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ABSTRACT 

 

Credit spreads are important financial tools, since they are used as indicators of economic 

progression, investment decisions, trading and hedging, as well as pricing credit derivatives. 

Their role has become more significant for the European fixed income markets since the 

introduction of the Euro, which reshaped the mechanics of the financial environment. The 

introduction of single currency provided the means for a pan-European economic growth and 

cross-border development, liberalized a vast inflow of capital which was once fragmented 

into different currencies, and provided the dynamics of cross-border investments around a 

unified legislative framework. Thus, the main subject of the thesis is to provide further 

insight into and investigate the nature and the dynamics of credit spreads of European 

corporate bond indices during the credit crisis period. 

 

Traditional quantitative credit risk models assume that changes in spreads are normally 

distributed but empirical evidence shows that they are likely to be skewed and fat-tailed, and 

if they are ignored then the calculation of loss probabilities will be seriously compromised. 

Therefore, the first area of investigation aims to provide further insight into the dynamics of 

higher moments and regime shifts in credit spread changes by applying a GARCH-type 

model that allows for time-varying volatility, skewness and kurtosis, as well as a Markov 

regime-switching GARCH specification to capture the structural changes in the volatility of 

credit spreads. Furthermore, a comparison of the different specifications is undertaken in 

order to assess which model better fits the empirical distribution of the data and produces best 

Value-at-Risk estimates. The results presented have significant implications for risk 

management, as well as in the pricing of credit derivatives.   

 

The second area of investigation is to assess and evaluate time-varying correlation of credit 

spreads. Different multivariate GARCH models, such as Orthogonal-GARCH, the Constant 

and Dynamic Correlation GARCH models, Risk Metrics and Diagonal-BEKK, are applied to 

examine the behaviour and dynamics of time-varying correlation. Additionally, the 

performance of the proposed models is examined by determining whether they produce 

accurate VaR estimates. The study finds evidence in support of time-varying correlation 

coefficients between credit spreads which appears to be market dependent and has 

implications for pricing of derivatives, portfolio selection, trading and hedging activities, as 

well as risk management. 

 

Finally, the impact of economic determinants of credit spreads such as the risk-free rate, 

inflation, as well as equity and commodity indices and volatilities, are investigated over 

different market conditions using regime switching models. The results highlight how the 

effect of the determinants on credit spreads varies across different market conditions and 

point to the existence of non-linear relationship between the determinants and credit spread 

changes. The study reveals that the regime dependent determinants have significant 

explanatory power only in the high volatility regime. Finally, it is shown that the feed-

forward neural network model out-performs the other specifications applied in this study in 

terms of estimating out-of-sample mean forecasts.  
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Chapter 1  

                                         Introduction 

 

 

 

 

 

 

 

 

1.1 Introduction  

Equation Chapter 1 Section 1 

The aim of this chapter is to introduce the European bond markets and to establish the 

significance of the research in this thesis. It starts by briefly discussing the history of 

the European Union that ultimately led to the creation of the single market and the 

single European currency - the Euro. The chapter then describes how the single 

currency acts as a catalyst in reshaping the mechanics of the European financial 

markets, the means of promoting economic integration between the member states and 

encouraging the development of a deep and liquid European bond market, which is 

significantly larger than the equivalent U.S. and Japanese bond markets. In addition, 

the chapter introduces the notation of the debt instrument and the different types of risk 

which affect this instrument. However, it argues that the most important type of risk to 

which market participants are exposed is credit risk and, also discusses the importance 

of modelling this type of risk. Finally, the objectives, significance and contribution of 

the thesis are presented.   
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1.2 Introduction to the European Markets 

 

The European Union, as we know it today, is a unique economic and political 

partnership between twenty-seven European countries, working towards the 

achievement of common goals, including peace and political stability, economic 

prosperity, financial stability and to overcome the economic and political divisions 

between member-states by promoting the development of a single market. The 

restrictions on trade, competition, and taxation between the member states have been 

gradually eliminated through a number of important treaties. The Treaty of Rome, in 

1957, established the European Economic Community (EEC) with the aim of 

removing customs barriers within the Community and establishing a common customs 

tariff on goods from non-EEC countries. The key instrument in establishing the single 

market was the Single European Act, signed in Luxembourg and Hague and came into 

force in July 1987; its purpose being to stimulate the industrial and commercial 

expansion under a unified taxation and economic legislation framework. The Treaty on 

European Union, signed in Maastricht on 7 February 1992, introduced new forms of 

co-operation between the member states and led to the creation of the single European 

currency - the Euro.  

The objective of the Euro is to promote the economic activity of the single market by 

eliminating exchange rates, improving transparency of the price mechanism, 

promoting price stability and finally protecting economies from large negative shocks 

which would otherwise affect the individual currencies negatively. Improving 

transparency of the price mechanism enables consumers and investors to recognise 

changes in relative prices and to make informed consumption and investment decisions 

in order to allocate resources more efficiently. Promoting price stability has a threefold 

effect: first, it reduces the inflation risk premia requested by investors in interest rates, 

and therefore, reduces the real interest rates and offers incentives for further 

investments; second, it reduces prolonged inflation and deflation periods which can 

distort the economic activity and the behaviour of the single market; and third it 

prevents the arbitrary redistribution of wealth and income as a result of unexpected 

inflation or deflation. 
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Prior to the introduction of the European Monetary Union (EMU), the European fixed 

income markets were a fragmented network due to the non-uniform taxation regime, 

the different transaction costs and high level of complexity in creating different kinds 

of positions, such as cross-market hedging. The studies of Ozcan et al. (2009), Lane, 

(2008), Fabozzi and Choudhry, (2004), among others, have shown that the integration 

of the European markets has been achieved at a substantial level. Although it varies 

across different product segments, integration is complete for unsecured interbank 

deposits such as EONIA (Euro Overnight Index Average) and EURIBOR (Euro Inter-

Bank Offer Rate), as well as interest rate swaps whose bid/ask spreads have narrowed. 

Furthermore, functional money markets are the first step to the development of bond 

markets, as they not only price liquidity, which is used as a benchmark for pricing 

fixed income instruments, but also assist the development of forward and spot rates. 

Forward rates, for example, are essential ingredients for pricing a variety of 

instruments such as OTC (Over-The-Counter) instruments, interest rate swaps, forward 

rate agreements (FRA) and option contracts.  

 

1.3 Introduction to the European Bond Markets 

 

The introduction of the single European currency in January 1999 was the catalyst for 

reshaping the mechanics of the European financial markets. According to Holder et al. 

(2001), the launch of the Euro as a single currency was heralded as a major 

opportunity for the development of European bond markets. This introduction has 

resulted in the development of a deep and liquid bond market, which is promoted by: 

the once fragmented capital under the different currencies, the economic growth and 

development on a pan-European level, and the issuance of cross-border securities and 

instruments under a unified legislative framework. Specifically, it has allowed 

financial institutions to access a larger pool of investors which enabled them to 

diversify their liabilities away from the traditional country-specific loan structures and 

to distribute credit risk on a wider base and in a more efficient manner. 

 

The European government bond market has become the largest government bond 

market both in size and issues. In 2003, the European government bond market had € 

2.5 trillion outstanding bonds which was 40% and 30% larger than the respective US 

Treasury and Japanese markets (see Fabozzi and Choundhry, 2004). In addition, in 
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February 2003, there were 250 European government issues of more than € 1 billion 

outstanding compared to 108 issues in the US treasury market. The European 

corporate bond market has significantly increased and in 2004 amounted to 45% of the 

international bond markets (Bank of International Settlements, Quarterly Review, 

2004). Finally, the introduction of the Euro as a single currency has enabled the 

development of a deep and liquid European government and corporate bond markets, 

and has greatly benefited other European Fixed Income markets such as the quasi-

sovereigns, high grade and high yield bonds, asset-backed securities (ABS), mortgage-

backed securities (MBS), collateralised debt obligations (CDO), and repackaged 

securities. 

 

1.4 Introduction to Debt Securities  

 

A bond, also known as a fixed income instrument, is a debt capital market instrument 

by which the issuer or borrower is committed to repaying the lender or bondholder the 

amount borrowed, called principal, plus interest over a specified period of time. The 

most common type of bond is a bond without any embedded option, which makes 

periodic payments at a fixed rate, known as coupon, and the principal on the maturity 

date. The price of such a bond is the present value of the cash flows (coupons and 

principal) and can be calculated in three steps. First, the cash flows to which the bond 

holder is entitled are estimated; second, the discount rates for the maturities 

corresponding to the cash flow payment dates are calculated; and third, the bond is 

obtained as the discounted value of these cash flows. The pricing formula is given as: 

 
       

2
1 1 2

11 1 1

T

t T
t t T

CF C C C FV
P

yy y y


    

  
  (1.1) 

where CF denotes the cash flows of the bond, C denotes the coupon, FV the face value 

or principal and  1 1
t

ty the discount rate corresponding to the appropriate maturity. 

Figure 1.1 presents the relationship between the bond prices of a five-year maturity 

coupon bearing bond with a face value of £1000 for different coupon rates and yield-

to-maturities. It shows that the price of the bond increases as the coupon rate increases, 

assuming that interest rates are kept constant; and that the price of the bond decreases 

as interest rates increase, assuming constant coupon rates. 
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Figure 1.1 Relationship between bond prices, coupon rates and interest rates 

 

 

The risk of investing in fixed income instruments is characterised by the impact of 

different market risks on the return of the security. A typical bond has two sources of 

return: first, through changes in the market value of the bond; and second, through the 

cash flows and their reinvestments over the holding period. Both of these sources are 

affected by a number of risks
1
, such as: interest-rate risk; reinvestment risk; call risk; 

yield curve risk; credit risk; liquidity risk; exchange-rate risk; inflation or purchasing 

power risk; event risk and sovereign risk.  

 

Interest-rate risk is the risk associated with the movement of interest rates that results 

in capital loss when buying or selling a fixed income security (for example, an investor 

who may wish to sell a bond prior to the maturity date, may experience a capital loss 

when interest rates increase). Reinvestment risk is the risk that the proceeds received 

from interest and principal are reinvested at a lower interest rate than the fixed income 

instrument that generated these proceeds. Call risk is the risk associated with bonds 

that have a provision that allows the issuer to retire (call) in full or in part the issue 

before the maturity date if interest rates decline below the coupon rate (which means 

that in case the issuer calls the bond the investor will have to reinvest the proceeds at 

lower interest rates and the price of a callable will be reduced relative to the price of a 

comparable option-free bond). Yield curve risk is the risk that affects the price of the 

                                                 
1
  For additional information on the individual risks refer to Fabozzi, F, J., The Handbook of Fixed 

Income Securities, 2005, McGraw-Hill Professional, 7-th Edition. 
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fixed income instrument when the yield curve shifts (for instance if an upward 

parallel-shift in the yield curve is observed then the bond price according to equation 

(1.1) will decrease and will result in a capital loss). Liquidity risk is the risk that an 

investor wishing to sell a bond prior to the maturity date is concerned with whether the 

bid price from a broker will be close to the indicated value of the issue. Liquidity is 

measured as the size between the bid and ask prices quoted by a dealer, and the wider 

the bid-ask spread, the greater the risk. Exchange-rate risk is the risk an investor will 

receive less of the domestic currency, when investing in a fixed income instrument that 

makes payments in a currency other than the investor’s domestic currency. Inflation or 

purchasing power risk arises from the decline of a bond’s cash flows due to inflation 

as the interest rate the issuer promises to make is fixed for the life of the issue. Event 

risk is the risk associated with unforeseen events that impair the ability of an issuer to 

meet his obligations. Such events may be: natural disasters or industrial accidents; 

takeover or corporate restructuring; and regulatory changes. Sovereign risk is the risk 

an investor faces when purchasing a fixed income security from a foreign entity (for 

example a UK investor purchasing a U.S. Treasury bill). Credit risk is one of the most 

important types of risk to which the investors or traders in the bond markets are 

exposed. It is the risk that a borrower may fail to satisfy the terms of the contractual 

obligations with respect to the timely payment of the interest (coupon) and the amount 

borrowed (principal). Therefore, before entering a contract, the counter-party is 

evaluated in terms of its capacity to fulfil its contractual obligation based on its credit 

risk and creditworthiness. 

 

1.5 Introduction to Credit Risk  

 

Credit risk is characterized by three types of risk, namely, default risk; downgrade 

risk; and credit spread risk. Default risk is the risk that the issuer will be unable to 

honour his contractual obligations in full and on time. Downgrade risk is the risk that a 

recognized rating agency will reduce the credit rating of an issuer. This deterioration of 

credit-worthiness reflects the issuer’s capacity to honour his debt obligation and affects 

the price of the security issued by the issuer. Credit spread risk is the risk that the yield 

premium or the spread over a reference rate will increase for a debt obligation due to 

adverse changes in market conditions. These risks do not appear, at first, to be 

interrelated; however, default is the product of a series of downgrades and credit 
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spread widening which reflects the gradual inability of the issuer to honour his debt 

obligations (see Anson et al. 2004).  

 

Credit spreads are defined as the difference between the yield to maturities of a 

corporate and a comparable government bond. They are important variables in the 

financial markets as they reflect the likelihood of failure of an entity to honour its 

obligation. The behaviour of credit spreads is counter-cyclical to that of the economy, 

which means that they narrow during business cycle expansions and widen during 

contractions (see Guha and Hiris, 2002, Altman, and Bana, 2004, among others). The 

economic interpretation for this kind of behaviour is that during a contracting 

economy, corporations experience a decline in cash flows, increasing the likelihood 

that the bond or debt issuers might be unable to service their debt obligations. At the 

same time, governments adopt monetary policies, such as reducing interest rates in 

order to boost the economy. Therefore, the combination of these interest rate cuts and 

the higher yield demanded by investors, in order to hold fixed income instruments as 

credit quality deteriorates, widens credit spreads. On the other hand, on the beginning 

of an expanding economy, governments increase interest rates, corporations expand 

and their cash flows increase which in turn decreases the likelihood that the bond 

issuers might be unable to honour their contractual obligations which results in 

reducing credit spreads.  

 

Even before the appearance of credit derivatives there were mechanisms for protecting 

against credit risk, such as collateral guarantees, private mortgage insurance, insurance 

wraps and letters of credit. These mechanisms are embedded within bond structures 

and other loan agreements by design and, therefore, are not tradable in the secondary 

market. Thus, the development and rapid expansion of the credit derivatives markets 

can be attributed, first, to their effectiveness and efficiency to disperse credit risk to 

other investors, who are willing to accept this type of risk for the potential of an 

enhanced yield; and, second, to the information they have contributed for the 

enhancement of risk management. 
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1.6 Introduction to the European Benchmark Yield Curves 

 

Government bonds have long been used as benchmark instruments in the global fixed 

income markets. This is because they present unique features not monitored in any 

other security in the market. The most important of these are that they are assumed to 

be default-risk free; they span a wider range of maturities thus making it easy to 

compute long-term instruments; and they present higher liquidity compared to non-

government papers. What is more, with the development of the repo and derivatives 

markets for government securities, participants are allowed to undertake a variety of 

positions that reflect future expectations and device trading and hedging strategies to 

optimize their risk-return portfolios.  

 

 Before the introduction of the common monetary policy, the Euro market was without 

a uniform benchmark yield curve. The study by the International Monetary Fund 

(IMF) (2001) argues that none of the German, French, or to a lesser extent, Italian 

securities that have emerged can fulfil all purposes of pricing, hedging and investment 

as they are too modest in size, compared to the overall pan-European market. Dunne et 

al. (2002) argue that the benchmark yield curve should consist of a basket of bonds 

rather than a single instrument. In addition, the European fixed income markets 

considered interest rate swaps as benchmark rates, because they offered a simpler way 

to compare returns or borrowing costs in different markets and could provide 

comparability across the fragmented European fixed income markets. Blanco (2001) 

argues that interest rate swaps were the preferred means of hedging cash positions in 

non-government bonds.  

 

After the introduction of the Euro, the German government securities market has 

benefited the most from improvements in liquidity making it an attractive benchmark 

yield curve. In addition, the launch of the Eurex Bond and Eurex Repo
2
 trading 

platforms has greatly assisted in the expansion of the German bond market by 

lowering the transaction costs and increasing significantly its liquidity compared to the 

other reference securities in the Euro market. The studies of Ejsing and Sihvonen 

(2009) and Schknecht, von Hagen, and Wolswijk (2010) find that German benchmark 

                                                 
2
 More information on Eurex Bonds and Eurex Repos can be found in: 

   http://www.eurex-bonds.com/  

   http://www.eurexrepo.com/ 
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status securities have superior liquidity compared with those in the U.S. treasury 

market, and that during the credit crisis period the German Government market gained 

a safe-haven status in the international financial markets similar to the U.S. Treasury 

market.  

 

There are also a few other non-government securities, which may have the potential to 

be used as benchmarks yields, although none of them has been widely applied in the 

Euro market. Possible candidates could be the yield index of similarly rated corporate 

bonds, average yield on collateralized obligations, Pfandbriefe or covered bonds and, 

finally, debt instruments issued by government-sponsored enterprises (GSEs). 

 

1.7 Aims, Objectives and Contribution of the Thesis 

 

Accurate assessment of credit risk depends on methods to accurately measure and 

control potential or expected losses resulting from default. This includes the estimation 

of credit exposure, the probability of default, and the fraction of market value 

recoverable at default. Credit spreads, which are defined as the difference between the 

yield to maturities of a corporate and a comparable government bond, is believed to 

reflect the credit risk of the issuer. Credit spreads change over time for reasons such as 

varying market conditions, changes in the credit ratings of issuers, or changes in 

expectations regarding the recovery rate (see Campbell and Huisman, 2003, Longstaff 

and Schwartz, 1995, among others). The role of credit spreads has become even more 

important in the European fixed income markets since the launch of the single 

currency, because credit spreads are used as indicators of economic progression, 

investment decisions, trading and hedging activities, as well as pricing credit 

derivatives.  

 

Traditional quantitative credit risk models assume that changes in spreads are normally 

distributed but empirical evidence shows that they are likely to be skewed and fat-

tailed
3
 (see Campbell and Huisman, 2003, Phoa, 1999, among others). Negative 

skeweness, therefore, indicates a bias towards downside exposure, which means that 

there are more negative changes or large negative returns than positive ones (see 

                                                 
3
 Skewness is a measure of the asymmetry and kurtosis is a measure of the peakedness of a probability 

distribution.  
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Anson et al. 2004). Furthermore, the probability distribution of credit spreads at any 

given time is of paramount importance for risk management, trading and hedging 

activities, as Pedrosa and Roll (1998) argue that the calculations of loss probabilities, 

such as VaR, will be seriously compromised by the assumptions of normality, constant 

higher moments, and by ignoring the possibility of shifting regimes. Therefore, the aim 

of this thesis is to investigate the nature and dynamics of credit spreads and to evaluate 

the forecasting performance of the different econometric approaches during the credit 

crisis period; which according to Neftci (1996) all higher moments need to be taken 

into consideration when pricing derivatives during rare market events.  

 

The following sections discuss in detail the significance of each empirical chapter, the 

econometric and statistical techniques applied, and highlight the contribution of this 

thesis in the existing literature. The first empirical chapter provides further insight into 

the dynamics of higher moments and regime shifts in credit spread changes. The 

second empirical chapter investigates the dynamics of time-varying correlation 

between the credit spread indices. Finally, the third empirical chapter examines the 

impact of different macroeconomic drivers on the credit spread changes.   

 

1.7.1 Modelling the Dynamics of Credit Spread Moments 

 

Modelling the dynamics of higher moments and regime shifts of financial time series 

is important not only for risk management, as this study shows, but for derivative 

pricing, investment decisions, as well as trading and hedging strategies. Campbell and 

Siddique (1999), León et al. (2004) and Brooks et al. (2005) argue that the dynamics 

of higher moments of financial variables can be affected by frequency, seasonality and 

return aggregation which consequently can affect the result of trading and hedging 

activities. Moreover, they argue that models which account for higher moments can 

better describe and capture the distributional properties of underlying asset returns.  

 

Kostika and Markellos (2007) show that models, which allow for time variation in 

volatility, skewness and kurtosis, outperform conventional hedge ratio estimation 

methodologies. The studies of Prakash, et al. (2003), Sun and Yan (2003), Harvey, et 

al. (2004) and Jondeau and Rockinger (2006) argue the importance of incorporating 
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higher moments in portfolio allocation as they provide superior approximation of the 

expected utility. Additionally, as Brooks et al. (2005) show, models accounting for 

time-varying higher moments can be used to compute separate estimates of the market-

required risk premium associated with variance, skewness and kurtosis risk. In risk 

management, the studies of Burns (2002), Angelidis et al. (2003), Brooks and Persand 

(2003), Brooks et al. (2005), Perignon and Smith (2006) and Wilhelmsson (2007) 

illustrate that after examining a variety of GARCH models only those that account for 

higher moments in their distributions provide significantly better volatility and Value-

at-Risk estimates. In derivative pricing, Heston and Nandi (2000), Christoffersen, et 

al., (2006), Jacobs and Li (2004), and Tahani (2006) illustrate the importance of 

incorporating the dynamics of higher moments in option pricing as they find 

substantial pricing improvements compared with the conventional pricing models. 

Finally, León et al. (2004) argue that the dynamics of higher moments can be applied 

in analyzing the information content of option-implied coefficients of skewness and 

kurtosis.  

 

Another approach that allows the dynamics of volatility to change is Markov regime 

switching models. For example, the studies of Hamilton and Susmel (1994), Hamilton 

(1994), Klaassen (2002), and Marcucci (2009) have shown that regimes capture the 

dynamics of the underlying returns better and produce superior forecasts, as well as 

more accurate estimates of VaR. Alizadeh and Nomikos (2004) illustrate that Markov 

Regime Switching hedge ratios outperform alternative models in terms of reducing 

portfolio risk. 

 

However, the existing literature on credit risk models and credit risk management is 

limited and existing studies do not consider the dynamics of credit spread moments. In 

this respect, Chapter 5 aims to provide further insight into the dynamics of higher 

moments and regime shifts in credit spread changes by applying a GARCH-type model 

that allows for time-varying volatility, skewness and kurtosis. In addition, a regime-

switching specification is used to capture the structural changes in volatility of credit 

spread changes, while allowing the degrees-of-freedom to be state dependent to 

account for time-varying kurtosis. Finally, Chapter 5 compares the different 

specifications to assess which model better fits the empirical distribution of the data 

and produces best Value-at-Risk estimates. 
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1.7.2 Modelling the Dynamics of Correlation between Credit Spreads 

 

Correlation between asset prices is the most important parameter in portfolio selection, 

asset allocation, pricing of derivatives, risk management, as well as trading and 

hedging activities. Numerous studies have shown that correlation between different 

asset classes varies over time (e.g. Engel and Rosenberg, 1995, Bollerslev, 1990, 

Kroner and Claessens, 1991, Karolyi, 1995, Lien and Luo, 1994, amongst others) and 

although correlation between yields and credit spreads of different maturities can be 

relatively high, it has been shown that correlation between them can vary over time 

(see Dai and Singleton, 2003, Singleton, 2006, Berndt et al., 2008). The time-varying 

correlation in yields and credit spreads is of paramount importance in risk 

management, credit portfolio modelling, the evaluation of credit derivatives (i.e. 

collateralized debt obligations (CDOs)), trading and hedging default risk. 

 

The significance of modelling the time-varying correlation of credit spreads has been 

illustrated by a number of studies.  Berndt et al. (2008) highlight the importance of 

credit spread correlation in the pricing of credit derivatives by incorporating interest 

rate and credit spread correlation in their model. Roscovan (2008) constructs a hedging 

strategy by relating bond portfolio returns to changes in credit spreads. Friewarld and 

Pichler (2008) propose a spread based model to price credit derivatives that 

incorporates the correlation of credit spreads. They compare their model with other 

conventional approaches and find that their model is superior during turbulent market 

conditions. Bobey (2009) investigates the relationship between systematic default 

correlation and corporate bond credit spreads and finds that credit spreads are 

positively related to the CDO market implied default correlation.  

 

However, the literature on understanding the dynamics of correlation in credit spreads 

is limited and has only recently become an area of interest.  The aim of Chapter 6 is to 

investigate the behaviour of time-varying correlation in credit spreads and to compare 

the properties and performances of the different multivariate GARCH models. The 

performance of the proposed models is examined by determining whether they 

produce accurate VaR estimates. 
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1.7.3 Determinants of European Corporate Credit Spread Indices  

 

Over the last few years a large body of literature has been devoted to investigating the 

behaviour of the drivers behind credit spreads. The literature on the determinants of 

credit spreads can be classified into two categories, the theoretical; and empirical. The 

theoretical literature can be further separated into two categories, structural and 

reduced form models. The former spring from the work of Black and Scholes (1973) 

and Merton (1974), who assume that the value of the firm follows a stochastic process 

and default occurs when the value of the firm falls below a predetermined boundary. 

The latter spring from the studies of Jarrow and Turnbull (1995) and Duffie and 

Singleton (1999) who treat default as a pure jump process. The theoretical literature 

also argues in favour of the existence of an inverse relationship between interest rates 

and credit spreads. This means that an increase in the risk-free rate would narrow 

credit spreads, as it would increase the risk neutral drift and reduce the default 

probability.  

 

The studies of Delianides and Gerske (2001), Collin-Dufresne and Martin (2001) and 

Brown (2001), among others, approach the determinants of credit spreads in a more 

empirical framework, by applying a variety of econometric models and using a number 

of different factors as determinants. They find that an increase in the risk-free rate 

would induce a widening in the credit spreads as opposed to the theoretical literature. 

In addition, empirical models have illustrated the existence of a common factor that 

explains the remaining large proportion of variation in credit spreads. Finally, the 

theoretical and the empirical approaches have generated an interesting dichotomy 

regarding the perception of the risk-free rate and its possible relationship to credit 

spreads. 

 

In Chapter 7 the effect of the risk-free rate and other important determinants, such as 

the inflation and commodity prices (measured as the EuroMTS inflation and Goldman 

and Sachs Commodity Indices) which have not been previously considered as 

macroeconomic drivers of credit spread changes are investigated. The EuroMTS 

Inflation Index measures the performance of the Eurozone inflation-linked sovereign 
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debt, allowing the examination of the daily impact on credit spread changes. The S&P 

Goldman Sachs Commodity Index is a composite index of the commodity sector 

returns and is broadly diversified across the spectrum of commodities. In addition, this 

thesis models the nonlinear effects of the determinants on credit spread changes and 

examines whether the influence of the determinants on credit spread changes varies 

during different market conditions by applying two statistical approaches: the Markov 

regime switching regression model and the feed-forward neural networks. The former 

approach is able to capture structural breaks in the time series, which may be due to 

changes in government policy, market microstructure, seasonality,  and business 

cycles, to name but a few, and springs from the work of Goldfeld and Quandt (1973) 

and Hamilton (1989). 

 

The latter statistical approach, which has not been previously applied in the modelling 

of the non-linear relationship between determinants and credit spreads, is Neural 

Networks. Neural Networks emerged in the late-1800s as an attempt to describe the 

processing behaviour of the human mind; since then they have been expanded and 

applied in many scientific areas with varying degrees of success. This type of neural 

networks models nonlinear relationships between input and output layers while the 

information moves in only one direction, from the input layer (i.e. the determinants) 

through the hidden layer and, finally, to the output layer (i.e. credit spread changes).  

 

1.8 Structure of the Thesis 

 

In this section the outline and structure of the thesis will be presented. Chapter 2 

reviews the literature as follows: a general overview of the approaches that are applied 

in evaluating credit risk is presented and past studies that investigate the determinants 

of credit spreads are discussed; the distributional properties of credit spreads are 

presented and the different econometric and statistical approaches proposed by a 

number of studies are discussed in detail. In addition, the shortcomings of these studies 

are discussed and those areas that need further investigation are highlighted.   

 

Chapter 3 discusses the different econometric and statistical methodologies that are 

applied throughout the thesis. The building blocks of time series modelling, the 

univariate time series models, including stationarity and unit root tests are presented. 
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Topics on multivariate and non-linear analysis of time series such as VAR and Markov 

regime switching models are also presented. The ARCH and GARCH models as well 

as their variations, which are used to estimate time-varying variance, skewness and 

kurtosis along with the Markov regime switching GARCH models are discussed in 

detail. Finally, the multivariate volatility models such as BEKK, O-GARCH, CC-

GARCH and DCC-GARCH as well as the principal component analysis are presented.  

 

Chapter 4 introduces the data set used for empirical analysis, reviews the statistical 

properties of the different variables and examines the univariate properties of the series 

such as stationarity and unit roots. The credit spreads examined are computed as the 

difference between the yield on iBoxx Euro Corporate Indices and the yield on 

equivalent German government bonds. The German government bonds are selected 

because they are the most liquid instruments compared to the other European and U.S. 

benchmark rates, in addition to having gained a safe-haven status in the international 

financial markets. 

  

Chapter 5 investigates the dynamics of credit spread moments and compares such 

behaviour across different credit ratings and maturities. To achieve this, a series of 

models including simple asymmetric GARCH models, time-varying volatility, 

skewness and kurtosis models known as GARCH-SK, as well as variants of Markov 

Regime Switching GARCH models are utilised. The analysis captures the dynamics of 

the shape of the distribution of credit spreads over time. Furthermore, the forecasting 

performance of these models, in estimation of Value-at-Risk, is examined. 

 

Chapter 6 is devoted to examining and comparing the properties and performance of 

the different multivariate GARCH models in capturing the correlation between credit 

spreads. The models examined within this study are the Orthogonal-GARCH, the 

Constant and Dynamic Correlation GARCH, Risk Metrics and Diagonal-BEKK 

formulation. The performance of these models is examined by determining whether 

they produce accurate VaR estimates.. 

 

Chapter 7 investigates the impact of the risk-free rate and other important determinants 

on credit spreads. In order to examine whether the influence of the determinants on 

credit spread changes varies under different market conditions a Markov regime 
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switching model is proposed and estimated. In addition, a feed-forward neural 

network, which models the nonlinear relationship between input and output layers 

while the information moves in only one direction, from the input layer (i.e. the 

determinants) through the hidden layer and finally to the output layer (i.e. credit spread 

changes), is utilized.  

 

The final section of this chapter presents the main conclusions of the study as well as 

the importance and implications of each empirical study. Finally, the last section of the 

chapter is devoted to suggesting limitations in the empirical investigation as well as 

suggestions for future research.  

 

1.9 Conclusions 

 

This chapter introduced the unique characteristics of the European fixed income 

markets and familiarised the reader with the topics discussed and analysed in this 

thesis. In particular, a brief historical description of the events that led to the creation 

of the European Union and the ways in which the single currency has affected the 

developments of the European fixed income markets are outlined. What is more, the 

different types of risk that affect a debt instrument are introduced, presenting the 

argument that credit risk is one of the most important types of risk to which market 

participants are exposed and discussing the importance of modelling this type of risk.  

 

The main areas of research analysed and discussed in this thesis are identified and the 

contribution of this thesis to the existing literature is highlighted. The aim of the first 

empirical chapter is to provide further insight into, and enhance our understanding of, 

the dynamics of higher moments and regime shifts in credit spread changes. Several 

econometric techniques and models are applied to investigate these dynamics and 

regime shifts. Different specifications and models are also compared in order to 

establish which model better fits the empirical distribution of credit spread series and 

produces the best volatility and VaR estimates based on risk management loss 

functions. The second empirical chapter examines and compares the properties and 

performance of the different multivariate GARCH models in capturing the correlation 

between the credit spreads and which specification produces best Value-at-Risk 

estimates based on risk managements’ loss functions. The third empirical chapter 
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examines the impact of different market and macroeconomic drivers on the Euro credit 

spreads. It highlights how the effect of the determinants on credit spreads varies across 

different market conditions and applies a statistical model that has not been previously 

employed in capturing the non-linear relationship between the determinants and credit 

spread changes. 
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2.1 Introduction 

Equation Chapter 2 Section 1 

One of the most important types of risk to which market practitioners are exposed is 

credit risk. Credit risk is defined as the risk that a borrower will fail to satisfy the terms 

of the contractual obligations with respect to the timely payment of the amount 

borrowed. More importantly, these obligations not only refer to the incomplete 

fulfilment of the borrower’s obligation, but also to the delay or postponement in 

fulfilling them, even though they are later satisfied. Therefore, before entering into a 

contract the counter-party is evaluated in terms of its capacity to fulfil its contractual 

obligation based on its credit risk and creditworthiness. 

 

Credit risk incorporates three types of risk, namely: default risk; downgrade risk; and 

credit spread risk. Default risk is the risk that the issuer of an obligation will be unable 
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to pay the outstanding debt. This means that the issuer will be unable to repay either 

the full amount or a portion of the debt. Downgrade risk is the risk associated with the 

deterioration of an issuer’s credit status, reported by recognized statistical rating 

agencies, reflecting its capacity to honour its debt obligation. Credit spread risk is the 

risk that the yield premium or the spread over a reference rate will increase for a debt 

obligation, due to changes in market conditions; and also is the market’s reaction to the 

perceived credit deterioration, which does not necessarily mean that the issue will 

default. 

 

This chapter is structured as follows. Section 2.2 introduces and reviews the two most 

common approaches that are proposed and developed to model credit risk, the 

structural and reduced form models, Section 2.3 describes the determinants of credit 

spreads, Section 2.4 discusses the importance in modelling the dynamics of credit 

spreads, Section 2.5 reviews the ARCH / GARCH and the variants as well as the 

Markov regime switching GARCH models, Section 2.6 reviews the multivariate 

GARCH models and Section 2.7 presents the summary of the review and concludes.  

 

2.2 Credit Models 

 

Both the structural and reduced-form approaches allow for the evaluation of risky 

claims and explaining credit risk. Structural models assume a stochastic process for the 

evolution of the firm’s value, and default occurs when the value of the firm reaches a 

predetermined boundary. On the other hand, according to Duffie and Singleton (1999), 

the reduced form models treat default as a pure jump process following an intensity-

based or a hazard-rate process. In the first instance default is treated endogenously, 

while, in the second, exogenously. 

 

2.2.1 Structural Models 

 

According to Black and Scholes (1973) a corporate debt is a contingent claim on the 

firm’s value, and corporate liabilities can be viewed as a covered call
4
. In the Black, 

Scholes (1973) and Merton (1974) setting (see Chapter 8 in Anson, et al, 2004), a firm 

                                                 
4
A covered call owns the asset and sells a call option  
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has issued one type of debt, a zero coupon bond with face value K and maturity T. The 

market value of its equity is E(t) at time t, the market value of its debt is D(t,T) at time 

t, and the value of its assets at time t is given by A(t).  Default is assumed to occur at 

maturity if and when the value of the assets falls below the value of debt, K. If the 

value of assets at maturity is greater than the face value of debt, then the debt holders 

are paid in full and equity owners receive the remaining value; otherwise a default 

event is triggered and bond holders take control of the firm and equity owners receive 

nothing. Thus at maturity (T), the value of the firm’s equity is the amount remaining 

after debts have been paid out of the assets value:  

  E(T) = max{A(T)-K,0}  (2.1) 

This payoff resembles a long call option on the firm’s assets with a strike price equal 

to the face value of the debt. Thus, the value of debt at maturity is: 

  D(T,T) = min{A(T),K} =Α(Τ)-max ( ) ,0A T K  (2.2) 

In the Black and Scholes (1973) framework the assets follow a lognormal stochastic 

process: 

 
dA(t) 

= rdt + σdZ(t)
A(t)

 (2.3) 

where  

r : is the risk-free rate which is assumed constant,  

σ : is the volatility, and  

Z(t) : is a Brownian motion.  

Moreover, the value of the equity, given by BSM, which is equal to the value of a call 

option as seen above is: 

 -r(T-t)E(t) = A(t)N(d1)-e KN(d2)  (2.4) 

and its debt value equals: 

 -r(T-t)D(t,T) = A(t) -E(t) = A(t)[1-N(d1)]+e KN(d2)  (2.5) 

where 

N(.) : is the cumulative normal probability, with 

N(d2) : the survival probability, 

1- N(d2): the default probability 
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The first term in the above equation represents the recovery value in case of default 

while the second term represents the present value of the debt K should no default 

occur.  

 

The yield is given by solving    y/ T t
D t,T   Ke

 
 for y, thus: 

 
lnK-lnD(t,T)

y = 
(T-t)

 (2.6) 

Although the BSM model captures realistically the shapes of the credit spread term 

structures resembling those in the market and provides information regarding the debt 

structure, it also has a few disadvantages regarding the simplistic assumptions that 

formulate its basis. Firstly, the BSM model assumes that a firm has only one type of 

debt (a zero-coupon bond) with a certain maturity. Merton (1974) presents a model 

that is able to price a callable coupon bond and, by extension, to reflect coupon 

payments. Moreover, Geske (1977) extends the BSM to model default at different 

times, using the compound option model he proposes. He illustrates that corporate 

liabilities with different maturities can be viewed as a sequence of compound options. 

Next, BSM does not allow for default event prior to maturity. Black and Cox (1976) 

introduced an absorbing barrier structural model. This model considers default to be 

triggered when the firm’s value reaches a certain default threshold and it is modelled 

as a knock-out barrier option.  

 

Furthermore, under the BSM model, default cannot occur by surprise. Zhou (1997) and 

Huan and Huang (2003) inserted a jump – diffusion model in the BSM framework. 

The advantage of this type of model is that it makes the default a surprise. As a result 

of this approach, low leverage firms appear to have significant spreads at the short end 

of the credit term structure.  

 

Finally, BSM assumes that interest rates are constant. Shimko et al. (1993) illustrate 

that a stochastic interest rate process can be used in the BSM framework as long as the 

volatility of the return of the zero coupon bond depends only on time to maturity. 

Other models that introduced stochastic interest rates are that of Longstaff and 

Schwartz (1995) which assumes a stochastic mean reverting interest rate model (see 

Vasicek, 1977) and has exogenously specified a default boundary while Dufresne et al. 
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(2001) proposed a model with stochastic interest rates, with the ability to capture both 

the firm’s current debt structure and its possibility to alter in the future.  

 

More complicated characteristics of the BSM framework are presented by Ericsoon 

and Reneby (1997) and Rainer (1999) who consider both stochastic interest rates and 

stochastic default boundaries, where default can occur prior to maturity. Unfortunately, 

these kinds of models are very difficult to be implemented empirically and are also 

computationally intensive.  

 

Another focus concerns the specification of the asset value that triggers bankruptcy. 

Leland (1994) endogenizes the value of assets that trigger bankruptcy by introducing 

taxes and bankruptcy costs, as factors, in determining the optimal asset value at which 

a firm should declare bankruptcy. Leland and Toft (1996) extend this model to derive a 

term structure of credit spreads. However, there are problems when using these types 

of models, cince the information required to price debt claims may be unavailable to 

the market, especially data on taxation and bankruptcy costs. 

 

All these models demonstrate the potential of the BSM framework to become more 

realistic but at the same time more complex, which results in an increase in the 

difficulty of its tractability and, in extreme cases, there may be no closed-form 

solution.  

 

2.2.2 Reduced Form Models 

 

Reduced form models are arbitrage free, employ the risk-neutral measure and consider 

default as an unpredictable event governed by an intensity-based or hazard-rate 

process. As a result, they simplify the constraints of defining the causes of default.  

Jarrow and Turnbull (1995) present one of the first reduced-form models where default 

and recovery are based on the Poisson default process.  

 

The Poisson process is described in order to proceed to the Jarrow-Turnbull model and 

it is derived from Anson, et al. (2004). The process at time t takes value t  which is 
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an increasing set of integers 0,1,2,... and the probability of default over a small time 

interval dt is given by: 

  Pr 1t dt tN N dt     (2.7) 

where λ is the intensity parameter of the Poisson process and represents the annualized 

instantaneous forward default probability at time t and, in the Jarrow-Turnbull model, 

is assumed to be constant. The default time distribution is the time until the first 

default event occurs and it is given as: 

      
, Pr

T t
Q t T T t e

 
    (2.8) 

The Jarrow-Turnbull model assumes that recovery payment is paid at maturity time T 

regardless of when default occurs. This removes any dependency between the price of 

the bond and the conditional default probability. The value of the coupon bond is then 

given as: 

            

1

, , , j

T n
T t

j

jt

B t P t T R T dQ t u du P t T c e
 



    (2.9) 

where  ,P t T  is the risk-free discount factor, 
jc  the j-coupon,  ,Q t T  the survival 

probability given by equation 2.8, R the recovery rate. However, in practice the 

Jarrow-Turnbull model is adjusted to allow the intensity parameter to be a function of 

time and the recovery to be paid upon default or coupon dates. The advantage of 

Jarrow-Turnbull model is its calibration ability. As the default probabilities and 

recovery rates are exogenously specified, the default probability curve and by 

extension the spread curve can be derived from risky zero-coupon bonds. 

 

Jarrow, Lando and Turnbull (1997) extend the Jarrow and Turnbull (1995) model to 

incorporate migration risk.  Migration risk is the risk of a downgrade of the firm’s 

credit rating, resulting in widening of the credit spreads, but not causing a default. 

Default is modelled under the Jarrow, Lando and Turnbull (1997) as a first time 

continuous-time Markov chain with K states, where states 1 to K-1 are credit ratings 

and the K state is an absorbing state (default). To make the model tractable, as the 

Markov chain greatly increases the number of parameters to be estimated, Jarrow, 

Lando and Turnbull (1997) suggest using the historical transition matrix which is 

published by rating agencies such as Standard & Poor and Moody’s. While the 

historical transition matrix consists of real probabilities which are different from the 

risk-neutral probabilities, Jarrow, Lando and Turnbull (1997) assumed that the risk-
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neutral probabilities are proportional (linear) to the real probabilities. However, the 

empirical validity of the aforementioned methodology is yet to be demonstrated (see 

Anson, et al, 2004). 

 

Duffie and Singleton (1999) take a different approach compared with Jarrow and 

Turnbull (1995). Duffie and Singleton (1999) assume that the payment of recovery 

may occur at any time, but the recovery rate is restricted as a proportion of the bond 

price at the time of default. Hence Duffie and Singleton (1999) model is known as a 

fractional recovery model. The recovery rate is given as: 

    ,R t D t T  (2.10) 

where δ is a fixed recovery rate ratio and  ,D t T  the price of the bond as if default did 

not occur. The price of the bond at time t is given as: 

  
    
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  
 
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 (2.11) 

where    1us u p   , p is the default probability which follows a Poisson 

distribution, r is the risk-free rate process and X is the terminal payoff of the bond.  

Moreover, the product  1p   is considered as a spread over the risk-free rate. The 

advantage of the Duffie-Singleton model is the derivation of the spread curve which is 

based upon the probability curve and the recovery rate. The disadvantage of the 

Duffie-Singleton approach is that, if a claim does not have a payout at maturity, such 

as credit default swaps, the value of the claim today is zero, making such claims 

impossible to value. 

 

Another extension of the reduced-form models is that of Duffie and Lando (1997), 

who formulate a structural model that can be estimated as a reduced-form model using 

the framework of Duffie and Singleton (1999). A diffusion process is used for the 

firm’s asset value, the default barrier is given by the imperfect accounting system and 

the hazard rate is given in terms of the asset’s volatility. Taking these types of models 

further, Cathcar and El-Jahel (1998) propose a model where default occurs when a 

signalling process hits a lower barrier. Their default-risk free rate then follows a Cox, 



 25 

Ingersoll and Ross (1985) process where they assume that the default-risk free rate and 

process are uncorrelated.  

 

Empirical results by Duffee (1998) and Tufano and Das (1996) illustrate that, by 

modelling the intensity function as a Cox process, the credit spread depends on both 

the default free term structure and an equity index. In addition, Duffie and Singleton 

(1999), Jarrow, Turnbull and Lando (1997) and Jarrow and Turnbull (1995) imply that 

for many credit derivatives only the expected loss needs to be modelled. 

 

Reduced-form models lay a solid foundation in an attempt to model the risk-neutral 

probability of default. However, Anson, et al. (2004) show that to a large extent 

default can be anticipated, as it is the product of a series of downgrades and spread 

widenings, making the spread-based diffusion models popular.   

 

2.2.3 Spread-Based Models 

 

Spread-based models are very similar to barrier structural models, their difference 

lying in the use of a different state variable to detect default. A spread model uses bond 

spreads, while default barriers are exogenously specified and need to be calibrated 

with real data.  Models that apply spread dynamics generally take par asset swap 

spreads as the fundamental spread variable. Asset swap spreads are a spread over 

LIBOR which represents the credit quality of a specific security.  

 

 

Asset swap spreads follow a lognormal process: 

 
( )

( )
( )

ds t
dZ t

s t
  (2.12) 

where 

σ : is the percentage volatility of spread changes 

dZ(t) : is a Brownian motion. 

Hull (2000) shows that the spread is usually centred around its spot value: 

 
2

( ) (0)exp ( )
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


 
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 
 (2.13) 
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A default boundary is specified in terms of a spread and is quite arbitrary as the 

boundary can be time dependent. The price of a digital default swap paying out 1$ at 

maturity in the event of default when interest rates and spreads are independent is: 

  ( , ) exp ( ) ( , )
T

t
t

D t T E r u du F t T 
    (2.14) 

where F(t,T) is the price of a digital barrier option whose payoff equals the probability 

that the spread crosses the barrier at some time before maturity. The problem with this 

type of approach is that it lacks theoretical under pinning. 

 

2.2.4 Hazard Models 

 

Shumway (2001) argues that a good default model should be an econometric model, 

illustrating that many theoretical models do not take into consideration factors such as 

accounting rations, market size and historical returns, which in turn have great value in 

predicting defaults. Thus, the proposed model contains both theoretical and empirical 

factors and its survival and hazard functions are given as: 

    , ; 1 , ;
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   (2.15) 
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where  , ;f t x  is the probability density function of x which is a set of explanatory 

variables.  The maximum likelihood function is then given as: 
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 (2.18) 

 

2.2.5 Credit Rating Transition Matrices 

 

Ratings represent an issuer’s credit quality by reflecting his capacity to honour his debt 

obligations, and are assigned by rating agencies such as Standard and Poor’s, Moody’s 

and Fitch. A credit rating system applies a number of rating grades to rank issuers 

according to their default probability, which are presented in the transition matrix. 

Transition matrices describe the changes in credit quality and serve as input to many 
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credit risk applications, including the measurement of credit portfolio risk, modelling 

the term structure of credit risk premia, and the pricing of credit derivatives (see 

Jarrow, Lando and Turnbull, 1997).  There are two procedures in estimating the 

transition matrices from observed historical transitions - the cohort and hazard 

approaches.  

 

The transition matrix in the cohort approach is estimated by dividing the sum of 

obligators that have migrated from grade i to j by the overall number of obligators that 

was in grade i at the start of the considered periods and is given as: 
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
 (2.19) 

where 
,i tN  denotes the number of obligators in grade i at the beginning of period t, 

,ij tN  denotes the number of obligators that have migrated from grade i to j at the end of 

the period t.   

 

Although the cohort approach is able to estimate transition probabilities from transition 

frequencies, it does not consider the timing and sequence of transitions within the 

examined period. The hazard rate approach is an alternative to the cohort approach, as 

it is able to capture the timing of transitions. According to Lando and Skodeberg 

(2002), in the case of time-homogeneity the first step in estimating the Markov 

transition matrix in the hazard rate approach is to formulate the generator matrix Λ. 

The off-diagonal entries of the generator matrix over a time period  0 1,t t are given as: 
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ij t
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 (2.20) 

where ijN  denotes the number of transitions from i grade to j,  iY s  denotes the 

number of obligators rated i at time s, and the integral in the denominator represents 

the time of obligators belonging to rating grade i before migrating. The on-diagonal 

entries of the generator matrix are given as: 

 
ii ij

i j

 


   (2.21) 
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Finally, the T-year transition matrix P(T) is estimated from the generator matrix Λ in 

the following manner: 

    

0 !
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T e

k


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 
Λ Λ

P  (2.22) 

A number of studies argue that the assumption of time homogeneity may not hold over 

the long run (see Carty and Fons, 1993, Altman and Kao, 1992 among others). Lando 

and Skodeberg (2002) propose a non-homogeneous continuous time Markov process 

whose transition probability matrix for the period from t0 to t1 is estimated by  0 1,t tP

given there are m transitions: 
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where iT  is a jump time in the interval  0 1,t t  and 
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where  ,h j iT  denotes the number of transitions observed from state h to j at time 

iT ,  k iT counts the total number of transitions away from state k at time iT  and 

 k iY T  is the number of firms in state k right before time iT . The on-diagonal elements 

measure the fraction of the exposed firms   k iY T  which leaves the state at time iT . 

The off-diagonal elements count the specific types of transitions away from the state 

divided by the number of exposed firms. The last row of the  iTA  is zero because it 

indicates an absorbing barrier which means that, when a firm defaults, it remains 

defaulted.  

 

2.3 Determinants of Credit Spreads 

 

This section describes the empirical investigation of the behaviour of corporate bond 

prices as well as the determination of the drivers behind credit spreads. Credit spreads 
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are defined as the difference between the yield to maturities of a corporate and a 

comparable government bond. Credit spreads are important variables in the financial 

markets, as they reflect the likelihood of failure of an entity to honour its obligation.  

 

Delianedis and Geske (2001) investigate and identify the components of US corporate 

spreads from November 1991 to December 1998, using taxation, liquidity, recovery 

risk, and account for jumps, volatility and market factors. They conclude that default 

and recovery risks are only partial components of corporate spreads. Dufresne et al. 

(2001) study US credit spreads for the period from July 1988 through December 1997 

and argue the existence of a systematic factor after examining a variety of determinants 

such as changes in spot rates, changes in slope and level of the yield curve, firm’s 

leverage, volatility (changes in the VIX index), business climate, and movement and 

magnitude of a downward jump in the firm’s value.  

 

Christiansen (2000) and Huan and Huang (2003) study the  dynamics of correlation 

between credit spreads and interest rates on days of macroeconomic announcements, 

such as employment situation report, GDP and PPI reports among others. They find 

that credit spreads and interest rates are negatively correlated, except on the 

announcement days were they become uncorrelated.  

 

Nerin et al. (2002) study the components of credit risk, which is derived by credit 

default swaps and US corporate spreads, during the period of January 1998 to February 

2000. The components considered are credit ratings, level and slope of the yield curve, 

stock prices, volatility of the firm’s value, index returns, and other market factors. 

They find that these variables are able to explain a large percentage of variation both in 

credit default swaps and corporate spreads (approximately 60%), with equity market 

factors explaining up to 50% of the variation.   

 

Brown (2001) examines the explanatory power of the Treasury yield, consumer 

confidence, the VIX index and a liquidity measure on US corporate bond spreads for 

different credit quality and maturity portfolios over the 1984 to 1999 period. His 

findings reveal that these variables can explain up to 30% of yields changes, yield 

spread volatility is higher for lower credit quality portfolios, yield spreads are more 

volatile for shorter-maturity portfolios keeping credit quality constant; and finally, a 
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considerable portion of yield spread volatility is due to changes in the non-default 

margin components of the corporate bond yield spread. 

 

Longstaff and Schwartz (1995) assume that the value of the firm and risk-free interest 

rate follow a correlated diffusion process. This means that credit spreads depend on the 

firm’s asset value, interest rate and the correlation between these factors. They find 

that a negative relationship exists between credit spreads and interest rates. Duffee 

(1998) finds that there is a negative relationship between credit spreads and the level 

and slope of the term structure of interest rates. 

 

Changes in government policy, market microstructure, seasonality, business cycles, to 

name but a few, can affect the properties of financial and economic time series both in 

terms of their mean value and volatility and are known as structural breaks. Structural 

breaks characterize the non-linear dynamics of time series and are well documented in 

the literature (see Nefci, 1982 and 1984, Sichel, 1987, Hamilton, 1985, among others). 

One popular approach in modelling nonlinear dynamics is the Markov regime 

switching models. These types of models spring from the work of Goldfeld and 

Quandt (1973) and Hamilton (1989) who model the structural breaks of the ARCH 

specification and are later extended into a regime-switching specification both for the 

mean and volatility process.  

 

Bansal et al. (2004) incorporate a regime-shift term structure model based on the 

Hamilton (1989) specification and apply it to monthly U.S. Treasury yield data from 

1964 to 2001 with maturities 1, 3, 6, monthly and 1, 2, 3, 4, 5 annually. They find that 

their model can justify the transition dynamics of the Treasury yields and find a link 

between business cycles and regimes. Davies (2004) analyses the determinants of 

Moody’s AAA and BAA credit spread indices using regime switching techniques. He 

finds that the risk-free rate, equity return, slope of yield curve and industrial 

production growth have explanatory power over the short-term credit spreads. 

Specifically, risk-free rate has a negative effect on credit spreads during periods of low 

volatility and has no effect during periods of high volatility. Cheung and Erlandsson 

(2004) apply a Markov regime switching model to monthly exchange rates 

(DEM/USD, GBP/USD, FFR/USD) for the period from 1973 to 1988. They find 
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strong evidence of regime switching in exchange rates. Clarida et al. (2006) test a 

multivariate asymmetric Markov switching model on the weekly euro-rates for 

German, Japanese and U.S. bonds with different maturities for the period between 

1982 to 2000. They find strong evidence of non-linearity in the term structures, and of 

regimes being related to business cycles and to inflation. 

 

In theory all these variables would predict credit spread changes; however, in practice 

they have little explanatory power, leading to the belief that a common factor exists 

which explains the remaining variation. This study examines the impact of the risk-

free rate and other important determinants on the credit spreads of Euro bond indices 

over different market conditions. It introduces two macroeconomic indicators that have 

not been considered previously as drivers of credit spreads and they are found to 

suggest a consistent effect in the determination of credit spreads.  

 

2.4 Importance in Modelling the Dynamics of Credit Spread Moments  

 

Financial series including the European credit spreads and their returns, used in this 

study
5
, exhibit non-Gaussian return distributions (e.g. leptokurtosis), volatility 

clustering, regime switches and time-varying higher moments (see Campbell and 

Siddique (1999) and León et al. (2004) among others). A number of studies delineate 

the importance of modelling the dynamics of higher moments in risk management, 

hedging, portfolio allocation and option pricing.  

 

Kostika and Markellos (2007) show that models which allow for time variation in 

variance, skewness and kurtosis outperform conventional hedge ratio estimation 

methodologies such as OLS, error-correction, exponentially weighted moving 

averages, and GARCH models. Their analysis was based on spot and futures data on 

FTSE, Dow Jones, and DAX equity indices for the period from January 1999 to 

September 2004. Alizadeh and Nomikos (2004) illustrate that Markov Regime 

Switching hedge ratios outperform alternative models such as GARCH, error-

correction and OLS using the spot and future weekly data on FTSE 100 and S&P 500 

from May 1984 to March 2001.  

                                                 
5
 For more information refer to Table 4.1 of the Data Chapter. 



 32 

 

The studies of Prakash et al. (2003), Sun and Yan (2003), Harvey et al. (2004) and 

Jondeau and Rockinger (2006) argue the importance of incorporating higher moments 

in portfolio allocation as they provide superior approximation of the expected utility 

function. Specifically, Prakash et al. (2003) and Sun and Yan (2003) apply a 

polynomial goal programming which incorporates investor preferences for skewness in 

determining the optimal portfolio. The former test the model on 17 international stock 

market indices over the period from July 1993 to December 2000 and the latter in 

stocks from the US and Japanese market over the period from May 1975 to December 

1997; and both find that skewness should not be neglected in portfolio allocation. 

Harvey et al. (2004) propose a Bayesian model which employs a skew normal 

distribution
6
 in optimal portfolio selection. They test the model on the daily returns of 

four equity stocks (General Electric, Lucent Technologies, Cisco Systems and Sun 

Microsystems) for the period from April 1996 to March 2002, on weekly returns over 

the period from January 1989 to June 2000 on four equity portfolios (Russell 1000, 

Russell 2000, Morgan Stanley Capital International non-U.S. developed countries and 

Morgan Stanley Capital International Emerging Markets) and three fixed income 

portfolios (government bonds, corporate bonds and mortgage backed bonds). They 

find that it is important to incorporate higher-order moments in portfolio selection. 

Finally, similar results are presented in the study of Jondeau and Rockinger (2006), 

who propose a Taylor series expansion of the expected utility which is able to capture 

higher-moments. They apply it on weekly returns for dollar-denominated stocks 

indices for the main geographical areas (North America, Europe and Asia) from 

January 1976 to December 2001, and weekly returns for stocks included in the S&P 

100 index from January 1974 to January 2002.  

 

In risk management, the studies of Burns (2002), Angelidis et al. (2003), Brooks and 

Persand (2003), Brooks et al. (2005), Perignon and Smith (2006) and Wilhelmsson 

(2007) illustrate that, after examining a variety of GARCH models, only those that 

account for higher moments in their distributions provide significantly better volatility 

and Value-at-Risk estimates. In addition, the studies of Hamilton and Susmel (1994), 

Hamilton (1994), Klaassen (2002), and Marcucci (2009) have shown that regimes 

                                                 
6
 Sahu, S. K., Branco, M. D., and Dey, D. K. (2003), “A New Class of Multivariate Skew Distributions 

with Applications to Bayesian Regression Models,” Canadian Journal of Statistics. 
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capture the dynamics of the underlying returns better and produce superior forecasts as 

well as more accurate estimates of VaR.  

 

The importance of modelling the dynamics of higher moments in option pricing is first 

presented by Heston and Nandi (2000) who propose a GARCH specification that 

incoporates conditional skewness. They test their model on the S&P 500 option 

intraday data over the period from 1992 to 1994 and find substantial pricing 

improvement compared with the Black and Scholes (1973) model. Christoffersen et al. 

(2006) propose a model that allows for conditional skewness, as well as conditional 

heteroskedasticity and a leverage effect which controls the asymmetry of the 

distribution. They test the performance of the proposed model in pricing S&P 500 

index options over the period from February 1989 to December 2001 and conclude 

that their model’s performance is superior to the nested models for out-of-the money 

puts. Tahani (2006) examines the log-spreads between Moody’s AAA and BAA with 

maturities 10 and 20 years bond indices, and US treasury bond yields of 10 and 30 

years to maturity, over the 1986 to 1992 period. The estimation of GARCH effects 

with a skewness parameter reveals better data fit than the simple mean-reverting 

models and concludes that the difference between the proposed GARCH specification 

and Longstaff and Schwartz (1995) is more important for at-the-money credit spread 

call options. 

 

2.5 ARCH/GARCH and Markov Regime Switching GARCH models  

 

Engle (1982) introduces the Autoregressive Conditional Heteroscedasticity (ARCH) 

model a formal approach in modelling the variance of a time series. One of the first 

studies in modelling ARCH effects in financial series is Weiss (1983), who finds 

significant evidence of ARCH effects in US AAA rating bond yields. In another study, 

Bierens, Huang and Kong (2003) propose an ARCH model that incorporates portfolio 

rebalancing, jumps
7
 and market factors. They apply their model to nine Merrill Lynch 

daily series of option-adjusted spreads corporate bond indices with ratings from AAA 

to C for the period of January 1997 to August 2002 and find that their proposed model 

                                                 
7
 According to the authors: The jump probability is allowed to depend on the lagged market conditions 

and is assumed to be a logistic function. 
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outperforms the ARCH specification in producing out-of-sample forecasts, as it is able 

to capture the extreme movements in credit spreads. 

 

In a later study Bollerslev (1986) extends the ARCH model to the Generalised 

Autoregressive Conditional Heteroskedasticity (GARCH) class of models. Manzoni 

(2002) finds significant evidence of ARCH effects and nonlinearities in credit spreads 

on the Sterling Eurobond index for the period 1991 to 1999. He applies both the 

ARCH and GARCH specifications to model time-varying volatility and captures the 

persistence in the conditional variance. Brooks et al. (2005) use a GARCH 

specification with a time varying-kurtosis, (GARCHK). They apply the model to daily 

returns of the S&P 500 and UK FTSE 100 indices, as well as the total return of the US 

and UK ten-year maturity benchmark bond indices, over the period from January 1990 

until June 2000 and find significant evidence indicating persistence in time-varying 

kurtosis of the series. 

 

Changes in government policy, seasonality, and business cycles among others can 

affect the properties of financial and economic time series both in terms of their mean 

value and variance. Lamourex and Lastrapes (1990) attribute the volatility persistence 

to the presence of structural breaks in the variance. Hamilton and Susmel (1994), Gray 

(1996), Dueker (1997), Klaassen (2002) and Alizadeh and Nomikos (2004), to name 

but a few, extend the Goldfeld and Quandt (1973) and Hamilton (1989) models which 

allow both the mean and the variance to switch between different states of the market. 

 

Gray (1996) proposes a Generalized Regime-Switching Model, (GRS), of the short-

term interest rate and applies it to weekly U.S. Treasury bill rates from January 1970 to 

April 1990. He finds that his model out-performs other models of the short-rate, both 

in fit of the empirical distributions and in forecasting volatility. Perignon and Smith 

(2006) propose a yield factor volatility model that includes level
8
, GARCH effects and 

regime swifts. They test their specification on monthly U.S bond yields for the 1970 to 

2002 period and find that when volatility is allowed to switch from low to high-

volatility regimes, the model’s fit improves dramatically and strengthens the level 

                                                 
8
 According to Perignon and Smith (2006) the variance of the yields factors is estimated by using a level 

effect, in which the conditional volatility is a nonlinear function of the level of short-term interest rates.   
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effect. In addition, their model provides the best out-of-sample forecasting 

performance of yield volatility.  

 

The literature in modelling the time-varying higher moments and non-linearities in 

credit spreads is limited. This study models the time-varying skewness and kurtosis of 

credit spreads as well as estimating a Markov regime switching GARCH model which 

allows its Student-t degrees-of-freedom parameter to switch in such a manner that the 

conditional variance and kurtosis are subject to discrete shifts.  

 

2.6 Modelling the Dynamics of Correlation of Credit Spreads 

 

Correlation is defined as a statistic applied extensively in portfolio analysis and asset 

allocation, to indicate whether the returns of two or more assets are likely to present a 

systematic, linear relationship over time. The studies of Bollerslev et al. (1988), Engel 

and Rosenberg (1995), amongst others, have shown that covariances and correlation of 

financial series change over time and have an important role in the pricing of 

derivatives, portfolio selection, trading and hedging and risk management.  

 

The first study to model time-varying covariances is Bollerslev et al. (1988). They test 

their model on quarterly data of 3- and 6-month Treasury bills, 20-year Treasury bond 

and the New York Stock Exchange Index from 1959 to 1984. They find that the 

conditional covariances change over time and are able to explain the time-varying risk 

premia. Alexander (2001) applies an Orthogonal-GARCH (OGARCH) model on the 

daily prices of the WTI crude oil with different maturities from February 1993 to 

March 1999, daily UK zero coupon yield data with different maturities from January 

1992 to March 1995, and daily European equity index returns (France, German, 

Holland, Spain, Sweden and UK indices). She finds that a small number of factors can 

explain a significant amount of variability and fares good compared with the BEKK 

and VEKK specifications. Chiang and Jiandong (2008) examine the dynamics of 

correlation between stock and bond markets. They test a variety of models such as a 

rolling regression model and a BEKK on the Vanguard Total Bond and Stock Market 

Index Funds, from June 1996 to June 2008, and find that correlation is time-varying 

and negative.  
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Recent studies reveal the importance of modelling the time-varying correlation of 

credit spreads in the pricing of credit derivatives and credit portfolio hedging and 

trading. Berndt, Ritchken and Sun (2009) develop a Markovian model based on the 

Heath, Jarrow and Merton (1992)
9
 framework for pricing credit derivatives. They 

highlight the importance of incorporating the correlation between interest rates and 

credit spreads, the correlation between credit spreads of different firms, and the 

dynamics of credit spreads in the structure of the model. Roscovan (2008) constructs a 

hedging strategy by relating bond portfolio returns to changes in credit 

spreads. Friewarld and Pichler (2008) propose a spread-based model to price credit 

derivatives that incorporates the correlation of credit spreads. They compare their 

model with other conventional approaches and find that their model is superior during 

market turbulences. Bobey (2009) investigates the relationship between systematic 

default correlation and corporate bond credit spreads and finds that credit spreads are 

positively related to the CDO market implied default correlation.  

 

Factor decomposition through principal component analysis (PCA) has been applied in 

many empirical investigations in finance and, specifically, in interest rates. Pearson 

(1901) developed Principal Component Analysis (PCA), a statistical technique for 

transforming correlated variables into a smaller number of uncorrelated variables 

called the “principal components”.  

 

One of the first studies are those of Litterman and Scheinkman (1991) who employ 

PCA to identify the common factors that affect the returns of the Treasury and bond 

securities for the period from February 1986 to June 1988. They find that three 

principal components explain the variation in bond returns. Soto (2004) applies PCA 

on daily Spanish government bond prices and yields with different maturities for the 

period from January 1990 to December 1999. He finds that three principal components 

are able to explain the movements of the Spanish term structure. Malava (2006) 

applies PCA on daily quotes of market data and interest rate swaps for EUR, USD, 

JPY and GBP for the period from April 2006 to July 2006. He finds that three 

                                                 
9
 For additional information regarding the HJM framework see: Heath, D., Jarrow, R., A., and Morton, 

A., (1992). “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent 

Claims Valuation.”  Econometrica, 60(1), 77-105  
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principal components explain up to 86% of the interest rate variation, and suggests the 

existence of a common global interest rate factor.  

 

Research in the time-varying correlation of credit spreads is limited and only recently 

has the importance of modelling the correlation dynamics been revealed. This study 

aims to model the time-varying correlation of the European credit spreads and to 

evaluate the performance of different multivariate GARCH models in risk 

management. It reveals how correlation changes over time, and especially during the 

credit crisis period, when its behaviour changes. 

 

2.7 Conclusions 

 

This chapter highlighted credit risk as the most important risk market to which 

participants are exposed. This is due to the fact that two parties enter into a contractual 

agreement after evaluating each other’s capacity to honour that agreement. The chapter 

explained in detail, and highlighted, the different methods to measure credit risk such 

as the structural and reduced form models as well as other approaches, such as spread-

based and hazard models. The chapter briefly described the two approaches - the 

cohort and hazard - of estimating transition matrices from observed historical 

transitions. These transition matrices are later used as inputs to many credit risk 

applications, including the measurement of credit portfolio risk, and the pricing of 

credit derivatives. The chapter then discussed the importance of modelling the 

dynamics of higher moments and correlation in risk management, hedging, portfolio 

allocation and option pricing and presented the empirical findings of the behaviour of 

corporate bond prices, as well as the determination of the drivers behind credit spreads.  
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Chapter 3  

Methodology 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

Equation Chapter 3 Section 1 

The aim of this chapter is to introduce the wealth of econometric and statistical 

formulations that model the dynamic behaviour and the impact of a set of determinants 

on credit spread changes. Section 2 introduces the building blocks of time series 

modelling and the univariate time series models. This class of specifications attempts 

to capture the linear relationship between a financial time series and the information 

available prior to time t. As such, the correlations between the time series and its past 

values become the building blocks for studying financial and economic time series and 

are referred to as serial correlations or autocorrelations.  

 

Section 2 also introduces the multivariate time series models, which attempt to explain 

changes in a financial variable, by reference to the movements in the current or past 
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values of other explanatory variables. Consequently, the dynamic relationships 

between different asset returns play an important role in portfolio management and 

allocation as well as trading and hedging. Finally, as the behaviour of a financial time 

series can change over time either permanently or temporarily, Markov regime 

switching models are applied. These type of models capture such changes in the 

behaviour of a time series, and are known as a structural breaks or regime shifts.  

 

Section 3 introduces the econometric models for modelling the time-varying volatility, 

skewness and kurtosis of an asset return. Volatility is measured by the variance or 

standard deviation and it is a crude estimate of an asset’s risk, since volatility may 

change over time. Therefore, it is important to model the dynamics of volatility, such 

as volatility clustering or volatility pooling. Mandlebrot (1963) was the first to notice 

the phenomenon of volatility clustering in the stock market. He noticed the tendency of 

large changes to follow large changes and small changes to follow small changes. In 

other words, volatility tends to be positively correlated with its level from previous 

periods. Inspired by Mandlebrot’s observation, a series of studies began to model the 

behaviour of volatility in financial time series.  

 

Engle (1982) introduces the Autoregressive Conditional Heteroscedasticity (ARCH) to 

model the time-varying volatility of a time series, which is later generalized by 

Bollerslev (1986), who proposes the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model. Since then numerous studies have been 

introduced in modelling the time-varying volatility of equity returns, commodity 

prices, interest rates, exchange rates and other financial assets. However, financial time 

series including the European credit spreads exhibit leptokurtosis and leverage effects, 

and the GARCH models are extended to capture the dynamics of higher moments.  

 

In addition, similar to the univariate time series models, structural breaks can affect the 

properties of the mean and variance processes. As described in the work of Lamourex 

and Lastrapes (1990), the persistence of conditional volatility is attributed to structural 

breaks. As such, Section 3 presents the Markov regime switching GARCH models that 

are able to capture changes in the dynamics of the volatility of financial time series.  
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Section 4 presents the multivariate volatility models and Section 5 the principal 

component analysis which are able to capture the dynamics of covariances and 

correlation of the European credit spread indices. Correlation is a statistic that 

indicates whether the returns of two or more assets are likely to present a systematic, 

linear relationship. However, a number of studies have shown that covariance and 

correlation of financial series vary over time and have an important role in the pricing 

of derivatives, portfolio selection, trading and hedging, and risk management. The first 

study to model time-varying covariances is Bollerslev et al. (1988), which is a 

springboard for a number of other models, such as Bollerslev (1990), who proposes the 

constant Conditional Correlation Multivariate GARCH model, Alexander (2001), who 

presents an Orthogonal-GARCH, Engle and Kroner (1995), who propose the Baba, 

Engle, Kraft and Kroner representation (BEKK), and Engle and Shephard (2001) who 

developed a Dynamic Conditional Correlation Multivariate GARCH model.  

 

Section 6 presents the univariate and multivariate Value-at-Risk estimation procedures 

as well as RiskMetrics and Historical Simulation that are applied in order to examine 

the performance of the different models in risk management. Finally it presents 

Christoffersen’s (1998) back testing procedure to examine the adequacy of the VaR 

estimates.  

 

3.2 Mean Process Models 

3.2.1 Introduction to Linear Time Series Analysis and Basic Notation 

 

Univariate time series analysis provides a framework to model and forecast the 

dynamic structure of a financial time series. The econometric models introduced in this 

section are the autoregressive (AR), moving-average (MA) and mixed autoregressive 

moving-average (ARMA) models. These models capture the linear relationship 

between its current value, ty , and the information available in its past; this linear 

relationship is known as serial correlation or autocorrelation.  Understanding these 

simple models provides the building blocks of the more sophisticated financial 

econometric models of the later chapters.  
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One of the important concepts of time series analysis is stationarity. The importance of 

stationarity is described in Brooks (2002), who argues that stationarity of a series can 

influence its behaviour and properties, the same way as non-stationary data can lead to 

spurious regressions and the standard assumptions for asymptotic analysis will be 

invalid under this case. A time series is said to be strictly stationary when its joint 

distribution does not change under a time shift. This is a strong condition and 

according to Tsay (2001) it is hard to empirically verify it; instead weakly stationarity 

is assumed. A time series is weakly stationary when the mean, variance and covariance 

between ty
 
and t ly   are constant and finite. The covariance  ,t t l lCov y y    is called 

the lag-l autocovariance or autocovariance function. However, another measure to 

describe the linear relationship between observations is applied - the autocorrelation 

function: 

 
 

   

 

  0

, ,t t l t t l l
l

tt t l

Cov y y Cov y y

Var yVar y Var y






 



    (3.1) 

where the weakly stationarity property is used for    t t lVar y Var y   and 

autocorrelation takes values from 1 1l   . A weakly stationary time series is not 

serial correlated when 0l   for all l>0.  

 

One approach to test for a unit root 
10

would be to evaluate the autocorrelation function 

of the financial time series. In the case of a unit root process, where shocks remain 

indefinitely in the system, the autocorrelation function decays slowly to zero. 

Therefore, the process can be mistaken for a highly persistent but stationary process. 

However, there are standard techniques for unit root test and the most widely applied 

are Dickey and Fuller (1979)
11

 and Phillips-Perron (1988).  

  

 

                                                 
10

 A process is non-stationary when the roots of the characteristic equation lie inside the unit circle and 

is stationary otherwise. To better understand what a unit root is, consider the equation: 

11.2t t ty y   . The first step is to express the equation using lag operation notation: 

 1 1.2 t tL y    and the characteristic equation becomes: 1 1.2 0L  solving towards L, the root 

is: 0.83 1L  . As L is smaller than 1 and the process therefore is not stationary.  
11

 For instance, the simple test of Dickey and Fuller (1979) examines the null hypothesis that a series 

contains a unit root, φ=1, against the alternative that the series is stationary, φ<1, in the following 

equation:
1t t ty y     
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3.2.2 Moving Average, Autoregressive and ARMA Processes 

 

A moving average process (MA) is the simplest class of models as it is described by a 

linear combination of white noise processes
12

. The q order of a moving average model 

denoted as MA(q) is given by: 

  2

1 1

1

, ~ 0,
q

t t t q t q i t i t

i

y IID            



        (3.2) 

The properties of a moving average process of order q are: 

  tE y   (3.3) 
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 (3.5) 

Thus a MA process has a constant and finite mean and variance, and autocovariances 

which may be non-zero up to q lag and will be zero thereafter.  

 

An autoregressive (AR) process models and predicts variables by conditioning the 

current value of a variable on its past values and an error term. The autoregressive 

model of order p, AR(p), is given as: 

  2

1

1

, ~ 0,
p

t t p t p t t i t t

i

y y y y IID           



         (3.6) 

The properties of the autoregressive process of order p are: 
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 (3.8) 

The autocovariances and autocorrelation functions are estimated throught the Yule-

Walker equations. They express the correlogram  s  as a function of the 

autoregressive coefficients  1  such that: 

                                                 
12

 A series ty  is called white noise if ty  is a sequence of independent and identically distributed 

random variables with mean zero, variance 2  and autocorrelation function zero. 
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For the simple AR(1) model the autocovariance and autocorrelation, for any s lag, are: 
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For a stationary AR model, the autocorrelation function will decay geometrically to 

zero. 

 

An ARMA process is a combination of an autoregressive model with order p, AR(p), 

and a moving average model with order q, MA(q). The properties of an ARMA 

process will be a combination of the AR and MA processes. Therefore, an ARMA(p,q) 

process will have geometrically declining autocorrelation and partial autocorrelation 

functions. The autocorrelation function of the ARMA process will exhibit 

characteristics from both the AR and MA models, but beyond the q-th lag, 

autocorrelation function becomes identical to the AR model.  

 

The identification of the order of p and q is undertaken with the help of a set of 

criteria, known as information criteria. The two most popular criteria are Akaike’s 

(1974) information criterion (AIC) and Schwarz’s (1978) Bayesian information 

criterion (BIC) and are given as: 
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 (3.11) 

where 2  denotes the residual variance which is given by the residual sum of squares, 

RSS, divided by the number of degrees of freedom,  T k , where k is given as: 

1k p q   and T is the sample size. The choice of the order of p and q is made on the 

number of parameters that minimize the information criteria. Therefore, adding an 

extra term will reduce the information criteria only when the RSS is reduced more than 

the penalty term.  
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3.2.3 Vector Autoregressive Models 

 

The univariate models examined previously try to model the linear relationship 

between a financial time series and the information available prior to time t. However, 

movements in one market may affect movements in another market, or changes in a 

financial variable may be attributable to movements in the current or past values of 

other explanatory variables. Multivariate analysis jointly models financial time series 

in order to understand their dynamic structure and has an important role in portfolio 

management and allocation, as well as, trading and hedging. 

  

A Vector autoregressive (VAR) model belongs to the multivariate time series analysis 

class of models and describes the dynamic structure of a financial time series. The 

VAR(1)
13

 model for a multivariate time series ty  with k-dimensions is given as: 

 t 0 t-1 ty = α +Ay +ε  (3.12) 

where A is a N x N matrix, tε  is a sequence of serially uncorrelated random vectors 

with mean zero and covariance matrix Σ . In a bivariate case (i.e. k=2,  1 2,t ty y ty

and  1 2,t t  tε ) the VAR(1) consists of the following equations: 

 
1 1,0 1,1 1, 1 1,2 2, 1 1 ,

2 1,0 2,1 1, 1 2,2 2, 1 2 ,

t t t t

t t t t

y a a y a y

y a a y a y





 

 

   

   
 (3.13) 

For example, the coefficient 1,2a expresses the conditional effect of 
2, 1ty 

 on 1ty  given

1, 1ty  . In case 1,2 0a  , in the first equation, the 1ty  does not depend on 2, 1ty  . However, 

if 
1,2 0a  , in the first equation, and 

2,1 0a  , in the second equation, then there is an 

unidirectional relationship from 1ty  to 2ty . If 1,2 2,1 0a a  then there is no relationship 

between 1ty  to 2ty  and if 1,2 2,1 0a a  then there exists a feedback relationship 

between 1ty  and 2ty . 

 

 

 

                                                 
13

 An increase in the number of parameters may result in over-parameterisation and difficulty in 

estimation and forecasting. For example if there are N variables with K lags then 
2N KN parameters 

need to be estimated. 
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3.2.4 Markov Regime Switching Models 

 

Even though Vector autoregressive models capture the relationship between financial 

series, Markov regime switching models are able to identify the non-linear dynamics 

of a time series. These types of models spring from the work of Goldfeld and Quandt 

(1973) and Hamilton (1989) who model the structural breaks of the ARCH 

specification. They are extended by Hamilton (1993 and 1994) and Hamilton and 

Susmel (1994), who propose that the influence of explanatory variables can be allowed 

to be state-dependent, with the universe of possible occurrences being categorised by 

ts  different states.  

 

Hamilton (1994) presents the general Markov regime switching regression model, 

which is given as: let 
ty be an (N x 1) vector of observed endogenous variables and 

tx  

a K x 1) vector of observed exogenous variables. If the process is governed by regime 

ts j  at time t, then the conditional density of 
ty , is given as: 

  1| , , ;t tf s j  t ty x a  (3.14) 

where a is a vector of parameters characterizing the conditional density. If there are N 

different regimes, then there are N different conditional densities and are collected in 

an (N x 1) vector denoted as
tη . For example if the model for the mean equation is 

given by: 

  2

0, 1, 1 ,... , ~ 0,
t t tt s s t k s kt t ty a a x a x iid        (3.15) 

where 1tx  to ktx  are the explanatory variables. Assuming normality of the error terms 

and the existence of two states j=1, 2 the conditional density vector η  whose elements 

are given as: 
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where ,t jy  is the fitted mean equation at time t and state j.  
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Movements of the state variable between regimes are governed by a Markov process, 

which states that the probability of transition from state i at time t-1 to state j at time t 

depends only on the state at time t-1 and not on any other previous states. Thus, the 

time independent transition probabilities are given by: 

    1 2 1 1Pr | , , , , Pr |t t t t t t ijs j s i s k s j s i p          tx  (3.17) 

and these probabilities can be summarized in a matrix:  ijpP . The population 

parameters θ  that describe a time series governed by (3.14) consist of the vector a and 

the transition probabilities
ijp . The Markov chain is described by the random vector tξ , 

whose i
th

 element equals one if ts i . The Markov chain is assumed to be 

unobservable and, hence, the regime at time t is unknown. Therefore only probabilities 

are assigned to regimes. The optimal inference and forecast can be found by iterating 

the following pair of equations: 

 
 

t /t-1 t
t/t

t /t-1 t

ξ η
ξ =

1 ξ η
 (3.18) 

  E t+1 t tξ / ξ Pξ  (3.19) 

where  denotes the element-by-element multiplication. The set of optimal parameters 

θ can be obtained by maximizing the conditional log likelihood function:  

     
1

log | , ,
T

t

L f


 t t t-1θ y x Ω θ  (3.20) 

where 

    | , ,f t t t-1 t/t-1 ty x Ω θ 1 ξ η  (3.21) 

 

3.2.5 Feed Forward Neural Network 

 

Another branch of the literature that allows for non-linear dynamics in a financial time 

series is the feed-forward neural network. A feed-forward neural network models 

complex relationships between input and output layers while the information moves in 

only one direction, from the input layer through the hidden layer or layers and, finally, 

to the output layer.  Figure 3.1 presents an example of a 3-2-1 feed-forward neural 

network. This network has three nodes in the input layer, one hidden layer with two 

nodes and one node in the output layer.  
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Figure 3.1 Presents a 3-2-1 feed-forward neural network 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a feed-forward neural network with one hidden layer, the j
th

 node in this 

hidden layer is specified as (see Tsay, 2001): 

 0, ,j j j i j i

i j

h f a w x


 
  

 
  (3.22) 

where ix  is the value of the i
th

 input node, 
,i jw  is the weight of the i

th
 input node 

feeding to the j
th

 hidden node, 0, ja  is called the bias and jf  is called an activation 

function as it processes information from one layer to the next and is assumed to be a 

logistic function such that: 

  
1

z

j z

e
f z

e



 (3.23) 

The output node is defined as:  

 0, ,o o j o j

j o

o f a w h


 
  

 
   (3.24) 

where jh is the value of the j
th

 node in the hidden layer, ,j ow  is the weight of the j
th

 

node of the hidden layer feeding to the o
th

 output, of is assumed to be a linear 

activation function such that the output node becomes: 

 0, ,

1

n

o j o j

j

o a w h


    (3.25) 

where n is the number of nodes in the hidden layer. Therefore, from equations (3.22) 

and (7.10) the output node becomes: 

Input Hidden Output 

i 

j 

o 
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0, , 0, ,o o j o j j i j i

j o i j

o f a w f a w x
 

  
    

   
   (3.26) 

In order to apply the neural network the first step is to train it by determining the 

number of nodes, and estimating their biases and weights; and the second step is 

forecasting. Training a neural network entails the following two steps: the first step is 

to partition the input and output vector into three disjoint sets: training, validation and 

test. The neural network is trained on the training set and the validation set is used to 

examine the generalization ability of the network and to stop training before over-

fitting. The generalization ability of a network refers to its ability to capture unforeseen 

inputs, i.e those on which the network has not been trained. Finally, the test set is used 

as a completely independent test of the network’s generalization ability.  

 

The second step entails the estimation of the biases and weights by minimizing the 

following nonlinear function: 

  
22

1

T

t t

t

S r o


   (3.27) 

where tr  denotes the financial time series. The estimation of Equation (3.27) can be 

solved by a number of iterative methods such as: Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) quasi-Newton backpropagation and Levenberg-Marquardt backpropagation 

among others
14

. Backpropagation
15

 is a popular learning algorithm for network 

training which was introduced by Bryson and Ho (1969). The backpropagation 

algorithm starts by selecting a pair of input and output vectors with an equal size to the 

number of network inputs and outputs. It then selects an input and estimates the 

activation functions starting from the input layer up to the output layer. It then 

computes the difference between the estimated outputs and the real outputs of the time 

series, called the output error, and propagates the output error backward from the 

output layer to the input layer, while changing the weights at each node. Each iteration 

is called an epoch and lasts until a predetermined maximum number of epochs are 

achieved or the output error falls below a pre-specified threshold or both.  

 

 

                                                 
14

 For more information refer to Gill, Murray, and Wright, Practical Optimization, 1981. 
15

 For a detailed derivation of backpropagation see Ripley, B., D., (1993). “Statistical Aspects of Neural 

Networks” In O. E. Barndorff-Nielsen, J., L., Jensen and W., S., Kendall, Chapman and Hall, London. 
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3.3 Univariate Volatility Models 

3.3.1 ARCH/GARCH Models 

 

Financial series exhibit a number of important properties such as non-Gaussian return 

distributions (e.g. leptokurtosis), volatility clustering and leverage effects. In his 

pioneering study, Engle (1982) introduces a formal approach in modelling the variance 

of a time series by conditioning its variance on the square lagged disturbances in an 

autoregressive form known as Autoregressive Conditional Heteroscedasticity (ARCH) 

model.  The ARCH(q) model is given by: 

  2 2 2

0

1

, ~ 0,
q

t i t i t t

i

IID     



   (3.28) 

In order to ensure that the conditional variance is positive and stationary, the 

coefficients must satisfy the conditions: 0 0   and 0 1i  . The ARCH model is 

extended into the Generalized Autoregressive Condition Heteroskedasticity (GARCH) 

framework by Bollerslev (1986), where variance is conditioned on lagged residuals as 

well as lagged variance itself. The GARCH(p,q) formulation is given by: 

  2 2 2 2

1, 2.

1 1

, ~ 0,
q p

t o i t i j t j t t

i j

IID        

 

     (3.29) 

Similar to ARCH the parameters must satisfy the non-negativity constraints 0 0  ,

1, 0i   and 2, 0j  and the sum 1, 2, 1i j     must be less than one in order for 

the unconditional variance   2

0 0 1, 2,1 i j       to be stationary and non-

explosive. Although a variety of GARCH models has been proposed in the literature, 

the most commonly applied model in a financial time series is GARCH (1,1), as it is 

able to adequately capture the dynamics of variance (see Hansen and Lunde, 2005). 

 

One of the restrictions of GARCH models is that they enforce a symmetric response of 

volatility to positive and negative shocks. In other words it is assumed that negative 

and positive shocks impact the volatility by the same magnitude. However, the 

literature in finance has shown that positive shocks impact volatility differently from 

negative shocks of the same magnitude. This phenomenon is called the leverage effect. 

GARCH models, in the presence of leverage effects, may lead to biased estimates of 
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variance and inaccurate forecasts. Glosten et al. (1993) propose an extension of the 

GARCH model, the GJR-GARCH, to account for possible asymmetries and is 

specified as: 

  2 2 2 2 2

1, 2, 3 1 1

1 1

, ~ 0,
p q

t o i t i j t j t t t t

i j

I IID            

 

      (3.30) 

where  1tI   is an indicator function taking the value of one when the innovation term is 

negative, and zero otherwise. Therefore, the significance and sign of the 3  coefficient 

in the estimated model should suggest whether the time varying volatility of the 

financial series responds differently to positive or negative shocks.  

 

Another approach in this direction is Nelson (1991), who proposes the exponential 

GARCH or E-GARCH model, of which one possible specification can be given as: 

    2 2

0 1, 2, 3,

1 1 1

exp log , ~ 0,
p q p

t i t i t i
t i j t j i t t

i j it i t i t i

E IID
  

       
  

  


    

    
         

    
    (3.31) 

The EGARCH model does not need to impose non-negativity constraints and, 

therefore, the parameters 0 , 1,i , 
2, j and 

3,i  can take any real value.  

 

Although the asymmetric GARCH models can be specified in such a way as to capture 

the excess kurtosis by using Student-t or GED distributions, they fail to capture the 

dynamics of kurtosis and, more importantly, the variation of skewness over time. The 

studies of Bond (2001), Ricardo (2003), Bera and Kim (2002), Angelidis et al. (2003) 

among others suggest the application of non-Gaussian distributions that capture the 

higher moment dynamics. 

 

3.3.2 The impact of non-Gaussian distributions in GARCH estimation 

 

One of the distributions that has met with wide empirical success is Hansen’s Skewed 

t-distribution. Hansen (1994) proposes an autoregressive conditional density model 

which allows its shape parametetrs to vary over time, within a set of permitted 

boundaries. Bond (2001) finds that GARCH models using asymmetric non-normal 

distributions - especially Hansen’s Skewed t-distribution - provide better estimation 

and VaR results when compared with the Gaussian or the mixed jump-diffusion 
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distributions. Daal and Yi (2005) examine the performance of a variety of alternative 

distributions such as Hansen’s skewed t-distribution in GARCH specifications in 

comparison to a mixture of GARCH-Jump models using daily returns of the US, 

Korean, Indonesian, Mexican and Brazilian Indices during the May 1995 to July 2002 

period. They report that models with leptokurtic distributions perform better in the 

high volatility series of the emerging markets, and that Hansen’s (1994) skewed t-

distribution provides the best overall VaR forecast estimates.  

 

Jondeau and Rockinger (2003) extend Hansen’s (1994) model by relaxing the 

parametric restrictions and, thus imposing, a time-varying structure for the two 

parameters that control the probabilistic mass of the density function. They test the 

model using daily forex data (DM/US, UK/US, YEN/US and FF/US) over the period 

from July 1991 to September 1999, as well as daily equity index returns (S&P 500, 

NIKKEI, DAX30, CAC40 and FTSE 100) over the period from August 1971 to 

September 1999; and on the 3-month and 10-year rates of the US, UK, Germany and 

France from January 1975 to September 1999. They find evidence of higher-moment 

persistence in all series and their cross-sectional analysis reveals that the higher-

moments between the index returns and foreign exchange are strongly related.  

 

Ricardo (2003) tests a variety of GARCH models that account both for symmetry and 

asymmetry as well as incorporating heavy tails distributions that estimate the 

probability of a maximum loss occurring. His results over daily returns of the Buenos 

Aires Stock Exchange (MERVAL) and Dow Jones Index reveal that asymmetric 

GARCH models provide better VaR estimates compared with other models. 

 

Bera and Kim (2002) propose the Pearson Type IV distribution which accounts for 

asymmetry and excess kurtosis along with heteroskedasticity. Pearson Type IV 

distribution has three parameters that can be interpreted as variance, skewness and 

kurtosis and according to Bera and Kim (2002) they can be considered as different 

components of risk premiums. They apply their model in the daily returns of NYSE 

during the August 1991 to April 1996 period and find that the distribution is able to fit 

the data.    
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Another approach is Theodossiou (1998), who develops a skewed extension of the 

Generalized t-distribution
16

. He tests the model in S&P 500, TSE300 and TOPIC 

equity indices as well as in exchange rates (Canadian dollar / U.S. dollar, Japanese yen 

/ U.S. dollar) and finds that his proposed distribution provides excellent fit of the 

empirical distributions. 

 

Angelidis et al. (2004) examine the predictive accuracy of a variety of GARCH 

models with various distributions in producing accurate VaR estimates. After 

examining the daily returns of CAC40, DAX30, FTSE100, NIKKEI225 and S&P 500 

from July 1987 to October 2002, they find: firstly, that the mean process has no 

important role in the forecast of VaR estimators; secondly, the more flexible the 

GARCH model the better its volatility forecasts; and thirdly, leptokurtic distributions 

provide better VaR estimators as they are able to capture the series characteristics.  

 

Wilhelmsson (2007) proposes an Inverse Normal Gaussian (NIG) distribution which 

allows its parameters that resemble skewness and kurtosis to vary over time. His 

proposed model outperforms the Gaussian GARCH model in terms of VaR estimators 

of the daily returns of S&P 500 over the July 1962 to September 2005 period. 

 

However, these parametric distributional models do not allow for any dynamic in 

higher-moments of estimated residuals and, consequently, dependent variables. 

 

3.3.3 The importance of time-varying higher moments 

 

One of the first studies in modelling the dynamics of higher-moments is that of 

Campbell and Siddique (1999). They present an autoregressive conditional variance 

and skewness specification, assuming a non-central t-distribution for the error term in 

the mean equation. They examine the daily, weekly, and monthly returns of different 

global equity index returns (S&P 500 from January 1969 to December 1997, Dax 30 

from January 1975 to December 1997, Nikkei 225 from January 1980 to December 

                                                 
16

  The Generalized t-distribution is proposed by Mcdonald, J., B., and Newey, W., K.., 1988. Partially 

adaptive estimation of regression models via the generalized T distribution. Economic Theory, 4, 428-

457. 
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1997 and Mexico, Chile, Thailand and Taiwan over the period from January 1989 to 

January 1998) and find a number of stylized facts. Firstly, the asymmetric variance is 

consistent with conditional skewness. Secondly, conditional skewness is not only time-

varying, but also has an impact on the persistence of conditional variance. Finally, the 

dynamics of higher-moments are affected by frequency and seasonality. 

 

Brooks et al. (2005) use a GARCH specification with a time varying-kurtosis, 

(GARCHK) which allows the fourth moment of the Student’s t-distribution to vary 

over time. The application of the model to daily returns of the S&P 500 and UK FTSE 

100, as well as the  total return of the US and UK ten-year maturity benchmark bond 

indices over the period from January 1990 until June 2000, revealed that kurtosis is 

time-varying.  

 

Other approaches on modelling the fourth moment specification include He and 

Terasvirta (2002b), who examine the fourth moment structure of the GARCH(1,1) 

model with conditionally non-normal innovations, and Rubio et al. (2005), who derive 

expressions for the kurtosis of GARCH and stochastic volatility in the presence of 

conditionally non-normal leptokurtic innovations.  

 

León et al. (2004) propose a GARCH model which allows for time-varying volatility, 

skewness and kurtosis. The model is estimated assuming a variation of the Gram-

Charlier series expansion of the normal density function for the standardized residuals

t : 
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 (3.32) 
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where ts  is skewness and tk  kurtosis.  The density function for the standardized 

residuals t  condition on the information available in t-1 is given as: 

      2 /t t t tf        (3.33) 

where, 
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 (3.34) 

where     denotes the probability density function of the standard normal 

distribution and     the polynomial part of fourth order. Their proposed probability 

density function ensures that the density is positive for all parameter values in (3.32) 

and integrates to one (see Appendix 3.A for proof).  

  

León et al. (2004) test the model in exchange rates (British Pound / USD, Japanese 

Yen / USD, German Mark / USD and Swiss Franc / USD) over the period from 

January 1990 to May 2002, and on daily index returns (S&P 500, NASDAQ, DAX30, 

IBEX35 and MEXBOL) over the period from January 1990 to May 2003. Not only do 

they find strong evidence of time-varying skewness and kurtosis but their model 

outperforms other specification with constant skewness and kurtosis in terms of in-

sample predictive power.  

 

3.3.4 Markov Regime Switching GARCH Model 

 

Structural breaks characterized by changes in government policy, seasonality, business 

cycles, among others, can affect the properties of financial and economic time series 

both in terms of their mean value and volatility. Models that allow changes in the state 

of the market to be incorporated in the model spring from the work of Goldfeld and 

Quandt (1973) and Hamilton (1989), who model the structural breaks of the mean 

process. They are later extended by Hamilton and Susmel (1994), Gray (1996), Dueker 
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(1997), Klaassen (2002) and Alizadeh and Nomikos (2004), to name but a few, to 

allow both the mean and the variance to switch between different states. 

  

The simple GARCH(1,1) specification is extended into a two-state Markov regime 

switching GARCH
17

 such that: 
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 (3.35) 

where ts  denotes the state of the market is and can take two values: one denotes the 

high-volatility regime and the other the low volatility regime. Movements of the state 

variable between regimes are governed by a first-order Markov process. This means 

that the probability distribution of the state at any time t depends only on the state at 

time t-1 and not on any previous time intervals and a transition probability of 

ijtt pisjs   )|Pr( 1  
relates the two states. Hence the transition matrix  for a two 

state Markov chain is given by: 

 
11 12

21 22

    

    

p p

p p

 
  
 

π  (3.36) 

p12 represents the probability that state 1 will be followed by state 2, p21  is the 

probability that state 2 will be followed by state 1. Transition probabilities p11 and p22 

are the probabilities that there will be no change in the state of the market in the 

following period. Hamilton (1989 and 1994) shows that the unconditional probabilities 

of being in regime one, P1, or regime two P2, are given by: 

 22 11
t 1 t 2

11 22 11 22

1 1
P(s 1) P       and   P(s 2) P  

2- - 2- -

p p

p p p p

 
       (3.37) 

In the Markov regime switching GARCH models an issue of path-dependence arises, 

which renders the estimation procedure intractable. This happens because the 

conditional variance depends not only on past information but also on the current 

regime and its previous states. This results in the integration of a number of regime 

paths that grow exponentially with the sample size, thus, rendering the estimation 

tractability infeasible.  

 

                                                 
17

 An increase in the number of regime sometimes results in over-parameterisation and difficulty in 

estimation due to regime-switching models being non-linear. 



 56 

Gray (1996) suggests integrating the unobserved regime path in the GARCH 

specification by using the conditional expectation of the past variance. The drawback 

of this approach lies in the complexity it generates when forecasting multi-step-ahead 

volatility. Klaassen (2002) suggests the usage of the conditional expectation of the 

lagged conditional variance with a broader information set than Gray (1996) and 

presents the following expression for the conditional variance, for simplicity the 

GARCH(1,1) is presented: 

  2 2 2

, 0, 1, 1 2, 1 , 1 1|i t i i t i t i t tE s            (3.38) 

where 1
~
ts is the history of the regime path ( )  ,  ,  ,~

3211   tttt ssss . The log-

likelihood function for the above regime-switching GARCH model is defined as: 
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where  0,1,...,n   and )|( isrf tt   is the conditional distribution given that regime i 

occurs at time t. The advantages of Klaassen’s (2002) specification when compared 

with the other models are the high degree of flexibility for capturing the persistence of 

shocks to volatility, and the fact that it allows the computation of multi-step ahead 

volatility forecasts calculated recursively as in standard GARCH models. The multi-

step-ahead volatility forecasts are computed as a weighted average of the multi-step 

ahead volatility forecasts in each regime, where the weights are the prediction 

probabilities. 

    2 2

, ,0 ,1 ,2  , 1
ˆ ˆ |T T i i i T T T TE s             (3.40) 

where  

,T T

i





 indicates the τ-step-ahead volatility forecast at time T. 

 

3.4 Multivariate Volatility Models 

 

This section generalizes the univariate models and presents multivariate models which 

capture the dynamic relationships between multiple volatility processes. Multivariate 

volatility models have a wide application in the financial world, ranging from asset and 

option pricing, to hedging and risk management, as well as portfolio construction and 

asset allocation.  
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This section adopts a similar notation to the one already presented for the univariate 

models. Consider a multivariate process  1 ,t nty yty  such that: 

 
t t ty = μ +ε  (3.41) 

where 
tμ is the conditional mean vector and  

 
1/2

t t tε = H z  (3.42) 

where 1/2

tΗ  is a N x N positive definite matrix containing all variance and covariances 

of 
ty and 

tz is an random vector with: 

 
 

 

t

t N

E z = 0

Var z = I
 (3.43) 

where 
NI  is an order N identity matrix. The conditional variance matrix of the 

multivariate process is then given by: 

       1/2 1/2

t t t t t tVar y = Var ε = H Var z H = H  (3.44) 

where 
tH is the conditional variance matrix with 1/2

tH  being a NxN positive definite 

matrix and estimated by the Choleksy factorization of 
tH . The Cholesky 

decomposition is the decomposition of a symmetric, positive definite matrix, 
tH , into 

the product of a lower triangular matrix , tL , with unit diagonal elements and a 

diagonal matrix, 
tG , with positive diagonal elements such that:  t t t tH L G L  (see 

Tsay, 2001). 

 

The following paragraphs denote the different parameterizations of the time evolution 

of the covariance matrix tH . There are three categorizations for multivariate GARCH 

models. The first is the generalizations of the univariate GARCH model; the second 

and third are linear and nonlinear combinations of the univariate GARCH models. The 

first includes the VEC, BEKK, RiskMetrics and factor models; the second includes the 

orthogonal models and; the third category the constant and dynamic correlation 

models. 
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3.4.1 Generalizations of the univariate GARCH model: DVEC, BEKK and Factor 

Models 

 

Bollerslev et al, (1988) propose the VEC Multivariate Generalized Autoregressive 

Conditional Heteroscedastic model (VEC-MGARCH), in which the elements of the 

covariance matrix are linear function of the lagged squared errors and cross products of 

errors and the lagged values in the covariance matrix. The model is defined as: 

  
q p

t i t-i t-i j t

i=1 j=1

H = C + A ε ε + B H  (3.45) 

where p and q are positive integers, 
iA  and 

jB  are symmetric matrices with 

dimension, and denotes the Hadamard product; that is, element-by-element 

multiplication. However, the large number of estimated parameters, 

      
2

1 / 2 1 / 2p q N N N N    , makes the estimation procedure 

computationally intense and demanding. Therefore, Bollerslev et al. (1988) propose a 

more simplidfied version of the VEC-MGARCH model by assuming that 
iA  and 

jB  

to be diagonal matrices and each element of tH  depends only on its own lag and the 

previous value of  
t-i t-iε ε .  Under this formulation the number of estimated parameters 

drops to    1 1 / 2p q N N   . The drawback of the VEC models is that they do not 

guarantee a positive definite covariance matrix without the application of strong 

parametric restrictions. 

 

Engle and Kroner (1995) propose the Baba, Engle, Kraft and Kroner (BEKK) 

specification with the attractive property that the conditional covariance matrix is 

positive definite by construction. The BEKK specification is given as: 

      
p q

t i t-i t-i i j t-j j

i=1 j=1

H = CC + A ε ε A + B H B  (3.46) 

where 
kjA , 

kjB  and C are N x N parameter matrices and C is a lower triangular 

matrix. The decomposition of the constant term into a product of two triangular 

matrices is to ensure positive definiteness of tH .  
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However, this formulation has a number of disadvantages. The first drawback is the 

difficulty of interpreting the parameters 
iA  and 

jB  and secondly, since the estimated 

number of parameters of the model increases as the number of series and dimensions 

of p and q increase    2 1 2N p q N N     . A simplified version of the BEKK 

specification is the diagonal BEKK model such that
iA  and 

jB  are diagonal matrices. 

The scalar BEKK is the most restricted version of the diagonal BEKK with aA I and 

bB I , where a and b are scalars. 

 

The large number of parameters renders the numerical estimation of the VEC and 

BEKK formulation difficult. Instead factor models impose the dynamics of common 

factors on the elements of the covariance matrix 
tH . Engle et al. (1990) were the first 

to propose a 
tH  parameterization based on the co-movements of a small number of 

common factors. Bollerslev and Engle (1993) extend the above parameterization and 

model the common factor conditional variances. Lin (1992) proposes a factor model 

that is a based on the BEKK formulation, the F-GARCH(1,1,K) by assuming 

k=1,....,K, *

kA and *

kB  have rank of one and have the same left and right eigenvectors.  

 
k ka and   * *

k k k k k kA w λ B w λ  (3.47) 

where  ka  and k  are scalars, kw  and 
kλ  are Nx1 vectors satisfying: 

 
0

1

k i

k i


  


k i

w λ  (3.48) 

 
1

1
N

kn

n

w


  (3.49) 

By substituting the above equations into the BEKK formulation (3.46) the following 

expression is derived with the identification restriction of equation (3.49): 

  2 2

k ka    
K

t k k k t-1 t-1 k k t-1 k

k=1

H = C + λ λ w ε ε w + w H w  (3.50) 

The tH  is a reduced rank K matrix but remains full ranked as C is positive definite. 

The kλ  vector and k tw   scalar are called the k-th factor loading. 

 

Another variant of the factor models is Vrontos et al. (2003) who propose the full-

factor GARCH model, defined as: 
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 
t tΗ =WΣ W  (3.51) 

where  W  is an N by N triangular matrix, with ones on its diagonals and the diagonals 

of  2 2

1, ,, ,t N tdiag  tΣ =  contain the conditional variances of the j-th factor. By 

construction 
tH  is positive definite  

 

3.4.2 Orthogonal Models: O-GARCH and GO-GARCH 

 

Orthogonal models try to simplify the dynamic structure of a multivariate volatility 

process. Orthogonal models assume that a large number of interrelated variables can 

be linearly transformed into a set of uncorrelated components by the means of an 

orthogonal matrix. The first model to be examined is the O-GARCH model which is 

proposed by Alexander (2001). It allows N x N GARCH covariance matrices to be 

estimated from just m univariate GARCH models; where N are the number of variables 

and m the number of principal components (see Chapter 3 section 4.6 for more details 

regarding principal component analysis). The time-varying covariance matrix tΗ  is 

given as: 

 
t tΗ = AD A  (3.52) 

where  *

ijwA is the normalised factor weight vector, W, from principal component 

analysis, tD  is the diagonal matrix of variances of the principal components estimated 

by a GARCH model and requires the estimation of N(N+5)/2 parameters. Alexander 

(2001) illustrates that Equation (3.46) yields a positive semi-definite matrix at every 

point in time even when the number of principal components is less than the variables 

of the original system.  

 

van der Weide (2002) presents the GO-GARCH model which is a generalization of the 

O-GARCH model. The GO-GARCH specification does not impose the transformation 

matrix W to be orthogonal as in the case of the O-GARCH model, which in GO-

GARCH is given as: 

 1/2
W = PΛ U  (3.53) 



 61 

 where  1 2 1, , , ,diag        Λ  and λ are the eigenvalues, P is the 

matrix of corresponding eigenvectors to eigenvalues, and U is given as: 

  , , , 1, ,ij ij i j n       ij

i<j

U = R  (3.54) 

where  ijR ij
 performs a rotation in the plane spanned by ei and ej over an 

ij angle. 

The conditional correlation of the error term is defined as: 

  , where and 
1/2-1 -1

t t t t t t t t
R = D V D D = V I V = WΣ W  (3.55) 

where denotes the Hadamard product and 
tV  denotes the conditional covariances of 

the variables. Finally, the O-GARCH and GO-GARCH are covariance stationary if the 

m univariate GARCH process is stationary. 

 

 

 

3.4.3 Conditional Correlation Models: CC-GARCH, DCC-GARCH and GDC-

GARCH 

 

Under this category, models are able to estimate separately the individual conditional 

variances and the covariances. These types of models require the estimation of far less 

parameters than those compared in the previous sections. Among these models are CC-

GARCH, DCC-GARCH and GDC-GARCH formulations. 

 

Bollerslev (1990) proposed the Constant Correlation MGARCH model in which the 

conditional correlations are constant. Let a multivariate GARCH model with returns 

from N classes exhibit a conditional multivariate normal distribution of zero mean and 

covariance matrix, tH  and  ~ 0,Nt tr H  where tr  are the returns, with either zero 

mean or the residuals from a filtered time series. The covariance matrix is defined as:  

  ij iit jjt  t t tH = D RD =  (3.56) 

where tD  is a N x N diagonal matrix of time varying standard deviations from a 

univariate GARCH model with it for the thi diagonal element and R is the constant 

correlation matrix which is a symmetric positive definite matrix with 1ii i   .  
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While the assumption of the constant correlation ensures the positive definiteness and 

provides computational simplicity and estimation, it may not be appropriate and too 

restrictive in real life applications. In this respect Tsui and Yu (1999), Tse (2000), Bera 

and Kim (2002) and Engle (2002) highlight the dynamic correlation of bonds and other 

financial instruments. To address this problem, Tse and Tsui (2002) and Engle and 

Shephard (2001) propose the Dynamic Conditional Correlation Multivariate GARCH 

model, by retaining the CC's decomposition but making the conditional correlation 

matrix in Equation (3.56) time-varying. Engle and Shephard (2001) test their model on 

100 assets of the S&P 500 sector indices including the composite and the 30 Dow 

Jones Industrial Average Stock including the average. They find strong evidence of 

time-varying correlation and illustrate the flexibility of the DCC-GARCH model to 

capture asymmetric effects in volatility or to incorporate long memory volatility 

models. 

 

Tse and Tsui (2002) propose the following dynamic correlation structure: 

  t 1 2 1 t-1 2 t-1R = 1-θ -θ R+θ Ψ +θ R  (3.57) 

where 1  and 2  satisfy the 1 20 1    , R is a time-invariant N x N positive 

definite parameter matrix with 1ii  , and t-1Ψ  is an N x N well-defined correlation 

matrix of the standardised residuals at time t-1, with the following specification: 

 
, ,

1
, 1

2 2

, ,

1 1

M

i t m j t m

m
ij t

M M

i t m j t m

m h

 



 

 




 

 




 

 (3.58) 

Engle and Shephard (2001) propose the following dynamic correlation structure:  

 
 

 
 

 



   
p q p q

t m n i t-i t-i j t-j

i=1 j=1 i=1 j=1

-1 -1

t t t t

Η = 1- a - β Η + a ε ε + β Η ,

R = Η Η Η

 (3.59) 

where Η is the unconditional covariance of the standardized residual resulting from the 

first stage estimation. An element of the DCC or tR , consists of time-varying 
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correlation as 
, ,

, ,

, , , ,

i j t

i j t

i i t j j t

q

q q
   and -1

tΗ is a N x N diagonal matrix consisting of the 

square root of the diagonal element of 
tΗ , where: 

 

11

22

0 . 0

0 . 0

. . . .

0 0 . kk

h

h

h

 
 
 

   
 
 
 

tΗ  (3.60) 

The estimation of the DDC-GARCH is performed over two steps. The first entails the 

estimation of univariate GARCH models for series and the second stage, the 

standardized residuals from the first stage, are used to estimate the parameters of the 

dynamic correlation. The likelihood function of the second stage is given as: 

   
1

1
2log

2

T

t

L


   -1

t t t tR ε R ε  (3.61) 

Kroner and Ng (1998) propose a general dynamic covariance model that nests several 

of the already presented models. The GDC model is defined: 

 t t t t tH = D R D +Φ Θ  (3.62) 

where   , , 0t ijt ijt iit ijtD d d i d i j      , tR  can be specified either by 

Tse and Tsui (2002) or  Engle and Shephard (2001) formulations, 

  
ijt ij i t-1 t-1 j i t-1 jθ =ω +a ε ε a +g H g , i, j , ia  and ig  are N x 1 vector of parameters. 

 

3.4.4 Testing for Constant Correlation 

 

Engle and Shephard (2001) claim that testing the hypothesis of constant correlation 

can be difficult to evaluate, due to the time-varying volatilities of correlations and the 

misspecifications of the estimated models. Tse (2000) proposes a test for the null of 

constant conditional correlation against the alternative of a dynamic correlation 

structure, and Bera (1996) tests the null of constant conditional correlation against a 

diffuse alternative. But neither of these tests cannot generalize to higher dimensions. In 

this regard, Engle and Shephard (2001) proposed a test of whether the estimated 

correlation matrix tR  is constant over time. Let the null 0 : ,H t T tR = R  and 

the alternative hypotheses be:  
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          1 1 2: ...u u u u u

pH vech vech vech vech vech      t t t-1 t-2 t-pR R R R R (3.63) 

where uvech  is a modified vech  which only selects elements above the diagonal. The 

next step is the estimation of univariate GARCH processes and the standardization of 

the residuals. A variable of N x 1 vector such as:  

 
uvech
   
    
    

T

t t
t k

r r
Y - I

D R D R
 (3.64) 

where D is the N x N diagonal matrix of time varying standard deviations from 

univariate GARCH models, and tr

D R
 is a N x 1 vector of residuals standardized 

under the null. Finally the following Vector autoregression is computed: 

 1 ... na      t t-1 t-n ty Y Y η  (3.65) 

Under the null hypothesis, the constant and all of the lagged parameters in the VAR 

model will be zero, where the test statistics are asymptotically distributed as 2

1s 
.  

 

 

3.5 Principal Component Analysis 

 

Another statistical technique that has been applied extensively in interest rate 

modelling is the Principal Component Analysis (PCA), and it is the basis of the 

Orthogonal-GARCH specification described in the previous sections. PCA is 

developed by Pearson (1901) and is a statistical technique for transforming correlated 

variables into a smaller number of uncorrelated variables called the principal 

components. Given a n-dimensional multivariate process  1, nY YY  the principal 

components which are a linear combination of the multivariate process are given as: 

 P = YW  (3.66) 

where W is called factor weight vector and the i-th principal component of the 

multivariate process is given as: 

 1 1 2 2i i ni nw Y w Y w Y   i iP YW  (3.67) 

In order to estimate the factor weights the variance of the vector P given by the 

following equation is maximized given the constraint that W W = 1 : 

  Var P WΛW  (3.68) 
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where Λ is a symmetric matrix of order n of the sample correlations between the 

variables and it is given as: 

 Λ =ΥΥ  (3.69) 

The maximization method applied is known as the method of Lagrange multiplier and 

it is written as: 

  ' 'L = W ΛW-λ W W-I  (3.70) 

where λ is the Lagrange multiplier. The eigenvalues of the symmetric matrix Λ which 

are ranked according with their magnitude 1 2 n    ; and the corresponding 

eigenvectors 1 2, ..., nW W W
 
are estimated by solving the characteristic equation: 

   0Λ-λΙ W  (3.71) 

where I is the identity matrix. Finally, the percentage of the variance that is explained 

by the first k-components is given by:  

 
1

1

k

j

j

n

i

i












 (3.72) 

In conclusion, principal component analysis is able to reduce the dimensionality of a 

data set which consists of a large number of inter related variables by transforming the 

data set into a new set of variables, the principal components, which are uncorrelated 

and are in order so that the first few account for most of the variation in the original 

data set.  

 

3.6 Value at Risk 

 

Value-at-Risk is the maximum loss expected to occur over a given time period with a 

given probability. With the adoption of BASEL (2005) the number of exceptions is 

used to determine the levels of capital requirements. These exceptions are the number 

of occasions when the actual loss is larger than the predicted VaR model. 

3.6.1 Univariate Value at Risk Estimation 

 

The VaR at time t at a% significance level is calculated as follows: 

  1

t t n t nVaR F a 

     (3.73) 
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where 1|t t  is the conditional mean,  1F a
 is the corresponding empirical quantile of 

the assumed distribution, n is the investment horizon and t n   is the volatility forecast 

at time t+n. Although, many implementations of VaR assume that asset returns are 

normally distributed, the Gram-Charlier expansions are a convenient tool to account 

for departures of normality and capture the distributional characteristics of financial 

series. Gram-Charlier expansions produce a density function that can be viewed as an 

expansion of the standard normal density function augmented with terms that capture 

the effects of skewness and excess kurtosis. The inverse cumulative density function
18

 

is given as: 

      
2 3

1 1 1 1 1

1 1 1 11 1 3
6 24

GC a a a a

s k
F a        

   

                
 (3.74) 

where  
1




  denotes the inverse cumulative density function of the standard normal 

distribution and s and k the sample’s skewness and kurtosis.  

3.6.2 Multivariate Value-at-Risk Analysis 

 

Value-at-Risk can be considered as a measurement of a portfolio's market risk and 

measures the maximum portfolio's loss expected to occur over a given time period 

with a given degree-of-confidence. The VaR at time t at alpha% significance level is 

estimated as follows: 

  P VaR a  t tw P   (3.75) 

where tw are the weights at time t and tP  the vector of the portfolio returns at time t.  

 

According to Rombouts and Verbeek (2009) VaR is a function of a confidence level a, 

a density function, the portfolio weights tw , a functional form of the mean vector tμ

and of a covariance matrix tH . In the special case where the density function is the 

multivariate normal density function, the VaR estimators are computed as:  

   aZ 
t t t t tw μ + w H w  (3.76) 

where aZ  is the a
th

 quantile of the univariate standard normal distribution. 

                                                 
18

 For further details see Christoffersen, P., F., and Goncalves, S., (2005). “Estimation Risk in Financial 

Risk Management.” Journal of Risk, 7(3), 1-28. 
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3.6.3 RiskMetrics 

 

RiskMetrics was developed by J.P. Morgan in 1989 for the computation of VaR. The 

RiskMetrics (1996) uses the exponential weighted average model (EWMA) for the 

estimation of variance. The decay factor takes values between 0.9 and 1. J.P. Morgan 

suggests that for daily data a decay factor of value 0.94 should be used and for 

monthly 0.97.  The EWMA variance can be specified as: 

  2 2 2

1 11t t tr       (3.77) 

and in a portfolio as: 

  2 2

, , 1 1 11 i j

ij t ij t t tr r        (3.78) 

Engle and Bollerslev (1986) suggested the variances and covariances can be specified 

within RiskMetrics as an IGARCH specification, defined as: 

  , , 1 , 1 , 11ij t i t j t ij t          (3.79) 

The T-period VaR is then computed by the square root of time rule: 

  VaR T T VaR   (3.80) 

3.6.4 Historical Simulation 

 

The Historical Simulation uses past returns to infer the cumulative distribution 

function. Such an approach allows the incorporation of asymmetries, fat tails and other 

unique distributional characterizations for the specific asset class. The VaR of the 

historical simulation is defined as: 

     1t

t a t i i t i N
VaR F r



   
  (3.81) 

where the right hand  of the equation is the a percentile of N past returns. The 

historical simulation faces two shortcomings. Firstly, it assumes that returns are 

independent and identically distributed; and secondly, it attributes equal weights to all 

past returns. An extension of the historical simulation is the Filtered Historical 

Simulation, which a semi-parametric technique. FHS is defined as: 

   1
|

t

t a t i ti t i N
VaR F z  



   
  (3.82) 
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where t iz   are the standardized residuals and t  is the standard deviation of the 

returns.  

 

3.6.5 Extreme Value Theory 

 

Extreme value theory is a branch of statistics devoted in modelling extreme deviations 

of the return distribution. The central result in extreme value theory (EVT) states that 

the extreme tail of a wide range of distributions can approximately be described by the 

generalized Pareto distribution. Christoffersen (2003) presents extreme value theory in 

the following manner. Consider the standardized returns such as: 

  1 1 1 1, ~ . . . 0,1t t t tz r z i i d     (3.83) 

The probability of the standardized returns z less a threshold u being below a value x 

given that the standardized returns are beyond the threshold u, for x>u, is given as: 

 

   

 
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Pr /

Pr ( ) ( )

Pr 1 ( )

uF x z u x z u

z u x F x u F u

z u F u

    

   


 

 (3.84) 

The distribution  uF x  depends on the choice of threshold. As the threshold u 

becomes larger the  uF x converges to the generalized Pareto distribution, for 0   is 

given: 

  
 

 

1/
1 1 / , 0

; ,
1 1 / , 0
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G x
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
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 
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 (3.85) 

and  

 
0

/ 0

x u

u x u



  

 


   
 (3.86) 

In order to estimate the parameters using maximum likelihood estimation method, a 

rearrangement of equation (3.84) is undertaken. Let y x u  then: 

        
1/

1 1 ( ) 1 ( ) 1 1u
uF y F u F y u y u


 


        


 (3.87) 

where T denotes the total sample size, Tu the number of standardized observations 

beyond the threshold u; while the term  1 ( )F u  is estimated by the proportion of 

standardized observations which are beyond the threshold, Tu/T and, finally, 0  . 
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Christoffersen (2003) argues that for financial series ξ is positive and thus the Hill 

estimator exists: 

     1/Pr 1 ,z y F y cy y u      (3.88) 

Thus, the likelihood function for all observation iy  larger than the threshold u is: 

    

1/ 1

1/
1 1

1

ln 1
u uT T i
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i i

y

L f y F u
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





 


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

       (3.89) 

and therefore the log-likelihood function is: 

      
1

1 1
ln ln 1 ln ln

uT

i

i

L y u
 

 
      

 
  (3.90) 

 Estimating the derivative with respect to ξ and c and setting it to zero, yields: 
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1
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

 



 (3.91) 

The cumulative distribution function then becomes: 

    
1/1/1 1 /uT

F y cy y u
T

      (3.92) 

Finally, the loss quantile,  1 1F p  , which is applied in Value-at-Risk is defined as: 

    1 1 uF p u p T T
       (3.93) 

The crucial component in EVT is the choice of the threshold u. If the threshold u is set 

too high then only a few observations are used to estimate the tail and thus the tail 

parameter, ξ will remain uncertain. On the other hand, if the threshold u is set too 

narrow then biased estimates of the tail parameter, ξ are computed. Christoffersen 

(2003) proposes that the threshold u should be the 95
th

 percentile of the data set.  

 

3.6.6 Other Value-at-Risk Approaches 

 

The Monte Carlo simulation generates numerous paths for the evolution of the returns 

of an asset and assumes that they follow a stochastic process. The VaR is then 

estimated by the difference between the expected value of the distribution of the 

simulated returns and the a% lower percentile of the distribution. The advantage of this 
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approach is the incorporation of the underlying dynamics of the return series, such as 

mean reversion and seasonality amongst others.  

  

The peaks over threshold technique measures the excessiveness of returns over a high 

threshold and the occurrence of an event following a Poisson process. The peaks over 

threshold overcomes the disadvantages met by the extreme value theory, which include 

having difficulty selecting the appropriate length period and not considering the return 

dynamics.  

 

The non-parametric family of VaR estimation techniques does not make any specific 

assumptions of the asset's return distribution, rather it utilizes the historical return's 

distribution in the estimation of the tail's distribution. The advantage of the non-

parametric techniques is their ability to capture asymmetries and fat tails. The quantile 

estimation, the historical simulation and the filtered historical simulation belong to this 

approach. 

  

The quantile estimation can be distinguished by two separate categories: the empirical 

quantile and the quantile regression.  The first approach assumes that the return 

distribution in the prediction period is the same as in the sample period. The 

disadvantages of this approach are: firstly, the assumption that the return distribution 

remains constant from the sample period over to the prediction period; and secondly, 

the empirical quantiles are not efficient estimates of the theoretical ones.  

  

Quantile regression takes into consideration the return's mean or variance dynamics. 

Koenker and Bassett (1978) suggest that the estimation of quantiles of the distribution 

function of returns should incorporate explanatory variables. Engle and Mangavelli 

(2004) suggest that Value at Risk should incorporate the same properties as volatility, 

for example clustering.  The advantage of this approach is that it does not make any 

assumption of the return's distribution. 

 

3.6.7 Risk Management Loss Functions 
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The adequacy of the VaR estimates is examined by the Christoffersen (1998) back-

testing procedure. This test can be divided into three sub-tests: correct unconditional 

coverage; independence; and correct conditional coverage. In this respect, the rejection 

of the model can be categorized as the unconditional coverage failure or the exception 

clustering, or both. 

 

Christoffersen (1998) tests are computed under the likelihood ratio specification and are 

the following: 

 

The LR statistic for the correct unconditional coverage: 

        0 1 01 2

1 12 log 1 log 1 ~ 1
n n nn

UC PFLR LR a a       
 

 (3.94) 

where 1n  is the number of 1’s in the indicator series, 0n is the number of 0’s in the 

indicator series, α is the tolerance level of the VaR estimates and 1
1

1 0

n

n n
 


. 

The LR statistic for test of independence:  

  
 

 
       0 01 1 11 001 11 1 2

01 01 11 11 1 12 log 1 1 log 1 ~ 1
n n n n nn n n

INDLR       
      

  
(3.95) 

where ijn  is the number of i values followed by a j value in the indicator series, 

  1Pr , 0,1ij t tI i I j i j      and 01 11
01 11

0 1

,
n n

n n
   . 

The LR statistic for the correct conditional coverage is given as the sum of the correct 

unconditional coverage and the independence test: 

  2~ 2CC UC INDLR LR LR    (3.96) 

The best models are those that generate a coverage rate less than the nominal; and a 

model is considered to be adequate for risk management when it is able to pass both 

the conditional and unconditional coverage tests. 

 

3.7 Conclusions 

 

This chapter introduces the econometric and statistical formulations necessary to 

model the dynamic behaviour of credit spread changes, their conditional higher 

moments and their correlation. It introduced the building blocks of time series analysis, 

the uniavariate models which forecast and model the dynamic structure of a financial 
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time series. It extends into multivariate time series analysis and Markov regime 

switching models. The former tries to model the dynamic structure of a financial time 

series by reference to movements in other explanatory variables, while the latter 

models changes in the mean process of time series.   

  

However, the financial time series exhibit properties such as non-Gaussian return 

distributions, volatility clustering and time-varying higher moments. As such GARCH 

models introduced by Bollerslev (1986) are extended to incorporate higher moments, 

GARCH-SK, and changes in the dynamics of volatility, MRS-GARCH. In order, to 

examine the dynamic relationship of covariances and correlations the multivariate 

volatility models, such as: MGARCH, BEKK, O-GARCH among others, are 

introduced. Finally, it presents the risk management loss functions and back testing 

techniques depicted by Christoffersen (1998) to measure the efficiency of the different 

VaR estimates. 
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APPENDIX 3.A  

 

Proof that León et al. (2004) proposed pdf integrates to one 

 

This appendix illustrates that the function  tf   in (3.33) integrates to one.  t   

from (3.34) can be rewritten as: 
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             (3A.1) 

where   i i N
H x


represents the Hermite polynomials such that for 2i   they hold the 

following recurrence relation: 

      1 21i i iH x xH x i H x i                             (3A.2) 

and they satisfy the following conditions: 
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where     denotes the standard normal density function. The integration of the 

conditional density function in (3.33) given the condition in (3A.3) becomes: 
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Chapter 4  

Data Collection & Processing 
 

 

 

 

 

 

 

 

4.1 Introduction 

 

The aim of this chapter is to introduce the data set used for empirical analysis in the 

thesis and to review the statistical properties of the different variables selected. The 

data comprising this study is daily and includes the yields on Markit iBoxx Euro 

Corporate Indices
19

 for the AAA, AA, A and BBB ratings and 1-3, 3-5, 5-7 and 7-10 

maturities, the yields on German Government Bonds with maturities with 3, 5, 7 and 

10 years to maturity, the MSCI
20

 Berra Pan-Euro Index, the EURO STOXX 50 

Volatility Index
21

 (Vstoxx), EuroMTS Inflation Index
22

 and Goldman Sachs S&P 

                                                 
19

 iBoxx Euro Corporate indices are part of the Markit iBoxx portfolio of indices which covers the cash 

bond markets. Markit was founded in 2001 as the first independent source of credit derivative 

pricing and some of their indices are: Markit iTraxx, Markit CDX and Markit iBoxxFX, among 

others. For more information visit: http://indices.markit.com/ 
20

 MSCI Barra is a provider of investment decision support tools to investment institutions. More 

information can be found in: http://www.mscibarra.com 
21

 For more information on EURO STOXX 50 Volatility Index visit: 

http://www.stoxx.com/indices/index_information.html?symbol=V2TX 
22

 For more information regarding EuroMTS Inflation Index visit: 

http://www.euromtsindices.com/index_new/content/inflation_linked/overview.php 
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GSCI Commodity Index
23

 from 03/01/2000 to 30/04/2009, in total 2433 daily quotes 

which are available from DataStream.  

 

The data set used covers the European bond market, which is a market with unique 

characteristics and dynamics. This is mainly due to the introduction of the Euro as a 

single currency and the introduction of Cyprus, Czech Republic, Estonia, Hungary, 

Latvia, Lithuania, Malta, Poland, Slovakia and Slovenia as new member states in 

2004. The introduction of the single currency provided the means to reshape the 

mechanics of the European financial markets, by liberating vast inflows of fragmented 

capitals under the different currencies, and providing the means for cross-border 

investments around a unified legislative framework which promoted the economic 

expansion of the single market, making it the largest fixed income economy in the 

world
24

. 

 

The chapter is organised as follows: Section 4.2 presents the credit spreads and 

introduces their distributional properties. Section 4.3 presents the different variables 

applied in the determination of the drivers of credit spreads as well as the descriptive 

statistics and unit root tests.  

 

4.2 The Credit Spreads 

 

The credit spreads are computed as the difference between the yield on iBoxx Euro 

Corporate Indices and the yield on equivalent German government bonds. The 

selection of the German government bonds was based primarily on their liquidity and 

large size, and also on the fact that during the credit crisis period the German 

government market gained a safe-haven status in international financial markets, a 

status similar to that of the U.S. Treasury market (see Ejsing and Sihvonen, 2009, and 

Schknecht, von Hagen, and Wolswijk, 2010). In order to obtain the credit spreads of 

the rating indices, the difference between the yield on each iBoxx rating index and the 

                                                 
23

 For information regarding S&P GSCI refer to: 

http://www2.goldmansachs.com/services/securities/products/sp-gsci-commodity-index/index.html 
24

 Source International Monetary Fund World, Economic Outlook Database, April 2010: 

http://www.imf.org/external/pubs/ft/weo/2010/01/weodata/weorept.aspx?sy=2004&ey=2009&scsm

=1&ssd=1&sort=country&ds=.&br=1&c=998&s=NGDP_RPCH%2CNGDPD%2CPPPGDP%2CPP

PPC&grp=1&a=1&pr.x=58&pr.y=1 
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3-year to maturity German government bond yield is selected, as it is the most liquid 

government bond. Finally, the credit spreads of the maturity indices are estimated as 

the difference between the yield on each iBoxx maturity index and the respective 

maturity of the yield on German government bonds. 

 

The inclusion of the iBoxx indices in this study was decided on the premise that they 

would provide accurate and high quality bond prices. These indices are used as a proxy 

for the underlying market and serve as a basis for derivative products and portfolio 

valuation. Their construction abides by the highest market standards as indicated by 

the EFFAS European Bond Commission Standardised Rules on Constructing and 

Calculating Bond Indices. The inclusion criteria incorporate fixed and zero-coupon 

bonds including step-up
25

 and event-driven bonds with a minimum time to maturity of 

one year. Each bond is assigned to an index based on the average ratings generated by 

Fitch, Moody and S&P. Lastly, the outstanding amount for corporate bonds to be 

included is € 500 million. 

 

A number of financial institutions provide the bond prices for the calculation of the 

Markit iBoxx Indices, including: ABN Amro, Barclays Capital, BNP Paribas, 

Deutsche Bank, Dresdner Kleinwort, Goldman Sachs, HSBC, JP Morgan, Morgan 

Stanley, Royal Bank of Scotland, and UBS. Index rebalancing occurs on two specified 

dates. The first takes place on a quarterly basis and is concerned with coupon changes 

and coupon payments; the second rebalancing takes place on a monthly
26

 basis and 

takes into account the changes in credit-worthiness and rating of the bond, which 

considers whether the issue or issuer has defaulted, downgraded or reduced the out-

standing amount below threshold level.  

 

Figure 4.1, 4.2 and 4.3 present the time series of the yield on German Government 

Bonds, the yield on the iBoxx indices, and credit spread indices respectively. For the 

German Government bonds, yields decrease from 2000 to the middle of 2005 and then 

increase until 2009, when they decrease to levels not observed previously in the 

sample period. Furthermore, the yields on the iBoxx Euro Corporate indices, decrease 

                                                 
25

  A step-up bond is a bond that its coupon increases at regular intervals. 
26

 The impact of the monthly rebalancing on the yield indices was examined by estimating a regression 

model with dummy variables reflecting these dates. The results showed that the rebalancing dates have 

no impact on the iBoxx indices.  
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from 2000 to the middle of 2005, from which point they increase up to 2009 at levels 

not previously seen. The credit spread indices widen during 2002 to 2004, and narrow 

during 2004 to 2007. In 2004 Cyprus, the Czech Republic, Estonia, Hungary, Latvia, 

Lithuania, Malta, Poland, Slovakia and Slovenia join the European Union, which 

results in a large economic expansion of the single market and as a result narrows 

credit spreads up until 2007. Finally, the credit spreads increase during 2007 to 2009 to 

levels again not reached before in the sample period, signalling the credit crisis period.   

 

By visually examining the credit spread time series of Figures 4.4 and 4.5 and their 

first differences in Figures 4.6 and 4.7, it can be seen that the credit spread indices 

show structural shifts both in the mean and volatility processes and appear to be highly 

correlated. Figures 4.4 and 4.5 reveal a number of structural shifts in the properties of 

credit spreads; such breaks may have been in the middle of 2001 and in the middle of 

2003, while another may appear in the middle of 2007.  Figures 4.6 and 4.7 present the 

changes in credit spreads and reveal that the period of 2000 to middle of 2005 is one of 

high volatility during which credit spreads changes exhibit volatility persistence. 

Volatility seems to decline from 2006 up until 2007 from which point it increases and 

exhibits spikes for the changes in credit spreads of the rating indices.  
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Figure 4.1 Presents the yield-to-maturity of German government benchmark bonds 

 
Figure 4.2 Presents the yield-to-maturity of the rating indices 

 
 

Figure 4.3 Presents the yield-to-maturity of the maturity indices 
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Figure 4.4 Presents the credit spreads of the rating indices  

 

Figure 4.5 Presents the credit spreads of the maturity indices 

 
Figure 4.6 Presents the changes in credit spreads of the rating 

indices 

 
 

Figure 4.7 Presents the changes in credit spreads of the maturity 

indices 
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Table 4.1 Reports the descriptive statistics of yield indices, credit spreads and 

changes in credit spreads 

 

Panel A: Yield Indices  

Statistics AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 
Mean 4.182 4.583 4.827 5.313 4.104 4.497 4.824 5.087 

Std. Dev. 0.894 0.861 0.874 1.055 0.981 0.987 0.946 0.852 
Skewness 0.300 0.332 0.242 0.155 0.056 0.125 0.110 -0.013 
Kurtosis 1.830 1.833 1.781 1.557 1.667 1.642 1.661 1.786 

Jarque-Bera
27 436 429 447 578 535 532 494 412 

Probability 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 

 

Panel C: Changes in Credit Spreads 

Statistics AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

Mean -0.077 -0.119 -0.086 -0.139 0.021 -0.013 -0.030 -0.011 

Std. Dev. 0.679 0.671 0.700 0.824 0.729 0.746 0.673 0.592 

Skewness 0.197 0.096 0.077 -0.128 0.143 -0.258 -0.118 0.003 

Kurtosis 7.749 7.656 7.872 9.305 7.852 7.237 5.860 5.910 

Jarque-Bera 6047 5782 6327 10601 6290 4850 2193 2255 

Prob 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 

Anson et al, (2004) argue that credit downgrades, defaults and bankruptcies of credit-

risky assets can be described in terms of their skewness and kurtosis. Skewness is a 

measure of the asymmetry of a probability distribution. However, negative skeweness 

indicates a bias towards downside exposure, which means that there are more negative 

changes or large negative returns than positive ones. Kurtosis is a measure of the 

peakedness of a probability distribution. A distribution with positive kurtosis is called 

                                                 
27

  The Jarque-Bera test, tests for departure from normality and it’s statistic is defined as:  

 
2

2
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6 4
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 
  

 
 

 

where n is the number of observations, S is the sample skewness and K the sample kurtosis. The JB tests 

the null hypothesis of data normality and is chi-square asymptotic with two degrees-of-freedom.  
 

Panel B: Credit Spread Indices  

Statistics AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 
Mean 0.635 1.036 1.280 1.766 0.557 0.656 0.730 0.793 

Std. Dev. 0.197 0.306 0.319 0.552 0.403 0.373 0.328 0.276 
Skewness 0.165 -0.465 -0.094 0.619 1.156 0.737 0.537 0.135 
Kurtosis 2.918 2.360 2.572 2.998 3.641 2.492 2.038 1.912 

Jarque-Bera 31 339 58 408 1532 647 553 334 
Probability 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
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leptokurtic, which means that the distribution has a more acute peakedness around the 

mean and has fatter tails.  

 

The descriptive statistics for yields, credit spreads and the annualized first difference 

of credit spreads are presented in Panels A, B and C of Table 4.1, respectively.  Panel 

A presents the different statistics of the yields on iBoxx Euro Corporate indices. Both 

the average yield and volatility, as measured by the standard deviation, increase as 

ratings decline and maturities increase. These results are in accordance with the 

literature, as an investor requires a higher return for assuming lower-rated and long-

term bonds. Coefficients of skewness for all indices is positive but decreases as ratings 

decline, increases for the 1-3 and 3-5 indices and decreases for the 5-7 and 7-10 

indices, indicating that lower ratings and higher maturities are prone to more negative 

movements due to credit downgrades, defaults and bankruptcies. The coefficients of 

the kurtosis reveal that distribution of the yield indices is platykurtic and appear to 

increase as maturities increase.  Finally, the Jarque-Bera normality of the data test is 

rejected at 1% level for all indices. 

 

The descriptive statistics of credit spreads presented in Panel B reveal that the average 

spread and volatility increase as ratings decline and maturities increase. Coefficients of 

skewness decrease for the higher rating (AAA and AA) indices and then increase for 

the lower rating (A and BBB) indices; finally they decrease as maturities increase. 

Negative coefficients of kurtosis indicate that the distribution of credit spreads is 

platykurtic. Finally, annualized changes in credit spreads presented in Panel C reveal 

that the volatility of credit spread changes increases as the ratings decline and 

decreases as the maturities increase. The coefficients of skewness decrease as the 

ratings decline and decrease for the lower-term maturity indices (1-3 and 3-5), but 

increase for the longer-term maturity indices (5-7 and 7-10). The coefficients of 

kurtosis suggest that the distribution of credit spread changes is leptokurtic and 

decrease as ratings improve and as maturities increase. Finally, the Jarque-Bera test for 

data normality is rejected for all indices at a 1% level.  

 

Table 4.2 presents the unit root tests, which were performed by the application of the 

Augmented Dickey-Fuller test and the Phillips-Perron test allowing for a time trend 

both for the levels and first differences of the series. The levels of the credit spread do 
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not reject the null hypothesis of a unit root at the 1% level while the first differences 

have an entirely opposite pattern. All series reject the unit root hypothesis at 1%, and 

most by a significant margin.  

 

Table 4.2 Reports the estimation results of the unit root tests 

Augmented Dickey-Fuller Test Phillips-Perron Unit Root Test 

Indices Level First Difference Level First Difference 

AAA -1.797 -42.636 -2.697 -68.314 

AA -0.043 -41.731 -0.782 -68.299 

A 0.274 -39.432 -0.400 -65.482 

BBB -0.723 -33.606 -0.980 -54.955 

1-3Y -1.547 -37.602 -1.800 -59.888 

3-5Y -0.757 -41.938 -1.222 -66.949 

5-7Y 0.300 -42.450 -0.310 -69.745 

7-10Y 0.888 -43.838 0.225 -70.385 

Critical values: (1%) =  -3.962, (5%)=-3.411, (10%)=-3.127 

 

4.3 Determinants of Credit Spreads 

 

One of the objectives of this study is to examine the impact of the risk-free rate and 

other important determinants on the credit spreads over different market conditions. 

Following the empirical and theoretical work presented in chapter two, the set of 

determinants selected to capture the default risk are the: risk-free rate; slope of the 

yield curve; MSCI Berra Pan-Euro Index; EURO STOXX 50 Volatility Index 

(Vstoxx); EuroMTS Inflation Index; and Goldman Sachs S&P Commodity Index 

(GSCI). 

 

The risk-free rate is included because the theoretical models suggest that increases in 

the risk-free rate can lead to a reduction of credit spreads, by increasing the risk-neutral 

drift rate which decreases the probability of default. On the other hand, the slope of the 

yield curve is included, since it is considered a proxy for the future interest rate 

movements. A steep yield curve may imply a future increase in the interest rates 

which, in turn, may lead to a tightening of credit spreads. The risk-free rate and the 

yield curve slope considered in this study follow the literature presented by previous 

studies (see Alexander and Kaesk (2007), Collin-Dufresne, Goldstein and Martin 
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(2001) among others). They consider the former as the level of the 5-year benchmark 

rate and the latter as the difference between the 10-year and 2-year of the benchmark 

rate. In this study the benchmark rate is the yield on German Government bonds. 

 

Davies (2004) considers as a proxy of the firm’s equity value, the returns of the S&P 

500 index and finds it to be inversely related to credit spreads. He argues that an 

expected positive stock market return may reduce the firm’s leverage and thus lower 

the probability of default and, as a result, reduce credit spreads. Dufresne et al. (2001) 

argue that even if the probability of default remains constant for a firm, changes in 

credit spread can occur due to changes in the expected recovery rate, which is a 

function of the overall business climate. They consider the S&P 500 index as a proxy 

for the overall state of the economy. This study considers the MSCI Berra Pan-Euro 

Index as a proxy of the firm’s equity value. The MSCI Berra Pan-Euro index was 

created to serve as the basis for derivative contracts, exchange traded funds and other 

passive investment products. The index comprises large and liquid securities with the 

goal of capturing 90% of the capitalization of the broader benchmark. It was developed 

with a base value of 1000 as of December 31, 1998, while, in June 2008, the index 

contained 227 securities from across the European market. 

 

The VSTOXX index is considered as a variable that can be used as a proxy for market 

volatility and it is a measure of expected future volatility. VSTOXX provides a key 

measure of market expectations of near-term volatility based on the DJ Euro STOXX 

50
28

 options prices. Davies (2004) suggests that the VIX index, a similar index as to 

the VSTOXX but based on the implied volatilities of S&P 500 index options, 

represents a more forward-looking volatility variable than the simple derived volatility 

measures. 

 

The core macroeconomic indicators used in this study are the inflation and commodity 

prices indices (measured as the EuroMTS and Goldman Sachs Commodity Indices). 

These indicators measure the direction of future market conditions and they have not 

been considered previously as drivers of credit spreads. Increasing values of inflation 

                                                 
28

DJ Euro STOXX 50 Index is a Blue-chip representation of Sector leaders in the Euro Market. The 

index covers Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the 

Netherlands, Portugal and Spain. 
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and commodity prices could suggest a deterioration in the wider macroeconomic 

outlook which may affect the default probability and recovery rates, resulting in the 

widening of credit spreads. Another possible explanation may be that investors 

demand a higher yield, as option-free bonds do not protect investors from unexpected 

changes in inflation (see Risa, 2001). It may be possible to show that a future increase 

in inflation may widen credit spreads (see proof in Appendix 4.B). The EuroMTS 

Inflation Index measures the performance of the Euro zone’s inflation linked sovereign 

debt. The EuroMTS Inflation Index includes only Euro zone’s inflation linked 

government bonds issued with the minimum outstanding amount of €2 billion and 

have at least one year until final maturity. Finally, the S&P GSCI Index is a composite 

index of commodity sector returns representing an unleveraged, long-only investment 

in commodity futures that is broadly diversified across the spectrum of commodities. 

In April 2010 there were 24 commodities included in the index, which are grouped 

into the following categories: energy (71.53%), industrial metals (8.76%), precious 

metals (3.13%), agriculture (11.85%) and livestock (4.73%)
29

. 

 

Table 4.3 presents the descriptive statistics of the variables which are considered in the 

study as determinants of credit spreads: MSCI Pan-European Equity Index; Vstoxx 

Volatility Index; GSCI Goldman Sachs Commodity Index; EuroMTS Pan-European 

Inflation Index; level; and slope.  

 

Multicollinearity occurs when explanatory variables in a regression model are highly 

correlated. Although, multicollinearity does not reduce the predictive power of the 

model, in its presence the coefficient estimates of the regression model become very 

sensitive to small changes in the specification. This means that adding or removing an 

explanatory variable leads to large changes in the coefficient values or the 

significances of other variables and, therefore, inferences regarding the estimated 

coefficients and significance of the explanatory variables may not hold.  In order to 

investigate the presence of multicollinearity, the correlation between the variables is 

examined (see Brooks, 2002). Table 4.4 presents the correlation between the 

determinants. The returns of the equity index and volatility index are negatively 

                                                 
29

 Source: http://www2.goldmansachs.com/services/securities/products/sp-gsci-commodity-

index/tables.html   
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correlated with a value of -0.771, while the remaining determinants are not highly 

correlated.  

 

 

 

 

Table 4.4 Reports the correlation coefficients between the determinants 

 

Level Slope Equity Volatility Commodity Inflation 

Level 1.000 -0.166 0.054 -0.040 -0.089 0.001 

Slope -0.166 1.000 0.003 -0.004 -0.046 0.034 

Equity 0.054 0.003 1.000 -0.771 -0.114 0.209 

Volatility -0.040 -0.004 -0.771 1.000 0.049 -0.197 

Commodity -0.089 -0.046 -0.114 0.049 1.000 0.075 

Inflation 0.001 0.034 0.209 -0.197 0.075 1.000 

 

 

 

Table 4.3 Reports the descriptive statistics of the determinants 

Panel A: Reports the price levels of the determinants 

 Equity Volatility Commodity Inflation Level Slope 

Mean 103.357 24.198 298.295 132.275 3.874 0.966 

Std. Dev. 21.842 10.341 99.447 21.419 0.737 0.531 

Skewness 0.073 1.335 0.598 -0.137 0.209 -0.325 

Kurtosis 1.831 4.401 1.874 1.508 1.989 1.946 

JBstat 369.314 2420.678 718.054 612.253 318.602 408.300 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 

Panel B: Reports the first differences of the determinants 

Mean 2.47*10
-05

 -3.65*10
-04

 4.63*10
-04

 2.27*10
-04

 0.001 -0.001 

Std. Dev. 0.012 0.050 0.014 0.003 0.050 0.029 

Skewness -0.164 0.889 -0.180 -0.340 0.448 -0.432 

Kurtosis 6.201 7.744 4.353 4.596 7.294 10.278 

JBstat 2756.978 6833.427 522.108 801.112 5123 14303 

Probability 0.000 0.000 0.000 0.000   
Notes: 

* Equity refers to MSCI Pan-Euro Index,  

* Volatility to VSTOXX index,  

* Commodity to S&P GSCI Index,  

* Inflation to EuroMTS Inflation index,  

* Level to the 5-year yield on German government bond,  

* Slope to the difference between the 10-year and 2-year yields of the German government bonds. 
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4.4 Conclusions 

 

This chapter introduced the data set utilized in this study.   It showed that the credit 

spreads involved in the study exhibit non-Gaussian return distributions as the Jarque-

Bera test for normality is rejected for all rating and maturity indices, and revealed that 

the properties of credit spreads exhibit structural shifts. For instance, credit spreads 

widen during 2002 to 2004, narrow with the introduction of the new member states 

from 2004 to 2007 and, finally, during 2007 to 2009 increase to levels which have not 

been previously seen in the sample period. Therefore, the calculation of loss 

probabilities, such as VaR, would be seriously compromised by the assumptions of 

normality and by ignoring the possibility of shifting regimes. 

 

Additionally, the chapter introduced the set of determinants selected to capture the 

default risk and presented key macroeconomic indicators, which have not been 

previously considered as drivers of credit spreads, namely, the inflation and 

commodity price indices. These indicators measure the direction of future market 

conditions; therefore, increasing values of inflation and commodity prices may suggest 

that the economic conditions deteriorate which may affect the default probabilities and 

recovery rates, which may result in credit spreads to widen.  
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APPENDIX 4.A  

 

The Impact of Inflation on Credit Spreads 

 

 

In Chapter 1 Section 4 a coupon bearing bond without any embedded options does not 

protect investors from unexpected changes in the Consumer Price Index (CPI). 

Investors therefore demand compensation for inflation risk, in the form of a higher 

yield. Let us assume we have a coupon bearing bond and at time t+1 a future increase 

in inflation is expected. Investors, therefore, demand a higher yield, which can be 

described as follows: 

 1t ty y   (4A.1) 

 However, the yield to maturity consists of the risk free rate and a compensation for the 

default risk, the credit spread. Equation 4A.1 then becomes: 

 
 

1 1 1

1 1

t t t t t t

t t t t

y y r cs r cs

cs cs r r

  

 

     

   
 (4A.2) 

In addition, according to Fisher equation, the interest rate is given by: 

 nr r i   (4A.3) 

where nr is the nominal rate and i is inflation. If we further assume that the nominal 

rate between the period t and t+1 it either remains constant or increases
30

 then:  

 1 1 1 1 1 0t t t t n t n t t t t ti i i i r i r i r r r r                  (4A.4) 

Therefore, from equations (4A.2) and (4A.4): 

  1 1 1 10t t t t t t t tcs cs r r cs cs cs cs             (4A.5) 

Equation (4A.5) concludes that when inflation increases so do credit spreads.  

 

  

                                                 
30

 Governments usually raise interest rates in order to dampen inflationary pressure.  
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Chapter 5  

Modelling Dynamics of Credit Spread Moments of European 

Corporate Bond Indices 

 

 

 

 

 

 

 

 

5.1 Introduction 

 

In the fixed income market, Yield Spread is defined as the difference between the yield 

to maturity of a corporate and the yield to maturity of a comparable government bond. 

Yield spreads are important variables in the financial markets as they are used for 

assessing the relative credit or default risk of issuers. As a result, yield spreads are also 

referred to as credit spread since they reflect the likelihood of failure of an entity to 

honour its obligation.
31

 Yield spreads are used as indicators of economic progression, 

investment decisions, trading and hedging, as well as pricing credit derivatives. The 

role of yield spreads has become more important in the Euro zone fixed income 

markets since the launch of Euro as a single currency. The introduction of Euro has 

                                                 
31

 Although the terms yield spread and credit spread are used interchangeably in the literature, it should 

be noted that the yield spread reflects both credit risk and liquidity risk of corporate bonds, where as 

credit spread should only reflect the default risk of a bond.  
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resulted in the development of a deep and liquid bond market, which is promoted by: 

the once fragmented capital under the different currencies, the economic growth and 

development on a pan-European level under a unified legislative framework and 

allowing financial institutions to distribute credit risk on a wider base and in a more 

efficient manner by diversifying their liabilities away from the traditional country-

specific load structures. 

 

The literature on modelling credit spreads is extensive with theoretical studies 

concentrating on determination of credit spreads and empirical works attempting to 

find underlying variables which can explain the behaviour of credit spreads. 

Theoretical models are generally classified into reduced form and structural models, 

which differ in the way they deal with default process and consequently determination 

of credit spreads. Reduced form models describe the time a default occurs as a 

stochastic event governed by an intensity-based or hazard-rate process. As a result, 

they simplify the constraints of defining the causes of default (e.g. Jarrow et al., 1997, 

and Duffie and Singleton, 1999). On the other hand, structural models assume that the 

value of a firm follows a stochastic process and default occurs when the value of the 

firm falls below certain predetermined boundary (e.g. Black and Scholes, 1973, 

Longstaff and Schwartz, 1995, amongst others).   

 

Other studies which concentrate on determinants of credit spreads include Delianedis 

and Geske (2001), Collin-Dufresne et al., 2001,Christiansen (2000), Brown (2001), 

Davies (2004), Pringent et al. (2001), and Duffie (1998) among others.  For instance, 

Delianedis and Geske (2001) explain the components of credit risk using taxation, 

liquidity, recovery risk, volatility, and market factors and find that credit spreads are 

not primarily attributable to default. 

 

Another branch of literature examines the time series behaviour of credit spreads and 

their moments including the time-varying dynamics of volatility of credit spreads. For 

instance, Weiss (1984) is the first study examining the time-varying volatility of bond 

yields using ARCH models and find significant ARCH effects in AAA corporate bond 

yields. Pedrosa and Roll (1998) analyses of US corporate credit spread indices reveal high 

level of persistence in volatility. Batchelor and Manzoni (2006) investigate the impact 



90 

 

of rating revisions on volatility of sterling denominated Eurobond yield spreads and 

report asymmetry in the response of yield spread volatilities to changes in ratings.  

 

While there is a large body of literature on modelling, formation, and determinants of 

credit spreads, as well as their time-varying volatilities, there has been little empirical 

investigation on the dynamic behaviour of higher moments of credit spreads, such as 

volatility, skewness and kurtosis. Having a good understanding about the nature and 

dynamics of credit spread moments is important when pricing credit derivatives, 

managing risk of bond portfolios, as well as asset allocation and investment strategies. 

For example, Tahani (2006) shows that a skewed GARCH model which incorporates 

higher moments of credit spreads can improve the valuation of credit spread options.  

 

Furthermore, studies such as Bond (2001), Burns (2002), Angelidis, Benos and 

Degiannakis (2004) and Wilhelmsson (2007) show that GARCH models that account 

for higher moments provide significantly better VaR estimates compared to GARCH 

models with restricted second moment specifications. For instance, Bond (2001) finds 

that GARCH models using asymmetric non-normal distributions and specifically 

Hansen’s Skewed t-distribution provide better VaR forecasts when compared with the 

Gaussian or the mixed jump-diffusion distributions. Dahl and Yi (2005) find that 

leptokurtic distributions perform better in high volatility and that Hansen’s (1994) 

skewed t-distribution provides the best VaR forecast estimates. The findings of 

Angelidis, Benos and Degiannakis (2004) indicate that the mean process has no 

important role in the forecast of VaR estimators and leptokurtic distributions provide 

better VaR forecasts as they are able to capture extreme moves and fat tails. Finally, 

the study of Wilhelmson (2007), who proposes a Normal Inverse Gaussian (NIG) 

distribution that allows its parameters to vary over time and it is found to outperform 

the Gaussian GARCH model in terms of VaR estimators. 

 

Therefore, the aim of this study is to investigate the nature and dynamics of credit 

spread moments in a set of iBoxx European Corporate Indices, and compare such 

behaviour across different credit ratings as well as maturities. To achieve this, we 

utilise a series models including simple asymmetric GARCH models, time-varying 

volatility, skewness and kurtosis models known as GARCH-SK, as well as variants of 

Markov Regime Switching GARCH models. The analyses allow us to assess and 
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capture the dynamics of the shape of the distribution of credit spreads overtime. 

Furthermore, we examine the forecasting performance of these models in estimation of 

Value-at-Risk. 

 

The remainder of this chapter is structured as follows. Section 2 presents different 

methodologies utilised for investigating the dynamics of moments of credit spreads. 

Section 3 describes the forecast evaluation techniques used for comparisons of 

different models. The empirical results and discussion on their significance are 

presented in section 4, while section 5 concludes. 

 

5.2 Methodology 

Equation Chapter 5 Section 1 

This section briefly presents the methodology applied in this chapter; for a detailed 

analysis refer to Chapter 3 in Section 3 entitled Univariate Volatility Models. Engle 

(1982), in his pioneering study, introduces a formal approach for modelling the 

variance of a time series by conditioning the variance of a time series on the square of 

lagged disturbances - error terms or shocks - in an autoregressive form known as 

Autoregressive Conditional Heteroskedasticity (ARCH) model. Bollerslev (1986) 

extends the ARCH model to generalised autoregressive conditional heteroskedasticity 

(GARCH) using lagged variance as an explanatory variable, which can reduce the 

dimension of the ARCH model significantly. Glosten et al. (1993) and Nelson (1991) 

propose the Threshold GARCH and Exponential GARCH specifications, respectively, 

to capture asymmetric response of volatility to positive and negative shocks. For 

instance, the GJR-GARCH model can be specified as (see Chapter 3, Section 3.3.1 and 

Equation 3.23): 

 2 2 2 2 2

1, 2, 3 1 1

1 1

, ~ 0,
p q

t o i t i j t j t t t t

i j

I IID            

 

    
           

(5.1) 

where t represents independently and identically distributed (iid) error terms with zero 

mean and time-varying variance 
2

t . The time-varying variance,
2

t , is then 

conditioned on its past values, past squared disturbances, and an indicator, 1tI   which 

takes value of one when the last period innovation term is negative and zero otherwise. 

Therefore, significance of the coefficient of the indicator term, 3 , measures the 

asymmetric response of variance to shocks.  
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However, the asymmetric GARCH models fail to capture the variation of higher 

moments over time. In this respect León, Rubio and Serna (2004) propose a model 

which accounts simultaneously for time-varying volatility, skewness and kurtosis. The 

SK-GARCH specification assuming a Gram-Charlier series expansion of the normal 

density function for the error term in the mean equation and has the following form 

(refer to Chapter 3, Section 3.3.3 and Equations 3.26, 3.27 and 3.28):  
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 (5.2) 

where ts  and tk  are time-varying skewness and kurtosis which follow autoregressive 

their respective processes, while t represent standardised error terms.  The log-

likelihood function which is similar to the standardised normal with two additional 

terms accounting for time-varying skewness and kurtosis. 

 

A different branch of literature focuses on market conditions and regime shifts and 

their impact on dynamics of moments of variables. For Lamourex and Lapstrapes 

(1990) show that the persistence of volatility can be due to the presence of structural 

breaks. Hamilton (1993, 1994), Cai (1994) and Hamilton and Susmel (1994) propose a 

regime-switching specification for capturing the structural changes in volatility of time 

series. Gray (1996), Susmel and Kalimipalli (2001), Klaassen (2002), Marcucci 

(2005), Perignon and Smith (2006) and Mitra, et al. (2007) illustrate that the forecasts 

of volatility improve if changes in regime is incorporated in the model, which allows 

the existence of two or more different volatility regimes characterized by a different 

levels as well as dynamics of volatility. Extending the above notion, Dueker (1997) 

showed how the shape parameters of asymmetric distributions vary across different 

regimes. 
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The simple GARCH(1,1) specification is extended into a two-state Markov regime 

switching GARCH
32

 such that (see Chapter 3 Section 3.3.4 and Equations from 3.29 to 

3.34): 
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 (5.3) 

 

where ts  denotes the state in which the market is in and for example can take two 

values: 1ts   for a high-volatility regime and 2ts  for a low volatility regime.  

 

5.3 Forecasting Performance 

 

The performance of GARCH models with time-varying parametric distributions in 

estimation of Value-at-Risk of different assets and portfolios has been extensively 

examined.  In order to compare the performance of different models in capturing the 

dynamics of volatility, skewness and kurtosis of credit spreads, we use different 

volatility forecast evaluation metrics such as the median absolute error (MAE), 

equation (5.4), and the median absolute percentage error (MAPE), equation (5.5) as 

well as Value at Risk (VaR) estimates.
33

 The MAE and MAPE forecast evaluation 

metrics are based on the median of forecast errors because they are more robust than 

the mean error based metrics to heavy dispersion and skewed errors. Furthermore, 

since volatility is an unobserved variable, the MAE and the MAPE are both calculated 

based on the differences between forecasted variance and squared realised returns.  

 2 2ˆ(| |)      for 1t i t iMAE med r  i t , , T       (5.4) 
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32

 An increase in the number of regime sometimes results in over-parameterisation and difficulty in 

estimation due to regime-switching models being non-linear. 
33

 Value-at-risk refers to a particular amount of money which is likely to be lost due to changes in the 

market, over a certain period of time and given some probability - known as confidence level. With the 

adoption of Basel II the number of exceptions is used to determine the levels of capital requirements. 

These exceptions are the number of occasions when the actual loss is larger by the predicted VaR 

model.  
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In the case of VaR estimates, the 1% estimates for different models considered are 

obtained using one and five period-ahead volatility forecasts and the conventional 

metrics suggested by Christoffersen (1998) are applied. These metrics are based on the 

proportion and sequence of periods where the realised change in the variable exceeds 

the VaR estimates. Therefore, an indicator function is defined as follows: 
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 (5.6) 

 

where 1tI  is an indicator function and ttVaR  |1  is the inverse of the cumulative 

distribution function of the assumed distribution and it can be decomposed as: 

 

 1

1 1 1
ˆ ˆ| ( )t t t tVaR F  

      (5.7) 

 

where 1
ˆ
t is the conditional mean, 

1)( F  is the corresponding empirical quintile of 

the assumed distribution and 1
ˆ
t  is the t+1 period forecast of the conditional standard 

deviation given the information at time t, t ,and  is probability of a change being 

greater than VaR (e.g. 1% or 5%). 

 

The adequacy of the VaR estimates is examined by the application of the 

Christoffersen (1998) test for correct conditional coverage. This test can be divided 

into three sub-tests: i) test for correct unconditional coverage, ii) test for independence 

and, iii) test for the correct conditional coverage (see Chapter 3 Section 6.6 for more 

details). In this respect, the rejection of the model can be categorized as the 

unconditional coverage failure or the exception clustering or both.  Christoffersen 

(1998) illustrated that a poor forecast may produce correct unconditional coverage but 

show signs of failure clustering and proposed a test for the correct conditional 

coverage. The best models are those that generate a coverage rate less than the nominal 

and a model is considered to be adequate for risk management when it is able to pass 

both the conditional and unconditional coverage tests. 
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5.4 Estimation Results 

 

The data used in this chapter consist of credit spreads of corporate bond indices with 

different ratings and maturities published by Markit. The credit spreads are calculated 

as the difference between the yield on iBoxx Euro Corporate Indices and the yield on 

equivalent German government bonds. The selection of the German government bonds 

was based primarily on the grounds of their liquidity and, large size compared to other 

European and U.S. benchmark rates, and also on the fact that during the credit crisis 

period the German government market gained a safe-haven status in international 

financial marketst (see Ejsing and Sihvonen, 2009, and Schknecht, von Hagen, and 

Wolswijk, 2010). The inclusion of the iBoxx indices was decided on the premise that 

these indices provide accurate and high quality bond prices, are used as a proxy for the 

underlying market, and serve as a basis for derivative products and portfolio valuation. 

Their construction abides by the highest market standards as indicated by the EFFAS 

European Bond Commission Standardised Rules on Constructing and Calculating 

Bond Indices. 

 

The first model to be examined is the GJR-GARCH of Equation (3.24) which is 

estimated over the period of 3
rd

 January 2000 to 31
st
 May 2007.  The estimation results 

and diagnostics tests are presented in Table 5.1. The Schwarz Bayesian Information 

Criterion (SBIC) is used to select the appropriate number of lags in the mean model. 

The diagnostics tests including 1
st
 and 10

th
 order ARCH test and Ljung and Box test 

for autocorrelation indicate presence of autocorrelation and ARCH effects in 

standardised residuals of all models. However, increasing the number of lagged 

dependent variable in the mean equation as well as lagged squared error terms and 

variance in the variance equation could not eliminate autocorrelation and ARCH 

effects. This can suggest that ARIMA GJR-GARCH model with high orders may not 

be appropriate for modelling time-varying volatility of credit spread changes without 

taking into account the dynamics of higher moments.           

 

The coefficients of the lagged squared error, 1 , lagged conditional variance, 2 , and 

coefficient of sign asymmetry, 3 , are significant in all models. The leverage or sign 

asymmetry coefficient, 3 , is negative and significant in all models except the model 

of the AAA index, which suggests that negative shocks imply a lower next period 
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conditional variance in credit spread changes than positive shocks of the same sign, 

except for the AAA index.  

 

A number of studies have found the leverage effect on volatility to be different across 

asset classes. For instance, while the leverage effects on volatility of equity markets 

and equity indices have found to be negative (see Glosten, Jagannathan, and Runkle, 

1993, among others) volatility of commodity and commodity futures prices  have 

shown to exhibit both positive and negative leverage effects (see McKenzie et al., 

2001). The economic theory that explains the leverage effect in the volatility of the 

credit spread changes relies explicitly on the relationship between credit spreads and 

interest rates. Longstaff and Schwartz (1995) and Annaert and De Ceuster (2000) find 

that credit spreads are negatively related to interest rates, and credit spreads narrow 

(widen) because the increase (decrease) of the interest rates is more significant than the 

movement of the bond yields. Hence, an unexpected drop in interest rate can cause 

credit spreads to widen and credit spread volatility to increase. This is mainly because 

interest rate declines can be considered as indication that the economy is contracting 

which in turn suggests that there might be greater uncertainty regarding the issuer’s 

cash flows and increase the probability of default of the issuer. The opposite 

relationship holds when there is a negative shock and credit spreads narrow. The 

negative shock can be due to an unexpected increase in interest rates causing the credit 

spread to narrow and credit spread volatility to decline. Again, interest rate increases 

might be considered as an indication that the economy is expanding which in turn 

means that there is less uncertainty regarding the issuer’s cash flow and probability of 

default.  

 

In-sample volatility of credit spread changes for different rating indices and maturities 

are presented in Figures 5.1 and 5.2, respectively. The estimated volatilities display a 

consistent pattern across ratings and maturities; that is, lower ratings and long-term 

maturities have greater volatilities in line with their higher probability of downgrades 

and defaults. Furthermore, large variability with occasional spikes is observed during 

the introductory period of the Euro across all ratings and maturities. This could have 

been due to the market's reaction in restructuring the ways in which the Euro market 

functioned allowing the influx of huge amounts of capital from the fragmented 
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currencies. Finally, from the middle of 2003 up until 2005, volatility declines as the 

market enters into a stable state with high economic growth with low volatility.  
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Table 5.1: Reports the estimation results of the GJR-GARCH model with Student-t Errors 

This table reports the estimation results of the GJR-GARCH model with Student-t errors for the 

changes in credit spreads for different ratings. The sample period is from 3
rd

January 2000 to 31
st
 

May 2007, a total of 1933 observations. The numbers in parentheses are the t-stats. The GJR-

GARCH model is given as: 
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where yt is the change in credit spreads,   
  is the conditional variance on day t, It-1 is an indicator 

function that takes value of 1 when the εt-1 is negative and 0 either wise. Additionally, the 1% and 

5% critical values for Engle’s ARCH/GARCH test and Ljung-Box Q-test are for       6.634 and 

3.841,        23.209 and 18.307. The information criteria are calculated as follows: AIC = -

2*LLF + 2*(Number of Parameters) and the BIC = -2*LLF + (Number of 

Parameters)*log(Number of Observations). 

Statistics AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  -0.001
**

 -0.001
***

 -0.001
**

 -0.001
***

 -3 *10
-05

 -2*10
-04

 -2*10
-04

 2*10
-05

 

 (-2.696) (-3.228) (-2.514) (-3.973) (-0.159) (-1.137) (-1.173) (0.152) 

1a  -0.369
***

 -0.365
***

 -0.304
***

 -0.171
***

 -0.307
***

 -0.362
***

 -0.349
***

 -0.352
***

 

 (-19.877) (-19.395) (-16.058) (-8.882) (-16.392) (-19.139) (-17.951) (-17.965) 

0    3*10
-06***

 2*10
-07

 2*10
-07

 5*10
-07

 7*10
-07*

 4*10
-07*

 4*10
-07*

 5*10
-07**

 

 (2.736) (0.504) (0.499) (0.730) (1.649) (1.894) (1.933) (2.236) 

1  0.167
***

 0.053
***

 0.053
***

 0.088
***

 0.089
***

 0.146
***

 0.159
***

 0.160
***

 

 (7.007) (5.221) (5.499) (7.163) (6.628) (7.627) (7.950) (7.828) 

2  0.848
***

 0.958
***

 0.963
***

 0.945
***

 0.928
***

 0.880
***

 0.859
***

 0.875
***

 

 (71.00) (154.42) (167.59) (141.61) (119.70) (85.99) (72.93) (75.82) 

3  -0.032 -0.021
*
 -0.034

***
 -0.064

***
 -0.035

**
 -0.051

**
 -0.038 -0.069

***
 

 (-1.024) (-1.698) (-2.849) (-4.579) (-2.080) (-2.214) (-1.504) (-2.810) 

Dof 4.164
***

 4.998
***

 5.173
***

 4.594
***

 4.123
***

 4.673
***

 6.360
***

 6.774
***

 

 (16.743) (9.860) (9.397) (10.437) (12.256) (13.885) (10.764) (9.566) 

Diagnostics         

Persistence 0.984 0.989 0.983 0.968 0.982 0.975 0.981 0.965 

ARCH (1) 0.006 57.561 69.369 11.866 14.943 0.729 0.434 1.804 

ARCH (10) 0.279 62.101 74.608 17.787 19.033 3.385 5.617 8.503 

LB Q test (1) 0.160 3.504 2.756 0.004 0.006 0.573 1.929 1.399 

LB Q test (10) 2.762 11.801 11.704 4.544 2.748 6.287 13.923 14.878 

Log Likelihood 4065 4073 3963 3656 4053 4137 4314 4446 

AIC -8119 -8133 -7913 -7300 -8094 -8262 -8617 -8880 

BIC -8086 -8100 -7880 -7267 -8060 -8229 -8583 -8846 
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Figure 5.1 Presents the in-sample conditional variance of the rating indices [GJR-GARCH] 

 
Figure 5.2 Presents the in-sample conditional variance of the maturity indices [GJR-GARCH] 

 
 

The estimation results of the GRACH-SK model of Leon et al. (2004) for the changes 

in credit spreads of bond indices of different ratings and maturities are presented in 

Table 5.2. Once more, in all models the mean equation is considered to be a MA 

process of order one according to the AIC and SBIC. All models seem to be well 

specified with no ARCH effects and autocorrelation as indicated by 1
st
 and 10

th
 order 

ARCH and Ljung-Box tests. 

 

The estimation results reveal that the coefficients of lagged square error terms, β1, and 

lagged conditional variance, β2, are significant in all models indicating that the 

GARCH(1,1) specification captures the dynamics of second moment of credit spread 

changes. The sum of coefficients of lagged error terms and lagged variance in each 

model, also presented in Table 5.2, indicate a moderate persistence level - between 

0.839 and 0.864 - in time-varying variance of credit spread changes. The level of 

persistence in GARCH-SK models seem to be lower than GJR-GARCH models which 

suggests that considering the dynamics of higher moments (skewness and kurtosis) can 
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reduce the persistence of estimated volatility of GARCH models.
34

 The results are in 

line with Harvey and Siddique (1999) and Leon, Rubio and Serna (2004).  

 

Moreover, coefficients of lagged cubic error terms, γ1, and lagged conditional 

skewness, γ2, are also highly significant indicating existence of time-varying skewness 

in all the changes credit spread models. Estimated coefficients of lagged error terms to 

the power of four, δ1, and lagged conditional kurtosis, δ2, are significant in all models 

suggesting presence of time-varying kurtosis in changes in credit spread models across 

ratings and maturities. The lowest coefficient of conditional skewness is observed for 

the model of the A index with a value of 0.425, while the largest for the model of the 

7-10 index with a value of 0.770. The lowest coefficient of conditional kurtosis is 

observed for the model of the 7-10 index with a value of 0.886, while the largest for 

the model of the BBB index with a value of 0.906.  

 

Persistence of time-varying estimates of higher moments of credit spread changes are 

also reported in Table 5.2; which is estimated as the sum of the appropriate 

coefficients of lagged square error terms, and lagged conditional higher moments (i.e. 

for example persistence of skewness is measured as the sum of the coefficients of the 

lagged cubic error terms, γ1, and lagged conditional skewness, γ2). Time-varying 

kurtosis tends to show a relatively higher degree of persistence in contrast to skewness. 

For instance, persistence of time-varying skewness of credit spreads range between 

0.480 for A rating index and 0.798 for 7-10 maturity index, while persistence of time-

varying kurtosis of credit spread changes is higher ranging between 0.974 for 7-10 

year maturity index and 0.991 for the AAA rating index. The economic interpretation 

of this behaviour is that kurtosis is associated with sharp credit changes; whereas 

skewness reflects possible downgrades and credit spread widenings (see Anson, et al, 

2004).  These unexpected and rapid credit changes have a greater impact on credit 

spread changes than gradual and, to extent, anticipated downgrades and credit spread 

widening (see Anson, et al, 2004). These results are similar to the study of Leon, 

Rubio, and Serna (2004), who argue that periods of high (low) kurtosis are followed by 

periods of high (low) kurtosis since the coefficients of the lagged kurtosis are positive 

and significant.  

                                                 
34

 GARCH models are generally criticised for over estimation of persistence in volatility and 

consequently the time-varying volatility as well as prediction and forecasting of volatility (see 

Lamourex and Lastrapes, 1990). 
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Table 5.2: Reports the estimation results of the GARCH-SK model 
This table reports the estimation results of the GARCH-SK model for the changes in credit spreads for 

different ratings. The sample period is from 3
rd

January 2000 to 31
st
 May 2007, a total of 1933 observations. 

The numbers in parentheses are the t-stats. The GARCH-SK model is given as: 

t t t
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where yt is the change in credit spreads,   
  is the conditional variance on day t, st is the conditional skewness 

on day t and kt the conditional kurtosis on day t. Additionally, the 1% and 5% critical values for Engle’s 

ARCH/GARCH test and Ljung-Box Q-test are for       6.634 and 3.841,        23.209 and 18.307. The 

information criteria are calculated as follows: AIC = -2*LLF + 2*(Number of Parameters) and the BIC = -

2*LLF + (Number of Parameters)*log(Number of Observations).
 

Statistics AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  
-0.001

***
 -0.001

***
 -0.001

***
 -0.001

***
 -4.0*10

-04*** 
-1.5*10

-04***
 -4.1*10

-04***
 -0.001

***
 

 (-38.813) (-41.111) (-42.809) (-31.319) (-20.653) (-12.362) (-33.108) -29.290) 

1a  
-0.394

***
 -0.396

***
 -0.355

***
 -0.192

***
 -0.267

***
 -0.360

***
 -0.403

***
 -0.416

***
 

 (-387.70) (-636.10) (-512.64) (-179.79) (-446.81) (-459.63) (-586.94) (-361.92) 

0  
1.1*10

-04***
 9.6*10

-05***
 1.0*10

-04***
 9.7*10

-05***
 1.0*10

-04***
 9.8*10

-05***
 8.6*10

-05***
 1.3*10

-04***
 

 (120.42) (243.79) (135.99) (100.94) (138.98) (145.47) (204.05) (56.76) 

1  
0.051

***
 0.050

***
 0.048

***
 0.050

***
 0.050

***
 0.048

***
 0.043

***
 0.048

***
 

 (178.47) (243.79) (129.28) (184.05) (164.16) (238.30) (166.52) (107.09) 

2  
0.788

***
 0.802

***
 0.797

***
 0.800

***
 0.794

***
 0.802

***
 0.821

***
 0.766

***
 

 (659.5) (1295.8) (696.5) (732.9) (844.4) (946.6) (1176.4) (278.3) 

0  
-0.002 -0.019

***
 -0.040

***
 -0.015

**
 -0.039

***
 0.003 0.058

***
 -1.7*10

-08***
 

 (-0.412) (-3.439) (-4.644) (-2.135) (-7.216) (0.925) (14.491) (-1.4*10
-06

) 

1  
0.026

***
 0.036

***
 0.055

***
 0.037

***
 0.030

***
 0.052

***
 0.051

***
 0.028

***
 

 (10.823) (30.441) (20.115) (13.948) (16.220) (26.279) (35.897) (17.817) 

2  
0.639

***
 0.590

***
 0.425

***
 0.569

***
 0.616

***
 0.573

***
 0.542

***
 0.770

***
 

 (27.153) (42.061) (31.149) (22.597) (30.828) (50.479) (41.251) (53.516) 

0  0.088
***

 0.080
***

 0.145
***

 0.112
***

 0.181
***

 0.111
***

 0.152
***

 0.231
***

 

 (25.786) (28.588) (32.888) (40.487) (81.344) (66.721) (73.838) (43.309) 

1  0.093
***

 0.088
***

 0.084
***

 0.074
***

 0.079
***

 0.093
***

 0.076
***

 0.088
***

 

 (129.920) (162.536) (89.210) (98.962) (104.176) (101.78) (196.46) (83.96) 

2  0.898
***

 0.901
***

 0.897
***

 0.906
***

 0.899
***

 0.895
***

 0.899
***

 0.886
***

 

 (3068.9) (3207.4) (1676.8) (1732.8) (1697.7) (1509.4) (3887.7) (1007.5) 

Diagnostics         

Persistence         

Volatility  0.839 0.852 0.845 0.851 0.844 0.851 0.864 0.813 

Skewness  0.665 0.626 0.480 0.606 0.646 0.625 0.593 0.798 

Kurtosis  0.991 0.989 0.981 0.980 0.979 0.988 0.975 0.974 

ARCH(1) 0.252 1.651 0.909 0.211 5.335 4.321 6.461 7.296 

ARCH(10) 3.551 5.161 3.768 2.769 6.517 5.885 16.070 18.692 

LB Q test(10) 5.745 6.345 3.266 2.355 5.216 5.606 5.899 6.299 

Log Likelihood 12.076 9.564 9.198 10.652 8.597 9.842 13.918 20.085 

AIC 3789 3957 3866 3587 3854 3897 4185 4645 

BIC -7556 -7892 -7710 -7152 -7686 -7772 -8348 -9267 
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The in-sample conditional variance, skewness and kurtosis of the changes in credit 

spreads for different ratings and maturity indices are presented in Figures 5.5, 5.6, 5.7 

and 5.8. There seem to be a consistent pattern in time-varying moments of the changes 

in credit spreads both across ratings and maturities. Time-varying skewness of credit 

spread changes for lower ratings (BBB and A indices) and long-term maturities (5-7 

and 7-10 year indices) seem to fluctuate more that those for higher ratings (AAA and 

AA indices) and shorter maturities (1-3 and 3-5 year indices). This can be explained by 

a larger probability of credit upgrades or downgrades and defaults of low rated and 

long maturity bonds with higher unconditional credit risk (see Anson et al., 2004).  

 

Another characteristic of the estimated time-varying skewness is the negative spikes 

observed for the A, BBB and 5-7 indices during high volatility periods and the positive 

spikes of the AAA and 1-3 indices during lower volatility periods. For instance, during 

the high volatility period credit spreads widen and interest rates decrease suggesting a 

deteriorating economy and therefore a negative effect on the credit-worthiness of the 

lower ratings and long-term maturities. On the other hand, during the low volatility 

period when the economy is expanding, credit spreads narrow because uncertainty 

about firms’ cash flow decreases and interest rates increase. This combined effect in 

turn suggests that the issuers are able to honour their contractual obligations and has a 

positive effect on their credit-worthiness. 

 

Kurtosis exhibits similar behaviour to those of time-varying volatility and skewness. 

The plot of estimated coefficient of time-varying kurtosis is above three for the lower 

rating (A and BBB rating indices) and longer-term maturities (5-7 and 7-10 year 

maturity Indices). Higher kurtosis values for lower rating and longer maturities suggest 

that there are more extreme movement in the changes in credit spreads of these 

indices. On the other hand, coefficients of time-varying kurtosis below three for the 

higher-rating and short-term maturities, suggest that there is no extreme movement in 

credit spread changes for these assets and there distributions are close to a normal 

distribution.  
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Figure 5.3 Presents the in-sample conditional variance of the rating indices 

 

Figure 5.4 Presents the in-sample conditional variance of the maturity indices 

 

Figure 5.5 Presents the in-sample conditional variance of the rating indices [SKGARCH] 

 

Figure 5.6 Presents the in-sample conditional variance of the maturities indices 

[SKGARCH] 

 
Figure 5.7 Presents the in-sample conditional variance of the ratings indices [SKGARCH] 

 

Figure 5.8 Presents the in-sample conditional variance of the maturities indices 

[SKGARCH] 
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However, during periods of high volatility, the estimated time-varying kurtosis for the 

higher-rating and short-term maturities seems to spike several times which could be 

due to sharp changes in the credit market conditions and an increase in the probability 

of default. These extreme movements which can be picked by time-varying skewness 

and kurtosis models are very important for risk management purposes and VaR 

calculations because their prediction can improve the VaR estimates.  

 

Table 5.3 presents the estimation results of the Markov Regime Switching GARCH 

model with switching degrees-of-freedom (MRS-GARCH-tv)
35

 as suggested by 

Klaassen (2002). Results of diagnostics tests indicate that all models are well specified. 

For instance, Engle's ARCH tests reject the presence of 1
st
 and 10

th
 order ARCH 

effects in standardised residuals of all models and time horizons, while the results of 

the Ljung-Box Q-test reject the presence of 1
st
 and 10

th
 order autocorrelation in 

standardised residuals of all models at the 5% significance level. The estimated 

transition probabilities, p11 and p22, are significant in all models with magnitude of 

more than 99% indicating high degree of persistence in each regime.  

 

The estimated MRS-GARCH-tv model allows the degrees of freedom, vst, to switch 

between the two regimes, which can be considered as an indirect parameterisation of 

time-varying kurtosis. The estimated coefficients of the degrees-of-freedom for the 

first regime (v1) are larger than four, the largest value observed for the 7-10 index with 

a value of 12.714, while the lowest of the 1-3 index with a value of 4.353. The 

estimated coefficients of the degrees-of-freedom (v2) in the second regime are smaller 

than 4 indicating significant excess kurtosis and fat-tails in the distributions of credit 

spread changes in the second regime with high volatility. Similar results were 

presented in the study of Marcucci (2009). 

 

Estimated coefficients of lagged squared errors in variance equations, 
1

1 and 
2

1 ,are 

significant at the 10% level in regime one (low volatility regime), and at the 5% level 

in regime two (high volatility regime). Estimated coefficients of lagged conditional 

variance, 
1

2 and 
2

2 , are also significant in both regimes in all models across rating 

                                                 
35

 The Markov Regime Switching GARCH model with Normal Distribution was also estimated, but was 

omitted from the study as it did not offer any forecasting improvement over the MRS-GARCH-tv 

model.  
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and maturity indices. In this model, the first regime is characterized by low volatility 

persistence levels as indicated by the estimated coefficients, whereas the second 

regime is characterized by high volatility level and persistence.  

 

Hansen (1992) argues that it is not possible to compare the single-regime GARCH 

with the regime-switching GARCH models, since standard econometric tests for 

model specification are not appropriate. This is mainly because under the null some 

parameters are unidentified.  
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Table 5.3: Reports the estimation results of the MRS-GARCH-tv model  

This table reports the estimation results of the MRS-GARCH-tv model for the changes in credit spreads for 

different ratings. The estimation is performed by the method of quasi maximum likelihood using the BFGS 

algorithm in Matlab 7.8 software package. The sample period is from 3
rd

January 2000 to 31
st
 May 2007, a 

total of 1933 observations. The numbers in parentheses are the t-stats. The MRS-GARCH-tv model is given 

as: 
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where yt is the change in credit spreads,      
  is the conditional variance on day t and in state st, and stv  the 

degrees-of-freedom of the Student-t distribution at state st. Additionally, the 1% and 5% critical values 

for Engle’s ARCH/GARCH test and Ljung-Box Q-test are for       6.634 and 3.841,        23.209 and 

18.307. The information criteria are calculated as follows: AIC = -2*LLF + 2*(Number of Parameters) and 

the BIC = -2*LLF + (Number of Parameters)*log(Number of Observations). 

Statistics AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

 1

0a  -0.001 -0.001 -0.001 -0.001 9.4*10
-05

 3.9*10
-05

 8.2*10
-05

 1.1*10
-04

 

 (-0.494) (-0.190) (-0.305) (-1.330) (0.109) (0.615) (0.033) (0.219) 
 2

0a  -0.004
***

 -0.004 2*10
-05***

 -4*10
-04

 -0.001 -3*10
-04***

 -0.001
***

 -0.001 

 (-6.032) (-0.079) (9.145) (-5.315) (-0.059) (-17.626) (-3.441) (-0.221) 
 1

1a  -0.002
**

 0.032 0.078
**

 0.117 -0.045 -0.008 0.044 0.101 

 (-2.089) (0.217) (1.761) (0.263) (-0.111) (-0.360) (0.197) (0.137) 
 2

1a  -0.392
***

 -0.400 -0.369
***

 -0.230
***

 -0.299
***

 -0.357 -0.410 -0.420
***

 

 (-6.015) (-1.291) (-6.201) (-17.204) (-9.463) (-1.080) (-1.233) (-3.459) 
 1

0  0.002
***

 0.002
***

 0.002 0.002 0.002 0.002 0.011 0.001 

 (8.778) (10.643) (9.730) (7.881) (9.105) (9.814) (9.985) (10.099) 
 2

0  2*10
-04**

 7*10
-05***

 8.6*10
-05

 6.8*10
-05

 6.9*10
-05

 3.9*10
-05

 6.0*10
-05

 1.4*10
-05

 

 (2.145) (4.428) (3.708) (2.625) (2.875) (2.889) (2.925) (3.524) 
 1

1  0.065
*
 0.069

*
 0.071

*
 0.075 0.024 0.022

*
 0.030

*
 0.027

*
 

 (1.899) (1.798) (1.787) (1.556) (1.612) (1.742) (1.779) (1.896) 
 2

1  0.042
**

 0.067
**

 0.102
**

 0.212
**

 0.110
**

 0.252
*
 0.201

**
 0.257

**
 

 (2.271) (2.194) (2.221) (2.398) (2.304) (1.847) (2.521) (2.544) 
 1

2       0.423
***

      0.394
***

     0.412
***

      0.368
***

     0.490
***

     0.491
***

      0.458
***

     0.393
***

 

 (5.626) (5.902) (5.823) (5.153) (5.524) (6.087) (6.497) (6.507) 
 2

2     0.901
**

    0.789
**

    0.769
**

 0.664
*
   0.621

*
     0.644

***
    0.755

**
     0.685

***
 

 (2.557) (2.365) (2.169) (1.784) (1.775) (2.770) (2.551) (3.108) 

P11 0.997
***

 0.998
***

 0.997
***

 0.999
***

 0.996
***

 0.997
***

 0.997
***

 0.998
***

 

 (2794.4) (2523.2) (3413.6) (2446.5) (1930.2) (1985.3) (1975.1) (1934.0) 

P22 0.994
***

 0.998
***

 0.998
***

 0.997
***

 0.995
***

 0.996
***

 0.995
***

 0.995
***

 

 (410.7) (412.2) (493.4) (463.8) (701.5) (725.9) (788.1) (800.2) 
 1

v  5.556
***

 6.416
***

 5.951
***

 4.607
***

 4.354
***

 5.578
***

 12.672
***

 12.714
***

 

 (15.392) (5.965) (6.580) (7.759) (9.453) (20.285) (3.545) (3.686) 
 2

v  2.165
***

 3.321
***

 3.312
***

 3.163
***

 3.133
***

 2.634
***

 3.147
***

 3.249
***

 

 (6.788) (6.589) (6.554) (6.014) (21.023) (12.474) (11.783) (6.893) 

Table continues at the next page 
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Figure 5.9 and Figure 5.10 present the in-sample estimated MRSGARCH volatility of 

rating and maturity indices, respectively. It can be seen that volatility of all indices 

reduces significantly from early 2006 to mid 2007, compared to the earlier period, as 

the market enters into a relatively calm period with low volatility and high growth.  

 

Figure 5.9 Presents the estimated conditional variance of the rating indices [MRS-GARCH-tv] 

 

 

Figure 5.10 Presents the estimated conditional variance of the maturity indices [MRS-GARCH-tv] 
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1-3

3-5

5-7

7-10

Diagnostics         

Vol. Pers.          

Regime 1 0.488 0.463 0.483 0.443 0.514 0.513 0.488 0.420 

Regime 2 0.943 0.856 0.871 0.876 0.731 0.896 0.956 0.942 

ARCH(1) 0.013 0.332 0.145 0.089 0.042 0.002 2.054 0.002 

ARCH(10) 0.163 8.586 10.808 9.309 3.294 2.246 6.463 0.100 

LB Q test(1) 0.572 0.715 0.488 1.652 5.395 0.214 0.324 1.215 

LB Q test(10) 15.825 21.374 21.735 11.755 20.351 18.614 20.196 22.446 

Log Likelihood 4124 4034 3670 3662 4015 4118 4444 4438 

AIC -8224 -8044 -7316 -7299 -8006 -8213 -8864 -8852 

BIC -8157 -7977 -7249 -7233 -7939 -8146 -8797 -8786 
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5.4.1 Out-of-Sample Performance of Models 

 

In order to further investigate the appropriateness of the proposed models in capturing 

the dynamics of higher moments of credit spread changes, out-of-sample forecasting 

performance of the models, in terms of prediction of the changes in credit spread 

volatility, are compared using different statistics and VaR analysis. The out-of-sample 

forecast exercise is performed over the period from 1
st
 June 2007 to 30

th
 April 2009, 

which covers the credit crisis period. The statistics used for the comparison of 

volatility prediction are median absolute error (MAE) and median absolute percentage 

error (MAPE), while Christoffersen’s independence, unconditional coverage and 

conditional coverage Likelihood Ratio tests are performed on estimated VaR from 

proposed GJR-GARCH, GARCK-SK, MRS-GARCH models, as well and 

RiskMetrics, Historical Simulation (HS) and Filtered Historical Simulation (FHS) 

methods.  

 

Table 5.4 and Table 5.5 present the MAE and MAPE statistics which are calculated 

based on the differences between forecasted variance and squared realised returns. 

These statistics are based on the median of forecast errors as they are more robust than 

the mean error based forecast evaluation statistics to heavy dispersion and skewed 

forecast errors. The MAE for the 1-day forecast horizon reveals that the GARCH-SK 

yields the best volatility forecast for the changes in credit spread of rating indices 

(AAA, AA, A and BBB) and the GJR-GARCH for the volatility of changes in credit 

spread of maturity indices (1-3, 3-5 and 5-7). This is followed by the MRS-GARCH-tv 

which performs similar to GARCH-SK in forecasting volatility of changes in credit 

spread of AA and A indices as well as 7-10 maturity index. The MAE statistics for 

comparison of volatility forecast over a 5-day horizon reveals that overall GJR-

GARCH provides the most accurate forecast for volatility of credit spread changes 

amongst competing models.  

 

The MAPE statistics for 1-day-ahead volatility forecast reveals that GARCH-SK out-

performs other models in the case of the rating indices (AAA, AA, A and BBB), while 

the MRS-GARCH-tv produces forecast with similar accuracy for volatility of credit 

spread changes of AA and A indices. The GJR-GARCH provides the most accurate 

volatility forecast for the maturity indices (1-3, 3-5 and 5-7), while the MRS-GARCH-

tv model seems to yield the most accurate forecast for credit spread changes of the 7-
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10 year maturity index. Overall, it seems that in general the GJR-GARCH outperforms 

the other models in forecasting 1-day-ahead volatility of credit spread changes of 

maturity indices and 5-day-ahead for rating indices. On the other hand, GARCH-SK 

seems to produce more accurate 1-day-ahead volatility forecasts for credit spread 

changes of rating indices and 5-day-ahead maturity indices. The Regime Switching 

volatility model seems to have poor forecasting performance overall, similar results are 

presented in Marcucci (2009) among others.  

 

 

Table 5.4: Reports the median absolute error of volatility forecasts 

The table reports the median absolute error (MAE) metric which is based on the median of forecast 

errors. Since volatility is an unobserved variable the forecast error is calculated based on the 

differences between the forecasted variance and squared realized returns. The back-testing sample 

period is from 1
st
 June 2007 - 30

th
 April 2009, a total of 500 observations.  The MAE is: 

2 2ˆ(| |)      for 1t i t iMAE med r  i t , , T       

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

    
1day 

    
GJR-GARCH 0.0008 0.0012 0.0013 0.0013 0.0005 0.0007 0.0006 0.0010 

GARCH-SK 0.0003 0.0003 0.0003 0.0012 0.0011 0.0013 0.0013 0.0010 

MRSGARCHtv 0.0128 0.0003 0.0003 0.0019 0.0018 0.0026 0.0025 0.0009 

    
5day 

    
GJR-GARCH 0.003 0.003 0.004 0.004 0.002 0.003 0.003 0.004 

GARCH-SK 0.003 0.004 0.005 0.004 0.002 0.002 0.003 0.003 

MRSGARCHtv 0.055 0.004 0.005 0.013 0.010 0.014 0.013 0.006 

 

 

Table 5.5: Reports the median absolute percentage error of volatility forecasts 

The table reports the median absolute percentage error (MAE) metric which is based on the median of 

forecast errors. Since volatility is an unobserved variable the forecast error is calculated based on the 

differences between the forecasted variance and squared realized returns. The back-testing sample 

period is from 1
st
 June 2007 - 30

th
 April 2009, a total of 500 observations.  The MAE is: 

2 2

2

ˆ| |
     for 1t i t i

t i

r
MAPE med  i t , , T

r

  



 
   

 
 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

    
1day 

    
GJR-GARCH 3.025 4.600 3.926 3.799 3.842 4.197 2.996 4.941 

GARCH-SK 1.000 1.000 1.000 2.259 5.839 7.938 6.361 3.860 

MRSGARCHtv 30.426 1.000 1.000 5.266 8.296 10.443 8.479 2.675 

    
5day 

    
GJR-GARCH 0.904 0.873 0.897 0.919 0.869 0.913 0.930 0.912 

GARCH-SK 1.000 1.000 1.000 0.937 0.901 0.905 0.924 0.925 

MRSGARCHtv 16.280 1.000 1.000 1.577 2.383 2.392 1.669 0.883 
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5.4.2 Value-at-Risk Estimation 

 

In this section the performance of different models in terms of estimation of 1% Value-

at-Risk over 1-day and 5-day horizons for long and short positions is investigated. The 

Value-at-Risk analysis is focused on the 1% level as it is the level used by Basel II to 

evaluate models in terms of their performance in a back-testing exercise. Back-testing 

performance of different models is examined over the period from 1
st
 June 2007 to 30

th
 

April 2009, using four statistics, namely: percentage proportion of failures (PF%), 

unconditional coverage (UC), independence (I), and conditional coverage (CC) log-

likelihood tests.  

 

Starting with the percentage proportion of failures for 1-day VaR estimates of long and 

short position presented in Table 5.6, it can be seen that the MRS-GARCH, GJR-

GARCH and Extreme Value Theory tend to exhibit the lowest average PF for long and 

short positions. Other models seem to show PF of above 1% consistently. For short 

positions, the MRS-GARCH-tv exhibits 1% VaR violations for the A and BBB ratings 

and the GJR-GARCH for the AA and A rating indices, followed by EVT which 

exhibits the lowest percentage of failures. In the case of 5-day 1% VaR estimates, it 

can be seen that MRS-GARCH-tv, GJR-GARCH and EVT perform better than other 

models for long positions, followed by SK-GARCH, RiskMetrics, FHS and HS for 

long and short positions. The HS and RiskMetrics seem to show the highest VaR 

violations over a 5-day horizon for long and short positions. The reason for observing 

a lower percentage of VaR violations in long positions during the back-testing period 

is because during this period credit spreads were generally increasing, due to the credit 

crisis.  

 

In order to test whether the proportion of VaR failures correspond statistically to level 

of  considered for VaR estimation, we perform a likelihood ratio test proposed by 

Christoffersen (1998), known as unconditional coverage test (see Chapter 3, Section 

6.6 for more details on back-testing VaR) and the tolerance level α is considered to be 

1%. The Likelihood Ratio test for unconditional coverage of VaR estimates over the 

back-testing period is presented in Table 5.7. The unconditional coverage test is not 

rejected at a 5% significance level for 1-day VaR for long position for the majority of 

models, except for the GARCH-SK for the AAA and 7-10 index, HS for all indices, 

and FHS for AA and BBB indices. The unconditional coverage test is rejected at a 5% 
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significance level for 1-day VaR for short positions in the case of HS and Risk Metrics 

for all indices, and in the case of GARCH-SK for the AAA and BBB indices and FHS 

for the AAA, BBB and 1-3 indices.  

 

 

Table 5.6: Percentage of Failure of VaR estimates of different models 
The table reports the percentage of failure of the different specifications over the back-testing 

period from 1
st
 June 2007 - 30

th
 April 2009, with a total of 500 observations. 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

1 Day Long Position 

GJR-GARCH 0.000 0.006 0.006 0.002 0.004 0.002 0.002 0.002 

GARCH-SK 0.032 0.022 0.020 0.022 0.018 0.024 0.026 0.038 

MRS-GARCH-tv 0.008 0.008 0.008 0.002 0.006 0.006 0.006 0.006 

HS 0.044 0.034 0.048 0.034 0.032 0.034 0.042 0.030 

FHS 0.036 0.020 0.030 0.022 0.034 0.056 0.054 0.064 

RiskMetrics 0.018 0.016 0.016 0.008 0.008 0.010 0.008 0.008 

EVT 0.014 0.010 0.008 0.008 0.008 0.006 0.008 0.008 

1 Day Short Position 

GJR-GARCH 0.000 0.008 0.006 0.000 0.000 0.000 0.000 0.000 

GARCH-SK 0.036 0.024 0.014 0.036 0.012 0.006 0.008 0.008 

MRS-GARCH-tv 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 

HS 0.042 0.036 0.046 0.048 0.042 0.028 0.042 0.036 

FHS 0.026 0.018 0.024 0.030 0.028 0.020 0.020 0.018 

RiskMetrics 0.036 0.032 0.042 0.050 0.038 0.032 0.038 0.036 

EVT 0.006 0.008 0.006 0.006 0.002 0.004 0.008 0.008 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

5 Day Long Position 

GJR-GARCH 0.022 0.008 0.010 0.000 0.000 0.020 0.028 0.022 

GARCH-SK 0.060 0.068 0.036 0.062 0.040 0.048 0.064 0.062 

MRS-GARCH-tv 0.016 0.002 0.002 0.000 0.010 0.022 0.026 0.012 

HS 0.058 0.052 0.064 0.042 0.054 0.086 0.092 0.086 

FHS 0.036 0.020 0.030 0.022 0.034 0.056 0.054 0.064 

RiskMetrics 0.024 0.032 0.032 0.018 0.016 0.042 0.048 0.036 

EVT 0.020 0.022 0.020 0.012 0.018 0.026 0.040 0.036 

5 Day Short Position 

GJR-GARCH 0.024 0.026 0.034 0.030 0.020 0.034 0.058 0.054 

GARCH-SK 0.076 0.070 0.042 0.092 0.032 0.034 0.074 0.064 

MRS-GARCH-tv 0.022 0.034 0.020 0.018 0.052 0.030 0.038 0.030 

HS 0.082 0.090 0.140 0.132 0.134 0.132 0.164 0.138 

FHS 0.060 0.046 0.078 0.092 0.080 0.096 0.098 0.060 

RiskMetrics 0.086 0.096 0.128 0.138 0.128 0.176 0.172 0.138 

EVT 0.032 0.036 0.032 0.030 0.014 0.030 0.054 0.030 

 

In the case of 1% 5-day VaR estimates, the results of unconditional coverage tests 

seem to be mixed. For instance, the unconditional coverage test at 5% significance 

level for long positions is not rejected for GJR-GARCH, MRS-GARCH-tv, FHS for 

the AA and BBB indices, RiskMetrics for AAA, BBB and 1-3 indices and EVT, 

except for the GJR-GARCH and MRS-GARCH-tv for the 5-7 index and EVT for the 

5-7 and 7-10 indices, whereas the unconditional coverage test at 5% significance level 
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for short positions is rejected for the majority of models except for the GJR-GARCH 

for AAA and 1-3 indices, MRS-GARCH-tv for the AAA, A and BBB indices and EVT 

for 1-3 index. 

 

Table 5.7: Estimation of the Likelihood Ratio Test of the Unconditional Coverage 
The table reports Christoffersen’s (1998) likelihood ratio test of the unconditional 

coverage during the back-testing period from 1
st
 June 2007 - 30

th
 April 2009, with a 

total of 500 observations. The likelihood ratio test of the unconditional coverage is chi-

square asymptotic with one degrees-of-freedom. The 1% and 5% critical values for 

χ
2
(1) are 6.634 and 3.841. 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

1 Day Long Position 

GJR-GARCH - 0.410 0.410 2.090 1.022 2.090 2.090 2.090 

GARCH-SK 6.717 2.353 1.700 2.353 1.135 3.088 3.897 10.045 

MRS-GARCH-tv 0.094 0.094 0.094 2.090 0.410 0.410 0.410 0.410 

HS 13.802 7.775 16.517 7.775 6.717 7.775 12.506 5.716 

FHS 3.088 3.088 5.716 3.897 1.135 2.353 0.668 3.897 

RiskMetrics 1.135 0.668 0.668 0.094 0.094 0.000 0.094 0.094 

EVT 0.312 0.000 0.094 0.094 0.094 0.410 0.094 0.094 

1 Day Short Position 

GJR-GARCH - 0.094 0.410 - - - - - 

GARCH-SK 8.885 3.088 0.312 8.885 0.082 0.410 0.094 0.094 

MRS-GARCH-tv - - 2.090 2.090 - - - - 

HS 12.506 8.885 15.140 16.517 12.506 4.775 12.506 8.885 

FHS 3.897 1.135 3.088 5.716 4.775 1.700 1.700 1.135 

RiskMetrics 8.885 6.717 12.506 17.932 10.045 6.717 10.045 8.885 

EVT 0.410 0.094 0.410 0.410 2.090 1.022 0.094 0.094 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

5 Day Long Position 

GJR-GARCH 2.418 0.084 - - - 1.753 4.871 2.418 

GARCH-SK 25.804 32.491 9.025 27.432 11.415 16.723 29.090 27.432 

MRS-GARCH-tv 0.700 2.049 2.049 - 0.000 2.418 3.983 0.093 

HS 24.207 19.612 29.090 12.679 21.110 49.080 55.027 49.080 

FHS 9.025 1.753 5.823 2.418 7.904 22.642 21.110 29.090 

RiskMetrics 3.163 6.835 6.835 1.177 0.700 12.679 16.723 9.025 

EVT 1.700 2.353 1.700 0.082 1.135 3.897 11.253 8.885 

5 Day Short Position 

GJR-GARCH 3.163 3.983 7.904 5.823 1.753 7.904 24.207 21.110 

GARCH-SK 39.618 34.233 12.679 55.027 6.835 7.904 37.798 29.090 

MRS-GARCH-tv 2.418 7.904 1.753 1.177 19.612 5.823 10.196 5.823 

HS 44.829 52.581 107.880 98.340 100.702 98.340 137.848 105.473 

FHS 25.532 15.140 41.090 54.574 42.948 58.620 60.674 25.532 

RiskMetrics 48.661 58.620 93.659 105.473 93.659 153.531 148.254 105.473 

EVT 6.717 8.885 6.717 5.716 0.312 5.716 20.871 5.716 
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The next test in our back-testing process is the independence test of VaR estimates, 

which ignores the unconditional coverage and tests the clustering of VaR violations. 

The results of the independence test for VaR estimates of different models over the 

back-testing period are reported in Table 5.8.  

 

The results of the independence tests generally indicate that all models pass the tests at 

a 5% significance level in the case of 1-day VaR for both short and long positions, 

with the exceptions of HS VaR estimates for 3-5, 5-7, and 7-10 maturity indices, FHS 

for the 7-10 index for long positions, GARCH-SK for the 7-10 index, HS for all 

indices, FHS for the AAA, AA, , 3-5, 5-7 and 7-10 indices and RiskMetrics for the 

AAA, AA, 3-5, 5-7 and 7-10 indices, for short positions. However, the results of the 

likelihood ratio test for independence of 5-day VaR estimates indicate that all models 

fail the test at a 5% significance level for both long and short positions, with the 

exceptions of the GJR-GARCH for the BBB and 1-3 indices and MRS-GARCH-tv for 

the AA, A and BBB rating indices for long positions. This result is important and 

suggests that not all models can be relied on for long horizon VaR estimation, perhaps 

because of clustering of large credit spread changes movements.  

 

A correct unconditional coverage may have limited accuracy conditionally, while the 

test of independence does not take into account correct coverage. Consequently, the 

conditional coverage likelihood ratio test is equivalent to testing the joint null 

hypothesis of an independent failure process with failure probability α against the 

alternative of a first order Markov failure process. This is performed through the 

likelihood ratio test for conditional coverage, and the results over the back-testing 

period are presented in Table 5.9.   
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Table 5.8: Estimation of the Likelihood Ratio Test of Independence 
The table reports Christoffersen’s (1998) likelihood ratio test of the independence during the 

back-testing period from 1
st
 June 2007 - 30

th
 April 2009, with a total of 500 

observations. The likelihood ratio test of the independence is chi-square asymptotic 

with one degrees-of-freedom. The 1% and 5% critical values for χ
2
(1) are 6.634 and 

3.841. 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

Long Positions 

1 Day Long Position 

GJR-GARCH - - - - - - - - 

GARCH-SK 2.819 - 2.746 - 0.925 - 3.908 1.995 

MRS-GARCH-tv - - 2.374 - - - - - 

HS 0.410 0.119 2.181 1.033 0.171 9.274 9.127 7.914 

FHS - - 0.234 0.398 0.925 2.409 3.574 6.441 

RiskMetrics - - 1.116 - - - - - 

EVT - - - - - - - - 

1 Day Short Position 

GJR-GARCH - 2.374 2.955 - - - - - 

GARCH-SK 0.077 0.502 - - - - - 6.516 

MRS-GARCH-tv - - - - - - - - 
HS 6.813 8.586 3.991 1.026 6.813 3.509 9.127 6.151 

FHS 12.731 9.540 4.351 3.148 0.310 8.608 8.608 6.041 

RiskMetrics 4.025 7.275 1.555 1.948 0.741 5.973 6.670 6.151 

EVT - 2.374 2.955 - - - - 2.374 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

5 Day Long Position 

GJR-GARCH 11.167 11.992 10.059 - - 16.504 18.999 11.167 

GARCH-SK 25.697 21.111 21.108 34.278 18.573 20.412 29.403 16.200 

MRS-GARCH-tv 20.359 - - - 5.475 19.421 25.146 4.698 

HS 37.685 39.371 47.902 24.280 33.530 64.928 70.350 56.660 

FHS 21.108 21.322 25.931 24.362 22.553 39.558 45.972 52.240 

RiskMetrics 27.350 24.149 33.444 13.557 10.589 28.091 39.184 29.207 

EVT 16.567 24.446 16.567 13.608 13.609 20.625 29.948 29.333 

5 Day Short Position 

GJR-GARCH 22.302 34.858 26.691 21.585 21.322 15.271 30.362 29.860 

GARCH-SK 27.675 17.594 6.755 31.713 20.097 22.553 23.288 23.287 

MRS-GARCH-tv 24.362 22.553 8.567 9.498 39.371 25.931 23.451 17.627 

HS 70.573 49.242 87.762 94.591 83.518 99.073 103.768 78.620 

FHS 57.626 46.448 66.688 74.080 64.050 78.851 80.628 48.266 

RiskMetrics 74.387 64.867 94.729 70.557 71.587 95.300 96.725 78.620 

EVT 28.697 29.333 28.697 21.679 11.947 30.833 41.768 21.679 

 

 

In the case of 1% 1-day VaR for long positions, the conditional coverage test is not 

rejected at a 5% significant level for VaR estimates by the GJR-GARCH, GARCH-SK 

for the AA, BBB, 1-3 and 3-5 indices, MRS-GARCH-tv, FHS for AAA, AA and 1-3 

indices, RM and EVT; whereas for short positions the conditional coverage test is not 

rejects at a 5% significant level for VaR estimates by the GJR-GARCH model, 

GARCH-SK, MRS-GARCH-tv and EVT, with the exception of AAA and BBB 

indices of the GARCH-SK model. In the case of 1% 5-day VaR estimates, the 



 

115 

 

conditional coverage test is rejected at a 5% significant for all models for both 

positions, with the exceptions of the GJR-GARCH for BBB and 1-3 indices, and 

MRS-GARCH-tv for the AA, A and BBB indices. The VaR estimates of econometric 

models and EVT performed well for long positions over the back-testing period 

because large movements in credit spread changes were in the form of credit spread 

increases.  

 

  Table 5.9: Estimation of the Likelihood Ratio Test of the Conditional Coverage 
The table reports Christoffersen’s (1998) likelihood ratio test of the conditional coverage 

during the back-testing period from 1
st
 June 2007 - 30

th
 April 2009, with a total of 500 

observations. The likelihood ratio test of the conditional coverage is chi-square 

asymptotic with two degrees-of-freedom. The 1% and 5% critical values for χ
2
(1) are 

9.21 and 5.99. 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

1 Day Long Position 

GJR-GARCH - 0.410 0.410 2.090 1.022 2.090 2.090 2.090 

GARCH-SK 9.536 2.353 4.446 2.353 1.135 3.088 7.805 12.040 

MRS-GARCH-tv 0.094 0.094 0.094 2.090 0.410 0.410 0.410 0.410 

HS 14.212 7.894 18.698 8.808 6.889 17.049 21.633 13.630 

FHS 3.088 3.088 5.951 4.295 2.060 4.763 4.242 10.338 

RiskMetrics 1.135 0.668 1.784 0.094 0.094 0.000 0.094 0.094 

EVT 0.312 - 0.094 0.094 0.094 0.410 0.094 0.094 

1 Day Short Position 

GJR-GARCH - 2.468 3.365 - - - - - 

GARCH-SK 8.962 3.590 0.312 8.885 0.082 0.410 0.094 6.610 

MRS-GARCH-tv - - 2.090 2.090 - - - - 

HS 19.319 17.471 19.131 17.543 19.319 8.283 21.633 15.035 

FHS 16.628 10.674 7.439 8.864 5.084 10.308 10.308 7.176 

RiskMetrics 12.910 13.993 14.061 19.880 10.786 12.690 16.716 15.035 

EVT 0.410 2.468 3.365 0.410 2.090 1.022 0.094 2.468 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

5 Day Long Position 

GJR-GARCH 13.585 12.076 10.059 - - 18.257 23.870 13.585 

GARCH-SK 51.501 53.603 30.133 61.710 29.987 37.135 58.492 43.632 

MRS-GARCH-tv 21.059 2.049 2.049 - 5.475 21.839 29.129 4.792 

HS 61.892 58.983 76.991 36.959 54.640 114.008 125.377 105.741 

FHS 30.133 23.075 31.755 26.779 30.457 62.200 67.082 81.330 

RiskMetrics 30.513 30.985 40.279 14.734 11.289 40.770 55.907 38.232 

EVT 18.267 26.799 18.267 13.691 14.744 24.522 41.201 38.218 

5 Day Short Position 

GJR-GARCH 25.465 38.841 34.594 27.408 23.075 23.175 54.570 50.970 

GARCH-SK 67.293 51.827 19.433 86.741 26.933 30.457 61.086 52.377 

MRS-GARCH-tv 26.779 30.457 10.320 10.675 58.983 31.755 33.646 23.451 

HS 115.403 101.824 195.642 192.931 184.221 197.413 241.616 184.093 

FHS 83.158 61.588 107.777 128.653 106.998 137.471 141.301 73.798 

RiskMetrics 123.049 123.487 188.389 176.030 165.246 248.831 244.979 184.093 

EVT 35.414 38.218 35.414 27.395 12.259 36.549 62.640 27.395 
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In general, the back-testing exercise revealed mixed results regarding the 

appropriateness and accuracy of models in VaR estimation, even when higher 

moments were incorporated. One reason for obtaining such inconclusive results on the 

accuracy VaR estimates could be the back-testing period, which has coincided with the 

most turbulent period for financial markets. The second reason for the failure of 

models which take into account asymmetry in the dynamics of distribution of credit 

spreads (e.g. GARCH-SK) to produce superior VaR estimates could be the fact that by 

considering the dynamics of higher moments (skewness and kurtosis) the persistence 

of the estimated and forecasted volatility is reduced. A third reason could be that errors 

in forecasting simultaneously variance, skewness and kurtosis are reflected in the 

Value-at-Risk.  

 

Furthermore, we subject our models to the Basel II test to examine and compare the 

appropriateness of different models with respect to compliance with Basel II. 

According to Basel II, models are grouped into three categories: green, yellow and red 

depending on the number of 1% VaR violations. A model is classified as green when 

there is more than 99.99% probability that it’s estimated 1% VaR violations fall within 

the theoretical (1%) number of VaR violations. By the same token a model is classified 

as yellow when there is more than 95% probability that its 1% VaR violations fall 

within the theoretical (1%) number of exceptions, and finally, a model is classified as 

red if there is less than 95% probability that the number of realised 1% VaR violations 

exceed the number of theoretical VaR violations. Therefore, in the case of 1-day VaR 

estimates, models whose percentage of violations (%RF) is below 1.732% 

)500/)99.0)(01.0(6449.101.0(   are in the green zone, models between 1.732%  and 

2.655% )500/)99.0)(01.0(7190.301.0(   are in the yellow zone, while those that lie 

above 2.655% are within the red limit.  

 

For 1-day VaR and long position, MRS-GARCH-tv, GJR-GARCH, EVT, and 

RiskMetrics, with the exception of the AAA rating, seem to fall within the green zone, 

while HS is the worst performing model and GARCH-SK falls mainly in the yellow 

acceptance region. For 1-day VaR and short positions, MRS-GARCH-tv, GJR-

GARCH, GARCH-SK with the exception of AAA, AA and BBB indices, and EVT 
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perform well, while HS, FHS and RiskMetrics fall in the red acceptance region. This is 

surprising for the GARCH-SK model, since by taking into account dynamics of higher 

moments of credit spread changes, this model should have produced superior VaR 

estimates.  

 

In the case of 5-day VaR estimates, in both long and short positions, all models seem 

to fail the Basel test with the exceptions of GJR-GARCH for the AA, A, BBB and 1-3 

indices, by falling in the green limit, MRS-GARCH-tv by falling in the green and 

yellow limits, RiskMetrics for 1-3 index and EVT for the BBB index by falling in the 

green limits, for long positions; the GJR-GARCH for the AAA, AA and 1-3 indices 

and the MRS-GARCH-tv for the AAA, A and BBB indices by falling within the 

yellow limit for short positions.  The BASEL II compliance back-testing exercise 

revealed that econometric models performed well for the 5-day 1% VaR long 

positions, since large movements in credit spread changes were in the form of large 

credit spread increases during the credit crisis period.  

 

Finally, Figures 5.11 to 5.18 present the 1-day 1% VaR estimates of GJR-GARCH, 

GARCH-SK, and MRS-GARCH-tv models, for both long and short positions over the 

back-testing period for rating and maturity indices. The Value-at-Risk for the 

GARCH-SK model appears to have asymmetric shape for long and short positions as 

expected, but it seems to behave relatively erratically compared to the other 

formulations. This occurs because the inverse cumulative function of the Gram-

Charlier distribution which is required in computing the Value-at-Risk estimates (see 

equation 3.68) contains estimates of skewness and kurtosis. In addition, the out-of-

sample period in which the models are tested and the Value-at-Risk estimates are 

computed is the recent credit crisis period. During this period as can be seen from 

Figures 5.9, 5.10, 5.11 and 5.12, skewness and kurtosis increase significantly and 

exhibit frequent spikes, thus affecting the inverse CDF at each step of the forecast.  
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Table 5.10: BASEL II Model Performance Categorization 
This table reports the BASELL II model categorization. Models are grouped into three 

categories: green, yellow and red depending on the number of 1% VaR violations. The 

general formula for specifying the BASEL limits is defined as: 

                         , where     denotes the inverse of the standard normal 

cumulative distribution, and N the total number of forecasts. The back-testing period is 

from 1
st
 June 2007 - 30

th
 April 2009, and has a total of 500 observations. 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

1 Day Long Position 

GJR-GARCH Green Green Green Green Green Green Green Green 

GARCH-SK Red Yellow Yellow Yellow Yellow Yellow Yellow Red 

MRS-GARCH-tv Green Green Green Green Green Green Green Green 

HS Red Red Red Red Red Red Red Red 

FHS Red Yellow Red Yellow Red Red Red Red 

RiskMetrics Yellow Green Green Green Green Green Green Green 

EVT Green Green Green Green Green Green Green Green 

1 Day Short Position 

GJR-GARCH Green Green Green Green Green Green Green Green 

GARCH-SK Red Yellow Green Red Green Green Green Green 

MRS-GARCH-tv Green Green Green Green Green Green Green Green 

HS Red Red Red Red Red Red Red Red 

FHS Yellow Yellow Yellow Red Red Yellow Yellow Yellow 

RiskMetrics Red Red Red Red Red Red Red Red 

EVT Green Green Green Green Green Green Green Green 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

5 Day Long Position 

GJR-GARCH Yellow Green Green Green Green Yellow Red Yellow 

GARCH-SK Red Red Red Red Red Red Red Red 

MRS-GARCH-tv Green Green Green Green Green Yellow Yellow Green 

HS Red Red Red Red Red Red Red Red 

FHS Red Yellow Red Yellow Red Red Red Red 

RiskMetrics Yellow Red Red Yellow Green Red Red Red 

EVT Yellow Yellow Yellow Green Yellow Yellow Red Red 

5 Day Short Position 

GJR-GARCH Yellow Yellow Red Red Yellow Red Red Red 

GARCH-SK Red Red Red Red Red Red Red Red 

MRS-GARCH-tv Yellow Red Yellow Yellow Red Red Red Red 

HS Red Red Red Red Red Red Red Red 

FHS Red Red Red Red Red Red Red Red 

RiskMetrics Red Red Red Red Red Red Red Red 

EVT Red Red Red Red Red Red Red Red 
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Figure 5.11: Presents the of out-of-sample 1% VaR estimates of the AAA Index 

  

Figure 5.12 Presents the of out-of-sample 1% VaR estimates of the AA Index 

 
Figure 5.13 Presents the of out-of-sample 1% VaR estimates of the A Index 

 

Figure 5.14 Presents the of out-of-sample 1% VaR estimates of the BBB Index 
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Figure 5.15: Presents the of out-of-sample 1% VaR estimates of the 1-3 year 

Index  

 

Figure 5.16 Presents the of out-of-sample 1% VaR estimates of the 3-5 year 

Index 

 

Figure 5.17 Presents the of out-of-sample 1% VaR estimates of the 5-7 year Index 

 

Figure 5.18 Presents the of out-of-sample 1% VaR estimates of the 7-10 year 

Index 
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5.4  Conclusions 

 

The aim of this chapter was to investigate and model the time-varying dynamics of 

credit spread moments of European corporate bond indices. The examination of the 

dynamics of volatility and the conditional higher moments was undertaken by the 

application and comparison of a set of models, which to the best of our knowledge had 

not been applied previously in the European fixed income market. The models 

estimated were the GJR-GARCH, GARCH-SK, MRS-GARCH-tv models and their 

forecasting performance of volatility and Value-at-Risk estimates was examined.  

 

It was found that the estimated volatilities, skewness and kurtosis display a consistent 

pattern across ratings and maturities. Lower ratings and long-term maturities have 

greater conditional volatilities and kurtosis. This behaviour reflects the higher 

probability of downgrades and defaults of lower rating and long-term maturity indices. 

Conditional skewness was found to fluctuate more for lower ratings and long-term 

maturities and displayed occasional spikes. This meant that during high volatility 

periods credit spreads widen and interest rates decrease suggesting a deteriorating 

economy and therefore the negative effect of the credit-worthiness of lower ratings and 

long-term maturities is reflected as negative spikes in the conditional skewness. 

Finally, conditional kurtosis exhibits spikes during high volatility periods for higher-

ratings and short-term maturities reflecting sharp changes in their credit quality.  

 

The evaluation of the aforementioned formulation's performance was carried out by 

comparing the 1-day and 5-day ahead volatility forecasts and VaR estimators. It was 

shown that GARCH-SK produced the most accurate 1-day volatility forecasts while 

GJR-GARCH yielded the most accurate 5-day volatility forecasts. The adequacy of 

VaR estimates was examined by the application of the Christoffersen (1998) back-

testing procedure. The back-testing exercise revealed mixed results on the 

appropriateness and accuracy of the examined models, since the back-testing period 

coincided with the credit crisis. However when the results are examined in 

combination then econometric models seem to perform well for longer horizons. These 

results are in line with those reported by Brooks and Persand (2003), Dacco and 

Satchell (1999) and Marcucci (2009), who do not find a uniformly accurate model for 

all time horizons either. 
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Chapter 6  

Modelling the time-varying correlation of the European 

corporate credit spreads 

 

 

 

 

6.1 Introduction 

 

Correlation between asset prices is the most important parameter in portfolio selection, 

asset allocation, the pricing of derivatives, risk management, as well as trading and 

hedging activities. Fixed income instruments have a leading role in institutional 

investors' asset allocation, due to their correlation with liability structures. They were 

originally characterized by simple cash flows, and have now transformed into 

securities with increased and complex cash flow structures that appeal to a broader 

investor base. Therefore, understanding the powers that control bond markets and 

portfolio credit risk, as well as their dynamics and risk management of these complex 

securities, is essential for one to make effective use of portfolio strategies.  
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Existing literature has shown that correlation between different asset classes varies 

over time (e.g. Engel and Rosenberg, 1995, Bollerslev, 1990, amongst others) and has 

an important role in the pricing of derivatives, portfolio selection, trading and hedging 

and risk management. Modelling and estimating time-varying correlation and 

covariance matrices has a profound effect within all asset classes. This has been 

highlighted in a number of financial studies. For instance, Alexander (1998) and 

Alexander and Leigh (1997) highlight the importance of accurate covariance matrices 

in the estimation of portfolios Value-at-Risk. In other financial applications, Kroner 

and Ng (1998) show the importance of covariance matrices in determination of hedge 

ratio and dynamic portfolio optimization. Similar results are presented by Engel and 

Rosenberg (1995) for option pricing. The comparison of accuracy of different models 

and specifications for covariance estimation has been the subject of many studies. 

Takayuki and Yoshinori (2008) test a variety of multivariate Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models and find that the 

DCC-GARCH provides the best VaR estimators in intraday data of the Tokyo Stock 

Exchange. Alexander (1998) also suggests that the O-GARCH model provides better 

volatility forecasts in highly-correlated systems. Finally, the Therese (2008) study 

proves that the Engle and Sheppard (2001) DCC-GARCH formulation provides better 

short-run volatility forecasts compared with other DCC-GARCH specifications.    

 

However, the literature on estimation of time-varying correlation in the area of credit 

spreads, and specifically in credit portfolio hedging and trading is limited. Berndt, 

Ritchken and Sun (2009) highlight the importance of credit spread correlation 

modelling by incorporating interest rate and credit spread correlation in the pricing of 

credit derivatives. Roscovan (2008) constructs a hedging strategy by relating bond 

portfolio returns to changes in credit spreads. Friewarld and Pichler (2008) propose a 

spread based model to price credit derivatives that incorporates the correlation of credit 

spreads. They compare their model with other conventional approaches and find that 

their model is superior during market turbulences. Bobey (2009) investigates the 

relationship between systematic default correlation and corporate bond credit spreads 

and finds that credit spreads are positively related to the Collateral Debt Obligation 

(CDO) market implied default correlation.  
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As the literature in the field of time-varying correlation of credit spreads is limited, this 

study aims to fill the gap by examining and comparing the properties and performance 

of the different multivariate GARCH models in capturing the dynamics of correlation 

between the credit spread indices. The models examined within this study are the 

Orthogonal-GARCH, the Constant and Dynamic Correlation GARCH models, Risk 

Metrics and Diagonal-BEKK formulation. The performance of these models is 

examined by determining whether they produce accurate VaR estimates over the most 

turbulent market period, the resent credit crisis.  This chapter is organised as follows: 

Section 6.2 presents the methodology, Section 6.3 outlines the estimation results, and 

Sections 6.4 concludes. 

 

6.2 Methodology 

Equation Chapter 6 Section 1 

This section briefly presents the methodology applied in this chapter; for a detailed 

analysis refer to Chapter 3 in Section 4 entitled Multivariate Volatility Models. The 

pioneering study of Bollerslev et al. (1988) generalizes the univariate models into a 

general multivariate volatility representation MGARCH. The later studies of 

Bollerslev (1990), Engle and Shephard (2001), Alexander (2002) among others have 

extended the MGARCH model to capture more acurately the time-varying covariances 

and in extention time-varying correlations. All these formulations have a wide 

application in the financial world, ranging from asset and option pricing, hedging and 

risk management, as well as portfolio construction and asset allocation. This section 

generalizes the univariate models to multivariate models which capture the dynamic 

relationships between the volatility and correlation of the credit spread indices.  

 

Engle and Kroner (1995) propose the BEKK model which guarantees the conditional 

covariance matrix to be positive-definite as (see Chapter 3 Section 4.1):  

      
p q

t i t-i t-i i j t-j j

i=1 j=1

H = CC + A ε ε A + B H B  (6.1) 

where iA , 
jB  and C are N x N parameter matrices and C is a lower triangular matrix. 

However, this formulation has a number of disadvantages. The first drawback is the 

difficulty of interpreting the parameters iA  and 
jB  and, secondly, the estimated 

number of parameters of the model increases as the number of series and dimensions 

of p and q increase    2 1 2n p q n n     . However, the Diagonal BEKK addresses 
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the problem of an increased number of parameters, by imposing the 
iA  and 

jB
 

matrices to be diagonal matrices. 
 

 

Bollerslev (1990) proposes another approach in reducing the number of parameters, the 

Constant Correlation MGARCH model in which the conditional correlations are 

constant and the covariance matrix is then defined as (see Chapter 3 Section 4.3):  

  ij iit jjt  t t tH = D RD =  (6.2) 

where 
tD  is a NxN diagonal matrix of time varying standard deviations from a 

univariate GARCH model with iit for the thi diagonal element and R is the constant 

correlation matrix which is a symmetric positive definite matrix with 1ii i   . 

 

While the assumption of the constant correlation ensures positive definiteness and 

provides computational simplicity and estimation, it may not be appropriate and 

sometimes too restrictive in real life applications. Engle and Shephard (2001) propose 

the Dynamic Conditional Correlation Multivariate GARCH model and the dynamic 

covariance matrix is given as (see Chapter 3 Section 4.3): 

  
 

 
 
   

p q p q

t m n i t-i t-i j t-j

i=1 j=1 i=1 j=1

Η = 1- a - β Η+ a ε ε + β Η  (6.3) 

where  t tε ~ N 0,Η and Η  is the unconditional covariance (for further information in 

the estimation procedure, please, refer to Chapter 3 section 4.3, Equations 3.53, 3.54 

and 3.55). 

 

 

Another approach in simplifying the dynamic structure of a multivariate volatility 

process is the application of factor models (see Chapter 3 Section 4.2). One such 

model is the orthogonal GARCH model which allows N x N GARCH covariance 

matrices to be estimated from just M univariate GARCH models; where N are the 

number of random variables and M the number of principal components (see Section 5 

of Chapter 3 for more details regarding principal component analysis). The time-

varying covariance matrix tΗ  is given as: 

 
t tΗ = AD A  (6.4) 
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where  *

ijA is the matrix of the normalised factor weights, 
tD  is the diagonal 

matrix of variances of the principal components estimated by a GARCH model and 

requires the estimation of N(N+5)/2 parameters.  

 

6.3 Estimation Results 

 

This section begins by presenting the descriptive statistics of two equally weighted 

credit portfolios
36

: the rating and maturity. The section then presents the unconditional 

correlation between credit spread changes indices, and the Engle and Shepphard 

(2001) test for constant correlation between the indices (refer to Chapter 3 Section 

4.4). It then continues to the estimation of PCA and O-GARCH model, as well as CC-

GARCH, DCC-GARCH and Diagonal BEKK formulations. Finally, it presents the 

out-of-sample performance of the models in computing accurate Value-at-Risk 

estimates for minimum variance and equally weighted portfolios. It should be observed 

that this study does not consider an overall credit portfolio, as the estimation of time-

varying correlations would have led to spurious results. This happens because an 

overall portfolio would have been comprised by both rating and maturity indices, but 

the rating indices are included in the maturity indices, and the maturity indices are 

included in the rating indices. 

 

Table 6.1 presents the descriptive statistics of the two portfolios. The descriptive 

statistics of the credit spread and the annualized first differences in credit spread 

portfolios reveal that the overall coefficients of volatility and skewness have decreased 

compared to the individual indices. Furthermore, the credit spread portfolios are 

normally distributed according to the Jarque-Bera test, in contrast with the changes in 

credit spread portfolios which are not normally distributed at 1% significant level.  

 

 

 

 

 

                                                 
36

 The equally weighted portfolios are estimated in order to present the descriptive statistics of a 

benchmark portfolio. However, during the out-of-sample examination, the minimum variance portfolios 

are estimated. 
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Table 6.1 Descriptive statistics of the equally weighted credit spread portfolios 
The table reports the descriptive statistics of the equally weighted portfolio for the in-sample 

period from 03/01/2000 to 31/05/2007. The 1% and 5% critical values for the Jarque-Bera 

(χ
2
(2)) are 9.21 and 5.99. 

 Credit spreads First Differences in of credit spreads 

Statistics Rating Maturity Rating Maturity 

Mean 1.180 1.160 
-0.105 -0.080 

Std. Dev. 0.327 0.368 
0.690 0.698 

Skewness 0.038 0.046 0.074 0.067 

Kurtosis 2.683 2.788 7.424 7.486 

Jarque-Bera 8.534 4.302 1577 1622 

 

Table 6.2 reports the unconditional correlation matrix of the changes in credit spread 

indices. The results reveal that all credit spread changes indices are positively 

correlated while correlation decreases as ratings decline and maturities increase. The 

highest correlation is observed between the AA and A indices (0.926), followed by the 

5-7 and 7-10 indices (0.876). On the other hand, the lowest correlation is observed 

between 1-3 and 5-7 indices (0.730).  These results are in line with the studies of Das 

et al. (2006) and Byrne, Fazio and Fiess (2010). The former argues that firms of the 

highest credit quality have the highest correlations suggesting that these firms are 

exposed to an economy wide factor. The latter argue that high correlation in long-term 

maturities is due to financial integration, and in this case European financial 

integration, while the lower correlation between short-term and long-term rate is 

attributed to the fact that short-term rates are more susceptible to shocks and monetary 

policies.  

 

Table 6.2 Unconditional correlation matrix of the credit spread 

changes for the period from 03/01/2000 to 30/04/2009 

Indices AAA AA A BBB 

AAA 1.000 0.765 0.807 0.601 

AA 
 

1.000 0.926 0.781 

A 
  

1.000 0.793 

BBB 
   

1.000 

Indices 1-3 3-5 5-7 7-10 

1-3 1.000 0.771 0.730 0.747 

3-5 
 

1.000 0.871 0.828 

5-7 
  

1.000 0.876 

7-10 
   

1.000 
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Table 6.3 presents the Engle and Shepphard (2001) test of the null hypothesis of the 

constant correlation against an alternative of dynamic condition correlation. The null 

hypothesis of a null correlation is rejected for all of the indices in favour of a dynamic 

structure. Similar results were presented in the study of Engle and Shepphard (2001) 

 

Table 6.3 Engle and Sheppard (2001) constant correlation test 
The table reports the estimation results of the constant correlation test proposed by Engle and 

Sheppard (2001). The critical values are estimated from a 
2  distribution given the 

probability the correlation is constant with degrees-of-freedom equal to the number of lags 

plus 1. 

Lags 1-Day 5-Day 15-Day 30-Day 60-Day 

 
Statistic 

2  Statistic 
2  Statistic 

2  Statistic 
2  Statistic 

2  

 
Rating Indices 

AAA-AA 1.952 0.3769 3.025 0.806 4.843 0.996 50.808 0.014 94.175 0.004 

AAA-A 2.990 0.2242 26.133 0.000 29.124 0.023 38.216 0.174 52.830 0.763 

AAA-BBB 2.137 0.3436 2.458 0.873 4.727 0.997 223.360 0.000 336.067 0.000 

AA-A 1.022 0.5998 2.285 0.892 6.299 0.985 143.151 0.000 209.430 0.000 

AA-BBB 0.668 0.7161 1.361 0.968 1.947 1.000 5.585 1.000 58.845 0.554 

A-BBB 0.575 0.7502 2.168 0.904 4.092 0.999 1379.699 0.000 2207.681 0.000 

 
Maturity Indices 

1-3-3-5 1.644 0.440 3.682 0.720 7.066 0.972 15.805 0.989 30.612 1.000 

1-3-5-7 38.960 0.000 43.047 0.000 49.427 0.000 165.201 0.000 181.839 0.000 

1-3-7-10 8.603 0.014 9.066 0.170 11.087 0.804 17.179 0.979 23.134 1.000 

3-5-5-7 130.277 0.000 146.046 0.000 166.861 0.000 197.208 0.000 233.113 0.000 

3-5-7-10 18.442 0.000 23.120 0.001 27.454 0.037 37.014 0.211 570.426 0.000 

5-7-7-10 115.944 0.000 116.248 0.000 118.532 0.000 120.060 0.000 128.734 0.000 

 
Portfolios 

Rating 9.704 7.8*10
-03 13.608 3.4*10

-02
 16.997 0.391 95.587 1.7*10

-08
 179.110 1.5*10

-13
 

Maturity 70.699 4.4**10
-16

 72.859 1.1*10
-13

 80.059 1.6*10
-10

 89.727 1.3*10
-07

 155.490 3.4*10
-10

 

 

The first frameworks to be examined are the PCA and the O-GARCH(1,1) 

specifications. Table 6.4 presents the PCA for the rating and maturity changes in credit 

spread portfolios. The first principal component is able to explain 89.9% of the total 

variation in the rating portfolio and 86.3% in the maturity portfolio. This component is 

called the level or trend component as its factor weights suggest that an upward 

movement in the first principal component will induce a parallel shift in the credit 

spread curve. The second component is called the slope or tilt and it is able to explain 

6.5% and 7.7% of variation for the corresponding portfolios. Its factor weights suggest 

that an upward movement in the second principal components will induce such a 

change in the slope that when ratings deteriorate the credit spread curve decreases, 
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when the 1-3 maturity increases the credit spread curve increases while decreases for 

other maturities. The third component is called the curvature and explains up to 2.4% 

and 3.5%, respectively. Finally, the last 1.3% and 2.5% of the variability is explained 

by the fourth component. 

 

The study focuses on the first two components which can explain up to 96% of the 

total variability and Table 6.5 presents the O-GARCH(1,1) models of these 

components. Alexander (2000) argues that all the variation stems from the second 

principal component, because if only one component is considered then all variables 

are assumed to be perfectly correlated. The coefficients on the lagged squared error 1  

and the lagged conditional variance 2  coefficients are statistically significant. 

Alexander (2000) presents similar results for the UK yield curve.  

 

 

Table 6.4 Reports the eigenvectors and factor weights of the principal component 

analysis for the period from 03/01/2000 to 31/05/2007. 

 Rating Portfolio 

PC Eigenvalues Explained Variance Cumulative 
2R  Factor Weights 

1 0.008 0.899 0.899 0.501 0.510 0.512 0.476 

2 0.001 0.065 0.964 0.416 0.257 0.138 -0.861 

3 0.000 0.024 0.987 -0.752 0.381 0.511 -0.167 

4 0.000 0.013 1.000 0.104 -0.727 0.677 -0.058 

 Maturity Portfolio 

 Eigenvalues Explained Variance Cumulative 
2R  Factor Weights 

1 0.006 0.863 0.863 0.478 0.502 0.510 0.509 

2 0.001 0.077 0.940 0.861 -0.131 -0.410 -0.269 

3 0.000 0.035 0.975 0.119 -0.820 0.160 0.537 

4 0.000 0.025 1.000 0.122 -0.242 0.739 -0.617 
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Table 6.5 Estimation results of the Orthogonal-GARCH model 

The table reports the estimation results of the O-GARCH model. The estimation is 

performed by the method of quasi maximum likelihood using the BGFS algorithm in Matlab 

7.8 software package. The sample period is from 3
rd

January 2000 to 31
st
 May 2007, a total of 

1933 observations. The numbers in parentheses are the t-stats. The GARCH model is given as: 

 2 2 2 2

1 1 2 1, ~ 0,t o t t t t          
 

where   
  is the conditional variance on day t. Additionally, the 1% and 5% critical values for 

Engle’s ARCH/GARCH test and Ljung-Box Q-test are for       6.634 and 3.841,        
23.209 and 18.307.  

 PC of the Rating Portfolio PC of Maturity Portfolio 

 Factor 1 Factor 2 Factor 1 Factor 2 

o  0 7.58*10
-05

 0.004 0 

 (0.000) (85.91) (1006) (0.000) 

1  
0.029 0.032 0.202 0.014 

 (6913) (279.16) (297.95) (5106) 

2  
0.971 0.968 0.798 0.986 

 (4260) (1959) (2077) (1389) 

Diagnostics: 

ARCH(1) 0.036 0.085 2.155 14.634 

ARCH(10) 0.748 0.521 3.525 11.679 

 

The estimation of the CC-GARCH and DCC-GARCH
37

 models was undertaken into 

two stages following Engle and Sheppard (2001) methodology. The first stage 

estimates the univariate GJR-GARCH specification for the changes in credit spreads 

and the second stage uses the transformed by their standard deviation residuals of the 

first stage to estimate the parameters of the dynamic correlation conditioned on the 

parameters estimated by the first stage. Table 6.6 presents the CC-GARCH and DCC-

GARCH estimated parameters. Panel A presents the estimated coefficients of the GJR-

GARCH. Panel B presents the coefficients of the conditional correlation estimated by 

the CC-GARCH specification. These coefficients are higher than those estimated by 

the unconditional correlation and are highly statistically significant. The conditional 

correlations are between 0.645 and 0.967, the largest is observed between the AA and 

A indices and the lowest between the 1-3 and 5-7 indices. Panel C presents the 

estimated coefficients of the DCC-GARCH model which are highly significant, 

suggesting that correlation is highly persistent for both European corporate changes in 

credit spread portfolios. Finally, Engle’s heteroskedasticity test and Ljung-Box 

                                                 
37

 The multivariate Normal distribution is applied in the estimation of the Multivariate GARCH models, 

since convergence issues arose when the multivariate Student t-distribution or Gram-Charlier expansion 

series were considered.  
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autocorrelation Q-test for one and ten lags reveal that the model is well specified as 

there is no presence of heteroskedasticity or autocorrelation.  

 

Table 6.6 Estimation results of the CC-GARCH and DCC-GARCH models 
The table reports the estimation results of the CC-GARCH and DCC-GARCH models. 
The estimation is performed by the method of quasi maximum likelihood using the BGFS 

algorithm in Matlab 7.8 software package. The sample period is from 3
rd

January 2000 to 31
st
 

May 2007, a total of 1933 observations. The numbers in parentheses are the t-stats.  Panel A: 

For the first stage estimation the GJR-GARCH model is given as: 

 , 0, 1, 1, ,

2 2 2

, 0, 1, 1, 2, 1, 3, 1, 1,

, ~ 0,

, 1,2,3,4

i t i i t i t i

i t i i t i i t i i t i t i

y iid

I i

   

       



   

  

    

t tε Η

 
where yt is the change in credit spreads,   

  is the conditional variance on day t, It-1 is an 

indicator function that takes value of 1 when the εt-1 is negative and 0 either wise and i, the 

different rating and maturity classes. Panel B: The CC-GARCH model is given as:  

t t tH = D RD
 

where  tD  is a NxN diagonal matrix of time varying standard deviations and R is the 

constant correlation matrix Panel C: The DCC-GARCH model is given as: 

 0 1 0 11        t t-1 t-1 t-1H H ε ε H

 Additionally, the 1% and 5% critical values for Engle’s ARCH/GARCH test and Ljung-Box 

Q-test are for       6.634 and 3.841,        23.209 and 18.307. The information criteria are 

calculated as follows: AIC = -2*LLF + 2*(Number of Parameters) and the BIC = -2*LLF + 

(Number of Parameters)*log(Number of Observations).  

Panel A: First Stage Univariate GJR-GARCH Estimation 

 
AAA AA A BBB 1-3 3-5 5-7 7-10 

0,i  0.000 -0.001 -0.001 -0.001 -3.4*10
-04

 1.9*10
-04

 -4.3*10
-04

 -2.7*10
-04

 

 
(-0.278) (-2.379) (-1.657) (-3.339) (-1.280) (0.947) (-3.374) (-1.533) 

1,i  -0.393 -0.415 -0.344 -0.178 -0.324 -0.430 -0.380 -0.396 

 
(-24.989) (-23.778) (-20.866) (-10.970) (-23.727) (-28.672) (-21.738) (-24.934) 

0,i  2.0*10
-07

 2.0*10
-07

 2.0*10
-07

 7.9*10
-07

 3.6*10
-07

 2.0*10
-07

 7.1*10
-07

 1.0*10
-07

 

 
(0.975) (0.987) (0.876) (2.390) (1.491) (3.541) (4.825) (4.939) 

1,i  0.009 0.035 0.038 0.081 0.074 0.039 0.160 0.148 

 
(9.574) (11.140) (12.614) (17.625) (18.339) (17.195) (15.112) (11.331) 

2,i  0.984 0.970 0.976 0.959 0.956 0.977 0.879 0.902 

 
(1187.454) (438.078) (526.761) (464.675) (519.831) (1013.956) (149.005) (136.059) 

3,i  0.012 -0.011 -0.029 -0.081 -0.060 -0.035 -0.078 -0.100 

 
(5.248) (-2.616) (-7.183) (-12.566) (-11.632) (-9.839) (-5.831) (-6.911) 

Table continues at the next page 
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Panel B: CC-GARCH Estimation 

Correlation Matrix, R, for the rating portfolio 

  
Indices AAA AA A BBB 

  

  
AAA 1.000 0.843 0.842 0.724 

  

    
(71.61) (83.47) (46.44) 

  

  
AA 

 
1.000 0.967 0.839 

  

     
(11644) (330.58) 

  

  
A 

  
1.000 0.864 

  

      
(438.14) 

  

  
BBB 

   
1.000 

  
Correlation Matrix, R, for the maturity portfolio 

  
Indices 1-3 3-5 5-7 7-10 

  

  
1-3 1.000 0.723 0.645 0.664 

  

    
(33.67) (18.23) (5.27) 

  

  
3-5 

 
1.000 0.805 0.742 

  

     
(145.90) (6.84) 

  

  
5-7 

  
1.000 0.792 

  

      
(9.53) 

  

  
7-10 

   
1.000 

  
Panel C: Second Stage DCC-GARCH Estimation 

0  0.055 
   

0.025 
   

 
(20.940) 

   
(30.003) 

   

1  0.834 
   

0.955 
   

 
(37.774) 

   
(51.413) 

   
Diagnostics 

        
ARCH(1) 0.027 0.018 0.008 0.744 0.472 0.052 0.003 0.205 

ARCH(10) 0.667 3.341 0.453 3.777 3.312 1.892 5.342 2.149 

LB Q test(1) 0.001 0.000 0.018 0.001 0.391 0.028 0.809 0.299 

LB Q test(10) 11.776 8.882 11.430 4.817 2.549 11.181 13.857 13.919 

 
CC-GARCH DCC-GARCH 

  
CC-GARCH DCC-GARCH 

  
Log Likelihood 19867 20318 

  
18653 19103 

  
AIC -39722 -40620 

  

-37294 -38190   
BIC -39714 -40616 

  

-37286 -38186   
 

 

Table 6.7 presents the Diagonal-BEKK estimation results. The coefficients of C, A 

and B vectors are highly significant except for the BBB, 5-7 and 7-10 of the C vector. 

This means that the covariance vector and in extention the correlation matrix is 

affected by the lagged squared errors – shocks and the lagged covariance vector. This 

result may provide possible insights regarding the effects of shocks on the long-term 

dynamics of correlation, which are of great interest in the macroeconomic 

environment.  
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Engle and Sheppard (2001) argue that while it is not possible to directly compare the 

dynamic and the constant conditional correlation multivariate models using the LR 

statistics, the information criteria can be deployed as a comparison measurement. 

According to the Akaike and Bayesian information criteria the Diagonal BEKK 

formulation is the best model to describe the correlation structure between the changes 

in credit spread indices. 

Table 6.7 Estimation results of Diagonal-BEKK model 
The table reports the estimation results of the Diagonal BEKK model. The estimation is 

performed by the method of quasi maximum likelihood using the BGFS algorithm in Matlab 7.8 

software package. The sample period is from 3
rd

January 2000 to 31
st
 May 2007, a total of 1933 

observations. The numbers in parentheses are the t-stats.  The t-stats reported are very sensitive to 

the software and the algorithm employed. The D-BEKK is given as: 

    
t t-1 t-1 t-1H = CC + A ε ε A +BH B  

The 1% and 5% critical values for Engle’s ARCH/GARCH test and Ljung-Box Q-test are for 

      6.634 and 3.841,        23.209 and 18.307. The information criteria are calculated as 

follows: AIC = -2*LLF + 2*(Number of Parameters) and the BIC = -2*LLF + (Number of 

Parameters)*log(Number of Observations). 
 

 
Rating Portfolio Maturity Portfolio 

 
AAA AA A BBB 1-3 3-5 5-7 7-10 

C 0.005 
   

0.002 
   

 
(11226) 

   
(1196) 

   

 
0.001 0.002 

  
0.001 0.001 

  

 
(2328) (3702) 

  
(297.024) (770.492) 

  

 
0.002 0.002 5.043*10

-5 

 
0.001 0.000 0.001 

 

 
(18740) (2472) (2076) 

 
(517.687) (-3.348) (212.535) 

 

 
0.002 0.002 0.001 -7.3*10

-8
 3.8*10

-5
 0.002 5.1*10

-5
 -1.2*10

-10
 

 
(2084) (7879) (2098) (-0.112) (7.800) (3333) (0.861) (0.000) 

A 0.275 
   

0.293 
   

 
(81.387) 

   
(498.016) 

   

  
0.270 

   
0.191 

  

  
(76.998) 

   
(797.408) 

  

   
0.328 

   
0.203 

 

   
(53.263) 

   
(1386.502) 

 

    
0.304 

   
0.216 

    
(72.263) 

   
(603.724) 

B 0.961 
   

0.961 
   

 
(337648) 

   
(1187796) 

   

  
0.951 

   
0.984 

  

  
(152614) 

   
(1320773) 

  

   
0.966 

   
0.981 

 

   
(529350) 

   
(4253782) 

 

    
0.959 

   
0.977 

    
(152289) 

   
(2906232) 

Diagnostics 
        

ARCH(1) 0.026 0.129 0.040 0.897 0.331 8.457 3.738 11.347 

ARCH(10) 0.598 2.086 0.494 2.377 2.847 5.082 6.956 21.621 

Log 

Likelihood 
20670 

   
19103 

   

AIC -41303 
   

-38868 
   

BIC -41203 
   

-38767 
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Figures 6.1 to 6.12 present the in-sample correlation dynamics between the different 

credit spread changes indices. The correlations for the OGARCH and Diagonal BEKK 

models are estimated at any time t by  , , , , ,covt ij t i t j t i t j     . Correlation estimates 

between the maturity indices appear to be more volatile compared to the correlation 

estimates of the rating indices. Overall, for the rating indices, correlation estimates are 

more erratic for the DCC-GARCH model followed by the Diagonal BEKK 

formulation. For the maturity indices most fluctuations in correlation are exhibited by 

the O-GARCH model, followed by the DCC-GARCH and Diagonal-BEKK. The O-

GARCH fairs good during the 2000 to 2005 period, which is a period of high 

correlation. However, the O-GARCH is unable to provide accurate correlation 

estimates during the lower correlation period, which is observed after the middle of 

2005. Alexander (2001) and can der Weide (2002) argue that the O-GARCH 

specification underestimates correlation when the data exhibits weak dependence.  

 

Friewald and Pichler (2008) argue that there is a direct relationship between Credit 

Default Swap spreads correlation and default correlation. Another branch of the 

literature finds that default correlation is directly linked to the business cycle and 

changes over time (see Giesecke, 2004 and Das et al. 2006). The estimated 

correlations presented in Figures 6.1 to 6.12 reveal that there may be a direct 

relationship between credit spread correlation and default correlation. During periods 

of market turbulence, when the economy is contracting and credit spreads widen, the 

correlation coefficients between credit spreads are high, suggesting higher default 

probabilities and correlation. However, correlation coefficients between credit spreads 

changes decline from 2005 up until 2007 when the market enters a more stable state 

and experiences a high economic growth, suggesting a decrease in default probabilities 

and correlation.  
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Figure 6.1 Presents the in-sample conditional correlation between AAA-AA Indices 

 

Figure 6.2 Presents the in-sample conditional correlation between AAA-A Indices 

 
Figure 6.3 Presents the in-sample conditional correlation between AAA-BBB Indices 

 

Figure 6.4 In-Sample Conditional Correlation between AA-A Indices 

 
Figure 6.5 Presents the in-sample conditional correlation between AA-BBB Indices 

 

Figure 6.6 Presents the in-sample conditional correlation between A-BBB Indices 
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Figure 6.7 Presents the in-sample conditional correlation between 1-3-3-5 Indices 

 

Figure 6.8 Presents the in-sample conditional correlation between 1-3-5-7 Indices 

 
Figure 6.9 Presents the in-sample conditional correlation between 1-3-7-10 Indices 

 

Figure 6.10 Presents the in-sample conditional correlation between 3-5-5-7 Indices 

 
Figure 6.11 In-Sample Conditional Correlation between 3-5-7-10 Indices 

 

Figure 6.12 In-Sample Conditional Correlation between 5-7-710 Indices 
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6.3.1 Value-at-Risk Estimation 

 

The performance of multivariate models in producing accurate VaR estimates for 

credit spread changes is examined using the minimum variance portfolio which is 

estimated by the forecasted variance-covariance matrix under each specification and 

two equally weighed portfolios, based on the rating and the maturity indices. The 

back-testing performance of different models is examined over the period from 1
st
 June 

2007 to 30
th

 April 2009 and the Christoffersen (1998) test for the conditional coverage 

is applied to examine the accuracy of these estimates.  The Value-at-Risk analysis 

focuses on the 1% 1-day VaR level, as it is the level used by Basel (2002) to evaluate 

models. Table 6.9 presents four statistics: percentage proportion of failures (PF%); and 

the unconditional coverage, independence and conditional coverage likelihood ratio 

tests for both minimum variance and equal weighted portfolios and for long and short 

positions.  

 

The minimum variance portfolio is of particular interest as the weights on the changes 

in credit spread indices are determined by the estimated variance-covariance matrix 

and the average minimum variance weights are presented in Table 6.8. The average 

weights show that all specifications attribute larger weights to the higher rating 

indices, and O-GARCH and CC-GARCH attribute larger weights to long-term 

maturity indices, while DCC-GARCH, Diagonal-BEKK and RiskMetrics attribute 

larger weights for the short- and long-term maturity indices.  

 

Table 6.8 Reports the average weights of the minimum variance portfolios for the period 

from 1
st
 June 2007 - 30

th
 April 2009 

 

Ratings Maturities 

 

AAA AA A BBB 1-3 3-5 5-7 7-10 

O-GARCH 0.478 0.484 0.006 0.032 0.120 0 0.002 0.878 

CC-GARCH 0.329 0.644 0.007 0.002 0.105 0 0.137 0.758 

DCC-GARCH 0.290 0.385 0.184 0.141 0.330 0.174 0.313 0.183 

D-BEKK 0.230 0.529 0.169 0.070 0.320 0.180 0.215 0.285 

RiskMetrics 0.387 0.382 0.121 0.111 0.388 0.204 0.190 0.218 

 

Starting with percentage proportion of failures for 1-day VaR estimates of long and 

short positions, it can be seen that the models of the minimum variance portfolio 

exhibit the lowest PF. This occurs because the VaR estimates are compared with the 

corresponding portfolios, for instance, the VaR estimates computed by the minimum 



 

138 

 

variance portfolios, are then compared with the returns of the minimum variance 

portfolios, whose overall variability is reduced compared to the equally weighted 

portfolios. Overall, the O-GARCH, CC-GARCH and Diagonal-BEKK exhibit the 

lowest PF for both long and short positions.   

 

The first likelihood ratio test proposed by Christoffersen (1998) is known as the test of 

unconditional coverage. This test is not rejected at a 5% significance level for either 

minimum variance rating or maturity portfolios for long positions. On the other hand, 

the test is rejected at a 5% significance level for both minimum variance and equally 

weighted portfolio for short positions, except for the models in the minimum variance 

rating portfolio, and Diagonal-BEKK in the equally weighted portfolios. The next test 

is the independence test of VaR estimates, which ignores the unconditional coverage 

and tests the clustering of VaR violations. The test is rejected at a 5% significance 

level for example for the O-GARCH and CC-GARCH models for the minimum 

variance rating portfolio for long positions. The independence test of VaR estimates 

indicates that the violations are clustered.  

 

A correct unconditional coverage may have limited accuracy conditionally, while the 

test of independence does not take into account correct coverage. Therefore, the 

conditional coverage likelihood ratio test is equivalent to testing the joint null 

hypothesis of first order Markov failure process. The conditional coverage likelihood 

test is rejected at a 5% significance level in the case of the DCC-GARCH model in the 

equally weighted maturity portfolio for long positions, and in minimum variance rating 

portfolio for short positions. Additionally, the conditional coverage likelihood test is 

rejected at a 5% significance level by the O-GARCH, CC-GARCH in the minimum 

variance maturity portfolio for long positions, O-GARCH and RiskMetrics in the 

equally weighted portfolios for short positions, and DCC-GARCH in the equally 

weighted maturity portfolio for short positions.  

 

Basel II groups models into three categories - green, yellow and red - depending on the 

number of 1% VaR violations. A model lies within the green limit when there is a 

99.99% probability that its estimated 1% VaR violations will fall within the theoretical 

number of VaR violations, within the yellow limit when there is more than 95% 

probability that its 1% VaR violation will fall within the theoretical (1%) number of 
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exceptions, and finally, a model is classified as red if there is less than 95% probability 

that the number of realised 1% VaR violations will exceed the number of theoretical 

VaR violations. Models whose %RF is below 1.732% 

)500/)99.0)(01.0(6449.101.0(  are in the green zone, models between 2.655% 

)500/)99.0)(01.0(7190.301.0(   and 1.732% are in the yellow zone and all the 

others lie in the red zone.  

 

According to Basel II, all the models lie within the green limit in the minimum 

variance and equally weighted portfolios for both long and short positions, with the 

exception of the DCC-GARCH model of the minimum variance maturity portfolio for 

long positions. Furthermore, all models of the minimum variance portfoliso and for 

short positions lie in the green limit, whereas the CC-GARCH and DCC-GARCH 

models as well as the DCC-GARCH and Diagonal-BEKK models of the equally 

weighted maturity portfolio for short positions lie in the yellow limit. Finally, in the 

red limit lie for short positions the O-GARCH and CC-GARCH of the minimum 

variance maturity portfolio, and O-GARCH and RiskMetrics of the equally weighted 

portfolios.  

 

The VaR loss function reported in Table 6.10 tests the ability of the VaR models to 

forecast the portfolio losses and the lowest the reported statistic the accurate the VaR 

model. The lowest statistic for both long and short positions and portfolios are reported 

for the RiskMetrics and DCC-GARCH models, followed by the CC-GARCH, O-

GARCH and D-BEKK. 

 

The back-testing exercise revealed mixed results regarding the appropriateness of the 

proposed models in VaR estimation. Although, the D-BEKK and DCC-GARCH pass 

Christoffersen’s (1998) and BASEL II tests for both long and short positions and  both 

portfolios, the VaR loss function reveals that the RiskMetrics is the model of choise in 

forecasting the losses of the portfolios. One possible reason for obtaining such results 

could be the choise of the multivariate distribution (i.e. the multivariate normal 

distribution, since neither the multivariate Student t-distribution nor the multivariate 

Gram-Charlier expansion series were able to converge during the recent financial 

crisis), which may not capture the series characterictics during the resent financial 

crisis.  
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Table 6.9 Reports the Value-at-Risk analytics for the long and short positions of 

the minimum variance and equally weighted portfolios 
The table reports the Christoffersen’s (1998) likelihood ratio test of the unconditional 

coverage, independence, and conditional coverage during the back-testing period from 1
st
 June 

2007 - 30
th
 April 2009, with a total of 500 observations. The two former tests are chi-square 

asymptotic with one degrees-of-freedom and the 1% and 5% critical values for χ
2
(1) are 6.634 

and 3.841. The latter is chi-square asymptotic with two degrees-of-freedom and the 1% and 

5% critical values for χ
2
(1) are 9.21 and 5.99. This table also reports the BASELL II model 

categorization. Models are grouped into three categories: green, yellow and red depending 

on the number of 1% VaR violations. The general formula for specifying the BASEL limits 

is defined as:                          , where     denotes the inverse of the standard 

normal cumulative distribution, and N the total number of forecasts.  
Long Positions 

Minimum Variance Portfolios 

 
PF% Basel LRUC LRIND LRCC 

  Rating Maturity Rating Maturity Rating Maturity Rating Maturity Rating Maturity 

O-GARCH 0.40% 1.60% Green Green 1.027 0.668 - 6.779 1.027 7.447 

CC-GARCH 0.40% 1.60% Green Green 1.027 0.663 - 6.784 1.027 7.447 

DCC-GARCH 1.00% 1.80% Green Yellow 0.000 1.128 - 0.927 0.000 2.054 

D-BEKK 0.80% 1.00% Green Green 0.096 0.001 - - 0.096 0.001 

RiskMetrics 1.40% 1.60% Green Green 0.309 0.663 1.344 1.118 1.652 1.780 

Equal Weighted Portfolios 

O-GARCH 1.40% 1.00% Green Green 0.309 0.000 1.344 - 1.652 0.000 

CC-GARCH 1.20% 0.80% Green Green 0.081 0.096 1.615 - 1.696 0.096 

DCC-GARCH 1.60% 1.00% Green Green 0.663 0.000 3.577 - 4.240 0.000 

D-BEKK 1.20% 0.80% Green Green 0.413 0.413 1.615 - - 0.413 

RiskMetrics 1.20% 0.60% Green Green 0.081 0.413 1.615 - 1.696 0.413 

Short Positions 

Minimum Variance Portfolios 

 
PF% Basel LRUC LRIND LRCC 

  Rating Maturity Rating Maturity Rating Maturity Rating Maturity Rating Maturity 

O-GARCH 0.60% 3.39% Green Red 0.413 7.775 - 15.354 0.413 7.775 

CC-GARCH 0.60% 3.79% Green Red 0.413 10.045 - 13.380 0.413 10.045 

DCC-GARCH 1.40% 1.60% Green Green 0.309 0.668 4.098 3.574 4.406 0.668 

D-BEKK 1.00% 2.59% Green Yellow 0.000 3.897 1.949 6.441 1.949 3.897 

RiskMetrics 0.60% 1.40% Green Green 0.413 0.309 - 4.098 0.413 4.406 

Equal Weighted Portfolios 

O-GARCH 3.79% 2.99% Red Red 10.020 5.698 3.661 1.399 13.682 7.097 

CC-GARCH 2.59% 2.20% Yellow Yellow 3.883 2.343 1.849 2.412 5.732 4.755 

DCC-GARCH 2.59% 2.79% Yellow Red 3.883 4.759 0.399 1.612 4.282 6.370 

D-BEKK 1.20% 1.80% Green Yellow 0.081 1.128 1.615 - 1.696 1.128 

RiskMetrics 2.79% 3.19% Red Red 4.759 6.698 3.514 4.871 8.282 11.568 

 

 

 

 

 

 

 

 

 

 

.  



 

141 

 

Table 6.10 VaR Loss Function 

The table reports the VaR loss function during the back-testing period from 1
st
 June 2007 - 

30
th
 April 2009, with a total of 500 observations. This loss functions measures the ability 

of the proposed VaR models to forecast the portfolio losses and it is given as: 

 
2

j i

i

VaR y
RMSE

N





 

where iy  are the portfolio changes in credit spreads (i.e. i = rating and maturity portfolios),  

jVaR  are the 99% VaR estimates of the different models  (i.e. j = O-GARCH, CC-GARCH, 

DCC-GARCH and D-BEKK) and N are the number of forecasted observations. 

 
O-GARCH CC-GARCH DCC-GARCH D-BEKK RiskMetrics 

 
Long Positions 

 
Rating Portfolios 

Equally Weighted 0.127 0.136 0.131 0.137 0.125 

Minimum Variance 0.109 0.114 0.094 0.101 0.095 

 
Maturity Portfolios 

Equally Weighted 0.097 0.098 0.095 0.105 0.095 

Minimum Variance 0.082 0.075 0.073 0.092 0.070 

 
Short Positions 

 
Rating Portfolios 

Equally Weighted 0.108 0.117 0.111 0.114 0.107 

Minimum Variance 0.101 0.109 0.087 0.095 0.088 

                                          Maturity Portfolios 

Equally Weighted 0.078 0.080 0.075 0.083 0.077 

Minimum Variance 0.076 0.070 0.067 0.085 0.070 

 

Figures 6.13, 6.14, 6.15 and 6.16 present the excessive losses for 99% VaR of both 

minimum variance and equally weighted portfolios for long and short positions over 

the back-testing period. The Value-at-Risk appear smoother for the Diagonal-BEKK 

for the equally weighted rating portfolio and DCC-GARCH for the equally weighted 

maturity portfolio, followed by the O-GARCH, while the CC-GARCH and DCC-

GARCH formulations, which exhibit the most erratic VaR estimates. The Value-at-

Risk estimates for the minimum variance portfolios appear more erratic for the O-

GARCH model, followed by the Diagonal-BEKK and CC-GARCH and DCC-GARCH 

models.  
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Figure 6.13 Presents the excessive losses for 99% VaR of the equally weighted 

rating portfolio 

 

Figure 6.14 Presents the excessive losses for 99% VaR of the equally weighted 

maturity portfolio 

 
Figure 6.15 Presents the excessive losses for 99% VaR of the minimum variance 

rating portfolio  

 

Figure 6.16 Presents the excessive losses for 99% VaR of the minimum variance 

maturity portfolio  
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6.4 Conclusions 

This chapter examined and compared the properties and performance of the different 

multivariate GARCH models in capturing the correlation between credit spread 

changes. The significance of modelling the time-varying correlation of credit spread 

changes has been illustrated in risk management, portfolio selection and hedging, as 

well as in the pricing and hedging of derivatives products (e.g. Mahoney, 1995, 

Lumsdaine, 2009, Friewarld and Pichler, 2008, and Roscovan, 2008). Furthermore, it 

was found that the correlation of credit spread changes is time-varying and affected by 

market conditions. During periods of market turbulence, when the economy is 

contracting and credit spreads widen, the correlation coefficients between credit spread 

changes are high, suggesting higher default probabilities and correlation, while when 

the market enters a more stable state, experiences a high economic growth, correlation 

coefficients between credit spread changes decline suggesting a decrease in default 

probabilities and correlation.  

 

This chapter also examined which formulation produced the best Value-at-Risk 

estimates based on risk management’s loss functions. The adequacy of the different 

formulations in computing VaR estimates is examined by the application of the 

Christoffersen (1998) test for the conditional coverage, BASEL II and an VaR loss 

function which measures how well the VaR model forecasts the changes in credit 

spreads portfolio losses. The empirical results reveal that Diagonal-BEKK out-

performs the other multivariate GARCH formulations in terms of in-sample goodness-

of-fit statistics and with DCC-GARCH and RiskMetrics passed Christoffersen’s 

conditional coverage test, showing good-out-of sample performance, for both 

minimum variance and equally weighted portfolios for long and short VaR positions.  

However, RiskMetrics according to the VaR loss function is the best model in 

forecasting the portfolios losses, compared with the other more complex formulations 

such as the DCC-GARCH and D-BEKK models. 
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Chapter 7  

Determinants of Credit Spreads of European Corporate Bond 

Indices  
 

 

 

 

 

 

 

 

7.1 Introduction 

Equation Chapter 7 Section 1 

Credit spreads are defined as the difference between the yield to maturity of a 

corporate bond and the yield to maturity of a comparable government bond. Credit 

spreads reflect the likelihood of failure of an issuer to honour his obligation. For 

example, during a contracting economy credit spreads widen, as the cash flows of an 

issuer are reduced, thus increasing the likelihood of him failing to honour his 

contractual obligations. The opposite relationship is true in an expanding economy. 

Credit spreads are an important financial variable, since they are used as indicators of 

economic progression, investment decisions, trading and hedging, as well as pricing 

credit derivatives. Their role has become increasingly significant in the European fixed 

income markets since the introduction of the Euro as a single currency. This 

introduction provided the means for a pan-European economic growth and cross-
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border development - a development that has reshaped the mechanics of the financial 

environment and has introduced a liberalization of the once fragmented capital 

movements and products under different currencies, and allowed the dispersion of 

credit risk over a wider base and in a more efficient manner (Fabozzi and Choudhry, 

2004). 

 

Over the last few years, a number of theoretical studies and empirical works have been 

devoted to the investigation of the behaviour of corporate bond prices as well as the 

determination of the drivers behind credit spreads. The theoretical literature of valuing 

risky claims can be separated into two categories:  structural and reduced form models. 

Structural models spring from the work of Black and Scholes (1973), who explain how 

equity owners hold a call option on the firm, and Merton (1973 and 1974), who 

extended the Black and Scholes framework. Merton (1974) assumes that the value of 

the firm follows a stochastic process and default occurs when the value of a firm falls 

below a predetermined boundary. On the other hand, reduced form models spring from 

the studies of Jarrow and Turnbull (1995) and Duffie and Singleton (1999), who treat 

default as a pure jump process following an intensity-based or a hazard-rate process.  

 

The determinants that influence the Black, Scholes and Mertons' formula
38

 are the risk-

free rate, the underlying value of the security and its variance. However, the yield 

curve slope is also considered as a determinant because it can be regarded as a proxy 

for the future interest rate movements. For instance, an increase in the risk-free rate 

could lead to a decrease in the default probability and, consequently, a reduction in the 

credit spreads. A steep yield curve may imply a future increase in the interest rates 

which in turn may lead to a tightening of credit spreads, while a declining yield curve 

slope may imply a deterioration in the overall economy which may induce a widening 

in credit spreads. Although both the firm’s value and volatility are unobservable 

quantities, the equity level and estimated (implied) volatility are used as their 

approximations. This means that a firm’s positive stock market return increases the 

firm’s values, reduces the firm’s leverage, and by extension the probability of default 

which in turn reduces credit spreads.  

 

                                                 
38

 Black and Scholes (1973) formula is C=f(s,x,σ,r,T) 
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In contrast to the characteristics of structural models, empirical studies find evidence 

of the opposite relationship between the risk-free interest rate and credit spreads. The 

studies of Delianedis and Geske (2001) and Dufresne, et al. (2001) are the first to 

approach the determinants of credit spreads in a more empirically-orientated 

framework, by using a variety of econometric models and a set of macroeconomic and 

financial factors as determinants. 

 

Christiansen (2000) found a negative correlation between credit spreads and the term 

structure in days not belonging to macroeconomic announcements. Delianedis and 

Geske (2001), Dufresne, et al. (2001), Brown (2001) and Huang (2003) used a variety 

of factors such as taxation, liquidity, recovery risk, VIX -an implied volatility index-, 

term structure, and other macroeconomic indicators as determinants. Studies such as 

those of Pedrosa and Roll (1998), Morris, Neale and Rolph (1998) employ 

cointegration techniques and all argue that there exists a systematic risk in credit 

spreads. Furthermore, Gray (1996), Christiansen (2002), Davies (2004), Perignon and 

Smith (2006), and Alexander and Kaesk (2007) employ regime switching techniques 

in modelling the determinants of credit spreads and credit default swap spreads and 

have found that regimes are able to explain the underlying dynamics. Specifically, 

Davies (2004) applies a regime switching model and finds that the risk-free rate has a 

negative effect only over low volatility periods and that other determinants have 

significant explanatory power for the short-term dynamic path of the corporate bond 

spread and, especially, on the high volatility regime.  

  

Table 7.1 summarizes the effect of the determinants on credit spreads. For instance, an 

increase in the risk-free rate increases the risk-neutral drift of the firm’s value process 

which decreases the default probability and consequently, lowers credit spreads (see 

Longstaff and Schwartz, 1995). 
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Table 7.1 Reports the expected sign of the explanatory variables based on the 

literature 

Variables Description Expected Sign 

tL  Change in the  level of the risk-free rate - 

tS  Change in the slope of yield curve - 

t  Return on the MSCI Berra Pan-Euro Index - 

tV  Change in the EURO STOXX 50 Volatility Index + 

tI  Change in the EuroMTS Inflation Index + 

tC  Change in the Goldman Sachs S&P Commodity Index + 

 

 

The aim of this chapter is to model the impact of the risk-free rate and other important 

determinants, such as inflation (measured as the EuroMTS inflation index) and 

commodity prices (measured as the Goldman Sachs Commodity Index), which have 

not been previously considered as macroeconomic drivers, on credit spreads. The 

economic interpretation regarding the inclusion of these two determinants is made on 

the basis that positive values of inflation and commodity prices may suggest 

deterioration in the wider macroeconomic outlook, which may affect the default 

probability and recovery rates, and as a result widen credit spreads.  

 

Since this study focuses on the impact of a set of determinants on European corpotate 

credit spreads, which raise questions regarding the optimality of a currency area in the 

Euro zone. The theory of Optimum Currency Area is developed by Mundell (1961), 

McKinnon (1963) among others which describes the cost-benefit of monetary 

integration and define the currency area as an optimal geographic domain of different 

currencies with fixed exchange rates.
39

 The overall results presented in this study will 

not be affected by assumptions of the Optimal Currency Area, since the proposed 

determinants are based on aggregate indices that capture the pan-European 

characteristics. 

 

                                                 
39

 There are cases when individual countries lose control of their monetary policy to be more susceptible 

to asymmetric shocks. The Optimum Currency Area is concerned with evaluating the asymmetrical 

shocks within optimal economic areas and evaluating the efficiency of possible absorption mechanisms 

such as: labour mobility, fiscal transfers among others (see Marjan, 2007, among others). 



 

148 

 

This chapter also aims to investigate the nonlinear effects of the determinants on credit 

spread changes and whether their influence varies during different market conditions. 

In order to achieve these goals, two statistical techniques, namely the Markov regime 

switching regression model and feed-forward neural network, are applied.  The 

Markov regime switching regression model is able to capture structural breaks in the 

time series, which may be due to changes in government policy, market 

microstructure, seasonality, and business cycles, to name but a few. This model springs 

from the work of Goldfield and Quandt (1973) and Hamilton (1989). They are the first 

to model the structural breaks and are extended by the studies of Hamilton (1993 and 

1994) and Hamilton and Susmel (1994), who propose that the influence of explanatory 

variables should be allowed to be state-dependent.  

 

Artificial neural networks
40

 (ANN) is a statistical approach which has not been 

previously applied in the modelling of the non-linear relationship between 

determinants and credit spreads. From the various neural network specifications the 

feed-forward neural networks have been successfully applied in finance (see Ripley, 

1993). Feed-forward networks with one hidden layer can approximate to any desired 

degree of accuracy any continuous nonlinear function, if a sufficiently large number of 

nodes are used (see Cybenko, 1989, Hornic, Stinchombe and White, 1989, Hornik and 

Stinchombe, 1992). Neural networks model nonlinear relationships between input and 

output layers, while the information moves in only one direction, from the input layer, 

through the hidden layer and, finally, to the output layer. Neural Networks are able to 

capture the non-linear relationship of the impact of the determinants on credit spreads 

and along with the Markov regime switching model could provide better out-of-sample 

predictions compared to a set of benchmark models such as OLS, ARIMA and VAR.  

 

The chapter is organised as follows: Sections 2 and 3 present the methodology and 

estimation results respectively, Section 4 denotes the forecasting performance and 

Section 5 concludes. 

 

 

                                                 
40

 Neural networks emerged in the late-1800s as an attempt to describe the processing behaviour of the 

human mind; since then they have been expanded and applied in many scientific areas with varying 

degrees of success (see Ripley, 1993 and Cheng and Titterington, 1994, for a list of financial 

applications). 
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7.2 Methodology 

 

Under the Markov regime switching approach proposed by Hamilton (1993, 1994) and 

Hamilton and Susmel (1994), the influence of explanatory variables can be allowed to 

be state-dependent with the universe of possible occurrences being categorised by ts  

different states (see Chapter 3 Section 2.4 for further information on Markov regime 

switching regression model). The model for the mean equation is described by the 

following equation: 

 
 

,0 ,1 1 ,2 ,3 ,4 ,5 ,6 ,7 ,

2

,

,

~ 0,

t t t t t t t t t

t t

t s s t s t s t s t s t s t s t s t

s t s

y a a y a L a S a RE a V a I a C

iid



 

               
(7.1) 

where 1ty   is the lagged change in credit spreads, tL  is the change in the  level of 

the risk-free rate which is the 5-year German government bond yield, tS  is the 

change in the slope of yield curve which is the difference between the 10-year and 2-

year yields on German government bonds, 
 tR  denotes the returns of the MSCI Berra 

Pan-Euro Index, tV  is the change in the EURO STOXX 50 Volatility Index, Δ tI
 
is 

the change in the EuroMTS Inflation Index and Δ tC  is the change of the Goldman 

Sachs S&P Commodity Index (refer to Chapter 4 Section 2.2 for a review of the 

determinants).
41

  

 

Another branch of the literature that models the non-linear dynamics of time series is 

the feed-forward neural networks. They do so by modelling the complex relationships 

between the input and output layers while the information moves in only one direction, 

from the input layer to the output layer. The application of the feed-forward neural 

network in forecasting credit spread changes entails three main steps. The first step 

involves specifying the input nodes (i.e. the determinants), the number of hidden layers 

and hidden nodes, and the output node (i.e. the credit spread changes). Determining the 

number of hidden layers follows the studies of Cybenko (1989), Hornic, Stinchombe 

and White (1989) and Hornik and Stinchombe (1992), who argue that one hidden layer 

can approximate to any desired degree of accuracy any continuous nonlinear function. 

                                                 
41

 Hausman’s test for endogeneity is not rejected for the null of no endogeneity at a 5% confidence level. 
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Furthermore, there have been some studies to suggest a number of rules
42

 that can be 

applied in order to determine the number of nodes in the hidden layer. Tan (1997) 

argues that it is very difficult to derive a good network topology from these rules. 

Therefore, the nodes in the hidden layer are determined in a heuristic approach. This 

means that a number of neural networks with different number of nodes are estimated 

and the best performing network among them is selected (see Priddy and Keller, 

2005).  

 

After specifying the input nodes, the nodes in the hidden layer and output nodes, the 

next step is to partition the input and output vector into two disjoint sets: a training, 

and a validation set. During the second step, the neural network is trained and the 

generalization ability of the network is tested in the validation set. The final step 

entails the estimation of mean forecasts for the back-testing period.  

 

7.3 Estimation Results 

 

Overall, the variables investigated in this study have some ability to explain changes in 

credit spread changes and the sign of the estimated coefficients generally agree with 

the existing literature and expected theory. The results of the linear regression analysis 

are presented in Table 7.2 and the determinants are able to explain from 11.8% up to 

26.4% of the changes in credit spreads, according to the R-bar squared goodness-of-fit 

statistic. Specifically, the lagged terms in credit spread changes are negative and highly 

significant, suggesting the existence of short-term mean reversion (see Bierens, Huang 

and Kong, 2003).  

 

The coeffiecients of the risk-free rate are negative and significant for all indices except 

for the model with the BBB rating. This means that an increase in the risk-free rate 

lowers the credit spread, a  result consistent with the empirical findings of Longstaff 

and Schwartz (1995), Dufresne, et al. (2001), Davies (2004) amongst others. In 

addition, the sensitivity of credit spreads to the risk-free rate increases as credit quality 

improves, a result similar to Dufresne, et al. (2001). The coeffiecients of the slope are 

                                                 
42

 For a complete list of the rules refer to Tan, C., (1997), “An Artificial Neural Network Primer with 

Financial Applications Examples in Financial Distress Prediction and Foreign Exchange Hybrid Trading 

System” Bond University, School of Information Technology, Australia.  
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positive and significant for the models of the rating indices and the short-term maturity 

(1-3) index, and negative and significant for the long-term (7-10) index. Although, the 

results differ from what is presented in the relevant theoretical literature, a number of 

empirical studies such as Dufresne, et al. (2001) and Davies (2004) have reported 

similar coefficients for the slope. However, the positive coefficient of slope can be 

interpreted as follows: a positive slope reflects future expectations that the economy 

will grow in the future, and this growth will be associated with a greater expectation 

that inflation will rise. Therefore investors demand a premium associated with the 

future uncertainty of the inflation’s movement and the risk imposed to the future value 

of cash flows (see also Risa, 2001 and Avramov, Jostova and Philipov, 2007 among 

others).   

 

The coeffiecients of the equity index are significant only for the models with the low 

rating (BBB) and low- to medium-term maturities (1-3, 3-5 and 5-7). The coefficients 

of the volatility index are positive and significant only for the models with ratings 

AAA, AA and A and long term maturity (7-10). Both of these results are consistent 

with the literature.  

The coeffiecients of the inflation index are positive, statistically and economically 

significant for all indices. This means that an increase in the inflation may increase the 

uncertainty of future market conditions and future value of cash flows. As uncertainty 

about the purchasing power increases and the real value of money and other monetary 

instruments decrease, these conditions adversely affect the expected recovery rate (see 

Altman and Kishore, 1996) increasing the default probability and, thus, inducing a 

widening in credit spreads. Finally, the coefficients of the commodity index are 

statistically and economically insignificant during the examined period.   

 

The model with one lag in credit spread changes exhibited autocorrelation according to 

the Breusch-Godfrey test and, therefore, a second lag in credit spread changes was 

introduced.  Consequently, after the introduction of the second lag, the model is well 

behaved according to both White’s (1980) and Breusch-Godfrey tests. White’s (1980) 

general test provides the necessary means to test for heteroskedasticity. The null 

hypothesis that errors are homoscedastic is not rejected at a 1% level for all indices, 

which means that the variance of the error terms is constant. The Breusch-Godfrey 

serial correlation test is a more general and robust test than the standard Durbin and 
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Watson statistic. The null hypothesis that there is no serial correlation of order three is 

marginally rejected only for the models with AAA and AA ratings. 

 

Before continuing to the Markov regime switching regression model, this study further 

investigates the linear impact of the determinants on credit changes over different time 

periods. Figures 4.6 and 4.7 presented in Chapter 4 illustrate the presence of two 

separate states during the in-sample period. The first one covers the period from 

03/01/2000 to 31/08/2005 and is characterized by high volatility, while the second one 

covers the period from 01/09/2005 to 29/05/2007 and is characterized by a lower 

volatility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

153 

 

Table 7.2 Reports the linear regression results for the period 03/01/2000 to 29/05/2007 

 
This table reports the estimation results of the linear regression for the period from 3rdJanuary 2000 to 31st May 

2007, a total of 1933 observations and the specification  is given as: 

 2

0 1 1 2 3 4 5 6 7 , ~ 0,t t t t t t t t t ty a a y a L a S a RE a V a I a C iid                   

where Δyt-1 is the lagged change in credit spreads, ΔLt is the change in the  level of the risk-free rate which is the 5-

year German government bond yield, ΔSt is the change in the slope of yield curve which is the difference between 

the 10-year and 2-year yields on German government bonds, REt denotes the returns of the MSCI Berra Pan-Euro 

Index, ΔVt is the change in the VSTOXX Index, ΔIt is the change in the EuroMTS Inflation Index and ΔCt is the 

change of the Goldman Sachs S&P Commodity Index.  

 

The numbers in parentheses are the t-stats and *,**,*** indicate the significance at the 10%, 5% and 1% levels. The 

F-statistic tests the null hypothesis that all coefficients, except the constant, are zero. The critical values of the F(8, 

1925) at 1% and 5% are 2.52 and 1.94. This null hypothesis is rejected, implying that the determinants are jointly 

significant. The White Heteroscedasticity, Breusch-Godfrey and ARCH tests are asymptotically
2 distributed 

under their respective null hypotheses. For the White test the degrees-of-freedom equal the number of slope 

coefficients excluding the constant. Thus the 1% and 5%  2 8 critical values are 20.09 and 15.50 respectively. 

For the Breusch-Godfrey the 1% and 5%  2 3  critical values are 11.34 and 7.81. The information criteria are 

calculated as follows: AIC = -2*LLF + 2*(Number of Parameters) and BIC = -2*LLF + (Number of 

Parameters)*log(Number of Observations). 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  -0.001 -0.001 -0.001 -0.001 -3.7*10
-04

 -1.9*10
-04

 -4.3*10
-04

 -3.6*10
-04

 

 
(-1.174) (-1.394) (-1.063) (-1.110) (-0.529) (-0.330) (-0.818) (-0.842) 

1ty   -0.523*** -0.582*** -0.517*** -0.242*** -0.345*** -0.504*** -0.489*** -0.544*** 

 
(-19.880) (-22.095) (-19.577) (-9.452) (-13.583) (-18.034) (-19.655) (-21.457) 

2ty   -0.149*** -0.173*** -0.116*** 0.025 -0.041* -0.145*** -0.131*** -0.179*** 

 
(-6.332) (-7.236) (-4.891) (1.102) (-1.786) (-6.269) (-5.697) (-7.748) 

tL  -0.076*** -0.110*** -0.099*** -0.001 -0.058** -0.147*** -0.063*** -0.080*** 

 
(-3.284) (-4.976) (-4.129) (-0.027) (-2.122) (-5.102) (-2.770) (-4.040) 

tS  0.204*** 0.245*** 0.241*** 0.149*** 0.110*** 0.003 -0.049* -0.069*** 

 
(7.225) (9.026) (8.106) (3.694) (3.223) (0.086) (-1.731) (-2.870) 

tRE  0.061 0.051 -0.146 -0.634*** -0.487*** -0.351*** -0.301*** -0.179** 

 
(0.591) (0.529) (-1.365) (-4.258) (-3.874) (-3.037) (-2.910) (-2.065) 

tV  0.003*** 0.003*** 0.003*** 0.003** 0.001 0.001 0.002** 0.002*** 

 
(3.493) (4.154) (3.380) (2.356) (1.465) (1.328) (2.043) (2.998) 

tI  0.016*** 0.011*** 0.013*** 0.022*** 0.019*** 0.009*** 0.012*** 0.010*** 

 
(5.418) (4.022) (4.409) (5.502) (5.640) (2.504) (4.228) (3.995) 

tC  -1.4*10
-04

 -8.1*10
-05

 -8.8*10
-05

 -7.3*10
-05

 -3.4*10
-05

 -1.8*10
-04

 -1.7*10
-04

 -1.5*10
-05

 

 
(-0.808) (-0.500) (-0.491) (-0.299) (-0.163) (-0.932) (-0.970) (-0.106) 

Diagnostics 

        R-bar 

squared 
0.237 0.260 0.232 0.118 0.149 0.207 0.234 0.264 

F-statistic 75.789 85.551 73.895 33.335 43.206 63.794 74.548 87.419 

White 8.654 9.186 7.976 5.283 5.489 6.914 7.861 7.384 

BG 11.703 15.176 2.296 1.136 0.510 1.748 5.756 6.641 

Log 3609 3664 3546 3096 3365 3410 3630 3912 

AIC -7201 -7310 -7074 -6174 -6712 -6802 -7242 -7807 

BIC -7189 -7298 -7062 -6163 -6701 -6791 -7230 -7795 
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Tables 7.3 and 7.4 present the linear regression results for the two sub-periods. For the 

first period from 03/01/2000 to 31/08/2005 the sign and significance of the estimated 

coefficients is similar to the whole in-sample period. Specifically, the estimated 

coefficients of the lagged terms in credit spread changes, the risk-free rate and inflation 

continue to be highly economically and statistically significant. The coeffiecients of 

the lagged credit spread changes are negative and significant, suggesting short-term 

mean reversion. The coefficients of the risk-free rate are negative and significant 

except for the model of the BBB index. This means that an increase in the risk-free 

rate increases the risk-neutral drift rate of the firm’s value process which in turn 

decreases the default probability and, therefore, lowers credit spreads. The coefficients 

of inflation are positive and significant, suggesting that an increase in inflation may 

have an adverse impact on the overall economy and could negatively affect an issuer’s 

ability to service his obligations resulting in increasing his default probabilities and 

leading to the widening of credit spreads.  

 

However, during the second sub-period where volatility of credit spreads is relatively 

low, the coefficients of determination of models (adjusted R-square), ranging between 

2.3% and 13.6%, indicate a low explanatory power. This means that changes in credit 

spread cannot be explained by the economic factors included in the model. This 

finding is in accordance with Alexander and Kaesk (2007) and Davies (2004) who 

argue that during high volatility periods the economic variables are able to explain a 

larger portion of the credit spread changes than during low ones. Finally, White’s 

heteroskedasticity test and the Breusch-Godrey autocorrelation test reveal that the error 

terms of all models are homoscedastic and do not present any serial correlation.  
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Table 7.3 Reports the linear regression results for the period 03/01/2000 to 

31/08/2005 

 
This table reports the estimation results of the linear regression for the period from 3

rd
January 2000 to 31

st
 

August 2007, a total of  1479 observations and the specification  is given as: 

 2

0 1 1 2 3 4 5 6 7 , ~ 0,t t t t t t t t t ty a a y a L a S a RE a V a I a C iid                   

where Δyt-1 is the lagged change in credit spreads, ΔLt is the change in the  level of the risk-free rate which 

is the 5-year German government bond yield, ΔSt is the change in the slope of yield curve which is the 

difference between the 10-year and 2-year yields on German government bonds, REt denotes the returns of 

the MSCI Berra Pan-Euro Index, ΔVt is the change in the VSTOXX Index, ΔIt is the change in the 

EuroMTS Inflation Index and ΔCt is the change of the Goldman Sachs S&P Commodity Index 

 

The numbers in parentheses are the t-stats and *,**,*** indicate the significance at the 10%, 5% and 1% 

levels. The F-statistic tests the null hypothesis that all coefficients, except the constant, are zero. The 

critical values of the F(8, 1471) at 1% and 5% are 2.65 and 2.02. The White Heteroskedasticity, Breusch-

Godfrey and ARCH tests are asymptotically 
2 distributed under their respective null hypotheses. For the 

White test the degrees-of-freedom equal the number of slope coefficients excluding the constant. Thus the 

1% and 5%  2 8 critical values are 20.09 and 15.50 respectively. For the Breusch-Godfrey the 1% and 

5%  2 3  critical values are 11.34 and 7.81. Finally, the information criteria are calculated as follows: 

AIC = -2*LLF + 2*(Number of Parameters) and BIC = -2*LLF + (Number of Parameters)*log(Number of 

Observations). 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  -0.001* -0.001* -0.001 -0.002 -0.001 -0.001 -0.001 -0.001* 

 
(-1.866) (-1.716) (-1.433) (-1.292) (-1.170) (-1.042) (-1.526) (-1.813) 

1ty   -0.553*** -0.590*** -0.524*** -0.241*** -0.344*** -0.513*** -0.494*** -0.558*** 

 
(-18.234) (-19.431) (-17.188) (-8.193) (-11.760) (-15.887) (-17.244) (-19.142) 

2ty   -0.161*** -0.173*** -0.114*** 0.027 -0.038 -0.148*** -0.131*** -0.181*** 

 
(-5.946) (-6.316) (-4.203) (1.019) (-1.428) (-5.553) (-4.977) (-6.858) 

tL  -0.097*** -0.120*** -0.109*** -0.001 -0.059** -0.164*** -0.073*** -0.095*** 

 
(-3.612) (-4.612) (-3.866) (-0.028) (-1.833) (-4.766) (-2.674) (-4.077) 

tS  0.195*** 0.235*** 0.229*** 0.135*** 0.112*** -0.009 -0.063* -0.084*** 

 
(6.010) (7.348) (6.535) (2.799) (2.749) (-0.232) (-1.867) (-2.950) 

tRE  0.086 0.113 -0.094 -0.634*** -0.493*** -0.339*** -0.274*** -0.149 

 
(0.734) (0.985) (-0.746) (-3.589) (-3.303) (-2.482) (-2.233) (-1.464) 

tV  0.003*** 0.004*** 0.003*** 0.003*** 0.002 0.001 0.002** 0.002*** 

 
(3.430) (4.039) (3.345) (2.276) (1.417) (1.345) (2.018) (2.802) 

tI  0.019*** 0.016*** 0.018*** 0.028*** 0.025*** 0.013*** 0.018*** 0.014*** 

 
(5.293) (4.422) (4.700) (5.428) (5.746) (2.879) (4.709) (4.445) 

tC  -1.6*10
-04

 -1.8*10
-04

 -1.6*10
-04

 -1.1*10
-04

 -8.7*10
-05

 -3.6*10
-04

 -3.1*10
-04

 -6.6*10
-05

 

 
(-0.641) (-0.757) (-0.609) (-0.283) (-0.279) (-1.254) (-1.184) (-0.306) 

Diagnostics 
        

R-bar 

squared 
0.262 0.272 0.245 0.128 0.160 0.216 0.246 0.280 

F-statistic 66.537 69.915 60.863 27.948 36.115 51.887 61.187 72.747 

White 6.881 6.290 5.289 4.573 4.092 4.721 5.886 5.217 

BG 9.201 10.304 1.193 0.875 0.492 1.304 3.627 4.123 

Log 2618 2631 2541 2190 2396 2428 2597 2820 

AIC -5217 -5244 -5064 -4363 -4775 -4837 -5175 -5623 

BIC -5207 -5234 -5053 -4352 -4764 -4827 -5165 -5612 
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Table 7.4 Reports the linear regression results for the period 01/09/2005 to 

29/05/2007 
 

This table reports the estimation results of the linear regression for the period from 1
rd

September 2005 to 

29
st
 April 2007, a total of  454 observations and the specification  is given as: 

 2

0 1 1 2 3 4 5 6 7 , ~ 0,t t t t t t t t t ty a a y a L a S a RE a V a I a C iid                   

where Δyt-1 is the lagged change in credit spreads, ΔLt is the change in the  level of the risk-free rate 

which is the 5-year German government bond yield, ΔSt is the change in the slope of yield curve which 

is the difference between the 10-year and 2-year yields on German government bonds, REt denotes the 

returns of the MSCI Berra Pan-Euro Index, ΔVt is the change in the VSTOXX Index, ΔIt is the change 

in the EuroMTS Inflation Index and ΔCt is the change of the Goldman Sachs S&P Commodity Index 

 

The numbers in parentheses are the t-stats and *,**,*** indicate the significance at the 10%, 5% and 1% 

levels. The F-statistic tests the null hypothesis that all coefficients, except the constant, are zero. The 

critical values of the F(7, 447) at 1% and 5% are 2.68 and 2.03. The White Heteroskedasticity, Breusch-

Godfrey and ARCH tests are asymptotically
2  distributed under their respective null hypotheses. For 

the White test the degrees-of-freedom equal the number of slope coefficients excluding the constant. 

Thus the 1% and 5%  2 7 critical values are 18.47 and 14.06 respectively. For the Breusch-Godfrey 

the 1% and 5%  2 2  critical values are 9.21 and 5.99. Finally, the information criteria are calculated 

as follows: AIC = -2*LLF + 2*(Number of Parameters) and BIC = -2*LLF + (Number of 

Parameters)*log(Number of Observations). 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  1.2*10
-04

 -3.7*10
-04

 -3.7*10
-04

 -5.6*10
-04

 2.6*10
-04

 5.1*10
-04

 4.7*10
-04

 6.6*10
-04

 

 
(0.165) (-0.876) (-0.778) (-0.966) (0.000) (1.592) (1.665) (1.898) 

1ty   -0.115*** -0.330*** -0.252*** -0.134*** -0.361 -0.386*** -0.267*** -0.150*** 

 
(-2.228) (-6.283) (-4.476) (-2.308) (0.050) (-7.990) (-5.686) (-3.083) 

tL  0.032 -0.006 0.004 -0.002 -0.024 -0.015 0.020 0.036** 

 
(0.952) (-0.259) (0.182) (-0.079) (0.022) (-0.794) (1.373) (2.213) 

tS  0.103** 0.178*** 0.163*** 0.127*** -0.025 -0.009 -0.021 -0.014 

 
(1.961) (5.165) (4.190) (2.904) (0.028) (-0.364) (-1.047) (-0.588) 

tRE  -0.115 -0.296** -0.348*** -0.374** -0.149 -0.284*** -0.296*** -0.177* 

 
(-0.590) (-2.380) (-2.590) (-2.459) (0.116) (-2.909) (-3.652) (-1.903) 

tV  -0.003* -0.002** -0.003** -0.003* -0.001 -0.002** -0.002** 0.000 

 
(-1.796) (-1.998) (-2.191) (-1.910) (0.001) (-2.201) (-2.415) (-0.289) 

tI  0.007** 0.004* 0.005** 0.005* 0.002 0.002 0.002 0.004*** 

 
(2.175) (1.937) (2.107) (1.880) (0.002) (0.974) (1.543) (2.689) 

tC  -1.6*10
-04

 -5.0*10
-05

 -1.1*10
-04

 -1.3*10
-04

 -2.0*10
-07

 3.4*10
-06

 -5.2*10
-05

 -1.5*10
-05

 

 
(-1.182) (-0.594) (-1.194) (-1.251) (0.000) (0.051) (-0.944) (-0.237) 

Diagnostics 
        

R-bar 

squared 
0.023 0.080 0.050 0.024 0.098 0.136 0.086 0.038 

F-statistic 2.546 6.618 4.398 2.575 7.998 11.156 7.105 3.563 

White 0.378 1.520 1.400 1.517 0.707 0.880 0.456 0.709 

BG 1.513 8.909 3.163 0.452 8.729 7.334 4.170 3.036 

Log 1205 1396 1370 1321 1426 1497 1596 1540 

AIC -2394 -2775 -2724 -2626 -2837 -2979 -3176 -3064 

BIC -2389 -2770 -2719 -2621 -2831 -2974 -3171 -3059 
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Table 7.5 presents the Markov regime switching [MRS] regression results. The 

annualized standard deviations reveal the presence of two regimes. The first regime 

corresponds to the low volatility period, and the second regime to high period of 

volatility. The highest annualized volatility is exhibited in the MRS model of the BBB 

index with a value of 0.804 and the lowest in the MRS model of the 3-5 index with a 

value of 0.049, followed by the model of the AAA rating with a value of 0.050. The 

average probabilities over the sample period suggest that the process of the credit 

spread changes spends on average more time in the high volatility regime than in the 

low volatility. The unconditional probabilities are large for both regimes, for example 

for the AAA index the p11 is 0.977 and p22 is 0.993. Similar results are presented in 

Alexander and Kaesk (2007) and occur because of persistent volatility in both regimes.  

 

The Markov regime switching regression model reveals that the variables are regime 

switching and are able to explain a larger portion of the changes in credit spreads, 

compared with the linear models discussed previously. The highest adjusted R
2
 is 

observed for the model of the AA index with a value of 39.4% followed by the model 

of the AAA with a value of 35.9%, while the lowest is seen for the model of the BBB 

index value of 26.5%. Overall, the sign of the estimated coefficients agrees with the 

literature, empirical studies and suggested theory. However, during the low volatility 

regime, the estimated coefficients have a weak statistical and economic significance. 

This finding is in accordance with Davies (2004) and Alexander and Kaesk (2007), 

who find that only one regime plays a significant role. 

 

In the first regime, the estimated coefficients of the lagged credit spread changes are 

positive and significant for the models of the low rating index (BBB). The estimated 

coefficients of the risk-free rate are insignificant for all indices, while the estimated 

coefficients of the slope are positive and significant only for the model of the A and 

BBB rating indices. The estimated coefficients of the equity, volatility and inflation are 

insignificant for all indices. The estimated coefficients of the commodities are negative 

and significant only for the model of the BBB index.   
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In the second regime, the estimated coefficients of the lagged credit spread changes 

and risk-free rate are negative and significant for all models. This result is new to the 

literature, as Davies (2004) finds that the level is negative and significant only during 

the low volatility regime and low ratings. The estimated coefficients of the slope are 

positive and significant for the models with the higher ratings (AAA,AA, A and BBB) 

and low-term maturity (1-3) and negative and significant for the models with the 

medium to long-term maturity indices (3-5, 5-7 and 7-10). The estimated coefficients 

of equity are negative and significant only for the models of the BBB, 1-3 and 7-10 

indices. The estimated coefficients of volatility are positive and significant for the 

models of the AAA, A and 7-10 indices. The estimated coefficients of inflation are 

positive and significant for all models and the coefficients of commodity are 

insignificant. This means that during the high volatility period an increase in inflation 

may increase the uncertainty of future market conditions and the future value of cash 

flows which adversely affects the expected recovery, thus increasing the default 

probability and inducing a widening in credit spreads. 

 

Engle’s heteroskedasticity test and Ljung-Box autocorrelation Q-test reveal that the 

error terms are homoscedastic and do not present any degree of autocorrelation. 

Finally, Figures 7.2 and 7.3 present the smooth state probabilities of the Markov 

regime switching models of the AAA and 1-3 indices. They reveal that during the 

period from 2000 to the end of 2005 the credit spread changes are characterized by 

high volatility while during the period from 2006 to 2007, the credit spreads are 

characterized by low volatility.  
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Table 7.5 Reports the estimation results of the Markov Regime Switching Model 

[MRS] 
 

This table reports the estimation results of the Markov regime switching regression model for the period 

from 3
rd

January 2000 to 31
st
 May 2007, a total of 1933 observations and the specification  is given as: 

 2

,0 ,1 1 ,2 ,3 ,4 ,5 ,6 ,7 , ,, ~ 0,
t t t t t t t t t t tt s s t s t s t s t s t s t s t s t s t sy a a y a L a S a RE a V a I a C iid                   

where Δyt-1 is the lagged change in credit spreads, ΔLt is the change in the  level of the risk-free rate which 

is the 5-year German government bond yield, ΔSt is the change in the slope of yield curve which is the 

difference between the 10-year and 2-year yields on German government bonds, REt denotes the returns of 

the MSCI Berra Pan-Euro Index, ΔVt is the change in the VSTOXX Index, ΔIt is the change in the 

EuroMTS Inflation Index,  ΔCt is the change of the Goldman Sachs S&P Commodity Index and st the 

state. 

 

The numbers in parentheses are the t-stats and *,**,*** indicate the significance at the 10%, 5% and 1% 

levels. The probabilities (regime 1 and regime 2) are the diagonal elements of the unconditional 

probability matrix (for further information refer to Chapter 3 Sections 2.4 and 3.4). APR1 and APR2 refer 

to the average probabilities in being in regime 1 and regime 2, respectively. The 1% and 5% critical values 

for Engle’s ARCH/GARCH test and Ljung-Box Q-test are for  2 1  6.634 and 3.841,  2 10  23.209 

and 18.307.  Finally, the information criteria are calculated as follows: AIC = -2*LLF + 2*(Number of 

Parameters) and BIC = -2*LLF + (Number of Parameters)*log(Number of Observations). 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  
        

Regime 1 1.5*10
-04

 1.6*10
-04

 4.2*10
-04

 4.7*10
-04

 6.2*10
-04

 3.4*10
-04

 7.7*10
-04

 5.0*10
-05

 

 
(0.540) (0.114) (0.685) (0.182) (0.028) (0.300) (0.172) (0.419) 

Regime 2 -0.002* -0.002 -0.002** -0.002*** -0.001 -0.002 -0.002 -0.001 

 
(-1.872) (-0.049) (-2.077) (-5.319) (-0.065) (-0.033) (-0.468) (-0.514) 

1ty   

        Regime 1 -0.001 0.005 0.037 0.064*** -0.045 -0.009 0.064 0.095 

 
(-0.055) (0.039) (0.849) (2.264) (-0.212) (-0.178) (0.265) (0.029) 

Regime 2 -0.220*** -0.230 -0.200*** -0.059*** -0.109 -0.105** -0.260*** -0.260*** 

 
(-5.417) (-1.131) (-12.594) (-13.458) (-0.694) (-1.794) (-5.654) (-7.783) 

tL  

        Regime 1 -0.041 -0.047 -0.041 -0.079 -0.131 -0.067 0.026 0.014 

 
(-0.053) (-0.005) (-0.368) (-0.517) (-1.244) (-1.019) (0.435) (0.574) 

Regime 2 -0.330*** -0.326*** -0.339*** -0.416*** -0.414*** -0.602*** -0.272*** -0.266*** 

 
(-14.587) (-3.759) (-18.693) (-3.056) (-12.246) (-17.117) (-9.657) (-5.622) 

tS  

        Regime 1 0.301 0.432 0.451 0.445 -0.068 -0.097 -0.092 -0.094 

 
(1.395) (2.627) (2.445) (3.336) (-0.092) (-0.616) (-0.367) (-0.586) 

Regime 2 0.314 0.377 0.380 0.338 0.108 -0.049 -0.047 -0.167 

 
(15.423) (0.928) (4.232) (20.498) (3.334) (-0.297) (-0.131) (-6.315) 

tRE  

        Regime 1 -0.060 -0.112 -0.191 -0.208 -0.043 -0.051 -0.104 -0.153 

 
(-0.544) (-0.292) (-0.304) (-1.314) (-0.217) (-0.146) (-0.098) (-0.432) 

Regime 2 0.068** 0.048 -0.117 -0.496 -0.382*** -0.240 -0.232 -0.113** 

 
(2.206) (0.035) (-1.366) (-1.428) (-6.033) (-0.338) (-0.892) (-2.041) 

tV  

        Regime 1 -7.4*10
-06

 -0.001 -0.001 -0.001** 7.2E-05 -4.4*10
-05

 -1.9*10
-04

 -4.6*10
-04

 

 
(-0.037) (-0.482) (-0.771) (-1.827) (0.071) (-0.198) (-0.077) (-0.016) 

Regime 2 0.002*** 0.002 0.002*** 0.002 0.001 0.001 0.001 0.002* 
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(8.690) (0.402) (3.598) (0.164) (1.028) (0.795) (0.113) (1.702) 

Table continues at the next page
 

                                                                        
tI
 

        Regime 1 -1.2*10
-04

 -1.6*10
-04

 4.0*10
-05

 0.001 -3.5*10
-04

 -0.001 -7.3*10
-05

 3.5*10
-05

 

 
(-0.064) (-0.005) (0.089) (0.421) (-0.667) (-0.027) (-0.037) (0.014) 

Regime 2 0.024*** 0.021 0.023*** 0.018*** 0.019*** 0.012*** 0.020*** 0.018*** 

 
(4.741) (0.729) (4.265) (25.539) (4.400) (2.693) (2.628) (4.201) 

tC  

        Regime 1 -2.7*10
-05

 -2.9*10
-05

 -1.6E-05 -4.3*10
-05

*** -1.2*10
-05

 -2.4*10
-05

 -3.3*10
-05

 1.6*10
-05

 

 
(-0.889) (-0.188) (-0.988) (-3.953) (-0.144) (-1.311) (-0.644) (1.255) 

Regime 2 -2.6*10
-04

*** -1.3*10
-04

 -6.6*10
-05

 -1.4*10
-04

 -9.5*10
-05

 -3.0*10
-04

 -1.9*10
-04

 -4.2*10
-05

 

 
(-6.774) (-0.033) (-0.149) (-0.272) (-0.280) (-0.655) (-0.092) (-0.351) 

Diagnostics 
        

Annualised SD 
        

Regime 1 0.050 0.051 0.069 0.099 0.065 0.049 0.053 0.056 

Regime 2 0.620 0.595 0.630 0.804 0.712 0.647 0.650 0.551 

Probabilities 
        

Regime 1 0.977 0.964 0.979 0.932 0.936 0.921 0.994 0.984 

Regime 2 0.993 0.915 0.982 0.901 0.976 0.976 0.815 0.955 

APR1 0.317 0.287 0.291 0.301 0.365 0.328 0.226 0.213 

APR2 0.683 0.713 0.709 0.699 0.635 0.672 0.775 0.787 

R-bar 

squared 
0.359 0.394 0.376 0.265 0.276 0.423 0.267 0.307 

ARCH (1) 0.001 0.002 0.001 0.015 0.007 0.001 0.055 0.003 

ARCH (10) 0.009 0.018 0.005 0.151 0.094 0.009 0.692 0.032 

LB Q test (1) 0.000 0.011 0.001 0.007 0.001 0.010 0.000 0.000 

LB Q test (10) 2.789 0.409 0.005 0.144 5.391 0.035 6.612 0.221 

Log Likelihood 4562 4613 4419 3901 4283 4532 4470 4621 

AIC -9094 -9203 -8821 -7787 -8542 -9036 -8934 -9223 

BIC -9074 -9182 -8801 -7766 -8521 -9016 -8913 -9202 
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Figure 7.1 Presents the first difference in credit spreads and the smoothed state 

probabilities for the AAA index 
Panel A: Credit spread changes of the AAA index 

 
Panel B: Smoothed state probabilities of the first regime 

 
 

 

 
Figure 7.2 Presents the first difference in credit spreads and the smoothed state 

probabilities for the 1-3 index 
Panel A: Credit spread changes of the 1-3 index

 
Panel B: Smoothed state probabilities of the first regime 
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As described in Chapter 3 Section 2.5, there are three main steps in forecasting credit 

spread changes using the feed-forward neural network. In the first step the input nodes 

(i.e. the determinants), the number of nodes in the hidden layer, and the output node 

(i.e. the credit spread changes) are specified. The number of nodes in the hidden layer 

is determined by estimating a number of neural networks with different number of 

nodes and the best performing network among them is selected. The selection of the 

nodes is based on the estimation of the root mean square error (RMSE) for the training 

and validation sets
43

 and the results are presented in Table 7.6. The period the test is 

performed is from 03/01/2000 to 31/05/2007, with a total of 1933 observations, and the 

size of training and validations are 1450 and 483 observations, respectivelly.  

 

It is found that 25 nodes for the majority of the indices in the hidden layer minimize 

the root mean square error in the training and validation sets. After specifying the input 

nodes, the nodes in the hidden layer and output nodes, which lead to a 8-25-1 feed-

forward neural network, the next step is to partition the input and output vector into 

two disjoint sets: training, and validation test. During the second step the neural 

network is trained and the generalization ability of the network is tested in the 

validation set, and the final step estimates the mean forecasts for the back-testing 

period.  

 

Table 7.6 Reports the root mean square error for the training and validation sets for 

different number of nodes in the hidden layer 

Nodes AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

Training Set 

5 0.043 0.041 0.045 0.057 0.049 0.048 0.043 0.037 

10 0.042 0.042 0.048 0.064 0.047 0.047 0.043 0.037 

15 0.042 0.043 0.044 0.054 0.047 0.048 0.042 0.036 

20 0.042 0.042 0.045 0.055 0.048 0.050 0.042 0.036 

25 0.041 0.041 0.044 0.053 0.046 0.047 0.042 0.036 

30 0.044 0.041 0.051 0.056 0.049 0.046 0.041 0.036 

35 0.041 0.041 0.043 0.054 0.050 0.047 0.044 0.037 

40 0.041 0.041 0.044 0.052 0.057 0.047 0.041 0.036 

45 0.041 0.041 0.047 0.056 0.050 0.047 0.044 0.036 

Table continues at the next page 

 
Validation Set 

                                                 
43

 The test set in this study is not applied in the conventional  NN fitting approach, but it is used to 

forecast mean estimates given the information at time t.  
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5 0.019 0.014 0.015 0.016 0.012 0.012 0.012 0.011 

10 0.019 0.015 0.016 0.016 0.013 0.013 0.011 0.012 

15 0.020 0.015 0.016 0.015 0.012 0.013 0.012 0.012 

20 0.020 0.015 0.016 0.020 0.013 0.014 0.012 0.012 

25 0.019 0.015 0.015 0.015 0.012 0.012 0.011 0.012 

30 0.019 0.015 0.016 0.017 0.014 0.014 0.011 0.012 

35 0.019 0.015 0.015 0.016 0.015 0.012 0.012 0.012 

40 0.019 0.016 0.014 0.016 0.014 0.013 0.012 0.012 

45 0.019 0.015 0.015 0.015 0.014 0.013 0.012 0.012 

 

The final models to be examined are the ARIMA(1,1) and VAR(1) which are 

considered as the benchmark models. These models are considered as the base models 

since they capture the dynamic structure of a financial time series, and are not 

designed to capture the influence of the different determinants of credit spread 

changes. Table 7.7 reports the estimation results of the ARIMA(1,1) model; whereas 

Table 7.8 reports the results of the VAR(1) model.  

 

Table 7.7 Estimation results of the ARIMA(1,1) 

This table reports the estimation results of the ARIMA(1,1) for the period from 3
rd

January 2000 to 31
st
 May 2007, 

a total of 1933 observations and the specification  is given as: 

 2

12110 ,0~,  Nayaay ttttt    

where yt are the changes in credit spreads.  The numbers in parentheses are the t-stats. The information criteria are 

calculated as follows: AIC = -2*LLF + 2*(Number of Parameters) and BIC = -2*LLF + (Number of 

Parameters)*log(Number of Observations). 

 AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

0a  -2*10
-05

 -5*10
-05

 -3*10
-05

 -7*10
-05

 1*10
-05

 -4*10
-05

 -1*10
-05

 -4*10
-05

 

 (-0.599) (-0948) (-0.534) (-0.541) (0.116) (-0.735) (-0.218) (-0.102) 

1a  0.009 -0.060 -0.155 -0.346 -0.125 -0.065 -0.008 -0.032 

 (0.261) (-1.607) (-3.557) (-4.125) (-1.952) (-1.637) (-2.213) (-0.959) 

2a  -0.462 -0.391 -0.239 0.163 -0.145 -0.339 -0.379 -0.472 

 (-13.183) (-10.761) (-5.379) (1.934) (-2.323) (-8.865) (-10.606) (-14.852) 

Diagnostics         

LogLikelihood 3529 3557 3435 3011 3281 3316 3558 3836 

AIC -3192 -3248 -3004 -2156 -2696 -2767 -3249 -3805 

BIC -4934 -4991 -4747 -3898 -4439 -4509 -4991 -5547 

 

Table 7.8 reveals a feedback relationship between credit spread changes, according to 

the coefficients of the A matrix. For example, the coefficient 1,2 0.243a  
 
expresses 

the conditional effect of , 1AA ty   on ,AAA ty  given  , 1 , 1 , 1, ,AAA t A t BBB ty y y  
. The coefficient 



 

164 

 

1,2 0.243 0a     in the first equation and the coefficient 
2,1a is statistically 

insignificant in the second equation, indicating the existence of an unidirectional 

relationship from the AAA index to the AA index. Similar inferences can be made for 

all the indices.  

 

Table 7.8 Estimation results of the Vector Autoregressive model VAR(1)  
 

This table reports the estimation results of the VAR(1) for the period from 3
rd

January 2000 to 31
st
 May 

2007, a total of 1933 observations and the specification  is given as: 

 , ~ 0,Nt t-1 t t ty = C+ Ay +ε ε H  

where yt are the changes in credit spreads.  The numbers in parentheses are the t-stats. The information 

criteria are calculated as follows: AIC = -2*LLF + 2*(Number of Parameters) and BIC = -2*LLF + 

(Number of Parameters)*log(Number of Observations). 
Rating credit spread changes 

 C , 1AAA ty 
 

, 1AA ty 
 

, 1A ty 
 

, 1BBB ty 
 

,AAA ty  0.001 0.122 -0.243 -0.022 -0.074 

 (0.001) (3.574) (-3.598) (-0.319) (-2.162) 

,AA ty  0.001 -0.022 -0.314 0.166 -0.063 

 (0.001) (-0.801) (-5.854) (2.999) (-2.294) 

,A ty  0.002 -0.026 -0.432 0.246 -0.009 

 (0.001 (-0.878) (-7.390) (4.059) (-0.293) 

,BBB ty  0.002 -0.084 -0.598 0.369 0.098 

 (0.001) (-2.543) (-9.158) (5.462) (2.931) 

Diagnostics      

Log 

Likelihood 
20774     

AIC -41539     
BIC -41516     

Maturity credit spread changes 

 C 1 3, 1ty  
 

3 5, 1ty  
 

5 7, 1ty  
 7 10, 1ty    

1 3,ty   0.002 0.002 0.012 -0.136 -0.102 

 (0.001) (0.050) (0.269) (-2.533) (-1.946) 

3 5,ty   0.002 0.149 -0.241 -0.038 -0.116 

 (0.001) (4.620) (-5.470) (-0.717) (-2.250) 

5 7,ty   0.001 0.084 0.009 -0.298 -0.021 

 (0.001) (2.832) (0.228) (-6.164) (-0.448)) 

7 10,ty   0.002 0.135 -0.022 -0.038 -0.304 

 (0.001) (4.960) (-0.583) (-0.849) (-6.989) 

Diagnostics      

Log Likelihood 22054     

AIC -44100     

BIC -44077     
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7.4 Forecasting Performance 

 

The performance of the different models in capturing the market dynamics of the 

credit spread changes is assessed by the different mean forecast metrics. In order to 

forecast the credit spreads the conditional expectation of its future value needs to be 

estimated by: 

  1 ,0 ,1 1 ,2 1 ,3 1 ,4 1 ,5 1 ,6 1 ,7 1 , 1|
t t t t t t t t tt t s s t s t s t s t s t s t s t s tE y a a y a L a S a RE a V a I a C                          (7.2) 

The accuracy of out-of-sample mean forecasts will be assessed by the mean squared 

errors (MSE), mean absolute error (MAE), Theil’s U-Statistic (1966), Root mean 

square error (RMSE) and the percentage correct sign predictions (PCSP). The mean 

absolute percentage error (MAPE) and adjusted mean absolute percentage error 

(AMAPE) are not reliable in the case of credit spreads, as the absolute values in some 

indices are less than one. The lowest the values of the MSE, MAE and RMSE the more 

accurate are the predictions of the different models. In addition, Theil’s U- Statistic is 

bounded between zero and one. The more the statistic approaches zero, the greater the 

model’s forecasting accuracy. The correct sign prediction measure evaluates a model’s 

ability to accurately forecast the sign of the future return series. 

 

The different criteria are given as: 

  
2

,

1

1 n

t s t s

t

MSE y y
n





   (7.3) 

 
,

1

1 n

t s t s

t

MAE y y
n





   (7.4) 

 
 

2

,t s t sy y
RMSE

n

 



 (7.5) 

 

 

   

2

,

1

2 2

,

1 1

1

1 1

n

t s t s

t

n n

t s t s

t t

y y
n

U

y y
n n







 









 

 (7.6) 

 
1

,

1
,

1, 0

0,

n

t s

t

t s t s

t s

PCSP z
n

y y
z

otherwise












 



 (7.7) 
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The out-of-sample forecast exercise is performed over the period from 1
st
 June 2007 to 

30
th

 April 2009 and the estimation returns of the different measures and for the 

following models: Ordinary Least Square (OLS); ARIMA(1,1); VAR(1); Markov 

Regime Switching Model (MRS); and Neural Networks (NN), are reported in Table 

7.8. 

 

The mean square error reveals that the feed-forward neural network fares the best for 

the AAA, A, AA, BBB, 1-3 and 7-10 indices, while the Markov regime switching 

model out-performs the other models for the 3-5 and 5-7 models, followed by 

ARIMA(1,1), OLS and VAR(1). The mean absolute error shows that feed-forward 

neural network out-performs the other models in the AAA, AA, A, BBB and 3-5 and 

5-7 indices, followed by the Markov regime switching model ARIMA(1,1), OLS and 

VAR(1). The root mean square error statistic reveals the feed-forward neural network 

to out-perform the other formulations in the AAA, AA, A, BBB, 1-3, and 7-10 indices, 

followed by the Markov regime switching model for the 3-5 and 5-7 indices, the 

ARIMA(1,1), OLS and VAR(1). The Theil’s U-Statistic is bounded between zero and 

one and the more the statistic approaches zero, the greater the model’s forecasting 

accuracy. This test reveals that the feed-forward neural network out-performs the other 

models in all the indices, followed by the Markov regime switching model except for 

the AAA index where the OLS fares betters, followed by the ARIMA(1,1) and 

VAR(1). The percentage correct sign prediction shows that the feed-forward neural 

network out-performs all other specification except for the 1-3 maturity index where 

the Markov regime switching model fares better, both of these models are able to 

predict the correct sign in some of the indices up to 65% of the time, followed by the 

OLS, ARIMA(1,1) and VAR(1).  

 

According to all loss functions the feed-forward neural network followed by the 

Markov regime switching model, estimate the most accurate out-of-sample mean 

forecasts. The poor performance of the OLS, ARIMA(1,1) and VAR(1) models may 

be attributed to the models’ lack of capturing the determinants’  impact on credit 

spreads during the credit crisis period.  
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Table 7.9 Estimation results of the different forecasting loss functions 

 
The table reports the mean square error (MSE), mean absolute error (MAE), root mean square 

error (RMSE), Theil's U-Statistic and percentage correct sign predictions (PCSP). The back-

testing sample period is from 1
st
 June 2007 - 30

th
 April 2009, a total of 500 observations. The 

rankings of the forecast statistics given an index are denoted as (A) for the best and (E) for the 

worst. 

Mean square error 

 
2

,

1

1 n

t s t s

t

MSE y y
n





   

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

OLS 0.0074 (D) 0.0025 (D) 0.0036 (D) 0.0029 (D) 0.0020 (D) 0.0018 (D) 0.0018 (C) 0.0022 (C) 

ARIMA(1,1

) 
0.0074 (C) 0.0024 (C) 0.0034 (C) 0.0028 (C) 0.0020 (C) 0.0018 (C) 0.0018 (D) 0.0023 (E) 

VAR(1) 0.0076 (E) 0.0027 (E) 0.0037 (E) 0.0035 (E) 0.0024 (E) 0.0019 (E) 0.0020 (E) 0.0022 (D) 

MRS 0.0067 (B) 0.0023 (B) 0.0028 (B) 0.0025 (B) 0.0017 (B) 0.0014 (A) 0.0013 (A) 0.0022 (B) 

NN 0.0054 (A) 0.0020 (A) 0.0024 (A) 0.0023 (A) 0.0013 (A) 0.0016 (B) 0.0013 (B) 0.0021 (A) 

Mean absolute error 

,

1

1 n

t s t s

t

MAE y y
n





   

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

OLS 0.038 (D) 0.031 (D) 0.037 (D) 0.034 (D) 0.026 (D) 0.027 (D) 0.027 (C) 0.030 (C) 

ARIMA(1,1

) 
0.038 (C) 0.030 (C) 0.036 (C) 0.033 (C) 0.025 (C) 0.027 (C) 0.028 (D) 0.031 (E) 

VAR(1) 0.039 (E) 0.031 (E) 0.037 (E) 0.037 (E) 0.028 (E) 0.028 (E) 0.028 (E) 0.030 (D) 

MRS 0.035 (B) 0.031 (B) 0.031 (A) 0.031 (A) 0.024 (B) 0.022 (A) 0.022 (A) 0.029 (B) 

NN 0.031 (A) 0.031 (A) 0.032 (B) 0.033 (B) 0.023 (A) 0.026 (B) 0.024 (B) 0.027 (A) 

Root mean square errors 

 
2

,t s t sRMSE y y n   

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

OLS 0.0862 (D) 0.0496 (D) 0.0601 (D) 0.0539 (D) 0.0453 (D) 0.0426 (D) 0.0419 (C) 0.0471 (D) 

ARIMA(1,1

) 
0.0862 (C) 0.0486 (C) 0.0584 (C) 0.0533 (C) 0.0447 (C) 0.0423 (C) 0.0425 (D) 0.0476 (E) 

VAR(1) 0.0873 (E) 0.0517 (E) 0.0611 (E) 0.0590 (E) 0.0487 (E) 0.0438 (E) 0.0442 (E) 0.0467 (C) 

MRS 0.0819  (B) 0.0465 (B) 0.0527 (B) 0.0503 (B) 0.0413 (B) 0.0381 (A) 0.0356 (A) 0.0469 (B) 

NN 0.0738 (A) 0.0450 (A)  0.0490 (A) 0.0482 (A) 0.0366 (A) 0.0406 (B) 0.0372 (B) 0.0457 (A) 

Table continues at the next page 
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Theil's U-Statistic 

 

   

2

,

1

2 2

,

1 1

1

1 1

n

t s t s

t

n n

t s t s

t t

y y
n

y y
n n







 







 

 

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

OLS 0.861 (B) 0.797 (C) 0.833 (C) 0.836 (D) 0.808 (C) 0.795 (C) 0.813 (C) 0.804 (C) 

ARIMA(1,1

) 
0.868 (C) 0.819 (D) 0.872 (E) 0.926 (E) 0.901 (E) 0.873 (E) 0.875 (D) 0.834 (E) 

VAR(1) 0.853 (D) 0.850 (E) 0.836 (D) 0.753 (C) 0.897 (D) 0.862 (D) 0.893 (E) 0.834 (D) 

MRS 0.888 (E)  0.793 (B) 0.806  (B) 0.787  (B) 0.807  (B) 0.790  (B) 0.799  (B) 0.817  (B) 

NN 0.567 (A) 0.618 (A) 0.541 (A) 0.520 (A) 0.470 (A) 0.595 (A) 0.601 (A) 0.585 (A) 

Percentage correct sign predictions 

,

1

1, 01
,

0,

n
t s t s

t s t s

t

y y
PCSP z z

n otherwise



 




  


  

 
AAA AA A BBB 1-3Y 3-5Y 5-7Y 7-10Y 

OLS 0.460 (C) 0.450 (C) 0.444 (C) 0.460 (C) 0.516 (C) 0.496 (D) 0.466 (C) 0.420 (B) 

ARIMA(1,1

) 
0.440 (D) 0.440 (D) 0.416 (D) 0.426 (E) 0.432 (D) 0.352 (C) 0.326 (D) 0.340 (D) 

VAR(1) 0.390 (E) 0.374 (E) 0.406 (E) 0.448 (D) 0.404 (E) 0.342 (E) 0.326 (D) 0.324 (E) 

MRS 0.550  (B) 0.586 (B) 0.586 (B) 0.602 (A) 0.580 (A) 0.590 (B) 0.650 (B) 0.382 (C) 

NN 0.590 (A) 0.596 (A) 0.622 (A) 0.580 (B) 0.560 (B) 0.618 (A) 0.678 (A) 0.628 (A) 

 
 

7.5 Conclusions 

 

This chapter examined the influence of determinants on the daily changes of credit 

spread indices and introduced two new determinants that have not been previously 

considered: the inflation; and commodity indices. However, the study revealed that 

only inflation was statistically and economically significant. In addition, this chapter 

investigated whether the influence of the determinants on credit spread changes is 

regime dependent in addition to examining the nonlinear effect of the determinants on 

credit spread changes through the application of two statistical techniques: the Markov 

regime switching regression model and the feed-forward neural network. 

 

The Markov regime switching regression model revealed that the effect of the 

determinants on credit spread changes is regime dependent. Overall, the determinants 
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are able to explain a portion of the credit spread variation and the signs of the 

estimated coefficients are in line with the literature and suggested theory. However, the 

Markov regime switching regression model offers new evidence regarding the effects 

of the determinants on credit spreads as well as the economic interpretation of the 

signs of the estimated coefficients. The Markov regime switching regression model 

reveals that during the low volatility regime the estimated coefficients have a weak 

statistical and economic significance. However, during the high volatility regime most 

of the estimated coefficients are statistical significant. This suggests that during the 

high volatility period the inflation and the expected future volatility increase, 

suggesting a future uncertainty of market conditions and future value of cash flows 

which may adversely affect the overall economy. At the same time, governments adopt 

monetary policies such as reducing interest rates in order to reduce inflation and 

market uncertainty. Therefore, the combination of these interest rate cuts and increases 

in inflation accompanied by the higher yield demanded by investors widens credit 

spreads.   

 

Finally, both the feed-forward neural networks and Markov regime switching models 

are able to capture the non-linear relationship between the determinants and credit 

spreads. These two specifications are able to estimate the most accurate out-of-sample 

mean forecasts and correct sign predictions compared to OLS, ARIMA(1,1) and 

VAR(1). 
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Chapter 8 
Conclusions and suggestions for future research 

 

 

 

 

 

 

 

 

 

 

8.1 Introduction 

 

This chapter summarises the econometric and statistical approaches applied as well as 

the findings and main conclusions of each empirical chapter, and offers suggestions for 

future research. The main subject of the thesis was to provide further insight into and 

enhance our understanding of the dynamics of European corporate credit spreads 

during the credit crisis period. This is because credit spreads are important financial 

tools, since they are used as indicators of economic progression, investment decisions, 

trading and hedging, as well as pricing credit derivatives. Their role has increasingly 

become more significant for the Euro Fixed Income markets since the introduction of 

the Euro, which reshaped the mechanics of the financial environment. The introduction 

of single currency in Europe provided the means for a pan-European economic growth 

and cross-border development, liberalized a vast inflow of capital which was once 
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fragmented into different currencies, and provided the dynamics of cross-border 

investments around a unified legislative framework. 

 

The empirical research has been formulated to cover three important areas: modelling 

the dynamics of higher moments and regime shifts across different credit ratings and 

maturities, modelling the time-varying correlation between credit spread indices and 

examine the effect of a number of determinants on credit spreads during different 

market conditions. These areas have been investigated in detail in order to help 

enhance our understanding about the behaviour and dynamics of European corporate 

credit spreads and provided new evidence and insights of the behaviour of credit 

spreads.  

 

 The first area of interest allowed the assessment of the dynamics of the shape of the 

distribution of credit spreads overtime while the second allowed the investigation of 

the dynamics and behaviour of correlation overtime. The models that were applied in 

these areas were also compared in order to establish which model produces the best 

volatility and VaR estimates based on risk management loss functions. The final area 

provided new evidence regarding the effects of the determinants on credit spreads and 

applied a statistical model that had not been previously employed in capturing the non-

linear relationship between the determinants and credit spread changes.  

 

The structure of this chapter is as follows: Section 8.2 offers a summary of the thesis 

and discusses the conclusions of each empirical chapter as well as the implications of 

the findings, while Section 8.3 discusses the limitations of this study and proposes 

suggestions for future research.  

 

8.2 Summary of the thesis, Conclusions and Implications of our findings 

 

Chapter one provided a brief historical description of the events that led to the creation 

of the European Union and described how the introduction of the single currency was 

the catalyst for reshaping the mechanics of the European financial markets. In Chapter 

1, a debt security and the different types of risk that affect this instrument were also 

introduced and it was highlighted that one of the most important types of risk to which 
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market participants are exposed is credit risk. The main areas of research which needed 

further investigation were identified and the objectives of the thesis were presented.  

 

Chapter 2 presented credit risk as the most important risk posed to market participants 

and reviewed the different methodologies that are applied to measure credit risk. 

Chapter 2 also discussed the importance of modelling the dynamics of higher moments 

and time-varying correlation in risk management, hedging, portfolio allocation and 

option pricing and presented the empirical findings of the behaviour of corporate bond 

prices as well as the determination of the drivers behind credit spreads. Finally, it 

discussed the shortcomings of the literature and highlighted the area that needed 

further investigation.  

 

Chapter 3 discussed in detail the econometric and statistical methodologies that are 

applied throughout the thesis. It introduced the models for investigating the univariate 

properties of time series, including stationarity and unit root tests and presented 

multivariate and non-linear time series analysis such as VAR and Markov regime 

switching models. Chapter 3 also introduced the ARCH and GARCH models, which 

are applied in modelling the time-varying volatilities of time series as well as their 

extensions to capture the dynamics of higher moments and changes in the dynamics of 

volatility of financial time series. There was also a discussion of multivariate volatility 

models such as BEKK, O-GARCH, CC-GARCH and DCC-GARCH as well as the 

principal component analysis. Finally, Chapter 3 presented the risk management loss 

functions and back testing techniques depicted by Christoffersen (1998) to measure the 

efficiency of the different VaR estimates. 

 

Chapter 4 introduced the data set used for empirical analysis, reviewed the statistical 

properties of the different variables and examined the univariate properties of the 

series such as stationarity and unit roots. Furthermore, it described how the credit 

spreads were estimated and discussed the reasons that led to the selection of the 

German government bonds as benchmark instruments. Having explained the research 

theme in the first chapter, reviewed the relevant literature in the second chapter and 

discussed the methodology in the third chapter and data in the fourth, the subsequent 

sections are devoted to the discussion of the conclusions and their implications. 

 



 

173 

 

8.2.1 Dynamics of Credit Spreads of European Corporate Bond Indices  

 

Chapter 5 investigated the nature and dynamics of credit spreads moments of the 

European corporate bond indices, and compare such behaviour across different credit 

ratings and maturities. The examination of the dynamics of volatility and the 

conditional higher moments was performed by the application of a series of models 

including the GJR-GARCH, GARCH-SK and variants of Markov Regime Switching 

GARCH. It was found that the estimated volatilities, skewness and kurtosis display a 

consistent pattern across ratings and maturities. Lower ratings and long-term maturities 

have greater conditional volatilities and kurtosis. This behaviour reflects the higher 

probability of downgrades and defaults of lower rating and long-term maturity indices. 

Conditional skewness was found to fluctuate more for lower ratings and long-term 

maturities and displayed occasional spikes. This meant that during high volatility 

periods credit spreads widen and interest rates decrease suggesting a deteriorating 

economy and therefore the negative effect of the credit-worthiness of lower ratings and 

long-term maturities is reflected as negative spikes in the conditional skewness.  

 

Chapter 5 also examined the appropriateness of the proposed models in capturing the 

dynamics of higher moments in credit spreads in terms of forecasting volatility and 

producing Value-at-Risk estimates. The adequacy of VaR estimates was examined by 

the application of the Christoffersen (1998) back-testing procedure. The back-testing 

revealed mixed results on the appropriateness and accuracy of models, results which 

are in line with those reported by Brooks and Persand (2003), Dacco and Satchell 

(1999) and Marcucci (2009), who do not find a uniformly accurate model for all time 

horizons either. 

 

Chapter 5 illustrated that modelling the dynamics of higher moments and regime shifts 

of financial time series was important not only for risk management, as this study 

showed, but for derivative pricing, investment decisions, as well as trading and 

hedging strategies. The GARCH-SK model used has a number of important 

applications. First, the GARCH-SK model may better describe the distributional 

properties of financial asset returns. Second, the estimated coefficients of the GARCH-

SK model may be used to obtain separate estimates of the market-required risk 

premium associated with variance, skewness and kurtosis risk. Third, the GARCH-SK 
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model could then be applied in portfolio allocation to assess whether the trade-off 

between the mean, variance, skewness and kurtosis that was estimated from the series 

of returns for the chosen portfolio was an optimal one given the market-required 

returns for each type of risk. Fourth, the GARCH-SK model may be useful in 

estimating future coefficients of variance, skewness and kurtosis which are unknown 

parameters in option pricing models that account for skewness and kurtosis and may 

be useful in testing the information content of option implied coefficients of variance, 

skewness and kurtosis. Finally, the Markov regime switching GARCH model can be 

applied in option pricing and in estimating regime dependent hedge ratios that change 

as market conditions change. 

 

8.2.2 Modelling the Time-varying Correlation of Credit Spreads 

 

Chapter 6 investigated the behaviour of time-varying correlation in credit spreads and 

compared the properties and performances of the different multivariate GARCH 

models. The models examined are the Orthogonal-GARCH, the Constant and Dynamic 

Correlation GARCH and Diagonal-BEKK. The results revealed that the correlation of 

credit spreads is time-varying and is affected by market conditions. This means that 

during periods of expansion where firms expand and diversify, and experience an 

increase in their cash flows, the likelihood that the issuers might be unable to honour 

their contractual obligations reduces. During this time the correlation between credit 

spreads of different ratings and maturities reduces and so do credit spreads.  This may 

suggest that the overall default risk is reduced. On the other hand, during a contracting 

economy, firm’s experience a decline in cash flows, increasing the likelihood that the 

issuers might be unable to service their debt obligations. Consequently, correlation 

between credit spreads increases and so do credit spreads.  

 

Chapter 6 also examined the performance of the different models by determining 

whether they produce accurate VaR estimates based on risk managements’ loss 

functions. Even thought all models failed to reject the three likelihood ratio tests 

showing good-out-of sample performance, Diagonal-BEKK and RiskMetrics out-

performed the other multivariate GARCH specifications in terms of the lowest 

percentage of failures observed for both long and short Value-at-Risk positions.  
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Chapter 6 showed that correlation of credit spreads is time-varying and is affected by 

market conditions. These findings have important implications in risk management as 

well as in the pricing of credit derivatives that assume correlation of credit spreads to 

be constant, in investigating the relationship between systematic default correlation 

and credit spreads, in credit portfolio allocation in estimation of the optimal portfolio 

weights and hedge ratios and finally, in the trading and hedging of default risk. 

 

8.2.3 Regime Switching Determinants of European Corporate Credit Spreads 

 

Chapter 7 examined the influence of the risk-free rate and important macroeconomic 

determinants on the daily changes of credit spread indices. In Chapter 7 two new 

determinants were used that had not been previously considered: the inflation and 

commodity price indices. The results of this study showed that only inflation was 

statistically and economically significant.  

 

Moreover, Chapter 7 also investigated whether the influence of the determinants on 

credit spread changes is regime dependent by applying a Markov regime switching 

regression model. The Markov regime switching regression model revealed that the 

effect of the determinants on credit spread changes is regime dependent and the 

determinants are able to explain a portion of the credit spread variation. Although, the 

sign of the estimated coefficients agrees with the previous literature and theory, the 

Markov regime switching model offered new evidence regarding the effects of the 

determinants on credit spreads. It revealed that only during the high volatility period 

the estimated coefficients are statistically and economically significant. During this 

period, inflation and the expected future volatility increase, suggesting a future 

uncertainty of market conditions and future cash flows. However, in order to reduce 

inflation and market uncertainty, governments adopt monetary policies, such as 

reducing interest rates, which consequently widens credit spreads.  

 

In addition, Chapter 7 introduced a feed-forward neural network, an approach which 

had not been previously applied in modelling the non-linear relationship between 

determinants and credit spreads. This models the nonlinear relationship between input 
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and output layers while the information moves in only one direction, from the input 

layer (i.e. the determinants) through the hidden layer and finally to the output layer 

(i.e. credit spread changes). Finally, in Chapter 7 it was revealed that both the Markov 

regime switching model and Neural Networks were able to estimate the most accurate 

out-of-sample mean forecasts and correct sign predictions compared to OLS, 

ARIMA(1,1) and VAR(1) models.  

  

 The results presented in Chapter seven can be applied in estimating regime dependent 

hedge ratios and formulating trading strategies that change as market conditions 

change. In addition, they may be applied in the pricing of credit spread options and 

other credit derivative instruments.  

 

8.3 Limitations of the study and suggestions for future research 

 

The aim of this section is to highlight limitations in the econometric approaches or 

availability of data investigated in this thesis and suggests possible directions in which 

future research can be undertaken to improve and enhance our understanding in the 

area of credit spreads and credit modelling in general.  

 

The theme of the research was to examine the dynamics of European corporate credit 

spread indices for the AAA, AA, A and BBB ratings and 1-3, 3-5, 5-7 and 7-10 

maturity indices. This by itself poses a limitation in the availability of data, as it would 

be of great interest if the rating indices could be further broken down into maturities 

(i.e. AAA with maturities of 1-3, 3-5, 5-7 and 7-10) so as to examine and discuss in 

greater detail the dynamics of these indices as well as the effects of the determinants 

on them.  

 

We investigated the nature and dynamics of credit spread moments by applying an 

autoregressive conditional variance, skewness and kurtosis model, the GARCH-SK. 

Future research may be conducted to examine, independently, the impact of time-

varying skewness and kurtosis in computing volatility forecasts and VaR estimates.  In 

addition, the Markov regime switching model, presented in Chapter 7, was not 

extended to capture the dynamics of conditional volatility, as these types of models are 
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highly non-linear and it would have resulted in over-parameterization as well as 

unreliability of the estimated parameters.  

 

We investigated the behaviour of time-varying correlation in credit spreads and 

compared the properties and performances of the different multivariate GARCH 

models. It would be of great interest to estimate the multivariate version of the 

GARCH-SK model, which would shed light on the relationship between the moments 

of each series employed in the portfolio. However, some issues arose during the 

estimation of MGARCH models with multivariate Student t-Distribution and Gram-

Charlier expansion series. Furthermore, we estimated the constant correlation CC-

GARCH-SK model and we found that it did not offer any benefit over the CC-

GARCH model. Finally, the multivariate Gram-Charlier does not provide further 

insight in the cross dynamics of the higher-moments (see Appendix 8.A), which might 

be an area for future investigation.  

 

Finally, the results presented in Chapter 7 offer some insight into the dynamics of the 

European corporate credit spreads and demonstrate how different determinants affect 

credit spreads under different market conditions. It might be of interest to examine the 

dynamics of other markets such as those in the US and Asia, and to establish whether 

similar behaviour is exhibited during the credit crisis period. 
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APPENDIX 8.A  

 

Multivariate Gram-Charlier Distribution 

Equation Chapter 8 Section  1 

The multivariate density function of the Gram-Charlier expansion series presented in 

this section ensures positive definiteness, given a vector  1, 2, ,, , ,t t n tx x x X  the 

density is defined as: 
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where  G X  denotes the multivariate normal distribution with zero mean and 

variance matrix  , whose marginal densities are the univariate normal,  ig x , sd

denotes the s
th

 order Hermite polynomial parameters corresponding to the individual 

variables,   H x represents the Hermite polynomials such that for 2i   they hold the 

following recurrence relation: 
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In the bivariate case for variables xt and yt the density becomes: 
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The multivariate density integrates to one and its marginal densities are also univariate 

density functions. For simplicity the proof is shown for the bivariate case: 
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Thus: 
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Therefore, the proposed density function is a true density as it integrates to one.   
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