnType="void'">
<parameter type="Tuple" ref="t'"/>
<parameter type="BeliefState" ref="d'"/>
<body>
<I[CDATAL
System.err.printIn(""Accounts: delfact " + t.toString() +
"+ d.toString(Q));
11>
</body>
</method>
<method name="'modfact" returnType="void'">
<parameter type="Tuple" ref="t'"/>
<parameter type="BeliefState" ref="d'"/>
<parameter type="Tuple" ref=""tr"'/>
<parameter type="Tuple" ref="fl"/>

<body>
<I[CDATAL
String s;
System.err.printIn(""Accounts: endfact " + t.toString() +
i+ d.toString());
if (tr == null)
s = "null";
else
s = tr.toString(Q;
System.err.printin(C’'\t"+ s + ":true');
it (f1 == null)
s = "null";
else
s = fl.toString();
System.err.printIn(’"\t"+ s + ":false");
11>
</body>
</method>
<method name="moddb" returnType="void">
<body>
<I[CDATAL
write("'new_accounts.dat');
System.err.printIn(""Accounts:"+"moddb'™) ;
11>
</body>
</method>
</beliefSet>

Figure B.20 Accounts beliefSet in XML
Figure B.21 shows Balances beliefSet in XML.

<beliefSet id="b2" type="Balances" extends="OpenWorld'>
<field declarationType="key" type="int" name="‘account"/>
<field declarationType="value"™ type="int" name=""balance"/>
<indexedQuery methodName="'query"'>
<parameters>
<parameter type="int" members="normal” ref="i"/>
<parameter type="int" members="logical" ref="j"/>
</parameters>
</indexedQuery>
<method name="addfact'’ returnType="'void">
<parameter type="Tuple"™ ref="t"/>
<parameter type="BeliefState” ref="d"/>
<body>
<I[CDATAL
System.err.printin(’'Balances: addfact " + t.toString()
":" + d.tosString(Q));
11>

</body>

</method>

<method name="newfact’” returnType="'void">
<parameter type="Tuple"™ ref="t"/>
<parameter type="BeliefState” ref="d"/>
<parameter type="'BeliefState” ref="old"/>

<body>
<IV[CDATAL
System.err.printin(’'Balances: newfact " + t.toString()
"I + d.toString(Q) + ":" + old.toString());
11>
</body>

</method>

<method name="endfact” returnType="void">
<parameter type="Tuple"™ ref="t""/>
<parameter type="BeliefState” ref="old"/>
<parameter type="BeliefState" ref="d"/>
<body>
<I[CDATAL
System.err.printin('Balances: endfact " + t.toString() +
":" + old.toString() + ":" + d.toString());
11>

</body>
</method>
<method name="'delfact” returnType="void">
<parameter type="Tuple"™ ref="t""/>
<parameter type="BeliefState" ref="d"/>
<body>
<I[CDATAL
System.err.printin('Balances:"+"delfact " + t.toString() +
":" + d.tostring(Q));
11>

</body>
</method>
<method name="modfact" returnType="void">
<parameter type="Tuple"™ ref="t""/>
<parameter type="BeliefState" ref="d"/>
<parameter type="Tuple" ref=""tr"'/>
<parameter type="Tuple" ref="fl"/>
<body>
<IV[CDATAL
String s;
System.err._printIn("Balances:"+"endfact " + t.toString() +
"+ d.toString(Q));
if (tr == nullD)
s = "null";
else
s = tr.toString(Q);
System.err.printin(C'\t"+ s + ":true™);
if (FI == null)
s = "null";
else
s = Fl.toString(Q);
System.err_printIn(C"\t"+ s + ":false");
11>
</body>
</method>
<method name="moddb" returnType="void'>
<body>
<IV[CDATAL
write("'new_balances.dat');
System.err.printin(*'Balances: "+"moddb™);
11>
</body>
</method>
</beliefSet>

Figure B.21 Balances beliefSet in XML
Figure B.22 shows ProcessWithdraw plan in XML.

[91]

<plan id="pl" name="ProcessWithdraw" extends="Plan'>
<handleskEvent type="WithdrawRequest" ref="event'/>
<postsEkEvent type="WithdrawResponse" ref="'response'/>
<readsData type=""Accounts" ref=""accounts"/>
<modifiesData type=""Balances" ref="balances"/>
<body>
<I[CDATAL
logical int balance;
int new_balance;
(event.amount >= 0);
try {
if (laccounts.query(event.account,event.pin))
System.err.printin(accouts query failed");
(accounts.query(event.account,event.pin) &&
balances.query(event.account,balance));
(event.amount <= balance.getValue());
new_balance = (balance.getValue() - event.amount);
balances.add(event._account,new_balance);
@send(event.from, response.approval (new_balance));
}
catch (Exception e) {
Jak.log.log((*""ProcessWithdraw caught exception™ + e));
e.printStackTrace();
(false == true);
}
11>
</body>
<fail>
<I[CDATAL
@send(event.from,response.rejection());
11>
</fail>
</plan>

Figure B.22 ProcessWithdraw plan in XML

<plan id="p2" name="WithdrawApproved" extends="Plan''>
<handlesEvent type="WithdrawResponse"™ ref="event'/>
<usesAgent type=""AtmClient"” ref="atmc"/>
<context>
<I[CDATAL
event.approved;
11>
</context>
<body>
<V[CDATAL
Atminterface hardware = atmc.getHardware();
hardware.message("'Remove your cash'™);
hardware .dispense(atmc.getAmount());
@sleep(5.0);
hardware.receipt(atmc.getAccount(),event_balance);
@sleep(5.0);
hardware.eject();
11>
</body>
</plan>

Figure B.23 WithdrawApproved plan in XML

<plan id="p3" name="WithdrawCash"™ extends="Plan'>
<import>gui.AtmClient</import>
<import>gui .AtmInterface</import>
<handlesEvent type="Withdraw" ref="event"/>
<sendsEvent type="WithdrawRequest" ref="request'/>;
<usesAgent type="AtmClient" ref="atmc"/>
<context>
<IV[CDATAL
atmc.getHardware() .cardlnserted();
11>
</context>
<body>
<V[CDATAL
@send(atmc.getBank(),
request.withdraw(atmc.getAccount(),
atmc.getPin(),atmc.getAmount()));
11>

</body>
</plan>

Figure B.24 WithdrawCash plan in XML

Figure B.25 shows WithdrawRejected plan in XML.

<plan id="p4" name="WithdrawRejected" extends="Plan''>
<import>gui.AtmClient</import>
<import>gui.AtmInterface</import>
<handlesEvent type="WithdrawResponse" ref="event'/>
<usesAgent type="AtmClient” ref="atmc'/>
<relevant>
<I[CDATAL
atmc.getHardware().cardlnserted();
11>
</relevant>
<context>
<I[CDATAL
return levent._approved;
11>
</context>
<body>
<IV[CDATAL
@send(atmc.getBank(),
request.withdraw(atmc.getAccount(), atmc.getPin(),
atmc.getAmount()));
11>

</body>
</plan>

Figure B.25 WithdrawRejected plan in XML

Figure B.26 shows Withdraw event in XML.

[93]

<event id="evl" type="Withdraw"” extends="Event''>
<import>aos. jack.jak.core.*</import>
<posted methodName="'withdraw">
<I[CDATAL
Jak.log.log(""Withdraw:withdraw created');
11>
</posted>
</event>
<event id="ev2" type="WithdrawRequest'" extends="MessageEvent'>
<import>aos.jack. jak.core.Jak</import>
<field visibility="public™ type="account' name="account'/>
<fField visibility="public” type="int" name="pin"/>
<field visibility="public” type="int" name="amount'/>
<posted methodName="withdraw">
<parameter type="int" name="account'/>
<parameter type="int" name='pin"'/>
<parameter type="int'" name="amount"/>
<I[CDATAL
Jak.log.log("'WithdrawRequest:withdraw created™);
this.account = account;
this.pin = pi
this.amount =
Wi

amount;
message = "withdraw['+account+","+pin+"]";
11>
</posted>
</event>

Figure B.26 Withdraw event in XML
Figure B.27 shows WithdrawResponse event in XML

<event id="ev3" type="WithdrawResponse'" extends="Event''>
<import>aos.jack. jak.core.Jak</import>
<Field visibility="public" type="boolean" name="approved'/>
<Field visibility="public" type="int" name="balance"/>
<posted methodName="approval®'>
<I[CDATAL

Jak.log.log("'WithdrawResponse:approval created");

this.approved = true;

this.balance = balance;

message = "approved";
11>
</posted>
<posted methodName="rejection">
<I[CDATAL

Jak.log.log("'WithdrawResponse:rejection created™);
this.approved = false;
this_balance = 0;
message = "‘rejected";
11>
</posted>
</event>

Figure B.27 WithdrawResponse in XML

[94]

B.6 Evaluation
To evaluate our approach we identified traceability relations manually (see Table B.1) and

compared the results with traceability relations identified by the tool (see Table B.2). 31 correct

traceability relations had been identified by the tool and 33 traceability relations were missing.

The precision and recall calculated were 100% and 48,43%, respectively.

Type Prometheus Message JACK Event
overlaps Withdraw Request WithdrawRequest
overlaps Withdraw Response WithdrawResponse
overlaps Withdraw Withdraw

Type Prometheus Data JACK BeliefSet
overlaps Balances Balances
overlaps Account Accounts

Type Prometheus Plan JACK Plan
overlaps Process Withdraw ProcessWithdraw
overlaps Withdraw Approved WithdrawApproved
overlaps Withdraw Rejected WithdrawRejected
overlaps Withdraw Cash WithdrawCash

Type Prometheus Agent JACK Agent
overlaps Bank BankAgent
overlaps Atm Atm

Type Prometheus Goal JACK Agent
achieves Authorize Withdraw BankAgent
achieves Request Rejected Atm
achieves Withdraw Money Atm
achieves Request Approved Atm

Type Prometheus Plan JACK Agent

uses Process Withdraw BankAgent
uses Withdraw Approved Atm
uses Withdraw Rejected Atm
uses Withdraw Cash Atm
Type Prometheus Percept JACK Agent
uses Withdraw Percept Atm
uses Card Inserted Atm
uses Print Statement Atm

Type Prometheus Action JACK Agent

uses Show Message Request Rejected Atm
uses Eject Card Atm
uses Print Receipt Atm
uses Dispense Cash Atm
uses Show Message Remove Cash Atm

Type Prometheus Message JACK Agent
receives Withdraw Request BankAgent
receives Withdraw Response Atm
receives Withdraw Atm

sends Withdraw Response BankAgent

sends Withdraw Request Atm

Type Prometheus Goal JACK Plan
achieves Authorize Withdraw ProcessWithdraw
achieves Request Approved WithdrawApproved
achieves Request Rejected WithdrawRejected
achieves Withdraw Money WithdrawCash

Type Prometheus Agent JACK Plan

uses Bank ProcessWithdraw

uses Atm WithdrawApproved

[95]

uses Atm WithdrawRejected
uses Atm WithdrawCash
Type Prometheus Percept JACK Plan
uses Withdraw Percept WithdrawCash
Type Prometheus Action JACK Plan
creates Eject Card WithdrawApproved
creates Print Receipt WithdrawApproved
creates Dispense Cash WithdrawApproved
creates Show Message Remove Cash WithdrawApproved
creates Show Message Request Rejected WithdrawRejected
creates Eject Card WithdrawRejected
Type Prometheus Message JACK Plan
sends Withdraw Response ProcessWithdraw
sends Withdraw Request WithdrawCash
receives Withdraw Request ProcessWithdraw
receives Withdraw Response WithdrawApproved
receives Withdraw Response WithdrawRejected
receives Withdraw WithdrawCash
Type Prometheus Data JACK Plan
uses accounts ProcessWithdraw
creates balances ProcessWithdraw
Type Prometheus Plan JACK BeliefSet
uses Process Withdraw Accounts
creates Process Withdraw Balances
Type Prometheus Agent JACK Event
sends Atm WithdrawRequest
sends Bank WithdrawResponse
receives Bank WithdrawRequest
receives Atm WithdrawResponse
receives Atm Withdraw
Type Prometheus Plan JACK Event
sends Withdraw Cash WithdrawRequest
sends Process Withdraw WithdrawResponse
Table B.1 Traceability relations identified manually
Rule ID Type Prometheus Message JACK Event
rulePJla overlaps Withdraw Request WithdrawRequest
rulePJla overlaps Withdraw Response WithdrawResponse
rulePJ1la overlaps Withdraw Withdraw
Rule ID Type Prometheus Data JACK BeliefSet
rulePJ2a overlaps Balances Balances
rulePJ2a overlaps Account Accounts
Rule ID Type Prometheus Plan JACK Plan
rulePJ3a overlaps Process Withdraw ProcessWithdraw
rulePJ3a overlaps Withdraw Approved WithdrawApproved
rulePJ3a overlaps Withdraw Rejected WithdrawRejected
rulePJ3a overlaps Withdraw Cash WithdrawCash
Rule ID Type Prometheus Agent JACK Agent
rulePJ4a overlaps Bank BankAgent
rulePJ4a overlaps Atm Atm
Rule ID Type Prometheus Goal JACK Agent
rulePJ5a achieves Authorize Withdraw BankAgent
rulePJ5a achieves Request Rejected Atm
rulePJ5a achieves Withdraw Money Atm
rulePJ5a achieves Request Approved Atm
Rule ID Type Prometheus Plan JACK Agent
rulePJ9a uses Process Withdraw BankAgent

[96]

rulePJ9a uses Withdraw Approved Atm
rulePJ9a uses Withdraw Rejected Atm
rulePJ9a uses Withdraw Cash Atm

Rule 1D Type Prometheus Percept JACK Agent
rulePJ10a uses Withdraw Percept Atm
rulePJ10a uses Card Inserted Atm
rulePJ10a uses Print Statement Atm

Rule ID Type Prometheus Action JACK Agent
rulePJ1la uses Show Message Request Rejected Atm
rulePJ1la uses Eject Card Atm
rulePJ1la uses Print Receipt Atm
rulePJ1la uses Dispense Cash Atm
rulePJ1la uses Show Message Remove Cash Atm

Rule ID Type Prometheus Message JACK Agent
rulePJ12a receives Withdraw Request BankAgent
rulePJ12a receives Withdraw Response Atm
rulePJ12a receives Withdraw Atm
rulePJ12b sends Withdraw Response BankAgent
rulePJ12b sends Withdraw Request Atm

Rule ID Type Prometheus Goal JACK Plan
rulePJ14a achieves Authorize Withdraw ProcessWithdraw
rulePJ14a achieves Request Approved WithdrawApproved
rulePJ14a achieves Request Rejected WithdrawRejected
rulePJ14a achieves Withdraw Money WithdrawCash
Rule ID Type Prometheus Agent JACK Plan
rulePJ15a uses Bank ProcessWithdraw
rulePJ15a uses Atm WithdrawApproved
rulePJ15a uses Atm WithdrawRejected
rulePJ15a uses Atm WithdrawCash
Rule 1D Type Prometheus Percept JACK Plan
rulePJ17a uses Withdraw Percept WithdrawCash
Rule ID Type Prometheus Action JACK Plan
rulePJ18a creates Eject Card WithdrawApproved
rulePJ18a creates Print Receipt WithdrawApproved
rulePJ18a creates Dispense Cash WithdrawApproved
rulePJ18a creates Show Message Remove Cash WithdrawApproved
rulePJ18a creates Show Message Request Rejected WithdrawRejected
rulePJ18a creates Eject Card WithdrawRejected
Rule 1D Type Prometheus Message JACK Plan
rulePJ19a sends Withdraw Response ProcessWithdraw
rulePJ19a sends Withdraw Request WithdrawCash
rulePJ19c receives Withdraw Request ProcessWithdraw
rulePJ19c receives Withdraw Response WithdrawApproved
rulePJ19c receives Withdraw Response WithdrawRejected
rulePJ19c receives Withdraw WithdrawCash
Rule ID Type Prometheus Data JACK Plan
rulePJ20a uses accounts ProcessWithdraw
rulePJ20b creates balances ProcessWithdraw
Rule 1D Type Prometheus Plan JACK BeliefSet
rulePJ24a uses Process Withdraw Accounts
rulePJ24b creates Process Withdraw Balances
Rule ID Type Prometheus Agent JACK Event
rulePJ31la sends Atm WithdrawRequest
rulePJ31la sends Bank WithdrawResponse
rulePJ31b receives Bank WithdrawRequest
rulePJ31b receives Atm WithdrawResponse
rulePJ31b receives Atm Withdraw
Rule 1D Type Prometheus Plan JACK Event
rulePJ33a sends Withdraw Cash WithdrawRequest

[97]

rulePJ33a | sends | Process Withdraw | WithdrawResponse

Table B.2 Traceability relations identified by the tool

To show how missing elements identified by the tool can assist in the software development
process we used the information of missing elements (Table B.3) to complete the models and
to fix inconsistencies (e.g. to fix discrepancies between names given by the elements). The
completeness checking rules showed that they were missing relations between JACK BeliefSet
and Prometheus Data, JACK Plan and Prometheus Plan, Prometheus Plan and JACK Plan,
Prometheus Goal and JACK Agent.

Rule 1D JACK BeliefSet Prometheus Data
RulePJ2ccl Accounts

RulePJ2ccl Balances

Rule 1D JACK Plan Prometheus Plan
RulePJ3ccl ProcessWithdraw

RulePJ3ccl WithdrawApproved

RulePJ3ccl WithdrawCash

RulePJ3ccl WithdrawRejected

Rule 1D Prometheus Plan JACK Plan
RulePJ3cc2 Withdraw Approved

RulePJ3cc2 Process Withdraw

RulePJ3cc2 Withdraw Cash

RulePJ3cc2 Withdraw Rejected

Rule ID Prometheus Goal JACK Agent
RulePJ5ccl Request Approved

RulePJ5ccl Request Rejected

RulePJ5ccl Withdraw Money

RulePJ5ccl Authorize Withdraw

Rule ID Prometheus Message JACK Agent
RulePJ12ccl Withdraw

Table B.3 Missing Information

Table B.3 shows that the RulePZccl rule identified that is missing a traceability relations
between Accounts and Balances beliefSets in JACK and some data in Prometheus. We look
what data in Prometheus could be related to Accounts beliefSet and conclude that Accounts
beliefSet in JACK should be related to Accounts data in Prometheus. BeliefSets in JACK and
data in Prometheus are related when the name of the beliefSet and the name of data are
synonyms and included fields/aspects properties of the data is similar to the fields in the
beliefSet. Figure B.28 shows that Accounts beliefSet has account and pin fields and no

included fields/aspects properties has been defined to the Accounts data (see Figure B.29).

[98]

</beliefSet>

<beliefSet id="bl" type="Accounts" extends="OpenWorld">
<field declarationType=""key" type="int" name="account'/>
<field declarationType="value"™ type="int" name="pin"/>

@ Prometheus Design Taol: atm.pd b

Figure B.29 Fields of the Accounts beliefSet

Diagrams
ldefault
=-System Specification
“-Analysis Overview
Scenarios
Goal Overnview
~-System Roles
E-Architectural Design
Data Coupling
+-Agent-Role Grouping
Agent Acguaintance
“-Systam Overview
[=-Detailed Design
2 Bank

e 2 Atm

File Tools Scoping Enfities View Help

|

Entities

System entities

(O Authorize Withdraw
(O Request Approved

() ReauestReiected |

Bank - Agent Overview Diagram
] e e A A e e e e e
| Help f_ a
: o Witheh 2w Request Process Withdraw Withdraw Response
3 = =
& :
accounts - Descriptor
| [ame: =
|| [accounts
|| pescription: =l
Data type:
4| |account
‘vl Filter
= || nduded fieids/aspects:
< i v
= [pelete Set

The same way, we look what data in Prometheus could be related to Balances beliefSet and
we concluded that Balances beliefSet in JACK should be related to Balances data in
Prometheus. Figure B.31 shows that Balances beliefSet has account and balance fields and

no included fields/aspects properties has been defined to the Balances data (see Figure

B.32).

Figure B.30 Accounts beliefSet

</beliefSet>

<beliefSet id="bl" type="Balances" extends="OpenWorld">
<field declarationType=""key" type="int" name="account'/>
<field declarationType="value"™ type="int" name="balance"/>

Figure B.31 Balances beliefSet

[99]

[£] Prometheus Design Tool ; atm.pd
File Tools Scoping Enfities View Help
Diagrams Bank - Agent Overview Diagram

L T T T T T L T L T T L L T L T T

default
E-System Specification Help |;
i-Analysis Overview
i~ Scenarios
- Goal Overview

1
‘-System Roles b4
>

Witheraw Response

\ithd awRequest Process Withdraw
E-Architectural Design
i~Data Coupling

|- [—] [—
+-Agent-Role Grouping -

i~ Agent Acquaintance T T

HEy |

:-System Overview balances - Descriptor

[=-Detailed Design

- 2 [Bank| = =
T Am balances
- s Description: = I
Entities |
System entities : Filter
Data type:

2 Bank

) accounts
balances
O Authorize Withdraw
() Request Approved
() Request Rejected
(O withdraw Money
=] withdraw

Balances

m | »

Figure B.32 Balances descriptor

We added accounts and balances to the included fields/aspects to the Balances data in
Prometheus.

Table B.3 shows that the Ru/eP/3ccl rule identified that there are missing traceability relations
between ProcessWithdraw, WithdrawApproved, WithdrawCash and WithdrawRejected
plans in JACK and plans in Prometheus. Table B.3 also shows that the Ru/ePJ3cc2 rule
identified that there are missing traceability relations between Process Withdraw, Withdraw
Approved, Withdraw Cash and Withdraw Rejected plans in Prometheus and plans in
JACK. Based on this information we can determine that are missing traceability relations
between Process Withdraw in JACK and Process Withdraw in Prometheus. Plans in JACK
and plans in Prometheus are related when the name of the plan in JACK and the name of plan
in Prometheus are synonyms, and the name of the element that triggers the plan in

Prometheus and the name of the event that the plan in JACK handles are synonyms.

[100]

We observed that Process Withdraw plan in JACK handles WithdrawRequest event (see

Figure B.33) while no trigger properties has been defined to the Process Withdraw plan in
Prometheus (see Figure B.34).

<plan id="pl" name="ProcessWithdraw" extends="Plan'>
<handleskEvent type="WithdrawRequest" ref="event'/>

</plan>

Figure B.33 ProcessWithdraw plan

ﬂ Prometheus Design Tool : atm.pd

File Tools Scoping Entities View Help
Diagrams Bank - Agent Overview Diagram
B L e T T LT T L L L L L

|15, |8, |17, |,

||9I \ml ‘21‘ |22| |23| |B|I I|ﬁ|

I-System Specification
~Analysis Overview
~Scenarios
~Goal Oveniew
i -3ystem Roles
=-Architectural Design
i t-DataCoupling
~Agent-Role Grouping
~Agent Acquaintance

--Bystem Overview

o

Name:
“| | |Pracess withdraw |

i Description:

System entities Filter | Triggers: '

-

=1 Withdraw
Withdraw Request

‘] T 1+ |

Figure B.34 Process Withdraw descriptor

[101]

We added Withdraw Request message to the triggers properties of the Process Withdraw

plan. In the same way, we identified that a traceability relations between Process Withdraw

plan in JACK and Process Withdraw plan in Prometheus was missing. We identified that the

WithdrawRequest plan in JACK handles WithdrawResponse event (see Figure B.35) while

no trigger properties has been defined to the Withdraw Approved plan in Prometheus (see

Figure B.36).

<plan id="p2" name="WithdrawApproved" extends="Plan">
<handlesEvent type="WithdrawResponse" ref="event"/>

;}plan>

Figure B.35 WithdrawApproved plan

F:l Prometheus Design Tool : atm.pd

File Tools Scoping Entities View Help

default
- Sys

--Analysis Overview
- 3renarios

rchitectural Design

Atm - Agent Overview Diagram

Diagrams

tem Specification

==
I

Goal Overview
System Roles

o
I

Data Coupling
Agent-Role Grouping
Agent Acquaintance
System Overview

—
[B

=l

System entities

Filter

=1 withdraw

=1 withdraw Request
=1 withdraw Response
{3 card Inserted

1':_." Print Statement

2| [Mame:

| »

Withdraw Approved
| | Description:

Triggers:

[m] »

{3 withdraw Percept g

() Process Withdraw

(O withdraw Approved
(D withdraw Cash

() withdraw Rejected

q] I

[¥]

]

1

m |

Figure B.36 Withdraw Approved descriptor

We added Withdraw Response message to the triggers properties of the Withdraw

Approved plan. A traceability relation was also missing between Withdraw Cash plan in
JACK and Withdraw Cash in Prometheus.

[102]

We found that WithdrawCash plan in JACK handles Withdraw event (see Figure B.37)
while no trigger properties has been defined to the Withdraw Cash plan in Prometheus
(see Figure B.38).

<plan id="p3" name="WithdrawCash" extends="Plan'>
<import>gui .AtmClient</import>
<import>gui.AtmInterface</import>
<handlesEvent type="Withdraw" ref="event'/>

;}[-)Ian>

Figure B.37 WithdrawCash plan

Atm - Agent Overview Diagram
LA PR P LT L L Y L P PP L PO O I I -
——— -
= Withdraw Percept ==
I -~ | p—

default I

E-System Specification
i -Analysis Overview
Scenarios

-

Show Message Remove Cash >

m

-—Agent-Role Grouping Dispense Cash
Agent Acquaintance
--System Overview

led Design

Print Recsipt

Withdraw Cash \E|
.. Description:

Entities i
System entities Filter | :
{3 withdraw Percept [« i|[Triggers:
O Process Withdraw _.
(O withdraw Approved B | | 3 il
(O withdraw Cash =E
(O withdraw Rejected = Seil

Figure B.38 Withdraw Cash descriptor
We added Withdraw message to the triggers properties of the Withdraw Cash plan. A

traceability relation was missing between Withdraw Rejected plan in JACK and
Withdraw Rejected plan in Prometheus. We found that \WithdrawRejected plan in JACK
handles WithdrawResponse event (see Figure B.39) while no trigger properties has been
defined to the Withdraw Rejected plan in Prometheus (see Figure B.40).

<plan id="p4" name="WithdrawRejected" extends="Plan''>
<import>gui.AtmClient</import>
<import>gui .Atminterface</import>
<handlesEvent type="WithdrawResponse" ref="event"/> ...
</plan>

Figure B.39 WithdrawReject plan
[103]

[2] Prometheus Design Tool : atm.pd

File Tools Scoping Entities View Help

Diagrams : Atm - Agent Overview Diagram

default

[=-System Specification
H Analysis Overview
~Scenarios

-Goal Overview

: System Roles
E-Architectural Design
i Data Coupling

Show Message Request Rejects

~Agent-Role Grouping
Agent Acquaintance

~-System Overview Name:
etailed Design || | withdraw Rejected
Description:

D

Tri :
System entities [asers
as of
(O withdraw Cash il < (CEdit] i
) withdraw Rejected ~| :
T

Figure B.40 Withdraw Rejected descriptor

We added Withdraw Response message to the triggers properties of the Withdraw
Rejected plan.

Table B.3 shows that the RulePJ5ccl rule identified that is missing a traceability relation
between Request Approved, Request Rejected, Withdraw Money and Authorize
Withdraw goals in Prometheus and some agent in JACK. We look in the Prometheus and
found that we haven’t defined what Prometheus agents achieve Request Approved,
Request Rejected, Withdraw Money and Authorize Withdraw goals. We updated the
model and defined that Request Approved, Request Rejected, and Withdraw Money
goals in Prometheus are achieved by Atm agent and Authorize Withdraw is achieved by
Bank agent.

We run the prototype tool again and compared the results with relations identified by the tool
calculate precision and recall again. We found the 33 traceability relations that were missing

and the precision and recall calculated were 100% and 100%, respectively.

[104]

Appendix C — Air Traffic Control Environment

C.1 Introduction

This section describes the development of a multi-agent system to implement the Air Traffic
Control Environment used as a case study to evaluate our approach to generate traceability
relations automatically and to identify missing elements between artefacts created during the

development of a multi-agent system.

Air traffic congestion is a global issue and several air traffic management systems have already
been built to alleviate this problem [Liunberg 1992]. The air control environment consists of a
system that implements arrival sequencing for an airport. The main goal of an air control
environment is to find the best landing time for an aircraft in order to alleviate congestion and

its associated delays.

A feeder airport has the responsibility to process traffic of aircrafts. A Feeder airport contains
information about all aircraft schedule arrivals that consists of the call sign (unique identifier of
an aircraft used in the radio communications), booking time, ETA (Estimate Times of Arrival)
to use for booking, the arrival time at destination control area, and the ETA at control area
entrance. The feeder airport waits until the booking time has passed and then sends the
information to destination airport. A feeder aircraft receives update information about

schedule changes such as a takeoff discard of an aircraft.

An aircraft sends a message to the airport when enter control area of the airport destination
and waits until a runway has been allocated. To find the best landing time for an aircraft, the
airport manager first queries all runway managers for the “best landing time” for an aircraft
and then chooses one. After the airport manager notifies the decision to the runway manager
and to the aircraft. In order to maximizing landing, faster aircraft that arrive later to the airport
control area, push out earlier already assigned slower aircraft. A new bidding occurs to allocate
a runway slot for the slower aircraft. During the approaching to landing, the aircraft test
continually to see if the runaway still allocated for landing until the landing time (ATL) has

passed.

[105]

C.2 Organizational Models

The Air Traffic Environment is composed of Aircraft, Airport, Feeder and Runway actors.
Figure C.1 shows the actors and its strategic dependencies relationships. The Aircraft actor
depends on the Airport actor to have ATL resource provided. The Feeder actor depends on
the Airport actor to have Find Best Landing Time for an Aircraft goal achieved. The Airport
depends on Runway actor to have Allocate Runway Slot goal achieved. The Airport actor

depends on Runway actor to have Slot Allocated resource provided.

@

Slot Allocated

Figure C.1 Strategic Dependency model for Air Traffic Environment

The Landing task of the Aircraft actor is decomposed on Assign Slot, Initiate Approach and
Follow Approach tasks. The Follow Approach task uses Landing Information resource and
the Assign Slot task depends on the Airport actor to provide the ATL resource in order to

perform Assign Slot task.

The Process Schedule for a Feeder task of the Feeder actor is decomposed on TakeOff and
TakeOffDiscard tasks. The TakeOff task is decomposed on Request Booking task. The
Request Booking task depends on the Airport actor to achieve Find Best Landing Time for an

Aircraft goal.

[106]

The Airport actor performs Request Runway task as means to achieve Find Best Landing
Time for an Aircraft goal. The Request Runway task uses ATL resource and it depends on

Runway actor to achieve Allocate Runway Slot goal and to provide the Slot Allocated resource.

The Runway actor performs Respond Runway Request task as means to achieve Allocate

Runway Slot goal. The Respond Runway Request task uses Slot Allocated resource.

Figure C.2 Strategic Rationale model for Air Traffic Environment

C.3 Prometheus Models
Figure C.3 shows the Goal diagram for the Air Traffic Control Environment. In the top level,

we have Landing, Find Best Land Time for an Aircraft, Schedule Arrival for a Feeder, Process
Schedule for a Feeder, Assign Runway, Request Slot, and Assign Slot. The Find Best Land
time for an Aircraft goal is refined by Query Best Landing Time from All Runway Manager
and Push Out goals. The Landing goal is refined by Initiate Aircraft Approach and Progresses

an aircraft to Landing goals.

[107]

Find Best Land Time For an Aircraft

AND

Initiate Aircraft Approach Progresses an aircraft to Landing Giiery Best Landing Time From Al Runway Manaer @

Schedule Arrival For & Feader Process Schedule for a Feeder Assign Rurway Request Slat

Figure C.3 Goal diagram for Air Traffic Environment

The Air Traffic Control Environment application consists of a multi-agent systems composed

of four agents: Aircraft, Airport, Feeder, and Runway.

The Feeder agent has the Traffic Feeding capability. The Traffic Feeding capability overview
diagram is shown in the Figure C.4. The Traffic Feeding capability handles Aircraft Event and
Traffic Event events, sends Aircraft Event event, contains the Schedule data, and uses Traffic,

Takeoff, and Takeoff Discard plan.

Traffic and Takeoff plans handle Traffic Event message. Initially, a Traffic Event message is
posted when the Feeder agent is created. The Traffic Event message contains information
(schedule rows) about all aircraft schedule arrivals that consists of the call sign (unique
identifier of an aircraft used in the radio communications), booking time, ETA (Estimate
Times of Arrival) to use for booking, the arrival time at destination control area, and the ETA
at control area entrance. To each schedule row in the Traffic Event message, the Traffic plan
wait until the booking time has passed and then post a Traffic Event message passing the
schedule row, airport and destination. This time the Traffic Event message is handled by the
Takeoff plan. The Takeoff plan sends a booking request (Aircraft Event message) to the
Airport. The Takeoff plan waits for the arrival time of the aircraft to then creates an Aircraft
agent. The Takeoff Discard plan handles Aircraft Event message sent back from the Airport
agent for the booking.

[108]

Traffic Event

At
b
At
LY
At
%\
At
Takenff

e
schedule

Aircraft Event

L]
L]
i
i

Takeoff Discard

Figure C.4 Traffic Feeding Capability
The Airport agent has the Arrival Sequencing capability (see Figure C.5). The Arrival
Sequencing capability contains the Request Slot Plan plan and the Semaphore data. The
Request Slot Plan plan handles the Aircraft Event message and propagates it to all available
runways in order to find the best one and then notifies the decision to the runway and to the

aircraft.

e
Aircraft Event F——————— Request Slot Plan

Figure C.5 Arrival Sequencing Capability

The Runway agent has the Runway Assigning capability (see Figure C6). The Runway
Assigning capability contains Runway Request and Runway Assign plans, Runwaylnfo data
and handles the Aircraft Event message. The Runway Request plan handles the Aircraft Event
message sent from the Airport agent. The Runway Request plan checks all runway assignments
to find the first slot that is not used or used to a slower aircraft (slower aircraft are push out).
The Aircraft agent sends an Aircraft Event message assigning the runway chosen. The Runway
Assign plan handles this Aircraft Event message and allocates the slot to the runway. If the slot
is already occupied then it is re-allocated and then an Aircraft Event message is sent to the
Airport agent requesting a new booking to the Aircraft that has been push out. An Aircraft

Event message is also sent to the Aircraft agent confirming the allocation of the runway.

[109]

Runway Request

Rurway Assign

Figure C.6 Runway Assigning Capability

The Aircraft agent has the Flying capability (see Figure C.7). The Flying capability uses
Monitor Aircraft, Initial Approach, Follow Approach, and Assign Slot Plan plans, has
Landinglnfo data, and handles Aircraft Event, Enter Control Area, Approaching messages;
post Enter Control Area, Approaching events. The Monitor Aircraft plan handles Enter
Control Area message. The Monitor Aircraft plan sends an Aircraft Event message confirming
landing at arrival ETA and post Approaching message. Initially, the Initial Approach plan
handles the Approaching message. The Initial Approach plan wait until the runway has been
allocated and then post an Approaching message. This time, the Follow Approach message
handles the Approaching message and test continually to see if the runaway still allocated for
landing until the landing time (ATL) has passed. The Assign Slot plan handles the notification
of Aircraft Event message sent by the Airport passing the runway information that the Aircraft
has been allocated. The Assign Slot plan adds a new fact to the LandingInfo beliefset with the
runway and ATL data.

Enter Control Area

Manitar Aircraft

,,,,, - approaching

Aircraft Event landing_info Initial Approach) -

3 Follow Approach
Assign Slok Plan

Figure C.7 Flying Capability

[110]

Traffic and Takeoff plans handle Traffic Event message. Initially, a Traffic Event message is
posted when the Feeder agent is created. The Traffic Event message contains information
(schedule rows) about all aircraft schedule arrivals that consists of the call sign (unique
identifier of an aircraft used in the radio communications), booking time, ETA (Estimate
Times of Arrival) to use for booking, the arrival time at destination control area, and the ETA
at control area entrance. To each schedule row in the Traffic Event message, the Traffic plan
wait until the booking time has passed and then post a Traffic Event message passing the
schedule row, airport and destination. This time the Traffic Event message is handled by the
Takeoff plan. The Takeoff plan sends a booking request (Aircraft Event message) to the
Airport and wait for the arrival time of the aircraft then creates an Aircraft agent. The Takeoff
Discard plan handles Aircraft Event message sent back from the Airport agent for the

booking.

Traffic Event

At
LY
At
b
At
%\
At
Takeoff

e
schedule

Bircraft Event

L]
L]
L]
L

Takeoff Discard

Figure C.8 Traffic Feeding Capability
The Airport agent has the Arrival Sequencing capability (see Figure C.9). The Arrival

Sequencing capability contains the Request Slot Plan and the Semaphore data. The Request
Slot Plan plan handles the Aircraft Event message and propagates it to all available runways in

order to find the best one and then notifies the decision to the runway and the aircraft.

e
dircraft Event F——————— Request Slak Plan

Figure C.9 Arrival Sequencing Capability

[111]

The Runway agent has the Runway Assigning capability (see Figure C.10). The Runway
Assigning capability contains Runway Request and Runway Assign plans, Runwaylnfo data
and handles the Aircraft Event message. The Runway Request plan handles the Aircraft Event
message sent from the Airport agent. The Runway Request plan checks all runway assignments
to find the first slot that is not used or used to a slower aircraft (slower aircraft are push out).
The Aircraft agent sends an Aircraft Event message assigning the runway chosen. The Runway
Assign plan handles this Aircraft Event message and allocates the slot to the runway. If the slot
is already occupied then it is re-allocated and then an Aircraft Event message is sent to the
Airport agent requesting a new booking to the Aircraft that has been push out. An Aircraft

Event message is also sent to the Aircraft agent confirming the allocation of the runway.

Rurnway Request

Rurway Assign

Figure C.10 Runway Assigning Capability
The Aircraft agent has the Flying capability (see Figure C.11). The Flying capability uses

Monitor Aircraft, Initial Approach, Follow Approach, and Assign Slot Plan plans, has
Landinglnfo data, and handles Aircraft Event, Enter Control Area, Approaching messages;
post Enter Control Area, Approaching events. The Monitor Aircraft plan handles Enter
Control Area message. The Monitor Aircraft plan sends an Aircraft Event message confirming
landing at arrival ETA and post Approaching message. Initially, the Initial Approach plan
handles the Approaching message. The Initial Approach plan wait until the runway has been
allocated and then post an Approaching message. This time, the Follow Approach message
handles the Approaching message and test continually to see if the runaway still allocated for
landing until the landing time (ATL) has passed. The Assign Slot plan handles the notification
of Aircraft Event message sent by the Airport passing the runway information that the Aircraft
has been allocated. The Assign Slot plan adds a new fact to the Landinglnfo beliefset with the
runway and ATL data.

[112]

Enter Control Area

Monitor Aircraft

- approaching

Aircraft Event landing_info Initial Approach) -

3 Fallow Approach
Assign Slok Plan

Figure C.11 Flying Capability

C.4 JACK Code

The multi-agent system was implemented using JACK Agent Language. The system consists
of Aircraft, Airport, Feeder and Runway agents, Landinglnfo and Runwaylnfo beliefSets,
ArrivalSequencing, Flying, RunwayAssigning and TrafficFeeding capabilities, AircraftEvent,
Approaching, EnterControlArea, and TrafficEvent events, AssignSlot, FollowApproach,
Initial Approach, MonitorAircraft, RequestSlot, RunwayAssign, RunwayRequest, Takeoff,
TakeoffDiscard, and Traffic plans.

Figure C.12 shows Aircraft agent. The Aircraft agent has Flying capability.

/** Aircraft agents. */
agent Aircraft extends Agent {
#has capability Flying fly;

Aircraft(String id,String airport,long eta){
super(id);
fly._start(id,airport,eta);

Figure C.12 Aircraft agent
Figure C.13 shows Airport agent. The Airport agent has ArrivalSequencing capability.

[113]

import java.util.Hashtable;
import aos.jack.jak.event.TracedMessageEvent;

/** Airport agents.*/
agent Airport extends Agent {

#has capability ArrivalSequencing seq;

Airport(String name,String [] runway){
super(name) ;

for (int i = 0; i<runway.length; i++)
new Runway(runway[i],i);

seqg.enable(runway) ;

TracedMessageEvent.tracer.start(this);

}

Figure C.13 Airport agent
Figure C.14 shows Feederagent. The Feederagent has ArrivalSequencing capability.

/** The Feeder agents model source airports and other "'sources of
aircraft”. Each feeder agent has it"s own schedule. */

agent Feeder extends Agent {
#has capability TrafficFeeding feed;

Feeder(String name,String destination){
super(name);
feed. load(name,destination);
}
}

Figure C.14 Feeder agent
Figure C.15 shows Runway agent. The Runway agent has RunwayAssigning capability.

import aos.jack.jak.event.TracedMessageEvent;

/**Runway agents.*/
agent Runway extends Agent {
#has capability RunwayAssigning assign;

Runway(String name, int index){

super(name);
assign.setName(name, index);
TracedMessageEvent.tracer.start(this);

}

Figure C.15 Runway agent

[114]

Figure C.16 shows LandingInfo beliefSet that contains runway and ATL fields and the query

function get.

/** Relation LandingInfo is used to keep the landing
information. */
beliefset LandingInfo extends ClosedWorld {

#value field String runway;

#value field long ATL;

#linear query get(logical String runway, logical long ATL);
}

Figure C.16 Landinginfo beliefSet

Figure C.17 shows Runwaylnfo beliefSet that contains ATL, aircraft, ETA, and booking
fields. The ATL field is declared as key field. The Runwaylnfo beliefSet has gu7 member field
of Stack. The Runwaylnfo beliefSet contains query function wsingSlot and slotUsed. The

Runwaylnfo beliefSet implements newfact, and delfact callback methods.

import aos.jack.jak.util.timer.DilationController;

/** Relation Runwaylnfo is used for keeping the current usage of a
runway. */

beliefset Runwaylnfo extends ClosedWorld {
#key field long ATL;
#value field String aircraft;
#value field long ETA;
#value field boolean booking;

Stack gui;

void setName(String name,int index) {
gui = new Stack(name, index);

}

#indexed query

usingSlot(logical long ATL,
String aircraft,
logical long ETA,
logical boolean booking);

#indexed query

slotUsed(long ATL,
logical String aircraft,
logical long ETA,
logical boolean booking);

public void newfact(Tuple t,BeliefState is,BeliefState was)
{
if (qui == null)

return;
[115]

Runwaylnfo__Tuple info = (Runwaylnfo__ Tuple)t;
gui .addRow(info.ATL, info.aircraft+
" [+DilationController._timeString(info.ETA)+"]1"™");
}

public void delfact(Tuple t, BeliefState was) {
if (gui == null)
return;
RunwayInfo__ Tuple info = (Runwaylnfo__ Tuple)t;
gui.removeRow(info.ATL);
}
}

Figure C.17 Runwaylnfo beliefSet
Figure C.18 shows ArrivalSequencing capability that handles AircraftEvent event, has
mutex data and uses RequestSlot plan. The ArrivalSequencing capability has runways
member array of Strings. The ArrivalSequencing capability implements gerRunways() and

enable() methods.

import aos.jack.util.thread.Semaphore;

/** The ArrivalSequencing capability contains the handling of
landing requests from aircraft through negotiation with available
runways for an appropriate landing allocation.

*/

public capability ArrivalSequencing extends Capability {

#handles external event AircraftEvent;
#private data Semaphore mutex();
#uses plan RequestSlot;

String [] runways;

String [] getRunways({
return runways;

}

void enable(String [] runways){
this.runways = runways;
mutex.signal();

}

Figure C.18 ArrivalSequencing capability

Figure C.19 shows Flying capability that handles AircraftEvent, EnterControlArea, and
Approaching events, has LandinglInfo data. The Flying capability sends AircraftEvent
event, and post EnterControlArea and Approaching events. The Flying capability uses
MoniotrAircraft, FollowApproach, InitialApproach, and AssignSlot plans.

[116]

/** The Flying capability contains the tracking of the
approach from when the aircraft enters the destination
airport control area. */

public capability Flying extends Capability {

#private data LandingInfo landing_info();
#handles external event AircraftEvent;
#sends event AircraftEvent;

#handles event EnterControlArea;

#handles event Approaching;

#posts event EnterControlArea enter;
#posts event Approaching follow;

void start(String id,String airport,long eta){
postEvent(enter.start(id,airport,eta));
}

#uses plan MonitorAircraft;
#uses plan FollowApproach;
#uses plan InitialApproach;
#uses plan AssignSlot;

Figure C.19 Flying Capability
Figure C.20 shows RunwayAssigning capability that handles AircrafiEvent event, has
Runwaylnfo data and wuses RunwayRequest and RunwayAssign plans. The
RunwayAssigning capability has SLOTGAP constant and implements s/or7ime and

/** The RunwayAssigning capability contains the bidding side of the
runway assignment negotiation. */
public capability RunwayAssigning extends Capability {

#handles external event AircraftEvent;

#private data Runwaylnfo runway_ info();

final static long SLOTGAP = 180000; // 3 minutes = 180000
milliseconds

static long slotTime(long time {
long x = time/SLOTGAP;
return (x+1)*SLOTGAP;

}

void setName(String name,int index){
runway_info.setName(name, index);

}

#uses plan RunwayRequest;
#uses plan RunwayAssign;

Figure C.20 Runway Assigning Capability

[117]

setName methods.

Figure C.21 shows TrafficFeeding capability that handles AircrafiEvent and TrafficEvent
event, posts TrafficEvent, sends AircraftEvent, has Schedule data and uses Traffic,
Takeoff; and TakeoftDiscard plans. RunwayRequest and RunwayAssign plans. The
RunwayAssigning capability has gu/ member field of TrafficGUI and implements /oad

method.

/** The TrafficFeeding capability contains the processing of a
departure schedule.

*/

capability TrafficFeeding extends Capability {

#handles external event AircraftEvent;
#sends event AircraftEvent request;
#handles event TrafficEvent;

#private data Schedule schedule();
#uses plan Traffic;

#uses plan Takeoff;

#uses plan TakeoffDiscard;

TrafficGUl gui;

#posts event TrafficEvent traffic;

void load(String name,String destination){
System.err_printIn("'Feed from "‘+name+' opened.'");

schedule. load(name+".dat" ,new TrafficGUl(name));
postEvent(traffic.open(name,destination));

Figure C.21 TrafficFeeding capability
Figure C.22 shows Aircraft event has run aircraft, ETA, ATL, booking, and mode data
members and implements assign and confirm posting methods. The AircraftEvent event has

REQUEST, ASSIGN, and NOTIFIES constants and implements name and toString

methods.

import aos.jack.jak.util.timer._.DilationController;

/**
The event AircraftEvent is used in the messaging between aircraft
and airport.
*/
event AircraftEvent extends TracedMessageEvent {
String runway;
String aircraft;
long ETA;
long ATL;

[118]

#posted as
request(String aircraft,long ATL,long ETA,boolean booking){

this.runway = null;

this.aircraft = aircraft;

this_ATL = ATL;

this_.ETA = ETA;

this.booking = booking;

mode = REQUEST;

message =
(booking? ""Booking ' : "Request ')+
name(aircraft)+
" ETA= "+DilationController.timeString(ETA);

}

#posted as
assign(String runway, long ATL,String aircraft,long ETA,boolean
booking) {
this.runway = runway;
this.aircraft = aircraft;
this_ATL = ATL;
this_ETA = ETA;
mode = ASSIGN;
this.booking = booking;

message =
name(aircraft)+
(booking? ' booked ' : ' assigned ")

+name(runway)+" "'+
DilationController._timeString(ATL);

}

#posted as
confirm(String runway,long ATL,String aircraft){
this.runway = runway;
this.aircraft = aircraft;
this_ATL = ATL;
mode = NOTIFY;
message =
"'Scheduled "+
name(aircraft)+" "+
DilationController._timeString(ATL);

}

static String name(String a){
int i = a.indexOfF("@%);
return (i == -1)? a : a.substring(0,i);

}

public String toString(){
return message;

}
}

Figure C.22 AircraftEvent event

[119]

Figure C.23 shows Approaching event. The Approaching event has runway, aircraft, ETA,
ATL, booking, and mode data members and implements assign and confirm posting
methods. The AircraftEvent event has REQUEST, ASSIGN, and NOTIFIES constants

and implements name and roString methods.

/** The Approaching event marks for an aircraft the period from
entering the control area of the destination airport to the landing
of the aircraft. */

event Approaching extends BDIGoalEvent {

logical String runway;
logical long ATL;

#posted as
approach(logical String runway, logical long ATL)

this.runway = runway;
this.ATL = ATL;

}

#set behavior ApplicableExclusion none ;
/* defines how failed plans are excluded from being applicable. The
value is ""none" or one or both of "failed™ and "rank™. *‘none'"™ means
that plan failure is forgotten immediately, and a failed plan will
turn up as applicable (if it 1s). */

}

Figure C.23 Approaching event
Figure C.24 shows EnterControlArea event. The EnterControlArea event has id, airport,

and era data members and implements szarz posting methods.

/** The EnterControlArea event marks for an aircraft that it enters
the control area of the destination airport. */
event EnterControlArea extends Event {

String id;

String airport;

long eta;

#posted as

start(String id,String airport,long eta){
this.id = id;
this.airport = airport;
this.eta = eta;

}

Figure C.24 EnterControlArea

[120]

Figure C25 shows ZTrafficEvent event. The TrafficEvent event has row, airport,
destination, mode, data members and SCHEDULE and AIRCRAFT constants. The

TrafficEvent event implements open and run methods.

/** A TrafficEvent event marks events iIn the feeder traffic. An
initial TrafficEvent.SCHEDULE is posted at agent construction, and
then TrafficEvent_AIRCRAFT events are posted for the schedule rows.*/
event TrafficEvent extends Event {

ScheduleRow row;

String airport;

String destination;

int mode;

final static int SCHEDULE
final static int AIRCRAFT

0;
1;

#posted as

open(String airport,String destination){
this.airport = airport;
this.destination = destination;
mode = SCHEDULE;

}

#posted as
run(ScheduleRow row,String airport,String destination){
this.row = row;
this.airport = airport;
this.destination = destination;
mode = AIRCRAFT;

}

Figure C.25 TrafficEvent event
Figure C.26 shows AssignSlot plan. The AssignSlor plan handles AircraftEvent event and

modifies LandinglInfo data. The AssignSlot plan implements body reasoning method.

/** The plan AssignSlot digests an ATL notification from the airport
by updating the landing_info belief.*/

plan AssignSlot extends Plan {

#handles event AircraftEvent ev;
#modifies data Landinglnfo landing_info;

static boolean relevant(AircraftEvent ev){

return ev.mode == AircraftEvent.NOTIFY;
}
body O{
landing_info.add(ev.runway,ev.ATL);
s

Figure C.26 AssignSlot plan
[121]

Figure C.27 shows FollowApproach plan. The FollowApproach plan handles Approaching
event and reads Landinglnfo data. The FollowApproach plan implements body and

maintain reasoning methods.

import aos.jack.jak.util.timer.DilationController;

/** The FollowApproach plan progresses an aircraft to landing when a
landing allocation is provided.*/
plan FollowApproach extends Plan {

#handles event Approaching ev;
#reads data Landinglnfo landing_info;

context(){
landing_info.get(ev.runway,ev.ATL);
}

body O{
System.err.printin(agent.name()+" following approach to runway "'+

ev.runway+" at "+DilationController.timeString(ev.ATL.getValue()));
@maintain(landing_info.get(ev.runway,ev.ATL),
@waitFor(afterMillis(ev.ATL.getValue())));

Figure C.27 FollowApproach plan
Figure C.28 shows InitialApproach plan. The InitialApproach plan handles Approaching
event, posts Approaching event and reads LandingInfo data. The InitialApproach plan

implements contextand body reasoning methods.

/** The InitialApproach plan progresses an ailrcraft to landing during
the initial phase when the landing allocation is not yet provided. */
plan InitialApproach extends Plan {

#handles event Approaching ev;
#posts event Approaching land;
#reads data Landinglnfo landing_info;

context(){
landing_info.nFacts() == O;

}

body(O{
logical String r;
logical long a;
@waitFor(landing_info.get(r,a));
@achieve(landing_info.get(ev.runway,ev.ATL) &&
afterMillis(ev.ATL.getValue()),
land.approach(ev.runway,ev.ATL));

Figure C.28 Initial Approach plan

[122]

Figure C.29 shows MonitorAircraft plan. The MonitorAircraft plan handles EnterControlArea
event, sends AircraftEvent event, posts Approaching event and reads LandingInfo data. The
MonitorAircraft plan has runway and ATL field members and implements body reasoning

method.

import aos.jack.jak.util.timer.DilationController;

/** The MonitorAircraft plan is invoked for monitoring the flight of
an arriving aircraft, from entering the control area to its landing.*/

plan MonitorAircraft extends Plan {

#handles event EnterControlArea ev;
#sends event AircraftEvent req;
#posts event Approaching land;

#reads data Landinglnfo landing_info;
logical String runway;

logical long ATL;

body O{
// Confirm landing at arrival ETA

@send(ev.airport,req.request(ev.id,ev.eta,ev._eta,false));
@achieve(landing_info.get(runway,ATL) &&
afterMillis(ATL.getValue()), land.approach(runway,ATL));

System.err.printin(ev.id+" landed on runway "'+runway.getValue()
+" for "+DilationController.timeString(ATL.getvalue())+ " at "+
DilationController.timeString(getAgent().-timer.getTime()));

Figure C.29 MonitorAircraft plan

Figure C.30 shows RequestSlot plan. The RequestSlot plan handles AircraftEvent event, sends
AircraftBvent event, posts Approaching event and reads Landinglnfo data. The
MonitorAircraft plan has runway and ATL field members and implements body reasoning

method.

import aos.jack.util_thread.Semaphore;

/** Plan RequestSlot handles an AircraftEvent_REQUEST by propagating it
to all available runways, collecting all their suggestions, choosing
the best one, and then notifying the runway and aircraft concerned.*/

plan RequestSlot extends Plan {

#handles event AircraftEvent ev;

static boolean relevant(AircraftEvent ev){
return ev.mode == AircraftEvent.REQUEST;

by

#uses interface ArrivalSequencing env;

#modifies data Semaphore mutex;

[123]

long pushed ETA = 0;
long ATL = -1;
String runway;

bodyO{
System.err._printIn("'Recevied'+ev);
it (env.runways == null)

throw new Error("There are no runways??');
AircraftEvent query =
ev.request(ev.aircraft,ev.ATL,ev.ETA,ev.booking);
@waitFor(mutex.planwait());
System.err.printin("Issuing'+ev);
sendRequests(query);
receiveReplies(query);
notifyResult();
mutex.signal();

}

#reasoning method
sendRequests(AircraftEvent query){
for (int i=0; i<env.runways.length; i++)
@send(env.runways[i], query);

}

#reasoning method
receiveReplies(AircraftEvent query){
for (int i=0; i<env.runways.length; i++) {
@waitFor(query.replied());
AircraftEvent r = (AircraftEvent)query.getReply();
if (betterSlot(r)) {
runway = r.from;
ATL = r._ATL;
pushed ETA = r.ETA;
b
}
}

boolean betterSlot(AircraftEvent ev){
iT ((ATL == -1) || (ev-ATL < ATL))
return true;
if (ev.ATL > ATL)
return false;
if (pushed_ETA == 0)
return false;
if (ev.ETA == 0)
return true;
return (ev.ETA > pushed_ETA);

}

#reasoning method
notifyResult(){
@send(runway,ev.assign(runway,ATL,ev.aircraft,ev.ETA,ev.booking));
@send(ev.from,ev.confirm(runway,ATL,ev.aircraft));
}
}

Figure C.30 RequestSlot plan

[124]

Figure C.31 shows RunwayAssign plan. The RunwayAssign plan modifies Runwaylnfo

data and implements body reasoning method.Figure C.31 shows RunwayRequest plan.

/**The RunwayAssign plan responds to an AircraftEvent.ASSIGN by
filling an allocation for this runway. ITf the allocation slot is
already occupied, the occupant is re-scheduled. Also, the aircraft
getting an allocation is notified.*/

plan RunwayAssign extends Plan {

#handles event AircraftEvent ev;

static boolean relevant(AircraftEvent ev)

{

return ev.mode == AilrcraftEvent.ASSIGN;
}
#modifies data Runwaylnfo runway_info;
bodyO{

logical String ac;
logical long eta;
logical boolean booking;
if (runway_info.slotUsed(ev.ATL,ac,eta,booking)) {
System.err.printIn(""PUSH "+ac.getValue()+" by
"+ev.aircraft);
@send(ev.from,
ev.request(ac.getvValue(),ev.ATL, eta.getvalue(),
booking.getvValue()));
}
runway_info.add(ev.ATL,ev.aircraft,ev_ETA,ev.booking);
@send(ev.from,ev.confirm(agent.name(),ev.ATL,ev.aircraft));

}

Figure C.31 RunwayAssign plan
Figure C.32 shows RunwayRequest plan handles AircraftEvent event reads Runwaylnfo

data, uses RunwayAssigning interface and reads Runwaylnfo data and implements
relevant, body, freeSlot, runway _info.remove, cleanUp, and timestring treasoning

methods.

import aos.jack.jak.util.timer.DilationController;

/** The RunwayRequest plan responds to an AircraftEvent.REQUEST by
suggesting an allocation for this runway. The allocation inspects
all time slots from the given ETA, to find the first that is
unused, or used with an allocation of "lesser importance'.

+ If this request is an early booking, then it may push a previous
earlier booking if this ETA is prior to the earlier booking"s
ETA.

+ If this request is the arrival request, then it may push an
earlier booking (regardless), or a previous arrival assignment if
this ETA is prior to the previous assignment®"s ETA.*/

plan RunwayRequest extends Plan {

#handles event AircraftEvent ev;
#reads data Runwaylnfo runway_info;
#uses interface RunwayAssigning env;

static boolean relevant(AircraftEvent ev){
return ev.mode == AircraftEvent.REQUEST;

}
long pushed _eta = 0; // Local data assigned by freeSlot()
body(Q{

String me = agent.name();

long t;

cleanUp(ev.aircraft);
for (t = env.slotTime(ev.ETA); true; t += env.SLOTGAP) {
if (freeSlot(t))
break;

@reply(ev,ev.assign(me,t,ev.aircraft,pushed_eta,ev.booking));

}

#reasoning method
freeSlot(long t){
logical long eta;
logical String ac;
logical boolean booking;
pushed_eta = 0;
if (runway_info.slotUsed(t,ac,eta,booking)) {
System.err.printIn(’® Check against '"+ac.getValue(+
' with eta "+timestring(eta));
pushed_eta = eta.getValue();
it (ev.booking)
booking.getValue() && (ev.ETA < eta.getValue());
else
booking.getValue() || (ev.ETA < eta.getvValue());

}
}

#reasoning method
cleanUp(String ac){
logical long atl;
logical long eta;
logical boolean b;
if (runway_info.usingSlot(atl,ac,eta,b)) {
runway_info.remove(atl.getValue(),ac,eta.getValue(),b.getvalue());
}
3

String timestring(logical long x) throws LogicException{
return DilationController.timeString(x.getvValue());

}

Figure C.32 RunwayRequest plan

[126]

Figure C.33 shows 7Tzakeoff plan. The Takeoff plan handles TrafficEvent event and sends

AircraftEvent event. The Takeoft plan implements body reasoning methods.

import aos.jack.jak.util._timer._DilationController;

/** The Takeoff plan handles a SceduleRow for a Feeder. It first issues
a booking request for the aircraft concerned. Then it waits until the
aircraft is in the destination airport®s control area, at which time it
constructs an Aircraft agent.*/

plan Takeoff extends Plan {

#handles event TrafficEvent ev;
static boolean relevant(TrafficEvent ev){
return ev.mode == TrafficEvent.AIRCRAFT;

}

#sends event AircraftEvent landing;
body(O{
@send(ev.destination,
landing.request(ev.row.callsign,
ev.row.booking ETA,
ev.row.booking ETA,
true));
System.err.printIn(’'Sent "+ev.row);
@waitFor(afterMillis(ev.row.arrival));
System.err.printIn("Arriving "+ev.row);
new Aircraft(ev.row.callsign,ev.destination,ev.row.arrival_ETA);

Figure C.33 Takeoff plan
Figure C.34 shows TakeoffDiscard plan. The TakeoffDiscard plan handles AircraftEvent

event and implements re/evant and body reasoning methods.

/** The TakeoffDiscard plan is a handler for the AircraftEvent.ASSIGN
message returned from the airport for the booking, though it is never
relevant, because we don"t care about the on-router behaviour. */
plan TakeoffDiscard extends Plan {

#handles event AircraftEvent ev;

static boolean relevant(AircraftEvent ev){
return false;

}
body() {}

Figure C.34 TakeoffDiscard plan

[127]

Figure C.35 shows Traffic plan. The Traffic plan handles TrafficEvent event and reads
Schedule data. The Traffic plan contains srarted, time and callsign member fields.

The Traffic plan implements relevant and body reasoning methods.

import java.util.*;
import aos.jack.jak.util.timer.DilationController;

/** The Traffic plan processes the Schedule for a Feeder.*/
plan Traffic extends Plan {

#handles event TrafficEvent traffic;

#reads data Schedule schedule;

static boolean relevant(TrafficEvent traffic) {
return traffic.mode == TrafficEvent.SCHEDULE;

}

Hashtable started = new Hashtable();
long time = -1;
String callsign;

body(Q{
String airport = traffic.airport;
String destination = traffic.destination;

for (ScheduleRow r = schedule.rows; r = null; r = r.next) {
@waitFor(afterMillis(r.booking));
System.err.printIn(C’"Processing "+r);
@post(traffic.run(r,airport,destination));

Figure C.35 Traffic plan

C.5 Code in XML
Figure C.36 shows Aircraft agent in XML.

<agent id="agl' name="Aircraft"” extends="Agent''>
<hasCapability type="Flying" ref="fly"/>
<constructor>
<parameter type="String" ref="id"/>
<parameter type="String" ref="airport'/>
<parameter type="long" ref="eta"/>
<body>
<V[CDATAL
super(id);
fly.start(id, airport, eta);
11>
</body>
</constructor>
</agent>

Figure C.36 Aircraft agent in XML

[128]

Figure C.37 shows Airportagent in XML.

<agent id="ag2" name="Airport'” extends="Agent" >
<import>java.util._Hashtable</import>
<import>aos. jack. jak.event.TraceMessageEvent</import>
<hasCapability type="ArrivalSequencing"” ref="seq" />
<constructor>
<parameter type="String" ref="name"/>
<parameter type="String []" ref="runway'/>
<body>
<I[CDATAL
super(name);
for (int i = 0; i<runway.length; i++)
new Runway(runway[i],i);
seq.enable(runway);
TracedMessageEvent. tracer.start(this);
11>
</body>
</constructor>
</agent>

Figure C.37 Airport agent in XML
Figure C.38 shows Feederagent in XML.

<agent id="'ag3" name='"Feeder" extends="Agent' >
<hasCapability type="TrafficFeeding" ref="feed" />
<constructor>
<parameter type="String" ref="name"/>
<parameter type="String []" ref="destination"/>
<body>
<I[CDATAL
super(nhame);
feed. load(name,destination);
11>
</body>
</constructor>
</agent>

Figure C.38 TrafficFeeding agent in XML
Figure C.39 shows Runway agent in XML.

<agent id=""ag4' name="Runway' extends="'Agent’ >
<hasCapability type=""RunwayAssigning” ref=""assign' />
<constructor>
<parameter type="'String" ref="name"/>
<parameter type="int" ref="index"/>
<body>
<I[CDATAL
super(name);
assign.setName(name, index);
TracedMessageEvent._tracer.start(this);
11>
</body>
</constructor>
</agent>

Figure C.39 Runway agent in XML
[129]

Figure C.40 shows LandingInfo beliefSet in XML.

<beliefSet id="bl" type="Landinginfo” extends="ClosedWorld'>
<field declarationType="value"™ type="String" name="runway"/>
<field declarationType="value"™ type="long" name="ATL"/>
<linearQuery methodName="get">
<parameters>
<parameter type="'String" members="logic" ref="runway"/>
<parameter type="long" members="logic" ref="ATL"/>
</parameters>
</linearQuery>
</beliefSet>

Figure C.40 LandingInfo beliefSet in XML

Figure C.41 shows Runwaylnfo beliefSet in XML.

<beliefSet 1d=""b2" type=""Runwaylnfo"” extends="ClosedWorld">

<field declarationType="key" type="long" name="ATL"/>
<field declarationType="value" type="String' name="aircraft"/>
<field declarationType=""value" type="long" name="ETA"/>
<field declarationType="value" type="boolean" name="booking"/>
<field declarationType="normal" type="Stack' name="gui' />
<method name="'setName' returnType="void'>
<parameter type="String" ref="name"/>
<parameter type="int" ref="index"/>
<body> <I[CDATA[gui = new Stack(name, index);]]1></body>
</method>
<indexedQuery methodName="usingSlot'>
<parameters>
<parameter type="long" members="logic" ref="ATL"/>
<parameter type="'String" members="normal" ref="aircraft'/>
<parameter type="long" members="logical" ref="ETA"/>
<parameter type="boolean' members="logical" ref="booking"/>
</parameters>
</indexedQuery>
<indexedQuery methodName="slotUsed">
<parameters>
<parameter type=""long"” members="normal’ ref="ATL"/>
<parameter type="'String” members="normal" ref="aircraft"/>
<parameter type="long"” members="normal" ref="ETA"/>
<parameter type="boolean’” members="logical" ref="booking"/>
</parameters>
</indexedQuery>
<method name="newfact" returnType="void"'>
<parameter type="Tuple"™ ref="t"/>
<parameter type="BeliefState" ref=""is"/>
<parameter type="BeliefState” ref="was"/>
<body>
<I[CDATAL
if (gui == null)
return;
RunwayInfo__ Tuple info = (Runwaylnfo__ Tuple)t;
gui.addRow(info.ATL, info.aircraft+ "

["+DilationController.timeString(info.ETA)+"]'™");

1>
</body>
</method>

[130]

<parameter type="Tuple"™ ref="t"/>
<parameter type="BeliefState" ref="was"/>
<body>
<IV[CDATAL
if (gui == null)
return;
RunwayInfo__ Tuple info = (Runwaylnfo__ Tuple)t;
gui .removeRow(info.ATL);
11>
</body>
</method>
</beliefSet>

Figure C.41 Runwaylnfo beliefSet in XML
Figure C.42 shows AssignSiot beliefSet in XML.

<plan id="pl" name="AssignSlot"” extends="Plan'>
<handlesEvent type="AircraftEvent"” ref="ev'' />
<postsEvent type="WithdrawResponse" ref="response"/>
<modifiesData type="Landinglnfo" ref="landing_info"/>
<body>
<I[CDATA[landing_info.add(ev.runway,ev.ATL);]1]>
</body>
<relevant>
<parameter type="Aircraft" ref="ev'/>
<body>
<I[CDATA[return ev.mode == AircraftEvent_NOTIFY;]]>
</body>
</relevant>
</plan>

Figure C.42 AssignSlot plan in XML

Figure C.43 shows FollowApproach plan in XML.

<plan id="p2" name="FollowApproach" extends="Plan'>
<import>import aos.jack.jak.util._timer.DilationController;</import>
<handlesEvent type="Approaching” ref="ev"/>
<readsData type="LandingInfo" ref="landing_info"/>
<context>
<I[CDATAL landing_info.get(ev.runway,ev.ATL);1]1>
</context>
<body>
<I[CDATA[System.err.println(agent.name()+" following approach to
runway ''+ev.runway+" at "'+
DilationController.timeString(ev.ATL.getValue()));
@maintain(landing_info.get(ev.runway,ev.ATL),
@waitFor(afterMillis(ev.ATL.getValue())));
11>
</body>
</plan>

Figure C.43 FollowApproach plan in XML

[131]

Figure C.44 shows Initial Approach plan in XML.

<plan id="p3" name="InitialApproach” extends="Plan'>
<handlesEvent type="Approaching” ref="ev"/>
<postskEvent type="Approaching” ref="land"/>;
<readsData type="Landinglnfo" ref="landing_info'/>
<context>
<I'[CDATA[landing_info.nFacts() == 0;]1>
</context>
<body>
<I[CDATAL
logical String r;
logical long a;
@waitFor(landing_info.get(r,a));
@achieve(landing_info.get(ev.runway,ev.ATL) &&
afterMillis(ev.ATL.getvValue()),
land.approach(ev.runway,ev.ATL));
11>
</body>
</plan>

Figure C.44 InitialApproach plan in XML

Figure C.45 shows MonitorAircraft plan in XML.

<plan id="p4" name="'"MonitorAircraft"” extends="Plan'>
<import>import aos.jack.jak.util.timer.DilationController</import>
<handleskEvent type="EnterControlArea" ref="ev'/>
<sendsEvent type="AircraftEvent" ref="ref"/>
<postsEkEvent type="Approaching”™ ref="land"/>
<readsData type="LandingInfo" ref="landing_info"/>
<field type="String" members="logical' name="runway"/>
<field type="long" members="logical™ name="ATL"/>
<body>
<IV[CDATAL
// Confirm landing at arrival ETA
@send(ev.airport,req.request(ev.id,ev.eta,ev.eta,false));
@achieve(landing_info.get(runway,ATL) &&
afterMillis(ATL.getValue()),
land.approach(runway,ATL));
System.err.printin(ev.id+" landed on runway '+
runway .getValue(Q+" for "+
DilationController._timeString(ATL.getValue())+

"at "+
DilationController.timeString(getAgent().timer.getTime()));
11>
</body>
</plan>

Figure C.45 MonitorAircraft plan in XML

Figure C.46 shows RequestSlot plan in XML.

[132]

<plan id="p5" name="'RequestSlot" extends="Plan">
<import>import aos.jack.util_thread.Semaphore</import>
<handlesEvent type="AircraftEvent"” ref="ev'' />
<relevant>
<parameter type="AircraftEvent” ref="ev" />
<body> return ev.mode == AircraftEvent.REQUEST; </body>
</relevant>
<useslinterface type="ArrivalSequencing” ref="ev"'/>
<modifiesData type='"'Semaphore" ref="mutex"/>
<parameter type="long" ref="pushed ETA" value="0"/>
<parameter type="long" ref="ATL" value="-1"/>
<parameter type=''String" ref="runway'/>

<body>
<I[CDATAL
System.err.printIn('Recevied'+ev);
if (env.runways == null)

throw new Error(""There are no runways??');
AircraftEvent query =
ev.request(ev.aircraft,ev.ATL,ev.ETA,ev.booking);
@waitFor(mutex.planWait());
System.err._printin(’'lssuing'+ev);
sendRequests(query);
receiveReplies(query);
notifyResult();
mutex.signal();
11>
</body>
<reasoningMethod name="'sendRequests" returnType="void'>
<parameter type="AircraftEvent" ref="query"/>
<body>
<I[CDATAL
for (int i=0; i<env.runways.length; i++)
@send(env.runways[i], query);
11>

</body>
</reasoningMethod>
<reasoningMethod name="receiveReplies' returnType="void">
<parameter type="AircraftEvent” ref="query'/>
<body>
<I[CDATAL
for (int i=0; i<env.runways.length; i++) {
@waitFor(query.replied());
AircraftEvent r = (AircraftEvent)query.getReply();
if (betterSlot(r)) {
runway = r.from;

ATL = r.ATL;
pushed_ETA = r._ETA;
}
}
11>
</body>
</reasoningMethod>
<method name="betterSlot" returnType="boolean">
<body>
<I[CDATAL
ifT ((ATL == -1) || (ev.ATL < ATL))

return true;

[133]

iT (ev.ATL >ATL)
return false;
if (ev.ETA == 0)
return true;
return (ev.ETA > pushed_ETA);
11>
</body>
</method>
<reasoningMethod name="notifyResult" returnType="void'>
<parameter type="AircraftEvent” ref="query"/>
<body>
<I[CDATAL
@send(runway,ev.assign(runway,ATL,ev.aircraft,
ev.ETA,ev.booking));
@send(ev.from,ev.confirm(runway,ATL,ev.aircraft));
11>
</body>
</reasoningMethod>
</plan>

Figure C.46 RequestSlot plan in XML

Figure C.47 shows RunwayAssign plan in XML.

<plan id="p6" name="'RunwayAssign' extends="Plan'>
<handlesEvent type="AircraftEvent"” ref="ev"/>
<relevant type="AircraftEvent” ref="ev'>
<body>
<I[CDATA[return ev.mode == AircraftEvent.ASSIGN;]1]>
</body>
</relevant>
<modifiesData type="Runwaylnfo" ref="runway_info"/>
<body>
<I[CDATAL
logical String ac;
logical long eta;
logical boolean booking;
if (runway_info.slotUsed(ev.ATL,ac,eta,booking)) {
System.err.printIn(""PUSH "+ac.getValue()+" by "+ev.ailrcraft);
@send(ev.from, ev.request(ac.getValue(),
ev.ATL, eta.getValue(),booking.getvalue())):}

runway_info.add(ev.ATL,ev.aircraft,ev.ETA,ev.booking);
@send(ev.from,ev.confirm(agent.name(),ev.ATL,ev.aircraft));
11>
</body>
</plan>

Figure C.47 RunwayAssign plan in XML
Figure C.48 shows Tzakeoffplan in XML.

[134]

<plan id="p7" name=""Takeoff" extends="Plan'>
<handlesEvent type="TrafficEvent" ref="ev' />
<sendsEvent type="AircraftEvent" ref="landing"/>
<relevant>
<parameter type="TrafficEvent"” name="ev'' />
</relevant>
<body>
<I[CDATAL
@send(ev.destination,
landing.request(ev.row.callsign,
ev.row.booking ETA,
ev.row.booking ETA,
true));
System.err.printIn(’'Sent "+ev.row);
@waitFor(afterMillis(ev.row.arrival));
System.err.printIn("Arriving "+ev.row);
new
Aircraft(ev.row.callsign,ev.destination,ev.row.arrival_ETA);
11>
</body>

Figure C.48 Takeoff plan in XML
Figure C.49 shows TakeoffDiscard plan in XML.

<plan id="p8" name=""TakeoffDiscard" extends="Plan'>
<handleskEvent type="AircraftEvent"” ref="ev'' />
<sendsEvent type="AircraftEvent" ref="landing"/>
<relevant>
<parameter type="AircraftEvent’” name="ev''/>
</relevant>
<body>
<I[CDATAL 11>
</body>
</plan>

Figure C.49 TakeoffDiscard plan in XML

The Figure C.50 shows 7Traffic plan in XML.

<plan id="p9" name="Traffic" extends="Plan">
<handlesEvent type="TrafficEvent" ref="traffic"/>
<sendsEvent type="AircraftEvent” ref="landing"/>
<readsData type="'Schedule' ref="schedule" />
<relevant>
<parameter type="TrafficEvent" name="traffic'/>
<body>
<I[CDATAL
return traffic.mode == TrafficEvent.SCHEDULE;
11>
</body>
</relevant>
<body><![CDATA[1]1></body>
</plan>

Figure C.50 Traffic plan in XML
[135]

The Figure C.51 shows RunwayRequest plan in XML.

<plan id="pl0" name="RunwayRequest' extends="Plan'>
<handlesEvent type="AircraftEvent"” ref="ev' />
<sendsEvent type="AircraftEvent"” ref="landing"/>
<readsData type="Runwaylnfo' ref="runway_info" />
<relevant>
<parameter type="AircraftEvent’” name="ev'' />
<body>
<I[CDATAL
String me = agent.name();
long t;
cleanUp(ev.aircraft);
for (t = env.slotTime(ev.ETA); true; t += env.SLOTGAP) {
it (freeSlot(t))
break;

@reply(ev,ev.assign(me,t,ev.aircraft,pushed_eta,ev.booking));

11>
</body>
</relevant>
<body>
<I[CDATAL
String me = agent.name();
long t;
cleanUp(ev.aircraft);
for (t = env.slotTime(ev.ETA); true; t += env.SLOTGAP) {
if (freeSlot(t))
break;
@reply(ev,ev.assign(me,t,ev.aircraft,pushed_eta,ev.booking));
11>
</body>
</plan>

Figure C.51 RunwayRequest plan in XML

The Figure C.52 shows AircraftEvent event in XML.

<event id="evl" type="AircraftEvent” extends="Event'>
<import>aos.jack. jak.core.*</import>
<posted methodName="'withdraw">
<I[CDATA[Jak.log.log("'Withdraw:withdraw created™);]]1>
</posted>
</event>

Figure C.52 AircraftEvent event in XML

The Figure C.53 shows Approaching event in XML.

[136]

<event id="ev2" type="Approaching" extends="MessageEvent''>
<import>aos.jack. jak.core.Jak</import>

<Field visibility="public" type="int" name="pin'/>
<field visibility="public” type="int" name="amount'/>
<posted methodName="withdraw">
<parameter type="int" name="account'/>
<parameter type=""int" name="pin'/>
<parameter type=""int" name="amount'/>
<I[CDATAL
Jak. log. log("'WithdrawRequest:withdraw created™);
this.account = account;
this.pin = pin;
this.amount = amount;
message = "withdraw["+account+","+pin+"]"";
11>
</posted>
</event>

<Field visibility="public" type="account' name="account'/>

Figure C.53 Approaching event in XML

The Figure C.54 shows EnterControlArea event in XML.

<event id="ev3" type="EnterControlArea" extends="Event'>
<import>aos.jack. jak.core.Jak</import>

<Ffield visibility="public" type="iInt" name="balance"/>
<posted methodName="approval''>
<I[CDATAL
Jak.log.log("'WithdrawResponse:approval created™);
this.approved = true;
this._balance = balance;

message = "approved’;
11>
</posted>
<posted methodName="'rejection'>
<V[CDATAL

Jak. log.log("'WithdrawResponse:rejection created™);
this.approved = false;
this_balance = 0;
message = "‘rejected";
11>
</posted>
</event>

<Field visibility="public" type="boolean" name="approved"/>

Figure C.54 EnterControlArea event in XML

The Figure C.55 shows TrafficEvent event in XML.

[137]

<event id="ev4" type="TrafficEvent" extends="Event'>
<fField type="ScheduleRow" name="‘row"/>
<field type="String" name="airport'/>
<field type="String" name="destination"/>
<field type="int" name="mode"/>
<field scope="'static" type="int" name="SCHEDULE" value="0" />
<field scope="static’ type="int" name="AIRCRAFT" value="1" />
<posted methodName="open''>
<parameter type="'String” ref="airport'/>
<parameter type="String" ref="destination"/>
<V[CDATAL
this.airport = airport;
this.destination = destination;
mode = SCHEDULE;
11>
</posted>
<posted methodName="run'‘>
<parameter type="'ScheduleRow™ ref="row"/>
<parameter type="'String” ref="airport'/>
<parameter type="'String"” ref="destination"/>
<V[CDATAL
this.row = row;
this.airport = airport;
this.destination = destination;
mode = AIRCRAFT;
11>
</posted>
</event>

Figure C.55 TrafficEvent event in XML
The Figure C.56 shows ArrivalSequencing capability in XML.

<capability id="cl" name="ArrivalSequencing” extends="Capability">
<handlesEvent type="AilrcraftEvent'/>
<privateData type=''Semaphore" ref="mutex"/>
<usesPlan type="RequestSlot'/>
<field type="String []" name="runways'/>
<method name="‘getRunways' returnType="String []'>
<body>
<I[CDATAL
return runways;
11>

</body>
</method>
<method name="enable" returnType="String []">
<body>
<I[CDATAL
this.runways = runways;
mutex.signal();
11>
</body>
</method>
</capability>

Figure C.56 ArrivalSequencing capability in XML

[138]

The Figure C.57 shows Flying capability in XML.

<capability id="c2" name="Flying" extends="Capability'>
<privateData type="Landinglnfo” ref="landing_info"/>
<handlesEvent type="AircraftEvent"/>
<sendsEvent type=""AircraftEvent"/>
<handleskEvent type="EnterControlArea'"/>
<handlesEvent type=""Approaching"/>
<postEvent type="EnterControlArea"” ref="enter'/>
<postEvent type=""Approaching"” ref="follow"/>
<usesPlan type="MonitorAircraft"/>
<usesPlan type="FollowApproach"/>
<usesPlan type="InitialApproach"/>
<usesPlan type="AssignSlot"/>
<method name="start" returnType="void">
<parameter type="String" ref="id"/>
<parameter type="String" ref="airport"/>
<parameter type="long" ref="eta'/>
<body>
<I[CDATAL
postEvent(enter.start(id,airport,eta));
11>
</body>
</method>
</capability>

Figure C.57 Flying capability in XML
The Figure C.58 shows RunwayAssigning capability in XML.

<capability id="c3" name="RunwayAssigning' extends="Capability'>

<usesPlan type="RunwayRequest''/>
<usesPlan type="RunwayAssign'/>
<handlesEvent type="AircraftEvent'/>
<privateData type="Runwaylnfo" ref="runway_info()"/>
<field type="long" name="SLOTGAP" value="180000"/>
<method name="'slotTime" returnType="long">

<parameter type="long"” ref="time"/>

<body>

<I[CDATAL
long x = time/SLOTGAP;
return (x+1)*SLOTGAP;
11>

</body>
</method>
<method name=''setName' returnType="void"'>

<parameter type="String" ref="name"/>

<parameter type="int" ref="index"/>

<body>

<I'[CDATAL runway_info.setName(name, index);]]>

</body>

</method>
</capability>

Figure C.58 RunwayAssigning capability in XML
[139]

The Figure C.59 shows TrafficFeeding capability in XML

<capability id="c4" name="TrafficFeeding" extends="Capability'>
<handlesEvent type="AircraftEvent'/>
<sendsEvent type="AircraftEvent” ref="request'/>
<handleskvent type="TrafficEvent"/>
<privateData type='Schedule'" ref="schedule()'/>
<usesPlan type="Traffic"/>
<usesPlan type="Takeoff"/>
<usesPlan type="TakeoffDiscard'/>
<field type="TrafficGUI" name="gui’'/>
<postsEvent type="TrafficEvent" ref="traffic"/>
<method name="load" returnType="‘void'>
<parameter type="String" ref="name"/>
<parameter type="'String"” ref="destination"/>
<body>
<I[CDATAL
System.err.printin("'Feed from "+name+" opened.');
schedule. load(name+"_.dat",new TrafficGUl(nhame));
postEvent(traffic.open(name,destination));
11>
</body>
</method>
</capability>

Figure C.59 TrafficFeeding capability in XML
C.6 Evaluation
To evaluate our approach we identified traceability relations manually (see Table C.1) and
compared the results with traceability relations identified by the tool (see Table C.2). 31 correct
traceability relations had been identified by the tool and 31traceability relations were missing.

The precision and recall calculated were 73.8% and 50%, respectively.

SD Goal Goal
Allocate Runway Slot Allocate Runway Slot
Find Best Landing Time for an Aircraft Landing
Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft
SR Goal Goal
Allocate Runway Slot Allocate Runway Slot
Find Best Landing Time for an Aircraft Landing
Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft
SR Task Goal
Query Best Landing Time from All Runway Query Best Landing Time from All Runway
Manager Manager
Query Best Landing Time from All Runway Landing
Manager
Respond Runway Request Respond Runway Request
Landing Query Best Landing Time from All Runway
Manager
Landing Landing

[140]

Assign Slot

Assign Slot

Initiate Approach

Initiate Aircraft Approach

Follow Approach

Follow Approach Goal

Process Schedule for a Feeder

Process Schedule for a Feeder

Request Booking

Request Booking

PushOut Push Out
TakeOff TakeOff Goal
Actor Agent
Aircraft Aircraft
Feeder Feeder
Airport Airport
Runway Runway
SD Resource Message

Slot Allocated

Aircraft Event

ATL

Aircraft Event

SR Resource Data
Landing Information landing_info
SD Goal Agent
Allocate Runway Slot Airport
Allocate Runway Slot Runway
Find Best Landing Time for an Aircraft Aircraft
SR Goal Agent
Allocate Runway Slot Airport
Allocate Runway Slot Runway
Find Best Landing Time for an Aircraft Aircraft
SR Task Agent
Query Best Landing Time from All Runway Airport
Manager
Query Best Landing Time from All Runway Runway
Manager
Respond Runway Request Runway
Landing Airport
Landing Runway
Assign Slot Aircraft
Initiate Approach Aircraft
Follow Approach Aircraft
Process Schedule for a Feeder Feeder
Request Booking Aircraft
PushOut Feeder
TakeOff Feeder
SD Goal Capability
Allocate Runway Slot Runway Assigning
Find Best Landing Time for an Aircraft Flying
SR Goal Capability
Allocate Runway Slot Runway Assigning
Find Best Landing Time for an Aircraft Flying
SR Task Capability
Query Best Landing Time from All Runway Arrival Sequencing
Manager
Query Best Landing Time from All Runway .
Manager AVITE,

Respond Runway Request

Runway Assigning

[141]

Landing

Arrival Sequencing

Landing Flying
Assign Slot Flying
Initiate Approach Flying
Follow Approach Flying

Process Schedule for a Feeder

Traffic Feeding

Request Booking

Traffic Feeding

PushOut

Traffic Feeding

TakeOff

Traffic Feeding

SR Resource

Plan

Landing Information

Monitor Aircraft

Landing Information

Follow Approach

Landing Information

Initial Approach

Landing Information

Monitor Aircraft

Landing Information

Follow Approach

Landing Information

Assign Slot Plan

Actor Capability

Aircraft Flying

Feeder Traffic Feeding

Airport Arrival Sequencing

Runway Runway Assigning
SR Task Plan

Query Best Landing Time from All Runway

Runway Request

Manager
Respond Runway Request Runway Assign
Landing Runway Request
Assign Slot Assign Slot Plan

Initiate Approach

Initial Approach

Follow Approach

Follow Approach

Process Schedule for a Feeder Traffic
Request Booking Takeoff
PushOut Takeoff Discard
TakeOff Takeoff
SR Goal Plan

Allocate Runway Slot

Request Slot Plan

Find Best Landing Time for an Aircraft

Monitor Aircraft

SR Resource Capability
Landing Information Flying
Landing Information Flying

SR Resource Agent
Landing Information Aircraft
Landing Information Aircraft

Table C.1 Traceability relations identified manually

Rule 1D Type SD Goal Goal
rulel overlaps OCEEL La_ndlng LU A Find Best Land Time for an Aircraft
Aircraft
rulel overlaps Find Best La_nding Time for an Landing
Aircraft
Rule ID Type SR Goal Goal

[142]

Find Best Landing Time for an

rule3a overlaps . Find Best Land Time for an Aircraft
Aircraft
rulesa overlaps Find Best La_nding Time for an Landing
Aircraft
Rule 1D Type SR Task Goal
ruleda overlaps Landing Query Best Landing Time from All Runway
Manager
ruleda overlaps Landing Progresses an aircraft to Landing
ruleda overlaps Landing Landing
ruleda overlaps Assign Slot Assign Slot
rule4a overlaps Initiate Approach Initiate Aircraft Approach
rule4a overlaps Process Schedule for a Feeder Process Schedule for a Feeder
Rule ID Type Actor Agent
rule49a overlaps Aircraft Aircraft
rule49a overlaps Feeder Feeder
rule49a overlaps Airport Airport
rule49a overlaps Runway Runway
Rule 1D Type SR Resource Data
rule52 overlaps Landing Information landing_info
Rule ID Type SD Goal Agent
rulel2 implements HTe] Bz La_nding Ve (e 0 Aircraft
Aircraft
Rule ID Type SR Goal Agent
rulel6 implements e B La_nding VTS Ol 1 Aircraft
Aircraft
Rule 1D Type SR Task Agent
rulel8 implements Landing Aircraft
rulel8 implements Landing Runway
rulel8 implements Assign Slot Aircraft
rulel8 implements Initiate Approach Aircraft
rulel8 implements Process Schedule for a Feeder Feeder
Rule 1D Type SR Resource Plan
rule53a uses Landing Information Monitor Aircraft
rule53a uses Landing Information Follow Approach
rule53a uses Landing Information Initial Approach
rule53b creates Landing Information Monitor Aircraft
rule53b creates Landing Information Follow Approach
rule53b creates Landing Information Assign Slot Plan
Rule ID Type Actor Capability
rule56 composedOf Aircraft Flying
rule56 composedOf Feeder Traffic Feeding
rule56 composedOf Airport Arrival Sequencing
rule56 composedOf Runway Runway Assigning
Rule ID Type SR Task Plan
rule57 achieves Landing Runway Request
rule57 achieves Landing Follow Approach
rule57 achieves Assign Slot Assign Slot Plan
rule57 achieves Initiate Approach Initial Approach
rule57 achieves Process Schedule for a Feeder Traffic
Rule ID Type SR Goal Plan
rule58 achieves U La_nding Ve (ef &0 Monitor Aircraft
Aircraft

[143]

Rule ID Type SR Resource Capability
rule54a uses Landing Information Flying
rule54b creates Landing Information Flying
Rule ID Type SR Resource Agent
rule55a uses Landing Information Aircraft
rule55b creates Landing Information Aircraft

Table C.2 Traceability relations identified by the tool

To show how missing elements identified by the tool can assist in the software development

process we used the information of missing elements (Table C.3) to complete the models and

to fix inconsistencies (e.g. to fix discrepancies between names given by the elements).

Rule ID SD Goal Goal
rulelcc Allocate Runway Slot
Rule ID SR Goal -—-
rule3cc Allocate Runway Slot
Rule 1D SR Plan Prometheus Role |1 Prometheus Action
ruledcc Request Runway
ruledcc Respond Runway Request
ruledcc Follow Approach
ruledcc Request Booking
ruledcc TakeOff Discard
rule4cc TakeOff
Rule ID Prometheus Goal SD Task | SD Goal | SR Task | SD Goal
ruled4ccl Request Slot
ruled4ccl Schedule Arrival for a Feeder
ruledccl Assign Runway
ruledccl Push Out
Rule ID Goal Agent
rulel?2
Rule ID SD Resource Percept | Message
rule50cc Slot Allocated
rule50cc ATL
Rule ID SD Goal Agent
rule59ccl Allocate Runway Slot
Rule ID SR Goal Agent
rule59cc3 Allocate Runway Slot
Rule ID SR Task Agent
rule59cc4 Request Runway
rule59cc4 Respond Runway Request
rule59cc4 Follow Approach
rule59cc4 Request Booking
rule59cc4 TakeOff Discard
rule59cc4 TakeOff
Rule ID SD Goal Plan
rule60ccl Allocate Runway Slot
Rule ID SR Goal Plan

[144]

rule60cc3 Allocate Runway Slot
Rule ID SR Task Plan
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Follow Approach
rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff
Rule ID SD Goal Capability
rule60ccl Allocate Runway Slot
rule60cel Find Best anding Time for an
Aircraft
Rule ID SR Goal Capability
rule60cc3 Allocate Runway Slot
rule60ce3 Find Best La_nding Time for an
Aircraft
Rule ID SR Task Capability
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Landing
rule60cc4 Assign Slot
rule60cc4 Initiate Approach
rule60cc4 Follow Approach
rule60cc4 Process Schedule for a Feeder
rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff

Table C.3 Missing relations identified by the tool

We run the tool against the new 7* model shown in the Figure C.60 and the new Prometheus

model.

The number of correct relations identified was 31, the number of missing elements identified
was 31 and the number of wrong relations was 11. The precision and recall calculated was

73,8% and 50% respectively.

Several missing elements were identified by the completeness checking rules. The
completeness checking rule 7u/elcc shows that there is a missing traceability relation between
Allocate Runway Slot SD Goal and a Prometheus goal (see Table C.4). The rule rule3cc shows
that there is a missing traceability relation between Allocate Runway Slot SR Goal and a
Prometheus goal (see Table C.5).

The rule rule4ccl shows that any relation between Request Slot Prometheus goal and a SD

Task, or SD Goal, or SR Task, or SR Goal was identified (see Table C.4 and Table C.5). The

[145]

action taken to correct this discrepancy was to rename the name of Request Slot goal in the

Prometheus model to Allocate Runway Slot.

Rule ID SD Goal Goal
rulelcc | Allocate Runway Slot

Table C.4 Missing relations between SD Goal and Prometheus Goal

Rule ID SR Goal Goal
Rule3cc| Allocate Runway Slot

Table C.5 Missing relations between SR Goal and Prometheus Goal

We changed the name of Request Slot to Allocate Runway Slot to fix the discrepancy between

names and the relation was identified.

Rule ruledcc shows that there are missing traceability relations between Request Runway,
Respond Runway Request, Follow Approach, Request Booking, TakeOff Discard, TakeOff
SR Tasks and Prometheus Goals (see Table C.3). We added Request Booking and TakeOff
Goal goals in the Prometheus to complete the model. After analysing the models, we identified
that there is a missing relation between Follow Approach SR Task in #* and Progress an
aircraft to Landing in Prometheus model. To fix the discrepancy between the names given, we
changed the name in the Prometheus model from Progress an aircraft to Landing to Follow
Approach Goal. The Figure C.60 and Figure C.61 show 7 model and Prometheus goal
diagram updated.

[146]

Figure C.60 Air Traffic Control Environment i* model version 1

Process Schedule for a Feeder

Initiate Aircraft Approach

Follow Approach Goal

Find Best Land Time for an Aircraft
<_Query Best Landing Time from All Runway Manager’

AND

Figure C.61 Prometheu goal diagram

Push Out

Rule ID

SR Task

Prometheus Goal

ruledcc

Request Runway

ruledcc

Respond Runway Request

ruledcc

Follow Approach

ruledcc

Request Booking

ruledcc

TakeOff Discard

ruledcc

TakeOff

Table C.6 Missing relations between SR Plan and Prometheus Goal

[147]

The rule rule4ccl shows that there are missing traceability relations between Request Slot,
Schedule Arrival for a Feeder, Assign Runway, Push Out goals in Prometheus and SD Task, or
SD Goal, or SR Task, or SR Goal (see Table C.7).

Rule ID Prometheus Goal SD Task | SD Goal |
SR Task | SD Goal

rule4ccl Request Slot

rule4ccl Schedule Arrival for a Feeder

rule4ccl Assign Runway

ruledccl Push Out

Table C.7 Missing relations between Prometheus Goal and SD/SR Task or SD/SR Goal
There is a discrepancy between the names given to the TakeOff Discard SR Task and Push
Out goal in Prometheus. We changed the name of the SR Task from TakeOff Discard to Push
Out in the 7% model. There is also a discrepancy between the names given to Respond Runway
Request SR Task and Assign Runway in Prometheus. We changed the name of the Assign
Runway goal in Prometheus to Respond Runway Request. No traceability relation was found
between Schedule Arrival for a Feeder Prometheus goal and a SD Task, or SD Goal, or SR
Task, or SR Goal. We decide to remove it from the Prometheus model. The Schedule Arrival
for a Feeder is similar to the Process Schedule for a Feeder goal (another action could be to
add a SR goal in the in 7% model that would have a means-end relationship with the Process
Schedule for a Feeder). The traceability relation between Request Runway SR Task in 7* and
Query Best Landing Time from All Runway Manager was not identified by the tool. In order
to fix this discrepancy between names we changed the name from Runway Request in the 7*

model to Query Best Landing Time from All Runway Manager.

The rule rule50cc shows that any traceability relation was identified between Slot Allocated and
ATL SD Resource in 7* and a Percept or a Message in Prometheus (see Table C.8). We
identified that the carried information ATL and Slot Allocated for the Aircraft Event message
was missing. We fix the incompleteness adding ATL and Slot Allocated to the carried

information property of Aircraft Event message.

Rule 1D SD Resource Percept | Message
rule50cc Slot Allocated
rule50cc ATL

Table C.8 Missing relations between SD Resource and Prometheus Percept

[148]

Rule rule59ccl shows that any traceability relation was found between Allocate Runway Slot
SD goal and a Prometheus agent (see Table C.9) and the rule rule59cc3 shows that any
traceability relation was identified between Allocate Runway Slot SR goal and a Prometheus
agent (see Table C.10). We added to the list of goals achieved by the Runway Prometheus
agent the Allocate Runway Slot (named before by Request Slot).

Rule 1D SD Goal Agent
rule59ccl Allocate Runway Slot

Table C.9 Missing relations between SD Goal and a Prometheus Agent

Rule 1D SR Goal Agent
rule59cc3 Allocate Runway Slot

Table C.10 Missing relation between a SR Goal and an Agent

Table C.11 shows missing relations between Request Runway, Respond Runway Request,
Follow Approach, Request Booking, TakeOff Discard, and Take Off SR Tasks and agents in
Prometheus. We added Query Best Landing Time from All Runway Manager (before named
as Request Runway) to the list of goals achieved by Airport Prometheus Agent. No action was
necessary for Request Runway Request and Follow Approach. The goal name changed from
Assign Runway to Respond Runway Request and from Progresses an aircraft to Landing to
Follow Approach resolved the incompleteness. We added Request Booking to the list of goals
achieved by Aircraft Prometheus Agent and TakeOff and Push Out to the list of goals
achieved by the Feeder Prometheus Agent.

Rule 1D SR Task Agent
rule59cc4 Request Runway

rule59cc4 Respond Runway Request
rule59cc4 Follow Approach

rule59cc4 Request Booking

rule59cc4 TakeOff Discard

rule59cc4 TakeOff

Table C.11 Missing relations between a SR Task and an Agent

Table C.12 shows missing relations between Allocate Runway Slot SD Goal and plans in

Prometheus and the table C.13 shows missing relations between Allocate Runway Slot SR goal

[149]

and a plan in Prometheus. Any action was necessary because the change of the Request Slot

goal name to Allocate Runway Slot fixed the incompleteness.

Rule 1D SD Goal Plan
rule60ccl Allocate Runway Slot

Table C.12 Missing relations between a SD Goal and a Prometheus Plan

Rule 1D SR Goal Plan
rule60cc3 Allocate Runway Slot

Table C.13 Missing relations between a SR Goal and a Prometheus Plan

Table C.14 shows missing relations between Request Runway, Respond Runway Request,
Follow Approach, Request Booking, TakeOff Discard, and Take Off SR Tasks and plans in
Prometheus. We added Query Best Landing Time from All Runway Manager (before named
as Request Runway) to the list of goals achieved by Airport. No action was necessary for
Request Runway Request and Follow Approach. The goal name changed from Assign Runway
to Respond Runway Request and from Progresses an aircraft to Landing to Follow Approach
resolved the incompleteness. We added Request Booking and TakeOff to the list of goals
achieved by TakeOff Prometheus Agent. We added Push Out to the list of goals achieved by
the Takeoff Discard Prometheus Plan.

Rule 1D SR Task Plan
rule60cc4 Request Runway

rule60cc4 Respond Runway Request
rule60cc4 Follow Approach

rule60cc4 Request Booking

rule60cc4 TakeOff Discard

rule60cc4 TakeOff

Table C.14 Missing relations between a SR Task and Prometheus Plan

Table C.15 shows missing relations between Allocate Runway Slot and Find Best Landing
Time for an Aircraft SD goals and Prometheus capabilities. Table C.16 shows missing relations
between Allocate Runway Slot and Find Best Landing Time for an Aircraft SR goals and
capabilities in Prometheus. We added Allocate Runway Slot goal to the list of goals achieved
by Runway Assigning and Find Best Landing Time for an Aircraft to the list of goals achieved
by Arrival Sequencing.

[150]

Rule 1D SD Goal Capability
rule60ccl Allocate Runway Slot
rule60ccl Find Best Landing Time for an Aircraft

Table C.15 Missing links between a SD Goal and Prometheus Capability

Rule ID SR Goal Capability
rule60cc3 Allocate Runway Slot
rule60cc3 Find Best Landing Time for an Aircraft

Table C.16 Missing links between a SR Goal and Prometheus Capability

Table C.17 shows missing relations between Request Runway, Respond Runway Request,
Landing, Assign Slot, Initiate Approach, Follow Approach, Process Schedule for a Feeder,
Request Booking, TakeOff Discard, TakeOff SR tasks in 7* and Prometheus Capabilities. We
added Query Best Landing Time from All Runway Manager to the list of goals achieved by
Arrival Sequencing capability. We added Respond Runway Request to the list of goals achieved
by Runway Assigning. We added Landing, Assign Slot, Initiate Aircraft Approach, and Follow
Approach to the list of goals achieved by Flying capability. We added Process Schedule for a
Feeder, Request Booking, Push Out and Take Off Goal to the list of goals achieved by the

Feeder capability.
Rule 1D SR Task Capability
rule60cc4 Request Runway
rule60cc4 Respond Runway Request
rule60cc4 Landing
rule60cc4 Assign Slot
rule60cc4 Initiate Approach
rule60cc4 Follow Approach
rule60cca Process Schedule for a

Feeder

rule60cc4 Request Booking
rule60cc4 TakeOff Discard
rule60cc4 TakeOff

Table C.17 Missing relations between a SR Task and Prometheus Capability

[151]

After to complete the model and run the traceability tool again the number of correct relations

identified was 65, the number of missing elements identified was 4 and the number of wrong

relations was 18. The precision and recall calculated was 78,82% and 94,36%, respectively.

Rule 1D SD Goal Goal
rulel Allocate Runway Slot Allocate Runway Slot
rulel Find Best Landing Time for an Aircraft Landing
rulel Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft
Rule 1D SR Goal Goal
rule3a Allocate Runway Slot Allocate Runway Slot
rule3a Find Best Landing Time for an Aircraft Landing
rule3a Find Best Landing Time for an Aircraft Find Best Land Time for an Aircraft
Rule 1D SR Task Goal
ruleda Query Best Landing Time from All Query Best Landing Time from All Runway
Runway Manager Manager
ruleda Query BReusﬁvl_/Z;]/dl\;;%;ér];f from All Landing
ruleda Respond Runway Request Respond Runway Request
e Landing Query Best Landing Time from All Runway
Manager
ruleda Landing Landing
ruleda Assign Slot Assign Slot
ruleda Initiate Approach Initiate Aircraft Approach
ruleda Follow Approach Follow Approach Goal
ruleda Process Schedule for a Feeder Process Schedule for a Feeder
ruleda Request Booking Request Booking
ruleda PushOut Push Out
ruleda TakeOff TakeOff Goal
Rule 1D Actor Agent
rule49a Aircraft Aircraft
rule49a Feeder Feeder
rule49a Airport Airport
rule49a Runway Runway
Rule 1D SD Resource Message
rule50 Slot Allocated Aircraft Event
rule50 ATL Aircraft Event
Rule 1D SR Resource Data
rule52 Landing Information landing_info
Rule 1D SD Goal Agent
rulel2 Allocate Runway Slot Airport
rulel2 Allocate Runway Slot Runway
rulel2 Find Best Landing Time for an Aircraft Aircraft
Rule 1D SR Goal Agent
rulel6 Allocate Runway Slot Airport
rulel6 Allocate Runway Slot Runway
rulel6 Find Best Landing Time for an Aircraft Aircraft
Rule 1D SR Task Agent
rule18 Query BRejivb:;dnhr;%;ggf from All Airport
rule1l8 Query Best Landing Time from All Runway

[152]

Runway Manager

rulel8 Respond Runway Request Runway
rule1l8 Landing Airport
rule1l8 Landing Runway
rule1l8 Assign Slot Aircraft
rule1l8 Initiate Approach Aircraft
rule1l8 Follow Approach Aircraft
rulel8 Process Schedule for a Feeder Feeder
rule1l8 Request Booking Aircraft
rulel8 PushOut Feeder
rulel8 TakeOff Feeder
Rule 1D SD Goal Capability
rule19 Allocate Runway Slot Runway Assigning
rule19 Find Best Landing Time for an Aircraft Flying
Rule 1D SR Goal Capability
rule23 Allocate Runway Slot Runway Assigning
rule23 Find Best Landing Time for an Aircraft Flying
Rule 1D SR Task Capability
rule25 Query Best Landing Time from All Arrival Sequencing
Runway Manager
rule25 Query BRejr:vbz)r;dh;lr;%;érgf from All Flying
rule25 Respond Runway Request Runway Assigning
rule25 Landing Arrival Sequencing
rule25 Landing Flying
rule25 Assign Slot Flying
rule25 Initiate Approach Flying
rule25 Follow Approach Flying
rule25 Process Schedule for a Feeder Traffic Feeding
rule25 Request Booking Traffic Feeding
rule25 PushOut Traffic Feeding
rule25 TakeOff Traffic Feeding
Rule 1D SR Resource Plan
rule53a Landing Information Monitor Aircraft
rule53a Landing Information Follow Approach
rule53a Landing Information Initial Approach
rule53b Landing Information Monitor Aircraft
rule53b Landing Information Follow Approach
rule53b Landing Information Assign Slot Plan
Rule 1D Actor Capability
rule56 Aircraft Flying
rule56 Feeder Traffic Feeding
rule56 Airport Arrival Sequencing
rule56 Runway Runway Assigning
Rule 1D SR Task Plan
rule57 Query BRejﬁvaSdl\'ﬂr;gn;én;f WL Runway Request
rule57 Respond Runway Request Runway Assign
rule57 Landing Runway Request
rule57 Assign Slot Assign Slot Plan
rule57 Initiate Approach Initial Approach

[153]

rule57 Follow Approach Follow Approach
rule57 Process Schedule for a Feeder Traffic
rule57 Request Booking Takeoff
rule57 PushOut Takeoff Discard
rule57 TakeOff Takeoff
Rule 1D SR Goal Plan
rule58 Allocate Runway Slot Request Slot Plan
rule58 Find Best Landing Time for an Aircraft Monitor Aircraft
Rule 1D SR Resource Capability
rule54a Landing Information Flying
rule54b Landing Information Flying
Rule 1D SR Resource Agent
rule55a Landing Information Aircraft
rule55b Landing Information Aircraft
Table C.18 Traceability relations between i* and Prometheus
Rule ID JACK BeliefSet Prometheus Data
RulePJ2ccl LandinglInfo
RulePJ2ccl RunwayInfo
Rule ID Prometheus Goal JACK Agent
RulePJ5ccl Request Slot
RulePJ5ccl Process Schedule for a Feeder
RulePJ5ccl Schedule Arrival for a Feeder
RulePJ5ccl Query Best Landing Time from All Runway Manager
RulePJ5ccl Assign Runway
RulePJ5ccl Find Best Land Time for an Aircraft
RulePJ5ccl Push Out
RulePJ5ccl Progresses an aircraft to Landing
RulePJ5ccl Initiate Aircraft Approach
RulePJ5ccl Assign Slot
RulePJ5ccl Landing
Rule ID Prometheus Message JACK Agent

RulePJ12ccl

Traffic Event

RulePJ12ccl

Enter Control Area

Table C.19 Missing relations between JACK and Prometheus

[154]

Appendix D — Electronic Bookstore Case Study

This document describes the development of a multi-agent system to implement the
Electronic Bookstore (EB) used as a case study to evaluate our approach to generate
traceability relations automatically and to identify missing elements between artefacts created

during the development of a multi-agent system.

D.1 JACK Agent vs Prometheus Goal

Table D.1 shows the traceability relations identified manually between Prometheus Goal and
JACK Agent and the table D.2 shows the traceability relations identified by the tool between
Prometheus Goal and JACK Agent identified by the tool. Relations between a Prometheus
Goal and a JACK Agent found by the tool are based on previous relations identified between
Prometheus Agents and JACK Agents and relations defined in the Prometheus model
between Prometheus Goals and Prometheus Agents. The number of relations identified
manually is 38, the number of relations identified by the tool is 38, and the number of correct

relations is 38. The precision and recall calculated is 100%.

The reason why precision and recall are equal to 100% is because the tool had identified
previously all the relations between Prometheus Agents and JACK Agents completely and

correctly and all the relations between Prometheus Goals and Prometheus Agents had been

completed defined.

Prometheus Goal JACK Agent

Retrieve Item Details Stock Manager
Register New Customer Customer Relations
Calculate Delivery Time and Price Delivery Manager

Check Availability Stock Manager

Perform Keyword Search Stock Manager

Perform Advanced Search Stock Manager

Find BestSellers Stock Manager

Find Book Details Stock Manager

Find Books by Category Stock Manager

Find New Releases Stock Manager

Find Special Offers Stock Manager

Find Categories Stock Manager

Find Top Ten BestSellers Stock Manager

Show New Customer Page Sales Assistant

Show Updated Basket Sales Assistant

Show Delivery Time and Price Options Sales Assistant

Show Top Ten BestSellers Sales Assistant

Show Order Confirmation Sales Assistant

[155]

Show Account Details Page

Sales Assistant

Proceed To CheckOut

Sales Assistant

Update Basket

Sales Assistant

Get Customer Details

Customer Relations

Show User Details

Sales Assistant

Show Advanced Search Form

Sales Assistant

Show Advanced Search Result

Sales Assistant

Show Basket Page

Sales Assistant

Show Best Sellers Page

Sales Assistant

Show Book Details Page

Sales Assistant

Show Books by Category Page

Sales Assistant

Show Top Ten BestSellers

Sales Assistant

Show Contact Information

Sales Assistant

Show Help Information

Sales Assistant

Show Keyword Search Result

Sales Assistant

Show New Releases

Sales Assistant

Show Password Assistance

Sales Assistant

Show LoglIn Page

Sales Assistant

Show Special Offers Page

Sales Assistant

Show Categories Page

Sales Assistant

Validate User

Customer Relations

Process Payment

Payment Processor

Table D.1 Relations identified manually between Prometheus Goal and JACK Agent

Rule ID Prometheus Goal JACK Agent
rulePJ5a Show Contact Information SalesAssistant
rulePJ5a Show Help Information SalesAssistant
rulePJ5a Show User Details SalesAssistant
rulePJ5a Show Account Details Page SalesAssistant
rulePJ5a Show Advanced Search Result SalesAssistant
rulePJ5a Show Advanced Search Form SalesAssistant
rulePJ5a Show Books Details Page SalesAssistant
rulePJ5a Show Books by Category Page SalesAssistant
rulePJ5a Show Logln Page SalesAssistant
rulePJ5a Proceed To CheckOut SalesAssistant
rulePJ5a Show Categories Page SalesAssistant
rulePJ5a Show Top Ten BestSellers SalesAssistant
rulePJ5a Show Order Confirmation SalesAssistant
rulePJ5a Show Delivery Time and Price Options SalesAssistant
rulePJ5a Show Keyword Search Result SalesAssistant
rulePJ5a Show Updated Basket SalesAssistant
rulePJ5a Show Best Sellers Page SalesAssistant
rulePJ5a Show New Releases SalesAssistant
rulePJ5a Show Special Offers Page SalesAssistant
rulePJ5a Update Basket SalesAssistant
rulePJ5a Show Basket Page SalesAssistant
rulePJ5a Show New Customer Page SalesAssistant
rulePJ5a Get Customer Details CustomerRelations
rulePJ5a Validate User CustomerRelations
rulePJ5a Register New Customer CustomerRelations
rulePJ5a Calculate Delivery Time and Price DeliveryManager
rulePJ5a Process Payment PaymentProcessor
rulePJ5a Find Books by Category StockManager
rulePJ5a Find Top Ten BestSellers StockManager
rulePJ5a Perform Keyword Search StockManager
rulePJ5a Perform Advanced Search StockManager

[156]

rulePJ5a Retrieve Item Details StockManager
rulePJ5a Check Availability StockManager
rulePJ5a Find BestSellers StockManager
rulePJ5a Find Book Details StockManager
rulePJ5a Find New Releases StockManager
rulePJ5a Find Special Offers StockManager
rulePJ5a Find Categories StockManager

Table D.2 Relations identified by the tool between Prometheus Goal and JACK Agent

D.2 JACK Agent vs Prometheus Role

Table D.3 shows the traceability relations identified manually between Prometheus Role and
JACK Agent and table D.4 shows the traceability relations identified by the tool between
Prometheus Role and JACK Agent. Relations between a Prometheus Role and a JACK Agent
found by the tool are based on previous relations identified between Prometheus Agents and
JACK Agents and relations defined in the Prometheus model between Prometheus Role and

Prometheus Agents. The number of relations identified manually is 9, and the number of

relations identified by the tool is 9. The precision and recall calculated is 100%.

The reason why precision and recall are equal to 100% is because the tool had identified
previously all the relations between Prometheus Agents and JACK Agents completely and

correctly and all the relations between Prometheus Roles and Prometheus Agents had been

completed defined.

Prometheus Role

JACK Agent

Customer Management

SalesAssistant

Order Management

SalesAssistant

Product Information Management

SalesAssistant

Shop Information Management

SalesAssistant

Customer Relationship Management

CustomerRelations

Stock Management StockManager
Search Management StockManager
Service Delivery Management DeliveryManager
Payment Management PaymentProcessor

Table D.3 Relations identified manually between Prometheus Role and JACK Agent

Rule ID Prometheus Role JACK Agent
rulePJ6a Shop Information Managment SalesAssistant
rulePJ6a Product Information Management | SalesAssistant
rulePJ6a Order Management SalesAssistant
rulePJ6a Customer Management SalesAssistant
rulePJ6a Customer Relationship CustomerRelations

[157]

Management

rulePJ6a Service Delivery Management DeliveryManager
rulePJ6a Payment Management PaymentProcessor
rulePJ6a Stock Management StockManager
rulePJéa Search Management StockManager

Table D.4 Relations identified by the tool between Prometheus Role and JACK Agent

D.3 JACK Agent vs Prometheus Agent

Table D.5 shows the traceability relations identified manually between Prometheus Role and

JACK Agent and table D.6 shows the traceability relations identified by the tool between

Prometheus Role and JACK Agent. The number of relations identified manually is 5, and the

number of relations identified by the tool is 5. The precision and recall calculated is 100%.

Prometheus Agent

JACK Agent

Customer Relations

CustomerRelations

Delivery Manager

DeliveryManager

Payment Processor

PaymentProcessor

Sales Assistant

SalesAssistant

Stock Manager

StockManager

DispatcherAgent

Table D.5 Relations identified manually between Prometheus Agent and JACK Agent

Rule ID Prometheus Agent JACK Agent
rulePJ4a Sales Assistant SalesAssistant
rulePJ4a Customer Relations CustomerRelations
rulePJ4a Delivery Manager DeliveryManager
rulePJ4a Payment Processor PaymentProcessor
rulePJ4a Stock Manager StockManager

Table D.6 Relations identified by the tool between Prometheus Agent and JACK Agent

[158]

D.4 JACK Agent vs Prometheus Capability

Table D.7 shows the traceability relations identified manually between Prometheus Capability
and JACK Agent and table D.8 shows the traceability relations identified by the tool between
Prometheus Capability and JACK Agent. The number of relations identified manually is 39,

and the number of relations identified by the tool is 39. The precision and recall calculated is

100%.

Prometheus Capability

JACK Agent

Add Customer Capability

CustomerRelations

Add Customer Response Capability

SalesAssistant

Add Item to Basket Capability StockManager
Add Item To Basket Response Capability SalesAssistant
Advanced Search Capability StockManager

Advanced Search Response Capability

SalesAssistant

Calculate Delivery Time and Price Capability

DeliveryManager

Check Stock Capability StockManager
Find BestSellers Capability StockManager
Find Book Details Capability StockManager
Find Books by Category Capability StockManager
Find New Releases Capability StockManager
Find Special Offers Capability StockManager
Find Subjects Category Capability StockManager
Find Top Ten BestSellers Capability StockManager
Get Delivery Options Response Capability SalesAssistant
Keyword Search Capability StockManager

Keyword Search Response Capability

SalesAssistant

Log Out Response Capability

SalesAssistant

Logln Response Capability

SalesAssistant

Place Order Response Capability

SalesAssistant

Proceed To Check Out Response Capability

SalesAssistant

Retrieve Customer Details Capability

CustomerRelations

Show Account Detail Response Capability

SalesAssistant

Show Advanced Search Form Response Capability

SalesAssistant

Show Basket Response Capability

SalesAssistant

Show BestSellers Response Capability

SalesAssistant

Show Book Details Response Capability

SalesAssistant

Show Books by CategoryResponse Capability

SalesAssistant

Show Bookstore Main Page Response Capability

SalesAssistant

Show Contact Information Response Capability

SalesAssistant

Show Help Information Response Capability

SalesAssistant

Show New Releases Response Capability

SalesAssistant

Show Signin Form Response Capability

SalesAssistant

Show Special Offers Response Capability

SalesAssistant

Show Subjects Response Capability

SalesAssistant

Signin Capability

CustomerRelations

Update Basket Response Capability

SalesAssistant

Validate Credit Card Capability

Payment Processor

Table D.7 Relations identified manually Prometheus Capability and JACK Agent

[159]

Rule ID Prometheus Capability JACK Agent
rulePJ8a Add Customer Response Capability SalesAssistant
rulePJ8a Get Delivery Options Response Capability SalesAssistant
rulePJ8a Logln Response Capability SalesAssistant
rulePJ8a Place Order Response Capability SalesAssistant
rulePJ8a Add Item To Basket Response Capability SalesAssistant
rulePJ8a Advanced Search Response Capability SalesAssistant
rulePJ8a Keyword Search Response Capability SalesAssistant
rulePJ8a Show Books by CategoryResponse Capability SalesAssistant
rulePJ8a Show Book Details Response Capability SalesAssistant
rulePJ8a Log Out Response Capability SalesAssistant
rulePJ8a Show Bookstore Main Page Response Capability SalesAssistant
rulePJ8a Show BestSellers Response Capability SalesAssistant
rulePJ8a Show New Releases Response Capability SalesAssistant
rulePJ8a Show Special Offers Response Capability SalesAssistant
rulePJ8a Show Subjects Response Capability SalesAssistant
rulePJ8a Proceed To Check Out Response Capability SalesAssistant
rulePJ8a Show Account Detail Response Capability SalesAssistant
rulePJ8a Show Advanced Search Form Response Capability SalesAssistant
rulePJ8a Show Basket Response Capability SalesAssistant
rulePJ8a Show Contact Information Response Capability SalesAssistant
rulePJ8a Show Help Information Response Capability SalesAssistant
rulePJ8a Show Signln Form Response Capability SalesAssistant
rulePJ8a Update Basket Response Capability SalesAssistant
rulePJ8a Add Customer Capability CustomerRelations
rulePJ8a Retrieve Customer Details Capability CustomerRelations
rulePJ8a Signln Capability CustomerRelations
rulePJ8a Calculate Delivery Time and Price Capability DeliveryManager
rulePJ8a Validate Credit Card Capability PaymentProcessor
rulePJ8a Check Stock Capability StockManager
rulePJ8a Add Item to Basket Capability StockManager
rulePJ8a Advanced Search Capability StockManager
rulePJ8a Keyword Search Capability StockManager
rulePJ8a Find Books by Category Capabability StockManager
rulePJ8a Find Book Details Capability StockManager
rulePJ8a Find Top Ten BestSellers Capability StockManager
rulePJ8a Find BestSellers Capability StockManager
rulePJ8a Find New Releases Capability StockManager
rulePJ8a Find Special Offers Capability StockManager
rulePJ8a Find Subjects Category Capability StockManager

Table D.8 Relations identified by the tool between Prometheus Capability and JACK Agent

D.5 JACK Agent vs Prometheus Plan

Table D.9 shows the traceability relations identified manually between Prometheus Plan and
JACK Agent and table 1D.10 shows the traceability relations identified by the tool between
Prometheus Plan and JACK Agent. The number of relations identified manually is 39, and the

number of relations identified by the tool is 39. Precision and recall calculated is 100%.

[160]

Prometheus Plan

JACK Agent

Add Item to Basket Plan

StockManager

Add New Customer

CustomerRelations

Calculate Delivery Time and Price Plan

DeliveryManager

Check Stock StockManager
Execute Advanced Search StockManager
Execute Keyword Search StockManager
Find BestSellers Plan StockManager
Find Book Details Plan StockManager
Find Books by Category Plan StockManager
Find New Releases Plan StockManager
Find Special Offers Plan StockManager
Find Subjects StockManager
Find Top Ten BestSellers Plan StockManager

Respond Add Customer Request

SalesAssistant

Respond Add Item to Basket Request

SalesAssistant

Respond Get Delivery Options Request

SalesAssistant

Respond Log Out Request

SalesAssistant

Respond Place Order Request

SalesAssistant

Respond Signin Request

SalesAssistant

Respond to Proceed to CheckOut Request

SalesAssistant

Respond Update Basket Request

SalesAssistant

Retrieve Customer Details

CustomerRelations

Show Account

SalesAssistant

Show Advanced Search Form Plan

SalesAssistant

Show Advanced Search Result Plan

SalesAssistant

Show Basket Plan

SalesAssistant

Show BestSellers Plan

SalesAssistant

Show Book Details

SalesAssistant

Show Books by Category Plan

SalesAssistant

Show Bookstore Main PagePlan

SalesAssistant

Show Contact Information Plan

SalesAssistant

Show Help Information Plan

SalesAssistant

Show Keyword Search Result Plan

SalesAssistant

Show New Releases Plan

SalesAssistant

Show Signin form

SalesAssistant

Show Special Offers Plan

SalesAssistant

Show Subjects Plan

SalesAssistant

Sign In

CustomerRelations

Validate Credit Card

PaymentProcessor

Table D.9 Relations identified manually between Prometheus Plan and JACK Agent

Rule ID Prometheus Plan JACK Agent

rulePJ9a Respond Add Customer Request | SalesAssistant

rulePJ9a Respond Get Delivery Options SalesAssistant
Request

rulePJ9a Respond Signin Request SalesAssistant

rulePJ9a Respond Place Order Request SalesAssistant

rulePJ9a Respond Add Item to Basket SalesAssistant
Request

rulePJ9a Show Advanced Search Result SalesAssistant

[161]

Plan
rulePJ9a Show Keyword Search Result SalesAssistant
Plan
rulePJ9a Show Books by Category Plan SalesAssistant
rulePJ9a Show Book Details SalesAssistant
rulePJ9a Respond Log Out Request SalesAssistant
rulePJ9a Show Bookstore Main Page Plan | SalesAssistant
rulePJ9a Show BestSellers Plan SalesAssistant
rulePJ9a Show New Releases Plan SalesAssistant
rulePJ9a Show Special Offers Plan SalesAssistant
rulePJ9a Show Subjects Plan SalesAssistant
rulePJ9a Respond to Proceed to CheckOut | SalesAssistant
Request
rulePJ9a Show Account SalesAssistant
rulePJ9a Show Advanced Search Form SalesAssistant
Plan
rulePJ9a Show Basket Plan SalesAssistant
rulePJ9a Show Contact Information Plan SalesAssistant
rulePJ9a Show Help Information Plan SalesAssistant
rulePJ9a Show Signln Form SalesAssistant
rulePJ9a Respond Update Basket Request | SalesAssistant
rulePJ9a Add New Customer CustomerRelations
rulePJ9a Retrieve Customer Details CustomerRelations
rulePJ9a Sign In CustomerRelations
rulePJ9a Calculate Delivery Time and DeliveryManager
Price Plan
rulePJ9a Validate Credit Card PaymentProcessor
rulePJ9a Check Stock StockManager
rulePJ9a Add Item to Basket Plan StockManager
rulePJ9a Execute Advanced Search StockManager
rulePJ9a Execute Keyword Search StockManager
rulePJ9a Find Books by Category Plan StockManager
rulePJ9a Find Book Details Plan StockManager
rulePJ9a Find Top Ten BestSellers Plan StockManager
rulePJ9a Find BestSellers Plan StockManager
rulePJ9a Find New Releases Plan StockManager
rulePJ9a Find Special Offers Plan StockManager
rulePJ9a Find Subjects StockManager

Table D.10 Relations identified by the tool between Prometheus Plan and JACK Agent

D.6 JACK Agent vs Prometheus Percept

Table D.11 shows the traceability relations identified manually between Prometheus Plan and
JACK Agent and table .12 shows the traceability relations identified by the tool between
Prometheus Plan and JACK Agent. The number of relations identified manually is 24, and the
number of relations identified by the tool is 15. Precision and recall calculated is 100% and

62.50%, respectively. The reason why recall is low it is because the rule rulePJ10a only capture

[162]

Percepts defined on the System Overview Diagram. Table D.13 shows the information about

missing traceability relations between Prometheus Percept and JACK Agent.

Prometheus Percept JACK Agent

Account Details Request SalesAsssistant
Advanced Search Form Request SalesAsssistant
Basket Plan Request SalesAsssistant
BestSellers Page SalesAsssistant
Book Added to Basket SalesAsssistant
Book Details Page SalesAsssistant
Bookstore Page SalesAsssistant
Categories Request SalesAsssistant
CheckOut Request SalesAsssistant
Contact Information Page SalesAsssistant
Get Delivery Options Page SalesAsssistant
Help Information Page SalesAsssistant
Get Delivery Options Page SalesAsssistant
Help Information Page SalesAsssistant
Log Out Page SalesAsssistant
New Advanced Search SalesAsssistant
New Customer SalesAsssistant
New Keyword Search SalesAsssistant
New Releases Page SalesAsssistant
Place Order Request SalesAsssistant
Signln Page SalesAsssistant
Special Offers Page SalesAsssistant
Subjects Page SalesAsssistant
Update Basket Request SalesAsssistant

Table D.11 Relations identified manually between Prometheus Percept and JACK Agent

Rule ID Prometheus Percept JACK Agent
rulePJ10a New Advanced Search SalesAssistant
rulePJ10a Advanced Search Form Request SalesAssistant
rulePJ10a Basket Plan Request SalesAssistant
rulePJ10a BestSellers Page SalesAssistant
rulePJ10a New Keyword Search SalesAssistant
rulePJ10a CheckOut Request SalesAssistant
rulePJ10a Account Details Request SalesAssistant
rulePJ10a Get Delivery Options Page SalesAssistant
rulePJ10a Categories Request SalesAssistant
rulePJ10a SigninPage SalesAssistant
rulePJ10a Bookstore Page SalesAssistant
rulePJ10a New Customer SalesAssistant
rulePJ10a Log Out Page SalesAssistant
rulePJ10a Book Added to Basket SalesAssistant
rulePJ10a Place Order Request SalesAssistant

Table D.12 Relations identified by the tool between Prometheus Percept and JACK Agent

Rule ID Prometheus Percept JACK Agent
RulePJ10ccl New Advanced Search

RulePJ10ccl Advanced Search Form Request

RulePJ10ccl Basket Plan Request

RulePJ10ccl BestSellers Page

RulePJ10ccl New Keyword Search

RulePJ10ccl CheckOut Request

RulePJ10ccl Account Details Request

RulePJ10ccl Get Delivery Options Page

[163]

RulePJ10ccl Categories Request
RulePJ10ccl SigninPage
RulePJ10ccl Bookstore Page
RulePJ10ccl New Customer
RulePJ10ccl Log Out Page
RulePJ10ccl Book Added to Basket
RulePJ10ccl Place Order Request
RulePJ10ccl Book Details Page
RulePJ10ccl New Releases Page
RulePJ10ccl Special Offers Page
RulePJ10ccl Subjects Page
RulePJ10ccl Contact Information Page
RulePJ10ccl Help Information Page
RulePJ10ccl Signin Page
RulePJ10ccl Update Basket Request

Table D.13 Missing traceability relations between Prometheus Percept and JACK Agent
D.7 JACK Agent vs Prometheus Action
Table D.14 shows the traceability relations identified manually between Prometheus Plan and
JACK Agent and table 1D.15 shows the traceability relations identified by the tool between
Prometheus Plan and JACK Agent. The number of relations identified manually is 18, and the
number of relations identified by the tool is 10. The precision and recall calculated is 100% and
55.55%, respectively. The reason why recall is low it is because the rule rulePJ11a only capture

Actions defined on the System Overview Diagram.

Action

JACK Agent

Show Account Details Page Action

SalesAsssistant

Show Advanced Search Form Page

SalesAsssistant

Show Advanced Search Result Page

SalesAsssistant

Show Basket Page Action

SalesAsssistant

Show BestSellers Page

SalesAsssistant

Show Book Details Page Action

SalesAsssistant

Show Books by Category Page Action

SalesAsssistant

Show Bookstore Home Page

SalesAsssistant

Show Bookstore Page

SalesAsssistant

Show CheckOut Page

SalesAsssistant

Show Contact Information Page

SalesAsssistant

Show Delivery Options Page

SalesAsssistant

Show Help Information Page

SalesAsssistant

Show Keyword Search Result Page

SalesAsssistant

Show New Releases Page

SalesAsssistant

Show Sign In Form Page

SalesAsssistant

Show Special Offers Page Action

SalesAsssistant

Show Subjects Page

SalesAsssistant

Table D.14 Relations identified manually between Prometheus Action and JACK Agent

Rule ID Prometheus Action JACK Agent
rulePJ1la Show Basket Page Action SalesAssistant
rulePJ11a Show Advanced Search Form SalesAssistant

[164]

Page
rulePJ11a Show CheckOut Page SalesAssistant
rulePJ11a Show Advanced Search Result SalesAssistant
Page
rulePJ11a Show Keyword Search Result SalesAssistant
Page
rulePJ11a Show BestSellers Page SalesAssistant
rulePJ11a Show Delivery Options Page SalesAssistant
rulePJ11a Show Bookstore Home Page SalesAssistant
rulePJ1la Show Sign In Form Page SalesAssistant
rulePJ1la Show Account Details Page SalesAssistant
Action

Table D.15 Relations identified by the tool between Prometheus Action and JACK Agent

D.8 JACK Agent vs Prometheus Message (sends)

Table D.16 shows the traceability relations identified manually between Prometheus Plan and
JACK Agent and table .17 shows the traceability relations identified by the tool between
Prometheus Plan and JACK Agent. The number of relations identified manually is 33, and the
number of relations identified by the tool is 4. The precision and recall calculated is 100% and
12.12%, respectively. The reason why recall is low it is because the rule rulePJ12b only capture

Message defined on the System Overview Diagram.

Prometheus Message (Sends) JACK Agent
AdvancedSearch Request SalesAssistant
Advanced Search Response StockManager

Authorization Request

SalesAssistant

Authorization Response

PaymentProcessor

BestSellers Request

SalesAssistant

BestSeller Response StockManager
Book Avalaible StockManager
Add to Basket Response StockManager
Book Details Request SalesAssistant
Book Details Response StockManager
Add to Basket Request SalesAssistant
Book Not Avalaible StockManager

Book Request

SalesAssistant

Books by Category Request

SalesAssistant

Books by Category Response

StockManager

Add Customer Request

SalesAssistant

Delivery Time and Price Response

DeliveryManager

User Details Request

SalesAssistant

Delivery Time and Price Request

SalesAssistant

Keyword Search Request

SalesAssistant

Keyword Search Response StockManager
New Releases Request SalesAssistant
New Releases Response StockManager

[165]

Add Customer Response

CustomerRelations

Special Offers Request

SalesAssistant

Special Offers Response StockManager
Subjects Request SalesAssistant
Subjects Response StockManager
Top Ten BestSellers Request SalesAssistant
Top Ten BestSellers Response StockManager

User Details Response

CustomerRelations

User Login Request

SalesAssistant

User Login Response

CustomerRelations

Table D.16 Relations identified manually between Prometheus Message and JACK Agent

Rule ID Prometheus Message JACK Agent
rulePJ12b Add Customer Request SalesAssistant
rulePJ12b Add to Basket Request SalesAssistant
rulePJ12b Add Customer Response CustomerRelations
rulePJ12b Add to Basket Response StockManager

Table D.17 Relations identified by the tool between Prometheus Message and JACK Agent

D.9 JACK Agent vs Prometheus Message (receives)

Table D.18 shows the traceability relations identified manually between Prometheus Plan and
JACK Agent and table .19 shows the traceability relations identified by the tool between
Prometheus Plan and JACK Agent. The number of relations identified manually is 34, and the
number of relations identified by the tool is 5. The precision and recall calculated is 100% and

14.70%, respectively. The reason why recall is low it is because the rule rulePJ12a only capture

Message defined on the System Overview Diagram.

Prometheus Message (Receives) JACK Agent
AdvancedSearch Request StockManager
Advanced Search Response SalesAssistant
Authorization Request PaymentProcessor
Authorization Response SalesAssistant
BestSellers Request StockManager

BestSeller Response

SalesAssistant

Book Avalaible

SalesAssistant

Add to Basket Response

SalesAssistant

Book Details Request StockManager
Book Details Response SalesAssistant
Add to Basket Request StockManager
Book Not Avalaible SalesAssistant
Book Request StockManager
Books by Category Request StockManager

Books by Category Response

SalesAssistant

Add Customer Request

CustomerRelations

[166]

Delivery Time and Price Response

SalesAssistant

User Details Request

CustomerRelations

Delivery Time and Price Request

DeliveryManager

Keyword Search Request StockManager
Keyword Search Response SalesAssistant
New Releases Request StockManager

New Releases Response

SalesAssistant

Add Customer Response

SalesAssistant

Special Offers Request StockManager
Special Offers Response SalesAssistant
Subjects Request StockManager
Subjects Response SalesAssistant
Top Ten BestSellers Request StockManager

Top Ten BestSellers Response

SalesAssistant

User Details Response

SalesAssistant

User Login Request

CustomerRelations

User Login Response

SalesAssistant

WebSession Request

SalesAssistant

Table D.18 Relations identified manually between Prometheus Message and JACK Agent

Rule ID Prometheus Message JACK Agent
rulePJ12a WebSession Request SalesAssistant
rulePJ12a Add Customer Response SalesAssistant
rulePJ12a Add to Basket Response SalesAssistant
rulePJ12a Add Customer Request CustomerRelations
rulePJ12a Add to Basket Request StockManager

Table D.19 Relations identified by the tool between Prometheus Message and JACK Agent

D.10 JACK Agent vs Prometheus Data (uses)

Table D.20 shows the traceability relations identified manually between Prometheus Data and
JACK Agent and table D.21 shows the traceability relations identified by the tool between
Prometheus Data and JACK Agent. The number of relations identified manually is 8, and the
number of relations identified by the tool is 4. The precision and recall calculated is 100% and
50%, respectively. The reason why recall is low it is because the rule ruleP]J13a only capture

Percepts defined on the System Overview Diagram.

Prometheus Data (Uses)

JACK Agent

CustomerDB CustomerRelations
CourierDB DeliveryManager
BooksDB StockManager
StockDB StockManager
BestSellersDB StockManager

[167]

ReleasesDB StockManager
SpecialOffers StockManager
Categories StockManager

Table D.20 Relations identified manually between Prometheus Data and JACK Agent

Rule ID Prometheus Data JACK Agent
rulePJ13a customers CustomerRelations
rulePJ13a courier DeliveryManager
rulePJ13a books StockManager
rulePJ13a categories StockManager

Table D.21 Relations identified by the tool between Prometheus Data and JACK Agent

D.11 JACK Agent vs Prometheus Data (creates)

Table D.22 shows the traceability relations identified manually between Prometheus Data and
JACK Agent and table 1D.23 shows the traceability relations identified by the tool between
Prometheus Data and JACK Agent. The number of relations identified manually is 1, and the

number of relations identified by the tool is 1. The precision and recall calculated is 100%.

Prometheus Data (Creates)
CustomerDB

JACK Agent
CustomerRelations

Table D.22 Relations identified manually between Prometheus Data and JACK Agent

Rule ID Prometheus Data JACK Agent

rulePJ13b customers CustomerRelations

Table D.23 Relations identified by the tool between Prometheus Data and JACK Agent

D.12 JACK Plan vs Prometheus Goal

Table D.24 shows the traceability relations identified manually between JACK Plan and
Prometheus Goal and table D.25 shows the traceability relations identified by the tool between
JACK Plan and Prometheus Goal. The number of relations identified manually is 39, and the
number of relations identified by the tool is 4. The precision and recall calculated is 100% and

10.25%, respectively.

JACK Plan

Prometheus Goal

AddBookToBasket

Retrieve Item Details

RegisterCustomer

Register New Customer

CalculateDeliveryPriceAndTime

Calculate Delivery Time and

[168]

Price
CheckStock Check Availability
ExecuteAdvancedSearch Perform Keyword Search
SearchBooksByKeyword Perform Advanced Search
FindBestSellers Find BestSellers
FindBookDetails Find Book Details
FindBooksByCategory Find Books by Category
FindNewReleases Find New Releases
FindSpecialOffers Find Special Offers
FindSubjects Find Categories
FindTopTenBestSellers Find Top Ten BestSellers
RespondAddCustomerRequest Show New Customer Page
RespondAddToBasketRequest Show Updated Basket
RespondGetDeliveryOptionsRequest Show Delivery Time and
Price Optiions
RespondLogOutRequest Show Top Ten BestSellers
RespondPlaceOrderRequest Show Order Confirmation
RespondSigninRequest Show Account Details Page
RespondProceedToCheckOutRequest Proceed To CheckOut
RespondUpdateBasketRequest Update Basket
GetCreditCardDetails Get Customer Details
ShowAccount Show User Details
ShowAdvancedSearchForm Show Advanced Search Form
ShowAdvancedSearchResult Show Advanced Search
Result
ShowBasket Show Basket Page
ShowBestSellers Show Best Sellers Page
ShowBookDetails Show Book Details Page
ShowBooksByCategory Show Books by Category
Page
ShowWebSite Show Top Ten BestSellers
ShowContactInfo Show Contact Information
ShowHelpInfo Show Help Information
ShowBooksByKeyword Show Keyword Search Result
ShowNewReleases Show New Releases
ShowsSigninForm Show Logln Page
ShowSpecial Offers Show Special Offers Page
ShowSubjects Show Categories Page
Signin Validate User
ValidateCreditCard Process Payment

Table D.24 Relations identified manually between JACK Plan and Prometheus Goal

Rule ID Prometheus Goal JACK Plan

rulePJ14a Show Delivery Time and Price Options RespondGetDeliveryOptionsRequest
rulePJ14a Show Updated Basket RespondAddToBasketRequest
rulePJ14a Perform Advanced Search ExecuteAdvancedSearch

rulePJ14a Show Advanced Search Result ShowAdvancedSearchResult

Table D.25 Relations identified by the tool between Prometheus Goal and JACK Plan

D.13 JACK Plan vs Prometheus Role
Table D.26 shows the traceability relations identified manually between JACK Plan and

Prometheus Role and table D.27 shows the traceability relations identified by the tool between

Prometheus Plan and JACK Plan. The number of relations identified manually is 39, and the

[169]

number of relations identified by the tool is 4. The precision and recall calculated is 100% and

10.25%, respectively.
JACK Plan Prometheus Role
AddBookToBasket Search Management

RegisterCustomer

Customer Relationship Management

CalculateDeliveryPriceAndTime

Service Delivery Management

CheckStock

Search Management

ExecuteAdvancedSearch

Stock Management

SearchBooksByKeyword

Stock Management

FindBestSellers

Stock Management

FindBookDetails

Stock Management

FindBooksByCategory

Stock Management

FindNewReleases

Stock Management

FindSpecialOffers

Stock Management

FindSubjects

Stock Management

FindTopTenBestSellers

Stock Management

RespondAddCustomerRequest

Customer Management

RespondAddToBasketRequest

Order Management

RespondGetDeliveryOptionsRequest

Order Management

RespondLogOutRequest

Shop Information Managment

RespondPlaceOrderRequest

Order Management

RespondSigninRequest

Customer Management

RespondProceedToCheckOutRequest

Order Management

RespondUpdateBasketRequest

Order Management

GetCreditCardDetails

Customer Relationship Management

ShowAccount

Customer Management

ShowAdvancedSearchForm

Product Information Management

ShowAdvancedSearchResult

Product Information Management

ShowBasket

Order Management

ShowBestSellers

Product Information Management

ShowBookDetails

Product Information Management

ShowBooksByCategory

Product Information Management

ShowWebSite

Shop Information Management

ShowContactInfo

Shop Information Management

ShowHelpInfo

Shop Information Management

ShowBooksByKeyword

Product Information Management

ShowNewReleases

Product Information Management

ShowSignInForm

Customer Management

ShowSpecialOffers Product Information Management
ShowSubjects Product Information Management
Signin Customer Relationship Management

ValidateCreditCard

Payment Management

Table D.26 Relations identified manually between JACK Plan and Prometheus Role

Rule 1D Prometheus Role JACK Plan

rulePJ34a Order Management RespondGetDeliveryOptionsRequest
rulePJ34a Order Management RespondAddToBasketRequest
rulePJ34a Stock Management ExecuteAdvancedSearch

rulePJ34a Product Information Management ShowAdvancedSearchResult

Table D.27 Relations identified by the tool between Prometheus Role and JACK Plan

D.14 JACK Plan vs Prometheus Agent
Table D.28 shows the traceability relations identified manually between JACK Plan and

Prometheus Agent and table D.29 shows the traceability relations identified by the tool

[170]

between JACK Plan and Prometheus Agent. The number of relations identified manually is
39, and the number of relations identified by the tool is 34 (the table contains 35 relations, but
two of the relations identified by the tool represent the same relation). The precision and recall

calculated is 91.17% and 79.49%, respectively.

JACK Plan Prometheus Agent
AddBookToBasket Stock Manager
RegisterCustomer Customer Relations
CalculateDeliveryPriceAndTime Delivery Manager
CheckStock Stock Manager
ExecuteAdvancedSearch Stock Manager
SearchBooksByKeyword Stock Manager
FindBestSellers Stock Manager
FindBookDetails Stock Manager
FindBooksByCategory Stock Manager
FindNewReleases Stock Manager
FindSpecialOffers Stock Manager
FindSubjects Stock Manager
FindTopTenBestSellers Stock Manager
RespondAddCustomerRequest Sales Assistant
RespondAddToBasketRequest Sales Assistant
RespondGetDeliveryOptionsRequest Sales Assistant
RespondLogOutRequest Sales Assistant
RespondPlaceOrderRequest Sales Assistant
RespondSigninRequest Sales Assistant
RespondProceedToCheckOutRequest Sales Assistant
RespondUpdateBasketRequest Sales Assistant
GetCreditCardDetails Customer Relations
ShowAccount Sales Assistant
ShowAdvancedSearchForm Sales Assistant
ShowAdvancedSearchResult Sales Assistant
ShowBasket Sales Assistant
ShowBestSellers Sales Assistant
ShowBookDetails Sales Assistant
ShowBooksByCategory Sales Assistant
ShowWebSite Sales Assistant
ShowContactInfo Sales Assistant
ShowHelpinfo Sales Assistant
ShowBooksByKeyword Sales Assistant
ShowNewReleases Sales Assistant
ShowSigninForm Sales Assistant
ShowSpecial Offers Sales Assistant
ShowSubjects Sales Assistant
Signin Customer Relations
ValidateCreditCard Payment Processor
DefaultRequestHandler Dispatcher Agent
SelectSession Dispatcher Agent
ShowNewCustomerForm Sales Assistant
RespondModifyAddressAndPaymentFormRequest Sales Assistant
Monitor Session Dispatcher Agent
RespondViewAllOrdersRequest Sales Assistant

Table D.28 Relations identified manually between JACK Plan and Prometheus Agent

Rule ID Prometheus Agent JACK Plan
rulePJ15a Sales Assistant RespondAddCustomerRequest
rulePJ15a Sales Assistant RespondGetDeliveryOptionsRequest

[171]

rulePJ15a Customer Relations Signin

rulePJ15a Sales Assistant RespondSignIinRequest
rulePJ15a Payment Processor ValidateCreditCard

rulePJ15a Sales Assistant RespondPlaceOrderRequest
rulePJ15a Sales Assistant RespondAddToBasketRequest
rulePJ15a Stock Manager ExecuteAdvancedSearch
rulePJ15a Sales Assistant ShowAdvancedSearchResult
rulePJ15a Stock Manager FindBooksByCategory
rulePJ15a Sales Assistant ShowBookByCategory
rulePJ15a Stock Manager FindBookDetails

rulePJ15a Sales Assistant ShowBookDetails

rulePJ15a Stock Manager FindBestSellers

rulePJ15a Stock Manager FindTopTenBestSellers
rulePJ15a Sales Assistant RespondLogOutRequest
rulePJ15a Stock Manager FindBestSellers

rulePJ15a Sales Assistant ShowBestSellers

rulePJ15a Stock Manager FindNewReleases

rulePJ15a Sales Assistant ShowNewReleases

rulePJ15a Stock Manager FindSpecial Offers

rulePJ15a Sales Assistant ShowSpecialOffers

rulePJ15a Stock Manager FindSubjects

rulePJ15a Sales Assistant ShowSubjects

rulePJ15a Sales Assistant RespondProceedToCheckOutRequest
rulePJ15a Sales Assistant ShowAccount

rulePJ15a Sales Assistant ShowAdvancedSearchForm
rulePJ15a Sales Assistant ShowBasket

rulePJ15a Sales Assistant ShowContactinfo

rulePJ15a Sales Assistant ShowHelpinfo

rulePJ15a Sales Assistant ShowsSignInForm

rulePJ15a Sales Assistant RespondUpdateBasketRequest

Table D.29 Relations identified by the tool between Prometheus Agent and JACK Plan

D.15 JACK Plan vs Prometheus Capability
Table D.30 shows the traceability relations identified manually between JACK Plan and

Prometheus Capability and table ID.31 shows the traceability relations identified by the tool
between JACK Plan and Prometheus Capability. The number of relations identified manually
is 39, and the number of relations identified by the tool is 35. The number of corrects relations
identified by the tool is 31 and the number of relations missing is 8. The number of relations

identified wrong is 4. Pecision and recall calculated is 88.57% and 79.49%, respectively.

JACK Plan Prometheus Capability
AddBookToBasket Add Item to Basket Capability
RegisterCustomer Add Customer Capability
CalculateDeliveryPriceAndTime Calculate Delivery Time and Price Capability
CheckStock Check Stock Capability
ExecuteAdvancedSearch Advanced Search Capability
SearchBooksByKeyword Keyword Search Capability
FindBestSellers Find BestSellers Capability
FindBookDetails Find Book Details Capability
FindBooksByCategory Find Books by Category Capability
FindNewReleases Find New Releases Capability
FindSpecial Offers Find Special Offers Capability

[172]

FindSubjects

Find Subjects Category Capability

FindTopTenBestSellers

Find Top Ten BestSellers Capability

RespondAddCustomerRequest

Add Customer Response Capability

RespondAddToBasketRequest

Add Item To Basket Response Capability

RespondGetDeliveryOptionsRequest

Get Delivery Options Response Capability

RespondLogOutRequest

Log Out Response Capability

RespondPlaceOrderRequest

Place Order Response Capability

RespondSignInRequest

Login Response Capability

RespondProceedToCheckOutRequest

Proceed To Check Out Response Capability

RespondUpdateBasketRequest

Update Basket Response Capability

GetCreditCardDetails

Retrieve Customer Details Capability

ShowAccount

Show Account Detail Response Capability

ShowAdvancedSearchForm

Show Advanced Search Form Response Capability

ShowAdvancedSearchResult

Advanced Search Response Capability

ShowBasket

Show Basket Response Capability

ShowBestSellers

Show BestSellers Response Capability

ShowBookDetails

Show Book Details Response Capability

ShowBooksByCategory

Show Books by CategoryResponse Caapability

ShowWebSite

Show Bookstore Main Page Response Capability

ShowContactInfo

Show Contact Information Response Capability

ShowHelpinfo

Show Help Information Response Capability

ShowBooksByKeyword

Keyword Search Response Capability

ShowNewReleases

Show New Releases Response Capability

ShowsSignIinForm

Show Signin Form Response Capability

ShowSpecial Offers Show Special Offers Response Capability
ShowSubjects Show Subjects Response Capability
Signin Signin Capability

ValidateCreditCard

Validate Credit Card Capability

Table D.30 Relations identified manually between JACK Plan and Prometheus Capability

Rule ID Prometheus Capability JACK Plan

rulePJ16a Add Customer Response Capability RespondAddCustomerRequest

rulePJ16a Get Delivery Options Response RespondGetDeliveryOptionsRequest
Capability

rulePJ16a Signin Capability Signin

rulePJ16a LoglIn Response Capability RespondSigninRequest

rulePJ16a Validate Credit Card Capability ValidateCreditCard

rulePJ16a Place Order Response Capability RespondPlaceOrderRequest

rulePJ16a Add Item To Basket Response Capability RespondAddToBasketRequest

rulePJ16a Advanced Search Capability ExecuteAdvancedSearch

rulePJ16a Advanced Search Response Capability ShowAdvancedSearchResult

rulePJ16a Find Books by Category Capabability FindBooksByCategory

rulePJ16a Show Books by CategoryResponse ShowBookByCategory
Capability

rulePJ16a Find Book Details Capability FindBookDetails

rulePJ16a Show Book Details Response Capability ShowBookDetails

rulePJ16a Find Top Ten BestSellers Capability FindTopTenBestSellers

rulePJ16a Log Out Response Capability RespondLogOutRequest

rulePJ16a Find BestSellers Capability FindBestSellers

rulePJ16a Show BestSellers Response Capability ShowBestSellers

rulePJ16a Find New Releases Capability FindNewReleases

rulePJ16a Show New Releases Response Capability | ShowNewReleases

rulePJ16a Find Special Offers Capability FindSpecialOffers

rulePJ16a Show Special Offers Response Capability | ShowSpecialOffers

rulePJ16a Find Subjects Category Capability FindSubjects

rulePJ16a Show Subjects Response Capability ShowSubjects

rulePJ16a Proceed To Check Out Response RespondProceedToCheckOutRequest
Capability

rulePJ16a Show Account Detail Response ShowAccount

Capability

[173]

rulePJ16a Show Advanced Search Form Response ShowAdvancedSearchForm
Capability

rulePJ16a Show Basket Response Capability ShowBasket

rulePJ16a Show Contact Information Response ShowContactinfo
Capability

rulePJ16a Show Help Information Response ShowHelpInfo
Capability

rulePJ16a Show Signln Form Response Capability ShowsSignInForm

rulePJ16a Update Basket Response Capability RespondUpdateBasketRequest

Table D.31 Relations identified by the tool between Prometheus Capability and JACK Plan

D.16 JACK Plan vs Prometheus Plan

Table D.32 shows the traceability relations identified manually between JACK Plan and
Prometheus Plan and table D.33 shows the traceability relations identified by the tool between
JACK Plan and Prometheus Plan. The number of relations identified manually is 39, and the
number of relations identified by the tool is 35. The number of relations identified correctly is

31, the number of relations missing is 8 and the number of relations identified incorrectly by

the tool is 4. Precision and recall calculated is 88.57% and 79.49%, respectively.

Prometheus Plan

JACK Plan

Add Item to Basket Plan

AddBookToBasket

Add New Customer

RegisterCustomer

Calculate Delivery Time and Price Plan

CalculateDeliveryPriceAndTime

Check Stock

CheckStock

Execute Advanced Search

ExecuteAdvancedSearch

Execute Keyword Search

SearchBooksByKeyword

Find BestSellers Plan

FindBestSellers

Find Book Details Plan

FindBookDetails

Find Books by Category Plan

FindBooksByCategory

Find New Releases Plan

FindNewReleases

Find Special Offers Plan

FindSpecialOffers

Find Subjects

FindSubjects

Find Top Ten BestSellers Plan

FindTopTenBestSellers

Respond Add Customer Request

RespondAddCustomerRequest

Respond Add Item to Basket Request

RespondAddToBasketRequest

Respond Get Delivery Options Request

RespondGetDeliveryOptionsRequest

Respond Log Out Request

RespondLogOutRequest

Respond Place Order Request

RespondPlaceOrderRequest

Respond Signin Request

RespondSigninRequest

Respond to Proceed to CheckOut Request

RespondProceedToCheckOutRequest

Respond Update Basket Request

RespondUpdateBasketRequest

Retrieve Customer Details

GetCreditCardDetails

Show Account

ShowAccount

Show Advanced Search Form Plan

ShowAdvancedSearchForm

Show Advanced Search Result Plan

ShowAdvancedSearchResult

Show Basket Plan

ShowBasket

Show BestSellers Plan

ShowBestSellers

Show Book Details

ShowBookDetails

Show Books by Category Plan

ShowBooksByCategory

Show Bookstore Main PagePlan

ShowWebSite

Show Contact Information Plan

ShowContactInfo

Show Help Information Plan

ShowHelpinfo

[174]

Show Keyword Search Result Plan ShowBooksByKeyword

Show New Releases Plan ShowNewReleases
Show Signin form ShowSigninForm
Show Special Offers Plan ShowSpecial Offers
Show Subjects Plan ShowSubjects

Sign In Signin

Validate Credit Card ValidateCreditCard

DefaultRequestHandler

SelectSession

ShowNewCustomerForm

RespondModifyAddressAndPaymentFormRequest

Monitor Session

RespondViewAllOrdersRequest

Table D.32 Relations identified manually between Prometheus Plan and JACK Plan

Rule ID Prometheus Plan JACK Plan

rulePJ3a Respond Add Customer Request RespondAddCustomerRequest
rulePJ3a Respond Get Delivery Options Request RespondGetDeliveryOptionsRequest
rulePJ3a Sign In Signin

rulePJ3a Respond Signin Request RespondSigninRequest
rulePJ3a Validate Credit Card ValidateCreditCard

rulePJ3a Respond Place Order Request RespondPlaceOrderRequest
rulePJ3a Respond Add Item to Basket Request RespondAddToBasketRequest
rulePJ3a Execute Advanced Search ExecuteAdvancedSearch
rulePJ3a Show Advanced Search Result Plan ShowAdvancedSearchResult
rulePJ3a Find Books by Category Plan FindBooksByCategory
rulePJ3a Show Books by Category Plan ShowBookByCategory
rulePJ3a Find Book Details Plan FindBookDetails

rulePJ3a Show Book Details ShowBookDetails

rulePJ3a Find Top Ten BestSellers Plan FindTopTenBestSellers
rulePJ3a Respond Log Out Request RespondLogOutRequest
rulePJ3a Find BestSellers Plan FindBestSellers

rulePJ3a Show BestSellers Plan ShowBestSellers

rulePJ3a Find New Releases Plan FindNewReleases

rulePJ3a Show New Releases Plan ShowNewReleases

rulePJ3a Find Special Offers Plan FindSpecialOffers

rulePJ3a Show Special Offers Plan ShowSpecial Offers

rulePJ3a Find Subjects FindSubjects

rulePJ3a Show Subjects Plan ShowSubjects

rulePJ3a Respond to Proceed to CheckOut Request | RespondProceedToCheckOutRequest
rulePJ3a Show Account ShowAccount

rulePJ3a Show Advanced Search Form Plan ShowAdvancedSearchForm
rulePJ3a Show Basket Plan ShowBasket

rulePJ3a Show Contact Information Plan ShowContactInfo

rulePJ3a Show Help Information Plan ShowHelplInfo

rulePJ3a Show Signin Form ShowSignInForm

rulePJ3a Respond Update Basket Request RespondUpdateBasketRequest

Table D.33 Relations identified by the tool between Prometheus Plan and JACK Plan

Table D.34 shows a traceability relation that is not identified by the tool. The reason why the

tool did not identified the relation is because the element that triggers the Check Stock plan in

[175]

Prometheus is Book Request message and the event that triggers the CheckStock plan in
JACK is BookRequired and Book Request and BookRequired are not identified as

synonymous by the zTrigger function.

Prometheus Plan JACK Plan

Check Stock CheckStock

Table D.34 Missing relation

Table D.35 shows a traceability relation that is not identified by the tool. The reason why the
tool did not identified the relation is because the element that triggers the Calculate Delivery
Time and Price Plan plan in Prometheus is Delivery Time and Price Request message and the
event that triggers the CalculateDeliveryPriceAndTime plan in JACK is
GetDeliverylnformationMessage and Get Delivery Information and Delivery Time and Price

Request are not been identified as synonymous by the a1 7gger function.

Prometheus Plan JACK Plan

Calculate Delivery Time and Price Plan CalculateDeliveryPriceAndTime

Table D.35 Missing relation

Table D.36 shows a traceability relation that is not identified by the tool. The element that
triggers Sign In plan in Prometheus is WebSession Request message and the event that triggers
the RespondSignlnRequest plan in JACK is WebSessionRequest. Sign In and

RespondSignInRequest are synonyms by the syn: isSynonyms function.

The element that triggers Sign In plan in Prometheus is WebSession Request message and the
event that triggers the ShowSignInForm plan in JACK is WebSessionRequest. Sign In and

RespondSignInRequest are synonyms by the syn: isSynonyms function.

rule ID Prometheus Plan JACK Plan
rulePJ3a Sign In RespondSigninRequest
rulePJ3a Sign In ShowsSigninForm

Table D.36 Wrong relation

Table D.37 shows a traceability relation that is incorrectly identified by the tool. The element

that triggers Find Top Ten BestSellers Plan plan in Prometheus is WebSession Request

[176]

message and the event that triggers the FindBestSellers plan in JACK is WebSessionRequest.

Find Top Ten BestSellers Plan and FindBestSellers are synonyms by the syn:isSynonyms

function.
rule ID Prometheus Plan JACK Plan
rulePJ3a Find Top Ten BestSellers Plan FindBestSellers

Table D.37 Missing relation

Table D.38 shows a traceability relation that is incorrectly identified by the tool. The element

that triggers Respond Place Order Request Plan plan in Prometheus is WebSession Request

message and the event that triggers the RespondViewAllOrdersRequest plan in JACK is

WebSessionRequest. Respond Place Order Request and RespondViewAllOrdersRequest are

synonyms by the syn: isSynonyms function (Place and Order are synonymous).

rule ID

Prometheus Plan

Table D.38 Wrong relation

JACK Plan

Table D.39 and table D.40 show traceability relations missing between plan in JACK and plan

in Prometheus and between plan in Prometheus and plans in JACK, respectively. Table D.41

shows traceability relations

that are not identified by the tool, but they were identified

manually.
Rule ID JACK Plan Prometheus Plan
RulePJ3ccl AddBookToBasket
RulePJ3ccl CalculateDeliveryPriceAndTime
RulePJ3ccl CheckStock
RulePJ3ccl GetCreditCardDetails
RulePJ3ccl MonitorSession
RulePJ3ccl RespondModifyAddressAndPaymentFormRequest
RulePJ3ccl SearchBooksByKeyword
RulePJ3ccl SelectSession
RulePJ3ccl ShowBooksByKeyword
RulePJ3ccl ShowNewCustomerForm
Table D.39 Missing relations
Rule ID Prometheus Plan JACK Plan
RulePJ3ccl Add New Customer
RulePJ3ccl Retrieve Customer Details
RulePJ3ccl Calculate Delivery Time and Price Plan
RulePJ3ccl
RulePJ3ccl
RulePJ3ccl Check Stock
RulePJ3ccl Add Item to Basket Plan

[177]

RulePJ3ccl Execute Keyword Search
RulePJ3ccl Show Keyword Search Result Plan
RulePJ3ccl Show Bookstore Main Page Plan

Table D.40 Missing relation

Prometheus Plan JACK Plan

Add Item to Basket Plan AddBookToBasket

Add New Customer RegisterCustomer

Calculate Delivery Time and Price Plan CalculateDeliveryPriceAndTime

Retrieve Customer Details GetCreditCardDetails

Show Bookstore Main PagePlan ShowWebSite

Show Keyword Search Result Plan ShowBooksByKeyword

Table D.41 Relations not identified by the tool

D.17 JACK Plan vs Prometheus Percept

Table D.42 shows the traceability relations identified manually between JACK Plan and
Prometheus Percept. Table D.43 shows the traceability relations identified by the tool between
JACK Plan and Prometheus Percept. The number of relations identified manually is 23, and
the number of relations identified by the tool is 22. The number of relations identified
correctly by the tool is 21 and the number of relations missing is 2. The number of relations

identified incorrectly by the tool is 1. Precision and recall calculated is 95.45% and 91.30%,

respectively.

JACK Plan

Prometheus Percept

RespondAddCustomerRequest

New Customer

RespondAddToBasketRequest

Book Added to Basket

RespondGetDeliveryOptionsRequest

Get Delilvery Options Page

RespondLogOutRequest

Log Out Page

RespondPlaceOrderRequest

Place Order Request

RespondSigninRequest

SigninPage

RespondProceedToCheckOutRequest

CheckOut Request

RespondUpdateBasketRequest

Update Basket Request

GetCreditCardDetails

ShowAccount

Account Details Request

ShowAdvancedSearchForm

Advanced Search Form Request

ShowAdvancedSearchResult

New Advanced Search

ShowBasket

Basket Plan Request

ShowBestSellers

BestSellers Page

ShowBookDetails

Book Details Page

ShowBooksByCategory

Categories Request

ShowWebSite

Bookstore Page

ShowContactinfo

Contact Information Page

ShowHelplinfo

Help Information Page

ShowBooksByKeyword

New keyword Search

ShowNewReleases

New Releases Page

ShowSigninForm

Signin Page

ShowSpecial Offers

Special Offers Page

ShowSubjects

Subjects Page

[178]

Table D.42 Relations identified manually between JACK Plan and Prometheus Percept

Rule ID Prometheus Percept JACK Plan

rulePJ17a New Customer RespondAddCustomerRequest
rulePJ17a Get Delivery Options Page RespondGetDeliveryOptionsRequest
rulePJ17a SigninPage RespondSignInRequest
rulePJ17a Place Order Request RespondPlaceOrderRequest
rulePJ17a Book Added to Basket RespondAddToBasketRequest
rulePJ17a New Advanced Search ShowAdvancedSearchResult
rulePJ17a Categories Request ShowBookByCategory
rulePJ17a Book Details Page ShowBookDetails

rulePJ17a Log Out Page RespondLogOutRequest
rulePJ17a BestSellers Page ShowBestSellers

rulePJ17a New Releases Page ShowNewReleases

rulePJ17a Special Offers Page ShowSpecialOffers

rulePJ17a Subjects Page ShowSubjects

rulePJ17a CheckOut Request RespondProceedToCheckOutRequest
rulePJ17a Account Details Request ShowAccount

rulePJ17a Advanced Search Form Request ShowAdvancedSearchForm
rulePJ17a Basket Plan Request ShowBasket

rulePJ17a Contact Information Page ShowContactInfo

rulePJ17a Help Information Page ShowHelpinfo

rulePJ17a Signln Page ShowsSignInForm

rulePJ17a Update Basket Request RespondUpdateBasketRequest

Table D.43 Relations identified by the tool between Prometheus Percept and JACK Plan

D.18 JACK Plan vs Prometheus Action (Sends)

Table D.44 shows the traceability relations identified manually between JACK Plan and
Prometheus Action. Table D.45 shows the traceability relations identified by the tool between
JACK Plan and Prometheus Action. The number of relations identified manually is 22, and the
number of relations identified by the tool is 21. The number of relations identified correctly is

20 and number of relations missing is 2. The number of relations identified incorrectly by the

tool is 1. Precision and recall calculated is 95.23% and 90.00%, respectively.

JACK Plan

Prometheus Action

RespondAddCustomerRequest

Show Account Details Page Action

RespondAddToBasketRequest

RespondGetDeliveryOptionsRequest

Show Delivery Options Page

RespondLogOutRequest

Show Bookstore Home Page

RespondPlaceOrderRequest

Show Account Details Page Action

RespondSigninRequest

Show Sign In Form Page

RespondSigninRequest

Show Account Details Page Action

RespondProceed ToCheckOutRequest

Show CheckOut Page

RespondUpdateBasketRequest

Show Basket Page Action

ShowAccount

Show Account Details Page Action

ShowAdvancedSearchForm

Show Advanced Search Form Page

ShowAdvancedSearchResult

Show Advanced Search Result Page

ShowBestSellers

Show BestSellers Page

ShowBookDetails

Show Book Details Page Action

ShowBooksByCategory

Show Books by Category Action

ShowWebSite

Show Bookstore Page

ShowContactinfo

Show Contact Information Page

[179]

ShowHelpinfo

Show Help Information Page

ShowBooksByKeyword

Show Keyword Search Result Page

ShowNewReleases

Show New Releases Page

ShowSignIinForm

Show Sign In Form Page

ShowSpecial Offers

Show Special Offers Page Action

ShowSubjects

Show Subjects Page

Table D.44 Relations identified manually between JACK Plan and Prometheus Action

Rule ID Prometheus Action JACK Plan

rulePJ18a Show Account Details Page Action RespondAddCustomerRequest
rulePJ18a Show Delivery Options Page RespondGetDeliveryOptionsRequest
rulePJ18a Show Account Details Page Action RespondSigninRequest
rulePJ18a Show Sign In Form Page RespondSigninRequest
rulePJ18a Show Account Details Page Action RespondPlaceOrderRequest
rulePJ18a Show Advanced Search Result Page ShowAdvancedSearchResult
rulePJ18a Show Books by Category Page Action ShowBookByCategory
rulePJ18a Show Book Details Page Action ShowBookDetails

rulePJ18a Show Bookstore Home Page RespondLogOutRequest
rulePJ18a Show BestSellers Page ShowBestSellers

rulePJ18a Show New Releases Page ShowNewReleases

rulePJ18a Show Special Offers Page Action ShowSpecialOffers

rulePJ18a Show Subjects Page ShowSubjects

rulePJ18a Show CheckOut Page RespondProceedToCheckOutRequest
rulePJ18a Show Account Details Page Action ShowAccount

rulePJ18a Show Advanced Search Form Page ShowAdvancedSearchForm
rulePJ18a Show Contact Information Page ShowContactInfo

rulePJ18a Show Help Information Page ShowHelpInfo

rulePJ18a Show Sign In Form Page ShowSignInForm

rulePJ18a Show Basket Page Action RespondUpdateBasketRequest

Table D.45 Relations identified by the tool between Promehteus Action and JACK Plan

D.19 JACK Plan vs Prometheus Message (Sends)

Table D.46 shows the traceability relations identified manually between JACK Plan and
Prometheus Message. Table .47 shows the traceability relations identified by the tool
between JACK Plan and Prometheus Message. The number of relations identified manually is
34, and the number of relations identified by the tool is 30. The number of relations identified
correctly is 25 and number of relations is 9. The number of relations identified incorrectly by

the tool is 5. Precision and recall calculated is 88.33% and 73.52%, respectively.

JACK Plan (Sends)
AddBookToBasket
RegisterCustomer
CalculateDeliveryPriceAndTime

Prometheus Message

Add to Basket Response

Add Customer Response

Delivery Time and Price Response

CheckStock Book Avalaible
CheckStock Book Not Avalaible
ExecuteAdvancedSearch Advanced Search Response
SearchBooksByKeyword Keyword Search Response

FindBestSellers
FindBookDetails
FindBooksByCategory
FindNewReleases

BestSellers Response

Book Details Response
Books by Category Response
New Releases Response

[180]

FindSpecialOffers

Special Offers Response

FindSubjects

Subjects Response

FindTopTenBestSellers

Top Ten BestSellers Response

RespondAddCustomerRequest

Add Customer Request

RespondAddToBasketRequest

Add to Basket Request

RespondGetDeliveryOptionsRequest

User Details Request

RespondGetDeliveryOptionsRequest

Delivery Time and Price Request

RespondLogOutRequest

Top Ten BestSellers Request

RespondPlaceOrderRequest

Authorization Request

RespondPlaceOrderRequest

Book Request

RespondSigninRequest

User Login Request

GetCreditCardDetails

User Details Response

ShowAdvancedSearchResult

Advanced Search Request

ShowBestSellers

BestSellers Request

ShowBookDetails

Book Details Request

ShowBooksByCategory Books by Category Request
ShowWebSite Top Ten BestSellers Request
ShowBooksByKeyword Keyword Search Request
ShowNewReleases New Releases Request
ShowSpecial Offers Special Offers Request
ShowSubjects Subjects Request

Signin User Login Response

ValidateCreditCard

Authorization Response

Table D.46 Relations identified manually between JACK Plan and Prometheus Message

Rule ID

Prometheus Message

JACK Plan

rulePJ19a Add Customer Request RespondAddCustomerRequest
rulePJ19a User Details Request RespondGetDeliveryOptionsRequest
rulePJ19a Delivery Time and Price Request RespondGetDeliveryOptionsRequest
rulePJ19a User Login Response Signin

rulePJ19a User Login Request RespondSignInRequest
rulePJ19a Authorization Response ValidateCreditCard

rulePJ19a Authorization Request RespondPlaceOrderRequest
rulePJ19a Book Request RespondPlaceOrderRequest
rulePJ19a Add to Basket Request RespondAddToBasketRequest
rulePJ19a Advanced Search Response ExecuteAdvancedSearch
rulePJ19a Advanced Search Request ShowAdvancedSearchResult
rulePJ19a Books by Category Response FindBooksByCategory
rulePJ19a Books by Category Request ShowBookByCategory
rulePJ19a Book Details Response FindBookDetails

rulePJ19a Book Details Request ShowBookDetails

rulePJ19a Top Ten BestSellers Response FindTopTenBestSellers
rulePJ19a Top Ten BestSellers Request RespondLogOutRequest
rulePJ19a BestSellers Response FindBestSellers

rulePJ19a BestSellers Request ShowBestSellers

rulePJ19a New Releases Response FindNewReleases

rulePJ19a New Releases Request ShowNewReleases

rulePJ19a Special Offers Response FindSpecialOffers

rulePJ19a Special Offers Request ShowSpecialOffers

rulePJ19a Subjects Response FindSubjects

rulePJ19a Subjects Request ShowSubjects

Table D.47 Relations identified by the tool between Prometheus Message and JACK Plan

[181]

D.20 JACK Plan vs Prometheus Message (Receives)
Table D.48 shows the traceability relations identified manually between JACK Plan and

Prometheus Message. Table D.49 shows the traceability relations identified by the tool
between JACK Plan and Prometheus Message. The number of relations identified manually is
34, and the number of relations identified by the tool is 30. The number of relations identified
correctly is 25 and number of relations missing is 9. The number of relations identified

incorrectly by the tool is 5. Precision and recall calculated is 88.33% and 73.52%, respectively.

JACK Plan (Receives)

Prometheus Message

AddBookToBasket

Add to Basket Request

RegisterCustomer

Add Customer Request

CalculateDeliveryPriceAndTime

Delivery Time and Price Request

CheckStock

Book Request

ExecuteAdvancedSearch

Advanced Search Request

SearchBooksByKeyword

Keyword Search Request

FindBestSellers

BestSellers Request

FindBookDetails

Book Details Request

FindBooksByCategory

Books by Category Request

FindNewReleases

New Releases Request

FindSpecialOffers

Special Offers Request

FindSubjects

Subjects Request

FindTopTenBestSellers

Top Ten BesSellers Request

RespondAddCustomerRequest

WebSession Request

RespondAddCustomerRequest

Add Customer Response

RespondAddToBasketRequest

WebSession Request

RespondAddToBasketRequest

Add to Basket Response

RespondGetDeliveryOptionsRequest

WebSession Request

RespondGetDeliveryOptionsRequest

Delivery Time and Price Response

RespondGetDeliveryOptionsRequest

User Details Response

RespondLogOutRequest

WebSession Request

RespondLogOutRequest

Top Ten BestSellers Response

RespondPlaceOrderRequest

WebSession Request

RespondPlaceOrderRequest

Authorization Response

RespondPlaceOrderRequest

Book Avalaible

RespondPlaceOrderRequest

Book Not Avalaible

RespondSignIinRequest

WebSession Request

RespondSigninRequest

User Login Response

RespondProceedToCheckOutRequest

WebSession Request

RespondUpdateBasketRequest

WebSession Request

GetCreditCardDetails

User Details Request

ShowAccount

WebSession Request

ShowAdvancedSearchForm

WebSession Request

ShowAdvancedSearchResult

WebSession Request

ShowAdvancedSearchResult

Advanced Search Response

ShowBasket

WebSession Request

ShowBestSellers

WebSession Request

ShowBestSellers

BestSellers Response

ShowBookDetails

WebSession Request

ShowBookDetails

Book Details Response

ShowBooksByCategory WebSession Request
ShowBooksByCategory Books by Category Response
ShowWebSite WebSession Request
ShowWebSite Top Ten BestSellers Response

ShowContactInfo

WebSession Request

ShowHelpinfo

WebSession Request

ShowBooksByKeyword

WebSession Request

ShowBooksByKeyword

Keyword Search Response

ShowNewReleases

WebSession Request

ShowNewReleases

New Releases Response

ShowsSigninForm

WebSession Request

[182]

ShowSpecial Offers WebSession Request
ShowSpecialOffers Special Offers Response
ShowSubjects WebSession Request
ShowSubjects Subjects Response
Signin User Login Request
ValidateCreditCard Authorization Request
Table D.48 Relations identified manually between JACK Plan and Prometheus Message
Prometheus Message JACK Plan
Add Customer Response RespondAddCustomerRequest
User Details Response RespondGetDeliveryOptionsRequest
Delivery Time and Price Response RespondGetDeliveryOptionsRequest
User Login Response RespondSignInRequest
Authorization Response RespondPlaceOrderRequest
Book Avalaible RespondPlaceOrderRequest
Book Not Avalaible RespondPlaceOrderRequest

Add to Basket Response RespondAddToBasketRequest

Advanced Search Response ShowAdvancedSearchResult

Books by Category Response ShowBookByCategory

Book Details Response ShowBookDetails

Top Ten BestSellers Response RespondLogOutRequest

BestSellers Response ShowBestSellers

New Releases Response ShowNewReleases

Special Offers Response ShowSpecial Offers

Subjects Response ShowSubjects

WebSession Request RespondAddCustomerRequest

WebSession Request RespondGetDeliveryOptionsRequest

User Login Request Signin

WebSession Request RespondSigninRequest

Authorization Request ValidateCreditCard

WebSession Request RespondPlaceOrderRequest
_WebSessionRequest | RespondViewAllOrdersRequest |

WebSession Request RespondAddToBasketRequest

Advanced Search Request ExecuteAdvancedSearch

WebSession Request ShowAdvancedSearchResult

Books by Category Request FindBooksByCategory

WebSession Request ShowBookByCategory

Book Details Request FindBookDetails

WebSession Request ShowBookDetails
_TopTenBestSellersRequest [FindBestSellers |

Top Ten BestSellers Request FindTopTenBestSellers

WebSession Request RespondLogOutRequest

BestSellers Request FindBestSellers

WebSession Request ShowBestSellers

New Releases Request FindNewReleases

WebSession Request ShowNewReleases

Special Offers Request FindSpecial Offers

WebSession Request ShowSpecialOffers

Subjects Request FindSubjects

WebSession Request ShowSubjects

WebSession Request RespondProceedToCheckOutRequest

WebSession Request ShowAccount

WebSession Request ShowAdvancedSearchForm

WebSession Request ShowBasket

WebSession Request ShowContactInfo

WebSession Request ShowHelpinfo

WebSession Request ShowsSigninForm

WebSession Request RespondUpdateBasketRequest

Table D.49 Relations identified by the tool between Prometheus Message and JACK Plan

[183]

D.21 JACK Plan vs Prometheus Data (Uses)

Table D.51 shows the traceability relations identified manually between JACK Plan and
Prometheus Data. Table D.52 shows the traceability relations identified by the tool between
JACK Plan and Prometheus Data. The number of relations identified manually is 19, and the
number of relations identified by the tool is 12. The number of relations identified correctly is

10 and number of relations missing is 9. The number of relations identified incorrectly by tool

is 2. Precision and recall calculated is 83.33% and 52.63%, respectively.

JACK Plan (Uses) Prometheus Data
AddBookToBasket BooksDB
CalculateDeliveryPriceAndTime CourierDB
CheckStock BooksDB
CheckStock StockDB
ExecuteAdvancedSearch BooksDB
ExecuteAdvancedSearch StockDB
SearchBooksByKeyword BooksDB
SearchBooksByKeyword StockDB
FindBestSellers BestSellersDB
FindBookDetails StockDB
FindBookDetails BooksDB
FindBooksByCategory BooksDB
FindBooksByCategory StockDB
FindNewReleases NewReleasesDB
FindSpecialOffers SpecialOffersDB
FindSubjects CategoriesDB
FindTopTenBestSellers BestSellersDB
GetCreditCardDetails CustomerDB
Signin CustomerDB

Table D.50 Relations identified manually between JACK Plan and Prometheus Data

Rule ID

Prometheus Data

JACK Plan

rulePJ20a customers Signin

rulePJ20a books ExecuteAdvancedSearch
rulePJ20a stock ExecuteAdvancedSearch
rulePJ20a books FindBooksByCategory

rulePJ20a

rulePJ20a

stock

bestsellers

FindBookDetails

FindTopTenBestSellers

rulePJ20a

bestsellers

FindBestSellers

rulePJ20a

special offers

FindSpecialOffers

rulePJ20a

categories

FindSubjects

Table D.51 Relations identified by tool between JACK Plan and Prometheus Data

[184]

D.22 JACK Plan vs Prometheus Data (Creates)
Table D.52 shows the traceability relations identified manually between JACK Plan and

Prometheus Data. The number of relations identified manually is 1, and the number of
relations identified by the tool is 0. Therefore, the precision and recall calculated is 100.0% and

0%, respectively.

JACK Plan (Creates) Prometheus Data
RegisterCustomer CustomerDB

Table D.52 Relations identified manually between JACK Plan and Prometheus Data

D.23 JACK BeliefSet vs Prometheus Role (Creates)

Table D.53 shows traceability relations identified manually between JACK BeliefSet and
Prometheus Role. Table 1D.54 shows traceability relations identified by the tool between
Prometheus Role and JACK BeliefSet. The number of relations identified manually is 1, and
the number of relations identified by the tool is 2. Therefore, precision and recall calculated is

50.0% and 100%, respectively.

JACK BeliefSet Prometheus Role
CustomerDB Customer Relationship Management

Table D.53 Relations identified manually between JACK BeliefSet and Promtheus Role

Rule ID Prometheus Role JACK BeliefSet

rulePJ21b Customer Relationshii Manaﬁement CustomerDB

Table D.54 Relations identified by the tool between Prometheus Role and JACK BeliefSet

D.24 JACK BeliefSet vs Prometheus Role (Uses)

Table D.55 shows traceability relations identified manually between Prometheus Role and
JACK BeliefSet. Table D.56 shows traceability relations identified by the tool between
Prometheus Role and JACK BeliefSet. The number of relations identified manually is 10, and
the number of relations identified by the tool is 11. Therefore, precision and recall calculated is

90.90% and 100%, respectively.

[185]

Prometheus Role

JACK BeliefSet

Stock Management

BooksDB

Stock Management

StockDB

Stock Management

BestSellersDB

Stock Management

NewReleasesDB

Stock Management SpecialOffersDB
Stock Management CategoriesDB
Search Management BooksDB
Search Management StockDB
Service Delivery Management CourierDB
Customer Relations Management CustomerDB

Table D.55 Relations identified manually between JACK BeliefSet and Prometheus Role

Rule ID Prometheus Role JACK BeliefSet
rulePJ21a Stock Management BooksDB
rulePJ21a Search Management BooksDB

rulePJ21a Customer Relationshii Manaiement CustomerDB

rulePJ21a Service Delivery Management CourierDB
rulePJ21a Stock Management StockDB
rulePJ21a Search Management StockDB
rulePJ21a Stock Management CategoriesDB
rulePJ21a Stock Management BestSellersDB
rulePJ21a Stock Management NewReleasesDB
rulePJ21a Stock Management SpecialOffersDB

Table D.56 — Relations identified by the tool between JACK BeliefSet and Prometheus Role

D.25 JACK BeliefSet vs Prometheus Role (Creates)
Table D.57 shows traceability relations identified manually between JACK BeliefSet and

Prometheus Agent. Table D.58 shows traceability relations identified by the tool between
Prometheus Role and JACK BeliefSet. The number of relations identified manually is 1, and
the number of relations identified by the tool is 2. Therefore, precision and recall calculated is

50% and 100%, respectively.

JACK BeliefSet
CustomerDB

Prometheus Role
Customer Relationship Management

Table D.57 Relations identified manually between JACK BeliefSet and Prometheus Agent

Rule ID
rulePJ21b

JACK BeliefSet
CustomerDB

Prometheus Role
Customer Relationship Management

Table D.58 Relations identified by the tool between Prometheus Role

[186]

D.26 JACK BeliefSet vs Prometheus Agent (Uses)

Table .59 shows traceability relations identified manually between JACK BeliefSet and
Prometheus Agent. Table D.60 shows traceability relations identified by the tool between
Prometheus Agent and JACK BeliefSet. The number of relations identified manually is 8, and

the number of relations identified by the tool is 5. Therefore, precision and recall calculated is

80% and 50%, respectively.

JACK BeliefSet

Prometheus Agent

BestSellersDB

Stock Manager

BooksDB Stock Manager
CategoriesDB Stock Manager
CourierDB Delivery Manager
CustomerDB Customer Relations
NewReleasesDB Stock Manager
SpecialOffersDB Stock Manager
StockDB Stock Manager
CustomerOrderDB

Session.bel

Table D.59 Relations identified manually between JACK BeliefSet and Prometheus Agent

Rule ID Prometheus Agent JACK BeliefSet
rulePJ22a Customer Relations CustomerDB
rulePJ22a Delivery Manager CourierDB
rulePJ22a Stock Manager BooksDB
rulePJ22a Stock Manager CategoriesDB

Table D.60 Relations identified by the tool between Prometheus Agent and JACK BeliefSet

D.27 JACK BeliefSet vs Prometheus Capability (Creates)

Table D.61 shows traceability relations identified manually between Prometheus Capability and
JACK BeliefSet. Table .62 shows traceability relations identified by the tool between
Prometheus Capability and JACK BeliefSet. The number of relations identified manually is 1,
and the number of relations identified by the tool is 2. Therefore, precision and recall

calculated is 50% and 100%, respectively.

[187]

Prometheus Capability

JACK BeliefSet

Add Customer Capability

CustomerDB

Table D.61 Relations identified manually between Prometheus Capability and JACK BeliefSet

Rule ID Prometheus Capability

JACK BeliefSet

rulePJ23b Add Customer Capability

CustomerDB

Table D.62 Relations identified by the tool between Prometheus Capability and JACK BeliefSet

D.28. JACK BeliefSet vs Prometeus Capabilitity (Uses)

Table D.63 shows traceability relations identified manually between Prometheus Capability and

JACK BeliefSet. Table D.64 shows traceability relations identified by the tool between

Prometheus Capability and JACK BeliefSet. The number of relations identified manually is 19,

and the number of relations identified by the tool is 21. The number of relations identified

correctly is 19, the number of relations missing is 0, and the number of relations identified

incorrectly is 2. Precision and recall calculated is 90.47% and 100%, respectively.

Prometheus Capability

JACK BeliefSet

Add Item to Basket Capability BookDB
Retrieve Customer Details Capability CustomerDB
Signin Capability CustomerDB
Calculate Delivery Time and Price Capability CourierDB
Advanced Search Capability BookDB
Advanced Search Capability StockDB
Keyword Search Capability StockDB
Keyword Search Capability BookDB

Find Top Ten BestSellers Capability BestSellersDB
Check Stock Capability StockDB

Check Stock Capability BookDB

Find BestSellers Capability BestSellersDB
Find Books by Category Capability BookDB

Find Books by Category Capability StockDB

Find Book Details Capability StockDB

Find Book Details Capability BookDB

Find New Releases Capability NewReleasesDB
Find Special Offers Capability SpecialOffersDB
Find Subjects Category Capability CategoriesDB

Table D.63 Relations identified manually between Prometheus Capability and JACK BeliefSet

Rule ID Prometheus Capability JACK BeliefSet
rulePJ23a Add Item to Basket Capability BooksDB
rulePJ23a Check Stock Capability BooksDB
rulePJ23a Advanced Search Capability BooksDB
rulePJ23a Keyword Search Capability BooksDB
rulePJ23a Find Books by Category Capabability BooksDB
rulePJ23a Find Book Details Capability BooksDB
rulePJ23a Retrieve Customer Details Capability CustomerDB
rulePJ23a SignIn Capability CustomerDB

[188]

rulePJ23a Calculate Delivery Time and Price CourierDB
Capability
rulePJ23a Check Stock Capability StockDB
rulePJ23a Advanced Search Capability StockDB
rulePJ23a Keyword Search Capability StockDB
rulePJ23a Find Books by Category Capabability StockDB
rulePJ23a Find Book Details Capability StockDB
rulePJ23a Find Subjects Category Capability CategoriesDB
rulePJ23a Find Top Ten BestSellers Capability BestSellersDB
rulePJ23a Find BestSellers Capability BestSellersDB
rulePJ23a Find New Releases Capability NewReleasesDB
rulePJ23a Find Special Offers Capability SpecialOffersDB

Table D.64 Relations identified by the tool between Prometheus Capability and JACK BeliefSet

D.29 JACK BeliefSet vs Prometheus Plan (Creates)

Table .65 shows traceability relations identified manually between Prometheus Plan and
JACK' BeliefSet. Table .66 shows traceability relations identified by the tool between
Prometheus Plan and JACK BeliefSet. The number of relations identified manually is 1, and
the number of relations identified by the tool is 2. The number of relations identified correctly
is 1, the number of relations missing is 0, and the number of relations identified incorrectly is

1. Precision and recall calculated is 50% and 100%, respectively.

Prometheus Plan JACK BeliefSet
Add New Customer CustomerDB

Table D.65 Relations identified manually between Prometheus Plan and JACK

Rule ID Prometheus Plan JACK BeliefSet
rulePJ24b Add New Customer CustomerDB

Table D.66 Relations identified by the tool between Prometheus Plan and JACK BeliefSet

D.30 JACK BeliefSet vs Prometheus Plan (Uses)

Table D.67 shows traceability relations identified manually between Prometheus Plan and
JACK BeliefSet. Table D.68 shows traceability relations identified by the tool between
Prometheus Plan and JACK BeliefSet. The number of relations identified manually is 19, and
the number of relations identified by the tool is 21. The number of relations identified
correctly is 19, the number of relations missing is 0, and the number of relations identified

incorrectly is 2. Precision and recall calculated is 90.47% and 100%, respectively.

[189]

Prometheus Plan JACK BeliefSet
Add Item to Basket Plan BookDB
Calculate Delivery Time and Price Plan CourierDB
Check Stock StockDB

Check Stock BookDB
Execute Advanced Search BooksDB
Execute Advanced Search StockDB
Execute Keyword Search BooksDB
Execute Keyword Search StockDB

Find BestSellers Plan BestSellersDB
Find Book Details Plan StockDB

Find Book Details Plan BookDB

Find Books by Category Plan BookDB

Find Books by Category Plan StockDB

Find New Releases Plan NewReleasesDB
Find Special Offers Plan SpecialOffersDB
Find Subjects CategoriesDB
Find Top Ten BestSellers Plan BestSellersDB
Retrieve Customer Details CustomerDB
Sign In CustomerDB

Table D.67 Relations identified manually between Prometheus Plan and JACK BeliefSet

Rule ID Prometheus Plan JACK BeliefSet
rulePJ24a Retrieve Customer Details CustomerDB
rulePJ24a Sign In CustomerDB
rulePJ24a Calculate Delivery Time and Price Plan CourierDB
rulePJ24a Check Stock BooksDB
rulePJ24a Add Item to Basket Plan BooksDB
rulePJ24a Execute Advanced Search BooksDB
rulePJ24a Execute Keyword Search BooksDB
rulePJ24a Find Books by Category Plan BooksDB
rulePJ24a Find Book Details Plan BooksDB
rulePJ24a Check Stock StockDB
rulePJ24a Execute Advanced Search StockDB
rulePJ24a Execute Keyword Search StockDB
rulePJ24a Find Books by Category Plan StockDB
rulePJ24a Find Book Details Plan StockDB
rulePJ24a Find Top Ten BestSellers Plan BestSellersDB
rulePJ24a Find BestSellers Plan BestSellersDB
rulePJ24a Find New Releases Plan NewReleasesDB
rulePJ24a Find Special Offers Plan SpecialOffersDB
rulePJ24a Find Subjects CategoriesDB

Table D.68 Relations identified by the tool between Prometheus Plan and JACK BeliefSet

D.31 JACK BeliefSet vs Prometheus Data

Table D.69 shows traceability relations identified manually between Prometheus Data and
JACK BeliefSet. Table D.70 shows traceability relations identified by the tool between
Prometheus Data and JACK BeliefSet. The number of relations identified manually is 8, and
the number of relations identified by the tool is 9. The number of relations identified correctly
is 8, the number of relations missing is 0, and the number of relations identified incorrectly is

1. Precision and recall calculated is 88.88% and 100%, respectively.

[190]

Prometheus Data

JACK BeliefSet

BestSellersDB

BestSellersDB

BookDB BooksDB
CategoriesDB CategoriesDB
CourierDB CourierDB
CustomerDB CustomerDB
NewReleasesDB NewReleasesDB
SpecialOffersDB SpecialOffersDB
StockDB StockDB

CustomerOrderDB

Session.bel

Table D.69 Relations between JACK BeliefSet and Prometheus Data

Rule ID Prometheus Data JACK BeliefSet
rulePJ2a BookDB BooksDB
rulePJ2a StockDB StockDB
rulePJ2a BestSellersDB BestSellersDB
rulePJ2a NewReleasesDB NewReleasesDB
rulePJ2a SpecialOffersDB SpecialOffersDB
rulePJ2a CategoriesDB CategoriesDB
rulePJ2a CustomerDB CustomerDB
rulePJ2a CustomerDB CustomerOrderDB
rulePJ2a CourierDB CourierDB

Table D.70 Relations between Prometheus Data and JACK BeliefSet

D.32 JACK Event vs Prometheus Agent (sends)

Table D.71 shows traceability relations identified manually between JACK Event and

Prometheus Agent. The number of relations identified manually is 33, and the number of

relations identified by the tool is 0.

JACK Event Prometheus Agent
AdvancedSearchRequest SalesAssistant
AdvancedSearchResponse StockManager
AuthorizationRequest SalesAssistant
AuthorizationResponse PaymentProcessor
BestSellersRequest SalesAssistant
BestSellersResponse StockManager
BookAvalaible StockManager
BookDetails StockManager
BookDetailsRequest SalesAssistant
BookDetailsResponse StockManager
BookInBasket SalesAssistant
BookNotAvalaible StockManager

BookRequired

SalesAssistant

BooksByCategoryRequest

SalesAssistant

BooksByCategoryResponse

StockManager

CustomerDetails

SalesAssistant

DeliveryOptionsInformation

DeliveryManager

DeliveryOptionsRequest

SalesAssistant

GetDeliverylnformationMessage

SalesAssistant

KeywordSearchRequest SalesAssistant
KeywordSearchResponse StockManager
NewReleasesRequest SalesAssistant
NewReleasesResponse StockManager

RegisterCustomerResponse

CustomerRelations

SessionAccess

[191]

SpecialOffersRequest SalesAssistant
SpecialOffersResponse StockManager
SubjectsRequest SalesAssistant
SubjectsResponse StockManager
TopTenBestSellersRequest SalesAssistant
TopTenBestSellersResponse StockManager
UserDetails CustomerRelations
UserLoginRequest SalesAssistant
UserLoginResponse CustomerRelations
WebDispatch

Table D.71 Relations between JACK Event and Prometheus Agent

D.33 JACK Event vs Prometheus Agent (receives)
Table D.72 shows traceability relations identified manually between JACK Event and

Prometheus Agent. The number of relationss identified manually is 33, and the number of

relations identified by the tool is 0.

JACK Event Prometheus Agent
AdvancedSearchRequest StockManager
AdvancedSearchResponse SalesAssistant
AuthorizationRequest PaymentProcessor
AuthorizationResponse SalesAssistant
BestSellersRequest StockManager
BestSellersResponse SalesAssistant
BookAvalaible SalesAssistant
BookDetails SalesAssistant
BookDetailsRequest StockManager
BookDetailsResponse SalesAssistant
BooklInBasket StockManager
BookNotAvalaible SalesAssistant
BookRequired StockManager
BooksByCategoryRequest StockManager
BooksByCategoryResponse SalesAssistant
CustomerDetails CustomerRelations
DeliveryOptionsinformation SalesAssistant
DeliveryOptionsRequest CustomerRelations
GetDeliverylnformationMessage DeliveryManager
KeywordSearchRequest StockManager
KeywordSearchResponse SalesAssistant
NewReleasesRequest StockManager
NewReleasesResponse SalesAssistant
RegisterCustomerResponse SalesAssistant
SessionAccess DispatcherAgent
SpecialOffersRequest StockManager
SpecialOffersResponse SalesAssistant
SubjectsRequest StockManager
SubjectsResponse SalesAssistant
TopTenBestSellersRequest StockManager
TopTenBestSellersResponse SalesAssistant
UserDetails SalesAssistant
UserLoginRequest CustomerRelations
UserLoginResponse SalesAssistant
WebDispatch DispatcherAgent

SalesAssistant
RegisterCustomerResponse

Table D.72 Relations between JACK Event and Prometheus Agent

[192]

D.34 JACK Event vs Prometheus Capability (sends)

Table .73 shows traceability relations identified manually between JACK Event and
Prometheus Agent. Table D.74 shows traceability relations identified by the tool between
JACK Event and Prometheus Capability. The number of relations identified manually is 33,

and the number of relations identified by the tool is 0.

JACK Event

Prometheus Capability

AdvancedSearchRequest

Advanced Search Response Capability

AdvancedSearchResponse

Advanced Search Capability

AuthorizationRequest

Place Order Response Capability

AuthorizationResponse

Validate Credit Card Capability

BestSellersRequest

Show BestSellers Response Capability

BestSellersResponse

Find BestSellers Capability

BookAvalaible

Check Stock Capability

BookDetails

Add Item to Basket Capability

BookDetailsRequest

Show Book Details Response Capability

BookDetailsResponse

Find Book Details Capability

BookInBasket

Add Item to Basket Response Capability

BookNotAvalaible

Check Stock Capability

BookRequired

Place Order Response Capability

BooksByCategoryRequest

Show Books by CategoryResponse
Capability

BooksByCategoryResponse

Find Books by Category Capability

CustomerDetails

Add Customer Response Capability

DeliveryOptionsinformation

Calculate Delivery Time and Price
Capability

DeliveryOptionsRequest

Get Delivery Options Response Capability

GetDeliveryInformationMessage

Get Delivery Options Response Capability

KeywordSearchRequest

Keyword Search Response Capability

KeywordSearchResponse

NewReleasesRequest

Show New Releases Response Capability

NewReleasesResponse

Find New Releases Capability

RegisterCustomerResponse

Add Customer Capability

SessionAccess

SpecialOffersRequest Show Special Offers Response Capability
SpecialOffersResponse Find Special Offers Capability
SubjectsRequest Show Subjects Response Capability
SubjectsResponse Find Subjects Category Capability

TopTenBestSellersRequest

Show Bookstore Main Page Response
Capability

TopTenBestSellersResponse

Find Top Ten BestSellers Capability

UserDetails

Retrieve Customer Details Capability

UserLoginRequest

Login Response Capability

UserLoginResponse

Signin Capability

WebDispatch

RegisterCustomerResponse

Table D.73 Relations between JACK Event and Prometheus Capability

D.35. JACK Event vs Prometheus Capability (receives)

Table D.74 shows traceability relations identified manually between JACK Event and
Prometheus Capability. Table D.74 shows traceability relations identified by the tool between

[193]

JACK Event and Prometheus Capability. The number of relations identified manually is 33,

and the number of relations identified by the tool is 0.

JACK Event Prometheus Capability
AdvancedSearchRequest Advanced Search Capability
AdvancedSearchResponse Advanced Search Response

Capability
AuthorizationRequest Validate Credit Card Capability
AuthorizationResponse Place Order Response Capability
BestSellersRequest Find BestSellers Capability
BestSellersResponse Show BestSellers Response
Capability
BookAvalaible Place Order Response Capability
BookDetails Add Item to Basket Capability
BookDetailsRequest Find Book Details Capability
BookDetailsResponse Show Book Details Response
Capability
BooklInBasket Add Item to Basket Capability
BookNotAvalaible Place Order Response Capability
BookRequired Check Stock Capability
BooksByCategoryRequest Find Books by Category Capability
BooksByCategoryResponse Show Books by CategoryResponse
Capability
CustomerDetails Add Customer Capability
DeliveryOptionsInformation Get Delivery Options Response
Capability
DeliveryOptionsRequest Retrieve Customer Details
GetDeliverylnformationMessage Calculate Delivery Time and Price
Capability
KeywordSearchRequest Keyword Search Capability
KeywordSearchResponse Keyword Search Response
Capability
NewReleasesRequest Find New Releases Capability
NewReleasesResponse Show New Releases Response
Capability
RegisterCustomerResponse Add Customer Response Capability
SessionAccess
SpecialOffersRequest Find Special Offers Capability
SpecialOffersResponse Show Special Offers Response
Capability
SubjectsRequest Find Subjects Category Capability
SubjectsResponse Show Subjects Response Capability
TopTenBestSellersRequest Find Top Ten BestSellers Capability
TopTenBestSellersResponse Show Bookstore Main Page
Response Capability
UserDetails Get Delivery Options Response
Capability
UserLoginRequest Signln Capability
UserLoginResponse LoglIn Response Capability

Table D.74 Relations identified manually between JACK Event and Prometheus Capability

D.36 JACK Event vs Prometheus Plan (sends)

Table D.75 shows traceability relations identified manually between JACK Event and
Prometheus Plan. Table D.76 shows traceability relations identified by the tool between JACK

Event and Prometheus Plan. The number of relations identified manually is 33, and the

[194]

number of relations identified by the tool is 0. Precision and recall calculated is 100% and

55.88%, respectively.

JACK Event

Prometheus Plan

AdvancedSearchRequest

Show Advanced Search Result Plan

AdvancedSearchResponse

Execute Advanced Search

AuthorizationRequest

Respond Place Order Request

AuthorizationResponse

Validate Credit Card

BestSellersRequest

Show BestSellers Plan

BestSellersResponse

Find BestSellers Plan

BookAuvalaible

Check Stock

BookDetails

Add Item to Basket Plan

BookDetailsRequest

Show Book Details

BookDetailsResponse

Find Book Details Plan

BookInBasket

Respond Add Item to Basket Request

BookNotAvalaible

Check Stock

BookRequired

Respond Place Order Request

BooksByCategoryRequest

Show Books by Category Plan

BooksByCategoryResponse

Find Books by Category Plan

CustomerDetails

Respond Add Customer Request

DeliveryOptionsInformation

Calculate Delivery Time and Price Plan

DeliveryOptionsRequest

Respond Get Delivery Options Request

GetDeliveryInformationMessage

Respond Get Delivery Options Request

KeywordSearchRequest

Show Keyword Search Result Plan

KeywordSearchResponse

Keyword Search Response

NewReleasesRequest

Show New Releases Plan

NewReleasesResponse

Find New Releases Plan

RegisterCustomerResponse

Add New Customer

SessionAccess

SpecialOffersRequest Show Special Offers Plan
SpecialOffersResponse Find Special Offers Plan
SubjectsRequest Show Subjects Plan
SubjectsResponse Find Subjects

TopTenBestSellersRequest

Respond Log Out Request

Show Bookstore Main Page Plan

TopTenBestSellersResponse

Find Top Ten BestSellers Plan

UserDetails

Retrieve Customer Details

UserLoginRequest

Respond Signin Request

UserLoginResponse

Sign In

WebDispatch

RegisterCustomerResponse

Table D.75 Relations identified manually between JACK Event and Prometheus Plan

JACK Event Prometheus Message Prometheus Plan
rulePJ33a Respond Get Delivery Options Request UserDetails
rulePJ33a Retrieve Customer Details UserDetails
rulePJ33a Respond Signin Request UserLoginRequest
rulePJ33a Sign In UserLoginResponse
rulePJ33a Respond Place Order Request AuthorizationRequest
rulePJ33a Validate Credit Card AuthorizationResponse
rulePJ33a Respond Place Order Request BookDetailsRequest
rulePJ33a Respond Place Order Request BooksByCategoryRequest
rulePJ33a Check Stock BookAvalaible
rulePJ33a Check Stock BookNotAvalaible
rulePJ33a Show Advanced Search Result Plan AdvancedSearchRequest
rulePJ33a Execute Advanced Search AdvancedSearchResponse
rulePJ33a Show Keyword Search Result Plan KeywordSearchRequest
rulePJ33a Execute Keyword Search KeywordSearchResponse
rulePJ33a Show Books by Category Plan BooksByCategoryRequest
rulePJ33a Find Books by Category Plan BooksByCategoryResponse

[195]

rulePJ33a Show Book Details BookDetails

rulePJ33a Show Book Details BookDetailsRequest

rulePJ33a Find Book Details Plan BookDetails

rulePJ33a Find Book Details Plan BookDetailsResponse

rulePJ33a Respond Log Out Request BestSellersRequest

rulePJ33a Show Bookstore Main Page Plan BestSellersRequest

rulePJ33a Respond Log Out Request TopTenBestSellersRequest

rulePJ33a Show Bookstore Main Page Plan TopTenBestSellersRequest

rulePJ33a Find Top Ten BestSellers Plan BestSellersResponse

rulePJ33a Find Top Ten BestSellers Plan TopTenBestSellersResponse

rulePJ33a Show BestSellers Plan BestSellersRequest

rulePJ33a Show BestSellers Plan TopTenBestSellersRequest

rulePJ33a Find BestSellers Plan BestSellersResponse

rulePJ33a Find BestSellers Plan TopTenBestSellersResponse

rulePJ33a Show New Releases Plan NewReleasesRequest

rulePJ33a Find New Releases Plan NewReleasesResponse

rulePJ33a Show Special Offers Plan SpecialOffersRequest

rulePJ33a Find Special Offers Plan SpecialOffersResponse SubjectsRequest
rulePJ33a Show Subjects Plan SpecialOffersResponse SubjectsRequest
rulePJ33a Find Subjects SubjectsResponse

Table D.76 Relations identified by the tool between Prometheus Message and Prometheus Plan

D.37 JACK Event vs Prometheus Plan (receives)

Table D.77 shows traceability relations identified manually between JACK Event and
Prometheus Plan. Table D.78 shows traceability relations identified by the tool between JACK
Event and Prometheus Plan. The number of relations identified manually is 34, and the
number of relations identified by the tool is 19. Precision and recall calculated is 100% and

55.88%, respectively.

JACK Event

Prometheus Plan

AdvancedSearchRequest

Execute Advanced Search

AdvancedSearchResponse

Show Advanced Search Result Plan

AuthorizationRequest

Validate Credit Card Capability

AuthorizationResponse

Respond Place Order Request

BestSellersRequest

Find BestSellers Plan

BestSellersResponse

Show BestSellers Plan

BookAvalaible

Respond Place Order Request

BookDetails

Respond Add Item to Basket Request

BookDetailsRequest

Find Book Details Plan

BookDetailsResponse

Show Book Details

BookInBasket

Add Item to Basket Plan

BookNotAvalaible

Respond Place Order Request

BookRequired

Check Stock

BooksByCategoryRequest

Find Books by Category Plan

BooksByCategoryResponse

Show Books by Category Plan

CustomerDetails

Add New Customer

DeliveryOptionsInformation

Respond Get Delivery Options Request

DeliveryOptionsRequest

Retrieve Customer Details

GetDeliveryInformationMessage

Calculate Delivery Time and Price Plan

KeywordSearchRequest

Execute Keyword Search

KeywordSearchResponse

Show Keyword Search Result Plan

NewReleasesRequest

Find New Releases Plan

NewReleasesResponse

Show New Releases Plan

RegisterCustomerResponse

Respond Add Customer Request

SessionAccess

SpecialOffersRequest

Find Special Offers Plan

SpecialOffersResponse

Show Special Offers Plan

[196]

SubjectsRequest

Find Subjects

SubjectsResponse

Show Subjects Plan

TopTenBestSellersRequest

Find Top Ten BestSellers Plan

TopTenBestSellersResponse

Respond Log Out Request

TopTenBestSellersResponse

Show Bookstore Main Page

UserDetails

Respond Get Delivery Options Request

UserLoginRequest Sign In

UserLoginResponse Respond Signin Request

WebDispatch

Table D.77 Relations identified manually between JACK Event and Prometheus Plan

Rule ID Prometheus Plan JACK Event

rulePJ33b Respond Get Delivery Options Request UserDetails

rulePJ33b Respond Signin Request UserLoginResponse
rulePJ33b Respond Place Order Request AuthorizationResponse
rulePJ33b Show Advanced Search Result Plan AdvancedSearchResponse
rulePJ33b Show Keyword Search Result Plan KeywordSearchResponse
rulePJ33b Show Books by Category Plan BooksByCategoryResponse
rulePJ33b Show Book Details BookDetails

rulePJ33b Show Book Details BookDetailsResponse
rulePJ33b Respond Log Out Request BestSellersResponse
rulePJ33b Show Bookstore Main Page Plan BestSellersResponse
rulePJ33b Respond Log Out Request TopTenBestSellersResponse
rulePJ33b Show Bookstore Main Page Plan TopTenBestSellersResponse
rulePJ33b Show BestSellers Plan BestSellersResponse
rulePJ33b Show BestSellers Plan TopTenBestSellersResponse
rulePJ33b Show New Releases Plan NewReleasesResponse
rulePJ33b Show Special Offers Plan SpecialOffersResponse SubjectsRequest
rulePJ33b Show Subjects Plan SubjectsResponse

Table D.78 Relations identified by the tool between Prometheus Plan and JACK Event

D.38 JACK Event vs Prometheus Message

Table D.79 shows traceability relations identified manually between JACK Event and
Prometheus Message. Table D.80 shows traceability relations identified by the tool between
JACK Event and Prometheus Message. The number of relations identified manually is 33, and
the number of relations identified by the tool is 36. The number of relations identified
correctly is 26 and the number of relation missing is 10. The number of relations identified

incorrectly by the tool is 10. Precision and recall calculated is 72.22% and 78.78%, respectively.

JACK Event

Prometheus Message

AdvancedSearchRequest

AdvancedSearch Request

AdvancedSearchResponse

Advanced Search Response

AuthorizationRequest

Authorization Request

AuthorizationResponse

Authorization Response

BestSellersRequest

BestSellers Request

BestSellersResponse

BestSeller Response

BookAvalaible

Book Avalaible

BookDetails

Add to Basket Response

BookDetailsRequest

Book Details Request

BookDetailsResponse

Book Details Response

BookInBasket

Add to Basket Request

[197]

BookNotAvalaible

Book Not Avalaible

BookRequired

Book Request

BooksByCategoryRequest

Books by Category Request

BooksByCategoryResponse

Books by Category Response

CustomerDetails

Add Customer Request

DeliveryOptionsinformation

Delivery Time and Price Response

DeliveryOptionsRequest

User Details Request

GetDeliverylnformationMessage

Delivery Time and Price Request

KeywordSearchRequest

Keyword Search Request

KeywordSearchResponse

Keyword Search Response

NewReleasesRequest

New Releases Request

NewReleasesResponse

New Releases Response

RegisterCustomerResponse

Add Customer Response

SessionAccess

SpecialOffersRequest

Special Offers Request

SpecialOffersResponse

Special Offers Response

SubjectsRequest

Subjects Request

SubjectsResponse

Subjects Response

TopTenBestSellersRequest

Top Ten BestSellers Request

TopTenBestSellersResponse

Top Ten BestSellers Response

UserDetails

User Details Response

UserLoginRequest

User Login Request

UserLoginResponse

User Login Response

WebDispatch
WebSession Request

Table D.79 Relations between JACK Event and Prometheus Message
Rule ID Prometheus Message JACK Event
rulePJla User Details Request UserDetails
rulePJla User Details Response UserDetails
rulePJla User Login Request UserLoginRequest
rulePJla User Login Response UserLoginResponse
rulePJla Authorization Request AuthorizationRequest
rulePJla Authorization Response AuthorizationResponse

rulePJla Book Not Avalaible BookNotAvalaible
rulePJla Advanced Search Request AdvancedSearchRequest
rulePJla Advanced Search Response AdvancedSearchResponse
rulePJla Keyword Search Request KeywordSearchRequest
rulePJla Keyword Search Response KeywordSearchResponse
rulePJla Books by Category Request BooksByCategoryRequest
rulePJla Books by Category Response BooksByCategoryResponse

rulePJla

rulePJla

rulePJ1a

rulePJla

Book Details Request BookDetailsRequest
Book Details Response BookDetailsResponse
Top Ten BestSellers Request TopTenBestSellersRequest

Top Ten BestSellers Response

TopTenBestSellersResponse

rulePJla

rulePJla BestSellers Response BestSellersResponse

BestSellers Request

BestSellersRequest

rulePJla New Releases Request NewReleasesRequest
rulePJla New Releases Response NewReleasesResponse
rulePJla Special Offers Request SpecialOffersRequest
rulePJla Special Offers Response SpecialOffersResponse
rulePJla Subjects Request SubjectsRequest
rulePJla Subjects Response SubjectsResponse

Table D.80 Relations between Prometheus Message and JACK Event

[198]

Appendix E — Introduction to BDI architecture

This appendix gives an introduction to the BDI architecture. Initially, we present different
types of agent architecture used to build multi-agents and then we describe in detail the BDI

architecture that was used by our research.

E.1 Agent Architectures

Agent architectures can be general classified in three types: deliberative architectures, reactive

architectures, hybrid architectures.

Reactive architectures do not maintain a symbolic representation of the environment and
actions are performed using rules. Agents are situated in the environment and perceive the
environment. Depending of the event that occurs in the environment a rule is executed and

actions are performed.

In the deliberative architecture, a symbolic representation of the environment is created and
the agent performs actions to manipulate these symbols. The actions performed are based on
logical reasoning using theorem provers [Genesereth1987]. The drawback of this architecture
is that it is difficult to represent real world using a symbolic representation and that logic
reasoning to determine what action to perform is a very resource and time consuming task.
Several multi-agent systems use a deliberative architecture to support reasoning and some of
them are based on the BDI architecture [Bratman1988]. BDI architectures have been
proposed to address the problem of resource boundedness. In our research, we focus on the
BDI architecture. The three mains reasons that we choose the BDI architecture is because
they are based on folk philosophy to explain rational reasoning (therefore it is easier to
understand the main concepts), has been formalised by logic theories (that can be used to
demonstrate programs), and it has been implemented several times (e.g. PRS, JACK, and

JADEX). We give more details about the BDI architecture in the next section.

Hybrid architectures combine deliberative and reactive behaviour. Examples of hybrid

architectures are: TouringMachines, and INTERRRAP [Luck2004].

E.2 BDI Architecture

[199]

The BDI architecture is based on the philosophy theory proposed by Bratman [Bratman1988].
Bratman explain human rational action in terms of beliefs, desires and intentions. Beliefs
represent information that we have about the environment, desires represent the state of
affairs that we want to achieve and intentions represent desires that we had committed to

achieve.

Accordingly to Bratman human practical reasoning is divided in two parts. First, we decide
what we want to achieve (desires) and second we decide how to achieve our desires. The
process to decide how to achieve our desires is decomposed in two parts. First we generate
plans choosing a sequence of actions from a set of possible actions then we select what plan to
execute based on our beliefs. For instance, I decide that I want go to see a movie at Leicester
Square after work. The first thing that I should do is to select what movie I want to see and
then to choose what cinema and time I want to see the movie. I buy a ticket to see the movie
at 6.30pm. I still have to decide how to go from my work to Leicester Square. My possible
actions are cycle, walk, take the underground or take the bus. I would like go to the cinema by
walking, but I have to finish writing a document by today. I don’t know what time I can leave
the work and it is raining, so I wait until the end of the day to take my decision how to go to

the cinema.

Bratman also points out to the problem of resource boundeness that means that the making
decision process of humans or computers takes place under limited amount of time. Suppose
that I finish writing my document at 6.00pm. I go to a Journey Planner system to check how
long takes to go from my work to the cinema. It takes thirteen minutes cycling, twenty and
nine minutes using the tube, fifty minutes by bus and fourteen minutes walking, It is raining so
I decide to take the tube. There is no much time between the time that I had finished writing
my document and the time that I have to take the tube. If I take too much time deliberating
how to go to the cinema, to take the tube it would be not anymore an option to be considered

because it would be too late to arrive on time.

Bratman also declares that intentions are persistent. If when I arrive at the tube station I realise
that there are some delays on the trains. I will not give up on my intention to watch the movie.
For instance, I can re-consider to cycle or select a new plan such as to take a taxi. To consider

when and how agents should drop intentions Rao describes in [Ra01991] three strategies: blind

[200]

commitment, single-minded commitment and open-minded commitment. In blind
commitment an agent continues to maintain the intention until it has been achieved. When an
agent uses the single-minded commitment it will continue to maintain the intention until it has
been achieved or it is impossible to achieve. In the open-minded commitment, an agent will
maintain the intention until it has been achieved or the intention still compatible with others

intentions.

The Figure E.1 shows a generic BDI architecture. A BDI agent is situated in an environment,
receive inputs from the environment (events) and perform actions (output). An agent is
composed of beliefs, desires, intentions and one interpreter. The interpreter continually selects
what desires to commit (i.e. create intentions), select options how to achieve the desire,
execute the option selected, drop successful and impossible intentions, perceive the

environment and perform actions.

environment
input (events)

Interpreter

Intentions Desires

action (output)

Figure E.1 A generic BDI architecture

The BDI model has been implemented several times. Examples of implementation are PRS,

dMARS, JAM, JACK, and Jadex.

[201]

Appendix F - Traceability Relations between i* and
Prometheus

This appendix describes traceability relations between 7* and Prometheus elements

We have identified seven different types of traceability relations between the various elements
in the models used in our approach. The types of traceability relations are overlaps, contributes to,
uses, creates, achieves, depends on, and composed of. We present below descriptions of these different

types of relations.

* Overlaps — in this type of relation, an element el overlaps with an element e2 (an
element e2 overlaps with an element el), if el and e2 refer to elements with common
aspects of the agent software development. As shown in Tables F.1 and F.2, an overlaps
relation may hold between a) goal in Prometheus and SD goal in /% b) goal in
Prometheus and and a SD task; ¢) an agent in Prometheus and an actor in 7* d) a
percept in Prometheus and a SD resource in 7% d) a message in Prometheus and a SD
resource in 7% €) a goal in Prometheus and a SR goal in 7%, f) a goal in Prometheus and
a SR task in 7% g) an action in Prometheus and a SR task in 7% h) a data in Prometheus

and a SR Resource in 7*.

* Contributes (Contributed by) - in this type of relation, an element el contributes to an
element e2, if el helps to achieve or realise another element e2. As shown in Tables
F.1 and F.2, a contributes relation may hold between a) role in Prometheus and a SD
goal in 7% b) a role in Prometheus and a SD Task in 7% c) a role in Prometheus and
actor in 7% d) a capability in Prometheus and a SD goal in 7% ¢) a capability in
Prometheus and a SD task in 7% f) a data in Prometheus and a SD goal in 7% g) a data

in Prometheus and a SD task in 7% h) a capability in Prometheus and a SR goal in 7*

* Uses (Used by) - in this type of relation, an element el uses an element e2, if el
requires the existence of e2 in order to achieve its objective. As shown in Tables F.1

and F.2, a contributes relation may hold between a) a role in Prometheus and a SD

[202]

resource in 7% b) an agent in Prometheus and a SD resource in 7% ¢) a capability in
Prometheus and a SD resoutrce in 7% d) a plan in Prometheus and a SD resource in 7%
e) a data in Prometheus and an actor in 7% f) a role in Prometheus and a SR resource in
7% @) an agent in Prometheus and a SR goal in 7% h) a capability in Prometheus and a
SR resource in 7% i) a plan in Prometheus and a SR goal in 7% j) a data in Prometheus

and a SR resource in 7*,

Creates (Created by) - in this type of relation an element el creates an element e2, if el
generates element e2. As shown in Tables F.1 and F.2, a creates relation may hold
between a) a plan in Prometheus and an actor in 7% b) role in Prometheus and SR
resource in 7% c) an agent in Prometheus and a SR resource in 7% d) a capability in
Prometheus and a SR resource in 7% ¢) a plan in Prometheus and a SR resource in 7% f)

a scenario in Prometheus and a SR resource in 7*

Achieves (Achieved by) - in this type of relation an element el achieves an element €2,
if el meets the expectations and needs of e2. As shown in Tables F.1 and F.2, a achieves
relation may hold between a) an agent in Prometheus and a SD goal in 7%; b) an agent
in Prometheus and a SD task in 7% ¢) a plan in Prometheus and a SD goal in 7% d) a
plan in Prometheus and a SD task in 7%; ¢) a role in Prometheus and a SR goal in 7%; f) a
role in Prometheus and a SR task in 7%; g) an agent in Prometheus and a SR task in 7%
h) a capability in Prometheus and a SR task in 7% i) a plan in Prometheus and and a SR

task in 7%

Depends on (Is Dependent) - in this type of relation an element el depends on an
element e2, if the existence of el relies on the existence of e2, or if changes in e2 have
to be reflected in el. As shown in Tables F.1 and F.2, a depends relation may hold
between a) a goal in Prometheus and an actor in 7% b) a scenario in Prometheus and a

SD goal in 7%; ¢) a scenario in Prometheus and an actor in 7*.

Composed of - in this type of relation and element el is composed of an element e2, if
el is a complex element formed by element e2. As shown in Tables F.1 and F.2, a
depends relation may hold between a) a capability in Prometheus and an actor in 7% b) a

scenario in Prometheus and a SD resource; ¢) a scenario in Prometheus and a SR goal

[203]

in 7% d) a scenario in Prometheus and a SR task in 7% ¢€) a scenario in Prometheus and

a SR goal in 7% f) a scenario in Prometheus and a SR task in 7%,

Tables F.1 and F.2 present the different types of traceability relations for the main types of
elements in 74 SD model and Prometheus models, and 7 SR model and Prometheus models,
respectively. In Tables F.1 and F.2, apart from overlaps relations that are bi-directional, the
direction of a relation is represented from a row [i] to a column [j] (e.g. “Prometheus role
contributes to SD goal”). We do not consider 7* soft goals in Tables F.1 and F.2 since soft
goals are concerned with non-functional aspects of a system while elements in Prometheus are
concerned with functional aspects of a system. We define below the various types of
traceability relations and give some examples from the perspective of each specific pair of

artefacts that are associated.

~ SD Goal SD Resource SD Task Actor
Prometheus
Goal Overlaps --- Overlaps Is Dependent
Role Contributes to Uses Contributes to | Contributes to
Agent Achieves Uses Achieves Overlaps
Capability | Contributes to Uses Contributes to Compose
Plan Achieves Uses Achieves Created by
Percept --- Overlaps - ---
Data Contributes to --- Contributes to Is Used
Scenario Depends on | Composed of | Depends on | Is Dependent
Message --- Overlaps --- ---
Table F.1 Relations between Prometheus and i* SD
i*
Prometheus SR Goal SR Resource SR Task
Goal Overlaps - Overlaps
Role Achieves Uses | Creates Achieves
Agent Achieves Uses | Creates | Achieves
Capability | Contributed by | Uses | Creates | Achieves
Plan Achieves Uses | Creates Achieves

[204]

Action -— -— Overlaps

Data Used by Ovetlaps Used by

Scenario Composed of | Uses | Creates [Composed of

Table F.2 Relations between Prometheus and i*SR elements
Prometheus Goal vs SD Goal — A goal g, in Prometheus has an overlaps traceability
relation with a SD goal g, in 7* if the name of the goal g, is synonyms to the name of
the goal g, and the number of sub-elements of the Prometheus goal g, that is similar to
the sub-goals and sub-tasks of the goal g,is greater than a threshold (e.g. 40%) or the
number of sub-elements of the Prometheus goal g, that is similar to the sub-goals and
sub-tasks of the goal g,is greater than a threshold (e.g. 60%). For instance, Browse Book
SD goal in 7* has a synonyms name to Browse book goal in Prometheus (see Figure F.1).
Browse Book SD goal is decomposed on Browse By Special Offer, Browse By BestSeller, Browse
By Category, Browse by New Releases sub-goals and Browse book goal is decomposed on
Browse By category, Browse by new release, Browse by bestseller, and Browse by special offer sub-
tasks. The degree of similiraty between the sub-elments of Browse Book SD goal and
Browse Book Prometheus goal is equal to 100% because Browse By Special Offer, Browse By
BestSeller, Browse By Category, Browse by New Releases sub-tasks are synonyms 7o Browse by
category, Browse by new release, Browse by bestseller, Browse by special offer sub-goals,
respectively. Therefore there is a traceability relation between Browse Book Prometheus

goal and Browse book SD goal.

[205]

Electronic Bookstore

rowse by special offer
Browse by bestseller

Browse by category
Browse by new release

Figure F.1 Prometheus Goal vs SD Goal overlaps dependency

Prometheus Goal vs SD Task — A goal g; in Prometheus has an overlaps traceability
relation with a SD task t; in 7* if the name of the goal g, is synonyms to the name of
the task t,and the number of sub-elements of the Prometheus goal g, that is similar to
the sub-goals and sub-tasks of the task t, is greater than a threshold (e.g. 40%) or the
number of sub-elements of the Prometheus goal g, that is similar to the sub-goals and
sub-tasks of the task t, is greater than a threshold (e.g. 60%). For instance, Monitor
Shipment SD task in 7* (see Figure F.2) has a synonyms name to Monitor delivery goal in
Prometheus (see Figure F.3). Monitor Shipment SD task is decomposed in Determine
Delivery Status Location, Update Delivery Status, and Iog Delivery Problem sub-tasks and
Monitor delivery Prometheus goal is decomposed in Determine delivery status, Update delivery
status and Log delivery problems. The degree of similiraty between the sub-elments of Find
Best Land Time for an Aireraft SD goal and Find Best Land Time for an Aircraft Prometheus
goal is equal to 50%, Query Best Landing Time from All Runmway Manager sub-task is
synonyms fo Query Best Landing Time from All Runway Manager sub-goal. Therefore there
is a traceability relation between Find Best Land Time for an Aircraft Prometheus goal and
Find Best Landing Time for an Aircraft SD goal.

[206]

Figure F.2 Monitor Shipment task dependency

Manitor delivery

Update delivery status Log delivery problems
Determine delivery status

Figure F.3 Monitor delivery goal in Prometheus

Prometheus Goal vs Actor — A goal g, in Promethues has a depends on traceability
relation with an actor a, in 7 when the goal g, has an overlaps traceability relation with a
goal g,in 7* and the actor depends on that goal g,. For instance, Browse Book SD goal
has an overlaps traceability relation with Browse book goal in Prometheus (see Figure
F.4). Therefore, an depends on traceability relation is created between the Customer

actor in 7* and browse book goal in Prometheus.

[207]

Electronic Bookstore

Browse by special offer
Browse by bestseller

Browse by category
Browse by new release

Figure F.4 Prometheus Goal vs Actor depends on traceability relation
Prometheus Goal vs SR Goal — A goal g, in Prometheus has an overlaps traceability
relation with a SR goal g, in 7% if the name of the goal g, is synonyms to the name of
the goal g, and the number of sub-elements of the Prometheus goal g, that is similar to
the sub-goals and sub-task of the goal g, is greater than a threshold (e.g. 40%) or the
number of sub-elements of the Prometheus goal g, that is similar to the sub-goals and
sub-tasks of the goal g,is greater than a threshold (e.g. 60%). For instance, Browse Book
SR goal in 7* has a synonyms name to Browse book goal in Prometheus (see Figure F.5).
Browse Book SR goal is decomposed on Browse By Special Offer, Browse By BestSeller, Browse
By Category, Browse by New Releases sub-tasks and Browse book goal is decomposed on
Browse By category, Browse by new release, Browse by bestseller, and Browse by special offer sub-
goals. The degree of similiraty between the sub-elments of Browse Book SR goal and
Browse Book Prometheus goal is equal to 100% because Browse By Special Offer, Browse By
BestSeller, Browse By Category, Browse by New Releases sub-goals are synonyms #o Browse by
category, Browse by new release, Browse by bestseller, Browse by special offer sub-tasks,
respectively. Therefore there is a traceability relation between Browse Book Prometheus

goal and Browse book SR goal.

[208]

AND
o

Browse by special offer
Browse by bestseller

Browse by new release
Browse by category

i
overlaps

Electronic Bookstore

Figure F.5 Prometheus Goal vs SR Goal overlaps traceability relation

* Prometheus Goal vs SR Task — A goal g, in Prometheus has an over/aps traceability
relation with a SR task t, in 7* if the name of the goal g, is synonyms to the name of the
task t; and the number of sub-elements of the Prometheus goal g, that is similar to the
sub-goals and sub-task of the task t, is greater than a threshold (e.g. 40%) or the
number of sub-elements of the Prometheus goal g that is similar to the sub-goals and
sub-tasks of the task t, is greater than a threshold (e.g. 60%). For instance, Organize
Delibery SR task in 7* has a synonyms name to Arrange delivery goal in Prometheus (see
Figure F.6). Organize Delivery SR task is decomposed on Obtain Delivery Options, Conpute
Delivery Time Estimates, Place Delivery Request sub-tasks and _Arrange delivery goal is
decomposed on Log outgoing delivery, Calenlate delivery time estimates, and Get delivery options.
Get delivery options is synonyms to Obtain Delivery Options and Calculate delivery time estimates
is synonyms to Compute Delivery Time Estimates. The percentage of sub-goals of the
Arrange delivery goal that is similar to the sub-tasks or sub-goals of the Organize Delivery is
06.7% that is greater than the threshold of 60%. Therefore, there is an overlaps
traceability relation between Arrange delivery Prometheus goal and Organige Delivery SR

task.

[209]

overlaps

.. -
"""""""" -“:\“““““““““""‘ Arrange delivery

Figure F.6 Prometheus Goal vs SR Task overlaps traceability relation

= Prometheus Role vs SD Goal — a Prometheus Role r; in Prometheus has a contributes
traceability relation with a SD Goal g, when the role includes a goal g, that has an
overlaps traceability relation with the goal g,. For instance, Book Finding role includes
Browse book goal that has an overlaps traceability relation with Browse book SD Goal (see

Figure F.7). Therefore, there is a contributes traceability relation between Browse Book SD

Goal and Book Finding role.
Search by ISEN

Electronic Bookstore
contributes

' e e e e e s Book Finding
: Dyl - Search by title
overlaps
Search by author

Browse by bestseller
Browse by category Browse by special offer

Look For bool:
Search by name

Figure F.7 Prometheus Role vs SD Goal uses traceability relation
* Prometheus Role vs SD Resource - a Prometheus Role r; has an uses traceability

relation with a SD Resource r, when the role r, includes a percept p, that has an overlaps

[210]

traceability relation with the SD Resource r, in 7% For instance, Purchasing role in
Prometheus includes Credit Card Details percept that has an overlaps traceability with
Credit Card Details SD resource (see Figure F.8). Therefore, there is an uses traceability

relation between Purchasing role and Credit Card Details SD resource.

Electronic Bookstore

Male payment online
Place order (oniine) ‘ Execute banl transaction >

Credit Card Details
Fill pending order
T e o D - i S ————
I W%m T Update customers orders

Send book order
Get credit card details

Purchasing

Figure F.8 Prometheus Role vs SD Resources uses relation

[211]

Prometheus Role vs SD Task — a Prometheus Role r, in Prometheus has a contributes
traceability relation with a SD Task t, when the role includes a goal g, that has an
overlaps traceability relation with the task t,. For instance, Delivery Management role in
Prometheus includes Monitor delivery goal that has an overlaps traceability relation
with Monitor Shipment SD task (see Figure F.9). Therefore, there is a contributes

traceability relation between Delivery Management and Monitor Shipment.

contributes

------------- Delivery Management
overlaps ~-a

Manitor delivery Log delivery problems
Determine delivery status

Figure F.9 Prometheus Role vs SD Task contributes relation
Prometheus Role vs Actor — role 1, in Prometheus has a contributes to traceability
relation with an actor a, in 7* when there is an overlaps traceability relation between the
actor and an agent a, and the agent a, includes the role r,. For instance, the Stock
Manager agent in Prometheus has an overlaps traceability relation with Stock Manager
actor in 7* and the Stock Manager agent plays the Stock Management role (see Figure
F.10). Therefore, there is a contributes traceability relation between Stock Mangement

role in Prometheus and Stock Manager actor in 7%,

[212]

overlaps
P S E Stock Manager

Stock Management

Figure F.10 Prometheus Role vs Actor contributes relation

= Prometheus Role vs SR Goal — a Prometheus Role 1, in Prometheus has an achieves
traceability relation with a SR Goal g, when the role includes a goal g, that has an
overlaps traceability relation with the goal g;. For instance, the Book Finding role
achieves the Browse book goal in Prometheus and the Browse book goal in
Prometheus has an overlaps traceability relation with Browse Book SR goal in 7* (see
Figure F.11). Therefore, there is an achieves traceability relation between Book Finding

role in Prometheus and Browse Book SR Goal in 7*

Browse by bestseller
Browse by category Browse by special offer

Browse by new release Search by 15BN
search by subject
Look for boolk:

"1

Search by title

Search by author

achieves

\
1
|
4
[
L
i
F 3
e T e e
i
i
[

Figure F.11 Prometheus Role vs SR Goal achieves traceability relation

[213]

Prometheus Role vs SR Resource (uses) — a Prometheus Role r; in Prometheus has an
uses traceability relation with a SR Resource r; when the role uses a data d, that has an
overlaps traceability relation with the SR Resource 1, in 7% For instance, Delivery
Handling role uses CourierDB data in Prometheus and CourierDB data has an
overlaps traceability relation with Courier DB SR data in 7* (see Figure F.12).
Therefore, there is an uses traceability relation between Courier DB SR data and

CourierDB data in Prometheus.

Y Delivery Handling

Electronic Bookstore

2 L [
uses _.--

4" overlaps

Courier DB |4--------- ..

Figure F.12 Prometheus Role vs SR Resource uses relation
Prometheus Role vs SR Resource (ereates) — a Prometheus Role 1, in Prometheus has
creates traceability relation with a SR Resource r; when the role produces a data d, that
has an overlaps traceability relation with the SR Resource r; in 7*. For instance,
Purchasing role produces Customer Order data in Prometheus and Customer Order
SR resource in 7* has an overlaps traceability relation with Customer Order data (see
Figure F.13). Therefore, there is a creates traceability relation between Purchasing role

and Customer Order data.

[214]

Purchasing

Figure F.13 Prometheus Role vs SR Resource creates relation
Prometheus Role vs SR Task (achieves) - a role r; in Prometheus has an achieves
traceability relation with a SR task t; when the SR task t, has an overlaps traceability
relation with a goal g, in Prometheus and the role r, achieves the goal g, For instance,
Delivery Handling role achieves Arrange delivery goal in Prometheus and Organize
Delivery SR task in 7* has an overlaps traceability relation with Arrange delivery goal
(see Figure F.14). Therefore, there is an achieves traceability relation between Delivery

Handling role and Organize Delivery SR task.

Electronic Bookstore

Delwery Chmce Get delivery options

achieves _.----"" | Delivery Handling H Place delivery request >

““““ Arrange delivery Calculate delivery time estimates
72

Figure F.14 Prometheus Role vs SR Task achieves traceability relation
Prometheus Agent vs SD Goal — an agent al in Prometheus has an achieves
traceability relation with a SD Goal gl when the Prometheus agent al achieves a goal
g2 and the goal g2 has an overlaps traceability relation with the goal g,. For instance,

Stock Manager agent achieves Browse book goal in Prometheus and Browse book goal

[215]

in Prometheus has an overlaps traceability relation with Browse Book SD Goal (see

Figure F.15). Therefore, there is a achieves traceability relation between Stock Manager

agent in Prometheus and Browse Book SD goal in 7*.

‘%\ Stack Manager

Electronic Bookstore

overlaps

¥ ¢
“
-

% &

’

~" achieves

Figure F.15 Prometheus Agent vs SD Goal achieves traceability relation

Prometheus Agent vs SD Resource — an agent a, in Prometheus has an uses traceability

relation with a SD Resource 1, in 7% when the agent receives a message m, that has an

overlaps traceability relation with the SD Resource r; or when the agent receives a

percept p, that has an overlaps traceability relation with the SD Resource r,. For

instance, Stock Manager agent receives Keyword Search percept in Prometheus and

Keyword Search SD Resource has an overlaps traceability relation with Keyword

Search percept (see Figure F.10). Therefore, there is an uses traceability relation

between Stock Manager agent in Prometheus and Keyword Search SD Resource in 7%,

Electronic Bookstore

uses - . ove rlaps

Fl &

- W

|

'% Stock Manager

Figure F.16 Prometheus Agent vs SR Resource uses traceability relation

[216]

Prometheus Agent vs SD Task — an agent a, in Prometheus has an achieves traceability
relation with a SD Task t, when the Prometheus agent a, includes a goal g, that has an
overlaps traceability relation with the SD Task in 7*. For instance, Delivery Manager
agent in Prometheus achieves Monitor delivery goal in Prometheus and Monitor
delivery goal in Prometheus has an overlaps traceability relation with Monitor
Shipment SD task (see Figure F.17). Therefore, there is an achieves traceability relation

between Delivery Manager agent in Prometheus and Monitor Shipment SR task in 7*

achieves . . overlaps
L4 "\
r %

S L}

i Delivery Manager Monitar delivery

Figure F.17 Prometheus Agent vs SD Task achieves traceability relation
Prometheus Agent vs Istar Actor — an agent a, in Prometheus has an overlaps
traceability relation with an actor in 7* when the name of the agent in Prometheus is
synonyms to the name of actor in 7* For instance, the name of the Delivery Manager
actor in 7* is synonyms to the name of the Delivery Manager agent in Prometheus (see
Figure F.18). Therefore, there is a overlaps traceability relation between Delvery

Manager actor in 7* and Delivery Manager agent in Prometheus.

overlaps
A------- o i Delivery Manager

Figure F.18 Prometheus Agent vs Istar Actor overlaps traceability relation

[217]

* Prometheus Agent vs SR Goal — an agent a, in Prometheus has an achieves traceability
relation with a SR Goal g, in /¥ when the agent a, achieves a goal g, in Prometheus that
has an overlaps traceability relation with the SR Goal g, in 7* For instance, Stock
Manager agent achieves Browse book goal in Prometheus and Browse book goal in
Prometheus has an ovetlaps traceability relation with Browse Book SR goal in 7* (see
Figure F.19). Therefore, there is an achieves traceability relation between Stock

Manager agent in Prometheus and Browse Book SR goal in 7*

‘% Stock Manager
¥ ¢
. ¥
mreﬂaps"\‘ ~ achieves

'(d_. - ..

Erowen By Specal O <Bmwmm>
(e

Electronic Bookstore

Figure F.19 Prometheus Agent vs SR Goal achieves traceability relation
* Prometheus Agent vs SR Resource (uses) — an agent a, in Prometheus has a uses
traceability relation with a SR Resource r, in 7 when the Agent reads a data in
Prometheus that has an overlaps traceability relation with the SR Resource r,. For
instance, Delivery Manager agent uses Couier data that has an overlaps traceability
relation with Courier DB SR Resource (see Figure F.20). Therefore, there is a wuses

traceability relation between Delivery Manager agent and Courier DB SR Resource in 7*.

[218]

kS /% Delivery Manager

o

Electronic Bookstore

uses .-~

4" overlaps
E‘ﬁme’:m A----mm oo *| CourierDB

Figure F.20 Prometheus Agent vs SR Resource uses traceability relation

Prometheus Agent vs SR Resource (creates) — an agent a, in Prometheus has a creates
traceability relation with a SR Resource r; in 7 when the Agent writes on data in
Prometheus that has an overlaps traceability with the SR Resource r. For instance,
Stock Manager agent writes on Customer Order data and Customer Order data has an
overlaps traceability relation Customer SR Resource (see Figure F.21). Therefore, there
is a creates traceability relation between Stock Manager agent in Prometheus and

Customer Order SR Resource in 7*

Electronic Bookstore
i Stock Manager

Customer Order

Figure F.21 Prometheus Agent vs SR Resource creates traceability relation

[219]

Prometheus Agent vs SR Task — an agent a, in Prometheus has an achieves traceability
relation with a SR Task t, in 7% if an agent a, includes a goal g, that has an overlaps
traceabilty relation with the task t. For instance, Delivery Manager agent in
Prometheus achieves Arrange delivery goal in Prometheus and Organize Delivery SR
task has an overlaps traceability relation with Arrange delivery goal in Prometheus (see
Figure F.22). Therefore, there is an achieves traceability relation between Delivery

Manager agent in Prometheus and Organize Delivery SR task.

e,

rd

Electronic Bookstore ‘\n“
y
t". ;\ Delivery Manager
: achieves
; _ — —-—
Organize Delivery q------ - + ¢ Arrange delivery
% / overlaps
I..\\l'.' "/__.-'-

Figure F.22 Prometheus Agent vs SR Task achieves traceability relation

Prometheus Capability vs SD Goal — a capability ¢, in Prometheus has a contributes
traceability relation with a SD Goal g, when the capability ¢, includes a plan p, that
achieves a goal g, that has an overlaps traceability relation with the SD Goal g,. For
instance, the Arval Sequencing capability includes Reguest Slot Plan plan in Prometheus.
The Request Slot Plan plan achieves .A/ocate Runway Slot goal in Prometheus (see
Figure F.23). Allocate Runway Slot goal in Prometheus has an overlaps traceability
relations with Allocate Runway Slot SD goal. Therefore, there is a contributes
traceability relation between Arrival Sequencing capability and Allocate Runway Slot
SR plan.

[220]

Arrival Sequencing

@e guest 3lot PlaD .
contributes

Figure F.23 Prometheus Capability vs SD Goal contributes traceability relation

Prometheus Capability vs SD Resource — a capability ¢, in Prometheus has a uses
traceability relation with a SD Resource r in 7* when the capability receives a message
m, that has an overlaps traceability relation with the SD Resource r, or when the
capability receives a percept p, that has an overlaps traceability relation with the SD
Resource 1,. For instance, Arrival Sequencing capability receives Aircraft message (see
Figure F.24). AircraftEvent message has an overlaps traceability relation with Slot
Allocated SD resource. Therefore, there is an uses traceability relation between

ArrrivalSequencing capability and Slot Allocated SD resource.

ArrivalSeguencing AircraftEvent

4 overlaps
uses -

"k

a-----»

Figure F.24 Prometheus Capability vs SD Resource uses traceability relation

[221]

Prometheus Capability vs SD Task — a capability ¢, in Prometheus has a contributes
traceability relation with a SD task t; when the capability ¢, includes a plan p, that
achieves a goal g, that has an overlaps traceability relation with the SD Task t,. For
instance, Delivery Monitoring capability includes Monitor Delivery Plan that achieves
Monitor delivery (see Figure F.25). Monitor delivery goal in Prometheus has an

overlaps traceability relation with Monitor Shipment SD task.

Deliverv Monitoring

(Monitar Delivery Plan) i ;
*. contributes

Monitor delivery) - ----- >

overlaps

Figure F.25 Prometheus Capability vs SD Task contributes traceability relation
Prometheus Capability vs Actor — an actor a, in 7* has a composed of traceability relation
with a capability ¢, when there is an overlaps traceability relation between the actor a,
and an agent a, and the agent a, includes the capability c,. For instance, the Airport
actor in 7¢ has an overlaps traceability relation with the Azport agent in Prometheus and
the Airport agent includes ArrivalSequencing capability (see Figure F.26). Therefore, there

is a composed of traceability relation between Azrport actor and ArrivalSequencing capability.

[222]

E‘ Airport ArrivalSequencing

overlaps S

I
I -
¥ _.-»"" composed

Figure F.26 Prometheus Capability vs Actor composed relation

Prometheus Capability vs SR Goal - a capability ¢, in Prometheus has a contributes
traceability relation with a SR Goal g, when the capability ¢, includes a plan p, that
achieves a goal g, that has an overlaps traceability relation with the SR Goal g;. For
instance, Rumway Assigning capability in Prometheus includes Runmway Assign plan that
achieves Allocate Rumwyay Skt goal (see Figure F.27). The Allocate Runway Siot goal in
Prometheus has an overlaps traceability relation with A/ocate Runway Skt SR Goal in 7*.
Therefore there is a contributes traceability relation between Runway Assigning capability
and Allocate Runway Slot SR Goal in 7*.

Arrival Sequencing

l(.-

Figure F.27 Prometheus Capability vs SR Goal contributes traceability relation

Prometheus Capability vs SR Resource (uses) — a capability ¢, in Prometheus has an
uses traceability relation with a SR Resource 1, in 74 when the Capability reads a data in
Prometheus that has an overlaps traceability with the SR Resource r,. For instance, Fying
capability reads Landing Information data that has an overlaps traceability relation with
Landing Information SR Resource (see Figure F.28). Therefore, there is an uses

traceability relation between Landing Information SR Resource and Flying capability.

[223]

Fe==C e
Flying landing_info
p

1
1
roverlaps
1 .\-\.

Figure F.28 Prometheus Capability vs SR Resource uses traceability relation
Prometheus Capability vs SR Resource (creates) — a capability ¢, in Prometheus has a
creates traceability relation with a SR Resource r, in 74 when the Capability writes on
data in Prometheus that has an overlaps traceability with the SR Resource 1, (see Figure
F.29). For instance, Flying capability writes Landing Information data that has an overlaps
traceability relation with Landing Information SR Resource. Therefore, there is a creates

traceability relation between Landing Information SR Resource and Flying capability.

e ey
Flying |[—— landing_info

e &
. creates ;

g pasmE—— 1
B roverlaps

wy I .

\\‘ *
Landir -iﬂ__ Information 5

Figure F.29 Prometheus Capability vs SR Resoource creates traceability relation
Prometheus Capability vs SR Task — a capability ¢, in Prometheus has an achieves
traceability relation with a SR Task t, when the capability ¢, includes a plan p, that
achieves a goal g, that has an overlaps traceability relation with the SR Task t,. For
instance, the F/ing capability in Prometheus includes Initiate Approach plan that achieves
Initiate Aircraft Approach goal (see Figure F.30). The Initiate Aircraft Approach goal in

Prometheus has an overlaps traceability relation with Initiate Approach SR Task in 7*.

[224]

Therefore there is an overlaps traceability relation between Flying capability and Initiate
Approach SR Task in 7*.

Flying o
. achieves "
overlaps

Figure F.30 Prometheus Capability vs SR Resource uses traceability relation

* Prometheus Plan vs SD Goal — a plan p, in Prometheus has an achieves traceability
relation with the SD Goal g, when the plan p, achieves a goal g, in Prometheus and
there is an overlaps traceability relation between the SD Goal g, and the goal g, in
Prometheus. For instance, RequestSlot plan in Prometheus achieves Allocate Runway
Slot goal and Allocate Runway Slot goal in Prometheus has an overlaps traceability
relation with Allocate Runway Slot SD goal in 7* (see Figure F.31). Therefore, there is
an achieves traceability relation between RequestSlot plan in Prometheus and Allocate

Runway Slot SD Goal.

(RequestSlotPlan) achieves

S
Allocate Runway Slot ove rlaps

Figure F.31 Prometheus Plan vs SD Goal contributes traceability relation

[225]

Prometheus Plan vs SD Resource — a plan p, in Prometheus has an uses traceability
relation with the SD Resource r; when there is a plan p, that receives a message m, that
has an overlaps traceability relation with the resource r,. For instance, RequestSlot plan
in Prometheus receives AircraftEvent message (see Figure F.32). AircraftBvent
message in Prometheus has an overlaps traceability relation with Slot Allocated SD
resource. Therefore, there is an uses traceability relation between RequestSlot plan and

Slot Allocated SD resource.

Request Slot Plan j€————————————- BircraftEvent
&

1

1
Vg ' overlaps
Ay

Figure F.32 Prometheus Plan vs SD Resource uses traceability relation
Prometheus Plan vs SD Task - a plan p, in Prometheus has an achieves traceability
relation with the SD task t, when the plan p, achieves a goal g, in Prometheus and
there is an overlaps traceability relation between the SD task t; and the goal g, in
Prometheus. For instance, Monitor Delivery Plan plan in Prometheus achieves
Monitor delivery goal in Prometheus and Monitor delivery goal in Prometheus has an
overlaps traceability relation with Monitor Shipment SD task (see Figure F.33).
Therefore, there is an achieves traceability relation between Monitor Delivery Plan

plan and Monitor Shipment SD task in 7*

[226]

(Manitar Delivery Plan)

-
~

achieves

Monitor delivery) - ----- >

overlaps

Figure F.33 Prometheus Plan vs SD Task achieves traceability relation
Prometheus Plan vs Actor — a plan p, in Prometheus has a creates traceability relation
with an actor a,; when the actor a, contains a SR task t, or SR goal g, that has an overlaps
traceability relation with a goal g, that the plan p, achieves or when the actor al
satisfies a goal dependency or task dependency whtere the goal or task have an
overlaps traceability relation with the Prometheus goal g,. For instance, Runway actor
satisfies Allocate Runway Slot goal dependency and RequestSlot plan in Prometheus
achieves Allocate Runway Goal that has an overlaps traceability relation with Allocate
Runway Slot goal (see Figure F.34). Therefore, there is a creates traceability relation

between Runway actor in 7* and RequestSlot plan in Prometheus.

[227]

creates

Request Slot Plan)4~~~
allocate Runway Slot > 47~ ‘{;;';:rlaPS

Figure F.34 Prometheus vs Actor creates traceability relation
* Prometheus Plan vs SR Goal — a plan p, in Prometheus has an achieves traceability
relation with a SR Goal g, in 7 when the plan p, achieves a goal g, that has overlaps
traceability relation with the SR Goal g, For instance, Request Slot Plan plan in
Prometheus achieves Allocate Runway Slot goal and Allocate Runway Slot goal in
Prometheus has an overlaps traceability relation with Allocate Runway Slot SR goal in
7* (see Figure E.35). Therefore, there is an achieves traceability relation between

Request Slot Plan plan in Prometheus and Allocate Runway Slot SR goal.

{ Request Slot Plan)]
‘- achieves

-

Allocate Runway Slat > 477 ‘{;;r;:rlaps

Figure F.35 Prometheus Plan vs SR Goal achieves traceability relation

* Prometheus Plan vs SR Resource (uses) — a plan p, in Prometheus has an wuses
traceability relation with a SR Resource r, in 7* when the plan p, reads a data d, that has

an overlaps traceability relation with the SR Resource r,. For instance, Monitor Aircraft

[228]

plan reads Landing Information data and Landing Information SR Resource has an
overlaps traceability relation with Landing Information data in Prometheus (see Figure
F.36). Therefore, there is an wuses traceability relation between Monitor Aircraft plan and

Landing Information SR Resource.

{ Monitor Aircraft)

[e
uses ._°
A
landing_info | «-------# | Landing Information
overlaps

Figure F.36 Prometheus Plan vs SR Resource uses traceability relation
* Prometheus Plan vs SR Resource (creates) - a plan pl in Prometheus has a creates
traceability relation with a SR Resource 1, in 7 when the plan p, writes a data d, that
has an overlaps traceability relation with the SR Resource r,. For instance, Assign Slot
Plan writes landing_info data that has an overlaps traceability relation with Landing
Information SR resource (see Figure F.37). Therefore, there is a creates traceability
relation between Assign Slot Plan plan in Prometheus and Landing Information SR

resource.

{ Assign Slok Plan) =

-
-
-
=
-
=

creates |
: T

«---—--i»| Landing Information
overlaps

Figure F.37 Prometheus Plan vs SR Resource creates traceability relation
* Prometheus Plan vs SR Task — a plan p, in Prometheus has an achieves traceability
relation with a SR Task t;in 74 when the plan p, achieves a goal g, that has overlaps

traceability relation with the SR Task t,. For instance, Initiate Approach plan achieves

[229]

Initiate Aircraft Approach goal and Initiate Aircraft Approach goal has an overlaps
traceability relation wtih Initiate Approach SR task (see Figure IF.38). Therefore, there

is an achieves traceability relation between Initiate Approach plan in Prometheus and

Initiate Approach SR task

I[I'I:'t.n.' h} :
nitlate Approac v RChIE‘E'ES h %

-

e

i \I
e w < lntinte Approach D> |
overlaps

Figure F.38 Prometheus Plan vs SR Task achieves traceability relation
* Prometheus Percept vs SD Resource — a percept p, in Promehteus has an overlaps
traceability relation with a SD resource r; in 7% when the name of percept p, is
synonyms to the name to the SD Resource r,. For instance, the name of the Credit Card
Details SD Resource is synonyms to the name of Credit Card Details percept in
Prometheus (see Figure F.39). Therefore, there is an overlaps traceability relation

between Credit Card Details SD Resource and Credit Card Details percept.

A
1]
' overlaps

¥

Electronic Bookstore Credit Card Details

Figure F.39 Prometheus Percept vs SD Resource overlaps traceability relation
* Prometheus Action vs SR Task — an action a, in Prometheus has an overlaps traceability

relation with a SR Task t, in 7* when the name of the action a, is synonyms to the

[230]

name to the SR Task t,. For instance, the name of Place Delivery Request action is
synonyms to the name of the Place Delivery Request SR task (see Figure F.40). Therefore,

there is an overlaps traceability relation between Place Delivery Request action and Place

Delivery Request SR Task.

overlaps

F i Rt »| Place delivery request

N, Compute Beinm;y Time Estimates yd

Figure F.40 Prometheus Action vs SR Task overlaps traceability relation
Prometheus Data vs SD Goal — a data d; in Prometheus has a contributes traceability
relation with a SD Goal g, in 7 when some of the sub-resources of the SD Goal g, has
an overlaps traceabilty relation with the data d;. For instance, Customer Order SR
resource is sub-resource of the Buy Book SD goal and Customer Order SR Resource
has an overlaps traceability relation with Customer Order Prometheus data (see Figure
F.41). Therefore, there is a contributes traceability relation between Customer Order

data in Prometheus and Buy Book SD goal in 7*.

[231]

S
..
™
.

T s i
Customer Order

Figure F.41 Prometheus Data vs SD Goal contributes traceability relation
Prometheus Data vs SD Task - a data d; in Prometheus has a contributes traceability
relation with a SD Task t, in 7# when some of the sub-resources of the SD Goal g, has
an overlaps traceabilty relation with the data d,. For instance, balances SD resource in 7*
is an sub-resource of the Process Withdraw SD task and balances SD resource has an
overlaps traceability relation wtih balances data in Prometheus (see Figure F.42).
Therefore, there is a contributes traceability relation between balances data in

Prometheus and Process Withdraw SD task in 7*

[232]

\ Dalances accounts
\\ . I;;
<F?mness Wﬁiﬂaw> "\1
... h | overlaps ,
--____“. . .I'. B e e
contributes ~-- " EEEr

balances

Figure F.42 Prometheus Data vs SD Task contributes traceability relation
Prometheus Data vs Actor — a data d; in Prometheus has a uses traceability relation
with an actor a; when the actor a, has a SR Resource 1, that has an overlaps traceability
relation with the data d, For instance, Electronic Bookstore actor in 7* has Customer
Order SR resource and Customer Order SR resource has an overlaps traceability
relation with Customer Order data in Prometheus (see Figure F.43). Therefore, there is

an uses traceability relation between Electronic Bookstore in 7* and Customer Order

data in Prometheus.

[233]

overlaps

______._..

T, uses

v

e R e
Customer Order

oy
i
-‘\
3
Y

Figure F.43 Prometheus Data vs Actor uses traceability relation

Prometheus Data vs SR Goal - a data d, in Prometheus has an zses traceability relation
with a SR Goal g, in 7% when some of the sub-resources of the SR Goal g, has an
overlaps traceabilty relation with the data d,. For instance, Customer Order SR resource
in 7*is a sub-resource of Buy Book SR goal and Customer Order SR resource has an
overlaps traceability relation with Customer Order data in Prometheus (see Figure
F.44). Therefore, there is an uses traceability relation between Buy Book SR goal and

Customer Order data in Prometheus.

[234]

o e e e
Customer Order

-
_]
- .r"llp’.

Figure F.44 Prometheus Data vs SR Goal uses traceability relation

* Prometheus Data vs SR Resource — a data d; in Prometheus has an overlaps traceability
relation with a SR Resource 1, in 7 when the name of the data d, is synonyms to the
name of the SR Resource. For instance, Customer Order SR resource has a synonyms
name to the of the Customer Order data in Prometheus (see Figure F.45) Therefore,
there is an overlaps traceability relation between Customer Order SR resource and

Customer Order data in Prometheus.

Figure F.45 Prometheus Data vs SR Resource overlaps traceability relation
* Prometheus Data vs SR Task — a data d, in Prometheus has an uses traceability relation
with a SR Task t, in 7 when some of the sub-resources of the SR Task t, has an overlaps

traceabilty relation with the data d,. For instance, balances SR resource in 7* is a sub-

[235]

resource of the Process Withdraw and balances SR resource has an overlaps
traceability relation with balances data in Prometheus (see Figure F.46). Therefore,
there is an uses traceability relation between Process Withdraw SR task and balances

data in Prometheus.

.-"'---'----- “".H-H"‘-\‘
.-"frl- I\..\.l\-"-\.
(" < Process Withdraw > ™
Tt USEs
: T
: : : TIPS o =
4 accounts | | balances (4------ L
\ Rl 7

Figure F.46 Prometheus Data vs SR Task uses traceability relation
Prometheus Scenario vs SD Goal — a scenario s; in Prometheus has a depends on
traceability relation with a SD Goal g, in /* when the number of sub-elements of the
goal g, that has an overlaps tracebility relation with the steps of the scenario s, is greater
than a threshold (e.g. 80%) and the name of the scenario is synonyms to the name of
the SD Goal. For instance, Order book scenario (see Figure F.47) is composed of the
following steps: Get delivery options goal, Calculate delivery time estimates goal,
Present information goal, Delivery Choice percept, Get credit card details goal, Credit
Card Details percept, Execute bank transaction action, Place delivery request action,
Log delivery problems goal, Update customers orders goal, Send book order action .
Buy Book SD goal (see Figure F.48) is decomposed in Place Order Online SR task,
Place Order By Phone SR task, Send Book Order Confirmation SR task, Update
Customer Orders SR task, Customer Order SR task, Make Payment SR task, Perform
Bank Transaction SR task, Transaction Accepted SR task, Transaction Rejected SR
task, Obtain Credit Card Details SR task, Delivery Handling SR task, Fill Pending
Order SR task, Organize Delivery SR task, Log Outgoing Delivery SR task, Place
Delivery Request SR task, Compute Delivery Time Estimates SR task, and Obtain
Delivery Options SR task, Postal DB SR resource, Courier DB SR resource. Get

[236]

delivery option goal in Prometheus has an overlaps relation with Obtain Delivery
Options SR task, Calculate delivery time has an overlaps traceabilty relation with
estimates goal and Compute Delivery Time Estimates SR task, Delivery choice percept
has an overlaps traceability relation with Delivery Choice SD resource, Get credit card
details goal has an overlaps traceability with Obtain Credit Card Details SR task, Credit
Card Details percept has an overlaps traceability Credit Card Details SD resource,
Execute bank transaction action has an overlaps traceability relation with Perform
Bank Transaction SR task, Place delivery request action has an overlaps traceability
relation with Place Delivery Request SR task, Log delivery problems goal has an
overlaps traceability relation with Log Delivery Problems SR task, Update custome
orders goal has an ovetlaps traceability relation wtih Update Customer Orders SR task,
Send book order action has an overlaps traceability relation with Send Book Order
Confirmation SR task. Therefore, there is a depends traceability relation between Order
book scenario and Buy Book SD goal since 90,90% of steps of the Order book
scenario has an overlaps traceability relation with sub-elements of the Buy Book SD

goal and Order book and Buy Book are synnomys .

x
Type Mame Raole Daka
1| @ |Get delivery options Delivery Handling
2zl & |Calculate delivery time e, .. [Delivery Handling
3| 3 |Present information online Inkeraction
4| P |Delivery Choice Delivery Handling
5 G |Getcredi card details Purchasing
a6 P |Credit Card Details Purchasing
7| A |Execute bank transaction [Purchasing
3 A |Place delivery request Delivery Handling
9| G |Logdelivery problems Stock Management
10/ G |Update customers orders |Purchasing Customer Order
11/ & [Send book order Purchasing
& | @ | Inserk Step [Remaove |
Close |
& -= Ackion G -= Goal 0 -= Others P - Percept 5 -= SCenario

Figure F.47 Order Book Scenario

[237]

Figure F.48 Strategic Rationale Diagram for the Electronic Bookstore actor

Prometheus Scenario vs SD Resource — a scenario s, in Prometheus has a composed of
traceability relation with a SD Resource r; when one of the steps of the scenario s; has
an overlaps traceability with the SD Resource r,. For instance, the Order book scenatio
(see Figure F.47) has the Credit Card Details step that has an overlaps traceability relation
with the Credit Card Details SD Resource in 7% Therefore, there is a composed of

traceability relation between Order book scenario and Credit Card Details.

Prometheus Scenario vs SD Task — a scenario s, in Prometheus has a depends on
traceability relation with a SD Task t, in /* when the number of sub-elements of the
goal t, that has an overlaps tracebility relation with the steps of the scenario s, is greater
than a threshold (e.g. 80%) and the name of the scenario is synonyms to the name of
the SD task. For instance, Monitor delivery scenario (see Figure F.49) is composed of
Determine delivery status goal, Log delivery problems goal and Update delivery status
goal. Monitor Shipment SD task (see Figure F.48) is decomposed on Determine
Delivery Status and Location SR task, Log Delivery Problems SR task, and Update
Delivery Status SR task. Determine delivery status has an overlaps traceability relation
with Determine Delivery Status and Location SR task, Log delivery problems goal has
an overlaps traceability relation with Log Delivery Problems SR task and Update
delivery status goal has an overlaps traceability relation with Update Delivery Status SR

task. Therefore, there is a depends traceability relation between Monitor delivery

[238]

scenario and Monitor Shipment SD goal since 100% of steps of the Order book
scenario has an overlaps traceability relation with sub-elements of the Monitor

Shipment SD goal and Monitor Shipment and Monitor delivery are synnomys .

-
|E_| Edit Scenario - Monitor delivery scenario ﬁ

Type Mame Role Description Data
1| G |Determine delivery status

2| G |Logdelivery prablems
3| G |Update delivery status

[T (%) [] [] [renone |

[Save as PNG][Close]

A -= Action G -= Goal 0 -= Others P - Percept 5 -= Scenario

Figure F.49 Prometheus Scenario vs SD Task depends traceability relation
Prometheus Scenario vs Actor — a scenario s, has a depends on traceability relation with
an actor a, when there is an agent a,in Prometheus realises the scenario s, and it has an
overlaps traceability relation with the actor a,. For instance Aircraft agent in Prometheus
has an overlaps traceability relation with Aircraft actor in /% and Aircraf agent realises
Landing scenario (see Figure F.50). Therefore, there is a depends traceability relation

between Landing scenario in Prometheus and Aircraft actor in 7*.

overlaps | depends

E‘ Edit Scenario - Landing scenario ﬁ

Type Mame
1 G |Assign Slot
2| G |Initiate Aircraft Approach
3 Progresses an aircraft to Landing
1 @ [insertStep | [Edit | [Rem
’ Save as PNG] ’ Close]
A -> Action G -» Goal 0 -= Others P->

Figure F.50 Prometheus Scenario vs Actor depends traceability relation

[239]

Prometheus Scenario vs SR Goal — a scenario s, in Prometheus has a composed

traceability relation with a SR Goal g, in 7* when a step of the scenario s, and the goal

g, has an overlaps traceability relation. For instance, Assign Slot SR goal has an

overlaps traceability with Assign Slot step of the Landing scenario (see Figure F.51).

Therefore, there is a composed traceability relation between Landing scenario and

Assign Slot SR goal.

; Landing ;enario)]

|E| Edit Scenario - Landing scenario &J

MName H

Type
1| G |Assign Slot q.ﬂ__'_ﬁ'__ : overlaps
2| G |Initiate Aircraft Approach i

3

Progresses an aircraft to Landlng' | | |

A - Action

@ _][insertStep | | Edit | [Rem

[Save as PNG II Close]

G -» Goal O -= Others F-=

.

compose "

Figure F.51 Prometheus Scenario vs SR Goal compose traceability relation

Prometheus Scenario vs SR Resource — a scenatio s, in Prometheus has a creates

traceability relation with a SR resource r; in 7* when one of the steps of the scenatio s,

writes on data that has an overlaps tracebility relation with resource r,. For instance,

Update customer orders step writes on Customer Order data that has an overlaps

traceability relation with Customer Order SR resource (see Figure F.52). Therefore,

there is a creates traceability relation between Order book scenario and Customer

Otrder SR resource.

[240]

E edit Scenario - Order book scenario

4

Type Mame Role Data
1| G |&et delivery options Delivery Handling
z| @ [|[Calculate delivery time e, .. [Delivery Handling
3| G |Presentinformation Onling Interaction
4 P |Delivery Choice Delivery Handling
5| G |Getcredit card details Purchasing
6| P [Credit Card Details Purchasing
7| A& |[Execute bank transaction |Purchasing
3| A |Place delivery request Delivery Handling
9 & |Log delivery problems Stock Management
10| & |Update customers orders |Purchasing {@stomer Ord%Dl
11| A [Send book order Purchasing |
{L | @ | Insert Step | Remove |
Close |
& -= Action G-=Goal 0 -= Others P -= Percept S - Scenatio

-<" creates

; Order boo; scenaio

Figure F.52 Prometheus Scenario vs SR Resource creates traceability relation

® Prometheus Scenario vs SR Resource — a scenario s, in Prometheus has an uses
traceability relation with a SR resource r, in 7* when one of the steps of the scenario s,
reads a data that has an overlaps tracebility relation with resource r,. For instance,
Progresses an aircraft to Landing step reads landing info data that has overlaps
traceability relation with Landing Information SR resource (see Figure F.53).

Therefore, there is a uses traceability relation between Landing scenario and Landing

Information SR resource.

,_
E‘ Edit Scenano - Landing scenario |£
Type: Name e Data
1| G |Assign St
2| G [Initiate Aircraft Approach
3 G |Progresses an aircraft to Landing landing_info

[i] [i][InsertStep | [Edit | [Remove

A -> Action G -= Goal

[Save as PNG I [Close l

0O -> Others

P - Percept

-

ove rlap'.s a

Y

.9

Figure F.53 Prometheus Scenario vs SR Resource uses traceability relation

[241]

-7 uses

Prometheus Scenario vs SR Task - a scenario s, in Prometheus has a composed
traceability relation with a SR Task t, in 7% when a step of the scenatio s, and the task t,
has an overlaps traceability relation. For instance, Initiate Approach SR task has an
overlaps traceability with Initiate Aircraft Approach step of the Landing scenario (see
Figure F.54). Therefore, there is a composed traceability relation between Landing

scenario and Initiate Aircraft SR task.

E Edit Scenario - Landing scenario Lﬁ

Type Name

1| 6 |assignslot | |

2| G [Initiate Aircraft Approach J‘__l_‘___

3 Progresses an aircraft to Landing| | | || It S,

overlaps
@ [msertstep | [Edt | [Rem
[Save as PNG ‘ I Close I T -;corr;posed ;

A -> Action G -= Goal 0 - Others P-= ” ; TRy

Figure F.54 Prometheus Scenario vs SR Task composed traceability relation
Prometheus Message vs SD Resource — a message m, in Prometheus has an overlaps
traceability relation with a SD resource r; when the message m; has an carried
information that is synonyms to the name of the SD resource r,. For instance, Aircraft
Event message has carry Slot Allocated information that is synonyms to Slot Allocated
SR resource (see Figure F.55). Therefore, there is an overlaps traceability relation

between AircraftEvent message in Prometheus and Slot Allocated SD resource r,.

Carried
Information

ATL, Slot A]losated ==="""|AircraftEvent

overlaps
uses

a-----»

Figure F.55 Prometheus Message vs SD Resource overlaps traceability relation

[242]

Appendix G - Traceability Relations between
Prometheus and JACK

This appendix describes traceability relations between Prometheus and JACK elements.

We have identified seven different types of traceability relations between the various elements
in the models used in our approach. The types of traceability relations are overlaps, contributes to,
uses, creates, achieves, depends on, and composed of. We present below descriptions of these different

types of relations.

® Overlaps — in this type of relation, an element el overlaps with an element e2 (an
element e2 overlaps with an element el), if el and e2 refer to elements with common
aspects of the agent software development. As shown in Tables 3.3 and 3.4, an overlaps
relation may hold between a) an agent in JACK and an agent in Prometheus; b) a plan
in JACK and a plan in Prometheus; c) a beliefSet in JACK and a data in Prometheus;

an event in JACK and Prometheus message.

» Uses (Used by) - in this type of relation, an element el uses an element e2, if el
requires the existence of e2 in order to achieve its objective. As shown in Tables 3.3
and 3.4, a contributes relation may hold between a) an agent in JACK and a role in
Prometheus; b) a plan in JACK and a role in Prometheus; c) a plan in JACK and a
capability in Prometheus; d) a beliefSet in JACK and a role in Prometheus; e) a
beliefSet in JACK and a capability in Prometheus;

" Creates (Created by) - in this type of relation an element el creates an element €2, if el
generates element e2. As shown in Tables 3.3 and 3.4, a creates relation may hold
between a) a plan in Prometheus and an actor in 7% b) role in Prometheus and SR
resource in /% ¢) an agent in Prometheus and a SR resource in 7% d) a capability in
Prometheus and a SR resource in 7% ¢) a plan in Prometheus and a SR resource in 7%; f)

a scenario in Prometheus and a SR resource in 7*

[243]

* Achieves (Achieved by) - in this type of relation an element el achieves an element e2,
if el meets the expectations and needs of e2. As shown in Tables 3.3 and 3.4, a achzeves
relation may hold between a) an agent in JACK and a goal in Prometheus; b) a plan in

JACK and a goal in Prometheus.

* Sends (Is Sent by) — in this type of relation an element el sends an element €2, if el is
responsible to create an element and send this element to another element e2. As
shown in Tables 3.3 and 3.4, a sends relation may hold between a) an event in JACK
and an agent in Prometheus; b) an event in JACK and a capability in Prometheus; c)

an agent in JACK and a message in Prometheus.

® Receives (Is Received by) — in this type of relation an element el receives an element
e2, if el receives an element created by another element e2. As shown in Tables 3.3
and 3.4, a receives relation may hold between a) an event in JACK and an agent in
Prometheus; b) an event in JACK and a capability in Prometheus; c) an agent in JACK

and a message in Prometheus; d) an event in JACK and a plan in Prometheus.

Tables G.1 and G.2 present different types of traceability relations for the main types of
elements in Prometheus and JACK models. Tables G.1 and G.2, apart from ovetlaps relations
that are bi-directional, the direction of a relation is represented from a rowl[i] to a columnlj|

(e.g. “An agent in JACK achieves a goal in Prometheus”).

Prometheus Capability
JACK Goal Role Agent
Agent Achieves Uses Overlaps Uses
Plan Achieves Used by Is Used by Used by
BeliefSet - Creates/Uses Creates/Uses Creates/Uses
Is Sent by/ Is Is Sent by/ Is
Event B B Received by Received by

Table G.1 Traceability Relations Types between Prometheus and JACK Artefacts

Pro‘]rz(glléeus Plan Percept Action Message Data
Agent Uses Uses Creates Send/Receives Uses/Creates
Plan Ovetlaps Uses Creates Send/Receives Uses/Creates
BeliefSet Creates/Uses - - - Overlaps
Event Send/Receives -—- -—- Overlaps -—-

Table G.2 Traceability Relations Types between Prometheus and JACK Artefacts

[244]

JACK Agent vs Prometheus Goal — an agent a, in JACK has an achieves traceability
relation with a goal g, in Prometheus when there is overlap traceability relation between
the JACK agent a, and an agent in Prometheus a, and the goal g, is one of the goals
that the Prometheus agent a, achieves. For instance, Sales Assistant agent in
Prometheus has an overlaps traceability relation with the SalesAssistant agent in JACK
and the Sales Assistant agent in Prometheus achieves the Respond Add Customer Request
goal in Prometheus (see Figure G.1). Therefore, there is an achieves relation between the

SalesAssistant agent in JACK and the Respond Add Customer Request goal in Prometheus.

S\ Sales Assistant Respond Add Customer Request

A «

.

.
. achieves

1
! T,

+ overlaps

A ,'

import aos.web.webbot.portal .WebBequest:;

public agent SalesAzsistant extends WebSessionbgent
$handlez event Web3SeasionBeguest:

fuse= plan ShowlWebSite;

Figure G.1 JACK Agent vs Prometheus Goal achieves traceability relation
JACK Agent vs Prometheus Role - an agent a, in JACK has a wses traceability relation
with a role r; in Prometheus when there is an overlaps traceability relation between
JACK agent a, and an agent in Prometheus a, and the role r, is one of the roles that the
Prometheus agent a, includes. For instance, Sales Assistant agent in Prometheus has an
overlaps traceability relation with the SalesAssistant agent in JACK and the Sales
Assistant agent in Prometheus includes Order Management role (see Figure G.2).
Therefore, there is an uses traceability relation between SalesAssistant agent in JACK

and Order Management role in Prometheus.

[245]

% Sales Assistant Order Management
4 A
» overlaps
¥ e

import aos.web.webbot.portal .WebBequest:;

S 1uses

public agent Saleshssistant extends WebSessionfgent
thandles event WebSessionBeguest:

fuse= plan ShowWebSite;

Figure G.2 JACK Agent vs Prometheus Role uses traceability relation
JACK Agent vs Prometheus Agent - an agent a, in JACK have an overlaps traceability
relation with an agent a, in Prometheus when the name of the agent a, in JACK is
synonyms to the name of the agent a, in Prometheus. For instance, Sales Assistant
agent in Prometheus has synonyms name to SalesAssistant agent in JACK (see Figure
G.3). Therefore there is an overlaps traceability relation between Sales Assistant agent

in Prometheus and SalesAssistant agent in JACK.

/% Sales Assistant

I
i overlaps
* P

import aos.web.webbco tal.WebBequest;

public agent SalesAzszistant extends WebSessionbhgent
$handles event WebSeasionBeguest:

fuses plan ShowWebSite;

Figure G.3 JACK Agent vs Prometheus Agent overlaps traceability relation
JACK Agent vs Prometheus Capability — an agent in JACK has uses traceability relation
when there is overlap traceability relation between a JACK agent and a Prometheus
agent and the Prometheus agent has the Prometheus capability. For instance, Runway
agent in Prometheus has an overlaps traceability relation with Runway agent in JACK

and Runway agent in Prometheus has ArrivalSequencing capability (see Figure G.4).

[246]

Therefore, there is an uses traceability relation between Runway agent in JACK and

ArrivalSequencing capability in Prometheus.

’% Runway ——| ArrivalSequencing
x k.
overlaps o nieg

i
L
v ;

L

agent Runway extends Agent {
$has capability Runwayhssigning assign:

Figure G.4 JACK Agent vs Prometheus Capability uses traceability relation
* JACK Agent vs Prometheus Plan — an agent a, in JACK has uses traceability relation
with a plan p, in Prometheus when there is overlap traceability relation between the
JACK agent a, and a Prometheus agent a, in Prometheus and the agent a, includes the
plan p, in Prometheus. For instance, BankAgent agent in JACK has an overlaps
traceability relation with Bank agent in Prometheus and Bank agent in Prometheus

uses Process Withdraw plan (see Figure G.5). Therefore, there is an uses traceability

relation between BankAgent in JACK and Process Withdraw plan in Prometheus.

O
m
£
.73"7

——®{ Process Withdraw

overlaps -

e

public agent Bankhgent extends Agent {

#uses plan ProcessWithdraw:

Figure G.5 JACK Agent vs Prometheus Plan uses traceabilty relation
* JACK Agent vs Prometheus Percept — an agent a, in JACK has uses traceability relation
with a percept p, in Prometheus when there is an over/aps traceability relation between

the agent a, in JACK and an agent a, in Prometheus and the Prometheus agent a, in

[247]

Prometheus responds to the percept p,. For instance, Bank agent in Prometheus has

an overlaps traceability relation with BankAgent agent in JACK and Bank agent
responds Withdraw Percept percept (see Figure G.06). Therefore, there is an uses

traceability relation between BankAgent in JACK and Withdraw Percept in
Prometheus.

A
. uses

public agent Bankdgent extends Agent |

#uses plan ProcessWithdraw;

Figure G.6 JACK Agent vs Prometheus Percept uses traceability relation

JACK Agent vs Prometheus Action - an agent ag, in JACK has creates traceability

relation with an action a, in Prometheus when there is an over/aps traceability relation
between the agent ag, in JACK and an agent ag, in Prometheus and the Prometheus
agent ag, in Prometheus includes the action a,. For instace, Bank agent in Prometheus
has an overlaps traceability relation with BankAgent in JACK and BankAgent
performs Dispense Cash action (see Figure G.7). Therefore, there is a creates

traceability relation between BankAgent agent in JACK and Dispense Cash.

[248]

3\ Bank Dispense Cash =

A LA
i overlaps -~ Creates

¥ S

public agent Bankbdgent extends Agent |

#uses plan ProceszsWithdraw;

Figure G.7 JACK Agent vs Prometheus Action creates traceability relation
JACK Agent and Prometheus Message (sends) — an agent ag, in JACK has sends
traceability relation with a message m; in Prometheus when there is an overlaps
traceability relation between the agent ag; in JACK and an agent ag, in Prometheus
and the Prometheus agent ag, in Prometheus sezds the message m,. For instance, Bank
agent in Prometheus has an overlaps traceability relation with BankAgent in JACK and
Bank agent in Prometheus sends Withdraw Response message (see Figure G.8).
Therefore, there is a sends traceability relation between BankAgent in JACK and

Withdraw Response message in Prometheus.

/%_ Bank Withdraw Response
A o~
; overlaps . sends

-

public agent Bankigent extends Agent {
f=zend= event WithdrawResponse response;

Figure G.8 JACK Agent vs Prometheus Message sends traceability relation
JACK Agent vs Prometheus Message (receives) — an agent ag, in JACK has receives
traceability relation with a message m; in Prometheus when there is an overlaps
traceability relation between the agent ag; in JACK and an agent ag, in Prometheus
and the Prometheus agent ag, in Prometheus recezves the message m,. For instance,
Bank agent in Prometheus has an overlaps traceability relation with BankAgent in

JACK and Bank agent in Prometheus receives Withdraw Request message (see Figure

[249]

G.9). Therefore, there is a receives traceability relation between BankAgent in JACK

and Withdraw Request message in Prometheus.

[]

Withdraw Request

E‘ Bank:
&

«

I -,

1 = f/ ’

LR erlaps L receives
- .

3

public agent Bankigent extends Agent {

fthandles event WithdrawBeguest;

Figure G.9 JACK Agent vs Prometheus Message receives traceability relation
* JACK Agent and Prometheus Data (uses) - an agent ag, in JACK has uses traceability
relation with a data d, in Prometheus when there is an over/aps traceability relation
between the agent ag, in JACK and an agent ag, in Prometheus and the Prometheus
agent ag, uses the data d;. For instance, Bank agent in Prometheus has an overlaps
traceability relation with BankAgent in JACK and Bank agent in Prometheus has
balances data (see Figure G.10). Therefore, there is an uses traceability relation

between BankAgent in JACK and balances data in Prometheus.

accounts

s

-

% Bank:
A

overlaps " uses

1
1
|
A s

public agent Banklgent extends Agent {

fprivate data Accounts accounts ("accounts.dat");

Figure G.10 JACK Agent vs Prometheus Message receives traceability relation
= JACK Agent vs Prometheus Data (creates) - an agent ag, in JACK has creates traceability
relation with a data d, in Prometheus when there is an overlaps traceability relation

between the agent ag; in JACK and an agent ag, in Prometheus and the Prometheus

[250]

agent ag, creates the data d,. For instace, Bank agent in Prometheus has an overlaps
traceability relation with BankAgent in JACK and Bank agent in Prometheus creates
balances data in Prometheus (see Figure G.11). Therefore, there is a creates traceability

relation between BankAgent in JACK and balances data in Prometheus.

s =
=
& ﬂ
overlaps ;- creates

-

1

|

1
¥

public agent Banklgent extends Agent {

#private data Balances balances ("balances.dat")r

Figure G.11 JACK Agent vs Prometheus Date creates traceability relation
JACK Plan vs Prometheus Goal — a plan p, in JACK has achieves traceability relation
with a goal g; in Prometheus when there is an overlaps traceability relation between the
plan p, in JACK and the plan p, in Prometheus and the Prometheus plan p, achieves the
goal g,. For instance, Withdraw Cash plan in Prometheus has an overlaps traceability
relation with WithdrawCash plan in JACK and Withdraw Cash plan achieves
Withdraw Money goal in Prometheus (see Figure G.12). Therefore, there is an
achieves traceability relation between WithdrawCash plan in JACK and Withdraw

Money goal in Prometheus.

Withdraw Cash Withdraw Money

4 #

[= N

1;[:ﬂ. erlaps sachieves
&

L

public plan HithdrawCash extends Plan |

$handlezs event Withdraw ewvent;

Figure G.12 JACK Plan vs Prometheus Goal

[251]

JACK Plan vs Prometheus Role — a plan p, in JACK has uses traceability relation with a
role r; in Prometheus when there is an overlaps traceability relation between the plan p,
in JACK and a plan p, in Prometheus and the Prometheus role includes the plan p,
(see Figure G.13). For instance, Book Finding role in Prometheus includes Find Best
Sellers plan that has an overlaps traceability relation with FindBestSellers plan in
JACK. Therefore, there is an uses traceability relation between Book Finding role in

Prometheus and FindBestSellers plan in JACK.

Browse by special offer

Book Finding
Search by name Search by title
.. : Browse by bestseller
Browse boalk: *\uses

.]

4
" ~ overlaps
X »

Search by ISBN

Find Best Sellers

public plan FindBestSellers extends Plan |
$handles event EgarSeliczsReauest ew:

Figure G.13 JACK Plan vs Prometheus Role uses traceability relation

JACK Plan vs Prometheus Agent - a plan p, in JACK has wuses traceability relation with
an agent a, in Prometheus when there is an over/aps traceability relation between the
plan p, in JACK and a plan p, in Prometheus and the Prometheus agent a, includes the
plan p,. For instance, Atm agent in Prometheus uses Withdraw Cash plan that has an
overlaps traceability relation with WithdrawCash plan in JACK (see Figure G.14).
Therefore, there is an uses traceability relation between Atm agent in Prometheus and

WithdrawCash plan in JACK.

[252]

o

l #
overlaps /" uses
v »

publig plan HirhdrawGash extends Plan |

$handles event Withdraw ewvent;

Figure G.14 JACK Plan vs Prometheus Agent uses traceability relation

JACK Plan vs Prometheus Capability - a plan p, in JACK has uses traceability relation
with a capability ¢, in Prometheus when there is an overlaps traceability relation between
the plan p, in JACK and a plan p, in Prometheus and the Prometheus capability uses
the plan p,. For instance, ArrivalSequencing capability has Request Slot Plan plan and
Request Slot Plan plan has an overlaps traceability relation with RequestSlot plan in
JACK (see Figure G.15). Therefore, there is an uses traceability relation between
ArrivalSequencing capability and Request Slot plan in JACK.

Request Slot Plan ArrivalSequencing

: g

, D‘L'EﬂB.PS S 1USEes
¥

¥ -

plan BemuestSlon extends Plan |
#handles event Jircrafifvent ev:

Figure G.15 JACK Plan vs Prometheus Capability uses traceability relation
JACK Plan vs Prometheus Plan — a plan in Prometheus and a plan in JACK have an
overlaps traceability relation when the name of the plan in JACK is synonyms to the name
of the plan in Prometheus and name of the message that triggers the plan has to be
synonyms to the name of the event. The name of the message that triggers the plan has
to be synonyms to the name of the event. For instance, Request Slot Plan in Prometheus
has synonyms name to RequestSlot plan in JACK (see Figure G.16). Therefore, there
is an overlaps traceability relation between Request Slot Plan plan and RequestSlot plan

in JACK.

[253]

Request Slot Plan pe-———————- AircraftEvent

A
1
| overlaps / synonyms
¥

plan Requearslon extends Plan |
#handles event AircraftEvent ew:

Figure G.16 JACK Plan vs Prometheus Plan overlaps traceability relation
JACK Plan vs Prometheus Percept - a plan pl; in JACK has an uses traceability
relation with a percept p, when there is a plan pl, in Prometheus that has an overlaps
traceability relation with the plan pl, and the plan pl, responds to the percept p,. For
instance, Withdraw Cash plan in Prometheus responds to the Withdraw Percept
percept and WithdrawCash plan in JACK has an overlaps traceability relation with
Withdraw Cash plan in Prometheus (see Figure G.17). Therefore, there is an uses
traceability relation between WithdrawCash plan in JACK and Withdraw Percept

percept in Prometheus.

~— Withdraw F'*"*fl-'ﬁ;—. Withdraw Cash
L h- &

|

' 1SS overlaps ;

M

publig plan HirhdrawGagh extends Plan {

#$handles event Withdraw ewvent;

Figure G.17 JACK Plan vs Prometheus Percept uses traceability relation
JACK Plan vs Prometheus Action (¢creates)- a plan p, in JACK has creates traceability
relation with an action a, in Prometheus when there is an overlaps traceability relation
between the plan p, in JACK and a plan p, in Prometheus and the Prometheus p,
performs the action a,. For instance, Withdraw Approved plan in Prometheus has an
overlaps traceability relation with WithdrawApproved plan in JACK and Withdraw
Approved plan in Prometheus performs Dispense Cash action (see Figure G.18).
Therefore, there is a creates traceability relation between WithdrawApproved plan in

JACK and Dispense Cash action in Prometheus.

[254]

CWithdraw Approved Dispense Cash
. «
: overlaps / creates

publig plan Withdrawhpppoved extends Plan |

#.lgéasoning method
boduy () {
hardware.dispenas (abDc. JetAmount ()) ;

Figure G.18 JACK Plan vs Prometheus Action creates traceability relation
JACK Plan vs Prometheus Message (sends) — a plan p, in JACK has a sends traceability
relation with a message m, in Prometheus when there is an overlaps traceability relation
between the plan p, in JACK and a plan p, in Prometheus and the Prometheus plan p,
sends the message m,. For instance, Withdraw Cash plan in Prometheus has an overlaps
traceability relation with WithdrawCash plan in JACK and Withdraw Cash plan in
Prometheus sends Withdraw Request message (see Figure G.19). Therefore, there is a
sends traceability relation between WithdrawCash plan in JACK and Withdraw

Request message in Prometheus.

e

» 4
* sends

"

public plan WithdrawCash extends Plan |
#3ends event WithdrawRegquest regquest:

i

Figure G.19 JACK Plan vs Prometheus Message sends traceability relation
JACK Plan vs Prometheus Message (receives) — a plan p, in JACK has sends traceability
relation with a message m, in Prometheus when there is an overlaps traceability relation
between the plan p, in JACK and a plan p, in Prometheus and the Prometheus plan p,
recezves the message m,. For instance, Withdraw Cash plan in Prometheus has an
overlaps traceability relation with WithdrawCash plan in JACK and Withdraw Cash
plan in Prometheus receives Withdraw message (see Figure G.20). Therefore, there is a
receives traceability relation between WithdrawCash plan in JACK and Withdraw

message in Prometheus.

[255]

t s
. [ECEIVES 1 overlaps
1.\ *

public plan WithdrawCash extends Plan {
#handles event Withdraw ewvent;

Figure G.20 JACK Plan vs Prometheus Message receives traceability relation
* JACK Plan vs Prometheus Data (uses) - a plan p, in JACK has uses traceability relation
with a data d, in Prometheus when there is an overlaps traceability relation between the
plan p, in JACK and a plan p, in Prometheus and the Prometheus plan p, #ses the data
d,. For instance, Execute Advanced Search plan in Prometheus has an over/aps traceability
relation with ExecuteAdpancedSearch plan in JACK and Execute Adpanced Search plan in
Prometheus reads or modifies BooksDB data in Prometheus. Therefore, there is an uses
traceability relation between ExecuteAdvancedSearch plan in JACK and BooksDB
data in Prometheus. For instance, Process Withdraw plan in Prometheus and
ProcessWithdraw plan in JACK has an overlaps traceability relation and Process
Withdraw plan in Prometheus reads accounts data (see Figure G.21). Therefore, there
is an uses traceability relation between ProcessWithdraw plan in JACK and accounts

data in Prometheus.

ey
Process Withdraw
i >
1 ¥
; overlaps uses

£

public plan ProcessWithdraw extends Plan |

#reads data Accounts accounts;
#mdifies data Balancea balances;

Figure G.21 JACK Plan vs Prometheus Data uses traceability relation
* JACK Plan vs Prometheus Data (creates) - a plan p, in JACK has creates traceability

relation with a data d, in Prometheus when there is an overlaps traceability relation

[256]

between the plan p, in JACK and a plan p, in Prometheus and the Prometheus plan p,
creates the data d;. For instance, Process Withdraw plan in Prometheus has an overlaps
traceability relation with ProcessWithdraw plan in JACK and ProcessWithdraw plan
writes on balances data (see Figure G.22). Therefore, there is a creates traceability

relation between ProcessWithdraw plan in JACK and balances data in Prometheus.

s
Process Withdraw
4 :-
1 T i
+merlaps creates

public plan ProcessWithdraw extends Plan |

$reads data Rccounts accounts;
#modifies data Balancesa balances;

Figure G.22 JACK Plan vs Prometheus Data creates traceability relation
* JACK Belief vs Prometheus Role (creates) — a role r; in Prometheus has creates
traceability relation with a beliefSet b, in Prometheus when there is an overlaps
traceability relation between the beliefSet b, in Prometheus and a data d, in JACK and
role r, writes on the beliefSet b,. For instance, Customer Relation Management role in
Prometheus writes on CustomerDB data and CustomerDB data in Prometheus has an
overlaps traceability relation with CustomerDB beliefSet in JACK (see Figure G.23).
Therefore, there is a creates traceability relation between Custormer Relation Management

role in Prometheus and CustomerDB beliefSet in JACK.

—
Customer Relation Management CustomerDE
N i
L creates [
. | overlaps
A v

public beliefzet CustomerDE extends QpenWorld {

1

Figure G.23 JACK Belief vs Prometheus Role creates relation

[257]

JACK Belief vs Prometheus Role (uses) — a role r, in Prometheus has uses traceability
relation with a beliefSet b, in Prometheus when there is an overlaps traceability relation
between the beliefSet b, in JACK and a data d, in Prometheus and the role r, reads the
data d,. For instance, Purchasing role in Prometheus reads CustomerDB data and
CustomerDB data has an overlaps traceability relation with CustomerDB beliefSet in
JACK (see Figure G.24). Therefore, there is an uses traceability relation between
Purchasing role and CustomerDB beliefSet in JACK.

E=i= o
Purchasing CustomerDB
. uses 4
; 1 overlaps
L | ¥

public belisfset CustomerDE extends OpenWorld {

}

Figure G.24 JACK Belief vs Prometheus Role uses traceability relation
JACK Belief vs Prometheus Agent (creates) — an agent a, in Prometheus has a creates
traceability relation with a beliefSet b, in JACK when there is an overlaps traceability
relation between the beliefSet b, in JACK and a data d, in Prometheus and the agent a,
writes on the data d,. For instance, Atm agent in Prometheus writes on balances data
and balances data in Prometheus has overlaps traceability with Balances beliefSet in
JACK (see Figure G.25). Therefore, there is a creates traceability relation between Atm

agent and Balances beliefSet.

e
%
creates - ove ﬂaPS
a4

pakblic belisfsst Balances extends Qpenlgrld {
#key field jnt account;

#value field jpnt balance;

Figure G.25 JACK BeliefSet vs Prometheus Agent creates traceability relation

[258]

JACK Belief vs Prometheus Agent (wses) — an agent a, in Prometheus has uses
traceability relation with a beliefSet b, in Prometheus when there is an overlaps
traceability relation between the data d; in Prometheus and a belilefSet b, in JACK and
the agent a, in Prometheus wrizes on the data d,. For instance, Customer Relations agent
in Prometheus writes on the CustomerDB data and there is an over/aps traceability
relation between CustomerDB in Prometheus and CustomerDB in JACK. (see Figure
G.20). Therefore, there is an uses traceability relation between Atm agent in

Prometheus and Accounts beliefSet in JACK.

N
' ' overlaps
4 v

public belisfsst Accounts extends QpenWarld {
#key field jpt account:
#value field jpt pin;

Figure G.26 JACK BeliefSet vs Prometheus Agent uses traceability relation
JACK Belief vs Prometheus Capability (creates) — a capability ¢, in Prometheus has
creates traceability relation with a beliefSet b, in Prometheus when the capability cl
writes on a data d; and there is an overlaps traceability relation between the data d, in
Prometheus and the belilefSet b, in JACK. For instance, ArrivalSequencing capability
in Prometheus writes on runway_info data and runway_info data in Prometheus has
an ovetlaps traceability relation with Runwaylnfo beliefSet in JACK (see Figure G.27).
Therefore, there is a creates traceability relation between ArrivalSequencing capability

in Prometheus and RunwaylInfo beliefSet in JACK.

[259]

— 3
ArrivalSequencing W

., Y
. creates [

-

overlaps
4 P

beliefset BunwayInfc extends ClosedWorld |
$key field long ATL;
$value field String aircraft;
#value field long ETA;
$value field boolean booking;

Figure G.27 JACK BeliefSet vs Prometheus Capability creates traceability relation
JACK Belief vs Prometheus Capability (uses) —. a capability ¢, in Prometheus has an uses

traceability relation with a beliefSet b, in Prometheus when the capability c1 reads a
data d, and there is an overlaps traceability relation between the data d; in Prometheus
and the belilefSet b, in JACK. For instance, ArrivalSequencing capability in
Prometheus reads runway_info data and runway_info data in Prometheus has an
overlaps traceability relation with Runwaylnfo beliefSet in JACK (see Figure G.28).
Therefore, there is a creates traceability relation between ArrivalSequencing capability

in Prometheus and RunwaylInfo beliefSet in JACK.

E
ArrivalSequencing w

k> &
~ uses :

-

overlaps
- P

beliefset BunwaylInfc extends ClosedWorld {
$key field long ATL;
$value field String aircraft;
$value field long ETA;
$value field boolean booking;

Figure G.28 JACK BeliefSet vs Prometheus Capability uses traceability relation

[260]

JACK Belief vs Prometheus Plan (creates) — a plan p, in Prometheus has creates
traceability relation with a beliefSet b, in JACK when there is an overlaps traceability
relation between the beliefSet b, in JACK and a data d, in Prometheus and the plan p,
in Prometheus writes on the data d,. For instance, Process Withdraw plan in
Prometheus writes on balances data and balances data in Prometheus has an overlaps
traceability relation with Balances beliefSet in JACK (see Figure G.29). Therefore,
there is a creates traceability relation between Process Withdraw plan in Prometheus

and Balances beliefSet in JACK.

=
Process Withdraw

v Y
', creates i
’ ' overlaps

4 ¥

public beliefset Balances extends OpenWorld |

#key field jpt account;
#value field jpt balance;

Figure G.29 JACK BeliefSet vs Prometheus Plan creates traceability relation
JACK Belief vs Prometheus Plan (uses) — a plan p, in Prometheus has #ses traceability
relation with a beliefSet b, in Prometheus when there is an over/aps traceability relation
between the beliefSet b, in JACK and a data d, in Prometheus and the plan p, in
Prometheus reads the data d,. For instance, Process Withdraw plan in Prometheus
reads balances data and balance data in Prometheus has an overlaps traceability
relation with Balances beliefSet in JACK (see Figure G.30). Therefore, there is an uses
traceability relation between Process Withdraw plan in Prometheus and Balances

beliefSet in JACK.

[261]

e =
Process Withdraw
%

’ A
L uses -

| i overlaps
h A

public beliefset Balances extends OpenWorld !
#key field int account:
#value field int balance;

Figure G.30 JACK BeliefSet vs Prometheus uses traceability relation
JACK BeliefSet vs Prometheus Data - A data in Prometheus and a beliefSet in JACK
has an overlaps traceability relation when the name of the data is synonyms to the name
of the beliefSet and if the name of the the fields of the data and the beliefset are similar
(see Figure G.31). For instance, the name of accounts data in Prometheus is synonyms
to the name of Accounts beliefSet in JACK and the fieds of the Accounts beliefSet

(account and pin) are similar to the fields of the accounts data in Prometheus.

Induded fields/faspects:

e . . .
W int acgount,int pin
| /

overlaps

“---»

public heliefset Accounts/extends Openfforld {
#kevy field int account:
#wvalue field int pin;

Figure G.31 JACK BeliefSet vs Prometheus Data overlaps traceability relation
JACK Event vs Prometheus Agent (receives) — an agent a, in Prometheus has a receives
traceability relation with an event e, in JACK when there is a message m; in
Prometheus that has an overlaps traceability relation with an event e, and the
Prometheus agent a, receives the message m,. For instance, Bank agent in Prometheus

receives Withdraw Request message and Withdraw Request message in Prometheus

[262]

has an overlaps traceability relation with WithdrawRequest event in JACK (see Figure
G.32). Therefore, there is a receives traceability relation between Bank agent in

Prometheus and WithdrawRequest event in JACK.

Withdraw Request /% Barlk
A
' overlaps -~ receives
v .

event WithdrawRedquest extends MessageEvent {

'

Figure G.32 JACK Event vs Prometheus Agent receives traceability relation
* JACK Event vs Prometheus Agent (sends) — an agent a, in Prometheus has a sends
traceability relation with an event e, in JACK when there is a message m; in
Prometheus that has an overlaps traceability relation with an event e, and the
Prometheus agent a, sends the message m,. For instance, Bank agent in Prometheus
sends Withdraw Response message and Withdraw Response message in Prometheus
has an overlaps traceability relation with WithdrawResponse event in JACK (see
Figure G.33). Therefore, there is a sends traceability relation between Bank agent in

Prometheus and WithdrawRequest event in JACK

L
O
&
=
2

Withdraw Response [

overlaps -~ sends

<>

event WithdrawResponse extends MessageEwvent |

i

Figure G.33 JACK Event vs Prometheus Agent sends traceability relation
* JACK Event vs Prometheus Capability (sends) — a capability ¢, in Prometheus has a
sends traceability relation with an event e, in JACK when there is a message m, that has

an overlaps traceability relation with an event e, and the capability ¢, includes the

[263]

message m,. For instance, Traffic Feeding capability in Prometheus sends
AircraftEvent message and AircraftEvent message in Prometheus has an overlaps
traceability relation with AircraftEvent in JACK (see Figure G.34). Therefore, there is
a sends traceability relation between Traffic Feeding capability in Prometheus and

AircraftBvent in JACK.

AircraftEvent

A

]

SRS i overlaps

v v

event LircraftEvent extends TracedMessageEwvent

i

Figure G.34 JACK Event vs Prometheus Capability
JACK Event vs Prometheus Capability (receives) — a capability ¢, in Prometheus has a
recesves traceability relation with an event e, in JACK when there is a message m, that
has an overlaps traceability relation with an event e, and the capability ¢, receives the
message m,. For instance, Flying capability in Prometheus receives Enter Control Area
message and Enter Control Area message in Prometheus has an overlaps traceability
relation with EnterControlArea event in JACK (see Figure G.35). Therefore, there is a
receives traceability relation between Flying capability in Prometheus and

EnterControlArea event in JACK.

Enter Control Area

A
s \
receives : overlaps

v -

event EnterControlirea extends Event |

'

Figure G.35 JACK Event vs Prometheus Capability receives relation

[264]

JACK Event vs Prometheus Plan (sends) — a plan p, in Prometheus has a sends
traceability relation with an event e, in JACK when there is a message m, that has an
overlaps traceability relation with an event e, and the plan p, sends the message m,. For
instance, Process Withdraw plan in Prometheus sends Withdraw Response message
and Withdraw Response message in Prometheus has an overlaps traceability relation
with WithdrawResponse event in JACK (see Figure G.36). Therefore, there is a sends
traceability ~relation between Process Withdraw plan in Prometheus and

WithdrawResponse event in JACK.

Process Withdraw Withdraw Response

i A

i I
. sends ! overlaps

L v

public event WithdrawFesponse extends MessageEwvent |

'

Figure G.36 JACK Event vs Prometheus Plan sends traceability relation
JACK Event vs Prometheus Plan (receives) — a plan p, in Prometheus has a recesves
traceability relation with an event e, in JACK when there is a message m, that has an
overlaps traceability relation with an event e, and the plan p, includes the message m,.
For instance, Process Withdraw plan in Prometheus receives Withdraw Request
message and Withdraw Request message in Prometheus has an overlaps traceability
relation with WithdrawRequest event in JACK (see Figure G.37). Therefore, there is
an receives traceability relation between Process Withdraw plan in Prometheus and

WithdrawRequest event in JACK.

[265]

Process Withdraw pe-----————+ Withdraw Request

*
' overlaps
v

receives

*_-__

event WithdrawRBecquest extends MessageEvent |

i

Figure G.37 JACK Event vs Prometheus Plan receives traceability relation
* JACK Event vs Prometheus Message (overlaps) — an event e, in JACK have an overlaps
traceability relation with a message m, if the name of type of the event is synonyms to
the name of the message in Prometheus. For instance, Withdraw Request message in
Prometheus has a synonyms name to WithdrawRequest event in JACK (see Figure
G.38). Therefore, there is an overlaps traceability relation between Withdraw Request

message and WithdrawRequest event in JACK.

'I.I'u'ithd}aw Request
o
't overlaps
¥

event MithdrawRéluest extends MessageEvent |

i

Figure G.38 JACK Event vs Prometheus Message overlaps traceability relation

[266]

