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Abstract

The area of approximate algebraic computations is a fast growing area in modern
computer algebra which has attracted many researchers in recent years. Amongst
the various algebraic computations, the computation of the Greatest Common
Divisor (GCD) and the Least Common Multiple (LCM) of a set of polynomials are
challenging problems that arise from several applications in applied mathematics
and engineering. Several methods have been proposed for the computation of
the GCD of polynomials using tools and notions either from linear algebra or
linear systems theory. Amongst these, a matrix-based method which relies on the
properties of the GCD as an invariant of the original set of polynomials under
elementary row transformations and shifting elements in the rows of a matrix,
shows interesting properties in relation to the problem of the GCD of sets of many
polynomials. These transformations are referred to as Extended-Row-Equivalence
and Shifting (ERES) operations and their iterative application to a basis matrix,
which is formed directly from the coefficients of the given polynomials, formulates
the ERES method for the computation of the GCD of polynomials and establishes
the basic principles of the ERES methodology.

The main objective of the present thesis concerns the improvement of the
ERES methodology and its use for the efficient computation of the GCD and
LCM of sets of several univariate polynomials with parameter uncertainty, as well
as the extension of its application to other related algebraic problems.

New theoretical and numerical properties of the ERES method are defined
in this thesis by introducing the matrix representation of the Shifting operation,
which is used to change the position of the elements in the rows of a matrix. This
important theoretical result opens the way for a new algebraic representation of
the GCD of a set polynomials, the remainder, and the quotient of Euclid’s division
for two polynomials based on ERES operations. The principles of the ERES
methodology provide the means to develop numerical algorithms for the GCD
and LCM of polynomials that inherently have the potential to efficiently work
with sets of several polynomials with inexactly known coefficients. The present
new implementation of the ERES method, referred to as the “Hybrid ERES
Algorithm”, is based on the effective combination of symbolic-numeric arithmetic
(hybrid arithmetic) and shows interesting computational properties concerning
the approximate GCD and LCM problems. The evaluation of the quality, or
“strength”, of an approximate GCD is equivalent to an evaluation of a distance
problem in a projective space and it is thus reduced to an optimisation problem.
An efficient implementation of an algorithm computing the strength bounds is
introduced here by exploiting some of the special aspects of the respective distance
problem. Furthermore, a new ERES-based method has been developed for the
approximate LCM which involves a least-squares minimisation process, applied
to a matrix which is formed from the remainders of Euclid’s division by ERES
operations. The residual from the least-squares process characterises the quality
of the obtained approximate LCM. Finally, the developed framework of the ERES
methodology is also applied to the representation of continued fractions to improve
the stability criterion for linear systems based on the Routh-Hurwitz test.
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{DÔo arijmÀn �nÐswn âkkeimènwn, �njufairomè-
nou dè �eÈ toÜ âl�ssonoc �pä toÜ meÐzonoc, â�n
å leipìmenoc mhdèpote katametr¬ tän prä áautoÜ,
éwc oÕ leifj¬ mon�c, oÉ âx �rq¨c prÀtoi präc �l-
l louc êsontai.}

Two unequal numbers being set out, and the less
being continually subtracted in turn from the
greater, if the number which is left never mea-
sures the one before it until an unit is left, the
original numbers will be prime to one another.

Antenaresis (Euclidean Algorithm)

Euclid’s Book of Elements
Book VII, Proposition I



Chapter 1

Introduction

Algebraic and geometric invariants are instrumental in describing system properties

and characterising the solvability of Control Theory problems [38, 65, 82]. These

invariants are defined on rational, polynomial matrices and matrix pencils under

different transformation groups (coordinate, compensation, feedback type) and

their computation relies on algebraic algorithms, whereas symbolic tools are used

for their implementation.

The different type of invariants and system properties defined on a family

of linear system models may be classified to those which are generic and those

which are nongeneric [46, 82]. Notions such as multivariable zeros of nonsquare

systems and decoupling zeros [38] are nongeneric, whereas for square systems, the

notion of zeros is generic. Notions such as minimal indices (of various types), are

always defined, but they have certain generic values. In dealing with engineering

system models, on the one hand the uncertainty about the true value of the

parameters, and on the other hand the rounding off computational errors, makes

the computation of nongeneric values of invariants a difficult task.

Engineering models are not exact and they are always characterised by param-

eter uncertainty. This introduces some considerable problems with any framework

based on exact symbolic tools, given that the underlined models are always char-

acterised by parameter uncertainty. The central challenge is the transformation

of algebraic notions to an appropriate analytic setup within which meaningful

approximate solutions to exact algebraic problems may be sought. This motivates

the need for transforming the algebraic problems into equivalent linear algebra

problems and then develop approximate algebraic computations, which are ap-

propriate for the case of computations on models characterised by parameter

uncertainty.

Computing, or evaluating nongeneric types, or values of invariants and thus

associated system properties on models with numerical inaccuracies is crucial

for applications. For such cases, symbolic tools fail, since they almost always

lead to a generic solution, which does not represent the approximate presence of

1



Chapter 1

the value property on the set of models under consideration. The formulation

of a methodology for robust computation of nongeneric algebraic invariants, or

nongeneric values of generic ones, has as prerequisites:

a) The development of a numerical linear algebra characterisation of the in-

variants, which may allow the measurement of degree of presence of the

property on every point of the parameter set.

b) The development of special numerical tools, which avoid the introduction of

additional errors.

c) The formulation of appropriate criteria which allow the termination of

algorithms at certain steps and the definition of meaningful approximate

solutions to the algebraic computation problem.

It is clear that the formulation of the algebraic problem as an equivalent numerical

linear algebra problem, is essential in transforming concepts of an algebraic nature

to equivalent concepts of an analytic character and thus set up the right framework

for approximations. This property is referred to as numerical reducibility (NR) of

the algebraic computation and it depends on the nature of the particular invariant.

Given that any set of engineering data has a given numerical accuracy it is

clear that there is no point in trying to compute with greater accuracy than that

of the original data and thus, an approximate solution has to be sought at some

stage, before the procedure converges to some meaningless generic value. In fact,

engineering computations are defined not on a single model of a system S, but on

a ball of system models Σ(S0, r(ε)), where S0 is a nominal system and r(ε) is some

radius defined by the data error order ε. The result of computations has thus to

be representative for the family Σ(S0, r(ε)) and not just the particular element

of this family. From this viewpoint, symbolic computations carried out on an

element of the Σ(S0, r(ε)) family may lead to results, which do reveal the desired

properties of the family. Numerical computations have to stop, when we reach the

original data accuracy and an approximate solution to the computational task

has to be given.

I Nongeneric Computations

Numerical computations dealing with the derivation of an approximate value of

a property, function, which is nongeneric on a given model set, will be called

nongeneric computations (NG). If the value of a function always exists on every

element of the model set and depends continuously on the model parameters,

then the computations leading to the determination of such values will be called

normal numerical (NN). Computational procedures aiming at defining the generic

value of a property, function on a given model set (if such values exist), will be

2
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called generic (GC). For instance, on a set of polynomials with coefficients taking

values from a certain parameter set, the greatest common divisor (GCD) has in

general the trivial value, equal to 1, and the existence of a nontrivial GCD is

a nongeneric computation. On the contrary, the existence of the least common

multiple (LCM) is considered generic, since it always exists, given by the product

of all the polynomials of the set. Numerical procedures that aim to produce

an approximate nontrivial value by exploring the numerical properties of the

parameter set are typical examples of NG computations. The computation of

nongeneric invariants is linked to nongeneric computations [46].

A number of important invariants for linear systems rely on the notion of

the greatest common divisor of several polynomials. The link between control

theory and the GCD problem is very strong; in fact, the GCD is instrumental in

defining system notions such as zeros, decoupling zeros, zeros at infinity, notions

of minimality of system representations and others. On the other hand, systems

and control methods provide concepts and tools which enable the development

of new computational procedures for GCD. An integral part of the derivation of

the procedures for nongeneric computations is the relaxation of certain algebraic

definitions, and their embedding in an analytical setup. Appropriate tools have

to be devised to indicate degree of presence, or distance from strong possession of

a certain property. In such cases, for example the computation of the GCD or the

zeros of nonsquare systems, the attention has to be focused on the appropriate

termination of the computational algorithm that will allow the estimation of the

approximate solutions. The accuracy of the original data determines the threshold,

where an algorithm has to terminate and give an approximate solution and where

it has to continue.

A major challenge for the control theoretic applications of the GCD is that

frequently we have to deal with a very large number of polynomials with inexactly

known coefficients coming from real-time applications. It is this requirement that

makes the pairwise type approaches for GCD [11, 12, 53, 61, 84] not suitable for

such applications. The GCD related work described in this research goes back to

the attempt to introduce the notion of almost zeros of a set of polynomials [43]

and study the properties of such zeros from the feedback viewpoint. This work

was subsequently developed to a methodology for computing the approximate

GCD of polynomials using numerical linear algebra methods, such as the ERES

[57] and Matrix Pencil methods [45]. The results in this area of computations

are important in the development of meaningful solutions to algebraic system

theory problems for models characterised by parameter uncertainty and they are

linked to a large range of related problems, such as almost non-coprimeness and

solutions of polynomial Diophantine equations, and approximate factorisation of

rational transfer function models.
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The definition of the approximate GCD can be considered as a distance problem

in a projective space. The distance framework given for the approximate GCD

[22, 42] provides the means for computing optimal solutions, as well as evaluating

the strength of ad-hoc approximations derived from different algorithms.

Various methods and algorithms for the computation of the approximate

GCD of polynomials have been proposed so far. Many of them rely on Euclid’s

algorithm, which is the oldest well-known method for computing the GCD of

integer numbers [11, 12, 61, 69, 70]. Other newer methods make use of subresultant

matrices [5, 17, 20, 22, 73], perform optimizations and quadratic programming

[16, 17, 52], use Padé approximations and approximations of polynomial zeros

[63] or matrix pencils [45, 49]. Such algorithms usually consist of several different

algebraic procedures with a specific task. These algebraic procedures have to be

organised properly either in sequential or in iterative way in order to produce

the best possible results for the problem that the algorithm is designed to solve.

However, the implementation of such algorithms in an appropriate programming

environment is not trivial and requires careful selection of data structures and

arithmetic system.

I Hybrid Computations

In conventional computer algebra, the usual aim is to perform algebraic computa-

tion exactly using rational number arithmetic and the introduction of algebraic

and transcendental numbers. But many problems coming from areas like com-

puter vision, robotics, computational biology, physics etc, are described with

inexact numbers (“empirical” numbers) as the input parameters or coefficients.

In this context, the usual exact algorithms of computer algebra may not be easily

applicable, or may be inefficient. Recent years have witnessed the emergence of

new research combining symbolic and numeric computations and leading to new

kinds of algorithms, involving algebraic computations with approximate numeric

arithmetic, such as floating-point number arithmetic. This combination gives a

different perspective in the way to implement an algorithm and introduces the

notion of hybrid computations.

Hybridity refers in its most basic sense to mixture; a mixture of different ways,

components, methods etc, which can produce the same or similar results. The

basic idea of making something “hybrid” is to improve on its characteristics and

therefore make it work better. In our case, we focus on the mixture of symbolic

arithmetic and numeric arithmetic, which will be referred to as hybrid arithmetic.

In a hybrid arithmetic system both exact symbolic and numeric finite precision

arithmetic operations can be carried out simultaneously. Symbolic computations

refer to arithmetic operations either with arbitrary variables or fractions of

integers to represent the numerical input data. The symbolic computations

4
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which involve only numerical data in rational format, are also referred to as

rational computations and they are always performed in almost infinite accuracy,

depending on the symbolic kernel of the programming environment. On the other

hand, numerical computations refer to arithmetic operations with numbers in

floating-point format (decimal numbers). However, the accuracy of the performed

numerical computations is limited to a specific number of decimal digits which

gives rise to numerical rounding errors that often cause serious complications and

must be avoided [81]. Therefore, the different algebraic procedures, which form an

algorithm, can be implemented independently either using symbolic computations

or numerical computations. Such kind of implementation will be referred to as

hybrid implementation and hence, the algorithm that is implemented by using

symbolic-numeric computations, i.e. hybrid computations, will be called a hybrid

algorithm.

The hybridisation of an algorithm (i.e. the hybrid implementation of an algo-

rithm) is possible in software programming environments with symbolic-numeric

arithmetic capabilities such as Maple, Mathematica, Matlab and others which

involve an efficient combination of symbolic (rational) and numerical (floating-

point) operations. However, the effective combination of symbolic and numerical

operations depends on the nature of an algebraic method and the proper handling

of the input data either as rational or floating-point numbers.

Using hybrid computations is basically a trade-off between accuracy and

processing time. Symbolic processing always produce exact results and thus it

is often used to improve on the conditioning of the input data, or to handle a

numerically ill-conditioned subproblem. However, symbolic computations can be

very demanding in respect of computational time and data storage, especially in

case of large amounts of data. On the other hand, numerical processing is faster

and, generally, consumes less computer memory, but the accuracy of the results

may not be satisfactory. Therefore, numerical computations are preferable in

accelerating certain parts of an algorithm, or in computing approximate outputs.

These remarks can be considered as rough guidelines in designing and implementing

a hybrid algorithm, but it is not clear how to develop the hybrid algorithm which

is capable of giving the best possible results to the problem that is expected to

handle. In practise, an effective hybridisation must lead to an algorithm which

is fast and accurate (depending on the accuracy of the input data). Therefore,

the amount of initial data, the structure of algebraic procedures (sequential or

iterative), and the desired level of accuracy are very important factors to be taken

into account for the development of an effective hybrid algorithm.

Concerning GCD algorithms and hybrid implementation, not all of them are

suitable to be implemented in a symbolic-numeric computational environment.

As mentioned above, the symbolic manipulation of data guarantees an error-free
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solution, but exact symbolic operations are very expensive regarding computational

time and computer memory. This problem is more obvious in matrix-based

methods, especially in resultant based methods when the processed matrix is

large and dense. On the other hand, numerical finite precision operations are

fast and more preferable when an approximate solution is sought. Yet again, the

accumulation of numerical errors, especially in iterative methods, can be awfully

disastrous.

Amongst the various methods for the computation of an approximate GCD,

the ERES [40, 57] is a matrix-based method that can handle sets of several

polynomials and allows the development of an effective hybrid algorithm. The

ERES is based on the invariance of the GCD under elementary row transformations

and involves some basic algebraic procedures, such as Gaussian elimination with

partial pivoting and Singular Value Decomposition, which can be implemented

separately by using either exact symbolic operations or numerical floating-point

operations combined in an optimal setup. The simple structure, the iterative

nature and the ability to manipulate large amounts of data are advantages that put

the ERES method at the centre of our study for the approximate GCD problem.

I Objectives

The main objectives of this thesis are:

1. To use the basic principles of the ERES method [40, 57] for defining approxi-

mate solutions to the GCD problem by developing the hybrid implementation

of this method.

2. To use the recently developed framework for defining the approximate notions

for the GCD as a distance problem in a projective space [42] to develop

an optimization algorithm for evaluating the strength of different ad-hoc

approximations derived from different algorithms.

3. To improve the context of the ERES methodology and extend its use to

other related problems such as the computation of the approximate LCM

of sets of polynomials, the evaluation of stability of linear systems and the

representation of continued fractions.

The fundamental problems, which relate to the main objectives, are the algebraic

representation of the GCD of several polynomials in terms of ERES operations

and the investigation of the related problems, such as the matrix representation of

the Shifting operation and the matrix representation of the remainder of Euclid’s

division algorithm.

Chapter 2 provides an overview to methods of algebraic computations especially

developed to deal with the approximate GCD and approximate LCM problems

6
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and serves as a motivator for the algebraic computational problems involving

rational expressions, which are considered in the thesis.

Chapter 3 provides a theoretical presentation of the ERES method. This

involves the theoretical issues of the processes involved, such as the selection of an

appropriate basis matrix and the application of elementary row transformations,

and shifting. The Shifting operation, applied to a matrix, is a key element in the

algebraic representation of the whole ERES method. The presented theoretical

algebraic procedure of representing the Shifting operation as a matrix product relies

on the rank properties of the processed matrix and binds together the iterative

steps of the method. This allows the formulation of a new matrix representation

for the GCD of a set of several polynomials. The developed framework of the

Shifting operation is also used to obtain an algebraic expression for the remainder

of the division of two polynomials which evidently establishes a new procedure of

polynomial division by using ERES operations.

In chapter 4, the numerical implementation of the ERES method in a symbolic-

numeric programming environment is presented. The new ERES algorithm,

referred to as Hybrid ERES algorithm, combines in an optimal setup the symbolical

application of rows transformations and shifting, and the numerical computation of

an appropriate termination criterion, which can provide the required approximate

solutions. The termination criterion of the algorithm relies on the partial singular

value decomposition method [75, 76]. A new variation of this method is specially

developed for the Hybrid ERES algorithm, resulting in a dramatical improvement

of its computational performance in the case of large sets of polynomials. The

concept behind this method is that, in general, the ERES algorithm terminates

when a matrix with rank equal to 1 is obtained. Thus, only the unique singular

value and its right singular vector are necessary to be computed. The numerical

behaviour of the Hybrid ERES algorithm is also discussed.

Chapter 5 starts with an overview of the fundamentals of the approximate

GCD evaluation framework [21, 22, 42]. For sets of polynomials for a given number

of elements and with fixed the two maximal degrees, a point in the projective

space is defined, based on the coefficients of the polynomials in the set. The

family of all sets, which have a GCD with a given degree, is defined by the

properties of the generalised resultant and it is shown to be a special variety

of the projective space referred to as the d-GCD variety. The factorisation of

the resultant has allowed the definition of any d-degree approximate GCD as a

subvariety of the d-GCD variety. Thus, the strength of the approximation, provided

by the result of a given numerical method, may be completed as the evaluation

of the distance of the given point (set of polynomials) from its subvariety of the

d-gcd variety. This distance is worked out as the solution of a simple optimisation

problem. The definition of the best d-degree approximate solution is equivalent to a
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computation of the distance of the given set from the d-GCD variety. This distance

is computed by minimising the Frobenius norm of the resultant characterising the

dynamic perturbations. The numerical properties of this minimization problem

are considered here from a different point of view. Such optimization problems are

often non-convex and a reliable solution is not guaranteed. Alternatively, useful

information can be obtained by computing some tight bounds for the strength.

An algorithm for computing the strength bounds is presented in this chapter. Its

main characteristic is that it exploits the properties of resultant matrices in order

to produce meaningful results without using optimisation routines and allows

the computation of an average strength. These bounds work as indicators, which

characterise the quality of a given approximate GCD. The combination of the

Hybrid ERES algorithm and the algorithm of strength bounds suggests a complete

procedure for the computation and evaluation of an approximate GCD of a set of

several polynomials.

The main objective in chapter 6 is to investigate the problem of defining a

numerical procedure for the computation of the LCM of a set of several polynomials

avoiding root finding and GCD computation. The developed methodologies

depend on the proper transformation of the LCM computations to real matrix

computations and thus also introduce a notion of approximate LCM when working

on data with numerical inaccuracies. It is the aim of this chapter to give an

alternative new way to compute the LCM of a set of several polynomials based

on the ERES method. Two approaches are discussed. The first approach aims at

the reduction of the computation of the LCM to an equivalent problem where the

computation of GCD is an important part [47], and the second refers to the direct

use of Euclid’s division algorithm by ERES operations where there is no need to

compute the GCD and the LCM is finally computed by solving an appropriate

least-squares problem. The developed algorithms, which are based on these two

methods for the computation of the LCM of several polynomials, are implemented

in a symbolic-numeric computational environment and their numerical complexity

and performance is analysed.

In chapter 7 the developed framework of the ERES methodology is considered

for a new approach to evaluate the stability of a linear time-invariant system

from its characteristic polynomial (Routh-Hurwitz test). This new approach

is based on the ERES methodology in order to form a matrix-based criterion,

according to a related continued fraction representation and the Routh-Hurwitz

theorem [24]. Furthermore, the problem of finding the minimum distance of a

stable polynomial from instability as well as the minimum norm stabilisation is

considered. The developed algorithm provides simpler expressions of the terms in

the Routh-Hurwitz stability test and simplifies the conditions of the addressed

minimisation problem.
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Finally, chapter 8 summarises the achievements and describes issues related to

future research. Furthermore, the algorithms, which are presented in this thesis,

are implemented in the software computational environment of Maple by using

Maple’s programming code and they are listed in the Appendix A.

1.1 Notation

In the following, N, Z, Q, R and C denote the sets (fields) of natural, integer,

rational, real and complex numbers, respectively. The imaginary unit in the

set of complex numbers is denoted by i. R[s] denotes the ring of polynomials

in one variable over R. Capital letters denote matrices and small underlined

letters denote vectors. Capital letters followed by a variable s ∈ R denote rational

functions of s or polynomial matrices. Small letters followed by a variable s ∈ R
denote real polynomials of s. The following list includes the basic notations that

are used in the document.

A ∈ Rµ×ν Matrix A with elements from R arranged in µ rows and ν

columns (µ, ν ∈ N and µ, ν ≥ 2).

v ∈ Rµ Column vector with µ ≥ 2 elements from R.

At Transpose matrix of A.

vt Transpose vector of v.

ρ(A) or rank(A) The rank of a matrix A.

det(A) The determinant of a square matrix A, (µ = ν).

tr(A) The trace of a square matrix A, (µ = ν) : tr(A) =
∑ν

1=1 aii

p(s) ∈ R[s] A polynomial in one variable s and coefficients in R.

deg{p(s)} The degree of a polynomial p(s).

‖v‖2 The Euclidean norm of v : ‖v‖2 =
√∑µ

i=1 |vi|2

‖A‖2 The Euclidean norm of A : ‖A‖2 =
√

max eigenvalue of AtA

‖A‖F The Frobenius norm of A : ‖A‖F =
√∑µ

j=1

∑ν
i=1 |aij|2
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‖A‖∞ The infinity norm of A : ‖A‖∞ = max1≤i≤µ
∑ν

j=1 |aij|

dim{ } The dimension of a vector space.

O(k) The highest term in the value equal to O(k) is of order k.

, Mathematical operator which denotes equality by definition.

:= Mathematical operator which denotes equality by input

(particularly used in algorithms).

≈ Mathematical operator which denotes approximate equality.

u The machine’s precision (hardware precision).

For a t-digit arithmetic system u ≈ 0.5 · 101−t.

We are mainly concerned here with sets of m polynomials (m ∈ N, m ≥ 2) in

one variable (univariate polynomials) and coefficients in R, denoted by

Pm,n =
{
pi(s) ∈ R[s], i = 1, 2, . . . ,m with n = max

i
(deg{pi(s)} ≥ 1)

}
(1.1)

Whenever we want to denote the number of elements and the maximal degree of

a polynomial set we shall use the notation (1.1). Otherwise the set of polynomials

will be abbreviated as P. In the special case where we want to denote that the

given set of polynomials Pm,n has at least one monic polynomial with maximum

degree equal to n, we shall use the notation Ph+1,n , (i.e. m = h+ 1). The greatest

common divisor and the least common multiple of the set Pm,n will be denoted as

gcd{P} and lcm{P}, respectively.

10



Chapter 2

Principles and methods of

algebraic computations

2.1 Introduction

The area of approximate algebraic computations is a fast growing area which

has attracted the interest of many researchers in recent years. Two well known

problems of algebraic computations are the computation of the Greatest Common

Divisor (GCD) and the computation of the Least Common Multiple (LCM) of sets

of polynomials. Both of them have widespread applications in several branches of

control theory, matrix theory or network theory.

A number of important invariants for linear systems rely on the notion of GCD

of many polynomials and, in fact, the GCD is instrumental in defining system

notions such as zeros, decoupling zeros, zeros at infinity, notions of minimality

of system representations etc. On the other hand, systems and control methods

provide concepts and tools which enable the development of new computational

procedures for the GCD. The GCD and LCM problems are naturally interlinked

[46], but they are of different nature. From the applications in control theory

viewpoint, the GCD is linked with the characterisation of zeros of representation

whereas LCM is connected with the derivation of minimal representations of

rational models. The existence of a common divisor or a common factor of poly-

nomials is a property that holds for specific sets and it is not true generically. For

randomly selected polynomials, the existence of a nontrivial GCD is a nongeneric

property [60], but the corresponding LCM always exists. Therefore, extra care is

needed in the development of efficient numerical algorithms calculating correctly

the required GCD and LCM.

In the present chapter, we present basic concepts and tools from numerical

linear algebra and linear systems theory which set the theoretical background for

the study and development of GCD and LCM methods. A number of existing

methods, developed for the numerical computation of the GCD or LCM of real
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univariate polynomials in a finite precision arithmetic system, are summarised

and the fundamental problems related to the present research are considered.

2.2 Fundamental concepts and definitions

The most basic concept in our study is the polynomial. In simple terms, a

polynomial is an algebraic expression of finite length constructed from variables

and constants (also known as coefficients), using only the operations of addition,

subtraction, multiplication, and non-negative integer exponents. A polynomial of

the form:

a(s) = an s
n + an−1 s

n−1 + . . .+ a1 s+ a0 (2.1)

with n ∈ N and a0, a1, . . . , an ∈ F, is a polynomial in one variable (univariate)

with coefficients in F, where F can be one of the common fields R, Z or Q. The

maximum exponent n for which an 6= 0 is called the degree of the polynomial

and is denoted by deg{a(s)}. If n = 0, then a(s) is a constant polynomial. If

an = 1 the polynomial a(s) is called monic. The set of all univariate polynomials

with coefficients in F together with the two basic operations of addition and

multiplication forms the polynomial ring F[s].

In algebra of polynomials, one major property is divisibility among polynomials.

If a(s) and b(s) are polynomials in F[s], it is said that a(s) divides b(s) or a(s) is

a divisor of b(s) and we write a(s)|b(s), if there exists a polynomial q(s) in F[s]

such that:

a(s) · q(s) = b(s) (2.2)

Every element in F that zeros a polynomial is called a root (or zero). It is

easy to show that every root gives rise to a linear divisor, i.e. if a(s) ∈ F[s] and

c ∈ F such that a(c) = 0, then the polynomial q(s) = s− c divides a(s).

Those polynomials which cannot be factorised into the product of two non

constant polynomials are called prime polynomials, or irreducible polynomials.

However, any polynomial may be factorised into the product of a constant by a

product of irreducible polynomials.

The greatest common divisor (GCD) of a(s) and b(s) is a monic polynomial

g(s) , gcd{a, b} of highest degree such that g(s) is a divisor of a(s) and of

b(s), whilst the least common multiple (LCM) of a(s) and b(s) is a polynomial

l(s) , lcm{a, b} of lowest degree such that both a(s) and b(s) divide l(s). The next

equation describes the association between GCD and LCM of two polynomials:

a(s) · b(s) = g(s) · l(s) (2.3)

If gcd{a, b} = 1, the polynomials a(s) and b(s) are relative prime (or coprime).
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Consequently, if a(s) and b(s) are coprime, then

lcm{a, b} = a(s) · b(s)

Theorem 2.1 ([35]). If F is a field and a(s) and b(s) are polynomials in F[s] with

b(s) 6= 0, then there exist unique polynomials q(s), r(s) ∈ F[s] with

deg{r(s)} < deg{q(s)} < deg{a(s)}

such that

a(s) = b(s) · q(s) + r(s) (2.4)

The above theorem refers to Euclidean division, which is also known as

polynomial long division, and shows that the ring F[s] is a Euclidean domain [35].

The polynomial q(s) is called the quotient and r(s) is the remainder of the division,

whilst a(s) is the dividend and b(s) is the divisor. Euclid’s division algorithm (or

Euclidean algorithm) is an effective iterative procedure for computing the GCD of

a pair of polynomials {a(s), b(s)}, based on the identity (2.4).

The Euclidean algorithm

1. Set i := 1. Let a(1)(s) := a(s) and b(1)(s) := b(s).

2. Use the identity (2.4) and find polynomials q(i)(s), r(i)(s) with

deg{r(i)(s)} < deg{b(i)} such that a(i)(s) = b(i)(s) · q(i)(s) + r(i)(s).

3. If r(i)(s) = 0 then stop; b(i)(s) is a greatest common divisor.

4. If r(i)(s) 6= 0 then replace a(i)(s) by b(i)(s) and b(i)(s) by r(i)(s).

Set i := i+ 1 and go to step 2.

When the GCD is known, the LCM can be determined from the identity (2.3).

REMARK 2.1. In the following we assume that F := R and a polynomial of the

form (2.1) with coefficients in R will be referred to as a real polynomial.

I Representation of polynomials

A real polynomial a(s) may also be represented in vector form as:

a(s) = [a0, a1, . . . , an−1, an] · en(s) (2.5)

where a = [a0, a1, . . . , an−1, an]t ∈ Rn+1 is a vector representative of the polynomial

a(s) and en(s) = [1, s, . . . , sn−1, sn]t. Equivalently, a(s) can be represented as:

a(s) = [an, an−1, . . . , a1, a0] · e′n(s) (2.6)

13



Chapter 2

where a = [an, an−1, . . . , a1, a0]t ∈ Rn+1 and e′n(s) = [sn, sn−1, . . . , s, 1]t.

However, in most GCD methods the representation of a real polynomial relies

on square Toeplitz matrices or companion matrices which provide the means to

formulate a representation in matrix terms of the standard factorization of the

GCD of a set of polynomials [22, 59].

Toeplitz matrix. The Toeplitz matrix of order n associated to the polynomial

a(s) of degree n is the (n+ 1)× (n+ 1) matrix of the form:

Ta =



a0 0 0 . . . 0

a1 a0 0 . . . 0
...

. . . . . .
...

an−1 an−2 . . . a0 0

an an−1 . . . a1 a0


Companion matrix. Suppose a(s) is a monic polynomial (i.e. an = 1). The

companion matrix associated to the monic polynomial a(s) of degree n is the

n× n matrix of the form:

Ca =



0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

...
...

. . .
...

...

0 0 . . . 1 −an−1


In some cases, the transpose of Ca can be also considered as companion matrix of

a(s).

I Representation of sets of polynomials

We consider now a set of several real polynomials of the form:

Pm,n =
{
pi(s) ∈ R[s], i = 1, 2, . . . ,m with n = max

i
(deg{pi(s)}) ≥ 1

}
(2.7)

where pi(s) = ai,0 +ai,1 s+ . . .+ai,n−1 s
n−1 +ai,n s

n, and ai,n 6= 0. Each polynomial

pi(s) has a vector representative of the form:

p
i

= [ai,0, ai,1, . . . , ai,n−1, ai,n]t ∈ Rn+1 , i = 1, 2, . . . ,m

and therefore the set Pm,n may be associated with a vector set:

Pm,n =
{
p
i
∈ Rn+1, i = 1, 2, . . . ,m

}
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Definition 2.1. A basis (or base) of a vector set V is a set B ⊆ V of linearly

independent vectors that, in a linear combination, can represent every vector of V .

In general, a vector set may have several different bases and there are several

different algebraic methods which determine various types of bases for a given set

of vectors (or a vector space) [18, 35]. Finding an appropriate basis for the vector

set Pm,n is an important issue that affects the performance of a GCD or LCM

computational method.

The vector set Pm,n has a direct matrix representation of the form:

Pm =
[
p

1
, p

2
, . . . , p

m

]t
=


a1,0 . . . a1,n

...
. . .

...

am,0 . . . am,n

 ∈ Rm×(n+1)

A polynomial vector p(s) = [p1(s), p1(s), . . . , pm(s)]t may always be associated

with the set Pm,n and this vector can be written in the form:

p(s) = Pm · en(s)

For the set Pm,n the polynomial vector p(s) is a vector representative and the

matrix Pm will be called the direct basis matrix of the polynomial set Pm,n, which

is formed directly from the coefficients of the polynomials without transformations.

(Throughout this thesis, Pm will simply be referred to as “basis matrix”.)

The formulation of an appropriate matrix for the representation of a given a

set of polynomials Pm,n is crucial for the development of an efficient matrix-based

method for computing the GCD or LCM of the set. A broad class of GCD

methods relies on matrices with special structure. Sylvester and Bézout matrices

are the most common types of matrices which are used in several GCD methods,

where procedures for the computation of the rank and nullity of these matrices

are essential parts.

Definition 2.2. Let A be an m× n real matrix.

i) The subspace spanned by the row vectors of A is called the row space of

A. The subspace spanned by the column vectors of A is called the column

space of A.

ii) The rank of A, denoted by ρ(A), is the dimension of the column space of

A. The matrix is said to have full rank, if ρ(A) = min{m,n}. Otherwise it

is rank deficient. A square matrix An ∈ Rn×n is nonsingular, if ρ(An) = n.

Otherwise it is singular.

iii) The space Nr(A) = {v ∈ Rn : Av = 0} is called the right nullspace of A.

The dimension of Nr(A) is called the nullity of A and is denoted by n(A). It
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holds ρ(A) + n(A) = n. Similarly, the space Nl(A) = {u ∈ Rm : utA = 0}
is called the left nullspace of A.

For the following definitions let us consider two polynomials a, b ∈ R[s] such

that:

a(s) = an s
n + an−1 s

n−1 + . . .+ a1 s+ a0 , deg{a(s)} = n

b(s) = bk s
k + bk−1 s

k−1 + . . .+ b1 s+ b0 , deg{b(s)} = k

Bézout matrix. We assume that n = k. The Bézout matrix (or Bézoutian) of

order n associated to a(s) and b(s) is a n× n matrix obtained as follows:

Bn(a, b) = [ci,j]i,j=1,2,...,n

where each element ci,j is given by

ci,j =

min{i,n+1−j}∑
t=0

(
aj+t−1 bi−t − ai−t bj+t−1

)
, for i, j = 1, 2, . . . , n

The Bézout matrix of order n has the next basic properties:

• Bn(a, b) is symmetric as a matrix,

• Bn(a, b) = −Bn(b, a),

• Bn(a, a) = 0,

• Bn(a, b) has full rank if and only if a(s) and b(s) are coprime.

Sylvester matrix. The Sylvester matrix associated to a(s) and b(s) is the

(n+ k)× (n+ k) matrix obtained as follows:

S(a, b) =



an an−1 . . . a1 a0 0 . . . 0

0 an an−1 . . . a1 a0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 an an−1 . . . a1 a0

bk bk−1 . . . b1 b0 0 . . . 0

0 bk bk−1 . . . b1 b0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 bk bk−1 . . . b1 b0



 k lines

 n lines

An important property of the Sylvester matrix S(a, b) is that its rank ρ
(
S(a, b)

)
,

which in simple terms is the number of linear independent columns, determines
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the degree of the GCD of a(s) and b(s), such that:

deg{gcd{a, b}} = n+ k − ρ
(
S(a, b)

)
(2.8)

The determinant of S(a, b) is called the resultant of a(s) and b(s) and, hence, a

Sylvester matrix is also referred to as a resultant matrix. An extended form of the

Sylvester matrix for sets of many polynomials is presented in Chapter 5.

2.2.1 Algebraic tools for numerical computations

I Eigenvalues, Characteristic polynomial, and Matrix Pencils

Let A ∈ Rn×n and I the n× n identity matrix. Then the polynomial

pn(λ) = det(λ I − A) , λ ∈ C

is called the characteristic polynomial of A. The zeros of the characteristic

polynomial are called the eigenvalues of A. Equivalently, λ is an eigenvalue of A

if and only if there exists a vector v ∈ Rn such that Av = λ v. The vector v is

called a right eigenvector and similarly the vector u ∈ Rn for which utA = ut λ is

called a left eigenvector. It holds ut v = 1.

Let A,B ∈ Rn×n, then a linear matrix pencil is the matrix defined as

T (s) = sA−B

for s ∈ R (or s ∈ C). Matrix pencils play an important role in numerical

linear algebra. A frequent problem that arises in several algebraic computational

methods relates to the computation of the eigenvalues of a matrix pencil. We

call eigenvalues of a matrix pencil T (s) all numbers s for which the determinant

det(sA−B) = 0. The problem of finding the eigenvalues of a pencil is known as

the generalized eigenvalue problem [27] and has numerous applications. A special

GCD method, presented in [45, 59], is based on matrix pencil theory.

I Singular value decomposition

The singular value decomposition (SVD) is a special factorisation method for

matrices and it is one of the most important methods in numerical linear algebra

with a wide range of applications. The development of the theory of the SVD

began in the 19th century, but its use became widespread after 1965 when G.

H. Golub, W. Kahan, and C. Reinsch showed us how to compute the SVD in

an efficient and numerically stable way [26]. The determination of the rank of

a matrix (particularly the numerical rank and nearness to rank deficiency), the

computation of orthonormal bases for the row and column space of a matrix,
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the computation of the inverse or pseudo-inverse of a matrix, and solving linear

least-squares problems, or linear systems are some of the problems that the SVD

can handle very effectively even when numerical inaccuracies in the data are

present [18, 27]. A number of significant properties of the SVD are summarised

below.

Definition 2.3. i) An n× n matrix A is said to be invertible, if there exists

a n× n matrix B such that AB = BA = In, where In denotes the n× n
identity matrix. The matrix B is called the inverse of A and it is denoted

by A−1.

ii) An n × n matrix is said to be orthogonal, if AAt = AtA = In, where At

denotes the n× n transpose of A. In this case A−1 = At.

Theorem 2.2 ([18, 27]). Let A be a real m× n matrix (A ∈ Rm×n). Then, there

always exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

U tAV =

[
Σ1 0

0 0

]
= Σ

where Σ1 ∈ Rr×r is a nonsingular diagonal matrix. The diagonal entries of

Σ ∈ Rm×n are all non-negative and can be arranged in nonincreasing order. The

number r of non-zero diagonal entries of Σ equals the rank of A.

The decomposition A = U ΣV t is known as the singular value decomposition

of A. The diagonal entries of Σ are called the singular values of A and are denoted

by σi, i = 1, 2, . . . , r. The columns of U are called left singular vectors and those

of V are called right singular vectors.

The above theorem implies that if r = ρ(A), then there are exactly r positive

singular values. These are actually the positive square roots of the nonzero

eigenvalues of the matrix AtA (or AAt) [27]. If r < min{m,n}, the remaining

singular values are zero. Note that the singular values of a matrix are uniquely

determined, but the singular vectors are not unique.

Corollary 2.1. A matrix A ∈ Rn×n is nonsingular if and only if all its singular

values are different from zero.

An efficient numerical algorithm for the computation of the SVD, which is

today a standard algorithm for computing singular values and singular vectors, is

known as the Golub-Kahan-Reinsch algorithm (GKR-SVD) [26, 27]. The algorithm

involves numerical stable procedures such as matrix bidiagonalisation and implicit

QR factorisation [18]. A variant, which is more efficient in certain cases, was

proposed by Chan in [13] and a method for partial singular value decomposition

was presented in [76].
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The SVD has become an effective tool in handling various important problems

arising in a wide variety of application areas, such as control theory, signal and

image processing, network theory, pattern recognition, and robotics. Particularly

in control theory, the problems requiring the use of SVD include controllability

and observability, realisation of state-space models, balancing, robust feedback

stabilization, model reduction and several others related problems. Furthermore,

the SVD is the most effective tool in solving least-squares and generalized least-

squares problems [25, 28].

I Compound matrices

Compound matrices [56] are useful algebraic tools that are used in certain GCD

methods. The following are necessary to describe the notion of compound matrices

[46, 59].

a) Qp,n denotes the set of strictly increasing sequences of p integers (1 ≤ p ≤ n)

chosen from 1, . . . , n. The number of the sequences which belong to Qp,n

is
(
n
p

)
. If α, β ∈ Qp,n we say that α precedes β (α < β), if there exists an

integer t (1 ≤ t ≤ p) for which α1 = β1, . . . , at−1 = βt−1, αt < βt, where

αi, βi denote the elements of α and β. This describes the lexicographic

ordering of the elements of Qp,n. The set of sequences Qp,n will be assumed

with its sequences lexicographically ordered and the elements of the ordered

set Qp,n will be denoted by ω.

b) Suppose A = [ai,j ] ∈ Rm×n, let k, p be positive integers satisfying 1 ≤ k ≤ m,

1 ≤ p ≤ n and let ω = (i1, . . . , ik) ∈ Qk,m and ω̃ = (j1, . . . , jp) ∈ Qp,n. Then,

A[ω|ω̃] ∈ Rk×p denotes the submatrix of A which contains the rows i1, . . . , ik

and the columns j1, . . . , jp.

c) Let A ∈ Rm×n and 1 ≤ p ≤ min{m,n}, then the pth compound matrix of A

is the
(
m
p

)
×
(
n
p

)
1 matrix whose entries are ci,j = det{A[ωi−1|ω̃j−1]}, where

ωi−1 ∈ Qp,m, ω̃j−1 ∈ Qp,n for 1 ≤ i ≤
(
m
p

)
and 1 ≤ j ≤

(
n
p

)
. This matrix will

be denoted by Cp(A).

I Minors of matrices

Let A be an m × n matrix and p an integer with 0 < p ≤ min{m,n}. A p × p
minor of A is the determinant of a p × p matrix obtained from A by deleting

m− p rows and n− p columns. Since there are
(
m
p

)
1 ways to choose p rows from

m rows, and there are
(
n
p

)
1 ways to choose p columns from n columns, there are

a total of
(
m
p

)
·
(
n
p

)
minors of size p× p.

1
(
k
p

)
= k(k−1)(k−2)...(k−p+1)

p(p−1)(p−2)...1 for k = m or n.
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The (i,j) minor (usually denoted by Mij) of an n × n square matrix A is

defined as the determinant of the (n− 1)× (n− 1) matrix formed by removing

from A its ith row and jth column. An (i,j) minor Mij is also called the minor of

the element aij of matrix A.

2.2.2 Basic concepts from Linear Systems

We summarise here the fundamentals of linear systems which are essential for

describing the work related to GCD and LCM methods that have been developed

by using concepts from systems theory [45, 48]. Basic definitions and tools are

introduced, related to important properties of linear systems, such as system poles

and zeros, controllability, observability, and stability.

A linear system may be represented in terms of first order differential equations

as

S(A,B,C,D) :
ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) +Du(t)
(2.9)

where the variable t represents time, x(t) is the state vector, u(t) is the input vector

and y(t) is the output vector. The matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, and

D ∈ Rm×p are the state, input, output, and feedforward matrices, respectively. In

system matrix form, we can represent the system by:

P (s) =

[
s I − A −B
−C −D

]
(2.10)

or by the transfer function model:

G(s) = C (s I − A)−1B +D (2.11)

which is an m × p polynomial matrix. The 4-tuple (A,B,C,D) is said to be a

realisation of G(s). The matrix P (s) is a matrix pencil entirely characterising the

state-space model and it is known as the Rosenbrock System Matrix Pencil [65].

For the state-space model S(A,B,C,D) of which is excited by an initial

condition x(0) = x0 and a control input u(t), the corresponding solutions for the

state and output trajectories x(t), y(t) are given by [1] :

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ (2.12)

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t) (2.13)

Taking Laplace transforms of (2.9), the following frequency domain representations
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of the solutions are obtained:

x(s) = (sI − A)−1x0 + (sI − A)−1Bu(s) (2.14)

y(s) = C(sI − A)−1x0 +
(
C(sI − A)−1B +D

)
u(s) (2.15)

I Controllability, Observability

Let us consider a system S(A,B,C,D) described by the equation (2.9). We say

that the system is controllable if given any initial state x(t0) = x0, there exists a

finite time t1 > t0 and a control u(t) defined on t0 ≤ t ≤ t1, such that x(t1) = 0.

Therefore, controllability refers to the ability of a system to transfer the state

from x0 to the zero state in finite time.

Theorem 2.3 ([1]). The pair (A,B) is controllable, if and only if

rank
([
B,AB,A2B, . . . , An−1B

])
= n

The system (2.9) is said to be observable, if for any state x(t0) = x0 and given

control vector u(t) knowledge of y(t) on t0 ≤ t ≤ t1 is sufficient to determine

x0. Therefore, observability means that we can determine the initial state of the

system for a suitable measurement of the output y(t). The notion of observability

is dual to that of controllability. The dual system of (2.9) is defined as the system:

S(At, Ct, Bt, Dt) :
ẋd(t) = At xd(t) + Ct ud(t)

yd(t) = Bt xd(t) +Dt ud(t)
(2.16)

Theorem 2.4 ([4]). The system described in (2.9) is observable if and only if its

dual system (2.16) is controllable. Thus, the pair (A,B) is observable if and only

if the pair (At, Ct) is controllable, that is :

rank
([
Ct, AtCt, . . . , (At)n−1Ct

])
= n

There are tests for controllability and observability that involve the eigenvalues

and the eigenvectors of A. These tests are particularly useful both as theoretical

and computational tools. We can also check controllability and observability of a

system in the following ways [1] :

Rank tests for controllability and observability :

• The pair (A,B) is controllable, if and only if

rank
(

[λ I − A,B]
)

= n

for all eigenvalues λ of A.
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• The eigenvalue λi is an uncontrollable eigenvalue of A, if and only if

rank ([λi I − A,B]) < n

• The pair (A,B) is observable, if and only if

rank

([
λ I − A
C

])
= n

for all eigenvalues λ of A.

• The eigenvalue λi is an unobservable eigenvalue of A, if and only if

rank

([
λi I − A

C

])
< n

The uncontrollable, unobservable, uncontrollable and unobservable eigenvalues

are also referred to as input, output, and input-output decoupling zeros (idz,odz,i-

odz) [65] and the corresponding sets, including multiplicities, are denoted by

ZID, ZOD, ZIOD, respectively. There exist more definitions of controllability and

observability, which can be found in [1, 38, 50, 65]. Alternative algebraic tests

based on the restricted pencils are given in [39].

I Poles and Zeros, Pole and Zero polynomials

Classical control design techniques are based on the concepts of poles and zeros

of a rational function. Every rational transfer function can be expressed as a

polynomial matrix (i.e. a matrix whose elements are univariate polynomials),

divided by a common denominator polynomial. So, every polynomial matrix can

be reduced to a canonical form known as the Smith form [24].

Definition 2.4. A polynomial matrix is called unimodular if it has an inverse

which is also a polynomial matrix.

There are three elementary operations which can be performed on polynomial

matrices:

• Interchange of any two rows, or columns.

• Multiplication of one row or column by a nonzero constant.

• Addition of a polynomial multiple of one row or column to another.

Each of these elementary operations can be represented by multiplying a poly-

nomial matrix by a suitable matrix, called an elementary matrix. It is easy to

show that all elementary matrices are unimodular [24]. Two (polynomial or
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rational) matrices P (s) and Q(s) are equivalent if there exist sequences of left

{L1(s), L2(s), . . . , Ll(s)} and right {R1(s), R2(s), . . . , Rr(s)} elementary matrices

such that

P (s) = L1(s)L2(s) · · · , Ll(s)Q(s)R1(s)R2(s) · · · , Rr(s)

The next result states that every polynomial matrix is equivalent to a diagonal

polynomial matrix known as the Smith form [24].

Theorem 2.5. Let P (s) be a polynomial matrix of normal rank r (i.e. of rank r

for almost all s). Then, P (s) may be transformed by a sequence of elementary row

and column operations into a pseudo-diagonal polynomial matrix PS(s) having the

form:

PS(s) = diag {ε1(s), ε2(s), . . . , εr(s), 0, . . . , 0}

in which each εi(r), i = 1, 2, . . . , r is a monic polynomial satisfying the divisibility

property εi(s)|εi+1(s) for i = 1, 2, . . . , r − 1 (i.e. εi(s) divides εi+1(s) without

remainder). Moreover, if we define the determinantal divisors

D0(s) = 1

D1(s) = GCD of all i× i minors of P (s)

where each GCD is normalised to be a monic polynomial, then

εi(s) =
Di(s)

Di−1(s)
, i = 1, 2, . . . , r

The matrix PS(s) is the Smith form of P (s), and the εi(s) are called the invariant

factors of P (s).

It is clear that the Smith form of a polynomial matrix is uniquely defined, and

that two equivalent polynomial matrices have the same Smith form. The Smith

form is thus a canonical form for a set of equivalent polynomial matrices. This

can be extended to rational matrices [65].

Theorem 2.6. Let G(s) be a rational matrix of normal rank r. Then G(s)

may be transformed by a series of elementary row and column operations into a

pseudo-diagonal rational matrix of the form:

M(s) = diag

{
ε1(s)

ψ1(s)
,
ε2(s)

ψ2(s)
, . . . ,

εr(s)

ψr(s)
, 0, . . . , 0

}
in which the monic polynomials {εi(s), ψi(s)} are coprime for each i and satisfy

the divisibility properties εi(s)|εi+1(s) and ψi+1(s)|ψi(s) for i = 1, 2, . . . , r − 1.

M(s) is the Smith McMillan form of G(s).
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We now define the poles and zeros of a transfer function matrix by means of

the Smith-McMillan form [65].

Definition 2.5. Let G(s) be a rational transfer function matrix with Smith-

McMillan form M(s). The pole p(s) and zero z(s) polynomials, respectively, are

defined as

p(s) = ψ1(s)ψ2(s) · · ·ψr(s) (2.17)

z(s) = ε1(s) ε2(s) · · · εr(s) (2.18)

The roots of p(s) and z(s) are called the poles and zeros of G(s), respectively.

In other words, the poles of G(s) are all the roots of the denominator poly-

nomials ψi(s) of the Smith-McMillan form of G(s). If p0 is a pole of G(s), then

(s − p0)
ν must be a factor of some ψi(s). The number ν (ν ≥ 1) is called the

multiplicity of the pole, and if ν = 1 we say that p0 is a simple pole. Zeros and

their multiplicity are defined similarly, in terms of the numerator polynomials

εi(s) of the Smith-McMillan form.

REMARK 2.2. If G(s) is square, then det(G(s)) = c
z(s)

p(s)
for some constant c.

In this case, although the pair of polynomials {εi(s), ψi(s)} is coprime for each

i = 1, 2, . . . , r, it is possible that there exist common factors between p(s) and

z(s) which cancel out in forming det(G(s)).

Definition 2.6. The degree of the pole polynomial p(s) is the McMillan degree

of G(s).

Zeros defined via the Smith-McMillan form are often called transmission zeros,

in order to distinguish them from other kinds of zeros which have been defined.

For a single input, single output (SISO) system represented by a rational transfer

function G(s), where G(s) =
n(s)

d(s)
and n(s), d(s) are coprime polynomials with

deg{n(s)} = r and deg{d(s)} = n, we define as finite poles the roots of d(s) and

as finite zeros the zeros of n(s). If r < n we say that G(s) has an infinite zero of

order n− r, and if r > n, then G(s) has a infinite pole with order n− r.
Poles and zeros are also related to the eigenvalues of the system matrix A.

The eigenvalues and eigenvectors of the matrix A define the internal dynamics of

the system S(A,B,C,D). For every eigenvalue λ of A we have two eigenvalue-

eigenvector problems:

Av = λ v , (2.19)

wtA = wtλ , wtv = 1 (2.20)

The triple (λ, v, wt) is called a system mode. If φ(A) is the set of distinct eigenvalues,

then the structure of λ ∈ φ(A) is defined by the λ-Segré characteristic S(λ) =
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{νi, i ∈ q̃ ⊂ N}, that is the sequence of dimensions of λ-Jordan blocks in the

Jordan form of A. Alternatively, S(λ) is defined by the set of degrees of the

(s−λ)ν type of the Smith form of sI−A. Then
∑q

i=1 νi = p is called the algebraic

multiplicity and q is the geometric multiplicity of λ. The maximal of all geometric

multiplicities of the eigenvalues of A is referred to as the Segré index of A.

Definition 2.7. The set of eigenvalues of the matrix A, which are the roots of the

characteristic polynomial of A, are called the system internal poles, or the system

eigenvalues. The roots of the pole polynomial of G(s) are called the external

system poles or system poles.

Definition 2.8. The zeros of the system are defined as those frequencies s0 ∈ C
for which there exists an input u(t) = u0 e

s0t such that, given zero initial conditions

for the state of the system x(t), the output y(t) is zero.

The above dynamic characterisation leads to a matrix pencil characterisation

of zeros [44]. A linear system may also have poles and zeros at infinity ∞, which

indicate that G(∞) loses rank. Poles are associated with resonance phenomena

(explosion of the gain) and zeros are associated with antiresonance phenomena

(vanishing of the gain). In this sense, the notions of poles and zeros are dual and

it is this basic property that motivates a number of definitions and problems that

relate to multivariable poles and zeros [41, 55].

I Internal-External and Total stability

The most important concept and property for any system is that of stability, which

has to do with the behaviour of all trajectories which may be generated for families

of initial conditions and control input. For linear, time invariant systems the

notions of stability, which are more frequently used are defined next. We consider

stability of equilibrium points, whereas stability of motion is always reduced to

the previous case. Note that the origin (x = 0) is always an equilibrium point for

S(A,B,C,D) models.

Definition 2.9 ([1]). Given a system of first-order differential equations :

ẋ = F(t, x) , x ∈ Rn

a point xe ∈ Rn is called an equilibrium point of the system (or simply an

equilibrium) at time t0 > 0, if F(t, x0) = 0 for all t > t0.

Definition 2.10 ([1]). The state-space model S(A,B,C,D) will be called:

i) Internally stable in the sense of Lyapunov (LIS), if for any initial x(0) the

zero input response (free motion, u(t) = 0) remain bounded for all t ≥ 0.
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ii) Asymptotically internally stable, if for any initial state x(0) the zero input

response remains bounded for all t ≥ 0 and tends to zero as t→∞. This

property will be referred to in short as internal stability (IS).

iii) Bounded Input Bounded Output stable (BIBO), if for any bounded input

the zero state output response (x(0) = 0) is bounded.

iv) Totally stable (TS) if for any initial state x(0) and any bounded input u(t),

the output, as well as all state variables, are bounded.

The notion of BIBO stability refers to the transfer function description and

may also be called as external stability. A number of criteria for these properties,

based on eigenvalues-poles, are summarised below.

Theorem 2.7 ([15]). Consider the system S(A,B,C,D) with G(s) transfer func-

tion and let {λi = σi + iωi, i ∈ ñ ⊂ N}, {pj = σ̄j + i ω̄j, j ∈ k̃ ⊂ N} be the sets

of eigenvalues, poles respectively. The system has the following properties:

i) Lyapunov internally stable, if and only if σi ≤ 0, for all i ∈ ñ, and those

with σi = 0 have a simple structure (algebraic multiplicity is equal to the

geometric multiplicity).

ii) Asymptotically internally stable, if and only if σi < 0, for all i ∈ ñ.

iii) BIBO stable, if and only if σ̄j < 0, for all j ∈ k̃.

iv) Totally stable, if it is Lyapunov internally stable and BIBO stable.

Note that IS implies BIBO-stability and thus TS. BIBO-stability does not

always imply IS, since transfer function and state space are not always equivalent.

If the two representations are equivalent (when system is both controllable and

observable), then BIBO-stability is equivalent to IS and thus TS.

Eigenvalues and poles are indicators of stability. Equivalent tests for stability,

without computing the eigenvalues or poles, are defined on the characteristic or

pole polynomial by the Routh-Hurwitz conditions [24].

2.2.3 Almost zeros of a set of polynomials

The subject of nongeneric computations has as one of its most important topics

the study of almost zeros. A summary of the notion is given next [46]. The

computational issues and the feedback significance of the notion (trapping disks

for multiparameter root locus) is given in [43]. We consider the set Pm,n as defined

in (2.7) (abbreviated as P), the respective vector representative p(s), and the

basis matrix Pm.
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When s ∈ C, p(s) defines a vector valued analytic function with domain C
and co-domain Cm; the norm of p(s) is defined as a positive real function with

domain C, such that

‖p(s)‖ =
√
pt(s∗) p(s) =

√
etn(s∗)P t

m Pm e
t
n(s) (2.21)

where s∗ is the complex conjugate of s. Note, that if q(s) = s− c is a common

factor of the polynomials pi(s), i = 1, 2, . . . ,m, then pi(c) = 0, p(c) = 0 and thus

‖p(c)‖ = 0. This observation leads to the following definition.

Definition 2.11. Let P be a set of polynomials of R[s], p(s) be the vector

representative and let φ(σ, ω) = ‖p(s)‖, where s = σ + iω ∈ C. An ordered

pair (zk, εk), zk ∈ C, εk ∈ R and εk ≥ 0, defines an almost zero of P at s = zk

and of order εk, if φ(σ, ω) has a minimum at s = zk with value εk. From the set

Z = {(zk, εk), k = 1, 2, . . . , r} of almost zeros of P the element (z∗, ε∗) for which

ε∗ = min{εk, k = 1, 2, . . . , r} is defined as the prime almost zero of P .

It is clear that if P has an exact zero, then the corresponding ε is zero. Clearly

the previous definition is an extension of the concept of exact zero to that of the

almost zero. The magnitude of ε at an almost zero s = z provides an indication

of how well z may be considered as an approximate zero of pi. However, that ε

depends on the scaling of the polynomials pi(s) in P by a constant c ∈ Rr {0}.
The general properties of the distribution of the almost zeros of a set of polynomials

P on the complex plane were considered in [43] and are summarized below.

Theorem 2.8. The prime almost zero of P is always within the circle centred at

the origin of the complex plane and with radius p∗, defined as the unique positive

solution of the equation:

1 + r2 + . . .+ r2n =
γ2

γ2
= θ2

where γ, γ denote the maximum and minimum singular values of Pm, respectively.

The term θ will be referred to as the condition number of P. The disc [0, p∗]

within which the prime almost zero lies, is referred to as the prime disc of P . The

following general results may be stated for the radius p∗.

Proposition 2.1. If n is the maximum degree and θ the condition number of P,

then the radius p∗ = f(n, θ) of the prime disc is a uniquely defined function of n

and θ and it has the following properties:

1. The radius p∗ is invariant under the scaling of the polynomial of P by the

same nonzero constant c.

2. The radius p∗ is monotonically decreasing function of n and
1

θ
.
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3. The radius p∗ is within the following intervals:

i) If n+ 1 > θ2, then 0 < p∗ < 1

ii) If n+ 1 < θ2, then 2 < p∗ <
√
θ

iii) If n+ 1 = θ2, then p∗ = 1

The conditioning of the polynomials plays an important role in determining

the position of the prime almost zero. In fact, the prime almost zero is always

in the vicinity of the origin of the complex plane. The uncertainty in its exact

position is measured by the radius of the prime disc. Well conditioned sets of

polynomials P (i.e. θ ≈ 1) have a very small radius prime disc even for very small

values of the degree n. Badly conditioned sets of polynomials P (i.e. θ >> 1)

have a very large radius prime disc even for large values of the degree n. The

computation of almost zeros may be achieved by deriving the necessary conditions

for the minimum [43]. The position of the almost zero varies according to the

scaling which is used. Therefore, instead of looking for approximate common

roots we can look for approximate common factors and this extends to the harder

problem of calculating an approximate greatest common divisor.

2.2.4 Basic concepts of numerical algorithms

In mathematics, computer science, and related subjects, an algorithm is an

effective method for solving a problem expressed as a finite sequence of steps.

Each algorithm is a list of well-defined instructions for completing a task. Starting

from an initial state, the instructions describe a computation that proceeds through

a well-defined series of successive states, eventually terminating in a final ending

state.

The most important property for an algorithm is stability. The study of

stability is done by means of round-off error analysis [18, 81]. There are two types

of error analysis: i) forward error analysis and ii) backward error analysis.

In forward error analysis the aim is to see how the computed solution, ob-

tained by the algorithm, differs from the exact solution based on the same data.

Conversely, backward error analysis relates the error to the data of the problem

rather than to the problem’s solution. The following definitions for the forward

and backward stability of an algorithm are given [18].

Definition 2.12. Given an algebraic problem :

a) An algorithm will be called forward stable if the computed solution is close

to the exact solution, in some sense.

b) An algorithm will be called backward stable if it produces an exact solution

to a nearby problem.
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In the present study, by “stability” we will imply “backward stability” and

a “backward stable” algorithm will be referred to as numerically stable or simply

stable. In a general sense, a numerically stable algorithm produces satisfactory

results. However, if the produced results are completely unsatisfactory, this does

not necessarily means that the algorithm is unstable. The accuracy of the input

data and how the solution of the problem will change if the input data contain

some impurities (noise) has a significant impact on the result of an algorithm.

The accuracy or inaccuracy of the computed result relies also on a property of

the problem called conditioning.

Definition 2.13 ([18]). A problem (with respect to a given set of data) is called

ill-conditioned, if a small relative error in data causes a large relative error in

the solution, regardless of the method of solution and algorithm. Otherwise, it is

called well-conditioned.

Therefore, the conditioning of a problem is a property of the problem itself.

If the problem is ill-conditioned, no matter how stable the algorithm is, the

accuracy of the computed solution cannot be guaranteed. However, if a stable

algorithm is applied to an ill-conditioned problem, it should not introduce more

error than what the data warrants. Conversely, when a stable algorithm is applied

to a well-conditioned problem, the computed solution should be near the exact

solution, because stability will guarantee the exact solution of a nearby problem

and well-conditioning will guarantee that the solution to the original problem and

that of the nearby problem are close [18]. A number called the condition number

is usually associated with a problem. The condition number indicates whether

the problem is ill or well conditioned. More specifically, the condition number

gives a bound for the relative error in the solution when a small perturbation is

applied to the input data. For example, for the linear system problem Ax = b

the condition number is Cond(A) = ‖A‖ ‖A−1‖.
Another property that characterises an algorithm is complexity. The complex-

ity of an algorithm refers to the amount of the performed operations (additions,

multiplications). In early computational systems with finite precision the amount

of the performed numerical (floating-point) operations was measured in flops

(1 flop = 1 addition + 1 multiplication). However, with the introduction of

sophisticated symbolic-numeric computational systems this measurement is now

considered outdated, but we may still use the total amount of arithmetic opera-

tions, which are performed by an algorithm, as an indicator of its computational

efficiency. For example, in algorithms involving matrix computations, if we assume

that n is the highest matrix dimension, then an algorithm is considered to be

computationally efficient when the amount of arithmetic operations (symbolic

and numeric) is about n3, and we write O(n3).
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The formulation of an algorithm which combines accuracy and low complexity

is crucial for any algebraic problem. The search for numerically stable and efficient

algorithms with low complexity is also a subject of the current research.

2.3 Methods for the computation of the GCD

of polynomials

The algorithm associated with Euclid’s division method [32] is the oldest known

solution to the problem of computing the GCD. The work of Sylvester in 19th

century was the next development to the problem [5]. The computational methods

for computing the GCD of real univariate polynomials can be separated in two

main categories:

a) The Euclidean type methods which rely on Euclid’s division algorithm and

its variations.

b) The matrix-based methods which are based on the processing of a matrix

formed directly from the coefficients of the given polynomials.

According to the way that the matrix is processed, the matrix-based methods are

separated into those which

i) form a matrix for two polynomials and work on pairwise computations

iteratively,

ii) form and work in direct or iterative way with a matrix that corresponds to

the whole set of polynomials.

Early GCD algorithms were developed using Euclidean-based methods, applied

to two polynomials. A method, which is essentially equivalent to Euclid’s algorithm,

uses the Routh Array algorithm (Fryer 1959) [62]. In 1960, Weinstock [62] proposed

an iterative method that involves polynomial divisions. Blankiship and Brown

also proposed GCD methods for polynomials based on Euclid’s division algorithm

[11, 12]. In 1985, Schönhage introduced the notion of Quasi-GCD [70] and

presented an algorithm which computes a numerical pseudo-remainder sequence

(ai, bi) for a pair of polynomials (a, b) in a weakly stable way, accepting only the

pairs that are well-conditioned (because the others produce instability). The

maximum index i for which (ai, bi) is accepted, gives the Quasi-GCD g = ai

provided that the norm-1 of bi is small enough in a sense précised in [70].

The Euclidean algorithm is efficient when the polynomials have integer coef-

ficients, but it becomes inefficient when the polynomials have coefficients from

the field of real numbers due to the use of finite precision arithmetic, which

introduces numerical errors into the solution. It is proved in practise that Euclid’s
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algorithm does not perform well when the polynomial coefficients are inexactly

known. Considering this problem, Noda and Sasaki (1989) [61, 68] described

a special version of Euclid’s algorithm for computing the GCD of a pair of co-

prime polynomials with inexact coefficients. This approach is amongst the first

attempts to define and compute an approximate GCD of polynomials by means

of symbolic-numeric computations. The proposed iterative algorithm is actually

a naive extension of the traditional algebraic Euclidean algorithm and it was

designed to compute approximate common factors of the input polynomials with

floating-point number coefficients. The principal behind this method, referred to

as the Approximate GCD (AGCD) method [68], is that close roots are calculated

as if they are approximate multiple roots. This method is first applied to solve

ill-conditioned polynomial equations and then, close roots in a given equation are

separated as approximate multiple roots by calculation of the approximate GCD

of the equation and its derivative. The AGCD method is based on the square-free

decomposition of an appropriate polynomial equation by using the polynomial

remainder sequence that is produced by the iterative application of the Euclidean

algorithm to the original pair of polynomials [68, 69].

In recent years there has been a substantial effort to develop effective GCD

algorithms which are suitable for incorporation into a computer algebra package.

The use of finite precision arithmetic in computer algebra makes the extension of

the Euclidean algorithm to sets of many polynomials a rather difficult task. The

iterative application of the Euclidean algorithm to two polynomials at a time, often

results in a total numerical error which might exceed the machine’s fixed numerical

tolerance. On the other hand, the developed matrix-based methods tend to be more

effective in handling sets of several polynomials and producing solutions of better

numerical quality. However, the implementation of such algorithms in a software

programming environment needs a lot of attention due to the accumulation of

additional numerical errors other than the errors introduced by the input data.

One of the first matrix-based methods was proposed by Blankinship in 1963 [11].

The use of matrices in the problem of computing the GCD of many polynomials

appears also in Barnett’s work [3, 5], who developed a technique of computing the

degree and the coefficients of the GCD, using companion and Sylvester matrices.

The development of numerical stable GCD algorithms which can deal with

polynomials of inexact data has been intensely studied the past thirty years

[8, 16, 20, 42, 43, 46, 53, 61, 63, 67, 83, 85]. The various techniques, which

have been developed for the computation of approximate solutions, are based on

methodologies, where exact properties of these notions are relaxed and appropriate

solutions are sought by using a variety of numerical tests. The basis of such

approaches is the reduction of the general algebraic problems to equivalent linear

algebra problems which are suitable for study as approximation problems. The
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definition of almost zeros [43] gave another perspective to the computation of the

GCD of polynomials. The notion of almost zeros is linked to the almost GCD

problem and it is based on a relaxation of the exact notion of a zero. This has

provided the motivation for the definition of approximate solutions to the harder

problem, which is the definition and computation of approximate GCDs. The

definition of almost zeros is now taking a different formulation with the recent

definition of such problems as distance problems in a projective space [21, 42].

A fundamental problem is the difficulty in characterising the accuracy of

effectiveness of such methods, as well as, determining whether such solutions

are optimal in some sense with respect to all other techniques that may offer

approximate solutions. A number of GCD algorithms specifically developed to

manipulate sets of several polynomials with inexact coefficients have as common

characteristic a method which primarily performs singular value decomposition

(SVD) [27] to estimate the “best” degree of the GCD and continues with the

computation of the coefficients of the approximate GCD.

The main methods which formulate algorithms with common characteristics

the manipulation of sets of several polynomials and the use of the SVD process,

will be described in the following sections.

2.3.1 The Matrix Pencil method

The Matrix Pencil method (MP) is a direct matrix-based method which relies on

the characterisation of the GCD of a set Pm,n of m > 2 polynomials of maximum

degree n > 1 as the output decoupling zero polynomial of a linear system S(Â, Ĉ)

that may be associated with Pm,n. The theoretical basis of the Matrix Pencil

methodology derives from the system properties of zeros [44, 55], where the GCD

characterisation is reduced to. The computation of the GCD is reduced to finding

the finite zeros of the pencil T (s) = sW − ÂW , where W is a basis matrix of the

unobservable subspace W of S(Â, Ĉ). If k = dim{W}, the GCD is determined as

any nonzero entry of the kth compound Ck(sW − ÂW ). The method defines the

exact degree of GCD, works satisfactorily with any number of polynomials, and

evaluates successfully approximate solutions.

The algorithm of the MP method uses stable algebraic processes, such as SVD

for computing the right Nr and left Nl nullspaces of appropriate matrices. The

main target of the MP algorithm is to form the GCD pencil T (s) and specify any

minor of maximal order, which gives the required GCD. This specification can be

done symbolically. The MP method has been presented and analysed in [45]. An

earlier comparison of the MP method with other existing methods can be found

in [59] and a new approach to its numerical implementation has been given in

[49, 72].
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I The standard Matrix Pencil method

For a given polynomial set Ph+1,n, let Ph+1 be the basis matrix of the set formed

directly from the coefficients of the polynomials of the set. The following theorem

underlie the Matrix Pencil method.

Theorem 2.9 ([45]). Let the set of univariate polynomials Ph+1,n, Ph+1 a basis

matrix with rank(Ph+1) = ρ < n + 1, M ∈ R(n+1)×µ with µ = n − ρ + 1 a basis

matrix for the right nullspace Nr(Ph+1) of Ph+1, and M1 ∈ Rn×µ the submatrix of

M obtained by deleting the last row of M . If p(s) ∈ Ph+1,n is any monic polynomial

of degree n, Â ∈ Rn×n is the associated companion matrix, and Ĉ ∈ R(ρ−1)×n with

rank(Ĉ) = ρ− 1 is such that ĈM1 = 0, then the unobservable modes of the system

S(Â, Ĉ) : ẋ = Âx, y = Ĉx (2.22)

with multiplicities included define the roots of the GCD of Ph+1,n. Then S(Â, Ĉ)

will be called the associated system of Ph+1,n and the observability matrix

Q(Â, Ĉ) =
[
Ĉt, ÂtĈt, . . . , (Ât)n−1Ĉt

]t
∈ Rn(ρ−1)×n (2.23)

will be referred to as a reduced resultant of Ph+1,n.

REMARK 2.3. If Nr(Ph+1) = {0}, then the set Ph+1,n is coprime. Equivalently,

if S(Â, Ĉ) is observable, Ph+1,n is coprime.

Let now Q(Â, Ĉ) be the corresponding reduced resultant, rank(Q(Â, Ĉ)) < n

and W , Nr(Q(Â, Ĉ)) 6= {0}, k = dim{W} and W a basis matrix for W. The

pencil T (s) = sW−ÂW characterizes the set Ph+1,n and it is called the associated

pencil of the set. The following result forms a basis for the numerical computation

of the GCD :

Corollary 2.2 ([59]). Let T (s) = sW − ÂW ∈ Rn×k[s] be the associated pencil of

Ph+1,n. If v(s) is the GCD of Ph+1,n and Ck(·) denotes the kth compound matrix,

then

Ck(T (s)) = v(s) · Ck(W )

The essence of the numerical implementation of the Matrix Pencil algorithm

is the determination of the null space Nr(Q(Â, Ĉ)) and its nullity n(Q(Â, Ĉ)) =

dim{Nr(Q(Â, Ĉ))}. The computation of the approximate null space of a matrix

is more important here, since we care about approximate solutions. The following

result suggests one method for calculating the numerical ε-nullity of a matrix from

its singular values.

Theorem 2.10 ([18]). For a matrix A ∈ Rm×n and a specified tolerance ε, the

numerical ε-nullity of A is nε(A) = {number of singular values of A ≤ ε}.
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The SVD can also provide a basis for the right null space. In the Matrix

Pencil method the numerical ε-nullity defines the ε-GCD degree. More specifically,

if k = nε(Q(Â, Ĉ)), it can be proved [45] that, if k = 0, the set of polynomials is

coprime. Otherwise, if T (s) = sW − ÂW = sW − W̃ is the associated pencil

and sWa − W̃a, a ∈ Qk,n is any minor of maximal order such that det(Wa) 6= 0,

then the determinant det(sWa − W̃a) suggests an ε-GCD of degree k.

The above technique often involves the computation of many minors. Each

one of these may lead to different polynomials of degree k, which form the kth

compound matrix Ck(T (s)). Suppose that B is the matrix, which is formed by

the coefficients of the polynomials of Ck(T (s)). Then, it can be proved [45] that,

if B = Λ S J t is the singular value decomposition of B, the polynomial, which

derives from the first row of J , is the best representative of all the polynomial rows

of Ck(T (s)). This polynomial can be accepted as an approximate ε-GCD of the

original set, obtained by the Matrix Pencil algorithm for the specified tolerance ε.

ALGORITHM 2.1. The standard MP Algorithm.

Step 1 : Form the initial basis matrix P := Ph+1 ∈ R(h+1)×(n+1).

Step 2 : Compute a base M ∈ R(n+1)×(n−ρ+1) for the right null space

of P and form M1 := {M without the last row}.
Step 3 : Compute a base Ĉ ∈ R(ρ−1)×n for the left null space of M1.

If rank(Ĉ) > 2 then

let P := Ĉ and repeat Step 1.

end if

Step 4 : Form the companion matrix Â and construct the observability

matrix: Q(Â, Ĉ) =
[
Ĉt, ÂtĈt, . . . , (Ât)n−1Ĉt

]t
∈ Rn(ρ−1)×n

Step 5 : Compute the SVD of Q(Â, Ĉ) = V Σ W
t
.

Select a tolerance ε according to the singular values of Q(Â, Ĉ).

Step 6 : Let k := nε(Q(Â, Ĉ))

If k = 0 then

gcd = 1 quit

else

Form W ∈ Rn×k from the first k columns of W .

Form T (s) := sW − ÂW ∈ Rn×k[s]

Step 7 : Compute the kth compound matrix Ck(T (s)).

Form B from the polynomial rows of Ck(T (s)).

Compute the SVD of B = Λ S J t.

Step 8 : Select the approximate GCD vector from the first column of J .

end if
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Regarding the computational complexity of the algorithm, the SVD procedure

generally requires O(hn2 + 6n3) flops for the computation of the singular values

and the right null space of an h× n matrix [27]. The multiplication of an n× n
companion matrix with another n × q matrix demands O(nq) flops. Thus, the

construction of the observability matrix Q(Â, Ĉ) requires about O(n2ρ) flops.

Since, the computation of the kth compound matrix Ck(T (s)) may involve the

evaluation of the determinant of too many minors, practically we accept the

approximate solution given by anyone of them and this computation requires

O(k3) flops for a k × k matrix. An optimization method can also be employed to

refine the obtained solution.

In terms of numerical stability, the MP method requires two SVD calls and the

construction of the observability matrix. Since the matrix (Â)(k) is computed, the

computation of the product (Ât)(k)Ĉt = (Ĉ(Â)(k))t is stable because the matrix Ĉ

is orthonormal. For the last matrix multiplication it holds [49] :

fl(Ĉ(Â)(k)) = Ĉ(Â)(k) + E, with ‖E‖2 ≤ d2u1‖Ĉ‖2‖Âk‖2 = d2u1‖Âk‖2

where fl(·) denotes the computed floating point number and u1 is of order of unit

round off. A more detailed analysis for the numerical stability of each step of the

above algorithm is presented in [45, 49, 59].

I The Modified Resultant Matrix Pencil method

The Modified Resultant Matrix Pencil method (MRMP) [49, 72] is an improved

version of the standard MP method. The MRMP algorithm is a variation of

the standard MP algorithm which is based on the modified Sylvester matrix S∗

[72] in order to construct a different GCD pencil Z(s) and specify any minor of

maximal order, which gives the required GCD. This process is done symbolically

by using symbolic-numeric computations. The exploitation of the properties of

the modified Sylvester matrix results in the formulation of a faster and more

effective algorithm based on the Matrix Pencil methodology.

ALGORITHM 2.2. The MRMP Algorithm

Step 1 : Define a basis M̃ for the right nullspace of the modified Sylvester

matrix S∗.

Step 2 : Define the Matrix Pencil Z(s) = sM̃1 − M̃2 for the Resultant set,

where M̃1 and M̃2 are the matrices obtained from M̃ by deleting

the last and the first row of M̃ respectively.
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Step 3 : Compute any non-zero minor determinant d(s) of Z(s) and thus

gcd := d(s).

The MRMP method requires [49, 72] :

O

(
(n+ p)3

(
2 log2(n)− 1

3

)
+ (n+ p)2(2mlog2n + p) + 12k(n+ p)2

)
flops, where k is the number of the calls of the SVD step. The computed GCD is

the exact GCD of a slightly perturbed set of the initial polynomials. The final

error is E = E1 + E2, [49, 72] with

‖E1‖F ≤ ϕ(n)u ‖S‖F and

‖E2‖F ≤
(
ϕ(n) + c(h, n) + c(h, n)ϕ(n)u

)
u ‖S‖F

where u is the unit round off error, ϕ(n) is a slowly growing function of n [18] and

c(h, n) is a constant depending on h, n.

2.3.2 Subspace-based methods

The subspace concept is actually very common among several methods for com-

puting the GCD of many polynomials, including the Matrix Pencil method. The

fundamental principle behind subspace methods is the following.

Let Φv be a Toeplitz matrix constructed from the coefficient vector v of the

GCD v(s). Since Φv has full column rank, if there are matrices Y and W , such

that Y = Φv ·W and W has full row rank, then the left nullspace of Φv can

be determined from Y . Since Φv has a Toeplitz structure, the vector v can be

determined uniquely (up to a scalar) from the left nullspace of Φv.

Based on this principle, a family of methods can be derived. The SVD process

applied to a generalized Sylvester matrix is the basic tool for a subspace method,

which allows the left nullspace of Φv to be found. A representative and rather

simple algorithm, which approaches the GCD problem from the subspace concept

directly, is presented in [64] and we shall refer to it as the SS algorithm.

Given a set Ph+1,n of univariate polynomials as defined by (1.1), the first two

steps of the SS algorithm involves the construction of an (h+ 1)(n+ 1)× (2n+ 1)

generalized Sylvester matrix Y from the input polynomials and the computation of

the left null space of the transposed Y t via SVD. If we denote by U0 ∈ R(2n+1)×k the

basis matrix for the computed left null space of Y t and C is the (2n+1)×(2n+1−k)

Toeplitz matrix of a degree k polynomial with arbitrary coefficients, then the GCD

vector is actually the unique (up to a scalar) solution of the system U t
0 C = 0, [64].

Obviously, the degree of the GCD is k = colspan{U0}.
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For the approximate GCD problem, an equivalent and more appropriate way

to compute the GCD vector with the SS algorithm is to construct k Hankel

matrices Ũi ∈ R(k+1)×(2n+1−k), i = 1, . . . , k from the columns of U0, form the

matrix Ũ = [Ũ1, . . . , Ũk] ∈ R(k+1)×k(2n+1−k) and compute a basis matrix V0 for

the left null space of Ũ by singular value decomposition. The last column of V0,

which corresponds to the smallest singular value (expected to be zero), contains

the k + 1 coefficients of the GCD. The obtained GCD can be considered as an

approximate ε-GCD for a tolerance ε equal to the machine’s numerical precision.

However, for a different tolerance ε, we can select a singular value σj from the

singular value decomposition of Y t such that σj > ε · f(h, n) and σj+1 ≤ ε, [17],

and compute an ε-GCD of degree k′ = 2n+ 1− j 6= k.

The computational cost of the SS algorithm is dominated by the SVD of

the generalized Sylvester matrix Y t, which requires O(2h2n3 + 5h2n2) flops, [27].

Additionally, the SVD calculation is numerically stable and therefore the algorithm

behaves very well to inexact data.

2.3.3 Barnett’s method

Barnett’s GCD method [3, 5] is a well known method for computing the GCD

of several polynomials through the construction of the companion matrix of a

properly selected polynomial from the given set and the decomposition of a special

controllability matrix. More precisely, given a set Ph+1,n with polynomials of the

form:

a(s) = sn + an−1s
n−1 + . . .+ a1s+ a0 , a0 6= 0

bi(s) = bi,n−1s
n−1 + . . .+ bi,1s+ bi,0 , i = 1, 2, . . . , h

the companion matrix A of the monic polynomial a(s) of degree n is constructed

and the following matrix polynomials are formed:

bi(A) = bi,pA
n−1 + . . .+ bi,1A+ bi,0 In , i = 1, 2, . . . , h

Then, the next matrix is created:

R = [b1(A), b2(A), . . . , bh(A)]

and, the degree of the GCD of the set Ph+1,n is k = n − ρ(R). This is the

most important theoretical result that forms the basis of Barnett’s method for

computing the GCD of several polynomials [3]. The next theorem provides the

means of creating an algorithmic procedure for the computations of the GCD.
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Theorem 2.11 ([3]). If the rows of R are denoted by r1, r2, . . . , rn, then ri for

i = k + 1, k + 2, . . . , n are linearly independent if

ri =
n∑

j=k+1

xi,j rj , i = 1, 2, . . . , k (2.24)

Then, the unique monic GCD of Ph+1,n is g(s) = sk + c1 s
k−1 + . . . + ck, where

ci = xk+1−i,k+1 for i = 1, 2, . . . , k.

Considering the computation of the GCD of more than two polynomials

without restricting to pairwise computations, the above theorem provided for the

first time an alternative to standard approaches based on Euclid’s algorithm, since

the GCD can be found in a single step by solving the equations (2.24). However,

the method tends to be computationally ineffective for large sets of polynomials

of high degree. An earlier comparison with other methods can be found in [62].

Barnett’s method through Bezoutians [19] for the approximate GCD problem

is a variation of Barnett’s method using Bezout-like matrices and singular value

decomposition, and suggests a very compact way of parametrising and representing

the greatest common divisor of several univariate polynomials. For a given

polynomial set Ph+1,n with inexact data, the algorithm proposed in [19] constructs

an expanded Bezout-like matrix BP by the polynomials of the given set and

computes its singular values σi. If there is an integer k such that

σk > 2n · f
(
ε, a(s), b1(s), . . . , bh(s)

)
> σk+1

for a specified numerical accuracy ε, then an ε-GCD of degree n−k can be obtained.

The coefficients of the n− k degree ε-GCD are computed by solving n− k linear

least-squares problems. In practice, the algorithm is carefully developed to solve

the least-squares problem by the method of normal equations and thus reduce the

problem solving symmetric positive definite linear systems of order k × k. The

algorithm in [19] combines numerically stable algebraic processes, but there is not

an overall stability analysis which may provide bounds for the total numerical

error produced by the algorithm.

2.3.4 Combined methods for certified approximate GCDs

One of the main issues in the approximate GCD problem is the proper estimation

of the degree of the approximate GCD. Various techniques along with certification

theorems (“gap” theorems) have been proposed for the degree of an approximate

GCD. This approach generally involves singular value decomposition of Sylvester

matrices (resultants). Among the Euclidean algorithms that compute exact GCDs,

the subresultant version is claimed to be the most efficient, since it achieves a
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balance between coefficient growth and computational complexity. However, the

variants of Euclid’s algorithm only supply a lower bound on the degree of the GCD.

The efficient processing of the singular values of subresultant matrices leads to the

establishment of a methodology that certifies the maximum-degree approximate

GCD within a tolerance ε [20]. Such methods and algorithms for the computation

of certified approximate GCDs for sets of several polynomials via singular value

decomposition and optimization techniques are described in [16, 17, 20].

Another recently presented GCD algorithm, designed for the computation of

multiple roots of inexact polynomials and extended to the approximate case, is

described in [84, 85]. The algorithm uvGCD in [84] is developed for a pair of

univariate polynomials with inexact coefficients. More specifically, a sequence

of Sylvester subresultants is constructed and the smallest singular values are

calculated by using a modified QR decomposition [85]. When a singular value

σj ≤ ε
√

2j + 2 occurs, then, for the given pair of polynomials, there exists an

approximate GCD of degree k = n− j within tolerance ε > 0. After estimating

the degree k, an approximation v0(s) is obtained by solving a particular linear

system, and the Gauss-Newton iteration is applied to refine and certify the

solution. If n is the maximum degree of the polynomials of the given set, the

cost for solving the previously mentioned linear system is O(n3) flops and, due

to a special QR updating strategy, the total flops for decomposing all Sylvester

subresultant matrices is O(n3). Additionally, the iterative refinement process

requires O
(

1
3
(n− k + 1)3

)
flops, [84, 85].

However, all these methods are developed and analysed for computing the

GCD of two polynomials with inexactly known coefficients, based on the classical

structure of Sylvester matrices [77]. But, although it is assumed that they can be

efficiently extended to sets of more than two polynomials, there is no evidence that

these methods can retain their efficiency to provide certified approximate GCDs

for more than two polynomials, simultaneously. The basic process by which these

methods are extended, involves their iterative application to two polynomials at a

time, until all the polynomials of the set are processed. However, the efficiency

and stability of such an iterative process is questioned, because in every iteration

additional perturbations for the pairs of polynomials of all the previous steps are

introduced indirectly and this accumulation might exceed the fixed tolerance, [67].

2.3.5 Methods for computing the nearest GCD

Another approach, which has similar characteristics with the previously described

approaches to the approximate GCD problem for univariate polynomials, is to

search for perturbed polynomials with a non-trivial common divisor, which are

close enough to the input polynomials. This approach is usually referred to

as the nearest GCD problem and involves the computation of the smallest real
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perturbation which results in the least perturbed polynomials relative to the

polynomials of the original set that have a non-trivial GCD. More precisely, given

two polynomials f, g ∈ R[s] of respective degrees m and n, and r1, r2 ∈ (0,+∞),

we have to find polynomials f̂ , ĝ with ‖f̂‖2 ≤ r1, ‖ĝ‖2 ≤ r2 such that f + f̂ , g+ ĝ

have a common real root and ‖f̂‖2 + ‖ĝ‖2 is minimised. The effort concentrates

on finding a ∈ R and φ, γ ∈ R[s] of degrees m− 1 and n− 1 respectively, such

that f + f̂ = (s− a)φ, g + ĝ = (s− a)γ, ‖f̂‖ ≤ r1, and ‖ĝ‖ ≤ r2. A study of

this problem as well as its variations can be found in [52, 53].

In [67] the developed method involves the efficient processing of singular

values of special generalised Sylvester matrices which correspond to the whole

set of polynomials. The degree of the approximate GCD is also certified by a

gap theorem which is based on the numerical properties of the singular values.

Nevertheless, the computation of the approximate GCD by this method is not

straightforward. The solution is given by a linear system of the form Sy(P̃) · v = 0,

where v denotes the unit vector associated to the smallest singular value of the

generalised Sylvester Sy(P), and Sy(P̃) denotes the generalised Sylvester matrix

of a perturbed set of polynomials P̃ , which is associated with the original set P .

Yet, although the theoretical results in [67] are valuable, there is no evidence for

the numerical stability and performance of the corresponding algorithm.

Methods and algorithms for computing the nearest GCD and a certified ε-GCD

are also presented in [86]. The proposed method refers to a pair of univariate

polynomials with inexact coefficients and it is based on Structured Total Least

Norm (STLN) for constructing the nearest Sylvester matrix of given lower rank.

More specifically, for a given pair of polynomials {a, b} and a positive integer k the

algorithm for the nearest GCD problem forms the Sylvester matrix S of the input

polynomials, S = [BA], and solves the overdetermined linear system AX ≈ B

by using STLN. A minimal Sylvester structured perturbation [F E] is obtained,

such that B + F ∈ range(A+ E), and the solution has Sylvester structure with

rank ≤ n+m− k. When k > 1, the algorithm uses the kth submatrix of S rather

than the whole matrix S, in order to avoid any stability problems. Finally, the

output is a pair of perturbed polynomials {ã, b̃}, with the Euclidean distance

N = ‖ã− a‖2 + ‖b̃− b‖2 reduced to a minimum.

Given a tolerance ε, an ε-GCD can be computed from an appropriate Sylvester

subresultant of a perturbed pair of polynomials, using an iterative process, which

stops when the Euclidean distance N < ε. Next, the obtained ε-GCD is tested

by certification methods [17, 20] for the maximum degree. More useful details

about the algorithm’s function can be found in [86]. The algorithm is claimed to

be efficient and stable for a pair of polynomials with inexact coefficients. However,

there is not any reference to flop counts and furthermore it is not clear if the

algorithm can be efficiently extended to work with sets of many polynomials.
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2.3.6 The ERES method

The study of the invariance properties of the GCD under extended-row-equivalence

and shifting operations [40] established the ERES methodology and led to the

development of the ERES method [57] for computing the GCD of polynomials.

The fundamental principle of the ERES methodology is that the GCD is a property

of the row space of the basis matrix of the set of polynomials, and this property

is also invariant under the symbolic operation of shifting. Based on this principle,

the ERES method is an iterative matrix-based process where elementary row

transformations and shifting of elements in the rows of a matrix are used in order

to reduce a basis matrix to a unity rank matrix which provides the GCD. The

method has the advantage that:

i) it can handle many polynomials simultaneously, without resorting to the

successive two at a time computations of the Euclidean or other pairwise

based approaches [11, 12, 17, 20, 53, 61, 84],

ii) it invokes a numerical termination criterion that allows the derivation of

approximate solutions to the GCD computation problem, and

iii) it allows the combination of symbolic-numeric operations performed effec-

tively in a mixture of numerical and symbolical steps.

The algorithm of the ERES method is based on numerically stable algebraic

processes, such as Gaussian elimination with partial pivoting, normalisation,

shifting, and partial singular value decomposition, which are applied iteratively

on a basis matrix formed directly from the coefficients of the polynomials of the

original set. The main target of the ERES algorithm is to reduce the number

of the rows of the initial matrix and finally to end up to a unity rank matrix,

which contains the coefficients of the GCD. The SVD method provides the ERES

algorithm with an efficient termination criterion.

The ERES method is a simple and effective method which inherently has

the potential to manipulate large sets of polynomials and define approximate

solutions to the GCD problem. Therefore, the ERES method is central to our

study which primarily focuses on the theoretical aspects and the development of

a new implementation for the method using modern computer algebra software

packages, and extends its applications.

2.4 Methods for the computation of the LCM

of polynomials

The problem of computing the LCM of polynomials has widespread applications

and requires implementation of algorithms computing the GCD. From the appli-
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cations in Control Theory viewpoint the GCD is linked with the computation

of zeros of representations whereas LCM is connected with the derivation of

minimal fractional representations of rational models [46]. Existing procedures

for the computation of LCM rely on the standard factorisation of polynomials,

computation of a minimal basis of a special polynomial matrix [6] and use of

algebraic identities, GCD algorithms and numerical factorisation of polynomials

[47].

In the case of two polynomials t1(s), t2(s) with LCM p(s) and GCD z(s), we

have the standard identity that t1(s) t2(s) = z(s) p(s), which indicates the natural

linking of the two problems. For randomly selected polynomials, the existence of

a nontrivial GCD is a nongeneric property [46, 82], but the corresponding LCM

always exists. This suggests that there are fundamental differences between the

two computational problems. In [47], the standard algebraic identity of LCM is

generalised and this provides a symbolic procedure for LCM computation, as well

as the basis for a robust numerical LCM algorithm that avoids the computation

of roots of the corresponding polynomials and also leads to the definition of the

approximate LCM when the data are given inexactly or there are computational

errors. The essence of this procedure is that if p(s), z(s) are the product of

the polynomials of the original set and z(s) the GCD of a set of polynomials

derived from the original set, then the LCM m(s) may be computed as the factor

in the factorisation p(s) = z(s)m(s). The use of algorithms for computing the

GCD such as the ERES and Matrix Pencil are important for this method of

computation of the LCM of polynomials. Naturally, for approximate values of the

GCD the order of approximation is defined as a factor of p(s) and the computation

of the approximate LCM m(s) is then seen as the best way of completing the

approximate factorisation, which is defined as the optimal completion problem.

An alternative approach to the computation of LCM, which is based on

standard system theory concepts and avoids root finding, as well as use of the

algebraic procedure and GCD computation, has been presented in [48]. The

characterisation of LCM in [48] leads to an efficient computational procedure based

on properties of controllability of a linear system, associated with the given set of

polynomials, and also provides a procedure for the computation of the associated

set of polynomial multipliers linked to LCM. For a given set of polynomials P a

natural realization S(A, b, C) is defined by inspection of the elements of the set P .

It is shown that the degree r of LCM is equal to the dimension of the controllable

subspace of the pair (A, b), whereas the coefficients of LCM express the relation

of Arb with respect to the basis of the controllable space. The companion form

structure of A simplifies the computation of controllability properties and leads

to a simple procedure for defining the associated set of polynomial multipliers of

P with respect to LCM. A special feature of the algorithmic procedure is that
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a number of possibly difficult steps are substituted by simple closed formulae

derived from the special structure of the system. An overall algorithmic procedure

is formulated for computing LCM and multipliers, which is based on standard

numerical linear algebra procedures. The developed algorithm [48] provides a

robust procedure for the computation of LCM and enables the computation of

approximate values, when the original data have some numerical inaccuracies. In

such cases, the algorithm computes an approximate LCM with degree smaller

than the generic degree. In fact, a generic set of polynomials is coprime and thus

their LCM is their product. The existence of an LCM with degree different than

that of the product of polynomials occurs only when the given set of polynomials

is not coprime.

2.5 Discussion

The numerical computation of GCD or LCM of sets of many polynomials has been

considered so far by transforming it to an equivalent problem of constant matrix

computations. The advantage of real matrix computations is that we can discuss

the problem of approximate solutions. Several methods have been proposed for

the exact GCD and approximate GCD. They rely on the Euclidean algorithm

[70, 20, 61, 69], computations with subresultant matrices [17, 20, 67], various

optimization techniques, least-squares computations and quadratic programming

[16, 17, 52, 53], and matrix pencils [45, 59]. Other approaches are based on Padé

approximation and the approximation of polynomial zeros [8, 63].

In the present study, we focus on the ERES method [40, 57, 58] for computing

the GCD and particularly the “best” approximate GCD of a set of several real

univariate polynomials with numerical inaccuracies in their coefficients. The ERES

method is an iterative matrix-based method which inherently has the potential to

manipulate large sets of polynomials and define approximate solutions to the GCD

problem. Therefore, the ERES method is central to our study which primarily

focuses on the theoretical aspects and the development of a new implementation

for the method using modern computer algebra software packages, and extends

its applications.

The evaluation of the numerical quality, or strength of approximation for GCD

computations has been an important drawback for all matrix-based methods

dealing simultaneously with many polynomials. A rigorous definition of the

approximate GCD has been given in [21, 42] that allows the computation of the

strength of approximation and sets up a framework for computing the optimal

approximate GCD. This approach is based on recent results [21, 22] on the

representation of the GCD of several polynomials in terms of the factorisation of

the generalised resultant and a Toeplitz matrix representation of the GCD. These
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results allow the parametrisation of all perturbations, which are required to make

a selected approximate GCD an exact GCD of the perturbed set of polynomials.

The evaluation of the strength of approximation is equivalent to an evaluation of

a distance problem in a projective space and it is thus reduced to an optimization

problem. However, this is a nonconvex optimization problem and therefore cannot

be solved easily. In the sequel, an efficient implementation of the procedure for

evaluating the strength of an approximate GCD will be given by exploiting some

of the special aspects of the respective distance problem.

The new implementation of the ERES algorithm, which will be presented and

analysed in the following chapters, combines in an optimal setup the symbolical

application of rows transformations and shifting, and the numerical computation

of an appropriate termination criterion, which can provide the required approxi-

mate solutions. This combination highlights the hybridity of the ERES method.

However, the overall numerical stability of the method is a very important issue

that needs special attention. For this reason, the theoretical investigation of the

following problems is critical:

• The matrix representation of the Shifting operation for non-singular matrices.

• The overall matrix representation of the ERES method and the connection

amongst the involved algebraic processes.

• The ERES representation of the remainder and quotient of the Euclidean

division of two polynomials.

The results of the analysis of these problems, improve the theory of the ERES

methodology and give the motivation to study other related algebraic problems,

such as the approximate LCM problem of sets of several polynomials, where the

basic concept of the ERES method can give new or alternative ways to treat them

properly.
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The ERES method

3.1 Introduction

The ERES method is an iterative matrix-based method developed in [40, 57],

which exploits the invariance of the GCD of a set of several polynomials under

Extended-Row-Equivalence and Shifting operations (ERES operations). The main

concept of this method is to transform a basis matrix, formed directly from the

coefficients of the polynomials of a given set, into a simpler matrix containing the

vector of coefficients of the GCD using iterative elementary row transformations

and partial column shifting. The theoretical and numerical properties of the ERES

method have been studied in [40, 57, 58]. These properties reveal the advantage

of the ERES method to handle large sets polynomials and to invoke an efficient

termination criterion that allows the computation of approximate solutions when

the initial data have numerical inaccuracies. From a theoretical point of view,

ERES is a robust algebraic method which creates a special matrix “equivalence”.

However, the overall algebraic representation of the ERES method remained an

open issue due to the iterative nature of the method and the luck of an algebraic

expression for the Shifting transformation.

The main objective of this chapter is to highlight the theoretical value and

robustness of the ERES method by establishing an algebraic connection between

the initial basis matrix of a given set of several polynomials and the last matrix

which occurs after the iterative application of the ERES operations and provides

the GCD.

First, the definition and the most important properties of the ERES operations

are presented. Then, the major issue of having an algebraic representation of the

Shifting operation, applied to nonsingular matrices (Matrix Shifting), is analysed

and discussed thoroughly. The results from the study of the matrix Shifting

transformation are used to introduce the overall algebraic representation of the

ERES method and the ERES representation of the GCD of a set of several

polynomials. Furthermore, a relation between the Euclidean division of two
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polynomials and the ERES method is developed, which allows the introduction

of new algebraic expressions for the remainder and quotient of the division of

two polynomials by ERES transformations. Finally, an algorithm computing the

remainder and the quotient of the division of a pair of univariate real polynomials

by using the ERES operations is formed and its properties discussed.

3.2 Definition of the ERES operations

Let us consider the set of univariate polynomials

Ph+1,n =
{

a(s), bi(s) ∈ R[s], i = 1, 2, . . . , h with

n = deg{a(s)}, p = max
i

(
deg{bi(s)}

)
≤ n and h, n ≥ 1

}
(3.1)

We represent the polynomials a(s), bi(s) with respect to the highest degrees (n, p)

as

a(s) = ans
n + an−1s

n−1 + . . .+ a1s+ a0 , an 6= 0

bi(s) = bi,ps
p + . . .+ bi,1s+ bi,0 , i = 1, 2, . . . , h (3.2)

The set Ph+1,n will be called an (n, p)-ordered polynomial set.

Definition 3.1. For any Ph+1,n set, we define a vector representative (vr), p
h+1

(s)

and a basis matrix Ph+1 represented as

p
h+1

(s) = [ p1(s), . . . , ph+1(s) ]t = [ p
1
, . . . , p

m−1
, p

h+1
] · en(s) = Ph+1 · en(s)

where Ph+1 ∈ R(h+1)×(n+1), en(s) = [1, s, . . . , sn−1, sn]t and p
i
∈ Rn+1 for all

i = 1, . . . , h+ 1.

The matrix Ph+1 is formed directly from the coefficients of the polynomials of

the set Ph+1,n and it has the least possible dimensions.

Definition 3.2. If c is the integer for which p
1

= . . . = p
c−1

= 0 and p
c
6= 0,

then c = w(Ph+1,n) is called the order of Ph+1,n and sc is an elementary divisor

of the GCD. The set Ph+1,n is considered to be a c-order set and will be called

proper if c = 0, and nonproper if c ≥ 1.

If we have a nonproper set Ph+1,n with w(Ph+1,n) = c, then we can always

consider the corresponding proper one Ph+1, n−c by dismissing the c leading zero

columns. Then

gcd{Ph+1,n} = sc · gcd{Ph+1, n−c} (3.3)

Therefore, in the following and without loss of generality, we assume that Ph+1,n

is proper.
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Definition 3.3 (ERES operations). Given a set Ph+1,n of many polynomials with

a basis matrix Ph+1 the following operations are defined [40] :

a) Elementary row operations with scalars from R on Ph+1.

b) Addition or elimination of zero rows on Ph+1.

c) If at = [0, . . . , 0, al, . . . , an+1] ∈ Rn+1, al 6= 0 is a row of Ph+1 then we define

as the Shifting operation

shf : shf(at) = [al, . . . , an+1, 0, . . . , 0] ∈ Rn+1

By shf(Ph+1,n), we shall denote the set obtained from Ph+1,n by applying

shifting to every row of Ph+1 (Matrix Shifting).

Type (a), (b) and (c) operations are referred to as Extended-Row-Equivalence and

Shifting (ERES) operations.

REMARK 3.1. The ERES operations without applying the Shifting operation

will be referred to as ERE operations.

The following theorem describes the properties characterising the GCD of any

given Ph+1,n.

Theorem 3.1 ([40]). For any set Ph+1,n, with a basis matrix Ph+1, ρ(Ph+1) = r

and gcd{Ph+1,n} = φ(s) we have the following properties :

i) If RP is the row space of Ph+1, then φ(s) is an invariant of RP (e.g. φ(s)

remains invariant after the execution of elementary row operations on Ph+1).

Furthermore if r = dim(RP ) = n+ 1, then φ(s) = 1.

ii) If w(Ph+1,n) = c ≥ 1 and P∗h+1,n = shf(Ph+1,n), then

φ(s) = gcd{Ph+1,n} = sc · gcd
{
P∗h+1,n

}
iii) If Ph+1,n is proper, then φ(s) is invariant under the combined ERES set of

operations.

The GCD of any set of polynomials is a property of the row space of the basis

matrix of the set. This property indicates that not all polynomials are required

for the computation of the GCD [40]. Thus, the computation of the GCD requires

selection of a base that is best suited for such computations. The already known

methods for finding bases for given sets of vectors are based on the fact that

they virtually transform the original data by using mostly Gaussian or orthogonal

techniques (Gram-Schmidt, Householder etc) [18, 27]. Evidently, they obtain new

sets and amongst the new vectors they choose the required ones that span the
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original set. Thus, the base will be consisted of vectors completely different from

the given ones. Furthermore, the numerical transformation of the original data

always introduce round-off errors which in many cases can affect the quality of

the final results very badly, especially in nongeneric computations.

I The selection of the “best uncorrupted base”

The issue of selecting the best possible base from all those vectors provided by

the rows of the basis matrix without transforming the original data is critical for

nongeneric computations and this problem is referred to as the selection of the

best uncorrupted base.

Definition 3.4. Let A = {a1, a2, . . . , am} be a set of m vectors in Rn. Then, a

subset B = {b1, b2, . . . , br} of A with r < m vectors is an uncorrupted base of

A, if B consists of the original vectors of A, (i.e. bj ∈ {a1, a2, . . . , am} for every

j = 1, 2, . . . , r), all bj for j = 1, 2, . . . , r are linearly independent, and B spans A.

The set A can be expressed in terms of a matrix A = [a1, a2, . . . , am]t ∈ Rm×n.

Then, the problem of finding an uncorrupted base for the set A is transferred

into finding an uncorrupted base for the row space of the matrix A. Therefore,

for a given set Ph+1,n with a basis matrix Ph+1 and R the row space of Ph+1, an

uncorrupted base of R is defined by the rows of Ph+1 without being transformed. If

vector orthogonality is used to characterise the “best” selection of an uncorrupted

base, then the best uncorrupted base of R is defined from the rows of Ph+1 which

are orthogonal. However, such a base is not uniquely defined [60] and a procedure

for the selection of the “best orthogonal” (or “most orthogonal”) subset of R
requires an appropriate quantitative numeric indicator that defines the degree of

orthogonality of the selected set of vectors.

Such a procedure for the selection of the best uncorrupted base of the row

space of a matrix has been presented in [57] and aims at the construction of a

base that contains vectors that are mostly orthogonal, i.e. they form a set with the

highest degree of orthogonality. This method relies on the properties of the Gram

matrix and uses tools from the theory of compound matrices (Section 2.2.1).

Definition 3.5. Let A = {a 1, a 2, . . . , am} be a set of m given vectors a i ∈ Rn,

i = 1, 2, . . . ,m. The matrix defined by

GA =


(a 1 · a 1) (a 1 · a 2) . . . (a 1 · am)

(a 2 · a 1) (a 2 · a 2) . . . (a 2 · am)
...

...
...

...

(am · a 1) (am · a 2) . . . (am · am)

 ∈ Rm×m

where (ai · aj) denotes the inner product of the vectors ai, aj, is called the Gram

matrix of A and the determinant det{GA} is called the Grammian of A.
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The Grammian provides us with an important criterion about the linear

independence of vectors.

Theorem 3.2 ([60]). The vectors a 1, a 2, . . . , am are linearly independent if and

only if their Grammian is positive and not equal to zero.

Theorem 3.3 ([60]). For any set A = {a 1, a 2, . . . , am} with ‖a i‖2 = 1 for all

i = 1, 2, . . . ,m we have

0 ≤ det{GA} ≤ 1

where the left equality holds when the set is linearly dependent and the right holds

when the set is orthogonal.

Definition 3.6. If A = [a 1, a 2, . . . , am]t ∈ Rm×n, then the normalization of

A is a matrix AN = [v 1, v 2, . . . , vm]t ∈ Rm×n with the property v i =
a i
‖a i‖2

,

i = 1, 2, . . . ,m.

The next proposition gives the outline of the procedure that defines an indicator

of the degree of orthogonality for a given set of vectors and computes the most

orthogonal uncorrupted base of the set (or the matrix).

Proposition 3.1 ([46, 57]). Let A = [a1, a2, . . . , am]t ∈ Rm×n, ρ(A) = r ≤
min{m,n}, AN = [v1, v2, . . . , vm]t ∈ Rm×n the normalization of A. Suppose G ∈
Rm×n the Gram matrix of the vectors v1, v2, . . . , vm and Cr(G) = [ci,j ] ∈ R(mr )×(mr )

the rth compound matrix of G. If cii = det(G[a/a]), a = (i1, i2, . . . , ir) ∈ Qr,m
1 is

the maximal diagonal element of Cr(G), then a most orthogonal uncorrupted base

for the row space of A, consists of the vectors {ai1 , ai2 , . . . , air}.

Obviously, the maximal diagonal element of the rth compound matrix of the

Grammian G defines the best degree of orthogonality. The main advantage of this

procedure is that it does not alter the elements of the original basis matrix Ph+1.

It just indicates the best (most orthogonal) combination of linearly independent

rows of Ph+1 according to the largest diagonal element of an r-order compound

matrix (r = rank(Ph+1)) associated with the Gram matrix, which is created by

the rows of Ph+1. The selected best combination of the most orthogonal, linearly

independent row vectors forms a base for Ph+1,n which is represented by a new

matrix Pr ∈ Rr×(n+1).

I The formulation of the ERES method

From Theorem 3.1 it is evident that ERES operations preserve the GCD of any

Ph+1,n and thus can be easily applied in order to obtain a modified basis matrix

with much simpler structure. The successive application of these operations on a

1Qr,m denotes the set of strictly increasing sequences of r integers (1 ≤ r ≤ m) chosen from
1, 2, . . . ,m.
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basis matrix of a set of polynomials leads to the formulation of the ERES method

for computing the GCD of a set of polynomials [57]. After successive applications

of ERES operations on an initial basis matrix, the maximal degree of the resulting

set of polynomials is reduced and after a finite number of steps the resulting

matrix has rank 1. At this stage, the process is terminated and considering that all

the arithmetic operations are performed accurately (symbolic-rational operations),

any row of the last obtained matrix specifies the coefficients of the required GCD

of the set.

Therefore, from a theoretical point of view, the ERES method in its simplest

form consists of three basic procedures:

1. Computation of the best uncorrupted base for the set Ph+1,n.

2. Application of elementary row operations to the processed matrix, which

practically involves row reordering, triangularisation, and elimination of zero

rows (ERE operations).

3. Application of the Shifting operation to the nonzero rows of the processed

matrix.

The iterative application of the process of triangularisation and Shifting is actually

the core of the ERES method and we shall refer to it as the main procedure of the

method. Conversely, the computation of the best uncorrupted base of Ph+1,n is

necessary only when the row dimension of Ph+1 is larger than its column dimension

and it is performed only once before the main procedure in order to get a more

concrete set of polynomials. The problem that will be considered next is the

formulation of an algebraic expression which will represent the relation between

the initial basis matrix Ph+1 and the final matrix, which occurs after the iterative

application of the ERES operations.

The matrix Br ∈ Rr×(h+1), which corresponds to the selection of the best

uncorrupted base of Ph+1, is actually a simple permutation matrix, which allows

us to work with r < h+ 1 independent rows of Ph+1 and thus starting ERES with

a matrix Pr ∈ Rr×(n+1) of shorter dimensions.

Pr = Br · Ph+1 (3.4)

The ERE row operations, i.e. triangularisation, deletion of zero rows and reordering

of rows, can be represented by a matrix R ∈ Rr1×r [18, 27], which converts the

initial rectangular matrix Pr into an upper trapezoidal form. However, the matrix

representation of the Shifting operation is not straightforward. This problem has

to do with the connectivity of the matrices, which are obtained after the process

of triangularisation in each iteration of the main procedure of the ERES method.
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In [57] and related work the problem of the matrix representation of the

Shifting operation for real matrices remained open. Solving this problem is crucial

for establishing an overall matrix representation of the ERES method which will

allow us to study in more detail the numerical stability of the method not only for

a single iteration of the main procedure of the method as in [57], but for all the

performed iterations. Therefore, the problem that we will study in the following

section is to find the simplest possible algebraic relation between a matrix and its

shifted form.

3.3 The Shifting operation for real matrices

The Shifting operation is a special algebraic transformation which is not very

common in the literature of algebra. In Definition 3.3 the Shifting operation was

defined for real vectors as the permutation of the leading consecutive zeros of a

vector at the end of the vector. Specifically, having a real vector

at = [0, . . . , 0︸ ︷︷ ︸
k elements

, ak+1, . . . , an] ∈ Rn, ak+1 6= 0

the Shifting operation is defined as

shf : shf(at) = [ak+1, . . . , an, 0, . . . , 0] ∈ Rn

and we will simply refer to it as vector Shifting. Naturally, the definition of the

Shifting operation can be extended to the case of real matrices.

Definition 3.7. Given a matrix A = [at1, a
t
2, . . . , a

t
n]t ∈ Rm×n, the Shifting opera-

tion for matrices is defined as the application of vector Shifting to every row of A.

This transformation will be referred to as matrix Shifting and the shifted form of

A will be denoted by

shf(A) , A∗ = [shf(at1), shf(at2), . . . , shf(atn)]t ∈ Rm×n

It is important to notice that the Shifting operation, as defined here, permutes

the elements of a vector without changing their values and this is a basic require-

ment for the Shifting operation in our present study. Regarding the algebraic

representation, the vector Shifting can be represented by the multiplication:

shf(at) = at · Jk,n

where Jk,n is an appropriate n× n permutation matrix which is actually a square

binary matrix that has exactly one entry 1 in each row and each column and zeros
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elsewhere. Each such matrix represents a specific permutation of k elements and

for the vector Shifting it has the form:

Jk,n =

[
On−k Ik

In−k Ok

]
∈ Rn×n (3.5)

where Ii denotes the i× i identity matrix and Oi denotes the i× i zero matrix for

i = k, n− k.

Although it is rather simple to represent the vector Shifting with a simple

vector-matrix multiplication, it is not obvious how to represent the matrix Shifting

transformation, because in general the application of vector Shifting to the rows

of a matrix alters the structure of the columns in a non uniform way. The

problem of representing the matrix Shifting by using an appropriate matrix-matrix

multiplication is very challenging, especially when the modification of the original

data is undesired. For the purposes of our study relating to the ERES method, we

will investigate the problem of finding an algebraic relation between a real matrix

and its shifted form in the class of upper trapezoidal matrices.

Upper trapezoidal matrices occur after the application of Gaussian elimination

or other triangularisation methods and they have the following generic form:

A =


a11 a12 . . . a1m . . . a1n

0 a22 . . . a2m . . . a2n

...
...

. . .
...

...
...

0 . . . 0 amm . . . amn

 ∈ Rm×n, m < n (3.6)

Then, the shifted form of A, which is obtained by the matrix Shifting transforma-

tion as defined in Definition 3.7, is

A∗ =


a11 a12 . . . a1m . . . a1n

a22 . . . a2m . . . a2n 0
...

...
... . . .

...
...

amm . . . amn 0 . . . 0

 ∈ Rm×n, m < n (3.7)

In order to simplify the problem, we will focus on finding an algebraic relation

between a 2×k matrix, with k > 2, and its shifted form. The proposed constructive

method in the following proposition underlies the algebraic representation of matrix

Shifting.

Proposition 3.2. If U ∈ R2×k, k > 2, is an upper trapezoidal matrix with rank

ρ(U) = 2 and U∗ ∈ R2×k is the matrix obtained from U by applying the Shifting

operation to its rows, then there exists a matrix S ∈ Rk×k such that

U∗ = U · S (3.8)
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Proof. Let

U =

 u1 1 u1 2 ... u1 k−1 u1 k

0 u2 2 ... u2 k−1 u2 k

 ∈ R2×k (3.9)

with uii 6= 0, i = 1, 2 and the shifted matrix

U∗ =

 u1 1 u1 2 ... u1 k−1 u1 k

u2 2 u2 3 ... u2 k 0

 ∈ R2×k (3.10)

We can construct the matrix S by following the process:

1. Construct the matrix

H = [Ik|J ] ∈ Rk×2k (3.11)

where Ik ∈ Rk×k is the kth identity matrix and J is a permutation matrix

of the form:

J =



0 0 . . . 1

0

Ik−1
...

0


∈ Rk×k (3.12)

which permutes the columns of the input matrix U and gives the proper

shifting to the 2nd row of U .

2. Multiply the matrices H and U as follows:

U (1) = U ·H = (3.13)

=

 u1 1 u1 2 . . . u1 k−1 u1 k

0 u2 2 . . . u2 k−1 u2 k

u1 2 u1 3 . . . u1 k u1 1

u2 2 u2 3 . . . u2 k 0


Hence, the matrix U (1) has the form:

U (1) =

 υt11 υt12

υt21 υt22

 ∈ R2×2k (3.14)

where υtij ∈ Rk. The diagonal vectors υtii, i = 1, 2 represent the rows of

the shifted matrix U∗. The next step is to find a way to extract those two

vectors.
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3. Denote by

U12 =

 u11 u12

0 u22


the first 2×2 submatrix of U . Since it is assumed that the diagonal elements

of U are uii 6= 0, the submatrix U12 is invertible with inverse matrix:

U−1
12 =


1

u11

− u12

u11 u22

0
1

u22

 (3.15)

and hence, the matrix U is right invertible. The right inverse of U can be

the matrix:

Ũ =

 U−1
12

O

 ∈ Rk×2 (3.16)

where O ∈ R(k−2)×2 is a matrix with zero elements.

4. Expand the previously defined matrix H such that

H̃ =
[
Ik | J | Ũ

]
∈ Rk×(2k+2) (3.17)

and multiply it by U :

U (2) = U · H̃ =

 υt11 υt12

υt21 υt22

1 0

0 1

 ∈ R2×(2k+2) (3.18)

5. Add proper multiples of the last two columns to all the other columns of U (2)

and eliminate the unnecessary entries. For this task, define the matrices:

Û =

 u12 u13 ... u1 k u11

0 u22 ... u2 k−1 u2 k

 =

 υt12

υt21

 ∈ R2×k (3.19)

and

Ṽ =


Ik

Ik

−Û

 ∈ R(2k+2)×k (3.20)
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Then,

U∗ = U (2) · Ṽ = U · H̃ · Ṽ (3.21)

and therefore, the shifting matrix is given by

S = H̃ · Ṽ (3.22)

REMARK 3.2. a) The above constructive method requires the original matrix

to have full rank. However, as it is obvious in step 3, the selection of the

inverse matrix Ũ is not unique. The main goal here is to create the 2× 2

identity matrix, and for this task we can take at least k − 1 different pairs

of columns of U to form its inverse. Furthermore, we can replace the matrix

O in Ũ with any other randomly selected (k − 2) × 2 matrix. Evidently,

these changes provide different shifting matrices which transform U into its

shifted form U∗. Therefore, the shifting matrix S is not unique.

b) The result in Proposition 3.2 can also be applied to 2 × k matrices with

more than one consecutive zeros at the beginning of the second row of the

given matrix, if we choose the matrices H and Ũ appropriately.

c) If the shifted matrix U∗ has full rank, the result of Proposition 3.2 can also

be applied to itself and then the process is reversed. The shifting matrix S

is right invertible and it holds:

U = U∗ · S−1

Example 3.1. In this example, we shall demonstrate the steps for constructing

the shifted form of the matrix:

U =

[
1 2 3

0 4 5

]

which is the matrix :

U∗ =

[
1 2 3

4 5 0

]
We will follow the next steps, according to the proof of Proposition 3.2 :

1.

H =

 1 0 0 0 0 1

0 1 0 1 0 0

0 0 1 0 1 0

 ∈ R3×6
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2.

U (1) = U ·H =

[
1 2 3 2 3 1

0 4 5 4 5 0

]
∈ R2×6

3.

Ũ =

 1 −1
2

0 1
4

0 0

 ∈ R3×2

4.

H̃ =

 1 0 0 0 0 1 1 −1
2

0 1 0 1 0 0 0 1
4

0 0 1 0 1 0 0 0

 ∈ R3×8

U (2) = U · H̃ =

[
1 2 3 2 3 1 1 0

0 4 5 4 5 0 0 1

]
∈ R3×8

5.

Ṽ =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

−2 −3 −1

0 −4 −5


∈ R8×3 and S = H̃·Ṽ =


−1 −1 5

2

1 0 −5
4

0 1 1

 ∈ R3×3

The matrix S is the shifting matrix and it really holds:

U · S =

[
1 2 3

0 4 5

]
·

 −1 −1 5
2

1 0 −5
4

0 1 1

 =

[
1 2 3

4 5 0

]
= U∗

However, we could have the same result, if we had used the matrix :

S ′ =


−37

45
−31

45
119
45

13
9

7
9
−8

9

−16
45

17
45

32
45


where we have taken into account the pseudo-inverse matrix [18] of U .
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I Matrix Shifting for full rank upper trapezoidal matrices

The process that we used in Proposition 3.2 can be extended in the case of an

upper trapezoidal matrix A ∈ Rm×n with m ≤ n and aii 6= 0 for all i = 1, 2, . . . ,m

in the form (3.6).

Definition 3.8. a) If the matrix A has the form:

A =


at1

at2
...

atm

 (3.23)

where ati is the ith row of A, then we can define the matrices :

Ai =



0
...

ati
...

0


∈ Rm×n, i = 1, 2, . . . ,m (3.24)

so that

A =
m∑
i=1

Ai (3.25)

where 0 ∈ Rn is a zero vector.

b) We define the permutation matrices Ji ∈ Rn×n for i = 1, 2, . . . ,m, so that

every Ji gives the appropriate shifting to each Ai respectively. Therefore,

shf(A) =
m∑
i=1

Ai Ji (3.26)

Since a11 6= 0, we note that J1 = In, where In is the n× n identity matrix.

If A has full rank, then, since it is defined as an upper trapezoidal with

aii 6= 0 for all i = 1, . . . ,m, it is right invertible. Let us denote its right inverse

by A−1
r ∈ Rn×m. The following theorem establishes the connection between a

nonsingular upper trapezoidal matrix and its shifted form.

Theorem 3.4. If A ∈ Rm×n, 2 ≤ m < n, is a non-singular upper trapezoidal

matrix with rank ρ(A) = m and shf(A) ∈ Rm×n is the matrix obtained from A by

applying Shifting to its rows, then there exists a square matrix S ∈ Rn×n such that

shf(A) = A · S
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The matrix S will be referred to as the shifting matrix of A.

Proof. Let A∗ = shf(A). We shall use the notation described in Definition 3.8

and we will follow the next method to determine the shifting matrix S ∈ Rn×n.

1. Apply to the original matrix A the block matrix

S(1) =
[
J1 . . . Jm A−1

r

]
∈ Rn×n(m+1) (3.27)

such that

A(1) = A · S(1)

2. Multiply the matrix A(1) by the block matrix

S(2) =


In 0 0

0
. . . 0

0 0 In

(A1 − A) J1 . . . (Am − A) Jm

 ∈ Rm(n+1)×mn (3.28)

and hence,

A(2) = A(1) · S(2)

3. Multiply the matrix A(2) by the block matrix

S(3) =


In
...

In

 ∈ Rmn×n (3.29)

and hence,

A(3) , A∗ = A(2) · S(3)

The final matrix S = S(1) · S(2) · S(3) has the form:

S =
m∑
i=1

(
In − A−1

r A+ A−1
r Ai

)
Ji (3.30)

and satisfies the equation: A∗ = A · S

In the proof of Theorem 3.4 the right inverse matrix A−1
r of A is not unique

when m < n. Conversely, the pseudo-inverse matrix A† ∈ Rn×m of A can be

uniquely determined by calculating the singular value decomposition of A [27],

such that

AA† = Im

Therefore, an alternative expression of the previous representation (3.30) of the

shifting matrix S can be given, if we use the pseudo-inverse matrix of A. This is
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S =
m∑
i=1

(
In − A†A+ A†Ai

)
Ji (3.31)

The expression (3.31) is more appropriate for the numerical computation of the

shifting matrix S.

Example 3.2. Consider the following randomly selected matrix:

A =


2 −8 6 10 −5

0 7 −2 1 8

0 0 12 −9 4

0 0 0 −1 2


According to (3.30), the corresponding shifting matrix is:

S1 =



−107
28
−437

84
−87

7
−122

21
−751

42

19
14
−73

42
−6

7
1
21
−23

21

7
4
−13

12
3
2

7
6

7
6

1 0 2 2 2

0 1 1 1 1


but according to (3.31), the shifting matrix is:

S2 =



1517909
1722612

−144305
574204

115706
143551

459329
430653

709807
861306

728666
430653

−198896
143551

12239
143551

231368
430653

101936
430653

1200059
861306

−418847
287102

71221
143551

277816
430653

−108584
430653

55772
143551

− 92417
143551

40064
143551

158752
143551

− 62048
143551

− 87779
287102

194685
287102

20032
143551

79376
143551

− 31024
143551


Both S1 and S2 shift the rows of A properly, but they are very different. The

computation of their Frobenius norm [18] shows that ‖S1‖F = 24.1376 and

‖S2‖F = 4.0267. Therefore, it seems that the matrix S2, which is computed by

using the concept of the pseudo-inverse matrix, is more well-balanced.

If A is a real upper trapezoidal matrix and A∗ denotes its shifted form, then

Theorem 3.4 is also applicable to the shifted matrix A∗, provided that A∗ has

full rank. However, the Shifting is an operation that alters the structure of a

matrix. Therefore, even if the original matrix has full rank, the corresponding

shifted matrix may not have full rank. An example is:
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A =


1 2 3 4 5

0 1 2 3 4

0 0 2 4 6

 , A∗ =


1 2 3 4 5

1 2 3 4 0

2 4 6 0 0


where ρ(A) = ρ(A∗) = 3 and

B =


1 2 3 4 5

0 1 2 3 0

0 0 2 4 6

 , B∗ =


1 2 3 4 5

1 2 3 0 0

2 4 6 0 0


where ρ(B) = 3 and ρ(B∗) = 2.

In the case where both A and its shifted form A∗ have full rank we obtain the

following result.

Corollary 3.1. If A ∈ Rm×n, 2 ≤ m < n, is a nonsingular upper trapezoidal

matrix with rank ρ(A) = m and A∗ ∈ Rm×n is the shifted matrix of A with rank

ρ(A∗) = m, then there exists an invertible matrix S ∈ Rn×n with rank ρ(S) = n,

such that

A∗ = A · S ⇔ A = A∗ · S−1

where S−1 denotes the inverse of S.

The previous corollary can be easily proven by following the same steps as in

the proof of Theorem 3.4. We only have to

i) change appropriately the set of permutation matrices Ji, i = 1, 2, . . . ,m to

achieve the proper shifting, and

ii) compute the inverse or pseudo-inverse of A∗.

Therefore, we conclude that the matrix Shifting of a nonsingular upper trapezoidal

matrix is a reversible process, unless the shifted matrix is rank deficient.

REMARK 3.3. a) The shifted matrix A∗ has full rank if and only if the shifting

matrix S has full rank.

b) In general, for two matrices A, B ∈ Rm×n, m ≤ n with ρ(A) = ρ(B) = m,

we have that

shf(A+B) 6= shf(A) + shf(B)

shf(A ·B) 6= shf(A) · shf(B)

So far, we have analysed the matrix shifting transformation for nonsingular

upper trapezoidal matrices and we have established for it a simple algebraic

representation by using a matrix-matrix multiplication. This representation has a
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key role in the overall algebraic representation of the ERES method, since in every

iteration of the main procedure there is always a nonsingular upper trapezoidal

matrix, which is formed after the application of the ERE operations.

3.4 The overall algebraic representation of the

ERES method

As it is already mentioned, the ERES is an iterative matrix-based method where,

until now, only the ERE operations (i.e. triangularisation, deletion of zero rows

and reordering of rows) could be represented by a matrix R ∈ Rr1×(h+1). With the

introduction of the representation of the Shifting operation as a matrix product,

which has been described in Theorem 3.4, it is now possible to form an algebraic

expression representing not only a single iteration of the main procedure of the

ERES method, but all the required iterations until a rank-1 matrix is reached.

This leads to a new matrix representation which provides a link between the initial

basis matrix and the last matrix, which gives the coefficients of the GCD. This

algebraic relationship is described in the following theorem.

Theorem 3.5 (The overall representation of the ERES method). Given a set

Ph+1,n of h+ 1 real univariate polynomials of maximum degree n ∈ N and its basis

matrix Ph+1 ∈ R(h+1)×(n+1), the application of the ERES operations to Ph+1 results

in a matrix Pr1 ∈ Rr1×(n+1) with row dimension r1 ≤ n+ 1 and rank ρ(Pr1) = 1,

which satisfies the equation:

Pr1 = R · Ph+1 · S (3.32)

where R ∈ Rr1×(h+1) and S ∈ R(n+1)×(n+1) represent the applied row transforma-

tions (ERE operations) and the application of the Shifting operation, respectively.

The GCD of Ph+1,n is then represented by the equality:

gcd{Ph+1,n} = e1 ·R · Ph+1 · S · en(s) (3.33)

where e1 = [1, 0, . . . , 0] ∈ Rr1 and en(s) = [1, s, s2, . . . , sn]t is a basis vector of

R[s].

Proof. Given a set Ph+1,n of h+ 1 > 2 polynomials and its basis matrix Ph+1, the

ERES operations are applied to Ph+1 with the following order:

1. Construction of the permutation matrix Br ∈ Rr×(h+1), r ≤ min{h+1, n+1},
which indicates the best uncorrupted base of Ph+1,n.

P (1) = Br · Ph+1 (3.34)
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2. Construction of the permutation matrix J (1) ∈ Rr×r which reorders the rows

of the initial matrix such that the first row corresponds to the polynomial

with the lowest degree in the set.

3. Application of elementary row transformations (ERE operations) by using

an appropriate lower triangular matrix L(1).

4. Elimination of the zero rows by using a block matrix Z(1).

5. Application of the Shifting operation by using a proper square matrix S(1).

P (2) = Z(1) · L(1) · J (1) · P (1) · S(1) (3.35)

If we set R(1) = Z(1) · L(1) · J (1), then

P (2) = R(1) · P (1) · S(1) (3.36)

The superscript “(k)”, k = 1, 2, . . ., is used in all matrices to indicate the number

of iteration of the main procedure. The equation (3.36) represents the first

complete iteration of the main procedure of the ERES method. The whole process

terminates when the final matrix has rank equal to one and this can be practically

achieved in less than n+ 1 iterations. Therefore, after the kth iteration,

P (k+1) = R(k) · P (k) · S(k), k = 1, 2, . . . (3.37)

and if the final number of iterations is η ∈ N, then

P (η+1) = R(η) · · ·R(1) ·Br · Ph+1 · S(1) · · ·S(η) ⇔

Pr1 = R · Ph+1 · S

where Pr1 = P (η+1), R =
(∏η

k=1R
(k)
)
·Br and S =

∏η
k=1 S

(k).

Obviously, the final matrix Pr1 does not necessarily have the same dimensions

as the initial matrix Ph+1 due to the frequent deletion of the produced zero rows

during the main iterative procedure of the method and thus r1 < h+ 1.

Since the final matrix has rank equal to 1, every row gives the coefficients of

the GCD. If we choose to acquire the GCD from the first row of Pr1 , then we may

set e1 = [1, 0, . . . , 0] ∈ Rr1 and en(s) = [1, s, s2, . . . , sn]t and the GCD is given by

the equation :

gcd{Ph+1,n} = e1 ·R · Ph+1 · S · en(s)

The next example demonstrates the application of the ERES method to a set

of four polynomials.
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Example 3.3. Consider the set of polynomials:

Ph+1,n =


a(s) = s3 − 3s2 + 4

b1(s) = 2s2 − s− 6

b2(s) = s2 − 3s+ 2

b3(s) = 2s2 − 2s− 4

 , h = 3, n = 3

with gcd{Ph+1,n} = s− 2 and initial basis matrix :

Ph+1 =


4 0 −3 1

−6 −1 2 0

2 −3 1 0

−4 −2 2 0

 ∈ R4×4, en(s) =


1

s

s2

s3

 (3.38)

The rank of Ph+1 is r = 3 and the best uncorrupted base of Ph+1,n consists of the

first, the third and the fourth rows of Ph+1. The following permutation matrix Br,

Br =


0 0 1 0

0 0 0 1

1 0 0 0

 ∈ R3×4

leads to the next transformation of the original basis matrix Ph+1 :

P (1) = Br · Ph+1 =


2 −3 1 0

−4 −2 2 0

4 0 −3 1

 ∈ R3×4 (3.39)

The iterative main procedure of the ERES method will start with the matrix P (1).

After two iterations of the main prcedure, the final matrix will have rank 1 and

its rows give the vector of coefficients of the GCD. The matrix which represents

all the necessary row operations has the form:

R =

 1 0 −1

2

3

4

1 0
3

2

7

4

 ∈ R2×4 (3.40)

and the matrix which represents the application of the Shifting operation during

the iterations has the form:
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S =



15

8
−3

4

5

16

1

8

7

4
−1

2

5

8

1

4

3

2
0

5

4

1

2

1 1
5

2
1


∈ R4×4 (3.41)

The final matrix is

Pr1 =

 −2 1 0 0

−10 5 0 0

 ∈ R2×4, r1 = 2 (3.42)

and

Pr1 = R · Ph+1 · S

If en(s) = [1, s, s2, s3]t and e1 = [1, 0], then the GCD of the set Ph+1,n can be

expressed with the following relation:

gcd{Ph+1,n} = e1 ·R · Ph+1 · S · en(s) = s− 2 (3.43)

Obviously, the second row of Pr1 can also provide us with the coefficients of the

GCD, if we divide the elements by 5.

Apart from its theoretical value, the overall algebraic representation of the

ERES method serves as a tool for the study of the overall numerical stability of

the entire method. More particularly, this representation will allow us to study in

more detail the numerical stability of the method not only for a single iteration

of its main procedure as in [57], but for all the performed iterations. The issues

relating to this approach are discussed in Chapter 4.

3.5 The ERES representation of the polynomial

Euclidean division

The Euclidean algorithm (also called Euclid’s algorithm) is the oldest method

for computing the GCD of two integer numbers or two polynomials with integer

coefficients. It is named after the Greek mathematician Euclid, who described it

in Books VII and X of his Elements [32], written in Alexandria of Egypt around

300 BC. The Euclidean algorithm has many theoretical and practical applications

and it appears in several modern integer factorization algorithms. It is used in

constructing continued fractions, in the Sturm chain method for finding real roots
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of a polynomial and it is a basic tool for proving theorems in modern number

theory. It is also used to solve Diophantine equations and of course there are

algorithms for the computation of the GCD of two polynomials, which are based

on Euclid’s algorithm to perform the division of polynomials [11, 12, 62].

In this section, we shall consider the algebraic representation of the Euclidean

algorithm for real polynomials using the ERES methodology. Specifically, the

remainder from the division of two polynomials will be represented as a matrix

product, where the matrices correspond to the applied ERES operations. The

developed method will be referred to as the ERES Division.

Consider two real polynomials:

a (s) =
m∑
i=0

ai s
i, am 6= 0 and b (s) =

n∑
i=0

bi s
i, bn 6= 0, m, n ∈ N (3.44)

with degrees deg{a(s)} = m , deg{b(s)} = n respectively, and m ≥ n.

Definition 3.9. We define the set

Dm,n =
{

(a(s), b(s)) : a(s), b(s) ∈ R[s], m = deg{a(s)} ≥ deg{b(s)} = n
}

For any pair P = (a(s), b(s)) ∈ Dm,n, we define a vector representative p(s) and a

basis matrix Pm represented as:

p(s) =

 a(s)

b(s)

 =

 at

bt

 · e′m(s) = Pm · e
′

m(s)

where Pm ∈ R2×(m+1), at = [am, . . . , a0] ∈ Rm+1, bt = [ 0, . . . , 0︸ ︷︷ ︸
m−n

, bn, . . . , b0 ] ∈ Rm+1

and e
′
m(s) = [sm, sm−1, . . . , s, 1]t.

The matrix Pm is formed directly from the coefficients of the given polynomials

a(s) and b(s) and it has the following form:

Pm =

[
am . . . an+1 an . . . a0

0 . . . 0 bn . . . b0

]
(3.45)

If we have a pair of polynomials P = (a(s), b(s)) ∈ Dm,n, then, according to

Euclid’s algorithm,
a(s)

b(s)
=
am
bn

sm−n +
r1(s)

b(s)

or

a(s) =
am
bn

sm−n b(s) + r1(s) (3.46)
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This is the first and basic step of the Euclidean algorithm. The polynomial

r1(s) ∈ R[s] is given by

r1(s) =
m−1∑
i=m−n

(
ai −

am
bn

bi−(m−n)

)
si +

m−n−1∑
i=0

ai s
i (3.47)

In the following, we will show that the remainder r1(s) can be computed by

applying ERES operations to the basis matrix Pm of the pair P. The next

corollary derives from Proposition 3.2 and will help us to represent the first step

of the Euclidean division of two polynomials in terms of ERES operations.

Corollary 3.2. If Pm ∈ R2×(m+1) is the basis matrix of a pair of real polynomials

P = (a(s), b(s)) ∈ Dm,n, then P ∗m ∈ R2×(m+1) is the basis matrix of the pair

P∗ = (a(s), sm−n b(s)) ∈ Dm,m and there exists a matrix SP ∈ R(m+1)×(m+1) such

that

P ∗m = Pm · SP (3.48)

The matrix P ∗m is the shifted form of Pm :

P ∗m =

[
am . . . an+1 an . . . a0

bn . . . b0 0 . . . 0

]
(3.49)

Proposition 3.3 (The matrix representation of the first remainder of the Eu-

clidean division). Applying the algorithm of the Euclidean division to a pair

P = (a(s), b(s)) ∈ Dm,n of real polynomials, there exists a polynomial r1(s) ∈ R[s]

with deg{r1(s)} < m such that

a(s) =
am
bn

sm−n b(s) + r1(s)

Then, the remainder r1(s) can be represented in matrix form as:

r1(s) = vt · E1 · e
′

m(s)

where E1 ∈ R2×(m+1) is the matrix which occurs after the application of the ERES

operations to the basis matrix Pm of the pair P, and v = [0, 1]t.

Proof. If we consider the division a(s)
b(s)

, then, according to Euclid’s algorithm, there

is a polynomial r1(s) with degree 0 ≤ deg{r1(s)} < m such that

r1(s) = a(s)− am
bn

sm−n b(s) (3.50)
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Then,

r1(s) = [0, 1] ·

 0 1

1 −am
bn

 · [ a(s)

sm−n b(s)

]

= [0, 1] ·

 0 1

1 −am
bn

 · P ∗m · e′m(s) (3.51)

Using the result in Corollary 3.2, we will have that

r1(s) = vt · C · Pm · SP · e
′

m(s) (3.52)

where vt = [0, 1], Pm is the basis matrix of the polynomials a(s) and b(s),

C =

 0 1

1 −am
bn


and SP the respective shifting matrix. Therefore, there exists a matrix E1 ∈
R2×(m+1) such that

E1 = C · Pm · SP and r1(s) = vt · E1 · e
′

m(s) (3.53)

We consider now the basis matrix Pm of the polynomials a(s) and b(s) as defined

in (3.45) such as[
a (s)

b (s)

]
=

[
am am−1 ... an+1 an an−1 ... a0

0 0 ... 0 bn bn−1 ... b0

]
· e′m(s) (3.54)

and we will show that the above matrix E1 is produced by applying the ERES

operations to the basis matrix Pm of the polynomials a(s) and b(s). We follow

the steps:

1. Apply Shifting to the rows of Pm. Let SP ∈ R(m+1)×(m+1), be the proper

shifting matrix:

P (1)
m = Pm · SP =

[
am am−1 ... am−n+1 am−n am−n−1 ... a0

bn bn−1 ... b1 b0 0 ... 0

]

2. Reorder the rows of the matrix P
(1)
m . If J is a column permutation matrix:

J =

[
0 1

1 0

]
(3.55)
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then

P (2)
m = J · P (1)

m =

[
bn bn−1 ... b1 b0 0 ... 0

am am−1 ... am−n+1 am−n am−n−1 ... a0

]

3. Apply stable row operations to P
(2)
m (LU factorization [18, 27]).

If

L =

 1 0

am
bn

1

 (3.56)

then the inverse of L is

L−1 =

 1 0

−am
bn

1

 (3.57)

and therefore,

P (3)
m = L−1 · P (2)

m

=

 1 0

−am
bn

1

 · [ bn bn−1 ... b0 0 ... 0

am am−1 ... am−n am−n−1 ... a0

]

=

 bn bn−1 ... b0 0 ... 0

0 am−1 − bn−1
am
bn

... am−n − b0
am
bn

am−n−1 ... a0


Note that the term

am
bn

emerges from the LU factorization.

The above process can be described by the following equation:

P (3)
m = L−1 · J · Pm · SP (3.58)

which represents the steps of the ERES method. Obviously, we have

L−1 · J =

 1 0

−am
bn

1

 ·
 0 1

1 0

 =

 0 1

1 −am
bn

 = C

and thus, if we consider (3.53), we can conclude that P
(3)
m = E1.

The following theorem establishes the connection between the ERES method

and the Euclidean division of two real polynomials.
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Theorem 3.6 (The matrix representation of the remainder of the Euclidean

division). Applying the Euclidean algorithm to a pair P = (a(s), b(s)) ∈ Dm,n
of real polynomials, there are unique real polynomials q(s), r(s) with degrees

deg{q(s)} = m− n and 0 ≤ deg{r(s)} < n respectively, such that

a(s) = q(s) · b(s) + r(s)

and the final remainder r(s) can be represented in matrix form as

r(s) = vt · Eη · e
′

n(s)

where Eη ∈ R2×(n+1) is the matrix which results from the successive application

of the ERES operations to the basis matrix Pm of the pair P, and v = [0, 1]t,

e
′
n(s) = [sn, sn−1, . . . , s, 1]t.

Proof. Consider two polynomials a(s) and b(s) with degrees m, n, respectively,

with m > n. The Euclidean division a(s)
b(s)

includes the following steps:

a(s) = l1 s
m−n b(s) + r1(s)

r1(s) = l2 s
k1−n b(s) + r2(s)

...

ri(s) = li+1 s
ki−n b(s) + ri+1(s)

...

rη−1(s) = lη s
kη−1−n b(s) + rη(s)

where ri(s) ∈ R[s] is a polynomial with degree ki = deg{ri(s)}, i = 1, 2, . . . , η and

η is the total number of steps in Euclid’s algorithm for which

η = m− n+ 1

Normally, ki > n for i = 1, 2, . . . , η − 2 and kη−1 = n, whereas kη < n.

If Pm ∈ R2×(m+1) is the basis matrix of the pair P = (a(s), b(s)), then, by the

result in Proposition 3.3,

r1(s) = vt · E1 · e
′

m(s)

where E1 ∈ R2×(m+1) is the matrix, which occurs after the application of the

ERES operations to the basis matrix Pm, and v = [0, 1]t. But, from (3.58) we

have

E1 = L−1
1 · J · Pm · S1 (3.59)
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where

L1 =

[
1 0

l1 1

]
the matrix S1 is the proper shifting matrix and J is the column permutation

matrix as defined in (3.55). If Pk1 ∈ R2×(k1+1) is the basis matrix of the pair

(r1(s), b(s)), then there are shifting matrices SE1 and S2 such that

Pk1 · S2 = J · E1 · SE1 · Zk1 (3.60)

where the matrix Zk1 ∈ R(m+1)×(k1+1) is actually used to reduce the column

dimension by deleting the last m − k1 zero columns. Therefore, for the second

step of the process we shall have:

E2 = L−1
2 · J · Pk1 · S2

(3.60)
= L−1

2 · J · J · E1 · SE1 · Zk1
= L−1

2 · E1 · SE1 · Zk1

Hence, the matrices E1 and E2 are linked and, generally,

Ei = L−1
i · Ei−1 · SEi−1

· Zki−1
, i = 2, 3, . . . , η (3.61)

and

ri(s) = vt · Ei · e
′

ki−1
(s), i = 2, 3, . . . , η (3.62)

The final matrix Eη corresponds to the remainder r(s) of the Euclidean division
a(s)
b(s)

and thus it holds:

r(s) , rη(s) = vt · Eη · e
′

n(s) (3.63)

REMARK 3.4. In the proof of the previous theorem we notice that the terms

li, i = 1, 2, . . . , η that we obtain from the matrices Li respectively, give the

coefficients of the polynomial q(s), which is actually the quotient of the division
a(s)
b(s)

. Specifically, q = [qm−n, . . . , q0]
t with qi = lm−n+1−i, for i = 0, 1, . . . ,m − n

and

q(s) =
m−n∑
i=0

qi s
i =

m−n∑
i=0

lm−n+1−i s
i (3.64)

Therefore, given two polynomials a(s), b(s) ∈ R[s] with degrees deg{a(s)} = m,
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deg{b(s)} = n respectively and m > n, we can compute the Euclidean division:

a(s)

b(s)
= q(s) +

r(s)

b(s)

by applying ERES operations to their basis matrix, iteratively. The final matrix

gives the coefficients of the remainder polynomial r(s) of the division a(s)
b(s)

.

Definition 3.10. Given two polynomials a(s), b(s) ∈ R[s] with degrees deg{a(s)} =

m, deg{b(s)} = n, respectively, and m > n the transformation[
a(s)

b(s)

]
ERES

−−−−− >

[
r(s)

b(s)

]
(3.65)

represents the Euclidean division of two polynomials using ERES operations and

is referred to as ERES Division.

The following algorithm, termed ERES Division algorithm, corresponds to

the transformation (3.65) and represents the division of a pair of real univariate

polynomials using ERES operations.

ALGORITHM 3.1. The ERES Division Algorithm

Input : a(s) = at · e′m(s), b(s) = bt · e′n(s), m > n

Step 1 : Form the basis matrix Pm = [at, bt]t ∈ R2×(m+1).

Set η := m− (n− 1).

Step 2 : Apply Shifting to Pm.

P := Pm · S

For i = 1, 2, . . . , η do

Step 3 : Reorder the rows of P .

P := J · P
Step 4 : Apply elementary row operations to P (Gaussian elimination).

P := Li · P
Save the (2,1) element of Li.

q η−i := −li2 1

If i < η then

Step 5 : Apply Shifting to P .

P := P · Si
Step 6 : Delete the last zero columns of P .

P := P · Zi
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Step 7 : Reorder the rows of P .

P := J · P
end if

end for

Step 8 : Reorder the rows of P .

P := J · P

Output : P = [ rt, bt ]t ∈ R2×(n+1).

q = [ q η−1, . . . , q1, q0 ]t ∈ Rη

I Computational complexity

The above algorithm requires :

fl(m,n) = (n+ 2)(m− n+ 1)

= m(n+ 2)− (n2 + n− 1) (3.66)

operations (additions or multiplications) to produce the final result. These opera-

tions mainly relate to Gaussian elimination, because in a software programming

environment the reordering of the rows, the deletion of columns and the Shifting

operation can be implemented without matrix multiplications, since it is a simple

matter of changing the position of the elements.

In the following example, we will demonstrate the steps of the ERES Division

Algorithm 3.1.

Example 3.4. Consider two real polynomials with the following symbolic form:

a(s) = a3 s
3 + a2 s

2 + a1 s+ a0, a3 6= 0, deg{a(s)} = m = 3

b(s) = b2 s
2 + b1 s+ b0, b2 6= 0, deg{b(s)} = n = 2

Then a = [ a3, a2, a1, a0 ]t and b = [ b2, b1, b0 ]t and the basis matrix has the form:

Pm =

 a3 a2 a1 a0

0 b2 b1 b0

 ∈ R2×4

Using Pm as the initial matrix, the ERES Division algorithm will perform

η = m− n+ 1 = 2
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iterations of the steps 3 to 7 in order to compute the remainder r(s) and the

quotient q(s) of the division a(s)
b(s)

. Then,

Step 2 : Shifting

P := Pm · S =

 a3 a2 a1 a0

b2 b1 b0 0


Iteration 1 :

Step 3 : Row reordering

P := J · P =

 b2 b1 b0 0

a3 a2 a1 a0


Step 4 : Gaussian Elimination

P := L1 · P =

 b2 b1 b0 0

0 a2 −
b1a3

b2

a1 −
b0a3

b2

a0


q1 :=

a3

b2

Step 5 : Shifting

P := P · S1 =

 b2 b1 b0 0

a2 −
b1a3

b2

a1 −
b0a3

b2

a0 0


Step 6 : Deletion of zero columns

P := P · Z1 =

 b2 b1 b0

a2 −
b1a3

b2

a1 −
b0a3

b2

a0


Iteration 2 :

Step 3 : Row reordering

P := J · P

Step 4 : Gaussian Elimination

P := L2 · P =

 b2 b1 b0

0

(
a1 −

b0a3

b2

)
− b1

(
a2

b2

− b1a3

b2
2

)
a0 − b0

(
a2

b2

− b1a3

b2
2

)

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q0 :=
a2

b2

− b1a3

b2
2

Step 8 : Row reordering

P := J · P =

 0

(
a1 −

b0a3

b2

)
− b1

(
a2

b2

− b1a3

b2
2

)
a0 − b0

(
a2

b2

− b1a3

b2
2

)
b2 b1 b0


Finally, we obtain a matrix which contains the coefficients of the remainder

r(s) in its first row. The final matrix has the form:

P =

[
0 r1 r0

b2 b1 b0

]
∈ R2×3

Therefore, the vector of coefficients of the remainder r(s) is

r =


0

r1

r0

 =


0

a1b2
2 − b2a3b0 − b1a2b2 + a3b1

2

b2
2

a0b2
2 − b0a2b2 + b0a3b1

b2
2

 (3.67)

and

r(s) =
a1b2

2 − b2a3b0 − b1a2b2 + a3b1
2

b2
2 s+

a0b2
2 − b0a2b2 + b0a3b1

b2
2 (3.68)

Simultaneously, we obtain the coefficients of the quotient q(s) during the

process of Gaussian elimination in the fourth step of the ERES Division algorithm.

Here, we will have:

q =

 q1

q0

 =


a3

b2

a2b2 − a3b1

b2
2

 (3.69)

and therefore,

q(s) =
a3

b2

s+
a2b2 − a3b1

b2
2 (3.70)

If we consider now the numeric polynomials:

a(s) = 3 s3 − 2 s2 + 4 s− 3, m = deg{a(s)} = 3

b(s) = s2 + 3 s+ 3, n = deg{b(s)} = 2
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with
a = [ a3, a2, a1, a0 ]t = [3,−2, 4,−3]t

b = [ b2, b1, b0 ]t = [1, 3, 3]t

and if we substitute the terms ai and bj into the formulae (3.68) and (3.70), then

r(s) = 28 s+ 30 and q(s) = 3 s− 11

and thus the final rational expression of the division a(s)
b(s)

can be written as:

3 s3 − 2 s2 + 4 s− 3

s2 + 3 s+ 3
= (3 s− 11) +

28 s+ 30

s2 + 3 s+ 3

3.6 Discussion

In this chapter the basic definitions and properties of the ERES method for

computing the GCD of a set of several polynomials has been given. The main

objective was to introduce a general algebraic expression which represents the

application of the ERES method to a basis matrix of a given set of polynomials

and the consequent ERES representation of its GCD. The formulation of such

an algebraic relation has as prerequisite the representation of the matrix Shifting

transformation as a matrix product. Therefore, a thorough study of the properties

of the Shifting operation, applied to nonsingular matrices, was presented and has

resulted in the introduction of a proper algebraic relationship equation between a

nonsingular upper trapezoidal matrix and its shifted form (Theorem 3.4). The

obtained representation of the matrix Shifting has a key role in finding an algebraic

relation between the initial basis matrix of a given set of several polynomials and

the last rank-1 matrix, which occurs after the iterative application of the ERES

operations and contains the vector of coefficients of the GCD (Theorem 3.5).

Moreover, the study of the properties of the ERES method led to the investigation

of the link between the ERES operations and the Euclidean division of two

polynomials, which brought about: a) an ERES representation of the remainder

and quotient of the division of two polynomials, and b) the development of an

ERES-based algorithm for computing the quotient and the remainder of the

division of two polynomials, which is referred to as the ERES Division algorithm.

The developed ERES matrix representation of the Euclidean division suggests

that the ERES method is actually the equivalent of Euclid’s algorithm for more

than two polynomials.
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The hybrid implementation of

the ERES method for computing

the GCD of several polynomials

4.1 Introduction

The main subject of this chapter is the development of an appropriate algorithm

for computing the greatest common divisor of sets of several real univariate

polynomials derived from the ERES methodology. A numerical algorithm of the

ERES method has been developed in [57, 58]. This numerical ERES algorithm was

originally designed to be implemented in a typical finite precision computational

environment using numerically stable algebraic processes. The analysis of the

produced results immediately showed that the ERES algorithm was capable of

handling large sets of polynomials quite effectively. The main advantage of the

ERES algorithm over other existing GCD algorithms is its ability to reduce the

amount of data during the processing, which results in fast data processing and

lower usage of computer memory. However, the iterative nature of the algorithm

and the use of finite precision arithmetic often caused an undesirable accumulation

of rounding errors, which affected the quality of the results very badly. To

prevent these catastrophic results, additional parameters (numerical tolerances

εG, εt) were introduced in the ERES algorithm in order to keep the data bounded.

Unfortunately, the proper value of those parameters was arbitrary chosen and

evidently reduced the efficiency of the algorithm.

The above problems motivated the search for a new kind of implementation

for the ERES method, which will improve its performance and reliability. A major

step towards this direction is to use different types of arithmetic. Many modern

mathematical programming environments offer rational or variable precision

numeric types of arithmetic which allow the users to perform computations with

greater accuracy. The benefits from the mixture of symbolic and numerical
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computations, known as hybrid computations, are significant and thus hybrid

computations are widespread nowadays.

In a hybrid arithmetic system both exact symbolic and numerical computations

can be carried out simultaneously. Symbolic computations refer to arithmetic

operations either with arbitrary variables or fractions of integers to represent the

numerical input data. The symbolic computations that involve only numerical

data in rational format are also referred to as rational computations and they are

always performed in almost infinite accuracy, depending on the symbolic kernel

of the programming environment. Conversely, numerical computations refer to

arithmetic operations with numbers in floating-point format (decimal numbers).

However, the accuracy of the performed numerical computations is limited to a

specific number of decimal digits which gives rise to numerical rounding errors.

Therefore, the different algebraic procedures, which form an algorithm, can be

implemented independently either using exact rational computations, or finite

precision numerical computations in order to increase the accuracy of the produced

results and the overall performance of the algorithm. This kind of implementation

is referred to as hybrid implementation.

In this chapter we shall analyse the development of the hybrid implementa-

tion of the ERES algorithm. This kind of implementation treats the problem

of numerical error accumulation and data handling properly, and results in a

numerically stable algorithm. Apart from the improvement of the numerical

stability by using hybrid computations, a considerable effort has been made to

enhance the termination criterion of the ERES algorithm by finding a simplified

method for detecting a rank 1 matrix. The developed method (PSVD1 method) is

based on the partial singular value decomposition method and enables the effective

termination of the algorithm as well as the computation of different approximate

solutions. Finally, the new ERES algorithm in its hybrid form is presented and

its efficiency and performance are discussed thoroughly.

4.2 The basics of the ERES algorithm

In order to develop an effective numerical algorithm for the ERES method, the

treatment of the following problems is required:

P1 Selection of a base for the given set of polynomials.

P2 Application of the ERES operations.

P3 Development of a proper termination criterion.

P4 Selection of the representative row containing the coefficients of the GCD.
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The above requirements are actually the most essential parts of the ERES algorithm

and their proper implementation determines the overall behaviour of the algorithm.

In the context of numerical implementation in a floating-point computational

environment, the problems P1–P4 can be handled as follows [46]:

P1: A base of a set of several polynomials usually consists of less polynomials

than the original set. Therefore, it can be used in order to decrease the

amount of the input data and potentially improve the performance of the

developed ERES algorithm. There exists various methods for finding a base

for a given set of vectors such as LU factorisation, QR decomposition and

others [18, 27, 38]. Most of them are based on the fact that they transform

the original data by using Gaussian or orthogonal techniques. Thus, the

obtained base will consist of vectors completely different from the original

ones. But, when dealing with nongeneric computations and especially when

we are interested in evaluating the GCD of a given set, it is extremely

important to begin the calculating process using the concrete set of data

or a subset of it. Therefore, an “uncorrupted” base of this set is required,

which can be found without transforming the original data and apparently

avoiding the introduction of round-off errors even before the method starts.

A method for the selection of the “most orthogonal uncorrupted base” is

proposed in [57]. This method relies on the properties of the Gram matrix

and uses tools from the theory of compound matrices [56]. However, for

large sets of polynomials this method becomes inefficient due to its high

complexity [58, 59]. Alternatively, it is simpler to get a base for the original

set of polynomials by applying a triangularisation method to the original

basis matrix of the set, such as Gaussian elimination or Householder QR

factorisation. Of course, these methods transform the data of the set and

introduce round-off errors but, when orthogonal techniques are used, this

error is not significant [81]. Yet again, it would be preferable to be avoided

in order to get more reliable results.

P2: Having a basis matrix of a set of polynomials, the ERES method involves row

addition or row multiplication, row switching, elimination of zero rows and

Shifting. The most reliable and stable numerical tool for applying elementary

row operations is the method of Gaussian elimination with partial pivoting.

Thus, after each iteration an upper triangular or trapezoidal form of the

basis matrix will be computed. The obtained matrix can be changed so that

its first row corresponds to the least degree polynomial. Simultaneously, the

matrix is scaled appropriately in order to retain the least degree polynomial

in the first row during the partial pivoting. The Shifting operation is merely

a permutation of the leading consecutive zero elements in a row. Since
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Gaussian elimination preserve the structure of the first row of the matrix,

after a finite number of iterations a quick reduction of the maximal degree

of the original polynomials of the set can be achieved. We shall refer to this

procedure as the main procedure of the ERES algorithm.

P3: The algorithm’s termination criterion relies on the proper detection of the

final unity rank matrix. However, when dealing with numerical computations

and inaccuracies exist in the input data, the rank of a matrix must be

specified according to an appropriate tolerance ε > 0 and it is referred to

as numerical ε-rank. A simplified condition for the determination of the

numerical ε-rank (ρε(A)) and numerical ε-nullity (nε(A)) is given next [23].

Theorem 4.1 ([57]). For a matrix A ∈ Rµ×ν and a specified accuracy ε we

have:

i) The numerical ε-rank of A is given by:

ρε(A) = {number of singular values of A that are > ε }

ii) The numerical ε-nullity of A is given by:

nε(A) = {number of singular values of A that are ≤ ε }

iii) ρε(A) = ν − nε(A)

The above results suggest a method for calculating the numerical ε-rank and

numerical ε-nullity of a matrix via singular value decomposition (SVD). To

avoid further numerical complications, it is preferable to apply the SVD to

a normalized matrix A where the elements are bounded by unity [27]. The

normalisation of a matrix is a numerically stable process [81] and, therefore,

the detection of a rank-1 matrix in the ERES method can be based on the

numerical computation of the singular values of an associated normalized

matrix obtained at the end of each iteration of the main procedure. We shall

refer to it as the Rank-1 procedure of the ERES algorithm. This property

can be detected numerically according to the following theorem [57].

Theorem 4.2 ([57]). Let A = [a1, . . . , aµ]t ∈ Rµ×ν , µ ≤ ν, a1 6= 0, i =

1, . . . , µ. Then for an appropriate accuracy εt > 0 the numerical εt-rank of

A equals to one (ρεt(A) = 1) if and only if the singular values σµ ≤ σµ−1 ≤
· · · ≤ σ1 of the normalization AN = [u1, . . . , uµ]t ∈ Rµ×ν , ui =

ai
‖ai‖2

of A

satisfy the conditions:

|σ1 −
√
µ| ≤ εt and σi ≤ εt, i = 2, 3, . . . , µ
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The tolerance εt will be referred to as the termination accuracy of the ERES

algorithm.

P4: When the computation of the final unity rank matrix is achieved, the problem

that arises is the proper selection of the vector containing the coefficients of

the GCD. Theoretically, every row of the last matrix gives the coefficients

of the GCD unless numerical rounding error has been added during the

process. The following proposition gives an alternative way to acquire the

GCD vector.

Proposition 4.1 ([57]). Let A = U · Σ ·W t be the singular value decom-

position of a given matrix A ∈ Rµ×ν , ρ(A) = 1. Then a “best” rank one

approximation to A in the Frobenius norm is given by A1 = σ1 ·u ·wt, where

σ1 is the largest singular value of A and u and w are the first columns of

the orthogonal matrices U and W of the singular value decomposition of A

respectively. The vector w is the “best” representative of the rows of matrix

A in the sense of the rank one approximation.

A numerical algorithm of the ERES method has been presented and analysed

in [57, 58]. Various tests on sets of a moderate number of polynomials showed

that the numerical ERES algorithm behaves quite well producing sufficiently

accurate results [58]. The main advantage of the ERES method is the quick

reduction of the size of the processed matrix. However, there are cases where the

iterative nature of the method acts as disadvantage. Theoretically, the number of

iterations does not exceed the size of the maximum degree of the polynomials of a

set. Practically, this number is much less than the maximum polynomial degree.

However, it has been observed that several iterations are performed in cases of

sets of polynomials with high polynomial degree. In these cases a basis matrix

with column dimension much greater than its row dimension is formed and then

the iterative application of Gaussian elimination with partial pivoting often causes

an excessive accumulation of numerical rounding error. The Gaussian elimination

with partial pivoting is a quite stable numerical method, but, although pivoting

keeps the multipliers bounded by unity, the elements in the reduced matrices still

can grow arbitrarily [18, 81] during the iterations. Thus, additional procedures

that control the magnitude of the elements of the processed matrices according to

a specific small accuracy εG have been added to the numerical ERES algorithm.

The Gaussian accuracy εG and the termination accuracy εt both influence the

correctness of the achieved results, but the proper specification of these numerical

tolerances in order to get reliable results cannot be easily determined by the user.
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I Motivation for the hybrid implementation of the ERES algorithm

The proper specification of the Gaussian accuracy εG and the termination accuracy

εt is crucial in defining reliable approximate GCDs. This fact motivated the present

study for the development of a new improved ERES algorithm for the computation

of an approximate GCD of a given set of several polynomials. The improvement of

the existing numerical ERES algorithm is actually based on how these accuracies

influence the data. The Gaussian accuracy εG controls the magnitude of the

elements of the processed matrix during the iterations of the main procedure of

the ERES algorithm and its value is affected by

a) the numerical inaccuracy of the original input data, and

b) the produced numerical error from the process of Gaussian elimination with

partial pivoting.

The latter can cause some serious complications in the determination of the proper

value of the Gaussian accuracy. If we denote by P (κ) the matrix resulting after

the κth iteration of the main procedure of the ERES algorithm (κ = 0, 1, 2, . . .

and P (0) := Ph+1), then by following the equations (3.36) and (3.37) we have:

P (κ+1) = Z(κ) · L(κ) · J (κ) · P (κ) · S(κ) (4.1)

where J (κ) reorders the rows of P (κ), L(κ) is a lower triangular matrix, Z(κ) deletes

any zero rows, and S(κ) is the shifting matrix. The row reordering, the Shifting,

and the deletion of rows can be considered as error-free transformations, since

they do not alter the values of the data. Thus, the numerical error mainly comes

from the application of the Gaussian elimination. The backward error analysis

of the Gaussian elimination with partial pivoting [81] shows that the computed

upper and lower triangular matrices L(κ) and U (κ) satisfy:

L(κ) · U (κ) = P (κ) + E(κ) (4.2)

‖E(κ)‖∞ ≤ (n′)2 ρu ‖P (κ)‖∞ , ‖L(κ)‖∞ ≤ n′ (4.3)

where E(κ) is the error matrix and n′ the column dimension P (κ). The term ρ

denotes the growth factor, which is defined by

ρ =
maxi,j,l |p(κ)(l)

ij |
maxi,j |p(κ)

ij |
(4.4)

where p
(κ)(l)
ij are the elements of the matrix P (κ) during the lth step of the process

of triangularisation and p
(κ)
ij are the elements of the initial matrix P (κ) [18, 81].

The upper triangular matrix U (κ) will eventually give the next matrix P (κ+1)

after the deletion of its zero rows and Shifting. As it is proven in Theorem 3.5,
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the produced matrices P (κ) from every iteration are linked together. Therefore,

the total numerical error from the process of the Gaussian elimination for k ∈ N
iterations is

Ẽ =
k∑
i=0

(
k∏
j=i

(L(j))−1

)
E(i) (4.5)

If we take into account the reduction of the size of the dimensions of the processed

matrices (n′ < n+ 1), an upper bound for the above total numerical error for k

iterations of the main procedure of the ERES algorithm can be established:

‖Ẽ‖∞ ≤ k (n+ 1)3 ρu ‖Ph+1‖∞ (4.6)

Conversely, the termination accuracy εt characterises the approximate GCD

and its value is affected by:

a) the accumulated numerical error from the main procedure of the algorithm,

b) the produced numerical error from the process of computing the singular

values, according to the termination criterion in Theorem 4.2.

The singular value decomposition is applied to the processed matrix P (κ) when it

is required. The preliminary stage in this algorithm is the bidiagonal reduction

of P (κ) and in most bidiagonal reduction methods the error is expressed in the

following form [18, 26, 27]:

P (κ) + δP (κ) = U B V t , (4.7)

‖δP (κ)‖2 ≤ u f(h′, n′) ‖P (κ)‖2 (4.8)

where B is bidiagonal, U and V are orthogonal, u is the machine’s precision and

f(h′, n′) is a modestly growing function of the dimensions of P (κ) [18, 27], where

h′ < h+ 1 and n′ < n+ 1.

It is obvious that a major step towards the improvement of the numerical

stability of the ERES algorithm is to eliminate the accumulation of numerical

errors during the iterations. This can be achieved by using hybrid computations

instead of finite precision floating-point computations, which will help to avoid

the propagation of errors during the iterations and to maintain at the same time

the ability of the ERES to produce approximate solutions. The new approach for

the hybrid implementation of the ERES algorithm will be discussed next and the

algorithm in its new formulation will be referred to as the Hybrid ERES algorithm.
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4.3 The implementation of the ERES method

using hybrid computations

The construction of the algorithm for the ERES method is based on stable algebraic

processes, which are applied iteratively on the initial basis matrix Ph+1. The

main target of the ERES method is to reduce the number of the rows of Ph+1 and

finally to end up with a unity rank matrix, which contains the coefficients of the

GCD. The new implementation of the ERES algorithm involves the use of hybrid

computations in order reduce the amount of the numerical errors arising from the

different procedures of the ERES method and evidently improve the quality of

the results.

The implementation of an algorithm in a hybrid computational environment

depends mostly on the nature of the algorithm itself and the selection of the

appropriate data structures to represent the input data. In a symbolic-numeric

programming environment the type of data structures suggests the type of arith-

metic operations. Arithmetic operations with integers or fractions of integers

(rational operations) can be performed in infinite accuracy and this is an important

feature to take into advantage.

A special characteristic of the ERES method is that it can be separated into

two independent parts, the main procedure and the Rank-1 procedure, which can

be implemented either using symbolic or numerical computations. But the question

that arises here is which type of computations is best for each part of the ERES

method. Since we want to avoid the accumulation of rounding errors during the

iterations of the method and at the same time we are interested in the computation

of approximate solutions, the answer to the previous question seems to be pretty

direct. Due to the iterative nature of the ERES method the processes of Gaussian

elimination and Shifting is preferable to be treated symbolically, because, although

the data are constantly transformed, the introduction of rounding errors is avoided

and the computation of the GCD remains unaffected. Conversely, the process of

computing the singular values is better to be treated numerically. This allows us

to control the magnitude of the singular values and hence the numerical rank of

the processed matrix by setting an appropriate numerical tolerance. Therefore, a

numerically efficient termination criterion can be created for detecting a matrix

with rank approximately equal to 1 and the given solutions are considered as

approximate GCDs.

The hybrid implementation of the ERES algorithm involves the use of exact

rational (symbolic) operations for its main procedure and numerical (floating-

point) operations for the Rank-1 procedure. The details of this combination and

its effect on the ERES algorithm will be discussed in the following.
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4.3.1 The formulation of the Hybrid ERES Algorithm

Having a set Ph+1,n and its basis matrix Ph+1 ∈ R(h+1)×(n+1), a necessary prelimi-

nary step is to convert the given floating-point data to rational format (fractions of

integers). After that, the next steps are implemented symbolically, using rational

operations:

1. Reorder the rows of Ph+1 such that its first row corresponds to the polynomial

of the lowest degree.

2. Scale the first row of Ph+1 to have the maximum pivot.

3. Apply Gaussian elimination with partial pivoting to Ph+1.

4. Apply Shifting to every row of Ph+1 .

5. Delete the zero rows and columns and form a new basis matrix P
(·)
h+1 with

reduced dimensions.

The steps 1–5 underlie the main procedure of the Hybrid ERES algorithm and

they are implemented using symbolic-rational operations.

Denote by P
(κ)
h+1 the matrix which occurs after the κth iteration of the main

procedure of the algorithm (κ = 1, 2, . . .). The following cases appear:

• The produced matrix P
(κ)
h+1 has one or more zero elements in its last column

(i.e. the polynomials which correspond to the rows of the matrix have different

degrees). Then, the steps 1–5 of the main procedure go over P
(κ)
h+1.

• The matrix P
(κ)
h+1 in the κth iteration has no zero elements in its last column

(i.e. the polynomials which correspond to the rows of the matrix have the

same degree). Then, a numerical copy of P
(κ)
h+1 is made and the next steps

are implemented numerically using finite precision floating-point operations:

6. Normalisation of the rows of the matrix P
(κ)
h+1 using the Euclidean norm.

7. Computation of the singular values of P
(κ)
h+1.

The steps 6 and 7 underlie the Rank-1 procedure of the Hybrid ERES algorithm

and they are implemented using numerical floating-point operations.

If the matrix P
(κ)
h+1 has numerical εt-rank equal to 1 according to a small

specified accuracy εt > 0, the algorithm stops and gives an appropriate solution.

Otherwise, the algorithm starts a new iteration of the main procedure using the

rational matrix P
(κ)
h+1. All the above steps are illustrated in Figure 4.1.
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Figure 4.1: The Hybrid ERES Algorithm
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4.3.2 Computation of the GCD with the Hybrid ERES

algorithm

The computation of the GCD with the Hybrid ERES algorithm depends on the

accuracy of the input data and the performed operations. If the coefficients of

the polynomials of the given set are integer numbers (or fractions with integer

numbers) and the GCD exists, then the successive symbolic application of the

subprocedures of the main procedure to the basis matrix of the set will lead to

a final matrix with rank equal to 1. Thus, any row of this matrix can give the

coefficients of the GCD.

Otherwise, we must search for an approximate numerical solution, which

is actually provided by the Rank-1 procedure of the algorithm. The numerical

computation of the singular values of P
(κ)
h+1 is a typical process to estimate the

rank of a matrix and provides the ERES algorithm with a termination criterion.

This criterion is applied when the polynomials, which correspond to the rows

of the matrix, have the same degree and it is described in Theorem 4.2. Every

time the algorithm reaches this stage, there is a potential εt-rank 1 matrix for

a specific accuracy εt. If we accept values of εt ≤ 10−1, we can obtain a series

of matrices, that yield an εt-GCD. The produced approximate εt-GCD can be

determined according to Proposition 4.1. Therefore, the polynomial that comes

from the first row of the right singular matrix of P
(N)
h+1, can be considered as the

numerical output of the Hybrid ERES algorithm.

4.3.3 The partial SVD method for approximate rank-1

matrices

Of course, the singular value decomposition (SVD) [26, 27] is undoubtedly a

robust numerical procedure and, since we seek a unity rank matrix to terminate

the Hybrid ERES algorithm, the only essential information we need is concerned

with the first two singular values of the matrix P
(N)
h+1. Thus, it is not necessary to

perform the whole singular value decomposition. The development of a partial

singular value decomposition algorithm is presented in [75, 76]. The outline

of a variation of the classical singular value decomposition method, especially

developed for the efficient computation of the unique singular value and its right

singular vector of an approximate εt-rank 1 matrix, is presented here and we shall

refer to it as the PSVD1 method.

Consider a matrix A with dimensions m× n and let σ1 > σ2 > . . . > σk be its

singular values, k = min{m,n}. For a specified numerical tolerance εt << 1, the

matrix A will be an approximate εt-rank 1 matrix if σ1 > εt ≥ σ2 > . . . > σk. The

following algorithm establishes a efficient numerical procedure for the detection of

a unity rank matrix.
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ALGORITHM 4.1. The PSVD1 Algorithm

Input : Initial matrix A ∈ Rm×n, k = min{m,n},
a numerical tolerance (bound), 0 < εt < 1

Step 1 : Bidiagonalization phase.

If m ≥ n then

transform A into upper bidiagonal form Bu by Householder

transformations : A = Uu ·Bu · V t
u .

else

transform A into lower bidiagonal form Bl by Householder

transformations : A = Ul ·Bl · V t
l .

end if

Step 2 : Rank 1 detection phase.

Given a bidiagonal matrix Bu (or Bl), we only need to partition the bidiagonal

into unreduced sub-bidiagonals so that only one singular value is greater than εt.

In order to detect such a property, we construct a 2n× 2n symmetric tridiagonal

matrix T with zero main diagonal from the elements of Bu (or Bl) and compute

the Sturm sequence for T and εt [26]. The positive symmetric eigenvalues of T

are the singular values of Bu (or Bl) and the number of sign agreements in Sturm

sequence correspond to the number of singular values, which are greater or equal

to εt, [18].

Let a = [ai], i = 1, . . . , k be the elements of the main diagonal

of Bu (or Bl), and b = [bi], i = 1, . . . , k − 1 be the elements of

the superdiagonal of Bu (or the subdiagonal of Bl).

Construct c = [a1, b1, a2, b2, . . . , bk−1, ak] ∈ R2k−1.

Compute the Sturm sequence for θ := εt

p0(θ) = 1, p1(θ) = −θ
For i = 2, 3, . . . , 2k do

pi(θ) = −θ pi−1(θ)− c2
i−1 pi−2(θ)

end for

Let η be the number of sign agreements between the

sequential terms pi(θ) of the Sturm sequence.

Convention: If pi(θ) = 0 then pi(θ) is in sign agreement

with pi−1(θ).
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If η ≥ 2 then

use a bisection method to compute a new bound εt.

(We use the bisection method to find an estimation of the

second larger singular value σ2 [18].)

else

Step 3 : Back transformation phase.

Find the largest (by absolute value) diagonal element ah

for h = 1, . . . , k of Bu (or Bl).

Construct an appropriate Givens Rotation matrix G for

the hth row of Bu (or the hth column of Bl).

If m < n then

σ1 := the hth diagonal element of S := G ·Bl.

w := the hth row of the matrix V t
l .

else

σ1 := the hth diagonal element of S ′ := Bu ·Gt.

w := the hth row of the matrix W := G · V t
u .

end if

end if

Output : Singular value, singular vector, (new) numerical tolerance:

(σ1, w, εt)

The PSVD1 algorithm can detect a unity rank matrix very efficiently. The

procedure that dominates the algorithm is the bidiagonalization of the initial

matrix using Householder transformations. It is a numerically stable procedure

which requires about O(2mn2 − 2
3
n3) multiplications if m < 5

3
n, or O(mn2 + n3)

multiplications if m ≥ 5
3
n [76]. The technical advantage of this algorithm is that,

when the initial matrix does not have an εt-rank equal to 1, it is not necessary

to compute all the sequential terms of the Sturm sequence, because in this case

we only need a couple of sign agreements to conclude that we do not have an

εt-rank 1 matrix. This simple test helps to save more computational time and

thus, we can have a fast and efficient way to detect an approximate εt-rank 1

matrix. In case we do have a unity rank matrix, the unique singular value and

right singular vector can be computed explicitly without matrix products. Finally,

the overall cost in computational operations is about the same magnitude of that

of the bidiagonalization method. The bidiagonal reduction may also be applied to

an upper triangular matrix R, obtained from A by orthogonal transformations
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such that A = QR, [13]. This step improves the performance of the algorithm. A

method for a more accurate bidiagonal reduction which combines Householder

and Givens transformations is presented in [2].

The PSVD1 algorithm is a quick and effective tool for the detection of an

approximate unity rank matrix. It can improve the performance of other methods,

such as the ERES method, and it can be easily implemented in any software

programming environment.

4.3.4 Behaviour of the Hybrid ERES Algorithm

The combination of symbolic-rational and numerical operations aims at the

improvement of the stability of the ERES algorithm and the presence of “good”

approximate solutions, the “good” in a sense to be precise later. The main

procedure of the algorithm and especially the process of Gaussian elimination with

partial pivoting, is entirely implemented by using symbolic-rational operations.

With this technique any additional errors from the elementary row operations are

avoided completely. The computations are always performed accurately and if

the input data are exactly known and the polynomials of the given set are not

coprime, then the GCD is given by any row of the final rank 1 matrix.

Obviously, symbolic-rational operations do not reveal the presence of ap-

proximate solutions. In cases of sets of polynomials with inexact coefficients, the

presence of an approximate GCD relies on the proper determination of a numerical

εt-rank 1 matrix for a specific small tolerance εt. The tolerance εt is linked with

the accuracy of the solution which is obtained from the Rank-1 procedure of the

Hybrid ERES algorithm. An initial value of εt can be set by the user as an input

to the Hybrid ERES algorithm (usually εt ≈ u) and then, every time when the

algorithm reaches the Rank-1 procedure, an εt-GCD can be obtained according

to a new value of εt, which is actually determined from the PSVD1 procedure.

Thus, at the end of the Hybrid ERES algorithm we can have a series of εt-GCDs

for all the different values of εt computed by the algorithm itself. Unlike the

previous version of the numerical ERES algorithm [57] where the choice of the εt

was absolutely arbitrary, in the present hybrid algorithm of the ERES method, the

numerical accuracy εt is proposed by the algorithm and this helps us to develop a

better strategy for the best selection of the GCD.

The numerical accuracy εG controls the magnitude of the elements of the

matrix that we obtain at the end of the main procedure of the Hybrid ERES

algorithm in each iteration. The elements of the matrix that are less than εG by

absolute value, are set equal to zero in order to avoid possible underflow errors

during the transition from the main procedure to the Rank-1 procedure of the

algorithm. In most cases, εG can be set equal to 2−1u, where u is the machine’s

precision (hardware numerical accuracy). Otherwise, it can be set appropriately
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in relation to a norm of the associated matrix (usually the infinity norm).

Therefore, the singular value decomposition together with the normalization

process of the matrix P
(κ)
h+1 are performed by using floating-point operations.

The polynomial that comes from Proposition 4.1 can be considered as a GCD

approximation and represents the numerical output of the Hybrid ERES algorithm.

The normalization of the rows of any matrix P
(κ)
h+1 (by the Euclidean norm) does

not introduce significant errors and in fact the following result has been proven

[57, 81]:

Proposition 4.2. The normalization P
(N)
h+1 of a matrix P

(κ)
h+1 ∈ Rh′×n′, computed

by the ERES method in the κth iteration, using floating-point arithmetic with unit

round-off u, satisfies the properties :

P
(N)
h+1 = N · P (κ)

h+1 + EN , ‖EN‖∞ ≤ 3.003 · n′ · u (4.9)

where N = diag(ν1, ν2, . . . , νh′) ∈ Rh′×h′, νi =
(∥∥∥P (κ)

h+1[i, 1 . . . n′]
∥∥∥

2

)−1

for i =

1, . . . , h′ is the matrix accounting for the performed transformations and EN ∈ Rh′×n′

the error matrix.

The PSVD1 method is applied to the matrix P
(N)
h+1. The preliminary stage in

this algorithm is the bidiagonal reduction of P
(N)
h+1 and in most bidiagonal reduction

methods the error is expressed in the following form [18, 26, 27]:

P
(N)
h+1 + δP

(N)
h+1 = U B V t ,

‖δP (N)
h+1‖2 ≤ u f(h′, n′) ‖P (N)

h+1‖2 (4.10)

where B is bidiagonal, U and V are orthogonal, u is the machine precision and

f(h′, n′) is a modestly growing function of the dimensions of P
(N)
h+1 [18, 27], where

h′ < h+ 1 and n′ < n+ 1.

It is important to notice that the Rank-1 procedure is actually applied to a

numerical copy of the matrix P
(κ)
h+1 and thus the performed transformations during

the Rank-1 procedure do not affect the matrix P
(κ)
h+1 when returning to the main

procedure. For this reason, there is no accumulation of floating-point errors. The

only numerical errors appearing are from the Rank-1 procedure and concern the

normalization and the partial singular value decomposition of the last matrix P
(κ)
h+1.

The total numerical error of the Hybrid ERES algorithm is actually represented

by the relations (4.9) and (4.10).

The combination of symbolic-rational and numerical computations ensures

the numerical stability of the Hybrid ERES algorithm and gives to the ERES the

characteristics of a hybrid computational method.
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Computational complexity. For a set of polynomials the number of multi-

plications or divisions which are performed in the κth iteration of the algorithm,

depends on the size of the matrix P
(κ)
h+1 and it is summarized in Table 4.1. The

first iteration is the most computationally expensive iteration since the initial

basis matrix is larger than any P
(κ)
h+1. Unless we know exactly the degree of the

GCD of the set we cannot specify from the beginning the number of iterations re-

quired by the algorithm. Practically, the number of iterations is about O(n). The

computational cost of the PSVD1 method is dominated by the bidiagonalization

of the input matrix.

Gaussian elimination Normalization PSVD1

O( z
3

3
), z = min(h′ − 1, n′) O(2h′n′) O(2h′n′2 − 2

3
n′3)

Table 4.1: Required operations for the matrix P
(κ)
h+1 ∈ Rh′×n′ in the Hybrid ERES

algorithm.

Computational examples. In the following examples we want to compute the

GCD of a set of 5 real polynomials in one variable and we will demonstrate how

the Hybrid ERES algorithm works. For the purposes of this study, the algorithm

was implemented in the mathematical programming environment of Maple as

described in the appendix A.1.2 .

Example 4.1. We consider the set Ph+1,n = P5,7 of 5 polynomials with maximum

degree 7 :

p1(s) = s7 + 711 s6 − 37830 s5 + 167014 s4 − 308538 s3

+325453 s2 − 193993 s+ 47182

p2(s) = −10 s7 − 7580 s6 + 22880 s5 + 37902 s4 − 112691 s3

−47768 s2 + 133141 s− 25874

p3(s) = −3 s7 − 2200 s6 + 62935 s5 − 173295 s4 + 161898 s3

−148265 s2 + 98930 s

p4(s) = 98 s7 + 74294 s6 − 215976 s5 + 112702 s4 + 56365 s3

+38550 s2 − 198447 s+ 132414

p5(s) = 22 s7 + 16763 s6 + 15764 s5 − 165057 s4 + 61089 s3

+159080 s2 + 23445 s− 111106

The set is constructed such that the polynomial

g(s) = s3 + 758 s2 − 2281 s+ 1522
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is an exact GCD. The corresponding basis matrix Ph+1 = P5 has dimensions 5× 8

and rank ρ(P5) = 5.

P5 =



47182 −193993 325453 −308538 167014 −37830 711 1

−25874 133141 −47768 −112691 37902 22880 −7580 −10

0 98930 −148265 161898 −173295 62935 −2200 −3

132414 −198447 38550 56365 112702 −215976 74294 98

−111106 23445 159080 61089 −165057 15764 16763 22



We set the arithmetic system’s accuracy (software accuracy) to double precision

(16 digits). The input data are the coefficients of the 5 polynomials given in the

matrix form P5. The termination and Gaussian accuracies are initially set to

εt = εG = 4.440892 · 10−16

which are approximately equal to Maple’s 16-digits software accuracy,

eps = 2−51 = 4.440892098500626 · 10−16

Considering the initial type of data, we will examine two cases:

Case 1: The input data are given in their original data type as integers. The

results given next, were obtained.

Output 1: g(s) := HEresGCD(P5);

GCD degree = 3, tolS > 3.701184e-16, tolG < 1.000000e-02, Iterations = 3
Parameters = { tolS–> 4.440892e-16, tolG–> 4.440892e-16, digits–> 16 }
Statistics = { Iterations = 3, SVDcalls = 2, Order = 0, Time = 0.078 sec }
Distance from rational solution = 0.000000e+00
Minimum termination tolerance = 3.701184e-16
g(s) = s3 + 758s2 − 2281s+ 1522

The above Maple output 1 shows that the Hybrid ERES algorithm has

performed 3 iterations of its main procedure in order to compute the GCD of

the set. Since the input data were given exactly as integer numbers with no

additional numerical error, the algorithm is designed to extract the GCD from

the rows of the last rank 1 matrix in its exact form. As we can see, the “Distance

from rational solution” is zero. The accuracies εt and εG are represented by the

parameters tolS and tolG, respectively. The termination criterion was checked

twice, as the “SVDcalls” indicates. The minimum termination tolerance was set

by the algorithm itself (from the PSVD1 procedure) equal to 3.701184 · 10−16.

This value is extremely close to the accuracy of the system eps and it means that

the algorithm terminated correctly.
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Case 2: The input data are given now in numerical data type as 16-digits

floating-point numbers. The next Maple output 2 shows that the Hybrid ERES

algorithm has performed 3 iterations of its main procedure in order to compute

the GCD of the set. Since the input data were given as floating-point numbers,

the algorithm is designed to extract the GCD from the right singular vector of

the last εt-rank 1 matrix in its numerical form. However, the GCD can also be

derived from the rows of the last matrix in its rational form. This is the “rational

solution”. The distance from rational solution is 1.166190 ·10−12, which is actually

the Euclidean distance between the two vector solutions. But the relative error

between the obtained numerical GCD and the exact GCD is only 4.099091 · 10−16,

approximately equal to the specified system’s accuracy eps, which means that it

is an acceptable numerical solution. The termination criterion was checked twice,

as the “SVDcalls” indicates. The minimum termination tolerance was set again

equal to 3.701184 · 10−16, close to the selected accuracy of the system eps, which

shows that the algorithm terminated correctly as before.

Output 2: g(s) := HEresGCD(evalf(P5));

GCD degree = 3, tolS > 3.701184e-16, tolG < 1.000000e-02, Iterations = 3
Parameters = { tolS–> 4.440892e-16, tolG–> 4.440892e-16, digits–> 16 }
Statistics = { Iterations = 3, SVDcalls = 2, Order = 0, Time = 0.063 sec }
Distance from rational solution = 1.166190e-12
Minimum termination tolerance = 3.701184e-16
g(s) = 1.000000000000000s3 + 757.9999999999994s2 − 2280.999999999999s
+1522.000000000000

We shall examine now the sensitivity of the Hybrid ERES algorithm to small

perturbations in the data.

Example 4.2. In the previous set P5,7 we add some perturbation ε = 10−8, such

that the first and the last polynomial of the set have exact GCD :

g1(s) = (s+ 761)(s− 1 + ε)(s− 2− ε) =

= s3 + 758.00000000 s2 − 2281.000000010000 s+ 1521.999992390000

and the rest of them have exact GCD :

g2(s) = (s+ 761)(s− 1− ε)(s− 2 + ε) =

= s3 + 758.00000000 s2 − 2280.999999990000 s+ 1522.000007610000

and hence, we construct a new polynomial set P ′5,7 with a perturbed basis matrix
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P ′5. The Frobenius matrix norm of this perturbation is

‖P5 − P ′5‖F
‖P5‖F

= 2.692206146827510 · 10−9 (4.11)

Obviously, the exact GCD of the perturbed set P ′5,7 is g(s) = s+761. However,

the next Maple output 3 shows that the Hybrid ERES algorithm detected two

different solutions for this set; a GCD of degree 3 and another one of degree 1,

which correspond to different values of the termination accuracy εt. Of course,

according to the initial value εt = 4.440892 · 10−16, the algorithm terminated after

6 iterations of its main procedure when it reached the numerical threshold of the

system eps and gave the expected GCD of degree 1 with negligible numerical

error.

Output 3: g(s) := HEresGCD(evalf(P5));

GCD degree = 3, tolS > 7.496191e-07, tolG < 1.000000e-02, Iterations = 3
GCD degree = 1, tolS > 1.000000e-15, tolG < 1.000000e-01, Iterations = 5
GCD degree = 1, tolS > 0.000000e+00, tolG < 1.000000e+00, Iterations = 6
Parameters = { tolS–> 4.440892e-16, tolG–> 4.440892e-16, digits–> 16 }
Statistics = { Iterations = 6, SVDcalls = 4, Order = 0, Time = 0.140 sec }
Distance from rational solution = 2.000000e-13
Minimum termination tolerance = 0.000000e+00
g(s) = 1.000000000000000s+ 761.0000000000001

The suggested termination accuracy for a 3rd degree GCD is 7.496191 · 10−07.

We set εt = 8 · 10−7 and, as the next Maple output 4 shows, after 3 iterations of

its main procedure the Hybrid ERES algorithm gives the polynomial :

g′(s) = s3 + 757.9999996097447 s2 − 2281.000296203550 s+ 1522.000593800050

with relative distance from the polynomials g1(s) and g2(s) approximately equal

to 2.3 · 10−7.

‖g1(s)− g′(s)‖2

‖g1(s)‖2

= 2.308547251688193 · 10−7

‖g2(s)− g′(s)‖2

‖g2(s)‖2

= 2.356387220252584 · 10−7

If we change again the value of the termination accuracy to εG = 2 · 10−15, a

new GCD will be obtained after 5 iterations of the main procedure, as it is shown

in the Maple output 5. This is a GCD of degree 1 with relative distance from

the expected exact GCD about 3.942178 · 10−16. This value is extremely close to

the accuracy of the system eps and thus the given GCD can be considered as a

numerically adequate solution.
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Output 4: g(s) := HEresGCD(evalf(P5), tolS = 8e− 7, stopit = 3);

GCD degree = 3, tolS > 7.496191e-07, tolG < 1.000000e-02, Iterations = 3
Parameters = { tolS–> 8.000000e-07, tolG–> 4.440892e-16, digits–> 16 }
Statistics = { Iterations = 3, SVDcalls = 2, Order = 0, Time = 0.078 sec }
Distance from rational solution = 3.310262e-03
Minimum termination tolerance = 7.496191e-07
g(s) = 1.000000000000000s3 + 757.9999996097447s2 − 2281.000296203550s
+1522.000593800050

Output 5: g(s) := HEresGCD(evalf(P5), tolS = 2e− 15, stopit = 5);

GCD degree = 3, tolS > 7.496191e-07, tolG < 1.000000e-02, Iterations = 3
GCD degree = 1, tolS > 1.000000e-15, tolG < 1.000000e-01, Iterations = 5
Parameters = { tolS–> 2.000000e-15, tolG–> 4.440892e-16, digits–> 16 }
Statistics = { Iterations = 5, SVDcalls = 3, Order = 0, Time = 0.125 sec }
Distance from rational solution = 4.000000e-13
Minimum termination tolerance = 1.000000e-15
g(s) = 1.000000000000000s+ 761.0000000000003

In all the above Maple outputs, note that there are also suggestions for new

values for the Gaussian accuracy εG (parameter tolG). However, we do not pay

any attention to them, because they are considerably high in terms of the initial

perturbation of the data.

4.4 The performance of the ERES method com-

puting the GCD of polynomials

The ERES method is quite effective when properly implemented in a programming

environment. We can have large sets of real polynomials without restrictions to

the type of data. Actually the method proves to be faster, when the polynomials

of a given large set Ph+1,n are linearly depended. An appropriate selection of

a base of the original set Ph+1,n, helps ERES to reduce dramatically the row

dimension of the initial basis matrix Ph+1 and hence proceed with a smaller set

of polynomials. This reduction always takes place in the first iteration of the

method. In fact, for any polynomial set, considering the vector of coefficients for

each polynomial, there is a way to find the most orthogonal linearly independent

representatives of the set, without transforming the original data, and form a

base of polynomials, which can give us the GCD of the whole set. Such a base is

referred to as a best uncorrupted base [57, 61]. However, the process of computing

such a base is very demanding in terms of time and memory and it can benefit the

ERES method only if the basis matrix of Ph+1,n is highly rank deficient (h� n).

The ERES method can be implemented by using different types of arithmetic
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systems. Such arithmetic systems are :

SFP Standard Floating-Point arithmetic, where the internal accuracy of the

system is fixed and often limited to 16 digits (double precision1).

VFP Variable Floating-Point arithmetic, where the internal accuracy of the system

is determined by the user (variable precision2).

ES Exact Symbolic arithmetic, where the system performs the arithmetical

operations in arbitrary precision.

HY The combination of VFP and ES arithmetic will be referred to as Hybrid

arithmetic.

ERES in SFP arithmetic. In computing, floating-point describes a system

for representing numbers that would be too large or too small to be represented

as integers. Numbers are in general represented approximately to a fixed number

of significant digits and scaled using an exponent. The approximation of a

number to a floating-point format is known as rounding. The standard floating-

point representation of a number (double precision number) is considered at

approximately 16 decimal digits3 of precision. SFP operations are fast and reliable

but various tests have showed that, when using SFP arithmetic, the standard

16-digits accuracy (hardware accuracy) is not always enough for the ERES method

to produce good results.

ERES in VFP arithmetic. Variable precision operations, in VFP arithmetic,

can always be our choice since they are faster and more economical in memory

bytes than exact symbolic operations, especially if there is no need to use enough

digits to have a reliable software accuracy. But, it has been observed that, when

the basis matrix Ph+1 has large dimensions and full rank, we must assign a lot

of digits to the software accuracy in order to avoid great numerical errors. This

is absolutely necessary especially when the column dimension of Ph+1 is large

and the degree of the GCD is small, because this will invoke ERES to perform

many iterations and hence, increase the propagation of errors. Additionally, if

we increase the number of digits of the software accuracy, the time and memory

requirements will also increase. Various tests on several polynomial sets with

floating-point data in VFP arithmetic showed that we can obtain quite satisfactory

results from ERES, if we allow the system to perform the internal operations

with more than 20 digits of accuracy and simultaneously assign large values to

1It is also referred to as hardware floating-point precision or hardware accuracy.
2It is also referred to as software floating-point precision or software accuracy.
3The exact number is 53 · log10 2 ≈ 15.955. Thus, in many mathematical programs the default

hardware accuracy is set to 15 decimal digits.
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the accuracies εt and εG, (εt, εG ≥ 10−8). But still, it is not easy for the user

to determine in advance the proper number of digits that are necessary for a

successful computation of the GCD.

ERES in ES arithmetic. Exact symbolic operations, in ES arithmetic, could

have been our first and only choice, since they produce excellent results with

minimal or no error at all. But, they are very costly regarding time and memory

(Table 4.7). This problem is more obvious, when the basis matrix Ph+1 is large

and dense. Indeed, the successive matrix transformations, performed by the

ERES method, take enough time to complete and consume a lot of memory bytes.

However, if we recall that ERES decreases the size of the basis matrix during the

iterations, the symbolical manipulation of the data can rarely be prohibitively

expensive. Exact symbolic operations are considered a good choice for the ERES

algorithm, when the basis matrix Ph+1 is sparse or when we seek an exact solution.

ERES in HY arithmetic. Since both variable precision operations and sym-

bolic operations have advantages and disadvantages, it would be best if we could

combined them appropriately – hybrid computations (HC) – in order to achieve

good performance and stability for the ERES algorithm in every case. Several

mathematical software packages, such as Maple, Mathematica, or Matlab, allow

us to choose freely whether to use VFP operations or ES operations, by converting

the initial data to an appropriate type. Note that the type of the initial data

suggests the type of operations. For example, if our initial data are type of

rational or radical, then ES operations will be performed. However, there are

some restrictions, which oblige us to convert our data to floating-point format in

VFP or SFP arithmetic, especially when we are not certain about the existence of

a nontrivial GCD. When we work with ERES using HY operations, we can select

any row of the last matrix P
(κ)
h+1 as a GCD, but when the initial data are given

inexactly, the solution must be sought by using the SVD termination criterion

performing VFP operations.

Computational results. The above remarks about the numerical and symbol-

ical behaviour of the ERES method are illustrated with the following examples.

Example 4.3. We consider first a set Ph+1,n = P11,20 of 11 polynomials in one

variable with integer coefficients (max. 3 digits), maximum degree 20, and exact

GCD, g(s) = s3 + 3s2 + 4s+ 2, [57, 59]. The polynomials of the set P11,20 are:

p1(s) = s20 + 4 s19 + 7 s18 + 21 s17 + 54 s16 + 82 s15 + 61 s14 + 29 s13

+36 s12 + 47 s11 + 26 s10 + 7 s9 + 15 s8 + 20 s7 + 12 s6 + 6 s5

+27 s4 + 131 s3 + 286 s2 + 318 s+ 140
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p2(s) = s20 + 3 s19 + 4 s18 + 2 s17 + 3 s14 + 9 s13 + 12 s12 + 6 s11

+5 s10 + 15 s9 + 22 s8 + 16 s7 + 9 s6 + 7 s5 + 4 s4 + 2 s3

p3(s) = s20 + 3 s19 + 4 s18 + 2 s17 + s13 + 3 s12 + 4x11 + 2 s10 + s6

+3 s5 + 15 s4 + 35 s3 + 44 s2 + 22 s

p4(s) = 5 s20 + 15 s19 + 20 s18 + 10 s17 + 4 s13 + 12 s12 + 16 s11 + 8 s10

+2 s8 + 6 s7 + 8 s6 + 4 s5 + 10 s3 + 30 s2 + 40 s+ 20

p5(s) = −s20 − 3 s19 − 4 s18 − 2 s17 − s8 − 3 s7 − 4 s6 − 2 s5 + 30 s3

+90 s2 + 120 s+ 60

p6(s) = s20 + 3 s19 + 4 s18 + 2 s17 − 2 s16 − 6 s15 − 8 s14 − 4 s13 + s12 + 3 s11

+4 s10 − s9 − 9 s8 − 12 s7 − 6 s6 + 11 s3 + 33 s2 + 44 s+ 22

p7(s) = s20 + 3 s19 + 4 s18 + 2 s17 + 11 s10 + 33 s9 + 44 s8 + 22 s7 + 20 s3

+60 s2 + 80 s+ 40

p8(s) = s20 + 3 s19 + 7 s18 + 11 s17 + 12 s16 + 8 s15 + 6 s14 + 8 s13 + 4 s12

+5 s9 + 15 s8 + 20 s7 + 10 s6 + 9 s3 + 27 s2 + 36 s+ 18

p9(s) = s20 + 3 s19 + 4 s18 + 3 s17 + 3 s16 + 4 s15 + 5 s14 + 9 s13 + 13 s12

+9 s11 + 9 s10 + 17 s9 + 20 s8 + 10 s7 + s6 + 3 s5 + 4 s4 + 5 s3

+9 s2 + 12 s+ 6

p10(s) = s20 + 2 s19 + s18 − 2 s17 − 2 s16 + s12 + 3 s11 + 4 s10 + 2 s9

−s8 − 3 s7 − 4 s6 − 2 s5 − 4 s3 − 12 s2 − 16 s− 8

p11(s) = s20 + 3 s19 + 15 s18 + 35 s17 + 44 s16 + 22 s15 + 3 s14 + 9 s13

+13 s12 + 9 s11 + 4 s10 + 2 s9 + 30 s3 + 90 s2 + 120 s+ 60

The associated basis matrix P11 has dimensions 11 × 21 and rank ρ(P11) = 11.

For this polynomial set, we studied the performance of the ERES method using

SFP, VFP and HY types of arithmetic. The results are presented in Table 4.4.

Type of data float

Accuracies SFP, Digits = 15, εt = 10−15, εG = 10−15

GCD 1.0

Iterations 10

Type of data float

Accuracies SFP, Digits = 15, εt = 10−15, εG = 10−8

GCD 1.0 s3 + 2.99999999608220 s2+

3.99999999215816 s+ 1.99999999215450

Relative error 0.215 10−8

Iterations 9
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Type of data float

Accuracies SFP, Digits = 15, εt = 10−8, εG = 10−8

GCD 1.0 s3 + 2.99999996640441 s2+

3.99999993280994 s+ 1.99999993280184

Relative error 0.184 10−7

Iterations 9

Type of data float

Accuracies VFP, Digits = 18, εt = 10−12, εG = 10−8

GCD 1.0 s+ 1.00000204413857072

Relative error 0.816

Iterations 9

Type of data float

Accuracies VFP, Digits = 20, εt = 10−16, εG = 10−12

GCD 1.0 s3 + 3.0000000000001436500 s2+

4.0000000000002876900 s+ 2.0000000000002882608

Relative error 0.788 10−13

Iterations 8

Type of data float

Accuracies VFP, Digits = 23, εt = 10−16, εG = 10−16

GCD 1.0

Iterations 10

Type of data float

Accuracies VFP, Digits = 23, εt = 10−16, εG = 10−12

GCD 1.0 s3 + 2.9999999999999997573495 s2+

3.9999999999999995261066 s+ 1.9999999999999995238086

Relative error 0.130 10−15

Iterations 7

Type of data float

Accuracies VFP, Digits = 24, εt = 10−16, εG = 10−16

GCD 1.0 s3 + 2.99999999999999999998275 s2+

3.99999999999999999996562 s+ 1.99999999999999999996565

Relative error 0.942 10−20

Iterations 8

Type of data rational

Accuracies HY, Digits = 16, εt = 10−16, εG = 10−16

GCD s3 + 3 s2 + 4 s+ 2

Relative error 0

Iterations 5

Table 4.4: Numerical behaviour of the ERES algorithm

for the set P11,20 in Example 4.3.
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The results in Table 4.4 confirm that:

a) SFP operations produce less accurate results than VFP operations.

b) The accuracy of the computational system represented by the term “Digits”

and the Gaussian accuracy εG both influence the produced GCD.

c) Since the coefficients of the polynomials are given as integer numbers, HY

operations help ERES to produce the desired exact GCD in less iterations

and of course without rounding errors.

REMARK 4.1. The relative errors were estimated using the Euclidean norm in

the form:

Rel =
‖g − g′‖2

‖g‖2

(4.12)

where g is the coefficient vector of the exact GCD and g′ is the coefficient vector

of the produced GCD.

Example 4.4. Consider now a set Ph+1,n = P10,9 of 10 polynomials in one variable

with coefficients of various type (integers, rational numbers, decimal numbers),

maximum degree 9, and exact GCD, g(s) = s2 + 0.125 s+ 0625. The polynomials

of the set P10,9 are:

p1(s) = 13 s11 − 13
8
s10 + 8.125 s9 + 11 s6 − 11

8
s5 − 6.125 s4 + 45

8
s3

−5.6250 s2 + 2.1250 s+ 1.875

p2(s) = −24 s11 + 3 s10 − 18.0 s9 + 83
8
s8 − 0.1250 s7 + 5.8750 s6

−4.125 s5 + 3
4
s4 − 9.750 s3 + 3

4
s2 − 3.750 s

p3(s) = 2 s10 + 19
4
s9 + 0.62500 s8 + 7.125x7 − 1

2
s6 − 12.500 s5

−1
8
s4 − 7.1250 s3 − 1.5000 s2 + 1.250 s

p4(s) = 16 s11 − 2 s10 + 10.0 s9 − 3 s8 + 3
8
s7 − 6.875 s6 − 35

8
s5

−0.5000 s4 − 3.3750 s3 − 3.750 s2 + 5
8
s− 3.125

p5(s) = s10 + 63
8
s9 − 0.375 s8 − 1.0 s7 − 29

4
s6 − 3.750 s5 + 2.1250 s4

+4.5000 s3 + 3.6250 s2 + 3.750 s

p6(s) = −s11 − 7
8
s10 − 2.5000 s9 − 5.3750 s8 − 0.62500 s7 + 4.875 s6

+8 s5 + 3.8750 s4 + 1.625 s3 + 1
2
s2 − 2.500 s

p7(s) = −5 s11 − 27
8
s10 + 1.3750 s9 + 9.0 s8 + 9.0 s7 − 0.500 s6

+5.8750 s5 − 4.375 s4 − 9 s3 + 9
8
s2 − 5.625 s
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p8(s) = −2 s11 − 31
4
s10 − 4.250 s9 − 10.500x8 + 2.2500 s7 − 4.2500 s6

+5.500 s5 − 43
8
s4 + 6.5000 s3 − 3.6250 s2 + 2.500 s

p9(s) = 5 s11 − 13
8
s10 − 1.7500 s9 + 8.0 s8 − 4.125 s7 + 5.0 s6 − 9 s5

+9
8
s4 − 5.625 s3 − 4 s2 + 1

2
s− 2.500

p10(s) = 2 s11 − 9
4
s10 − 10.500 s9 + 9.250 s8 − 8.6250 s7 + 5.625 s6

−7 s4 + 7
8
s3 − 16.375 s2 + 3

2
s− 7.500

The associated basis matrix P10 has dimensions 10 × 10 and rank ρ(P10) = 10.

For this polynomial set, we studied the performance of the ERES method using

SFP, VFP and HY types of arithmetic. The results are presented in Table 4.6.

Type of data float

Accuracies SFP, Digits=15, εt = 10−15, εG = 10−15

GCD 1.0 s2 − 0.125000000000210 s+ 0.625000000001880

Relative error 0.15952151 10−11

Iterations 6

Type of data float

Accuracies VFP, Digits=21, εt = 10−15, εG = 10−15

GCD 1.0 s2 − 0.12500000000000004021 s+ 0.62499999999999997365

Relative error 0.405400573 10−16

Iterations 6

Type of data float - rational

Accuracies HY, Digits=21, εt = 10−15, εG = 10−15

GCD 1.0 s2 − 0.12500000000000000863 s+ 0.62500000000000018372

Relative error 0.155097137 10−17

Iterations 3

Table 4.6: Numerical behaviour of the ERES algorithm

for the set P10,9 in Example 4.4.

The results in Table 4.6 confirm that:

a) SFP operations produce less accurate results than VFP and HY operations.

b) The performed HY operations by the Hybrid algorithm of the ERES method,

produced a more accurate result in less iterations than the numerical ERES

algorithm using VFP operations. This was due to the triangularisation of

the matrices without rounding errors.
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Random polynomial sets have been selected for further testing of the behaviour

of the ERES algorithm. The produced results are presented in Table 4.8. Regarding

these tests, we have to note that all the polynomial sets have been constructed by

random polynomials with integer coefficients (≤ 9999) so as their GCD is known.

Furthermore, in order to focus on the different kinds of implementation, both

accuracies εt and εG are set equal to 2.2 10−15, which is close enough to the limit

of hardware accuracy. Thus, the accuracy of the results is based on the software

accuracy, which in modern mathematical software programs can be determined

by the user. When using ES operations, the accuracy of the system is set equal to

the hardware precision (16 decimal digits) and the relative error is 0.

Using the experimental results in Table 4.8, we observe that:

a) The ERES algorithm is quite fast when using VFP or HY operations and

becomes slow when ES operations are used.

b) The ERES algorithm performs many iterations of its main procedure when

the maximum polynomial degree is much higher than the number of polyno-

mials in the set.

c) When using HY operations the relative error is sufficiently small and more

closer to the specified software accuracy.

d) The HY operations require less digits of software accuracy comparing to

VFP operations in order to give a result of the same quality.

In Table 4.7 the results from a set P12,12 of 12 polynomials with randomly

selected coefficients, maximum degree 11, and a 2-degree exact GCD, confirm

that the ES operations require more computational time and consume at least 3

times more memory bytes than VFP and HY operations. However, in the case of

VFP or HY operations, it was necessary to double the software accuracy (from

15 digits to 30 digits) in order to get a GCD with minimal as possible relative

error. This indicates that SFP operations are not suitable here. Generally, the

ERES algorithm gives more accurate and reliable results if we assign more than

20 digits to the system’s software accuracy. In most cases of polynomials sets, 34

digits of precision (quadruple precision) are adequate for the ERES algorithm to

produce very good results.

Conclusions. When working with the ERES method, the important factors

that must to be taken into account are:

• The data type of the coefficients of the input polynomials.

• The dimensions and the structure of the original basis matrix Ph+1.
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• The numerical accuracy of the original data (for floating-point numbers).

• Careful selection of the the tolerances εt and εG and the number of digits

for the software accuracy.

The Hybrid ERES algorithm has the following advantages:

• It can handle large sets of polynomials more efficiently by using hybrid

computations instead of numerical computations.

• It produces results with minimal rounding error in acceptable time limits

and storage requirements.

• The produced results are less affected (or not affected) by the Gaussian

accuracy εG and thus its presence in the algorithm is not of great importance.

• The PSVD1 method for detecting a rank 1 matrix allows the selection of a

proper value for the termination accuracy εt which is based on the properties

of the singular values of the processed matrix rather than in our intuition.

• It allows the computation of “meaningful” approximate solutions (which

will be analysed later).

Therefore, we conclude that the computation of the GCD of a set of polyno-

mials with real coefficients by the ERES method, is a process where numerical

floating-point operations and exact symbolic operations must combined together

for a better overall performance.

4.5 Discussion

In this chapter the hybrid implementation of the ERES method for computing

approximate GCDs of a set of several real univariate polynomials has been

developed. This implementation is based on the arithmetic properties of symbolic-

numeric (hybrid) computations which enabled the formulation of a more efficient

and numerically stable algorithm for the ERES method. The developed Hybrid

ERES algorithm involves algebraic procedures which are implemented either

symbolically or numerically to improve the overall performance of the ERES

method and the quality of the given GCD. This algorithm was tested using

different arithmetic systems and was compared with other algorithms which are

also designed to compute the GCD of sets of polynomials by processing all the

polynomials simultaneously. The obtained results show that the Hybrid ERES

algorithm is faster and provides more accurate solutions compared with the other

algorithms. The requirement for a quality solution has also led to the development

of the PSVD1 algorithm for the efficient detection of an approximate rank-1 matrix.
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The PSVD1 method is based on the partial singular value decomposition method

and improves significantly the termination criterion of the ERES algorithm and

the estimation of approximate GCDs. The ERES method and its hybrid form

always produces estimates of the GCD as the result of the rank 1 approximation.

Estimating how good such approximations are, is an issue related to the notion of

the approximate GCD and the evaluation of its quality, which will be considered

in the following.

Type of data Arithmetic Digits Memory (bytes) Time (secs)

rational ES 15 7,735,542 0.547

float VFP 30 2,868,462 0.172

rational, float HY 30 2,853,434 0.203

Table 4.7: Storage and time requirements of the ERES algorithm for a random
set of polynomials P12,12.

VFP HY ES

No. m d d0 Iter Dig Rel Time Dig Rel Time Time

i 5 4 1 3 17 10−17 0.015 16 10−15 0.016 0.125

ii 8 7 2 5 21 10−18 0.032 17 10−16 0.032 0.110

iii 10 10 2 5 21 10−17 0.047 19 10−17 0.063 0.219

iv 5 10 2 6 20 10−18 0.078 17 10−14 0.109 0.250

v 15 15 2 7 22 10−15 0.172 20 10−15 0.187 0.656

vi 15 15 5 6 35 10−17 0.172 30 10−16 0.171 0.937

vii 20 15 5 5 21 10−18 0.203 18 10−16 0.219 1.156

viii 30 15 3 6 22 10−16 0.218 18 10−15 0.265 1.329

ix 2 20 4 33 32 10−15 0.266 32 10−15 0.234 15.031

x 15 20 4 7 23 10−17 0.234 22 10−17 0.265 38.391

xi 100 20 4 7 40 10−20 1.109 34 10−22 1.922 34.562

m : the number of polynomials,
d : the maximum degree of the polynomials,
d0 : the degree of the GCD,
Iter : the number of iterations of the algorithm,
Dig : the number of Digits (software accuracy),
Rel : the relative error according to Frobenius norm,
Time : algorithm’s estimated time of execution (sec).

Table 4.8: Behaviour of the ERES algorithm for random sets of polynomials.
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The strength of the approximate

GCD and its computation

5.1 Introduction

The computation of the GCD of a set of polynomials is a problem representative

of the class of nongeneric computations. The set of polynomials for which there

exists a nontrivial GCD, different than 1, is a subvariety of the projective space

with measure zero and this makes the computation of the GCD a hard problem.

The subject of defining an approximate GCD goes back to the attempt of defining

the notion of almost zero for a set of polynomials [43], where it has been shown

that almost zeros behave in a similar way to exact zeros, as far as solutions

of polynomial Diophantine equations. The issue of computing an approximate

GCD has been considered before in [16, 20, 45, 52, 53, 57, 61, 67, 69, 70, 83,

85, 86] and references therein, but until recently the evaluation of the quality of

the approximations from GCD computations was obscure and required special

attention. The results presented in [21, 22] provided the fundamentals of a

framework for the characterization of the almost GCD of a polynomial set and

its strength which actually qualifies it. There, the notion of approximate GCD

is defined as a distance problem between the given polynomial set and the given

d degree GCD variety. This approach is based on the representation of the

greatest common divisor of many polynomials in terms of the factorisation of the

generalised resultant into a reduced resultant and a Toeplitz matrix representing

the GCD [21]. These results allow the parametrisation of all perturbations which

are required to make a selected approximate GCD, an exact GCD of a perturbed

set of polynomials.

However, the essence of the computation of approximate solutions is that they

are based on the relaxation of exact conditions which characterise the greatest

common divisor. Methods computing the GCD of a set of polynomials which

deploy relaxation of the exact conditions for GCD evaluation, such as the ERES
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method, lead to expressions for the approximate GCD. The quality, or strength of

a given approximate GCD is then defined by the size of the minimal perturbation

required to make the chosen approximate GCD, an exact GCD of the perturbed

set. The solution of an optimisation problem then allows the evaluation of the

quality of the given polynomial as an approximate solution [21, 42].

In this chapter we will be concerned with:

a) the computation of approximate GCDs of sets of several real polynomials in

one variable using the developed ERES methodology and particularly the

Hybrid ERES algorithm, and

b) the evaluation of the derived approximations using the developed method-

ology in [21, 22, 42] for computing the strength of a given approximate

GCD.

In the following, a review of the representation of the GCD in terms of the

resultant factorisation is given [22]. The established matrix-based representation

of the GCD is equivalent to the standard algebraic factorisation of the GCD

in the original set of polynomials and provides the means to define the notion

of the approximate GCD in a formal way and then develop a computational

procedure that allows the evaluation of its strength. This review continues with

the definition and the computation of the distance of a given set of polynomials

from a d-GCD variety which ultimately leads to an appropriate optimisation

problem. The solution of this problem is the key for the evaluation of a given

approximate GCD. However, in general this form of optimisation (minimisation)

problem is actually non-convex in several cases of polynomial sets and a global

solution is not always guaranteed [42].

The main objective in this chapter is to constrain this minimisation problem

by finding some tight bounds which can be computed more easily than the actual

problem and may work as indicators of the strength a given approximation. These

indicators, defined as the strength bounds, can be found by exploiting the properties

of the resultant GCD factorisation. The distance of these bounds is used to define

the average strength of an approximate GCD. A simple algorithm is provided

for the computation of the strength bounds and its computational complexity

is analysed. Finally, the ability of the Hybrid ERES algorithm to produce

approximate solutions and the evaluation of the quality of these approximations

is discussed through various examples.
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5.2 Representation of the GCD of polynomials

Consider the set of univariate polynomials

Ph+1,n =
{

a(s), bi(s) ∈ R[s], i = 1, 2, . . . , h with

n = deg{a(s)}, p = max
i

(
deg{bi(s)}

)
≤ n and h, n ≥ 1

}
(5.1)

We represent the polynomials a(s), bi(s) with respect to the highest degrees (n, p)

as

a(s) = ans
n + an−1s

n−1 + . . .+ a1s+ a0 , an 6= 0

bi(s) = bi,ps
p + . . .+ bi,1s+ bi,0 , i = 1, 2, . . . , h (5.2)

The set Ph+1,n is an (n, p)-ordered polynomial set.

NOTATION 5.1. Denote by Π(n, p;h+ 1) the family of polynomial sets Ph+1,n

having h+ 1 elements and highest degrees (n, p), n ≥ p ; i.e. if the degrees of the

polynomials in the set are denoted by di, i = 0, . . . , h, then d0 ≥ d1 ≥ d2 ≥ . . . ≥
dh and d0 = n, d1 = p.

The representation of the GCD relies on the square nonsingular Toeplitz

matrices [21]. The following result provides a representation in matrix terms of

the standard factorization of the GCD of a set of polynomials.

Definition 5.1. Let

v(s) = λrs
r + · · ·+ λ1s+ λ0 ∈ R[s] where r ∈ Z∗+, λr, λ0 6= 0 (5.3)

be a polynomial. A special Toeplitz matrix representation Φ̂v ∈ R(n+p)×(n+p) of

v(s) can be defined by

Φ̂v =



λ0 0 · · · · · · · · · · · · 0

λ1 λ0
. . .

...
...

. . . . . . . . .
...

λr
...

. . . . . . . . .
...

0 λr
. . . . . . . . .

...
...

. . . . . . . . . λ0 0
0 · · · 0 λr · · · λ1 λ0


(5.4)

The matrix Φ̂v is lower triangular and unless its main diagonal is zero, it is

always invertible. Its inverse Φ̂−1
v ∈ R(n+p)×(n+p) is also lower triangular and can

be found easily by computing its first column only [21].

107



Chapter 5

Definition 5.2. We consider the set P = Ph+1,n as defined in (5.1).

(i) Define a p× (n+ p) matrix associated with a(s) :

S0 =


an an−1 an−2 · · · a1 a0 0 · · · 0

0 an an−1 · · · · · · a1 a0
. . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 an an−1 · · · · · · a1 a0


and n× (n+ p) matrices associated with each bi(s), i = 1, 2, . . . , h :

Si =


bi,p bi,p−1 bi,p−2 · · · bi,1 bi,0 0 · · · 0

0 bi,p bi,p−1 · · · · · · bi,1 bi,0
. . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 bi,p bi,p−1 · · · · · · bi,1 bi,0


An extended Sylvester matrix or generalized resultant for the set P is defined

by:

SP =


S0

S1

...

Sh

 ∈ R(p+hn)×(n+p) (5.5)

(ii) The matrix SP is the basis matrix of the set of polynomials :

S[P ] =
{
a(s), s a(s), . . . , sp−1 a(s) ; bj(s), s bj(s), . . . , s

n−1 bj(s), j = 1, ..., h
}

which is also referred to as the Sylvester resultant set of the given set P
[23, 82].

We can relate an (n, p) extended Sylvester matrix to any polynomial set

Ph+1,n′ with two maximal degrees n′ = n− j and p′ = p− j, j > 0 by assuming

the first j coefficients of the polynomials of Ph+1,n′ to be zero. The new matrix

will be called (n, p)-expanded generalized resultant of the set Ph+1,n′ .

NOTATION 5.2. The set of all generalized resultants corresponding to h + 1

polynomials with maximal nominal degrees (n, p) will be denoted by Ψ(n, p;h+ 1).

NOTATION 5.3. In the following, we will denote by m the row dimension of the

above extended Sylvester matrix SP , where m = p+ hn.

Toeplitz matrices and their properties are crucial elements in the representation

of the GCD, which is defined by the following factorisation of resultants result

[21, 22].
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Theorem 5.1. Let P ∈ Π(n, p;h+ 1) be a proper polynomial set (5.1). Let SP

be the respective extended Sylvester matrix (5.5), and φ(s) be the GCD of the set

with degree 0 < d ≤ p. Then, there exists a transformation matrix Φ̂φ (5.4), such

that

SP =
[
Om,d|S̃(d)

P∗

]
· Φ̂φ (5.6)

where Om,d is the m × d zero matrix, m = p + hn, P∗ ∈ Π(n − d, p − d;h + 1)

is the set of coprime polynomials obtained from the original set P after dividing

its elements by the GCD, φ(s), and S̃
(d)
P∗ is the respective (m,n+ p− d) extended

Sylvester matrix of P∗.

We will denote by S
(d)
P∗ = [Om,d|S̃(d)

P∗ ] the corresponding (n, p)-expanded gener-

alized resultant of the reduced coprime set P∗ = P∗h+1,n−d . The following results

give an important property of generalized resultants [22, 77].

Theorem 5.2. Let P ∈ Π(n, p;h + 1) be a polynomial set (5.1) and SP the

respective generalized resultant (5.5). Then

ρ(SP) = n+ p− d ⇔ deg
{

gcd{P}
}

= d

Proposition 5.1. The GCD of P is the same as the GCD of S[P ], that is

gcd{P} = gcd{S[P ]}

5.3 The notion of the approximate GCD

We consider the notion of the approximate GCD and the development of a

computational procedure that allows the evaluation of how good is the given

approximate GCD. Defining approximate notions of GCD using the pairwise

Euclidean approach has been an issue that has attracted a lot of attention

recently [20, 61, 67]. It is well known that, when working with inexact data in a

computational environment with limited numerical accuracy, the outcome of a

numerical algorithm is usually an approximation of the expected exact solution

due to the accumulation of numerical errors. Concerning the GCD algorithms,

their solution can be considered either as an approximate solution of the original

set of polynomials, within a tolerance ε, or as the exact solution of a perturbed

set of polynomials. The following definition is typical for the approximate GCD

[16, 20, 53, 61, 67].

Definition 5.3. Let Ph+1,n = {a(s), bi(s), i = 1, . . . , h} be a set of univariate

polynomials as defined in (5.1) and ε > 0 a fixed numerical tolerance. An almost

common divisor (ε-divisor) of the polynomials of the set Ph+1,n is an exact common
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divisor of a perturbed set of polynomials

P ′h+1,n , {a(s) + ∆a(s), bi(s) + ∆bi(s), i = 1, . . . , h}

where the polynomial perturbations satisfy

deg{∆a(s)} ≤ deg{a(s)}, deg{∆bi(s)} ≤ deg{bi(s)}

and

‖∆a(s)‖2 +
h∑
i=1

‖∆bi(s)‖2 < ε

An approximate GCD (or ε-GCD) of the set Ph+1,n is an ε-divisor of maximum

degree.

A different approach is presented in [21, 42] where the approximate GCD

is defined as a distance problem in a projective space. The particular optimis

ation problem is formulated by exploiting the resultant properties of the GCD

and applies to any number of polynomials without resorting to the features

of a particular algorithm. The essence of current methods for introduction of

approximate GCD is the relaxation of conditions characterizing the exact notion.

Furthermore, the quality or strength of a given approximate GCD is defined by

the size of the minimal perturbation required to make a chosen approximate GCD

an exact GCD of a perturbed set of polynomials [21, 42]. These significant results

for the approximate GCD problem are summarized in the following.

Consider a set Ph+1,n ∈ Π(n, p;h+ 1) as defined in (5.1) and (5.2). Then

a(s) = at e
′

n(s), bi(s) = bti e
′

p(s), i = 1, . . . , h

with e
′
j(s) = [sj, sj−1, . . . , s, 1]t for j = n or p respectively. We may associate with

the set Ph+1,n the vector

p
h+1,n

=
[
at, bt1, . . . , bth

]t
∈ RN (5.7)

where N = (n+ 1) + h (p+ 1), or alternatively a point Ph+1,n in the projective

space PN−1. The set Π(n, p;h + 1) is clearly isomorphic with RN , or PN−1.

An important question relates to the characterisation of all points of PN−1,

which correspond to sets of polynomials with a given degree GCD. Such sets of

polynomials correspond to certain varieties of PN−1, which are defined below. We

first note that an alternative representation of Ph+1,n is provided by the generalised

resultant SP ∈ R(p+hn)×(n+p) which is a matrix defined by the vector of coefficients

p
h+1,n

. If we denote by Ck(·) the kth compound of SP [56], then the varieties

characterising the sets having a given degree d GCD, are defined below.
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Proposition 5.2 ([21, 22, 42]). Let Π(n, p;h + 1) be the set of all polynomial

sets Ph+1,n with h+ 1 elements and with the two higher degrees (n, p) , n ≥ p and

let SP be the extended Sylvester matrix of the general set Ph+1,n. The variety of

PN−1, which characterise all sets Ph+1,n having a GCD with degree d, 0 < d ≤ p

is defined by the set of equations

Cn+p−d+1 (SP) = 0 (5.8)

Conditions (5.8) define polynomial equations in the parameters of the vector

p
h+1,n

, or the point Ph+1,n of PN−1. The set of equations in (5.8) define a variety

of PN−1, which will be denoted by ∆d(n, p;h+ 1) and referred to as the d-GCD

variety of PN−1. ∆d(n, p;h+ 1) characterises all sets in Π(n, p;h+ 1), which have

a GCD with degree d.

REMARK 5.1. The sets ∆d(n, p;h + 1) have measure zero [33] and thus the

existence of a nontrivial GCD of degree d > 0 is a nongeneric property.

The important question now, is how close the given set Ph+1,n is to the given

variety ∆d(n, p;h + 1). Defining the notion of the approximate GCD is linked

to introducing an appropriate distance of Ph+1,n from ∆d(n, p;h + 1). In fact,

if Qih+1,n is some perturbation set (to be properly defined) and assuming that

P ′ ih+1,n = Ph+1,n + Qih+1,n such that P ′ ih+1,n ∈ ∆d(n, p;h + 1), then the GCD of

P ′ ih+1,n, φ(s), with degree d defines the notion of the approximate GCD and its

strength is defined by the “size” of the perturbation Qih+1,n. Numerical procedures,

such as ERES, produce estimates of an approximate GCD. Estimating the size

of the corresponding perturbations provides the means to evaluate how good

such approximations are. By letting the parameters of the GCD free (arbitrary)

and searching for the minimal size of the corresponding perturbations a distance

problem is formulated that is linked to the definition of the optimal approximate

GCD. The key questions which have to be considered for such studies are:

i) Existence of perturbations of Ph+1,n yielding

P ′h+1,n = Ph+1,n +Qh+1,n ∈ ∆d(n, p;h+ 1)

ii) Parametrisations of all such perturbations.

iii) Determine the minimal distance of Ph+1,n from an element of ∆d(n, p;h+ 1)

with a given GCD u(s), and thus evaluation of strength of u(s).

iv) Determine the minimal distance of Ph+1,n from ∆d(n, p;h + 1) and thus

compute the optimal approximate GCD.

Here we are concerned with the issues (i)-(iii) which relate to the evaluation

of the strength of a given approximation that is not necessarily optimal.
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5.4 Parametrisation of GCD varieties and def-

inition of the Strength of the approximate

GCD

The characterisation of the ∆d(n, p;h+ 1) variety in a parametric form, as well

as subvarieties of it, is a crucial issue for the further development of the topic.

The subset of ∆d(n, p;h+ 1), characterised by the property that all Ph+1,n in it

have a given GCD u(s) ∈ R[s], deg{u(s)} = d, can be shown to be a subvariety of

∆d(n, p;h+ 1) and is denoted by ∆u
d(n, p;h+ 1) [21, 42]. In fact ∆u

d(n, p;h+ 1)

is characterised by the equations of ∆d(n, p;h+ 1) and a set of additional linear

relations amongst the parameters of the vector p
h+1,n

.

Proposition 5.3. Consider the set Π(n, p;h+1), PN−1 be the associated projective

space, Ph+1,n ∈ Π(n, p;h+ 1) and let SP be the associated resultant. Then,

i) The variety ∆d(n, p;h+ 1) of PN−1 is expressed parametrically by the gen-

eralized resultant:

SP =
[
Om,d|S̃(d)

P∗

]
· Φ̂u (5.9)

where Om,d is the m× d zero matrix, m = p+hn, Φ̂u is the (n+ p)× (n+ p)

Toeplitz representation of an arbitrary u(s) ∈ R[s] with deg{u(s)} = d and

S̃
(d)
P∗ ∈ Rm×(n+p−d) is the (n, d)-expanded generalized resultant of an arbitrary

set of polynomials P∗ ∈ Π(n− d, p− d;h+ 1).

ii) The variety ∆u
d(n, p;h+ 1) of PN−1 is defined by (5.9) with the additional

constraint that u(s) ∈ R[s] is given.

Clearly, the free parameters in ∆d(n, p;h + 1) are the coefficients of the

polynomials of Π(n − d, p − d;h + 1). Having defined the description of these

varieties we consider next the perturbations that transfer a general set Ph+1,n on

a set P ′h+1,n on them. If Ph+1,n ∈ Π(n, p;h + 1) we can define an (n, p)-ordered

perturbed set P ′h+1,n ∈ Π(n, p;h+ 1) by

P ′h+1,n , Ph+1,n −Qh+1,n (5.10)

=
{
p′i(s) = pi(s)− qi(s) : deg{qi(s)} ≤ deg{pi(s)}, i = 0, . . . , h

}
Using the set of perturbations defined above we may now show that any polynomial

from a certain class may become an exact GCD of a perturbed set under a family

of perturbations.

Proposition 5.4 ([21, 42]). Given a set Ph+1,n with maximal degrees (n, p), n ≥ p

and a polynomial v(s) ∈ R[s] with deg{v(s)} ≤ p. There always exists a family

of (n, p)-ordered perturbations Qh+1,n such that for every element of this family

P ′h+1,n = Ph+1,n −Qh+1,n has a GCD which is divisible by v(s).
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Figure 5.1: The notion of the “approximate GCD”.

The above result establishes the existence of perturbations making v(s) an

exact GCD of the perturbed set and motivates the following definition, which

defines v(s) as an approximate GCD in an optimal sense [21, 42].

Definition 5.4. Let Ph+1,n ∈ Π(n, p;h+1) and v(s) ∈ R[s] be a given polynomial

with deg{v(s)} = r ≤ p. Furthermore, let Σv = {Qh+1,n} be the set of all (n, p)-

order perturbations such that

P ′h+1,n = Ph+1,n −Qh+1,n ∈ Π(n, p;h+ 1) (5.11)

with the property that v(s) is a common factor of the elements of P ′h+1,n. If Q◦h+1,n

is the minimal norm element of the set Σv, then v(s) is referred to as an r-order

almost common factor of Ph+1,n, and the norm of Q◦h+1,n, denoted by ‖Q◦‖ is

defined as the strength of v(s). If v(s) is the GCD of

P◦h+1,n = Ph+1,n −Q◦h+1,n (5.12)

then v(s) will be called an r-order almost GCD of Ph+1,n with strength ‖Q◦‖.

Thus, any polynomial v(s) may be considered as an approximate GCD,

provided r = deg{v(s)} ≤ p.

Theorem 5.3 ([21, 42]). For Ph+1,n ∈ Π(n, p;h + 1), let SP ∈ Ψ(n, p;h + 1) be

the corresponding generalized resultant and let v(s) = λr s
r + . . .+λ1 s+λ0 ∈ R[s],

deg {v(s)} = r ≤ p. Then,

i) Any perturbation set Qh+1,n ∈ Π(n, p;h+ 1) that leads to

P ′h+1,n = Ph+1,n −Qh+1,n
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which has the polynomial v(s) as common divisor, has a generalized resultant

SQ ∈ Ψ(n, p;h+ 1) that is expressed as shown below:

a) If v(0) 6= 0 then

SQ = SP − S(r)
P∗ · Φ̂v = SP −

[
Om,r|S̃(r)

P∗

]
· Φ̂v (5.13)

where Om,r is the m× r zero matrix, Φ̂v is the (n+p)× (n+p) Toeplitz

representation of v(s) as defined in (5.4) and S
(r)
P∗ ∈ Rm×(n+p) is the

(n, p)-expanded generalized resultant of an arbitrary set of polynomials

P∗ ∈ Π(n− r, p− r;h+ 1).

b) If v(s) has k zeros at s = 0, then

SQ = SP − S̃(r)
P∗ ·Θv (5.14)

where S̃
(r)
P∗ is again the (n, p)-expanded generalized resultant of an

arbitrary set of polynomials P∗ ∈ Π(n− r, p− r;h+ 1) and Θv is the

(n+ p− k)× (n+ p) representation of v(s) defined by

Θv =



λk λk−1 λk−2 · · · · · · λ0 0 · · · · · · 0

0 λk λk−1 λk−2 · · · · · · λ0 0 0
...

. . .
. . .

. . .
...

. . .
. . .

0 · · · · · · 0 λk λk−1 λk−2 · · · · · · λ0


(5.15)

ii) If the parameters of P∗ are constrained such that S̃
(r)
P∗ has full rank, then

v(s) is a GCD of the perturbed set P ′h+1,n.

Corollary 5.1 ([21, 42]). Let Ph+1,n ∈ Π(n, p;h+1) and v(s) ∈ R[s], deg{v(s)} =

r ≤ p. The polynomial v(s) is an r-order almost common divisor of Ph+1,n and

its strength is defined as a solution of the following minimization problems:

a) If v(0) 6= 0, then its strength is defined by the global minimum of

f(P ,P∗) = min
∀P∗

∥∥∥SP − [Om,r|S̃(r)
P∗

]
· Φ̂v

∥∥∥
F

(5.16)

b) If v(s) has k zeros at s = 0, then its strength is defined by the global minimum

of

f(P,P∗) = min
∀P∗
‖SP − S̃(r)

P∗ ·Θv‖F (5.17)

where P∗ takes values from the set Π(n, p;h+ 1).

Furthermore, v(s) is an r-order almost GCD of Ph+1,n, if the minimal corresponds

to a coprime set P∗ or to full rank SP∗.
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5.5 The numerical computation of the strength

of an approximate GCD

For the computation of the minimization problems in (5.16) or (5.17) we need an

appropriate numerical procedure. However, the successful computation of such a

global minimum is not always guaranteed. The minimization problem in (5.16)

or (5.17) is actually non-convex and in cases of sets of many polynomials, where

the number of arbitrary parameters is usually large, it is very likely to lead to

unsatisfactory results. Conversely, it is easier to find some bounds for the main

function in (5.16) which is

‖SQ‖ =
∥∥∥SP − [Om,r|S̃(r)

P∗

]
· Φ̂v

∥∥∥
We analyse how the norm ‖SQ‖ is bounded and what information we can get

from these bounds. Without loss of generality, we assume a given polynomial v(s)

with no zero roots. Combining the relations (5.4) and (5.13), gives the following

equation:

SQ · Φ̂−1
v = SP · Φ̂−1

v −
[
Om,r|S̃(r)

P∗

]
(5.18)

Let ŜP = SP · Φ̂−1
v and split ŜP such that

ŜP = Ŝ
′

P + Ŝ
′′

P (5.19)

where Ŝ
′′
P has the same structure as S

(r)
P∗ =

[
Om,r|S̃(r)

P∗

]
. Specifically, if we denote

by A[i, j] the (i, j) element of a matrix A, the partitioning of ŜP is based on the

next rule:

Ŝ
′

P [i, j] =

{
ŜP [i, j], if S

(r)
P∗ [i, j] = 0

0, if S
(r)
P∗ [i, j] 6= 0

∀ i, j (5.20)

Therefore, Ŝ
′′
P can be presented as Ŝ

′′
P =

[
Om,r|S̄

]
, where S̄ is an m× (n+ p− r)

matrix. From (5.18) and (5.19) we get the following relations:

SQ · Φ̂−1
v = Ŝ

′

P +
[
Om,r|S̄

]
−
[
Om,r|S̃(r)

P∗

]
=

= Ŝ
′

P +
[
Om,r|S̄ − S̃(r)

P∗

]
(5.21)

It readily follows that:

SQ = Ŝ
′

P · Φ̂v +
[
Om,r|S̄ − S̃(r)

P∗

]
· Φ̂v (5.22)

and if we use the Frobenius norm, which relates to the set of polynomials in a
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direct way, we get:

‖SQ‖ ≤ ‖Ŝ ′P · Φ̂v‖+ ‖
[
Om,r|S̄ − S̃(r)

P∗

]
· Φ̂v‖ or (5.23)

‖SQ‖ ≤ ‖Ŝ ′P‖ ‖Φ̂v‖+ ‖
[
Om,r|S̄ − S̃(r)

P∗

]
‖ ‖Φ̂v‖ (5.24)

Furthermore, from the equation (5.21) we will have:

‖SQ‖ ‖Φ̂−1
v ‖ ≥

∥∥∥Ŝ ′P +
[
Om,r|S̄ − S̃(r)

P∗

]∥∥∥ (5.25)

It is clear that any exact common factor of the polynomials of the set is expected to

give ‖SQ‖ = 0. Therefore, we may consider a polynomial as a good approximation

of an exact common divisor or the exact GCD of a given set, if ‖SQ‖ is close

enough to zero.

The structure of the matrices here allows us to select the arbitrary parameters

of the set P∗ such that

S̄ = S̃
(r)
P∗ (5.26)

Then, if we apply the above result (5.26) to the inequalities (5.23) and (5.25) and

since the condition number of Φ̂v according to the Frobenius norm is

Cond(Φ̂v) = ‖Φ̂v‖ ‖Φ̂−1
v ‖ ≥ n+ p > 1 (5.27)

the following important inequality will be obtained:

‖Ŝ ′P‖
‖Φ̂−1

v ‖
≤ ‖SQ‖ ≤ ‖Ŝ

′

P · Φ̂v‖ (5.28)

Obviously, if ‖Ŝ ′P‖ = 0, then ‖SQ‖ = 0 and therefore the given polynomial v(s)

can be considered as an exact common divisor of degree r of the original set.

Otherwise, the inequality (5.28) gives a lower bound of ‖SQ‖, which indicates the

minimum distance towards ‖SQ‖ = 0.

Definition 5.5. Given a polynomial v(s) with no zero roots, we shall define as:

i) S(v), the strength of v(s) given by the minimization problems (5.16), (5.17).

ii) S(v) , ‖Ŝ ′P‖
(
‖Φ̂−1

v ‖)
)−1

, the lower strength bound of v(s).

iii) S(v) , ‖Ŝ ′P · Φ̂v‖, the upper strength bound of v(s).

iv) Sa(v) ,
S(v) + S(v)

2
, the average strength of v(s).

The computation of the strength bounds S(v) and S(v) is straightforward and

the results can be used as an indicator of the strength of the given approximation.
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For example, if S(v) >> 1, then the given approximation has very poor quality

and the opposite holds if S(v) << 1. The strength bounds are very reliable

indicators of the strength of a given GCD approximation v(s) provided that the

respective matrix Φ̂v is well-conditioned ( Cond(Φ̂v) ≈ O(n+ p) ).

The following algorithm establishes a method for the evaluation of the strength

bounds and hence the average strength Sa(v) of a given approximation v(s).

ALGORITHM 5.1. The algorithm of Average Strength.

Input : Give a set P ∈ Π(n, p;h+ 1) of univariate polynomials.

Give a univariate polynomial v(s) of degree r ≤ p with

no zero roots.

Step 1 : Construct the (n, p)-expanded Sylvester matrix SP of P .

Construct the special Toeplitz representation Φ̂v of v(s).

Compute the first column of the inverse of Φ̂v and

construct the matrix Φ̂−1
v .

Step 2 : Compute the matrix ŜP by solving the linear system :

Φ̂ t
v · Ŝ t

P = S t
P

Step 3 : Split ŜP such that ŜP = Ŝ
′
P + Ŝ

′′
P using (5.20) .

Compute the Frobenius norms ‖Ŝ ′P‖, ‖Φ̂−1
v ‖ and ‖Ŝ ′P · Φ̂v‖.

Output : S(v) =
‖Ŝ ′P‖
‖Φ̂−1

v ‖
, S(v) = ‖Ŝ ′P · Φ̂v‖, Sa(v) =

S(v) + S(v)

2

I Computational complexity

Due to the special structure of the matrices SP and Φ̂v, it is possible to avoid

the matrix operations and compute the norms explicitly and more efficiently.

The inverse of the lower triangular matrix Φ̂v is computed by solving a simple

linear system of the form Φ̂v x = e1
n+p, where x represents the first column of

the matrix Φ̂−1
v and e1

n+p = [1, 0, . . . , 0]t ∈ Rn+p. The multiple linear system

Φ̂ t
v · Ŝ t

P = S t
P can be solved by using only backward substitution since Φ̂ t

v is an

upper triangular matrix. The multiplication Ŝ
′
P · Φ̂v actually zeros specific entries

of Ŝ
′
P and produces an extended-resultant-like matrix. Thus it is not required to

perform it. The number of operations required by the above algorithm is given in

Table 5.1. The total amount of operations is O
(

3n2h+10n2+2nr−r2
2

)
for n = p. For

an effective computation of the GCD, the respective matrix Ŝ
′
P is quite sparse

and the required operations are less than O(2hn2).
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Φ̂−1
v ŜP ‖Ŝ ′P · Φ̂v‖ ‖Φ̂−1

v ‖ ‖Φ̂v‖

O
(

(n+p)2

2

)
O
(
n2+p2h

2

)
O
(
hnp− hr(n+ p)

)
O
(

(n+p)2

2

)
O
(

(n+p)r−r2
2

)
Table 5.1: Required operations for the computation of the strength bounds.

I Computational examples

In the following, we will demonstrate the steps of the previous Algorithm 5.1 for

computing the average strength of a given approximation by considering the next

example.

Example 5.1. Consider a polynomial set P3,3 ∈ Π(3, 2; 3) with arbitrary coeffi-

cients. The set P3,3 will be a {3, 2}-ordered polynomial defined as:

P3,3 =


a(s) = s3 + a2s

2 + a1s+ a0

b1(s) = s2 + b1,1s+ b1,0

b2(s) = s2 + b2,1s+ b2,0

 (5.29)

According to the representation (5.5), the generalised resultant matrix of the set

P3,3 has the form:

SP =



1 a2 a1 a0 0

0 1 a2 a1 a0

1 b1,1 b1,0 0 0

0 1 b1,1 b1,0 0

0 0 1 b1,1 b1,0

1 b2,1 b2,0 0 0

0 1 b2,1 b2,0 0

0 0 1 b2,1 b2,0



(5.30)

For simplicity reasons and without loss of generality we will consider a 1st degree

GCD approximation for the set P3,3 such that

v(s) = s+ c , c 6= 0

As it was described in Definition 5.3, a Toeplitz-like matrix can represent the

polynomial v(s) in the form:
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Φ̂v =



c 0 0 0 0

1 c 0 0 0

0 1 c 0 0

0 0 1 c 0

0 0 0 1 c


(5.31)

Then, the respective inverse of Φ̂v is a lower triangular matrix of the form:

Φ̂−1
v =



c−1 0 0 0 0

−c−2 c−1 0 0 0

c−3 −c−2 c−1 0 0

−c−4 c−3 −c−2 c−1 0

c−5 −c−4 c−3 −c−2 c−1


(5.32)

The next computations are made by following the steps 2 and 3 of the Algorithm

5.1 and lead to the evaluation of the strength bounds and the average strength of

the approximation v(s).

ŜP = SP · Φ̂−1
v = (5.33)



1
c
− a2

c2
+ a1

c3
− a0

c4
a2
c
− a1

c2
+ a0

c3
a1
c
− a0

c2
a0
c

0

− 1
c2

+ a2
c3
− a1

c4
+ a0

c5
1
c
− a2

c2
+ a1

c3
− a0

c4
a2
c
− a1

c2
+ a0

c3
a1
c
− a0

c2
a0
c

1
c
− b1,1

c2
+ b1,0

c3
b1,1
c
− b1,0

c2
b1,0
c

0 0

− 1
c2

+ b1,1
c3
− b1,0

c4
1
c
− b1,1

c2
+ b1,0

c3
b1,1
c
− b1,0

c2
b1,0
c

0

1
c3
− b1,1

c4
+ b1,0

c5
− 1
c2

+ b1,1
c3
− b1,0

c4
1
c
− b1,1

c2
+ b1,0

c3
b1,1
c
− b1,0

c2
b1,0
c

1
c
− b2,1

c2
+ b2,0

c3
b2,1
c
− b2,0

c2
b2,0
c

0 0

− 1
c2

+ b2,1
c3
− b2,0

c4
1
c
− b2,1

c2
+ b2,0

c3
b2,1
c
− b2,0

c2
b2,0
c

0

1
c3
− b2,1

c4
+ b2,0

c5
− 1
c2

+ b2,1
c3
− b2,0

c4
1
c
− b2,1

c2
+ b2,0

c3
b2,1
c
− b2,0

c2
b2,0
c


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Ŝ
′

P =



1
c
− a2

c2
+ a1

c3
− a0

c4
0 0 0 0

− 1
c2

+ a2
c3
− a1

c4
+ a0

c5
1
c
− a2

c2
+ a1

c3
− a0

c4
0 0 0

1
c
− b1,1

c2
+ b1,0

c3
0 0 0 0

− 1
c2

+ b1,1
c3
− b1,0

c4
1
c
− b1,1

c2
+ b1,0

c3
0 0 0

1
c3
− b1,1

c4
+ b1,0

c5
− 1
c2

+ b1,1
c3
− b1,0

c4
1
c
− b1,1

c2
+ b1,0

c3
0 0

1
c
− b2,1

c2
+ b2,0

c3
0 0 0 0

− 1
c2

+ b2,1
c3
− b2,0

c4
1
c
− b2,1

c2
+ b2,0

c3
0 0 0

1
c3
− b2,1

c4
+ b2,0

c5
− 1
c2

+ b2,1
c3
− b2,0

c4
1
c
− b2,1

c2
+ b2,0

c3
0 0



(5.34)

Ŝ
′

P · Φ̂v =



c3−a2c2+a1c−a0
c3

0 0 0 0

0 c3−a2c2+a1c−a0
c3

0 0 0

c2−b1,1c+b1,0
c2

0 0 0 0

0 c2−b1,1c+b1,0
c2

0 0 0

0 0 c2−b1,1c+b1,0
c2

0 0

c2−b2,1c+b2,0
c2

0 0 0 0

0 c2−b2,1c+b2,0
c2

0 0 0

0 0 c2−b2,1c+b2,0
c2

0 0



(5.35)

Now, we can give the algebraic expression of the strength bounds using the

Frobenius matrix norm. The upper strength bound for v(s) is:

S(v) = ‖Ŝ ′P · Φ̂v‖F = (5.36)

=

(
2

(
c3 − a2c

2 + a1c− a0

c3

)2

+ 3

(
c2 − b2,1c+ b2,0

c2

)2

+ 3

(
c2 − b1,1c+ b1,0

c2

)2
) 1

2

and the lower strength bound of v(s) is:
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S(v) = ‖Ŝ ′P‖F ·
(
‖Φ̂−1

v ‖F
)−1

= (5.37)

=

(
2

(
1

c
− a2

c2
+
a1

c3
− a0

c4

)2

+

(
− 1

c2
+
a2

c3
− a1

c4
+
a0

c5

)2

+3

(
1

c
− b2,1

c2
+
b2,0

c3

)2

− 2

(
1

c2
− b2,1

c3
+
b2,0

c4

)2

+

(
1

c3
− b2,1

c4
+
b2,0

c5

)2

+ 3

(
1

c
− b1,1

c2
+
b1,0

c3

)2

−2

(
1

c2
− b1,1

c3
+
b1,0

c4

)2

+

(
1

c3
− b1,1

c4
+
b1,0

c5

)2
) 1

2

·

·
(

5 c8 + 4 c6 + 3 c4 + 2 c2 + 1

c10

)− 1
2

The condition number of the matrix Φ̂v characterises the stability of the computa-

tion of the inverse of Φ̂v [18, 81] which also affects the computation of the matrix

Ŝ
′
P and hence the strength bounds. Since we use the Frobenius matrix norm, our

computations can be considered sufficiently numerical stable if Cond(Φ̂v) is about

O(n+p). Otherwise, it is very likely to have an unreliable result. Therefore, when

working in a variable precision computational environment it is more preferable to

perform the computation of the strength bounds using enough digits of precision,

for example quadruple precision (34 digits). In the present case, the condition

number of Φ̂v is given by

Cond(Φ̂v) = ‖Φ̂v‖F ‖Φ̂−1
v ‖F =

√
25 +

40

c2
+

31

c4
+

22

c6
+

13

c8
+

4

c10
(5.38)

and clearly the minimum value that we can get from it is n + p = 3 + 2 = 5.

When solving the linear system Φ̂ t
v · Ŝ t

P = S t
P the condition number of Φ̂v may

act as an indicator for using scaling techniques [18] in order to prevent unreliable

results.

Example 5.2. Consider a set of polynomials P ∈ Π{3, 2; 3} with numeric floating-

point coefficients:

P =


a(s) = (s− 1)(s+ 1)(s+ 3) = s3 + 3 s2 − s− 3

b1(s) = (s− 2)(s+ 0.9995) = s2 − 1.0005 s− 1.9990

b2(s) = (s− 3)(s+ 1.0050) = s2 − 0.9950 s− 3.0150

 (5.39)

which obviously has the same structure as (5.29). Then, the respective generalised

resultant matrix of P has the form:
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SP =



1 3 −1 −3 0

0 1 3 −1 −3

1 −1.0005 −1.9990 0 0

0 1 −1.0005 −1.9990 0

0 0 1 −1.0005 −1.9990

1 −0.9950 −3.0150 0 0

0 1 −0.9950 −3.0150 0

0 0 1 −0.9950 −3.0150



∈ R8×5 (5.40)

Clearly, for the typical 16-digit numerical precision the three polynomials of

the above set P are considered coprime. The three polynomials of the set have

been constructed so as to have a root around -1. The data are given in 4-digit

numerical precision and thus, for 2-digit numerical precision the polynomials

should have approximately the same root. However, it is interesting and perhaps

more appropriate to search for a 4-digit approximate root and, consequently, a 1st

degree approximate common factor v(s) = s+ c, which could also be considered

here as the approximate ε-GCD of the set P for ε = 10−4.

Using the results from the previous theoretical example 5.1 for the set P3,3,

we tested and computed the strength bounds and the average strength of 150

approximations of the form v(s) = s + c for the set P. The constant c ranged

from 0.995 to 1.010 with increment 0.0001. The values of the strength bounds

and the average strength of these approximations are presented in the graph of

Figure 5.2.

This particular graph shows that when the constant c increases, the average

strength Sa(v) of v(s) decreases, following a nearly parabolic line until it reaches

a minimum at c = 1.0022. Then it increases, following again a nearly parabolic

line in a symmetrical way. The results presented in Table 5.2 show that, for a

specified numerical accuracy ε = 10−4, the approximation

v(s) = s+ 1.0022

has a minimum average strength equal to

Sa(v) = 0.01821270609

and thus we may consider it as a “good” approximate ε-GCD of the set P .

However, in Figure 5.2 we notice that the strength bounds S(v) and S(v) have
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Figure 5.2: Measuring the strength of a 1st degree approximate GCD of the set
P ∈ Π(3, 2; 3) in Example 5.2.

similar graphs with Sa(v) and their minimum values are obtained for different

approximations v(s) = s + 1.0023 and v(s) = s + 1.0021, respectively. These

minimum values are highlighted in Table 5.2.

v(s) S(v) S(v) Sa(v) Cond(Φ̂v)

s+ 1.0019 0.009662968139 0.02696250452 0.01831273633 11.57988227

s+ 1.0020 0.009615551663 0.02689041331 0.01825298248 11.57783592

s+ 1.0021 0.009581612104 0.02685759025 0.01821960118 11.57579055

s+ 1.0022 0.009561282419 0.02686412976 0.01821270609 11.57374615

s+ 1.0023 0.009554638914 0.02690995372 0.01823229632 11.57170274

s+ 1.0024 0.009561699564 0.02699481292 0.01827825624 11.56966031

s+ 1.0025 0.009582423551 0.02711829199 0.01835035777 11.56761885

Table 5.2: The strength of the approximate GCD v(s) = s + c of the set P ∈
Π(3, 2; 3) in Example 5.2.

Therefore, it is reasonable to search for approximations which have minimum

strength bounds. According to (5.36), the upper strength bound for an arbitrary

approximation v(s) = s+ c, c ∈ Rr {0}, will be given as a real function of c such

that

Sv(c) =

(
8 +

5.9730

c
− 1.14092425

c2
− 24.0895470

c3
+

5.2586780

c4
− 12

c5
+

18

c6

) 1
2

(5.41)

We will attempt to minimize this function and see if it is possible to obtain
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Figure 5.3: Graphical representation of the upper strength bound of v(s) in
Example 5.2.

an approximation with lower upper strength bound and without the restriction of

4-digit numerical precision. Using standard methods of calculus (first derivative

test) and by observing the graph of the real function Sv(c) in Figure 5.3, we can

prove that Sv(c) is minimized for c0 = 1.00213337932.1 Therefore, the upper

strength bound S(v) is minimized by the approximation:

v(s) = s+ 1.00213337932

with minimum value:

min
c
S(v) = Sv(c0) = 0.02685539677

Similarly, considering (5.37), the lower strength bound for an arbitrary ap-

proximation v(s) = s+ c, c ∈ Rr {0}, will be given as a real function of c such

that

S v(c) =
( (

88344904− 88119396 c+ 88501909 c2 − 104274792 c3 + 16658914 c4−

−72430188 c5 + 15436303 c6 + 23892000 c7 + 32000000 c8
)
·

· 2.5 · 10−7

5 c8 + 4 c6 + 3 c4 + 2 c2 + 1

) 1
2

(5.42)

Using again standard methods of calculus (first derivative test) and by observing

the graph of the real function S v(c) in Figure 5.4, we can prove that S v(c) is

minimized for c′0 = 1.002298464659.

1The results are provided from the built-in routine of Maple minimize.
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Figure 5.4: Graphical representation of the lower strength bound of v(s) in
Example 5.2.

Therefore, the lower strength bound S(v) is minimized by the approximation:

v(s) = s+ 1.002298464659

with minimum value:

min
c
S(v) = Sv(c′0) = 0.009554637298

Finally, we conclude that the “best” approximate GCD of the form v(s) = s+ c

for the polynomial set P is expected to have a strength S(v) :

0.009554637298 ≤ S(v) ≤ 0.02685539677 (5.43)

Nevertheless, it remains important to solve the extended minimisation problem:

min
c
S(v) = min

c,P∗

∥∥∥SP − [Om,r|S̃(r)
P∗

]
· Φ̂v

∥∥∥
F

(5.44)

which derives from the original problem (5.16) for v(s) = s+ c, c 6= 0 and r = 1.

Then, it is required to study the following objective function:

Sv(c, ai,j) =
∥∥∥SP − [Om,r|S̃(r)

P∗

]
· Φ̂v

∥∥∥2

F
(5.45)

The matrix
[
Om,r|S̃(r)

P∗

]
with arbitrary parameters has the form:
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[
Om,r|S̃(r)

P∗

]
=



0 a1,2 a1,3 a1,4 0

0 0 a1,2 a1,3 a1,4

0 a2,2 a2,3 0 0

0 0 a2,2 a2,3 0

0 0 0 a2,2 a2,3

0 a3,2 a3,3 0 0

0 0 a3,2 a3,3 0

0 0 0 a3,2 a3,3


(5.46)

Then, the objective function Sv(c, ai,j) in (5.45) has the form:

Sv(c, ai,j) = 2 (1− a1,2)2 + 2 (3− a1,2c− a1,3)2 − 2 (1 + a1,3c+ a1,4)2

−2 (3 + a1,4c)
2 + 3 (1− a3,2)2 − 3 (1.995 + a3,2c+ a3,3)2

−3 (3.015 + a3,3c)
2 + 3 (1− a2,2)2 − 3 (1.0005 + a2,2c+ a2,3)2

−3 (1.9990 + a2,3c)
2 (5.47)

The minimisation of the above function Sv(c, ai,j) is basically a non-linear least-

squares problem. Furthermore, it is necessary here to compute the global minimum

of this function rather than a local minimum. For the purpose of this study, we

used the built-in Optimization[Minimize] routine of Maple, which is based on

the Gauss-Newton and modified Newton iterative methods [25]. Unfortunately,

the results showed that the minimum value of Sv(c, ai,j) is 6.115444877153 for

c = −2.703773531865. This result is not acceptable and obviously we deal with

an ill-conditioned optimisation problem.

However, if we apply scaling such as v(s) =
s

c
+ 1 and set w :=

1

c
, then the

objective function will be given by

Sv(w, ai,j) = 2 (1− a1,2w)2 + 2 (3− a1,2 − a1,3w)2 − 2 (1 + a1,3 + a1,4w)2

−2 (3 + a1,4)2 + 3 (1− a3,2w)2 − 3 (1.995 + a3,2 + a3,3w)2

−3 (3.015 + a3,3)2 + 3 (1− a2,2w)2 − 3 (1.0005 + a2,2 + a2,3w)2

−3 (1.9990 + a2,3)2 (5.48)

Using again the Optimization[Minimize] routine of Maple, we will notice that

the function Sv(w, ai,j) has a minimum value equal to 2.2860982654 · 10−4 at

w0 = 0.99770975355. This immediately shows that the solution of the problem

(5.44) is minc S(v) =
√

2.2860982654 · 10−4 = 0.0151198487605, which is obtained

for c = 1
w0

= 1.0022955037196.

Unless we have not found the global minimum of the minimisation problem

(5.44), the “best” approximate CCD of the set P is
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v(s) = s+ 1.0022955037196 (5.49)

with strength

S(v) = 0.0151198487605 (5.50)

and, of course, the inequality (5.43) is satisfied.

Example 5.3. Consider a larger set of polynomials P ∈ Π{5, 4; 12} with numeric

floating-point coefficients:

P =



a(s) = s5 + 4.60010 s4 + 5.90026 s3 + 2.60007 s2 + 3.30012 s+ 1.80009

b1(s) = −20 s4 − 77.00400 s3 − 54.00740 s2 + 61.00400 s+ 42.00420

b2(s) = −10 s4 − 51.00300 s3 − 117.00930 s2 − 134.01650 s− 48.00720

b3(s) = 40 s4 + 109.00400 s3 + 106.00290 s2 + 123.00480 s+ 54.00270

b4(s) = 20 s4 + 92.00400 s3 + 153.01040 s2 + 113.00980 s+ 30.00300

b5(s) = −10 s4 − 26.00300 s3 + 7.99820 s2 + 52.00600 s+ 24.00360

b6(s) = 10 s4 + 21.00100 s3 + 14.00010 s2 + 33.00120 s+ 18.00090

b7(s) = 30 s4 + 33.00600 s3 − 101.00540 s2 − 106.00940 s− 24.00240

b8(s) = 15 s4 + 59.00450 s3 + 55.00870 s2 − 15.00090 s− 18.00270

b9(s) = −15 s4 − 74.00150 s3 − 89.00440 s2 + 9.99990 s+ 24.00120

b10(s) = 25 s4 + 90.00500 s3 + 140.00800 s2 + 147.01200 s+ 54.00540

b11(s) = 10 s4 + 71.00300 s3 + 119.01530 s2 + 28.00510 s− 12.00180


(5.51)

We search for an approximate GCD of the above set P and we will use the

Hybrid ERES algorithm in order to find one. For the typical 16-digits numerical

precision and tolerances εt = 10−15, εG = 10−15, the given solution is

gcd{P} : g(s) = s+ 0.6 (5.52)

with average strength Sa(g) = 4.467947303 · 10−28. This solution can be charac-

terised as an exact GCD or an excellent approximate GCD of the set P , because

the value of the average strength is practically zero for the 16-digits accuracy.

The Hybrid ERES algorithm does not provide any other approximate solutions

for the given set P. However, if we compute the average strength of a simple

polynomial factor of the general form:

v(s) = s+ c, c ∈ Rr {0}

for the set P and by using the Frobenius norm, then we actually obtain the

average strength Sa(v) as a real function of c, denoted by Sav (c), with its graph

presented in Figure 5.5.
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Figure 5.5: Graphical representation of the average strength Sav (c) of the common
factor v(s) = s+ c of the set P in Example 5.3.

If we carefully observe the graph of the average strength Sav (c) in Figure 5.5,

we will notice that there are two local minima. The first local minimum is at

c = 0.6, which is very normal, since it verifies the already computed GCD in (5.52).

However, there is another local minimum near c = 2 which reveals the presence

of another simple common factor with weaker strength. We may compute this

minimum by using the minimisation routine Optimization[Minimize] of Maple

with objective function Sav (c) and initial point ĉ = 2.1 (or ĉ = 1.9). Then, we get

min
c
Sa(v) = 0.002342396475056914 (5.53)

for c = 2.00015927122308631. Therefore, there exists another approximate com-

mon factor of the form:

v̂(s) = s+ 2.00015927122308631 (5.54)

with average strength Sa(v̂) = 2.342396475056914 · 10−3. Obviously, v̂(s) is a

“weaker” common factor of P in comparison with g(s), but we may infer that

there is an approximate GCD of degree 2, given by the product of these common

factors. Thus, we can have an approximate GCD of the form:

ĝ(s) = v̂(s) · g(s) =

= s2 + 2.60015927122308631 s+ 1.20009556273385179 (5.55)

with average strength Sa(ĝ) = 2.951102916 · 10−3. However, if we evaluate the
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strength of ĝ(s) by solving the problem:

S(ĝ) = min
P∗

∥∥∥SP − [Om,2|S̃(2)
P∗

]
· Φ̂ĝ

∥∥∥
F

(5.56)

we get S(ĝ) = 3.2297259946 · 10−3.

Surprisingly, if we solve the extended minimisation problem (5.44) for v(s) =

s2 + c1 s+ c2 with deg{v(s)} = r = 2, where c1, c2 are nonzero constants in R, we

get

min
c1,c2
S(v) = 0.00322861972251372628

for c1 = 2.60015931739949568 and c2 = 1.20009515827349452. This implies that

there exists a 2nd degree approximate GCD of the form:

g̃(s) = s2 + 2.600159317399495681 s+ 1.20009515827349452 (5.57)

with strength S(g̃) = 3.2286197225 · 10−3, which is nearly identical with ĝ(s) in

(5.55).

Furthermore, if we solve again the extended minimisation problem (5.44) for

a simple common factor v(s) = s+ c1, r = 1, where c1 is a nonzero constant in R,

and initial point ĉ = 2.1, we get:

min
c1
S(v) = 0.00305624668250932152 (5.58)

for c1 = 2.00015926974934885. Therefore, we have computed again a 1st degree

approximate common factor of the form:

ṽ(s) = s+ 2.00015926974934885 (5.59)

with strength S(ṽ) = 3.0562466825 · 10−3, which is nearly identical with v̂(s) in

(5.54).

Conclusively, we used here the strength minimisation problem minc S(v) and

the average strength minimisation problem minc Sa(v) in order to compute a simple

approximate common factor v(s) = s + c for a set P of 12 real polynomials of

maximum degree 5. The given results in (5.54) and (5.59) are nearly identical. But

the major difference is that the former problem involves 50 arbitrary parameters

(including c) to be solved, whereas the latter involves only one arbitrary parameter,

c, which results in significantly less computational complexity and improved

efficiency.
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5.6 Computational results

In this section we shall present a number of results given by the previous algorithms

for different sets of several polynomials. More specifically, we use the ERES

algorithm to find the εt-GCD of a set of polynomials Ph+1,n for εt accuracy and

we evaluate the given GCD approximation v by computing the strength bounds

S(v) and S(v) and, of course, its strength S(v). Our intention is to show the

advantages of the hybrid implementation of the ERES algorithm in contrast

with its fully numerical implementation. Thus, we shall denote by H-ERES the

Hybrid ERES algorithm as described in Chapter 4 and presented in Figure 4.1,

and N-ERES the fully numerical ERES algorithm as presented in [57, 58]. The

algorithms were implemented in the software programming environment of Maple

using both rational and variable floating-point arithmetic. For the computation

of the GCD in Example 5.5, the software numerical accuracy of Maple was set to

16 digits in order to simulate the common hardware accuracy. Conversely, for the

computation of the strength bounds and the strength of the given approximation,

the software numerical accuracy was set to 64 digits for more reliable results. The

strength of the given approximation was computed in Maple by using the built-in

numerical minimization routine Optimization[Minimize].

Example 5.4. Consider the following set P3,2 ∈ Π(2, 2; 3), h = n = p = 2 with

polynomials:

a(s) = 2.0 s2 + 2.380952380952381 s− 0.3809523809523810

b1(s) = s2 − 3.642857142857143 s+ 0.5

b2(s) = 1.5 s2 − 7.214285714285714 s+ 1.0

The coefficients of the set P3,2 are given in 16-digits floating-point format. The

basis matrix of the set has the form:

P3 =


−0.3809523809523810 2.380952380952381 2.0

0.5 −3.642857142857143 1.0

1.0 −7.214285714285714 1.5


The data of P3 are converted to an approximate2 rational format and the matrix

has the following form:

P ′3 =


− 8

21
50
21

2

1
2

−51
14

1

1 −101
14

3
2


2The conversion is done according to Maple’s arithmetic by using the directive convert.
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The error from this conversion is

‖P ′3 − P3‖∞ = 2.8571428571428571 · 10−16

This is our initial error in 16-digits floating-point arithmetic, where the respective

machine’s epsilon is εm = 2.22044604925031308 · 10−16. This error does not grow

during the iterations of the algorithm.

The final matrix P
(N)
3 has rank 1 for a selected tolerance εt = 10−15 and the

respective right singular vector is

wt = [−0.141421356237309, 0.9899494936611661]t

The solution is given either from the rows of the final matrix of the main iterative

procedure:

v(s) = s− 1

7

or from the vector w :

v′(s) = s− 0.1428571428571427

The polynomial v′(s) is an εt-GCD and the distance between these two solutions

is

‖v − v′‖∞ ≈ 1.57 · 10−16

Now, we shall evaluate the strength bounds of the polynomial v′(s) by using

the Algorithm 5.1.

• Computation of the Frobenius norms ‖Ŝ ′P‖, ‖Φ̂−1
v ‖ and ‖Φ̂v‖ :

‖Ŝ ′P‖ = 4.6128999736247051 · 10−13

‖Φ̂v′‖ = 12.288205727444521

‖Φ̂−1
v′ ‖ = 350.14568396597551

Cond(Φ̂v′) = 4302.6621991506793

• Computation of the strength bounds:

S(v′) =
‖Ŝ ′P‖
‖Φ̂−1

v′ ‖
= 1.317423056990459 · 10−15

S(v′) = ‖Ŝ ′P · Φ̂v′‖ = 9.134903149763325 · 10−14

The strength of the polynomial v′(s) = s− 0.1428571428571424 is evaluated
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by the minimization problem (5.16) :

f(P ,P∗) = min
∀P∗

∥∥∥SP − [Om,r|S̃(r)
P∗

]
· Φ̂v′

∥∥∥
F

where

[
Om,r|S̃(r)

P∗

]
=



0 a1 a2 0

0 0 a1 a2

0 a3 a4 0

0 0 a3 a4

0 a5 a6 0

0 0 a5 a6


and ai, i = 1, . . . , 6 are arbitrary parameters. The built-in minimization routine

of Maple gives the next result:

S(v′) = f(P ,P∗) = 1.8451526088542018 · 10−15

for

{a1, a2, a3, a4, a5, a6} = {2.0, 2.666666666666668, 1.0,−3.5, 1.5,−7.0}

in 16-digits software accuracy. Obviously, the computed value of the strength is

within the values of its bounds and extremely close to them.

Example 5.5. We consider the set P3,11 ∈ Π(11, 11; 3), h = 2, n = p = 11 with

polynomials :

a(s) = −16.316 s11 + 182.73 s10 − 185.83 s9 + 106.68 s8

−266.22 s7 + 125.80 s6 − 195.53 s5 + 243.81 s4

+23.013 s3 + 64.186 s2 − 24.300 s− 43.810

b1(s) = 4.6618 s11 − 52.209 s10 + 53.094 s9 − 30.481 s8

+76.064 s7 − 35.944 s6 + 55.866 s5 − 69.659 s4

−6.5751 s3 − 18.339 s2 + 6.9428 s+ 12.517

b2(s) = −4.1155 s11 + 47.507 s10 − 59.034 s9 + 2.2157 s8

−45.276 s7 + 83.932 s6 − 34.013 s5 + 15.007 s4

+4.3083 s3 − 9.0031 s2 + 14.297 s− 14.783

The exact GCD of the set P3,11 is g(s) = 1 and the tolerance εG is set equal to

the machine’s epsilon in 16-digits accuracy εm ≈ 2.2204 · 10−16. The H-ERES

algorithm gave us five possible approximate solutions for different values of the

tolerance εt. In Table 5.3 we denote these solutions by vi(s), i = 1, 2, . . . , 5.
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H-ERES v1(s) v2(s) v3(s) v4(s) v5(s)

Degree 1 8 4 5 2

εt 9.5 · 10−2 6 · 10−2 3 · 10−3 6 · 10−4 5 · 10−5

S(v) 14.1684562 144.132727 0.72610271 4.00725481 0.02571431

S(v) 3.07315597 0.53653745 0.22191334 0.06286887 0.00319468

S(v) 69.9370280 3563.87058 930.143927 322.951121 0.19880416

Cond(Φ̂v) 22.7573962 6642.35195 4191.47371 5136.90032 62.2296806

Main Iter. 20 6 14 12 18

Rank-1 Iter. 11 4 8 7 10

Table 5.3: Results for the εt-GCD of the set P3,11 in Example 5.5.

From the presented results in Table 5.3 we can conclude that:

i) The “best” approximate solution is the polynomial

v5(s) = s2 − 11.28371806974011 s+ 11.64469379842480

which has the lowest strength S(v) = 0.02571431 and it is given for εt =

5 · 10−5.

ii) The strength S(v) is well bounded when Cond(Φ̂v) < (h+ 1)(n+ p) = 66.

iii) The number of iterations of the main procedure is greater than the respective

number of iterations of the rank-1 procedure.

The N-ERES algorithm gave approximately the same results with a restriction to

8 digits of accuracy and εG > 10−6.

I Comparison of the Hybrid ERES algorithm with other GCD algo-

rithms

We tested and compared the algorithms H-ERES and N-ERES for various random

sets of polynomials and some representative results are presented in Table 5.4.

More specifically, we examined random sets of polynomials with integer coefficients

between −107 and 107, which have an exact GCD with rational coefficients. The N-

ERES algorithm uses the data as floating-point numbers and in every polynomial

set Ph+1,n in Table 5.4 the selected software floating-point accuracy of the system,

denoted as Dig, is selected as the minimum accuracy that N-ERES requires

to produce a polynomial, which has at least the same degree as the respective

exact GCD. The H-ERES algorithm uses the data as symbolic-rational numbers

and produces the GCD of the set accurately. However, we can also have a

numerical solution given by the Rank-1 procedure (PSVD1 algorithm) according

to Proposition 4.1. For the numerical part of the H-ERES algorithm, the software
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floating-point accuracy remained the same with the selected accuracy for the

N-ERES algorithm in order to compare the results. The internal accuracies of the

algorithm are εt = εG ≈ 10−Digits.

We compared the two algorithms in respect of the numerical relative error

between the exact GCD and the given solution, the number of main iterations and

the required time of execution. The results in Table 5.4 show that the H-ERES

algorithm produces numerical solutions of better quality than the N-ERES algo-

rithm.

The relative error is given by Rel =
‖v−g‖2
‖g‖2 , where v, g are the coefficient

vectors of the provided solution v(s) and the exact GCD g(s) respectively. ‖ · ‖2

denotes the Euclidean norm. In the case of large sets of polynomials, the N-ERES

fails to produce accurate results in the standard floating-point precision of 16-digits

of accuracy. Conversely, the H-ERES algorithm works with this accuracy and

gives very good results, which are presented in Table 5.5 3.

Furthermore, a comparison of the Hybrid ERES method with other existing

matrix-based methods developed for the computation of the GCD of a set of

several polynomials by processing all the polynomials of the set simultaneously,

has been made [87, 91] and the results are given in Tables 5.6 and 5.7. This

comparison includes the standard matrix pencil (MP) [45], the modified resultant

matrix pencil (MRMP) [72, 73], the resultant extended-row-equivalence (RERE)

[72, 73], the modified resultant extended-row-equivalence (MRERE) [72, 73], and

the subspace (SS) [64] method. A description of the MP, MRMP and SS methods

has been given in Chapter 2. The RERE and MRERE methods are based on

the application of elementary row transformations to a Sylvester-type matrix

(resultants), formed from the coefficients of the polynomials, using either QR or

LU factorisation [18]. The results show that the Hybrid ERES algorithm combines

speed and accuracy and thus it has better overall performance compared with the

other algorithms, especially in the case of large sets of polynomials.

5.7 Discussion

The notion of the approximate GCD of sets of several polynomials and the

related developed framework for the evaluation of its quality was considered. The

results presented in [21, 22, 42] provided the means to define the strength of a

given approximation as a solution of an appropriate optimisation problem and

thus reduced the approximate GCD problem to an equivalent distance problem.

This allows the evaluation of the quality of an approximation and it is totally

independent from any GCD computational method. Unfortunately, such an

optimization problem is non-convex and therefore it requires special methods

3The sets of polynomials in Tables 5.4 and 5.5 are the same.
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to be solved. However, by exploiting the structural properties of the resultant

matrices, the algebraic analysis of the objective function of the derived optimisation

problem led to the establishment of an upper and lower numerical bound for

the strength of a given approximate GCD. These numerical bounds can easily

be computed via a simple algorithm and act as indicators of the strength of

an approximation. Depending on the numerical condition of the problem these

indicators can give us reliable information about the quality of a given approximate

GCD without the need to compute the actual strength by solving the related

minimisation problem.

In this context, the Hybrid ERES algorithm was tested regarding its effective-

ness in computing meaningful and acceptable approximate solutions when the

input polynomials suffer from numerical inaccuracies, or if they are considered

to be non-coprime within a numerical accuracy εt. The produced results have

showed that the Hybrid ERES algorithm has the remarkable advantage to pro-

duce multiple approximate GCDs within a specified numerical accuracy. These

approximations can be considered of good quality, if their strength bounds and

consequently their actual strength are close enough to zero. The approach how-

ever, provides the means for defining the explicit form of a reduced optimisation

problem for the computation of the strength, based only on the free parameters

(i.e. the coefficients) of the approximate GCD. This reduction will simplify a

lot the optimization process and will put the study of computing the optimal

approximate GCD into new perspective.
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Set h, n, p, d Dig. Alg. Main SVD Time Rel. Err.

P11,10 10, 10, 10, 1 16 N-ERES 5 2 0.203 5.28309 · 10−16

H-ERES 3 3 0.266 6.44538 · 10−16

P21,20 20, 20, 20, 2 55 N-ERES 5 2 0.688 1.02570 · 10−19

H-ERES 3 3 0.797 1.00764 · 10−53

P31,30 30, 30, 30, 3 34 N-ERES 6 2 1.749 3.38425 · 10−20

H-ERES 2 2 2.156 2.53046 · 10−33

P31,40 30, 40, 40, 4 45 N-ERES 10 2 3.375 3.45159 · 10−21

H-ERES 4 3 14.250 1.14197 · 10−44

P51,30 50, 30, 30, 5 58 N-ERES 2 2 3.812 1.27734 · 10−19

H-ERES 3 3 3.703 4.14280 · 10−56

Table 5.4: Results from H-ERES and N-ERES algorithms for randomly selected
sets of polynomials.

Set h, n, p, d Dig. Main PSVD1 Time Rel. Err.

P11,10 10, 10, 10, 1 16 3 3 0.266 6.44538 · 10−16

P21,20 20, 20, 20, 2 16 3 3 0.704 2.65026 · 10−16

P31,30 30, 30, 30, 3 16 3 3 2.171 4.78899 · 10−16

P31,40 30, 40, 40, 4 16 5 4 14.156 1.65847 · 10−16

P51,30 50, 30, 30, 5 16 3 3 3.094 5.44165 · 10−16

Table 5.5: Results from the H-ERES algorithm in 16 digits of accuracy.

Notation in Tables 5.4 and 5.5 :

Set : Set Ph+1,n of random polynomials.

Main : Number of main iterations.

h,n,p : Parameters of the set as defined in (3.1).

SVD : Number of SVD or PSVD1 calls.

d : Degree of the exact GCD of the set Ph+1,n.

Time : Time of execution in seconds.

Dig. : Number of digits of software accuracy.

Rel. Err. : Relative error.

Alg. : Type of algorithm.
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Chapter 6

Computation of the LCM of

several polynomials using the

ERES method

6.1 Introduction

Another key problem in the area of algebraic computations is the computation of

the Least Common Multiple (LCM) of polynomials. In this chapter we review the

LCM problem and summarise the results of an algebraic characterisation of the

LCM of sets of several polynomials [46, 47], based on the classical identity (2.3)

satisfied by the LCM and GCD of two polynomials. This characterisation enabled

the development of procedures for computing the LCM of a set of polynomials

based on numerical GCD and approximate factorisation of polynomial ideas. The

use of GCD algorithms is central to these methods and in the present study an

algorithm for the computation of the LCM that uses the ERES method as an

integral part for computing the GCD is presented and analysed. The use of the

ERES method and its ability to produce approximate GCDs is considered for

defining approximate LCMs.

We also present here an alternative way to compute the LCM of a set of

several polynomials with inexact coefficients which avoids the computation of

the associated GCD. The current approach is based on the direct use of Euclid’s

division algorithm through ERES operations, which is represented by the ERES

Division algorithm (Algorithm 3.1). The LCM is computed by solving an appro-

priate linear system which is transformed to a least-squares optimisation problem

in the approximate case. The properties of the linear least-squares problems are

briefly discussed and a new method for the computation of approximate LCMs

of sets of polynomials is developed and analysed thoroughly. Finally, various

examples are given for the demonstration of the developed procedures.
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6.2 Computation of the LCM using the GCD

The GCD and LCM problems are naturally interlinked, but they are different.

For the simple case of two polynomials p1(s) and p2(s) with GCD denoted by

g(s) and LCM denoted by l(s) we have the standard identity that p1(s) · p2(s) =

g(s) · l(s), which indicates the coupling of the two problems. For randomly selected

polynomials, the existence of a non trivial GCD is a nongeneric property, but the

corresponding LCM always exists. In the generic case the LCM is a polynomial

equal to the product of all the individual polynomials of the given set. This

suggests that there are fundamental differences between the two problems. We

mainly focus on the following problem:

Given a set of polynomials P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
define a

numerical procedure for the computation of their LCM and associated factorisation

by avoiding root finding. Furthermore, this numerical procedure must have the

ability to work on data with numerical inaccuracies and thus lead to “approximate

LCM computation”.

The above problem has been addressed in [47] and the approach followed,

was based on the reduction of the computation of the LCM to an equivalent

problem where the computation of GCD is an integral part. The developed

methodologies depend on the proper transformation of the LCM computations to

real matrix computations and thus also introduce a notion of almost LCM. The

latter problem is of special interest when the initial data are characterised by

parameter uncertainty.

Proposition 6.1 ([46]). Let P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
and the subsets:

Pµ =
{
p1(s), p2(s), . . . , pµ−1(s), pµ(s)

}
for every µ = 2, . . . , h and Ph = P. If we denote by [·] the procedure of computing

the LCM and [Pµ] , lµ(s) then, the following recursive process establishes the

associativity property for the LCM :

[Ph] = lh(s) = [[Ph−1], ph(s)] = [lh−1(s), ph(s)]

[Ph−1] = lh−1(s) = [[Ph−2], ph−1(s)] = [lh−2(s), ph−1(s)]

...

[P3] = l3(s) = [[P2], p3(s)] = [l2(s), p3(s)]

[P2] = l2(s) = [p1(s), p2(s)]

(6.1)

The associativity property is fundamental in the computation of the LCM.

The derived computational method involves:

a) the computation of the GCD, and
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b) the factorisation into two factors when one is given.

The most important characteristic of this method is that it does not require root

finding procedures. The next results will be stated here without proof and provide

a basis for the study of the LCM problem by following the above method.

Theorem 6.1 ([47]). Let P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
. The polynomial

l(s) is an LCM of P, if and only if there exist gi(s) ∈ R[s], i = 1, . . . , h such that

the vector

g(s) =
[
l(s), g1(s), . . . , gh(s)

]t
(6.2)

is the least degree solution of the equation (modulo c ∈ R) :

QP(s) · g(s) = 0 (6.3)

The identity (6.3) has the following form:

1 −p1(s) 0 0 . . . 0 0

0 p1(s) −p2(s) 0 . . . 0 0

0 0 p2(s) −p3(s) . . . 0 0
...

. . . . . .
...

...

0 . . . . . . . . . 0 ph−1(s) −ph(s)


︸ ︷︷ ︸

,QP (s)



l(s)

g1(s)

g2(s)
...

gh(s)


︸ ︷︷ ︸

,g(s)

=



0

0

0
...

0


︸ ︷︷ ︸

,0

Solution of condition (6.3) gives rise to an one dimensional rational vector

space since QP(s) is of h × h + 1 and its rank is h. Solvability of LCM is thus

equivalent to defining a least degree basis and then selecting its first coordinate.

The rest of the coordinates are the factors in the minimal factorisation of l(s)

described by

l(s) = p1(s) · g1(s) = · · · = ph(s) · gh(s)

and thus crucial in turning fractions
1

pi(s)
, i = 1, . . . , h into equivalent with

common denominator i.e.{
1

pi(s)
=
gi(s)

l(s)
, ∀ i = 1, . . . , h

}
The above results suggest that the LCM computation amounts to extracting a

minimal degree polynomial vector from the nullspace of a polynomial matrix [47].

The next theorem gives an important algebraic relation for the computation of

the LCM of a set of polynomials using GCD computations.

NOTATION 6.1. Let Qµ,ν be the ordered set of lexicographically ordered sequences

of µ integers from ν. We shall denote by ω = (i1, i2, . . . , ih−1) ∈ Qh−1,h and ω̂ = (j)

is the index from (1, 2, . . . , h) which is complementary to the set of indices in ω.
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Theorem 6.2 ([47]). Let P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
be a set of real

polynomials and l(s) = lcm{P}. If we denote by

T =

{
pω(s) : pω(s) =

h−1∏
k=1

pik(s), ∀ ω = (i1, i2, . . . , ih−1) ∈ Qh−1,h

}
,

p(s) =
∏h

i=1 pi(s) and g(s) = gcd{T }, then l(s) satisfies the following properties:

i) For any ω ∈ Qh−1,h, if we can write

pω(s) = g(s) · rω(s)

then

l(s) = pω̂(s) · gω̂(s)

where gω̂(s) = rω(s).

ii) The polynomials l(s), g(s) and p(s) satisfy the identity :

l(s) · g(s) = p(s) (6.4)

At this point, we need a procedure that can handle the factorisation of a

polynomial into two factors, when the one is given. This factorisation can be

implemented either as a polynomial division or a system of linear equations. These

two approaches will be presented in the following.

6.2.1 Factorisation of polynomials using ERES Division

The identity (6.4) implies that the LCM l(s), is actually the quotient of the

division
p(s)

g(s)
= l(s) (6.5)

which suggests an algorithmic procedure for the computation of the LCM based

on polynomial division. The development of such an LCM algorithm requires:

a) the GCD of the given set of polynomials, and

b) a computational procedure for the division of two polynomials.

Both of the above requirements can be handled effectively in the context of

the ERES methodology. As described in Chapters 3 and 4, the ERES method

with the developed Hybrid ERES algorithm is an efficient numerical tool for the

computation of the GCD of polynomials. Furthermore, the developed ERES

Division algorithm in Chapter 3 can also be used to calculate the result of
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the division (6.5). Specifically, the vector of polynomials p(s) and g(s) can be

transformed through ERES operations into a new vector of polynomials such that[
p(s)

g(s)

]
ERES

−−−−−− >

[
r(s)

g(s)

]
The coefficients of the LCM l(s), are obtained implicitly during the ERES Division

process and the polynomial r(s) represents the remainder of the division p(s)
g(s)

.

Moreover, in the case of sets of polynomials with numerical inaccuracies it has

been proved in chapters 4 and 5 that the Hybrid ERES algorithm is capable of

producing approximate GCDs of good quality within a specified range of numerical

accuracy. The use of an approximate GCD in the identity (6.5) naturally leads

to an approximate solution for the LCM. However, the final result may also be

affected by additional numerical errors introduced by the ERES operations. But

this complication can be avoided, if symbolic-rational operations are used during

the application of the ERES Division algorithm. Under this assumption, the

result obtained from the polynomial division (6.5), when an approximate GCD is

present, will be considered as an approximate LCM. However, we will not proceed

further our analysis for the approximate LCM problem using this methodology. A

different approach will be presented in the following.

Consequently, the ERES method appears to be a significant part in the process

of computing the LCM of a set of several polynomials. However, other methods,

such as the Matrix Pencil method [45], can also be used for the computation of

the GCD of polynomials. The following algorithm is developed in the context

of symbolic-rational computations for the computation of the LCM of a set P
of several polynomials and it is based on the results derived from the previous

Theorem 6.2. The next Symbolic-Rational (S-R) LCM algorithm is actually a

variation of the numerical LCM algorithm, which is described in [47].

ALGORITHM 6.1. The S-R LCM Algorithm

Input : P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
Step 1 : Compute p(s) = p1(s) p2(s) · · · ph(s).
Step 2 : Find the set T =

{
pωi(s) : pωi(s) =

∏h−1
k=1 pik(s), i = 1, . . . , h

}
for all ωi = (i1, i2, . . . , ih−1) ∈ Qh−1,h.

Step 3 : Compute g(s) = gcd{T }.

Step 4 : Compute l(s) =
p(s)

g(s)
by applying the

ERES Division Algorithm 3.1 to the pair (p(s), g(s)).

Output : l(s) = lcm{P}
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I Computational complexity and numerical behaviour of the S-R LCM

algorithm

The previous Algorithm 6.1 behaves very well when the polynomials have integer

coefficients and they are processed by using exact rational operations. However,

the amount of operations (addition or multiplication) required for the computation

of the initial polynomial p(s) and the polynomials of the set T can be prohibitively

high. Specifically, for h polynomials with average degree d̄ ≥ 2, the algorithm

must perform:

fl(d̄, h) = (d̄+ 1)h + h (d̄+ 1)h−1

= (d̄+ 1)h
(

1 +
h

d̄+ 1

)
(6.6)

operations. If we use the Hybrid ERES algorithm to compute the GCD of the set T ,

then the dimensions of the initial matrix will be equal to h× (d̄ h+1) and the total

number of the performed operations is about O
(

1
3
h3 + 2 d̄ 2h3 − 2

3
d̄ 3h3

)
. Finally,

the ERES Division algorithm requires about O
(
d̄h(k + 2)− k2

)
operations, where

k denotes here the degree of the GCD. Therefore, we conclude that the S-R

LCM Algorithm 6.1 can be computationally efficient only for moderate sets of

polynomials.

Regarding its numerical efficiency, if the original data are given inexactly

in floating-point format, it is obvious that it is not wise to perform numerical

floating-point operations to compute the polynomial p(s) and the polynomials of

the set T , because it is very likely to have many unnecessary numerical errors

during the process. Thus, the construction of the initial polynomials of the set

T and also the ERES Division algorithm is better to be implemented by using

symbolic-rational operations in order to minimize the risk of getting erroneous

results. Therefore, considering the S-R LCM algorithm, the computation of an

approximate LCM of the set P, relies on the computation of an approximate

GCD given by the Hybrid ERES algorithm. In the following, we shall introduce

an alternative method for the computation of an approximate LCM without

computing the GCD and we will compare the results of the two methods.

Example 6.1. Demonstrate now the steps of the S-R LCM Algorithm 6.1, consider

the polynomial set P4 =
{
pi(s) ∈ R[s], i = 1, 2, 3, 4

}
with

p1(s) = (s− 1)(s+ 2)2 = s3 + 3 s2 − 4

p2(s) = (s+ 2)(s− 3)2 = s3 − 4 s2 − 3 s+ 18

p3(s) = (s− 1)(s− 3) = s2 − 4 s+ 3

p4(s) = (s+ 2)(s− 4) = s2 − 2 s− 8

(6.7)
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Step 1: We compute the polynomial

p(s) = p1(s) · p2(s) · p3(s) · p4(s) = (6.8)

= s10 − 7 s9 − 6 s8 + 118 s7 − 55 s6 − 759 s5 + 556 s4 + 2168 s3 − 1584 s2 − 2160 s+ 1728

In the generic case, this polynomial would be the actual LCM of the original set

P , unless the polynomials have common factors.

Step 2: Obviously, h = 4 and hence, we get 4 sequences ωi ∈ Q3,4, which will be

used in order to formulate the new set

T =

{
pωi(s) : pω(s) =

3∏
k=1

pik(s), i = 1, . . . , 4

}

Therefore,

ω1 = (1, 2, 3) : pω1(s) = p1(s) · p2(s) · p3(s)

ω2 = (1, 2, 4) : pω2(s) = p1(s) · p2(s) · p4(s)

ω3 = (1, 3, 4) : pω3(s) = p1(s) · p3(s) · p4(s)

ω4 = (2, 3, 4) : pω4(s) = p2(s) · p3(s) · p4(s)

and

pω1(s) = s8 − 5 s7 − 8 s6 + 62 s5 + 5 s4 − 253 s3 + 90 s2 + 324 s− 216

pω2(s) = s8 − 3 s7 − 21 s6 + 43 s5 + 180 s4 − 168 s3 − 656 s2 + 48 s+ 576

pω3(s) = s7 − 3 s6 − 15 s5 + 31 s4 + 78 s3 − 84 s2 − 104 s+ 96

pω4(s) = s7 − 10 s6 + 24 s5 + 50 s4 − 245 s3 + 72 s2 + 540 s− 432

Step 3: The basis matrix of the polynomial set T is

T =


−216 324 90 −253 5 62 −8 −5 1

576 48 −656 −168 180 43 −21 −3 1

96 −104 −84 78 31 −15 −3 1 0

−432 540 72 −245 50 24 −10 1 0

 ∈ R4×9 (6.9)

and, using the Hybrid ERES algorithm, we obtain the GCD of T :

g(s) = s4 − 9 s2 − 4 s+ 12 (6.10)

Step 4: The ERES Division Algorithm 3.1 applied to the pair (p(s), g(s)) gives

the final solution:

l(s) = s6 − 7 s5 + 3 s4 + 59 s3 − 68 s2 − 132 s+ 144 (6.11)

which is a 6th degree polynomial representing the exact LCM of P4 in (6.7).
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6.2.2 Factorisation of polynomials using a system of linear

equations

We will describe now the algebraic properties of the identity (6.4) more generally.

Let α(s), β(s), γ(s) ∈ R[s] and assume that

α(s) = β(s) · γ(s) (6.12)

where
α(s) = aκ s

κ + . . .+ a1 s+ a0, aκ 6= 0

β(s) = bλ s
λ + . . .+ b1 s+ b0, bλ 6= 0

γ(s) = cµ s
µ + . . .+ c1 s+ c0, aµ 6= 0

(6.13)

and κ, λ, µ ∈ Nr {0}. Furthermore, define:

a = [a0, a1, . . . , aκ]
t, b = [b0, b1, . . . , bλ]

t, c = [c0, c1, . . . , cµ]t

Tb ,



b0 0 . . . 0

b1 b0 . . . 0
... b1

. . . b0

...
...

. . . b1

bλ
...

...

0 bλ
...

...
. . . . . .

...

0 . . . 0 bλ


∈ R(λ+1+µ)×(µ+1) (6.14)

If the equation (6.12) holds true and assuming that α(s) and β(s) are given, then

we have the following result.

Proposition 6.2 ([47]). If α(s), β(s), γ(s) ∈ R[s] and satisfy (6.12) with κ = λ+µ,

then the following conditions are equivalent:

i) α(s) = β(s) · γ(s)

ii) Tb · c = a

iii) a is a member of the column space of Tb.

In general, the vector c of the coefficients of the polynomial γ(s) is the solution

of the overdetermined system of linear equations:

Tb · c = a (6.15)

which can be obtained using standard linear algebra methods, such as Householder-

QR factorisation [18, 27]. Moreover, the linear algebra formulation (6.15) of

146



Chapter 6

the factorisation problem allows the introduction of the notion of approximate

factorisation of polynomials, which has been analysed in [47].

Definition 6.1. Let α(s), β(s) ∈ R[s] as defined in (6.12) – (6.15), with λ ≤ κ.

Then, β(s) is defined as an almost factor of α(s) of order

τ = min
c
‖Tb · c− a‖2 (6.16)

for every c ∈ Rµ+1.

REMARK 6.1. When τ = 0 the polynomial β(s) is characterised as an exact

factor of α(s). Otherwise, it is an almost factor and the vector c defines the

complement to the β(s) almost factor, γ(s).

The problem of finding the minimum solution of (6.16), with given a, b, is

referred to as approximate factorisation problem (AFP) [47] and it can be solved

using standard linear least-squares methods [18, 27]. The AFP problem involves

two orders (φ, ψ) characterising each almost factor. The order φ is defined by

φ =
∥∥T⊥b a∥∥2

(6.17)

where T⊥b is the left annihilator of Tb. The value of φ is a measure of proximity of

β(s) to be a true factor of α(s), and it is also referred to as order of approximation

[47]. Conversely, the order ψ is defined by

ψ = min
c

∥∥T⊥a T⊥b c∥∥2
(6.18)

where T⊥a is the left annihilator of Ta. The value of ψ indicates the “best” selection

of γ(s), when α(s) and β(s) are given, and it is also referred to as order of optimal

completion [47]. Both orders φ and ψ are very important indicators for specifying

the nature of the approximation and for evaluating the quality of the obtained

numerical results.

The above theoretical results for arbitrary polynomials α(s), β(s), γ(s) ∈ R[s]

have a direct application to the LCM problem as stated in Theorem 6.2, if we set

α(s) := p(s), β(s) := g(s), and γ(s) := l(s).

Conclusions. In this section, the problem of computing the LCM of sets of

several polynomials has been considered using a method that involves the compu-

tation of GCD of an associated set and a factorisation procedure. This approach

avoids the computation of roots and may also produce estimates of approximate

LCM, when the GCD algorithm used yields approximate solutions. However,

the fact that we rely on the computation of the GCD may be considered as a

disadvantage for this method. Another disadvantage is that this method requires
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the creation of products of many polynomials with implications on numerical

complexity and stability, especially when dealing with high order polynomials.

Alternative methods, which deal with the LCM and approximate LCM problems

without relying on GCD procedures, will be discussed in the sequel.

6.3 Computation of the LCM without using the

GCD

In this section we aim to develop an efficient method for computing the LCM of a

set of several univariate polynomials P = Pm,n, without root finding procedures

or GCD computation, which will eventually provide us with results of better

numerical quality. A very interesting approach to the computation of LCM of

real univariate polynomials that avoids root finding, as well as use of algebraic

procedures of GCD computation, has been presented in [48] and it is based

on standard system theory concepts. In [48], the provided system theoretic

characterisation of the LCM of a given set P has led to an efficient numerical

procedure for the computation of the LCM, and the associated set of multipliers

of P with respect to LCM, which implies a polynomial factorisation procedure.

Specifically, for a given set of polynomials P a natural realization S(A, b, C) is

defined by inspection of the elements of the set P . It is shown that the degree ` of

the LCM is equal to the dimension of the controllable subspace of the pair (A, b),

whereas the coefficients of the LCM express the relation of A` b with respect to the

basis of the controllable space. The main advantage of this procedure is that the

system is defined from the original data without involving transformations and

thus, the risk of adding undesired numerical rounding errors is reduced. The vital

part of this numerical procedure is the determination of the successive ranks of

parts of the controllability matrix, which due to the special structure of the system

may be computed using stable numerical procedures. Moreover, the companion

form structure of A simplifies the computation of controllability properties and

leads to a simple procedure for defining the associated set of polynomial multipliers

of P with respect to LCM. The developed results in [48] provide a robust procedure

for the computation of the LCM and enable the computation of approximate

values, when the original data have some numerical inaccuracies. In such cases

the method computes an approximate LCM with degree smaller than the generic

degree, which is equal to the sum of the degrees of all the polynomials of P .

However, in the current study we will follow a different approach for the

computation of the LCM of a set P without computing the associated GCD, based

on the properties of polynomial division and using algebraic procedures in the

context of the ERES methodology. This study will be focused on the formulation

of an appropriate algebraic system of linear equations which actually provides
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the coefficients of the LCM when it is solved. The solution of this system may

be sought either using direct algebraic methods, such as LU factorisation, or

optimisation methods in case of approximate solutions. Therefore, the current

LCM method involves:

a) the formulation of a linear system through a transformation process of the

original polynomials by using the ERES Division algorithm, and

b) a procedure to solve the formulated system of linear equations.

The basic idea for the development of this particular method derives from the

following lemma:

Lemma 6.1. Given a set of real polynomials P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
the LCM of P is a real polynomial with degree ` ≤

∑h
i=1 deg{pi(s)} and every

polynomial pi(s) divides evenly into LCM.

Proof. Denote by l(s) the LCM of P , ` = deg{l(s)} and di = deg{pi(s)} for every

i = 1, . . . , h. We will consider two cases:

a) If the polynomials pi(s) ∈ P cannot be factorized into polynomials in R[s],

the LCM is given by the product of all pi(s) ∈ P :

l(s) =
h∏
i=1

pi(s) and ` =
h∑
i=1

di

Obviously, in this case every pi(s) divides evenly into LCM, l(s).

b) We may assume now that the polynomials pi(s) ∈ P can be factorized into

polynomials ti,ji(s) ∈ R[s], ji ≤ di, i = 1, 2, . . . , h that are irreducible over

R, i.e. ti,ji(s) is non-constant and cannot be represented as the product of

two or more non-constant polynomials from R[s]. Then,

pi(s) = t
ki,1
i,1 (s) · tki,3i,2 (s) · · · tki,jii,ji

(s) (6.19)

with

ki,1 + . . .+ ki,ji = di

for ji ∈ N and i = 1, 2, . . . , h.

Define the set containing the factors of every polynomial pi(s) as

Tf =
{
t
ki,j
i,j (s) ∈ R[s], j = 1, 2, . . . , ji for ji ∈ N and i = 1, 2, . . . , h

}
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and consider the next subsets of Tf :

Tcf =
{
t
ki,j
i,j (s) : ti,j(s) is a common factor and ki,j is its highest power

}
Tncf =

{
t
ki,j
i,j (s) : ti,j(s) is a non-common factor

}
Then, the LCM is given as

l(s) =
∏
i,j

t
ki,j
i,j (s), where t

ki,j
i,j (s) ∈ Tcf ∪ Tncf

and hence, considering (6.19), every pi(s) divides evenly into l(s). Moreover,

since Tcf ∪ Tncf ⊆ Tf , it follows that

` =
∑
i,j

ki,j ≤
h∑
i=1

di

which implies that the LCM is a real polynomial with maximum degree

equal to the sum of the degrees of pi(s) ∈ P .

Before we proceed with the analysis of this new LCM method, we will describe

the concept and its basic steps through the following example.

Example 6.2. Consider a pair P = {p1(s), p2(s)} of real polynomials with

arbitrary coefficients ci ∈ Rr {0} for every i = 1, . . . 4 such that

p1(s) = (s+ c1)(s+ c2), deg{p1(s)} = 2 (6.20)

p2(s) = (s+ c3)(s+ c4), deg{p2(s)} = 2 (6.21)

1. Formulation of the LCM.

In the generic case, the LCM of P is a polynomial l(s) with degree ` =

2 + 2 = 4. Denote the LCM by

l(s) = a4 s
4 + a3 s

3 + a2 s
2 + a1 s+ a0 (6.22)

2. Construction of the remainder vectors by using the ERES Division algorithm.

According to Lemma 6.1, both p1(s) and p2(s) evenly divide l(s), leaving

no remainder. If we denote by

ri(s) = r
(i)
1 s+ r

(i)
0 , for i = 1, 2

the remainders from the divisions l(s)
p1(s)

and l(s)
p2(s)

respectively, then it is
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required that

r
(i)
1 = r

(i)
0 = 0 , for i = 1, 2 (6.23)

and if the remainder vectors are denoted by

r 1 =

[
r

(1)
0

r
(1)
1

]
, r 2 =

[
r

(2)
0

r
(2)
1

]

then (6.23) can be written as:
r

(1)
0

r
(1)
1

r
(2)
0

r
(2)
1

 =


0

0

0

0

 (6.24)

The vectors of the remainders ri(s) can be obtained directly by using the

ERES Division algorithm and they have the following similar symbolic forms:

r 1 =

 a0 − c1c2a2 + (c1
2c2 + c1c2

2)a3 − (c1
3c2 + c1

2c2
2 + c1c2

3)a4

a1 − (c1 + c2)a2 + (c1
2 + c1c2 + c2

2)a3 − (c1
3 + c1

2c2 + c1c2
2 + c2

3)a4



r 2 =

 a0 − c3c4a2 + (c3
2c4 + c3c4

2)a3 − (c3
3c4 + c1

2c4
2 + c3c4

3)a4

a1 − (c3 + c4)a2 + (c3
2 + c3c4 + c4

2)a3 − (c3
3 + c3

2c4 + c3c4
2 + c2

3)a4


3. Formation of an appropriate linear system for the computation of the LCM.

Combining the above equations with (6.24), gives the linear system

FP · a = 0 (6.25)

where the unknowns are the coefficients of the LCM l(s). Hence, we have

FP ,



1 0 −c1c2 (c1
2c2 + c1c2

2) −(c1
3c2 + c1

2c2
2 + c1c2

3)

0 1 −(c1 + c2) (c1
2 + c1c2 + c2

2) −(c1
3 + c1

2c2 + c1c2
2 + c2

3)

1 0 −c3c4 (c3
2c4 + c3c4

2) −(c3
3c4 + c3

2c4
2 + c3c4

3)

0 1 −(c3 + c4) (c3
2 + c3c4 + c4

2) −(c3
3 + c3

2c4 + c3c4
2 + c2

3)


and

a ,
[
a0, a1, a2, a3, a4

]t
, 0 ,

[
0, 0, 0, 0, 0

]t
The matrix FP has dimensions 4× 5, which implies that (6.25) represents an

underdetermined homogeneous linear system which has at least one solution.

However, the linear system (6.25) has two very important characteristics:
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i) the rank of FP is equal to the actual degree of the LCM, l(s) and

ii) if the LCM is a monic polynomial, then the linear system (6.25) has a

unique solution.

4. Computation of the LCM.

• If the polynomials of the set P do not share a common factor, then the

LCM will have the generic form:

l(s) = (s+ c1)(s+ c2)(s+ c3)(s+ c4)

and the matrix FP has full rank. By setting a4 := 1, the linear system

(6.25) provides the generic LCM.

• Let c1 6= c2 6= c3 and c4 = c2. Then, the LCM will have the form:

l(s) = (s+ c1)(s+ c2)(s+ c3)

In this case, we notice that the matrix FP has rank ρ(FP) = 3. Indeed,

after its triangularisation we obtain the matrix:

F̃P ,



1 0 −c1c2 c1c2 (c1 + c2) −c1
3c2 − c1

2c2
2 − c1c2

3

0 1 −c1 − c2 c1
2 + c1c2 + c2

2 −c1
3 − c1

2c2 − c1c2
2 − c2

3

0 0 b1 b2 b3

0 0 0 0 0


where

b1 = −c3c2 + c1c2

b2 = c3
2c2 + c3c2

2 − c1
2c2 − c1c2

2

b3 = −c3
3c2 − c3

2c2
2 − c3c2

3 + c1
3c2 + c1

2c2
2 + c1c2

3

and therefore, if we set a4 = 0 and a3 = 1, the solution of the linear

system

F̃P · a = 0

is the desired LCM of degree 3.

• Similar results are obtained when ci = cj for any i, j = 1, 2, 3, 4.

Furthermore, provided that the polynomials p1(s) and p2(s) are not

identical, there is not an LCM of degree less than 3.
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I The computation of the LCM of sets of several polynomials by using

a system of linear equations

Considering the process of computing the LCM of two polynomials as described in

the previous Example 6.2, we will go further by extending this particular process

in sets of several polynomials

P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
The new computational method will use again the ERES Division algorithm in

order to form a system of linear equations , which provides the coefficients of

the LCM of a given set of polynomials. A key feature that we will prove in the

following is that the rank of the matrix of the linear system denotes the actual

degree of the LCM of the polynomials. These features will be analysed next.

REMARK 6.2. In general, the leading coefficient of the LCM is the least common

multiple of the leading coefficients of all the polynomials of the set P , but this does

not hold for numerical floating-point data. In this case, the leading coefficient of

the LCM is given by the product of the leading coefficients of all the polynomials

of the set P . In the following, we can assume without loss of generality that the

polynomials of the set P are monic. Therefore, for i = 1, 2, . . . , h let

pi(s) =

di∑
k=0

ci,k s
k, ci,k ∈ R, ci,di = 1, di = deg{pi(s)} (6.26)

Then the LCM will also be a monic polynomial of maximum degree:

d =
h∑
i=1

di (6.27)

represented as

l(s) =
d∑

k=0

ak s
k, ak ∈ R (6.28)

If ` , deg{l(s)} then ad = ad−1 = . . . = a`+1 = 0 and a` = 1.

We focus now on the division l(s)
pi(s)

and, according to the Euclidean algorithm,

there exist real polynomials qi(s) and ri(s) such that

l(s)

pi(s)
= qi(s) +

ri(s)

pi(s)
(6.29)

for every i = 1, 2, . . . , h. The remainder polynomials ri(s) are real polynomials

with degree deg{ri(s)} < deg{pi(s)} and if take into account the result of Lemma

6.1, then,

ri(s) = 0, ∀ i = 1, 2, . . . , h (6.30)
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The ERES Division algorithm can be used for the computation of the remainder

polynomials ri(s) so that[
l(s)

pi(s)

]
ERES

−−−−− >

[
ri(s)

pi(s)

]
(6.31)

where the coefficient vector of the polynomial ri(s) is given by

r i =
[
r

(i)
di−1, . . . , r

(i)
1 , r

(i)
0

]
∈ Rdi (6.32)

where r
(i)
j denotes the jth element of the vector ri and implies that

ri(s) = r
(i)
0 + r

(i)
1 s+ . . .+ r

(i)
di−1 s

di−1

The study of the results from the application of the ERES Division algorithm to

polynomials with symbolic form, show that if the polynomial l(s) is written in

the form (6.28) with arbitrary coefficients ak ∈ R, k = 0, 1, 2, . . . , d, then every

r
(i)
j in (6.32) is a linear function of all ak. Specifically, we have:

r̂ i =


r

(i)
0

r
(i)
1
...

r
(i)
di−1

 =


f i0,0 a0 + f i0,1 a1 + . . .+ f i0,d ad

f i1,0 a0 + f i1,1 a1 + . . .+ f i1,d ad
...

f idi−1,0 a0 + f idi−1,1 a1 + . . .+ f idi−1,d ad

 (6.33)

where f ix,y, x = 0, 1, . . . , di − 1, y = 0, 1, . . . , d are functions of ci,k from (6.26).

Actually, f ix,y are real numbers. Therefore, by using the ERES Division algorithm

we may associate every polynomial ri(s) with a matrix Fi such that

r̂ i = Fi · a (6.34)

where a = [a0, a1, . . . , ad]
t is the vector of arbitrary coefficients of the LCM, l(s). If

the polynomials pi(s) are written in the form (6.26), then every matrix Fi appears

to have the next form:

Fi =
[
Idi |F̃i

]
=

a0 . . . adi−1 adi . . . ad

↓ ↓ ↓ ↓
1 . . . 0 f i0,di . . . f i0,d
...

. . .
...

...
. . .

...

0 . . . 1 f idi,di . . . f idi,d


∈ Rdi×(d+1) (6.35)

where Idi is the di × di identity matrix. Therefore, the equation (6.30) can be
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written equivalently as

Fi · a = 0, ∀ i = 1, 2, . . . , h (6.36)

A bigger matrix

FP =


F1

...

Fh

 =


Id1 F̃1

...
...

Idh F̃h

 (6.37)

with dimensions d× (d+ 1) can be formed such that :

FP · a = 0 (6.38)

The above linear system (6.38) is very important. The process of solving this

system introduces a new algorithmic procedure for the numerical computation of

the LCM. The following results provide the technical details for the development

of such an algorithmic procedure.

Proposition 6.3. The rank of FP is equal to the degree of the LCM of the set P.

ρ(FP) = deg{l(s)} (6.39)

Proof. Consider the underdetermined homogeneous linear system (6.38) and

denote by n(FP) the nullity of FP and by ρ(FP) its rank. The system has d

equations and d+ 1 variables and therefore it is n(FP) ≥ 1, which implies that

there are infinite solutions.

a) If n(FP) = 1 and assuming that the LCM is a monic polynomial (ad = 1),

we obtain only one solution, which is actually the LCM given by:

l(s) = p1(s) · p2(s) · · · ph(s)

Then,

deg{l(s)} =
∑h

i=1 di = d

ρ(FP) = d+ 1− n(FP) = d

}
⇒ ρ(FP) = deg{l(s)} = d

b) If n(FP) = n > 1, we can set exactly n free variables. However, if we observe

carefully the structure of FP in (6.35), we can see that every variable ak has

a fixed position which corresponds to the term sk of the polynomial l(s) and

thus the first d+ 1−n columns, which correspond to ak, k = 0, 1, . . . , d−n,

should lead to the trivial solution. Assuming that the LCM is a monic
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polynomial, the least degree solution will be obtained if we set :

ad−n+1 = 1 and ad−n+2 = . . . = ad = 0

Then, we will have :

deg{l(s)} = d− n+ 1

ρ(FP) = d+ 1− n(FP) = d+ 1− n

}
⇒ ρ(FP) = deg{l(s)} = d+ 1− n

The previous analysis leads to the following significant result.

Theorem 6.3. Given a set P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
of monic

polynomials, the corresponding LCM denoted by l(s) =
∑d

k=0 ak s
k with d =∑h

i=1 deg{pi(s)} is given by the least degree solution of the underdetermined linear

system

FP · a = 0 (6.40)

where FP ∈ Rd×(d+1) is associated with the remainder sequence (ri(s), i = 1, . . . , h)

which derives from the application of the ERES Division algorithm on the pairs

(l(s), pi(s)) for all i = 1, 2, . . . , h.

Proof. Let r = ρ(FP). From Proposition 6.3, we have that the degree of the LCM

is equal to the rank of FP ,

` , deg{l(s)} = r

Since, the rank of FP determines the degree of l(s) and the columns of FP

correspond to the coefficients of l(s) in a fixed order, the d× (d+ 1) linear system

(6.40) can be reduced to a d× r linear system, such that

F̂P · â+ f
r+1

a` + F̃P · ã = 0 ⇒

F̂P · â = −f
r+1

(6.41)

where the matrix F̂P is constructed from the first r columns of FP , â =

[a0, . . . , ar−1]t is the vector of the first r coefficients of l(s) and f
r+1

is the r + 1

column of FP , which corresponds to the leading coefficient a` = 1. The matrix F̃P

is constructed from the last d − r columns of FP and ã = [ar+1, . . . , ad]
t is the

vector of the last d− r coefficients of l(s), which are set equal to 0. The full-rank

linear system (6.41) has a unique solution, which provides the LCM of the set of

polynomials P .

The following example demonstrates the theoretical result from Theorem 6.3.
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Example 6.3. Consider the same set P4 = {pi(s) ∈ R[s], i = 1, . . . , 4} as in

Example 6.1.

p1(s) = (s− 1)(s+ 2)2 = s3 + 3 s2 − 4

p2(s) = (s+ 2)(s− 3)2 = s3 − 4 s2 − 3 s+ 18

p3(s) = (s− 1)(s− 3) = s2 − 4 s+ 3

p4(s) = (s+ 2)(s− 4) = s2 − 2 s− 8

(6.42)

We aim to find the LCM of the set P4 using the new LCM approach of Theorem

6.3.

Suppose that we do not know in advance the actual degree of the LCM.

Therefore, we have to represent the LCM in terms of its maximum theoretical

degree d = 3 + 3 + 2 + 2 = 10 with arbitrary coefficients in the form:

l(s) = a0 + a1s
1 + a2s

2 + a3s
3 + a4s

4 + a5s
5 + a6s

6 + a7s
7 + a8s

8 + a9s
9 + a10s

10

Then, we can apply the ERES Division Algorithm 3.1 on every pair (l(s), pi(s)),

for i = 1, 2, 3, 4 and form the remainder sequence (ri(s), i = 1, . . . , 4). Using the

obtained remainder sequence, we form the matrices Fi as described in (6.35) and

we finally get the 10× 11 matrix

FP =



1 0 0 4 −12 36 −92 228 −540 1252 −2844

0 1 0 0 4 −12 36 −92 228 −540 1252

0 0 1 −3 9 −23 57 −135 313 −711 1593

1 0 0 −18 −72 −342 −1260 −4770 −16704 −58446 −198036

0 1 0 3 −6 −15 −132 −465 −1986 −6963 −25440

0 0 1 4 19 70 265 928 3247 11002 37045

1 0 −3 −12 −39 −120 −363 −1092 −3279 −9840 −29523

0 1 4 13 40 121 364 1093 3280 9841 29524

1 0 8 16 96 320 1408 5376 22016 87040 350208

0 1 2 12 40 176 672 2752 10880 43776 174592


which forms the homogeneous linear system (6.40). The rank of FP is ρ(FP) = 6.

Therefore, the degree of the LCM will be ` = 6. As it has been analysed in the

proof of Theorem 6.3, the linear system (6.40) can be reduced to the form:

F̂P · â = −f
7

where the matrix F̂P ∈ R10×6 consists of the first 6 columns of FP , f
7

is the 7th
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column of FP and â = [a0, a1, . . . , a5]
t. Since the polynomials of the original set

P4 are monic and the LCM has degree equal to 6, then a6 = 1 and ak = 0 for all

k = 7, . . . , 10. Finally, we end up with the overdetermined linear system:

1 0 0 4 −12 36

0 1 0 0 4 −12

0 0 1 −3 9 −23

1 0 0 −18 −72 −342

0 1 0 3 −6 −15

0 0 1 4 19 70

1 0 −3 −12 −39 −120

0 1 4 13 40 121

1 0 8 16 96 320

0 1 2 12 40 176



·



a0

a1

a2

a3

a4

a5


=



92

−36

−57

1260

132

−265

363

−364

−1408

−672


Since the matrix F̂P has full rank, the above linear system has a unique solu-

tion, which can be computed by using standard algebraic methods, such as LU

decomposition or Gaussian elimination [18, 27]. The obtained solution is

â = [144,−132,−68, 59, 3,−7]t

and corresponds to the exact LCM of the set P4 :

l(s) = 144− 132 s− 68 s2 + 59 s3 + 3 s4 − 7 s5 + s6

6.4 The Hybrid LCM method and its computa-

tional properties

In this section we will consider the formulation of a computational method for

the LCM of sets of polynomials based on the result provided from Theorem 6.2.

Furthermore, we will discuss its proper implementation, especially in the case

where numerical inaccuracies are present and an approximate solution is sought.

I Description of the Hybrid LCM method

Consider a set of real monic polynomials P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
.

Since we do not know the actual degree of the LCM in advance, we can represent
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in terms of its maximum theoretical degree d =
∑h

i=1 deg{pi(s)} with arbitrary

coefficients ak in the form:

l(s) , ad s
d + ad−1 s

d−1 + . . .+ a1 s+ a0 (6.43)

We now follow the procedures:

1. Apply the ERES Division algorithm to the pair of polynomials (l(s), pi(s))

for i = 1, 2, . . . , h to obtain a vector r i, which contains the coefficients of

the remainder ri(s) in symbolic form.

2. From the vectors r i for all i = 1, 2, . . . , h, form the matrix FP as described

in (6.32) – (6.38) and compute its rank.

3. If r = ρ(FP), we solve the d × r linear system F̂P · â = −f
r+1

where the

matrix F̂P is constructed from the first r columns of FP , â = [a0, . . . , ar−1]t

is the vector of the first r coefficients of l(s) and f
r+1

is the r+ 1 column of

FP , which corresponds to the leading coefficient ar = 1.

This process formulates a new method for the numerical computation of the

LCM of a set of several polynomials based on the ERES methodology. Due

to the nature of the method, the derived algorithm has to be implemented

in a programming environment that has the ability to manipulate the data

both symbolically and numerically using hybrid computations. This is a basic

requirement, since the LCM is given as input to the ERES Division algorithm

in pure symbolic form. Therefore, the procedures involved must be implemented

very carefully using either symbolic or numerical computations. In the following,

we shall refer to the above method of computing the LCM of a set of several

polynomials as the Hybrid LCM method and we will analyse and discuss its

computational properties.

I Computational properties of the Hybrid LCM method

The Hybrid LCM method has two main parts:

I. The computation of the remainder sequence {r i, i = 1, 2, . . . , h} by using

the ERES Division algorithm.

II. The computation of the coefficients of the LCM by solving the linear system

(6.41).

If the polynomials pi(s) ∈ P have integer or rational coefficients, the solution

of the linear system (6.41) can be computed exactly using symbolic-rational

operations. However, it is important here to investigate how this method behaves

when there are numerical inaccuracies in the input data. Once again, we are
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interested in reducing the accumulation of rounding errors and at the same time

we aim to reveal the presence of approximate solutions.

Since the LCM is represented with arbitrary coefficients, the first part of the

method, which involves the ERES Division algorithm, must be treated symbolically

performing symbolic-rational computations. The ERES Division is applied to the

pairs (l(s), pi(s)) for every i = 1, 2, . . . , h. If di = deg{pi(s)}, the polynomials

pi(s) can be arranged according to their degree and then the ERES Division

algorithm is capable of providing a symbolic uniform algebraic formula for every

di. The remainder vector r i is obtained from the substitution of the coefficients of

pi(s) in the corresponding symbolic algebraic formula. Thus, the ERES Division

algorithm will be “called” h times at the most.

The second part of the method involves:

• the construction of the matrix FP from the remainder vectors r i,

• the computation of the rank of FP and

• the solution of the linear system (6.41).

More important is the computation of the rank of FP , which determines the degree

of the LCM as described in Proposition 6.3. Therefore, when numerical data are

used, we can specify a small numerical accuracy εt and the result of Proposition

6.3 can be stated as follows.

Proposition 6.4. The numerical εt-rank of FP determines the degree of the LCM

of the set P.

The numerical accuracy εt should be consistent with the machine precision,

for example εt = u ‖FP‖∞, where u = 2−52 in 16-digits arithmetic precision.

Therefore, by setting a numerical accuracy εt, we may have various degrees for

the LCM which suggest the computation of an approximate εt-LCM. However, for

a given εt-degree we need a reliable numerical procedure for the computation of a

quality approximate LCM.

The numerical rank of the matrix FP can be computed by using singular

value decomposition [27, 76], which is the most reliable numerical method for the

estimation of the rank of a matrix in finite precision arithmetic. When dealing

with inexactly known data the linear system (6.41) must be written as:

FP · a ≈ 0 (6.44)

The following proposition leads to the computation of an approximate εt-LCM.

Proposition 6.5. If εt is a specified small numerical accuracy and r is the

numerical εt-rank of FP , then an εt-LCM can be computed by solving the system:

F̂P · â = −f
r+1

+ ε (6.45)
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where the matrix F̂P is constructed from the first r columns of FP , â = [a0, . . . , ar−1]t

is the vector of the first r coefficients of l(s), f
r+1

is the r + 1 column of FP ,

which corresponds to the leading coefficient ar = 1 and ε is a d-vector of small

numbers of magnitude O(εt).

Proof. This result is straightforward if we combine the results from Theorem 6.40

and Proposition 6.4.

It is clear that an exact LCM is computed by the linear system (6.45) when

ε = 0. Therefore, we actually seek a solution so that the norm:

L =
∥∥∥F̂P · â+ f

r+1

∥∥∥
is minimized. If we use the Euclidean norm ‖ · ‖2 the latter implies a least-squares

solution for the linear system:

F̂P · â ≈ −f r+1
(6.46)

I The linear Least-Squares problem and its numerical computation

Among all the calculations studied in numerical analysis, the most frequently

performed in engineering and mathematical sciences is least-squares estimation.

The literature on least-squares solutions is quite rich and mainly refers to the

sensitivity of the least-squares problem to perturbations [9, 25, 28, 29, 31, 54, 74,

78].

Existence of least-squares solutions and sensitivity analysis. The next

theorems, stated here without proof, provide the theoretical background for

computing the solution of the linear least-squares problem

L(A, b) , min
x
‖Ax− b‖2

associated with the linear system Ax = b.

The first theorem guarantees the existence and uniqueness of a least-squares

solution.

Theorem 6.4 (Least-Squares existence and uniqueness theorem [18]). There

always exists a solution to the linear least-squares problem

L(A, b) , min
x
‖Ax− b‖2 (6.47)

where A is a m× n matrix with m ≥ n, b is a real m-vector and x is a n-vector

representing the solution. This solution is unique if and only if A has full rank,

that is ρ(A) = n.
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The next theorem relates the unique least-squares solution with the pseudo-

inverse of the matrix A of the linear system.

Theorem 6.5 (Least-squares solution using the pseudo-inverse [18]). The unique

least-squares solution x to the full-rank overdetermined least-squares problem

Ax = b is given by

x = (AtA)−1At b = A† b

where A† = (AtA)−1At is the n×m pseudo-inverse or Moore-Penrose generalized

inverse of A.

Definition 6.2. If an m× n matrix A has full rank, then the condition number

of A is given by

Cond(A) = ‖A‖ ‖A†‖

The next result, due to Wedin [80], shows that it is the condition number of

matrix A that plays a significant role in the sensitivity analysis of the pseudo-

inverse matrix.

Theorem 6.6 (Pseudo-inverse sensitivity theorem [18, 80]). Let A be m × n,

where m ≥ n. Let A† and Ã† be, respectively, the pseudo-inverse of A and of

Ã = A+ E. Then, provided that ρ(A) = ρ(Ã), we have

‖Ã† − A†‖2

‖Ã†‖2

≤ εCond(A)
‖E‖2

‖A‖2

where ε is a small number.

The following theorem shows that the residual sensitivity always depends

upon the condition number of the matrix A. A precise statement and proof of a

result in residual sensitivity is given in [25, 27].

Theorem 6.7 (Least-Squares residual sensitivity theorem [18, 27]). Let u and ũ

denote the residual, respectively, for the original and the perturbed least-squares

problems

u = b− Ax

ũ = b− (A+ E) x̃

Then
‖ũ− u‖2

‖b‖2

≤ ε (1 + 2 Cond(A)) +O
(
ε2
)

where ε = ‖E‖2
‖A‖2 .
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Finally, the next theorem refers to the sensitivity of the least-squares solution

when the matrix A is perturbed.

Theorem 6.8 (Least-squares perturbation theorem [18]). Let x and x̂ be the

unique least-squares solutions to Ax = b and (A+ E) x̂ = b, and let ρ(A+ E) be

the same as ρ(A). If ∆x = x̂− x, then

‖∆x‖
‖x‖

≤ 2 Cond(A)
‖EA‖
‖A‖

+ 4(Cond(A))2 ‖EN‖
‖A‖

‖bN‖
‖bR‖

+O

(
‖EN‖
‖A‖

)2

where EA, bR denote the projections of E and b onto the range of A, denoted by

R(A), and EN , bN denote their projections onto the orthogonal complement of

R(A), respectively.

The above theorem tells us that the sensitivity of the unique least-squares solution,

in general, depends upon the square of the condition number of A, expect in cases

where the residual is zero. Then, the sensitivity depends only on the condition

number of A. The condition number of linear least squares problems has been

an open issue since 1966 when Golub and Wilkinson [28] found an error bound

that contains the square of the coefficient matrix’s condition number. Golub and

Wilkinson’s bound, when applied to a general least squares problem, is

‖∆x‖2

‖x‖2

≤ ‖∆b‖2

‖b‖2

‖ b‖2

‖x‖2 σmin
+
‖∆A‖2

‖A‖2

(
1 +

‖∆u‖2

‖x‖2 σmin

)
σmax
σmin

+O(ε2)

where σmax and σmin are the maximum and minimum singular values of A and it

is assumed that a) A has full column rank, b) ‖∆A‖2‖A‖2 ≤ ε and ‖∆b‖2
‖b‖2 ≤ ε, where ε

is arbitrarily small.

However, in recent years it has been proved that optimal condition numbers

depend on the size of optimal backward errors [29, 78].

Definition 6.3 (Function of optimal backward errors [29]). The optimal backward

errors, for an approximate solution x ≈ x0 , may be defined as the solution of a

minimization problem

µ(x) , min
y:F (x,y)=0

(‖y − y0‖) (6.48)

where F (x, y) represents the residual function of x, y with the property F (x0, y0) =

0. If y attains equation (6.48)’s minimum, then y − y0 is an optimal backward

error, and µ(x) is its size.

The size of the optimal backward error is a function of x that depends on

y0 and on the norm chosen for Rm. For a given vector x, a backward error is

a perturbation matrix, ∆A, for which the given x exactly solves the perturbed

problem

L(A, b) , min
x
‖(A+ ∆A)x− b‖2
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In 1995, Waldén, Karlson and Sun [78] showed that the smallest Frobenius-norm

perturbations, ∆A, that make a given nonzero x into a solution of the perturbed

problem have size

µ
(LS)
F (x) =

(
‖u‖2

2

‖x‖2
2

+ min(0, λ)

) 1
2

, for λ = λmin

(
AAt +

uut

‖x‖2
2

)
where u = Ax − b is the approximate least-square residual of the unperturbed

problem, and λmin is the smallest eigenvalue of the m×m matrix A.

A thorough review of different approaches to the problem of least-squares nu-

merical sensitivity regarding condition numbers and backward errors is presented

in [29]. In this report, simple expressions are given for the asymptotic size of opti-

mal backward errors for least squares problems and it is shown that such formulas

can be used to evaluate condition numbers. For full rank problems, Frobenius

norm condition numbers are determined exactly, and spectral norm condition

numbers are determined within a factor of the square-root-two. Specifically, if

A has full rank, then in [29, 78] it is proved that the Frobenius norm relative

condition number is

χ
(LS,rel)
F =

‖A‖F
σmin

(
‖u‖2

2

‖x‖2
2 σ

2
min

+ 1

) 1
2

where σmin is the smallest nonzero singular value of A. Moreover, the following

expression overestimates the spectral norm relative condition number by at most

the factor
√

2 :

χ
(LS,rel)
2 ≈ κ2

(
‖u‖2

‖x‖2 σ2
min

+ 1

)
where κ2 = σmax

σmin
is the spectral matrix condition number, and σmax is the largest

singular value of A. These results can be used to draw conclusions about the

conditioning of the problem.

Theorem 6.9 (Well conditioned least-squares problems [29]). Suppose least-

squares problem (6.47) has A of full column rank and exact solution x0 6= 0. The

problem is well conditioned with respect to perturbations of the matrix if and only

if:

i) ‖u0‖2 is at most moderately larger than ‖x0‖2 σmin , and

ii) A is well conditioned,

where u0 = Ax0 − b is the exact least squares residual, and σmin is the smallest

singular value of A.

Similar results from different approaches on backward error estimations have

also been presented in [9, 31, 51, 71].
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Methods of computing least-squares solutions. One of the most widely

used approaches for computing the least-squares solution is the normal equations

method. This method is based upon the solution of the system of normal equations:

AtAx = At b

using Cholesky factorization. Unfortunately, the normal equations method is

not characterized as a reliable numerical method for computing a least-squares

solutions. The accuracy of the least-squares solution using normal equations will

depend upon the square of the condition number of the matrix A. However, in

certain cases, such as when the residual is zero, the sensitivity of the problem

depends only on the condition number of A and thus the normal equations method

may introduce more errors in the solution than the data warrant [18].

Another approach to the least-squares problem is the use of orthogonal

transformations [18, 27]. Specifically, the QR decomposition of matrix A can lead

to a simplified linear system which can be solved easily by backward substitution.

If

QtA = R =

[
R1

0

]
is the QR decomposition of A, then, because the length of a vector is preserved

by an orthogonal matrix multiplication, it holds:

‖Ax− b‖2 = ‖QtAx−Qt b‖2 = ‖R1 x− c‖2 + ‖d‖2

where

Qt b =

[
c

d

]
Therefore, ‖Ax− b‖2 will be minimized if x is chosen [18] so that

R1 x− c = 0, ‖u‖2 = ‖d‖2

A method for solving the least-squares problem with QR decomposition us-

ing Householder transformations was first proposed by Golub [25]. The Golub-

Householder algorithm is a stable and efficient method that computes least-squares

solutions by using Householder matrices to decompose A into QR. An alternative

technique for QR factorization is the Gram-Schmidt process [18]. The Gram-

Schmidt method, when used to solve the linear least-squares problem, is slightly

more expensive than Householder method, but it seems that there are numerical

difficulties either using its classical version (CGS) or the modified version (MGS)

[10, 18]. However, the Gram-Schmidt method, as far as the least-squares prob-

lem is concerned, is considered to be numerically equivalent to Householder QR
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factorization.

Another reliable numerical least-squares method relies on the Singular Value

Decomposition (SVD) of the system’s matrix. The computation of the singular

values of A is needed to determine the numerical rank of A and it has also been

proved [25] that SVD is an effective tool to solve the least-squares problem, both

in the full rank and rank deficient cases. Considering the least-squares problem

minx ‖Ax− b‖2, let A = U ΣV t be the SVD of A. Then we have

‖u‖2 = ‖U ΣV t x− b‖2

= ‖U(ΣV t x− U t b)‖2

= ‖Σ y − b′‖2 (6.49)

where V t x = y and U t b = b′. Therefore, the use of SVD of A reduces the

least-squares problem for a full matrix A to one with a diagonal matrix Σ which is

trivial to solve. If σi, i = 1, 2, . . . , n are the singular values of A, then the vector

y = [y1, y2, . . . , yn]t that minimizes (6.49) is given by [18, 27]:

yi =


b′i
σi
, if σi 6= 0

t = arbitrary, if σi = 0
(6.50)

Once y is computed, the solution can be recovered from

x = V · y (6.51)

The numerical algorithm for solving least-squares problems with the SVD

method, using the Golub-Kahan-Reinsch (GKR) algorithm, is described in [27].

A numerical analysis of this algorithm is also presented in [18]. The algorithm

requires about 2mn2 + 4n3 floating-point operations to solve the least-squares

problem when A is m× n and m ≥ n. Furthermore, there is no need to compute

the whole vector b′ and only the columns of U that correspond to the non-zero

singular values are needed in computation.

6.4.1 The numerical computation of an approximate LCM

using the Hybrid LCM method

The system (6.46) is a full-rank overdetermined linear system and, instead of

solving the equations exactly, we seek only to minimize the sum of the squares of

the residuals

u = F̂P · â+ f
r+1
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According to the previous theoretical results, the linear system

F̂P · â ≈ −f r+1

has a unique least-squares solution, which can be represented as

â = F̂ †P · (−f r+1
) (6.52)

where F̂ †P is the pseudo-inverse of F̂P .

REMARK 6.3. The residual norm ‖u‖2 characterises the proximity of the com-

puted solution to the exact solution of the LCM problem and we may consider it

as a measure of quality of the approximate εt-LCM.

The main result from the preceding analysis can be summarized in the following

theorem.

Theorem 6.10. Let P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
a set of real monic

polynomials. The matrix FP ∈ Rd×(d+1) is associated with the remainder sequence

(ri(s)), which derives from the application of the ERES Division algorithm on the

pairs (l(s), pi(s)) for all i = 1, 2, . . . , h. If r denotes the numerical εt-rank of FP ,

then an approximate εt-LCM of P is given by the solution of the least-squares

problem :

L
(
F̂P ,−f r+1

)
, min

â

∥∥∥F̂P · â+ f
r+1

∥∥∥
2

(6.53)

where the matrix F̂P is constructed from the first r columns of FP , â = [a0, ..., ar−1]t

is the vector of the first r coefficients of the LCM and f
r+1

is the r + 1 column of

FP , which corresponds to the leading coefficient of the LCM, ar = 1 .

Corollary 6.1. The residual from the solution of the linear least-squares problem

(6.53) characterises the numerical quality of the given approximate LCM of the

original set of polynomials P.

If the residual from the obtained least-squares solution is close enough to

zero (according to the Euclidean norm), then it can be considered as a “good”

approximation of the LCM of the original set of polynomials. The unique solution

of the least-squares problem (6.53), which gives the coefficients of the εt-LCM,

can be acquired by using either a QR or SVD least-squares method. In fact,

mathematical software packages, such as Matlab and Maple, contain efficient

built-in routines for the linear least-squares problem where QR decomposition or

SVD algorithms are used.
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I The implementation of the Hybrid LCM algorithm

Having made the necessary preparation, we are now ready to form the Hybrid

LCM algorithm for computing the approximate LCM of a set of several real

polynomials.

ALGORITHM 6.2. The Hybrid LCM algorithm

Input : P =
{
pi(s) ∈ R[s], i = 1, 2, . . . , h

}
.

Set a small numerical accuracy εt > 0.

Step 1 : Compute the degrees of the polynomials pi(s) :

di := deg{pi}, i = 1, 2, . . . , h.

d := d1 + d2 + . . .+ dh.

Step 2 : Form the arbitrary polynomial l(s) = ad s
d + . . .+ a1 s+ a0.

For i = 1, 2, . . . , h do

Step 3 : Apply the ERES Division algorithm to (l(s), pi(s)) :

P := ERESDiv(l(s), pi(s))

Step 4 : Take the first row of P and form the matrix Fi.

end for

Step 5 : Form the d× (d+ 1) matrix FP = [F1, . . . , Fh]
t.

Step 6 : Normalize the rows of FP using norm-2.

Step 7 : Compute the singular values of FP and specify r

such that σ1 > . . . > σr > εt ≥ σr+1 > . . . > σd.

Step 8 : Form the matrix F̂P from the first r columns of FP .

Step 9 : Form the vector f
r+1

from the r + 1 column of FP .

Step 10 : Compute the solution of the least-squares problem :

L(F̂P ,−f r+1
} = min ‖F̂P · â+ f

r+1
‖2

Output : â = [a0, a1, . . . , ar−1]t,

l(s) = sr + ar−1 s
r−1 + . . .+ a1 s+ a0

I Computational complexity

Assuming that all the polynomials pi(s) ∈ P have the same degree d̄, that is

di = d̄ for all i = 1, 2, . . . , h, then d = d̄ h. The required number of operations for
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the ERES Division algorithm is

flED(h, d̄ ) = h(d̄+ 2)(d− d̄+ 1)

=
(
d̄ 2 + 2 d̄

)
h2 −

(
d̄ 2 + d̄− 2

)
h (6.54)

Since we have h polynomials, the number of data that the algorithm produces is

d̄ h. Thus, the algorithm is considered to be efficient [18] if

flED(h, d̄ ) ≤ (d̄ h)3

that is:

d̄ 3 h3 −
(
d̄ 2 + 2 d̄

)
h2 +

(
d̄ 2 + d̄− 2

)
h ≥ 0

It can be easily proved that the above inequality holds for every d̄, h ≥ 2 and

therefore, the ERES Division algorithm is efficient in handling sets of many

polynomials.

The computation of the singular values of the d× (d+ 1) matrix FP requires

[27] :

flSV (d) =
4

3
d3 + 2 d2 (6.55)

operations, using the GKR-SVD algorithm. Alternatively, we could use the Chan-

SVD algorithm [13], but it requires 2 d3 + d2 operations, which is greater than

flSV (d). Furthermore, it has been observed that any SVD algorithm gives more

accurate results when it is applied to a normalized matrix. Thus, if we normalize

the rows of the matrix FP by using the Euclidean norm, the additional arithmetic

operations required are:

flN(d) = 2 d2 + 4 d+ 2 (6.56)

When solving the least-squares problem through the SVD, only Σ and V have

to be computed. According to the algorithm that is used, the required numerical

operations for the d× r least-squares problem are [27] :

GKR− SVD : 2 d r2 + 4 r3

Chan− SVD : d r2 +
17

3
r3

If r < 3
5
d it is more efficient to use the GKR-SVD algorithm, otherwise we

should use the Chan-SVD algorithm. Therefore, the required operations for the

least-squares problem (6.53) are:

flLS(d, r) =

{
2 d r2 + 4 r3, r < 3

5
d

d r2 + 17
3
r3, r ≥ 3

5
d

(6.57)

Alternatively, we can obtain the least-squares solution by using the QR method.
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Then the computational cost of the algorithm is dominated by the QR decom-

position of F̂P . The overall cost for the full-rank least-squares solution using the

Golub-Householder method [27] is :

flQR(d, r) = r2
(
d− r

3

)
(6.58)

Conclusively, given a set P of h real polynomials with average degree d̄ ≥ 2

and the rank of FP is r (which is equal to the degree of its LCM), then, considering

the equations (6.54)-(6.58), the total amount of operations for the Hybrid LCM

algorithm is:

O

(
4

3
(d̄ h)3 +

3

2
(d̄ h)r2 + 5 r3

)
(6.59)

In the worst case, where the LCM has the maximum degree d = d̄ h, the algorithm

performs less than 8 d 3 operations for the final result, which is computationally

acceptable for large sets of polynomials.

6.4.2 Numerical behaviour of the Hybrid LCM algorithm

The numerical analysis of the Hybrid LCM algorithm mainly concerns the least-

squares problem (6.53). The application of the ERES Division algorithm to the

polynomials of the original set P involves symbolic-rational operations, which

lead to the formulation of the initial matrix FP without additional numerical

error. In case where the input data are given inexactly in finite precision floating-

point format, they may be converted to rational format introducing a negligible

numerical error close enough to hardware precision.

In order to achieve a better computation of the singular values of FP , it is

preferable to apply the SVD algorithm on a normalised copy of FP , such that all

its elements be less than 1 in absolute value [27]. This process is an elementary row

transformation which provides better numerical stability and does not affect the

properties of the system FP ·a = 0 and hence the final solution. The normalisation

of the rows of the matrix FP by using the Euclidean norm in floating-point

arithmetic with unit round-off u, satisfies the properties [18] :

F̃P = N · FP + EN , (6.60)

‖EN‖2 ≤ du ‖FP‖2 +O(u2), ‖N‖2 ≤
√
d

where d =
∑h

i=1 deg{pi(s)}, N ∈ Rd×d is a diagonal matrix accounting for the

performed transformations and EN ∈ Rd×d+1 the error matrix. Therefore, if r is

the numerical rank of F̃P , the matrix F̂P in the least-squares problem (6.53) is

actually formed from the first r columns of F̃P .
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Let the perturbation Er of the matrix F̂P be small enough, such that

ρ(F̂P) = ρ(F̂P + Er)

According to Theorem 6.8 the unique least-squares solution for the problem (6.53),

in general, depends upon the square of the condition number of the d× r matrix

F̂P . If we compute the SVD of F̂P , then [27] :

‖F̂P‖2 = σmax , ‖F̂ †P‖2 =
1

σmin

where σmax and σmin are the maximum and minimum singular values of F̂P .

Hence,

Cond(F̂P) = ‖F̂P‖2 ‖F̂ †P‖2 =
σmax
σmin

(6.61)

The residual of the least-squares solution also depends upon Cond(F̂P) when

F̂P is perturbed, as showed in Theorem 6.7. However, the results so far from

the numerical sensitivity analysis of the linear least-squares problem show that

condition numbers are connected with backward error estimations. Different

methods lead to a variety of estimates for the optimal size of backward errors for

least-squares problems [29]. Numerical tests [30] regarding least-squares problems

have shown that the optimal backward errors for least-squares problems are much

smaller – orders of magnitude smaller – than the solution errors and furthermore

the QR method results in noticeably smaller solution errors than the SVD method.

Regarding the backward error estimates, as the computed solution of the least-

squares problem becomes more accurate, the estimate may become more difficult

to evaluate accurately because of the unavoidable rounding error in forming the

residual.

If QR-Householder factorisation is used in order to solve the full rank least-

squares problem (6.53), then, taking into account the result given by Lawson and

Hanson in [54], the computed solution â is such that it satisfies∥∥∥(F̂P + Er) â−
(

∆f − f
r+1

)∥∥∥
2

= minimum

where

‖Er‖2 ≤ (6d− 3r + 41)ru
∥∥∥F̂P∥∥∥

F
+O(u2) (6.62)

and

‖∆f‖2 ≤ (6d− 3r + 40)ru
∥∥∥f

r+1

∥∥∥
2

+O(u2) (6.63)

and u is the machine’s precision (hardware accuracy). The above inequalities

show that â satisfies a “nearby” least-squares problem. Numerically, trouble can

be expected whenever Cond(F̂P) ≈ u−1, [27].
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Therefore, having a well conditioned matrix and considering the results in

theorems 6.7–6.9, the least-squares solution of (6.53) is considered a good approx-

imate solution to the LCM problem, provided that the corresponded residual is

small enough according to a specified numerical tolerance εt. In most cases, the

chosen numerical tolerance is quite satisfactory to be set equal to u ‖FP‖∞ .

I Computational examples

Example 6.4. Consider the set P3 = {pi(s) ∈ R, i = 1, 2, 3} with

p1 (s) = (s+ 1) (s+ 2)2 = s3 + 5s2 + 8s+ 4

p2 (s) = (s+ 2) (s+ 3) (s+ 4) = s3 + 9s2 + 26s+ 24

p3 (s) = (s+ 4)2 (s+ 5) = s3 + 13s2 + 56s+ 80

(6.64)

The exact LCM of the set P3 is

l(s) = (s+ 1) (s+ 2)2 (s+ 3) (s+ 4)2 (s+ 5) (6.65)

= s7 + 21 s6 + 183 s5 + 855 s4 + 2304 s3 + 3564 s2 + 2912 s+ 960

and the gcd{P} = 1. We will compute the LCM of the set by using the Hybrid

LCM Algorithm 6.2.

Assuming that we do not know in advance the actual degree of the LCM, we

can represent the LCM regarding its maximum theoretical degree d = 3+3+3 = 9

with arbitrary coefficients in the form:

l(s) = a9s
9 + a8s

8 + a7s
7 + a6s

6 + a5s
5 + a4s

4 + a3s
3 + a2s

2 + a1s
1 + a0

If we denote by

p (s) = s3 + b2s
2 + b1s+ b0

an arbitrary polynomial of degree 3, which corresponds to the maximum degree

polynomial of the set, then the next steps to be followed are:

• Apply the ERES Division Algorithm 3.1 to the polynomials l(s) and p(s) to

obtain a symbolic algebraic formula for the remainder r(s) of the division
l(s)
p(s)

.

• In this symbolic algebraic formula, substitute the terms bj, j = 0, 1, 2

with the corresponding coefficients of the polynomials pi(s), i = 1, 2, 3 and

construct the 9× 10 matrix FP :
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FP =



1 0 0 −4 20 −68 196 −516 1284 −3076

0 1 0 −8 36 −116 324 −836 2052 −4868

0 0 1 −5 17 −49 129 −321 769 −1793

1 0 0 −24 216 −1320 6840 −32424 145656 −632040

0 1 0 −26 210 −1214 6090 −28286 125370 −539054

0 0 1 −9 55 −285 1351 −6069 26335 −111645

1 0 0 −80 1040 −9040 65680 −430800 2645520 −15521360

0 1 0 −56 648 −5288 36936 −235880 1421064 −8219432

0 0 1 −13 113 −821 5385 −33069 194017 −1101157


• Normalize the rows of FP by using the Euclidean norm and compute its

rank. A numerical accuracy εt = 10−16 ≈ u ‖FP‖∞ can be set, and the

numerical εt-rank of the normalised FP , denoted by F̃P , is r = 7. Therefore,

the aim is to find an LCM with degree equal to 7.

• If F̂P is the 9 × 7 matrix, which derives from F̃P by deleting its last two

columns, the next overdetermined linear system has to be solved:

F̂P · â = −f
r+1

where f
r+1

is the 8th column of F̃P . The condition number of F̂P is

Cond(F̂P) = 5.283454 · 107

• Proceed with the solution of the least-squares problem:

min
â

∥∥∥F̂P · â+ f
r+1

∥∥∥
2

(6.66)

In the least-squares problem (6.66) we applied three different methods using

QR factorization (LS-QR), singular value decomposition (LS-SVD), and finding

the pseudo-inverse of F̂P (LS-PInv). The quality of the obtained solution is

measured regarding the magnitude of the residual

‖u‖2 =
∥∥∥F̂P · â+ f

r+1

∥∥∥
2

and the relative error

Rel =
‖â− a‖2

‖a‖2

since we know the exact solution a. These results are presented in the next table.
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LS-QR LS-SVD LS-PInv

Residual 6.255761 · 10−15 1.533661 · 10−11 8.876500 · 10−12

Relative error 4.641785 · 10−13 1.535942 · 10−11 1.405633 · 10−11

Table 6.1: Results for the approximate LCM of the set P3 in Example 6.5 given
by different least-squares methods.

Obviously, the QR method gives a more accurate solution than the other two

least-squares methods.

Example 6.5. Consider the same set of three polynomials from above adding a

small perturbation ε = 10−7,

P ′3 =


p1 (s) = (s+ 1) (s+ 2 + ε)2

p2 (s) = (s+ 2) (s+ 3) (s+ 4 + ε)

p3 (s) = (s+ 4)2 (s+ 5)

 (6.67)

The degree of the exact LCM of the set P ′3 is equal to 9 and gcd{P ′3} = 1. We

will attempt to find an approximate LCM of the set P ′3 by using again the Hybrid

LCM Algorithm 6.2.

The rank of the 9× 10 normalized input matrix F̃P , computed in 34-digits

numerical precision (quadruple precision), is 9, as expected. However, if we set

a numerical tolerance εt = 10−8 = 0.1 ε, then its rank drops to 7. Indeed, the

singular values of F̃P in quadruple precision are:

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9



=



2.9802039976570089550434545038338

0.34366973145489844885746482429270

0.016461844892250138547760604036328

0.0020457179597951853125096042785547

0.00026540982252781169619909257850821

0.000016999833265320300382639006850233

5.5207847653529439088861884829565 · 10−7

3.3478190487785146238746201748444 · 10−22

3.5605476397234041582223018756145 · 10−24


Obviously, the 7th singular value σ7 is greater than εt = 10−8, which implies that

the numerical εt-rank of F̃P is 7, and hence the degree of the obtained approximate
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εt-LCM is 7. Indeed, the solution of the corresponding least-squares problem is a

real polynomial with degree 7 and the residual is equal to 1.488148 · 10−10.

If we try now to compute an approximate LCM by using the S-R LCM

Algorithm 6.1, we will notice that the LCM of the set P ′3 is a polynomial with

degree 9, which implies that the associated GCD is equal to 1. However, for a

numerical tolerance εt = 10−4 the Hybrid ERES algorithm is able to give a non

trivial GCD of degree 2. Then, the obtained solution is an approximate εt-LCM

of degree 7 with residual (remainder norm ‖u‖2) equal to 1.296138 · 10−2. If we

denote by l1(s) the approximate solution given by the Hybrid LCM Algorithm 6.2

and l2(s) the approximate solution given by the S-R LCM Algorithm 6.1, then

the distance between these two approximations is

‖l1(s)− l2(s)‖2 = 0.4057382668

The two methods gave us results with great numerical difference and, judging

from the residuals in Table 6.2, we conclude that the Hybrid LCM algorithm

produced a more reliable approximate solution.

εt Degree Residual

S-R LCM alg. 10−4 7 1.296138 · 10−2

Hybrid LCM alg. 10−8 7 1.488148 · 10−10

Table 6.2: Numerical difference between the result from the S-R LCM and Hybrid
LCM algorithms for the set P ′3 in Example 6.5.

Example 6.6. The following polynomial set contains three real polynomials in

one variable:

P =


p1(s) = s2 − 5 s+ 6

p2(s) = s2 − (5− ε1) s+ 6

p3(s) = s− (2− ε2)

 (6.68)

The coefficients of the polynomials of set P are perturbed by the parameters

ε1, ε2, which are small positive numbers taking values from 10−1 to 10−15.

Considering the exact coefficients of the polynomials when ε1 = ε2 = 0, the

LCM of the set is l(s) = s2−5 s+6. However, if the coefficients of the polynomials

become inexact (ε1 6= ε2 > 0), we have several LCMs whose degrees vary from

2 to 5. These LCMs depend strongly on the selection of ε1, ε2 and the specified

numerical tolerance εt. The next test gives us a picture of the sensitivity of the

LCM to small perturbations in the coefficients of the polynomials of the given set.

For each value of ε1 and ε2 from 10−1 to 10−15, we applied the Hybrid LCM

algorithm to the given set P . The numerical accuracy εt was set equal to 0.5 ·10−15
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to simulate the standard hardware precision in Maple (Digits=16). For all the

pairs (ε1, ε2) there have been 225 approximate LCMs and their degrees are shown

in the following table:

(i,j) -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15

-1 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4

-2 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4

-3 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4

-4 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4

-5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4

-6 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4

-7 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4

-8 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4

-9 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4

-10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

-11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

-12 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3

-13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

-14 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2

-15 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2

Table 6.3: LCM degrees for the set P in Example 6.6.

Every entry (i, j) in the above table represents the degree of the approximate

LCM of the set P for (ε1, ε2) = (10i, 10j), i, j = −1,−2, . . . ,−15. For example,

the degree of the LCM for (ε1, ε2) = (10−2, 10−3) is 5. As we can see, the majority

of the obtained LCMs – 132 polynomials – have a degree equal to 4 . The variation

of the degrees is also presented in Figure 6.1.

The obtained results from the least-squares minimisation process characterise

the quality of the given approximate LCMs and have showed that

a) the maximum residual is 3.3450·10−14, the minimum residual is 0.6037·10−16

and they correspond to LCMs of degree 4 and 2 respectively,

b) the “best” LCMs with minimal residual have degrees 3 or 2. However we

have a lot of “good” LCMs of degree 4, and

c) when ε1 = 10−i, ε2 = 10−j for i = 1, 2, . . . 11 and j = 12− i, the obtained

4th degree LCMs have the worst residuals. (The white band in Figure 6.2

illustrate these values.)

The “best” LCMs for each degree from 2 to 5 are shown in the next table:
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Degree = 2

(ε1, ε2) = (10−15, 10−14)

Residual = 6.037065380953120 · 10−17

LCM = s2 − 4.999999999999998 s+ 5.999999999999985

Degree = 3

(ε1, ε2) = (10−15, 10−6)

Residual = 1.673712805750593 · 10−16

LCM = s3 − 6.999998946115123 s2 + 15.99999473057559 s

−11.99999367669075

Degree = 4

(ε1, ε2) = (10−3, 10−13)

Residual = 2.925394959602412 · 10−16

LCM = s4 − 9.999000000011530 s3 + 36.99500000009273 s2

−59.99400000024462 s+ 36.00000000021050

Degree = 5

(ε1, ε2) = (10−8, 10−1)

Residual = 1.897380776005375 · 10−15

LCM = s5 − 11.89972320221808 s4 + 55.99724156156302 s3

−130.2898547515662 s2 + 149.9836922323088 s

−68.39032671536748

Table 6.4: Best LCMs for the set P in Example 6.6.

6.5 Discussion

In this chapter the problem of computing the LCM of sets of several polynomials

in R[s] has been considered. The study was focused on two different LCM methods

where the ERES methodology is involved. The first LCM method, originally

developed in [47], is based on the associativity property of the LCM and therefore

it requires the computation of the GCD. In the current approach the computation

of the associated GCD was carried out by the Hybrid ERES algorithm and the

LCM is given as a result provided from the ERES Division algorithm. The

developed symbolic LCM method provides excellent results when the polynomials

have exactly known coefficients. In the approximate case, the provided solution

relies on the existence and use of an approximate GCD. However, when several

polynomials are involved, the complexity of this method rises to high levels and

this can cause serious complications when an approximate LCM is required.

The second method which is developed here, relies on the principal that
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every polynomial of a given set must divide evenly into the LCM and does

not require the computation of the GCD. With the aid of the ERES Division

method, a remainder sequence is formed which leads to the formulation of an

homogeneous underdetermined linear system. The rank of the particular system

of linear equations corresponds to the degree of the LCM and the coefficients of

the LCM are given by the unique solution of a reduced full rank overdetermined

linear system. When exact data are used, the accuracy of the produced LCM

depends on the numerical method that is used to solve the final linear system,

such as LU factorisation, Gaussian elimination or QR factorisation [18]. When

the data are given in symbolic-rational format, the LCM is produced in great

accuracy. However, when numerical inaccuracies are present, the final linear

system is transformed to an appropriate minimisation problem and then, an

approximate LCM is produced. Therefore, the approximate LCM problem can

be also considered as an optimisation problem. In the present study, linear least-

squares methods have been utilized to obtain approximate LCMs and their quality

is characterised by the residual of the least-squares solution. The derived algorithm

for the computation of the approximate LCM, referred to as the Hybrid LCM

algorithm, combines pure symbolic and numerical finite precision computations in

order to form and solve the linear system which provides the coefficients of the

approximate LCM of a given set of several real univariate polynomials.
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Figure 6.1: LCM degrees of the polynomial set P in Example 6.6.
Darker areas correspond to approximate LCMs with lower degrees

as the values of the parameters ε1 and ε2 decrease.
row : ε1 = 10−i column : ε2 = 10−j

Figure 6.2: LCM residuals of the polynomial set P in Example 6.6.
Darker areas correspond to approximate LCMs with smaller residuals

as the values of the parameters ε1 and ε2 decrease.
row : ε1 = 10−i column : ε2 = 10−j
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Stability evaluation for linear

systems using the ERES method

7.1 Introduction

Stability is a basic requirement for the design of a control system. The notion

of stability of systems can be defined in many ways depending on the type of

the system. Lyapunov stability and input-output stability are two of the most

important stability types for dynamical systems.

A qualitative characterisation of dynamical systems is the expectation that

bounded system inputs will result in bounded system outputs. System properties

of this type are referred to as bounded input - bounded output (BIBO) stability. A

linear system is said to be BIBO stable if and only if for any bounded input vector

u(t), the output vector y(t) is bounded1. For single input - single output (SISO)

linear systems, BIBO stability implies that for every input u(t) and k1 constant

such that |u(t)| ≤ k1 <∞ , ∀ t ≥ 0, there exists k2 constant such that the output

y(t) satisfies |y(t)| ≤ k2 < ∞ , ∀ t ≥ 0. Several different conditions for BIBO

stability can be established for different types of systems such as time-invariant,

time-varying, continuous-time, and finite-dimensional systems [1, 38].

Stability for nonlinear systems basically relies on the notion of Lyapunov

stability [1, 38]. The notion of Lyapunov stability occurs in the study of dynamical

systems and it is associated with internal, or state space descriptions. In simple

terms, if all solutions of the dynamical system that start out near an equilibrium

point xe stay near xe forever, then xe is Lyapunov stable. The idea of Lyapunov

stability can be extended to infinite-dimensional manifolds, where it is known

as structural stability, which concerns the behaviour of different but “nearby”

solutions to differential equations. Specialized Lyapunov’s stability criteria can

be applied to linear systems as well, but there are also other important criteria

based on algebraic and geometric properties [1]. Amongst the most important

1A vector is bounded if every component is bounded.
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stability criteria for linear systems, the Routh-Hurwitz criterion is distinguished

for its theoretical and practical value in stability analysis. The name refers to

E. J. Routh and A. Hurwitz who contributed to the formulation of this criterion

dating from the end of the 19th century [37, 66].

The Routh-Hurwitz stability criterion is a necessary and sufficient method to

establish the stability of a SISO, linear time-invariant (LTI) control system [1, 24].

Generally, given the characteristic polynomial of a linear system, some calculations

using only the coefficients of that polynomial can lead to the conclusion that it

is stable or unstable. The criterion can be performed using either polynomial

divisions or determinant calculus. In this chapter, a new approach to the problem

of evaluating the stability of a linear system is presented. This particular approach

is based on the combination of the Routh-Hurwitz criterion and the ERES method

in order to form a matrix-based criterion for the evaluation of the stability of an

LTI system. The developed method involves the computation of the coefficients

that are necessary to form a continued fraction representation for the characteristic

polynomial of a linear system. Then, the stability of the linear system is deduced

from the distribution of the roots of the characteristic polynomial on the complex

plane, which is determined by the signs of these coefficients. The main result of this

study is the formulation of the RH-ERES algorithm. This algorithm computes the

coefficients of the continued fraction representation of the characteristic polynomial,

either symbolically, or numerically and faster than Routh’s algorithm [24, 66]. The

problem of finding the minimum distance of an unstable to a stable polynomial

as well as the minimum norm stabilization are also addressed.

NOTATION 7.1. C+ = {s ∈ C : <(s) > 0} denotes the right half-plane where the

complex numbers have positive real parts. Similarly, C− = {s ∈ C : <(s) < 0}
denotes the left half-plane where the complex numbers have negative real parts.

(<(s) denotes the real part of a complex number s ∈ C.)

7.2 Stability of linear systems and the Routh-

Hurwitz criterion

In this section we provide some theoretical background material regarding the

stability of linear systems and the Routh-Hurwitz criterion, which can be found

in [1, 24, 38]. Specifically, we shall concern ourselves with a simple type of linear

system of nth-order linear homogeneous ordinary differential equations of the form:

cnx
(n) + cn−1x

(n−1) + . . .+ c1x
(1) + c0x = 0, cn 6= 0 (7.1)

where the coefficients c0, . . . , cn are all constant real numbers. Usually, x is time

dependent and if t represents time, the solution of the system (7.1) is actually
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a vector x(t) ∈ Rn (state-vector). A linear system that does not depend on the

variable t is a Linear Time-Invariant system (LTI). This type of linear systems

is very common in the area of applied mathematics with direct applications in

control theory, signal processing, circuits, seismology, and others.

The algebraic equation (7.1) is equivalent to the system of first-order ordinary

differential equations

S : ẋ = Ax (7.2)

if we develop an appropriate state-space realisation for (7.1) [1]. In the realisation

(7.2), x = x(t) ∈ Rn and A denotes the companion matrix given by:

A =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1

− c0

cn
− c1

cn
− c2

cn
. . . −cn−1

cn


∈ Rn×n (7.3)

The notion of an equilibrium is critical in the stability analysis of linear

systems.

Definition 7.1. Given a system of first-order differential equations ẋ = F(t, x),

x ∈ Rn, a point xe ∈ Rn is called an equilibrium point of the system (or simply

an equilibrium) at time t0 > 0, if F(t, x0) = 0 for all t > t0.

There are several qualitative characterisations of an equilibrium point that

are of fundamental importance in systems theory. These characterizations are

concerned with various types of stability properties of an equilibrium and are

referred to in the literature as Lyapunov stability. In general, an equilibrium point

is:

• stable (uniformly stable), if for initial conditions that start near an equilib-

rium point the resulting trajectory stays near that equilibrium point,

• asymptotically stable, if it is stable and, in addition, the state trajectory of

the system converges to the equilibrium point as time tends to infinity,

• unstable, if it is not stable.

The linear time-invariant, homogeneous system of ordinary differential equa-

tions S in (7.2), has a unique equilibrium that is at the origin if and only if A is

nonsingular. Otherwise, S has nondenumerably many equilibria. Therefore, the

most interesting equilibrium for S is located at the origin where x = 0 and will

be referred to as the trivial solution of the system S.
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In order to determine whether the equilibrium x = 0 of S is asymptotically

stable, it suffices to determine if all the eigenvalues λ of the matrix A have negative

real parts, or what amounts to the same thing, if the roots of the polynomial

f(λ) = cnλ
n + cn−1λ

n−1 + . . .+ c1λ+ c0 (7.4)

all have negative real parts. To see this, we must show that the eigenvalues λ of A

coincide with the roots of the polynomial f(λ). This is most easily accomplished

by induction.

For the first-order case k = 1, we have A = − c0

cn
and therefore,

det(λI1 − A) = λ+
c0

cn

where I1 = 1, and so the assertion is true for k = 1. Next, assume that the

assertion is true for k = n− 1. Then

det(λIn − A) = λ det(λIn−1 − A1) +
c0

cn

= λn +
cn−1

cn
λn−1 + . . .+

c1

cn
λ+

c0

cn
= 0 (7.5)

where Ik is the k × k identity matrix for k = n, n− 1 and

A1 =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1

− c1

cn
− c2

cn
− c3

cn
. . . −cn−1

cn


∈ R(n−1)×(n−1)

Clearly, (7.5) is equivalent to f(λ) = 0. The polynomial φ(λ) , det(λIn − A) is

also known as the characteristic polynomial of the matrix A. The most important

stability criteria contain algebraic conditions, which are formed form the coefficients

of the characteristic polynomial φ(λ). The stability of a linear system can be

assessed by the distribution of the roots of its characteristic polynomial φ(λ) in

the imaginary plane.

Definition 7.2 ([1]). A real n× n matrix A is called:

a) stable or a Hurwitz matrix, if all its eigenvalues have negative real parts,

b) unstable, if at least one of the eigenvalues has positive real part and

c) critical, when it is neither stable nor unstable.
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Analogously to matrices, an nth-order polynomial f(s) with real coefficients is

called:

a) stable, if all the roots of f(s) have negative real parts,

b) unstable, if at least one of the roots of f(s) has a positive real part.

REMARK 7.1. A stable polynomial, which has all its roots in the left half-plane,

is also called a Hurwitz polynomial or Hurwitzian.

REMARK 7.2. If x(t) is the input to a general linear time-invariant system, and

y(t) is the output, and the Laplace transform of x(t) and y(t) be x̂(s) = L{x(t)}
and ŷ(s) = L{y(t)} respectively, then the output ŷ(s) is related to the input x̂(s)

by the transfer function H(s) as

ŷ(s) = H(s) · x̂(s)

Considering a linear time-invariant SISO system S, as in (7.2), and its transfer

function H(s), which represents the ratio of the output ŷ(s) of the system to the

input x̂(s) of the system, the stability analysis shows that the poles of the transfer

function H(s) are in general a subset of the eigenvalues of A. Thus, it is sufficient

to check the poles of the transfer function H(s) of the system, that is the roots si

of its characteristic equation:

f(s) = cn s
n + cn−1 s

n−1 + cn−2 s
n−2 + . . .+ c1 s+ c0 = 0 (7.6)

The following necessary and sufficient stability conditions can be formulated:

• A linear system S is asymptotically stable, if the real part of the roots of

f(s) is

<(si) < 0, ∀ si, i = 1, 2, . . . , n

or, in other words, if all poles of H(s) lie in the left half-plane.

• A linear system S is unstable, if at least one pole of H(s) lies in the right

half-plane, or, if at least one multiple pole is on the imaginary axis of the

complex plane.

For systems with eigenvalues having zero real-part, stability is determined by using

the Jordan normal form associated with the matrix. A system with eigenvalues

that have no strictly positive real part is stable, if and only if the Jordan block

corresponding to each eigenvalue with zero part is a scalar (1× 1) block.

The number of the roots of the characteristic polynomial that lies in the left

half-plane of the field of complex numbers is used as a criterion for checking the

stability of an LTI system, known as the Routh-Hurwitz stability criterion. The
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criterion is related to Routh-Hurwitz theorem which derives from the use of the

Euclidean algorithm and Sturm’s theorem in evaluating Cauchy indices.

Definition 7.3. A polynomial f ∈ R[s] is square-free, if and only if for every

nonconstant g ∈ R[s], g2 does not divide f .

REMARK 7.3. A square-free polynomial is a polynomial with no multiple roots.

Let us consider a polynomial p ∈ R[s] of degree n > 1 and its first derivative p′.

The following are equivalent [5]:

i) The polynomial p is square-free, if gcd{p, p′} = 1.

ii) Let S{p,p′} the resultant matrix of p and p′. If ρ
(
S{p,p′}

)
= 2n− 1, then p is

a square-free polynomial.

Definition 7.4. Given a real univariate polynomial p(s), a Sturm chain or Sturm

sequence is a finite sequence of polynomials Ps = {p0(s), p1(s), . . . , pm(s)} of

decreasing degree with the following properties:

a) p0(s) := p(s) is square-free and p1(s) := p′(s),

where p′(s) is the first derivative of the polynomial p(s),

b) pi(s) = −rem(pi−1, pi), i = 2, 3, . . . ,m,

where rem{·} denotes the remainder of the Euclidean division of two poly-

nomials,

c) if p(s0) = 0, then sign(p1(s0)) = sign(p′(s0)),

d) if pi(s0) = 0 for 0 < i < m then sign(pi−1(s0)) = −sign(pi+1(s0)),

e) pm(s) does not change its sign.

Theorem 7.1 (Sturm’s theorem [24]). Let Ps = {p0(s), p1(s), . . . , pm(s)} be a

Sturm chain, where p(s) is a real univariate square-free polynomial. If V (s0) de-

notes the number of sign changes in the sequence Ps0 = {p0(s0), p1(s0), . . . , pm(s0)}
for a specific s0, then for two real numbers a < b, the number of distinct real roots

of p(s) in the interval (a, b) is

V (a)− V (b) (7.7)

REMARK 7.4. If p(s) is square-free, it shares no roots with its derivative p′(s),

hence pm(s) will be a nonzero constant polynomial. If p(s) is not square-free, the

derived sequence does not formally satisfy the definition of a Sturm chain above,

nevertheless it still satisfies the conclusion of Sturm’s theorem.
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Definition 7.5 (Cauchy index [24]). The Cauchy index of a rational function

R(s) between the limits a and b denoted by IbaR(s), (a and b can be real numbers

or ±∞ ) is the difference between the number of jumps of R(s) from −∞ to +∞
and that of jumps from +∞ to −∞ as the argument changes from a to b.

More specifically, a real polynomial f(s) as in (7.6), can be written in the

form:

f(s) = f0(s) + f1(s) (7.8)

where

f0(s) = cn s
n + cn−2 s

n−2 + cn−4 s
n−4 + . . .

f1(s) = cn−1 s
n−1 + cn−3 s

n−3 + cn−5 s
n−5 + . . .

The equation (7.8) implies the splitting of f(s) in odd and even powers of the

variable s. Then, the Cauchy index of the rational function

R(s) =
f0(s)

f1(s)
(7.9)

over the real line is the difference between the number of roots of f(s) located in

the right half-plane and those located in the left half-plane. In the regular case,

the polynomials f0(s) and f1(s) are coprime and hence, R(s) is irreducible. Other

special cases are analysed in [24] and will be discussed in the sequel.

Considering the irreducible rational function R(s), we can construct a sequence

of n rational functions by using Euclidean division, such that
Rk(s) ,

fk(s)

fk+1(s)
= qk+1(s) +

fk+2(s)

fk+1(s)
, for k = 0, 1, . . . , n− 2, n− 1

with fn(s) = c0, fn+1(s) = 0

(7.10)

Sturm’s theorem suggests a method of computing the Cauchy index of R(s). The

sequence {R0(s), R1(s), . . . , Rn−1(s)} may be seen as a generalized Sturm chain

and the Cauchy index is evaluated by the number of sign variations in the chain

which eventually determines the number of the roots of f(s) with negative real

parts. Therefore, if we denote by:

i) r−f and r+
f the number of roots of f(s) in the left half-plane and the right

half-plane, respectively, taking into account multiplicities,

ii) V (s) the number of sign variations of the generalized Sturm chain

{R0(s), R1(s), . . . , Rn−1(s)}, and

iii) I+∞
−∞R(s) the Cauchy index of the rational function R(s) over the real line,
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then, when we apply Sturm’s theorem in the interval (−∞,+∞) to R(s) and by

using (7.10), we obtain:

r−f − r
+
f =

 +I+∞
−∞

f0(s)
f1(s)

, for odd degree n

−I+∞
−∞

f1(s)
f0(s)

, for even degree n
= V (+∞)− V (−∞) (7.11)

By the fundamental theorem of algebra, each polynomial of degree n must have n

roots in the complex plane (i.e., for a polynomial with no roots on the imaginary

line, r−f + r+
f = n). Thus, we have the condition that

f(s) is a Hurwitz polynomial if and only if r−f − r
+
f = n.

Using Routh-Hurwitz theorem, the condition on r−f and r+
f can be replaced by a

condition on the generalized Sturm chain, which will give in turn a condition on

the coefficients of f(s).

Theorem 7.2 (Routh-Hurwitz [24, 37]). The number of roots of the real polyno-

mial

f(s) = cns
n + cn−1s

n−1 + . . .+ c1s+ c0, cn 6= 0 (7.12)

in the right half-plane is determined by the formula:

r+
f = V

(
cn,∆1,

∆2

∆1

,
∆3

∆2

, . . . ,
∆n

∆n−1

)
(7.13)

An elaborate proof of the above theorem can be found in [24]. The terms ∆i,

i = 1, 2, . . . , n are called Hurwitz determinants and we denote them by:

∆1 = cn−1, ∆2 = det

(
cn−1 cn−3

cn cn−2

)
, . . . , ∆n = det


cn−1 cn−3 . . . c1

cn cn−2 . . . c0

0 cn−3 . . . c3

0 cn−2 . . . c2

. . . . . . . . . . . .


REMARK 7.5. This statement of the Routh-Hurwitz theorem assumes that we

have the regular case, where ∆i 6= 0, ∀ i = 1, 2, . . . , n.

Considering the above, the stability problem for nth-order differential equations

with constant coefficients has been reduced to a purely algebraic problem of

determining whether the zeros of a polynomial all have negative real parts. A

method for extracting information about the roots of a polynomial without solving

for the roots relies on the Routh array [24, 66]. The Routh array is a tabular

procedure for determining how many roots of a polynomial are in the right half

of the complex plane. Given a polynomial f(s) with real constant coefficients as

defined in (7.12), the Routh array has the following tabular form:
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sn cn cn−2 cn−4 cn−6 . . .

sn−1 cn−1 cn−3 cn−5 cn−7 . . .

sn−2 bn−2,1 bn−2,2 bn−2,3 . . .

sn−3 bn−3,1 bn−3,2 bn−3,3 . . .
...

...

s1 b1,1

s0 b0,1

(7.14)

where

bn−2,1 = −1
cn−1

det

(
cn cn−2

cn−1 cn−3

)
, bn−2,2 = −1

cn−1
det

(
cn cn−4

cn−1 cn−5

)
, . . .

bn−3,1 = −1
bn−2,1

det

(
cn−1 cn−3

bn−2,1 bn−2,2

)
, bn−3,2 = −1

bn−2,1
det

(
cn−1 cn−5

bn−2,1 bn−2,3

)
, . . .

Two necessary, but not sufficient, conditions that all the roots of f(s) have

negative real parts are:

a) All the polynomial coefficients ci must have the same sign.

b) All the polynomial coefficients ci must be nonzero.

But the following theorem establishes necessary and sufficient conditions for a

polynomial f(s) to be a Hurwitzian, i.e. to have all its roots located in the left

half-plane.

Theorem 7.3 (Routh-Hurwitz stability criterion [24]). The real polynomial

f(s) = cns
n + cn−1s

n−1 + . . .+ c1s+ c0, cn 6= 0 (7.15)

is a Hurwitz polynomial (stable) if and only if

ci
cn
> 0 for every i = 0, 1, . . . , n− 1 (7.16)

and

bn−j,1 > 0 for every j = 0, 1, . . . , n− 2 (7.17)

i.e. the elements in first column of the corresponding Routh array are nonzero and

have the same sign.

An elementary proof of the Routh-Hurwitz criterion can be found in [14, 34].

The Routh-Hurwitz stability criterion provides a simple algorithm to decide

whether or not the zeros of a polynomial are all in the left half of the complex

plane. The necessary condition that all roots have negative real parts is that all

the elements of the first column of the Routh array (7.14) have the same sign.

The number of changes of sign equals the number of roots with positive real
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parts. However, there are cases where the condition (7.17) in the Routh-Hurwirz

criterion needs special treatment in order to produce reliable results. In these

cases the tabulation in the Routh array fails to come to an end due to a division

by zero. This is commonly referred to as the singular case. Some techniques have

been devised to cope with singular cases, leading to an extended Routh-Hurwitz

criterion [7, 24, 66].

I The singular cases in the Routh array.

The types of the basic singular cases [7, 24, 66] and their numerical treatment are:

1. The first element of a row in the Routh array is zero, but some other elements

in that row are nonzero.

This means that at some place during the tabulation process of the Routh

array the degree drops by more than one. In this case, we must simply

replace the zero element by a number ε, complete the array development,

and then interpret the results assuming that ε is a small number of the same

sign as the element above it. However, instead of the array for f(s) we have

the Routh array for a polynomial f(s, ε), where f(s, ε) is an integral rational

function of s and ε which reduces to f(s) for ε = 0. Since the roots of f(s, ε)

change continuously with a change of the parameter ε and provided that

there are no roots on the imaginary axis for ε = 0, the polynomial f(s, ε)

has the same number of roots in the right half-plane for values of ε of small

modulus, [24]. The results must be interpreted in the limit as ε→ 0.

2. All the elements of a particular row in the Routh array are zero.

In this case, some of the roots of the polynomial are located symmetrically

about the origin of the complex plane, for example a pair of purely imaginary

roots. To overcome the problem, we write down the polynomial using the

coefficients immediately previous to the all zero row. This polynomial is

called auxiliary polynomial. To complete the array, we differentiate the aux-

iliary polynomial with respect to s once and we use the coefficients in place

of the all zero row. If the auxiliary polynomial has a root with multiplicity

ν > 1, then its derivative will have the same root with multiplicity ν − 1,

which means that it will also be a root of the greatest common divisor of

the auxiliary polynomial and its derivative. Therefore, these changes are

necessary in order to prevent the zeroing of ν rows in the array before the

end of the tabulation process.

An alternative statement of the Routh-Hurwitz theorem was given by Wall

[79], who formulated and proved Theorem 7.3 by means of continued fractions.

More specifically, the recursive scheme (7.10) can be written in the form of a
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continued fraction representing the rational function R(s) in (7.9). Then, the

following theorem describes equivalent conditions to Routh-Hurwitz theorem for

the evaluation of the stability of a real polynomial.

Theorem 7.4 ([24, 79]). Given a real polynomial

f(s) = sn + cn−1 s
n−1 + ...+ c1 s + c0

define a rational function R(s) such that

R(s) =


ev (f(s))

od (f(s))
, if n is even.

od (f(s))

ev (f(s))
, if n is odd.

(7.18)

where ev (f(s)) is the even part of f(s) (i.e. the power of s is an even number)

and od (f(s)) is the odd part of f(s) (i.e. the power of s is an odd number). Then

all the roots of f(s) have negative real parts if and only if

R(s) = a1 s+
1

a2 s+
1

a3 s+ ...
1

an−1 s+
1

an s

(7.19)

and all the n coefficients ai are strictly positive numbers. Equivalently, if there

exist negative ai, then the number of negative ai is equal to the number of the roots

of f(s) in the right half-plane.

In general, the proof of the above theorem is based on the Euclidean algorithm

and the Routh-Hurwitz theorem. However, a detailed proof is presented in [24],

based on the Hermite-Biehler theorem ([36] and references therein) and Stieltjes’

theorem.

REMARK 7.6. The coefficients ai, i = 1, 2, . . . , n in (7.19) are the ratios of two

successive parameters in the first column of the Routh array and thus Theorem

7.3 and Theorem 7.4 provide equivalent results.

If we associate the stability of a linear system S with the stability of its

characteristic polynomial f(s), then, obviously, the signs of the coefficients ai are

important to the assessment of the stability of the linear system. Specifically, if

all the coefficients ai are positive, then the linear system S can be considered as

asymptotically stable. The representation (7.19) of the rational function R(s) as a

finite continued fraction is an important algebraic representation which approaches

the process of the evaluation of the parameters in the Routh array in a different
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way and consequently motivates a different algorithmic procedure to assess the

stability of a linear system.

In the following we will focus on the result given by Theorem 7.4. The main

objective is to transform the rational representation (7.19) into an equivalent

matrix representation in order to simplify the process of evaluating the stability

of a linear time-invariant system based on the Routh-Hurwitz criterion. In this

attempt the ERES method and particularly the ERES Division algorithm, which

was developed in Chapter 3, will play a significant role.

7.3 The RH-ERES method for the evaluation of

the stability of linear systems

Consider a linear time-invariant system S : ẋ = Ax and its characteristic polyno-

mial:

f(s) = sn + cn−1 s
n−1 + ...+ c1 s + c0, ci ∈ R, s ∈ C (7.20)

We assume that ci > 0 for every i = 0, 1, . . . , n− 1 which is a necessary condition

to be f(s) a stable (Hurwitz) polynomial. Naturally, the polynomial f(s) can be

written as the sum of two polynomials f0(s) and f1(s) such that

f(s) = f0(s) + f1(s) (7.21)

with {
f0(s) = sn + cn−2s

n−2 + . . .+ c3s
3 + c1s

f1(s) = cn−1s
n−1 + cn−3s

n−3 + . . .+ c2s
2 + c0

, if n is odd, (7.22)

or

{
f0(s) = sn + cn−2s

n−2 + . . .+ c2s
2 + c0

f1(s) = cn−1s
n−1 + cn−3s

n−3 + . . .+ c3s
3 + c1s

, if n is even. (7.23)

In this section, we focus on the development of an alternative ERES-based

procedure for the computation of the coefficients ai of the continued fraction

representation:

f0(s)

f1(s)
= a1 s+

1

a2 s+
1

a3 s+ ...
1

an−1 s+
1

an s

(7.24)

This leads to formulations of the preceding theorems by means of the ERES
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methodology. The derived computational method will be referred to as the RH-

ERES method and its main usage is to evaluate the stability of a linear system

from its characteristic polynomial. The following analysis refers to the regular

case where the n coefficients ai are nonzero and the fraction f0(s)
f1(s)

is irreducible.

According to Theorem 7.4, if the sequence

A = {ai, i = 1, 2, . . . , n} (7.25)

contains strictly positive numbers, then the polynomial f(s) is stable. In cases

where any of the coefficients ai becomes zero, the expansion (7.24) fails to exist.

However, the RH-ERES method can be modified to cope with singular cases, using

similar techniques with those which are proposed for the Routh array [7, 24].

I The formulation of the RH-ERES method

Given a real polynomial f(s) of the form (7.20), the RH-ERES method involves

the following procedures:

1. Determine the degree n of the polynomial f(s) and then split it into two

polynomials f0(s) and f1(s) according to the form (7.22) or (7.23). Then,

create an initial matrix P from the coefficients of f0(s) and f1(s).

2. Apply the ERES operations (Definition 3.3) to P , n times iteratively.

Before all else, a proper initial basis matrix P must be defined in respect to

the polynomial f(s).

Definition 7.6. If the degree n of the polynomial f(s) is an odd integer number,

then a vector representative (vr) can be defined for the polynomial f0(s) regarding

(7.22) such that

f
0

= [1, 0, cn−2, 0, . . ., 0, c3, 0, c1, 0] ∈ Rn+1 (7.26)

and for the polynomial f1(s) :

f
1

= [0, cn−1, 0, cn−3, 0, . . ., 0, c2, 0, c0] ∈ Rn+1 (7.27)

Then,

p(s) ,

[
f 0(s)

f 1(s)

]
=

[
f

0

f
1

]
· en(s) (7.28)

where en(s) = [sn, sn−1 . . . , s, 1]
t

is a basis vector in R[s]. Therefore, a basis matrix
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representing the polynomial division f0(s)
f1(s)

can be defined as:

P =

[
f

0

f
1

]
=

 1 0 cn−2 0 . . . c3 0 c1 0

0 cn−1 0 cn−3 . . . 0 c2 0 c0

 ∈ R2×(n+1) (7.29)

Analogously, if n is an even integer number, then, regarding (7.23), the basis

matrix is defined as:

P =

[
f

0

f
1

]
=

 1 0 cn−2 0 . . . 0 c2 0 c0

0 cn−1 0 cn−3 . . . c3 0 c1 0

 ∈ R2×(n+1) (7.30)

Since we have assumed that the coefficients ci of the polynomial f(s) are

nonzero positive numbers, the degrees of the f0(s) and f1(s) will differ by 1. Then

it occurs that the polynomial f0(s) can be written in the form:

f0(s) =
1

cn−1

s
(
cn−1s

n−1 + cn−3s
n−3 + . . .+ c2s

2 + c0

)
(7.31)

+

((
cn−2 −

cn−3

cn−1

)
sn−2 + . . .+

(
c3 −

c2

cn−1

)
s3 +

(
c1 −

c0

cn−1

)
s

)
and consequently,

f0(s) =
1

cn−1

sf1(s) + f2(s) ⇔

f0(s)

f1(s)
=

1

cn−1

s+
f2(s)

f1(s)
⇔

f0(s)

f1(s)
=

1

cn−1

s+
1

f1(s)
f2(s)

(7.32)

Clearly, in terms of the Euclidean division, the polynomial:

f2(s) =

(
cn−2 −

cn−3

cn−1

)
sn−2 + . . .+

(
c3 −

c2

cn−1

)
s3 +

(
c1 −

c0

cn−1

)
s (7.33)

can be considered as the remainder r1(s) of the division f0(s)
f1(s)

and a1 = 1
cn−1

is the

coefficient of the quotient q1(s) = 1
cn−1

s as well as the first term a1 of the sequence

(7.25). Obviously, the process may continue with the division f1(s)
f2(s)

in a similar

way. Finally, it reaches the end after n divisions of the form:

fk(s)

fk+1(s)
, for k = 0, 1, 2, . . . , n− 1 (7.34)
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and fn(s) = c0 with the convention fn+1(s) = 0. Therefore, the continued fraction

(7.24) can be acquired by using the next iterative procedure:
fi−1(s)

fi(s)
= ais+

fi+1(s)

fi(s)
, i = 1, . . . , n

fn+1(s)

fn(s)
= 0

(7.35)

In order to transform the above process into a coherent matrix-based procedure,

we need a proper matrix representation of the polynomial division (7.34). Such a

representation can be established in the context of the ERES methodology. More

precisely, having two real polynomials fi−1(s) and fi(s) for any i = 1, . . . n, the

rational function:

Ri(s) =
fi−1(s)

fi(s)

can be transformed into a new rational function:

Ri+1(s) =
fi(s)

fi+1(s)

by using the ERES Division algorithm such that

Ri(s) =
fi−1(s)

fi(s)
=⇒

[
fi−1(s)

fi(s)

]
ERES−→

[
fi+1(s)

fi(s)

]
=⇒ fi+1(s)

fi(s)
=

1

Ri+1(s)

The polynomial fi+1(s) actually represents the remainder of the division fi−1(s)
fi(s)

.

Therefore, considering the preceding analysis, a new iterative method can be

developed for computing the sequence A in (7.25). We shall refer to this method

as the RH-ERES method. This method suggests an algorithmic procedure for the

computation of the coefficients ai in (7.35) by means of ERES operations.

The key element in computing (7.35) is to represent the remainder and the

quotient of the initial division f0(s)
f1(s)

in matrix form. As we have analysed in Chapter

3, the ERES Division algorithm provides a matrix representation of the remainder

and quotient of a polynomial division a(s)
b(s)

based on the ERES methodology. More

particularly, having an initial matrix with dimensions 2 × j, (j > 2), formed

directly from the coefficients of the original polynomials, the RH-ERES method

involves three basic procedures which are applied iteratively on the initial matrix

and can be described as:

1. Row switching.

The switching of the rows of the initial matrix P can be achieved by

multiplying it from its left side with a 2× 2 matrix of the form:

J =

[
0 1

1 0

]
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2. LU factorisation.

The LU factorization is basically Gaussian elimination without row in-

terchanges. This process transforms the initial matrix P into an upper

trapezoidal matrix U of the form:

U =

[
u1,1 u1,2 ... u1,j−1 u1,j

0 u2,2 ... u2,j−1 u2,j

]
∈ R2×j

such that

U = L−1 · P

The transformation matrix is represented as:

L−1 =

[
1 0

−µ 1

]
with µ =

p2,1

p1,1

where p1,1 and p2,1 are the elements of the first column of P .

3. Shifting.

The Shifting operation is applied in order to eliminate the first zero in the

second row of the initial matrix, which occurs after the LU factorisation.

Provided that the initial matrix has full rank, there always exists a j × j
matrix S which gives the proper shifting (Theorem 3.4).

The following statement provides the means for the implementation of the

iterative procedure (7.35) and establishes a relation between the continued fraction

representation (7.24) and the ERES operations, which characterises the RH-ERES

method.

Proposition 7.1. Given a real polynomial f(s) = sn+cn−1 s
n−1+...+c1 s+c0 with

ci 6= 0 for all i = 1, . . . , n we may define a basis matrix P ∈ R2×(n+1) of the form

(7.29) or (7.30). Then, all the terms in the sequence A = {ai, i = 1, 2, . . . , n},
which are also the coefficients ai in the continued fraction (7.24), can be obtained

by applying ERES transformations to matrix P . Furthermore, there are n matrices

Ai ∈ R2×2 with trace tr(Ai) ∈ R such that

A = {tr(Ai), i = 1, 2, . . . , n} (7.36)

Proof. First, we will simplify the structure of the basis matrix P . Let n be an

odd integer number. Since cn−1 > 0, the matrix P is nonsingular and considering

the ERES method, there is a shifting matrix S (Theorem 3.4), which shifts the
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second row of P such that

P̃ = P · S =

 1 0 cn−2 0 . . . c3 0 c1 0

cn−1 0 cn−3 0 . . . c2 0 c0 0

 ∈ R2×(n+1) (7.37)

If n is an even integer number, then

P̃ = P · S =

 1 0 cn−2 0 . . . 0 c2 0 c0

cn−1 0 cn−3 0 . . . 0 c1 0 0

 ∈ R2×(n+1) (7.38)

The application of ERE operations does not alter the structure of a matrix

and thus the zero columns of P̃ remain unaffected. Then the zero columns

of P̃ can be deleted. This transformation can be achieved by using a matrix

Z =
[
e1, e3, . . . , en−2, en

]
with dimensions (n+ 1)× (

[
n
2

]
+ 1), where [·] denotes

the integer part of a real number. The vector ej = [0, . . . , 0, 1, 0, . . . , 0]t denotes the

unit vector in Rn (the jth entry is equal to 1 , j = 1, . . . , n). The multiplication

P̃ · Z results in a simplified form of P̃ and hence the basis matrix P is now

transformed into a new matrix P0 which basically contains the same data as P

and

• if the degree n of the polynomial f is odd, then

P0 =

[
1 cn−2 ... c3 c1

cn−1 cn−3 ... c2 c0

]
∈ R2×([n2 ]+1) (7.39)

• if the degree n of the polynomial f is even, then

P0 =

[
1 cn−2 ... c2 c0

cn−1 cn−3 ... c1 0

]
∈ R2×(n

2
+1) (7.40)

We set now the initial matrix P (0) := P0 as defined in (7.39) or (7.40). Then, we

apply to P (0) the ERES operations (procedures):

Row switching - LU factorisation - Shifting

and we repeat the same process n times. At the ith iteration (i ∈ {1, 2, . . . , n}),
let us denote by

• J =

[
0 1

1 0

]
the permutation matrix which is used for the row switching,

• L(i) =

[
1 0

−µi 1

]
the matrix for the LU factorisation,

196



Chapter 7

• S(i) the shifting matrix which shifts the elements of the second row by one

place to the left, and

• P (i) the matrix occurred at the end of the ith iteration.

Then we can represent the above process as follows:

P (i) = L(i) · J · P (i−1) · S(i), for i = 1, 2, . . . n

Furthermore, let

A(i) = L(i) · J (7.41)

for all i = 1, 2, . . . , n. These matrices will have the form:

A(i) =

[
0 1

1 −µi

]
(7.42)

where the term µi represents the multiplier in the Gaussian elimination (LU

factorisation). According to the theory of the ERES Division algorithm in Chapter

3, every µi also represents the coefficient of the quotient qi(s) = ai s in (7.35). It

is clear then that the terms ai in (7.35) and consequently in (7.24), satisfy the

equality:

ai = µi , ∀ i = 1, 2, . . . , n (7.43)

At the end of the process the final matrix is:

P (n) =

[
c0 0 ... 0 0

0 0 ... 0 0

]
∈ R2×([n2 ]+1)

and

P (n) = A(n) · · ·A(1) · P (0) · S(1) · · ·S(n−1)

Since det(A(i)) = −1 6= 0, all the matrices A(i) are invertible and, if we denote by

Ai their inverse, then

Ai ,
(
A(i)
)−1

=

[
µi 1

1 0

]
=

[
ai 1

1 0

]
(7.44)

Therefore, we conclude that every trace tr(Ai) is equal to ai for all i = 1, 2, . . . , n

and hence the relation (7.36) holds.

If we consider the above result, the result in Theorem 7.4 can be expressed in

a different way which now involves the RH-ERES method.
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Theorem 7.5. Given a linear time-invariant system S : ẋ = Ax and its charac-

teristic polynomial f(s) = sn + cn−1 s
n−1 + ...+ c1 s + c0, we may define an initial

basis matrix P such that

• If the degree n of the polynomial f(s) is odd, then

P =

[
1 cn−2 ... c3 c1

cn−1 cn−3 ... c2 c0

]
∈ R2×([n2 ]+1) (7.45)

• If the degree n of the polynomial f(s) is even, then

P =

[
1 cn−2 ... c2 c0

cn−1 cn−3 ... c1 0

]
∈ R2×(n

2
+1) (7.46)

If the matrix P is transformed according to the ERES methodology and the sequence

of n matrices Ai, i = 1, 2, . . . , n correspond to the performed ERE operations then,

all the roots of the polynomial f(s) have negative real parts if and only if the traces

tr(Ai) are strictly positive.

Eventually, if we combine the Routh-Hurwitz theorem (7.11) with the previous

Theorem 7.5, we conclude with the next corollary, which associates the ERES

method with the evaluation of the stability of a linear system.

Corollary 7.1 (RH-ERES stability criterion). The polynomial

f(s) = cns
n + cn−1s

n−1 + . . .+ c1s+ c0, cn 6= 0

is a Hurwitz polynomial (stable) if and only if

ci
cn
> 0 for every i = 0, 1, . . . , n− 1

and

tr(Ai) > 0 for every i = 1, 2, . . . , n

where the matrices Ai represent the ERE operations, when the RH-ERES method

is used for the transformation of the basis matrix P , which corresponds to the

polynomial f(s).

Proof. The necessary and sufficient conditions for the polynomial f(s) to be stable

are a) to have strictly positive coefficients, and b) all its roots are lying in the

left half-plane. These conditions are satisfied when ai = tr(Ai) > 0 for every

i = 1, 2, . . . , n as stated in Theorem 7.4, Theorem 7.5, and in Proposition 7.1.

The above results provide the theoretical basis for the development of the

RH-ERES algorithm, which can be used for the evaluation of the stability of a
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linear system, based on the RH-ERES stability criterion. The formulation and im-

plementation of this algorithm in a symbolic-numeric computational environment

will be analysed and discussed in the following.

7.3.1 The RH-ERES algorithm and its implementation

The RH-ERES algorithm computes directly the terms ai in the continued fraction

form (7.24) of the characteristic polynomial f(s) of a given linear system and

provides information about the stability of the linear system. The maximum

number of iterations of the RH-ERES algorithm is equal to the degree n of the

original polynomial f(s).

ALGORITHM 7.1. The RH-ERES Algorithm

Input : 2× k matrix P (0) = [pi,j].

For i = 1, 2, . . . , n do

Step 1 : Reorder the rows of P (i−1).

Step 2 : Apply Gaussian elimination:

If p1,1 6= 0 then

µ := −p2,1

p1,1

For j = 1, 2, . . . , k do

p2,j := p2,j + µ · p1,j

end for

ai := −µ
else break.

end if

Step 3 : Apply Shifting to the 2nd row of P (i−1).

Step 4 : If the last column of P (i−1) is zero then

k := k − 1.

Set P (i) := P (i−1).

end for

Output : Sequence A = {a1, a2, . . . , an}.

I Computational complexity

The RH-ERES algorithm can be implemented either numerically or symbolically.

The symbolic implementation of the algorithm helps to avoid the accumulation
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of numerical errors during the process of Gaussian elimination, when numerical

data are used, but also it can provide useful theoretical results when symbolic

variables are used. If the original data are given in floating-point format, they can

be converted to a rational format and symbolic-rational operations are performed.

The row switching and Shifting do not require any numerical or symbolic

computation. Therefore, the total amount of the required numerical operations

(additions and multiplications) concerns only the process of Gaussian elimination.

If n denotes the degree of the original polynomial, then the number of columns

of the initial matrix P (0) is equal to k =
[
n
2

]
+ 1. The algorithm performs n

iterations and the Gaussian elimination requires 2k + 1 numerical operations in

every iteration. But on every second iteration, the number of nonzero columns

of the transformed matrix P (i−1) decreases by 1. Finally, the total number of

numerical operations required by the RH-ERES algorithm, given as a function of

k, is

flRH(k) = 2 k2 + 2 k − 1, k ∈ N (7.47)

Conversely, for a given polynomial of degree n and k =
[
n
2

]
+ 1 as before,

the tabulation process of the Routh array involves the computation of k2 − k
determinants. Each determinant requires 3 numerical operations and thus, the

computation of each element bn−i,j of the Routh array (7.14) requires 4 numerical

operations. Therefore, the total number of numerical operations to complete the

Routh array of a given polynomial of degree n > 1, is

flRA(k) = 4 k2 − 4 k, k ∈ N (7.48)

The following graph in Figure 7.1 shows that for k > 3 and consequently for n > 5,

the RH-ERES algorithm requires less numerical operations than Routh’s algorithm,

which results in faster data processing and better numerical performance.

Figure 7.1: Comparison of the numerical complexity of the RH-ERES algorithm
with Routh’s algorithm.
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This difference is actually more important when symbolic operations are used,

due to the presence of symbolic variables in the data. This is the case where

we want to do a complete stability analysis of a linear system theoretically, for

instance to find relationships between design parameters and control parameters

that give the best performance. However, the symbolic-rational operations require

more computational time than the numerical floating-point operations in order to

be executed. Therefore, since the total number of symbolic operations remains the

same for the two algorithms as given in (7.47) and (7.48), obviously, the RH-ERES

algorithm is faster in symbolic processing than Routh’s algorithm.

7.3.2 Computational results of the RH-ERES algorithm

In the following examples, the RH-ERES algorithm is applied to polynomials in

one variable with integer coefficients in order to determine the number of their

roots which are located in the left half-plane and, hence, characterise them as

stable or unstable.

Example 7.1 (A stable polynomial). Consider the polynomial:

f(s) = s5 + 8 s4 + 35 s3 + 80 s2 + 94 s+ 52 (7.49)

and we will examine whether it is stable or not by using the RH-ERES algorithm.

The degree of the given polynomial is n = 5, which is an odd number and therefore,

we form the initial matrix according to the form (7.45) :

P =

 1 35 94

8 80 52

 ∈ R2×3

Using the matrix P as input, the RH-ERES algorithm performs 5 iterations and

produces the following results. The matrices P (i) occur at the end of the ith

iteration of the algorithm, for i = 1, 2, . . . , 5, and the matrices Ai correspond to

the ERE transformations.

• Iteration 1

P (1) =

 8 80 52

25 175
2

0

 , A1 =

 1
8

1

1 0

 , tr(A1) =
1

8

• Iteration 2

P (2) =

 25 175
2

0

52 52 0

 , A2 =

 8
25

1

1 0

 , tr(A2) =
8

25
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• Iteration 3

P (3) =

 52 52 0

125
2

0 0

 , A3 =

 25
52

1

1 0

 , tr(A3) =
25

52

• Iteration 4

P (4) =

 125
2

0 0

52 0 0

 , A4 =

 104
125

1

1 0

 , tr(A4) =
104

125

• Iteration 5

P (5) =

 52 0 0

0 0 0

 , A5 =

 125
104

1

1 0

 , tr(A5) =
125

104

According to Theorem 7.5, the produced sequence:

A = {tr(Ai), i = 1, . . . , 5} =

{
1

8
,

8

25
,
25

52
,
104

125
,
125

104

}
implies that all the roots of the polynomial f(s) have negative real parts, since

there are no negative elements in the sequence A. Additionally, the coefficients of

f(s) are strictly positive. Therefore, according to the RH-ERES stability criterion

(Corollary 7.1), the given polynomial f(s) is stable.

Indeed, the roots of f(s) are:

s1 = −1 + i, s2 = −1− i, s3 = −2 + 3 i, s4 = −2− 3 i, s5 = −2

and hence, the above results are confirmed. Furthermore, if we set

f0(s) = s5 + 35 s3 + 52 , f1(s) = 8 s4 + 94 s+ 80 s2

so that f0(s) + f1(s) = f(s), and the continued fraction representation of f(s) can

be easily verified:

f0(s)

f1(s)
=
s5 + 35 s3 + 94 s

8 s4 + 80 s2 + 52
=

1

8
s+

1

8
25
s+

1

25
52
s+

1

104
125

s+
1

125
104

s
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Example 7.2 (An unstable polynomial). We consider the polynomial:

f(s) = 4 s4 + s3 + s2 + 3 s+ 2 (7.50)

The particular polynomial has 4 roots in the field of complex numbers C, which

are:

s1 =
3

2
+

√
5

2
i, s2 =

3

2
−
√

5

2
i, s3 = −5

8
+

√
7

8
i, s4 = −5

8
−
√

7

8
i

Obviously, there are 2 roots with negative real parts and 2 roots with positive

real parts. Therefore, although the polynomial f(s) has strictly positive integer

coefficients, it is unstable.

Now, we will verify these results with the RH-ERES algorithm. First, we

notice that the leading coefficient of f(s) is cn = 4 > 1, but the algorithm

can produce the same results without the restriction of f(s) being a monic

polynomial. Alternatively, we may divide all the coefficients of f(s) by 4, and use

the polynomial:

f̂(s) = s4 +
1

4
s3 +

1

4
s2 +

3

4
s+

1

2

We form the initial matrix P for the original polynomial f(s) according to

(7.46) :

P =

 4 1 2

1 3 0

 ∈ R2×3

and then, the RH-ERES algorithm produces the sequence:

A = {tr(Ai), i = 1, . . . , 4} =

{
4,− 1

11
,−121

35
,
35

22

}
There are two negative elements in A which implies that there are two roots of

f(s) with positive real parts, as we expected. Furthermore, if we set

f0(s) = 4 s4 + s2 + 2 , f1(s) = s3 + 3 s

so that f0(s) + f1(s) = f(s), then,

f0(s)

f1(s)
=

4 s4 + s2 + 2

s3 + 3 s
= 4 s+

1

− 1
11
s+

1

−121
35
s+

1
35
22
s
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I The singular cases in the RH-ERES algorithm.

Similar singular cases as in the Routh array can also appear in the RH-ERES

algorithm when a coefficient ai cannot be determined due to a division by zero.

Specifically, we may have:

• Case 1: The first element of the second row of the matrix P (i) at the end of

the ith iteration of the RH-ERES algorithm is zero.

• Case 2: The entire second row of the matrix P (i) at the end of the ith

iteration of the RH-ERES algorithm is zero.

In both cases, the continued fraction representation (7.24) fails to exist and

we cannot come to a conclusion about the stability of a given polynomial f(s).

However, if we recall that the coefficients ai, i = 1, 2, . . . , n in the continued

fraction (7.24) are the ratios of two successive parameters in the first column of

the Routh array (Remark 7.6), we can deal with the singular cases by following

the special rules given by Routh [24, 66] for continuing the array (7.14), and apply

them appropriately to the RH-ERES algorithm when a singular case appears.

Therefore, in Case 1, we have to replace the zero element by a parameter

ε of definite (but arbitrary) sign, complete the main iterative procedure of the

RH-ERES algorithm by using symbolic computations, and then interpret the

results assuming that ε is a small number. The coefficients ai are given as rational

functions of ε, and their signs are determined by the “smallness” and the sign

of ε. The results must be interpreted in the limit as ε → 0. This process can

be repeated several times with different arbitrary parameters, if this singular

case appears more than once. However, the introduction of small parameters is

justified only when the original polynomial f(s) has no roots on the imaginary

axis, because by varying the parameter ε some of these roots may pass over into

the right half-plane and change the number of the roots with negative real parts

[24].

If a singularity of the second type (Case 2) appears during the ith iteration of

the RH-ERES algorithm, we have to replace the zero row of the processed matrix

P (i−1) with the vector that correspond to the derivative of the polynomial fi(s)

that fills the first row of P (i−1) (i.e. the auxiliary polynomial). Practically, this is

equivalent to replacing the zero elements of the second row of P (i−1) with

p2,j := (n− i− 2j + 2) · p1,j , for j = 1, 2, . . . , k (7.51)

where p1,j and p2,j denote the elements of the first and second row of P (i−1)

respectively, j denotes the number of column, n is the degree of the original

polynomial f(s), k is the number of nonzero columns of P (i−1), and i denotes the

number of the iteration where the singular case appeared. Moreover, if the roots
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of fi(s) are not simple, this process has to be applied several times to dispose of a

singularity of this type [24].

Example 7.3 (Singular Case 1). Consider the polynomial:

f(s) = s5 + 2 s4 + 3 s3 + 6 s2 + 5 s+ 3 (7.52)

We will examine whether it is stable or not by using the RH-ERES algorithm.

The given polynomial f(s) has the following roots in C :

s1 = 0.3428775611−1.5082901610 i, s2 = 0.3428775611+1.5082901610 i,

s3 = −0.5088331416−0.7019951318 i, s4 = −0.5088331416+0.7019951318 i,

s5 = −1.6680888390

The degree of f(s) is equal to 5, which is an odd number and therefore, we form

the initial matrix according to (7.45) :

P =

 1 3 5

2 6 3

 ∈ R2×3

The RH-ERES algorithm is expected to perform 5 iterations. But, at the end of

the first iteration, a singular case appears and the algorithm temporarily stops.

• Iteration 1

P (1) =

 2 6 3

0 7
2

0

 , tr(A1) =
1

2

As we can see, the first element of the second row of P (1) is zero. Therefore,

we must substitute this element with an arbitrary parameter ε, assuming

that it is a “small” number. The algorithm continues with the matrix:

P (1) =

 2 6 3

ε 7
2

0


• Iteration 2

P (2) =

 ε 7
2

0

6 ε−7
ε

3 0

 , tr(A2) =
2

ε

• Iteration 3

P (3) =

 6 ε−7
ε

3 0

−1
2
−42 ε+49+6 ε2

6 ε−7
0 0

 , tr(A3) =
ε2

6 ε− 7
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• Iteration 4

P (4) =

 −1
2
−42 ε+49+6 ε2

6 ε−7
0 0

3 0 0

 , tr(A4) =
2 (6 ε− 7)2

42 ε2 − 49 ε− 6 ε3

• Iteration 5

P (5) =

 3 0 0

0 0 0

 , tr(A5) =
42 ε− 49− 6 ε2

36 ε− 42

Finally, the following sequence is produced:

A = {tr(Ai), i = 1, . . . , 5} =

{
1

2
,
2

ε
,

ε2

6 ε− 7
,

2 (6 ε− 7)2

42 ε2 − 49 ε− 6 ε3
,
42 ε− 49− 6 ε2

36 ε− 42

}

Since we have assumed that ε is a small number, close enough to zero, the signs

of the elements of A depend on the sign of ε. Then, we have:

• For ε→ 0+ : sign{A} = {+,+,−,−,+} ⇒ r+
f = 2

• For ε→ 0− : sign{A} = {+,−,−,+,+} ⇒ r+
f = 2

Regardless of the sign of ε, the above sequence A includes two negative elements,

and according to Theorem 7.5, it is verified that there are two roots in the right

half-plane; consequently the given polynomial f(s) is unstable.

Now, if we use the elements of the sequence A to form the continued fraction

(7.24) for f(s), we obtain:

f0(s)

f1(s)
=
s5 + (3 + ε) s3 + 5 s

2 s4 + 6 s2 + 3

The above rational representation corresponds to the polynomial:

f(s, ε) = s5 + 2 s4 + (3 + ε) s3 + 6 s2 + 5 s+ 3

which is actually the same as the polynomial f(s) with a small perturbation in

the coefficient c3 = 3. For ε = 0 it holds

f(s, ε) = f(s)

and since there are no roots on the imaginary axis for ε = 0, the number of roots

in the right half-plane is the same for values of ε of small modulus, as it is proved

in [24].

206



Chapter 7

Example 7.4 ([24]). Consider the polynomial:

f(s) = s6 + s5 + 3 s4 + 3 s3 + 3 s2 + 2 s+ 1 (7.53)

The given polynomial f(s) has 3 pairs of roots in C :

s1,2 = +0.1217444141± 1.3066224030 i

s3,4 = −0.6217444141± 0.4405969990 i

s5,6 = ±i

and a pair of roots lies on the imaginary axis. When we apply the RH-ERES

algorithm to f(s) in order to evaluate its stability, we notice that a singularity

of the first type appears at the end of the second iteration of the algorithm, i.e.

in the second row of the processed matrix the first element is zero. Then, we

substitute this zero element with an arbitrary parameter ε, assuming that it is a

“small” number of arbitrary sign. Finally, the following sequence is produced:

A =

{
1,

1

ε
,

ε2

3 ε− 1
,
−9 ε2 + 6 ε− 1

2 ε3 − 4 ε2 + ε
,
−4 ε4 + 16 ε3 − 20 ε2 + 8 ε− 1

12 ε3 − 7 ε2 + ε
,

4 ε2 − ε
2 ε2 − 4 ε+ 1

}

Since we have assumed that ε is a small number, close enough to zero, the

signs of the elements of A depend on the sign of ε. Then, we have:

• For ε→ 0+ : sign{A} = {+,+,−,−,−,−} ⇒ r+
f = 4

• For ε→ 0− : sign{A} = {+,−,−,+,+,+} ⇒ r+
f = 2

It is obvious that the number of negative elements in A is different when we change

the sign of ε. Therefore, in this case we cannot decide how many roots of f(s) are

located in the right half-plane. However, since there exist negative elements in A,

regardless of the sign of ε, the given polynomial f(s) is unstable.

Example 7.5 (Singular Case 2). Consider the polynomial:

f(s) = s6 + 2 s5 + 8 s4 + 12 s3 + 20 s2 + 16 s+ 16 (7.54)

We will examine if the polynomial f(s) is stable or unstable by using the RH-ERES

algorithm. The given polynomial f(s) has 3 pairs of roots in C :

s1,2 = −1± i, s3,4 = ±2 i, s5,6 = ±
√

2 i

and we notice that there are two pairs of roots in the imaginary axis. The degree

of f(s) is equal to 6, which is an even number, and therefore, we form the initial
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matrix according to (7.46) :

P =

 1 8 20 16

2 12 16 0


The RH-ERES algorithm will perform 6 iterations. However, at the second

iteration, the entire second row of the matrix in process is zeroed.

P (2) =

 2 12 16 0

0 0 0 0


Normally, since the algorithm has performed its second iteration, the first two

elements of the second row of P (2) should be non zero. In this case, we substitute

the elements of the second row of P (2) with multiples of the elements of the first

row according to the rule in (7.51). The algorithm now continues with the matrix:

P (3) =

 2 12 16 0

8 24 0 0


Finally, the RH-ERES algorithm produces the sequence:

A = {tr(Ai), i = 1, . . . , 6} =

{
1

2
, 1,

1

4
,
4

3
,
9

4
,
1

6

}
Since there are no negative elements in the sequence A, we may only conclude

that the given polynomial f(s) does not have any root with positive real part,

which is true. Therefore, the given polynomial f(s) is definitely not unstable.

Also, the continued fraction representation (7.24) with coefficients from the above

sequence A cannot represent the given polynomial f(s), because we have altered

the data during the processing. In fact, we have:

1

2
s+

1

s+
1

1
4
s+

1

4
3
s+

1

9
4
s+

1
1
6
s

=
s6 + 12 s4 + 32 s2 + 16

2 s5 + 20 s3 + 40 s

which actually is the continued fraction representation of the polynomial:

f̂(s) = s6 + 2 s5 + 12 s4 + 20 s3 + 32 s2 + 40 s+ 16

Although the polynomials f̂(s) and f(s) are different, they have the same number

of roots in the right half-plane [24, 66]. Furthermore, the polynomial f̂(s) does
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not have pure imaginary roots, and thus, it can be characterised as stable.

I Eliminating of imaginary roots.

As is evident in the last two examples, the presence of pure imaginary roots causes

some confusion when we examine the distributions of the roots of a polynomial

on the complex plane either by using the RH-ERES algorithm or the Routh array.

In the general case, having a real polynomial f(s) of degree n > 2 and setting

f(s) = f0(s) + f1(s) as defined in (7.20) – (7.23), we must check for roots in the

imaginary axis by finding the greatest common divisor g(s) of the polynomials

f0(s) and f1(s). Then,
f0(s)

f1(s)
=
g(s) f ∗0 (s)

g(s) f ∗1 (s)

and consequently,

f(s) = g(s) (f ∗0 (s) + f ∗1 (s)) ⇔

f(s) = g(s) f ∗(s) (7.55)

Proposition 7.2. The polynomial g(s) in (7.55) contains only those roots of f(s)

which are opposite numbers in C.

Proof. We assume that s0 ∈ C is a root of f(s) for which −s0 is also a root. This

is a property of the roots which are located symmetrically about the origin of the

complex plane, and of course the roots on the imaginary axis have this property.

Without loss of generality, let n be an odd number and the polynomials f0(s) and

f1(s) as defined in (7.22). Then, it follows from f(s0) = f(−s0) = 0 that :{
f(s0) = 0

f(−s0) = 0
⇔

{
f0(s0) + f1(s0) = 0

f0(−s0) + f1(−s0) = 0
⇔

{
f0(s0) + f1(s0) = 0

−f0(s0) + f1(s0) = 0
⇔

{
f0(s0) = −f1(s0)

f1(s0) = f0(s0)
⇔

{
f0(s0) = 0

f1(s0) = 0

Therefore, s0 is a root of their greatest common divisor, g(s). By the same

argument, −s0 is also a root of g(s), and thus the polynomial f ∗(s) in (7.55) has

no opposite roots.

Now, let s1 ∈ C be a root of f(s) for which −s1 is not a root of f(s).

• If f0(s1) 6= f1(s1) 6= 0, then

f(s1) = f0(s1) + f1(s1) = 0 ⇔

f0(s1) = −f1(s1) ⇔
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f0(s1)

f1(s1)
= −1

thus, s1 cannot be a root of g(s).

• If f0(s1) = f1(s1) = 0, then

−f0(s1) + f1(s1) = 0 ⇔

f0(−s1) + f1(−s1) = 0 ⇔

f(−s1) = 0

which is inappropriate, since we have assumed that −s1 is not a root of f(s).

Thereafter, the polynomial g(s) contains only the opposite roots of f(s), and

furthermore, the degree of g(s) is always an even number.

If r+
f denotes the number of roots of f(s) in the right half-plane, then

r+
f = r+

g + r+
f∗ (7.56)

where r+
g and r+

f∗ denote the number of roots of g(s) and f ∗(s) in the right

half-plane, respectively. The polynomial f ∗(s) in (7.55) is now free of roots in the

imaginary axis and the number of roots r+
f∗ can be determined by the RH-ERES

algorithm. In addition,

r+
g =

1

2
(d− r) (7.57)

where d is the degree of g(s) and r is the number of real roots of the polynomial

g(w i) or else the number of the conjugate pure imaginary roots of g(s), [24].

Since the degree d of g(s) is an even number, the polynomial g(ω i) is a real

polynomial and the number r of its real roots can be determined by Sturm’s

theorem (Theorem 7.1).

Example 7.6. Consider the polynomial:

f(s) = s10 + s9 + 3 s8 + 3 s7 + 5 s6 + 4 s5 + 7 s4 + 6 s3 + 6 s2 + 4 s+ 2 (7.58)

When we apply the RH-ERES algorithm to f(s) in order to evaluate its stability,

we notice that a singularity of the first type appears at the end of the second

iteration, i.e. in the second row of the processed matrix the first element is zero.

Then, this zero element is substituted by a parameter ε, assuming that it is a

“small” number of arbitrary sign. The algorithm continues and performs another

8 iterations. Finally, a sequence A = {ai = tr(Ai), i = 1, 2, . . . , 10} is produced,

and the values of its elements ai are given below.
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a1 = 1, a6 =
ε

−20 ε+ 5 + 20 ε2
,

a2 =
1

ε
, a7 =

300 ε2 − 150 ε− 200 ε3 + 25

72 ε2 − 28 ε
,

a3 =
ε2

3 ε− 1
, a8 =

−324 ε3 + 252 ε2 − 49 ε

80 ε4 − 320 ε3 + 340 ε2 − 140 ε+ 20
,

a4 =
−9 ε2 + 6 ε− 1

4 ε3 − 4 ε2 + ε
, a9 =

−32 ε4 + 192 ε3 − 352 ε2 + 192 ε− 32

144 ε3 − 110 ε2 + 21 ε
,

a5 =
−12 ε2 + 6 ε+ 8 ε3 − 1

3 ε2 − ε
, a10 =

8 ε2 − 3 ε

4 ε2 − 12 ε+ 4
.

Since we have assumed that ε is a small number, close enough to zero, the signs

of the elements of A depend on the sign of ε. Then, we have:

• For ε→ 0+ : sign{A} = {+,+,−,−,+,+,−,−,−,−} ⇒ r+
f = 6

• For ε→ 0− : sign{A} = {+,−,−,+,−,−,+,+,+,+} ⇒ r+
f = 4

Yet again, we cannot answer how many roots of f(s) have negative or positive real

parts. The problem is actually caused by the presence of roots in the imaginary

axis and we have to examine this case carefully.

Let f(s) = f0(s) + f1(s) with

f0(s) = s10 + 3 s8 + 5 s6 + 7 s4 + 6 s2 + 2

f1(s) = s9 + 3 s7 + 4 s5 + 6 s3 + 4 s

Then, as proved in Proposition 7.2, the greatest common divisor g(s) of the

polynomials f0(s) and f1(s) contains all the pairs of opposite roots of f(s), if any

exist . We follow the next process in order to detect them:

1. Compute the polynomial g(s) by using the Hybrid ERES algorithm.

g(s) = s6 + s4 + 2 s2 + 2, d = deg{g(s)} = 6

2. Factorise f(s) by using the ERES Division algorithm.

f(s) = g(s) f ∗(s) ⇔ f ∗(s) =
f(s)

g(s)
= s4 + s3 + 2 s2 + 2 s+ 1

The polynomial f ∗(s) does not have conjugate pure imaginary roots.
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3. We determine the number r+
f∗ of the roots of f ∗(s) which are located in the

right half-plane by using the RH-ERES algorithm.

Af∗ =

{
1,

1

ε
,

ε2

2 ε− 1
,

2 ε− 1

ε

}
• For ε→ 0+ : sign{Af∗} = {+,+,−,−} ⇒ r+

f∗ = 2

• For ε→ 0− : sign{Af∗} = {+,−,−,+} ⇒ r+
f∗ = 2

Therefore, r+
f∗ = 2, regardless of the sign of ε.

4. We determine the number r+
g of the roots of g(s) which are located in the

right half-plane by using the formula (7.57). First, we have to compute the

number r of the real roots of the polynomial:

g(w i) = −w6 + w4 − 2w2 + 2, w ∈ R

For this task, we construct the Sturm chain Pw of the real polynomial g(w i)

as described in Definition 7.4 :

Pw =



p0(w) = −w6 + w4 − 2w2 + 2,

p1(w) = −w5 + 2
3
w3 − 2

3
w,

p2(w) = −w4 + 4w2 − 6,

p3(w) = +w3 − 8
5
w,

p4(w) = −w2 + 5
2
,

p5(w) = −w,
p6(w) = −1


Then, according to Sturm’s theorem (Theorem 7.1), the number of real

roots of g(w i) is r = 2. This also means that the polynomial g(s), and

consequently the original polynomial f(s), has a pair of pure imaginary

roots. The number of roots of g(s) in the right half-plane is given by the

formula (7.57) :

r∗g =
6− 2

2
= 2

Finally, from (7.56) we have r+
f = 4, and therefore, the given polynomial f(s)

is unstable. In Figure 7.2, the distribution of the roots of f(s) in the complex

plane is illustrated and the above results are verified. There are 4 roots in the

left half-plane, 4 roots in the right half-plane, and 2 roots in the imaginary axis.

Also, there are 6 opposite roots (including those in the imaginary axis), which are

actually the roots of g(s).
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Figure 7.2: Distribution of the roots of the polynomial f(s) in Example 7.6.

7.4 Distance of an unstable polynomial to

stability

In this section we will consider the problem of finding the minimum distance

of an unstable polynomial from the “stability domain”, i.e. the set of all stable

polynomials, as well as the required minimum norm for stabilisation of unstable

polynomials by employing the developed framework of the RH-ERES method.

The distance of a stable polynomial from instability provides vital information

for robustness analysis of a stable system while the minimum norm stabilisation

of unstable polynomials is a very important indicator for the study of systems

under state or output feedback. The problem of minimum norm stabilisation of an

unstable polynomial is to find a perturbation on the coefficients which stabilizes

the polynomial, while the norm of the perturbation is minimized in certain sense.

Here, the perturbation to the polynomials is defined in terms of the Euclidean

norm ‖ · ‖2.

We consider the real nominal polynomial:

f(s) = sn + cn−1s
n−1 + . . .+ c1s+ c0, ck ∈ R, s ∈ C

which in practise is the characteristic polynomial of a linear system S. For the

purposes of our study f(s) is considered to be unstable. This polynomial is

assumed to be perturbed by

∆f(s) = δn−1 s
n−1 + δn−2 s

n−2 + . . .+ δ1 + δ0 (7.59)

where δ = [δ0, δ2, . . . , δn−1]t ∈ Rn may denote the effect of parametric uncertain-
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ties, or feedback as perturbations on the coefficients. Then, we can define the

performance index:

Q (∆f) , ‖δ‖2
2 = δ2

n−1 + δ2
n−2 + . . .+ δ2

1 + δ2
0 (7.60)

to be minimised. The new perturbed polynomial will be:

f̃(s) = f(s)−∆f(s) = sn + c̃n−1s
n−1 + ...+ c̃1s+ c̃0 (7.61)

and

c̃k = ck − δk, ∀ k = 0, 1, . . . , n− 1 (7.62)

The polynomial f̃(s) is assumed to be stable. Now, the problem under considera-

tion will be:

PROBLEM: For an unstable nominal polynomial f , i.e. Λ(f) ∩ C+ 6= ∅, find a

perturbation δ or ∆f(s) polynomial with minimum norm γf+, which stabilizes the

resulting perturbed polynomial f̃(s) = f(s)−∆f(s), i.e.

γf+ = inf
{
Q (∆f) : Λ(f̃ ) ∩ C+ = ∅

}
(7.63)

where inf{·} denotes the infimum of the set, and Λ(f) denotes the root set of f(s).

We will investigate the above problem by means of the RH-ERES method

and Theorem 7.4. If Af̃ = {ai, i = 1, 2, . . . , n} is the sequence provided from the

RH-ERES algorithm for the perturbed polynomial f̃(s) and since it is required to

be stable, the above problem (7.63) can be stated as:

γf+ =


min {Q(∆f)}

ai > 0, ∀ i = 1, 2, . . . , n

c̃k > 0, ∀ k = 0, 1, . . . , n− 1

(7.64)

This problem is actually a linear least-squares problem with linear and non-linear

inequality constraints. The objective function can be written in the simple form:

Q (∆f) = δt In δ

where In denotes the n×n identity matrix. Then, the problem (7.64) can be solved

by using special numerical methods for constrained linear least-squares problems

[10], based on different techniques such as QR decomposition, or generalised

singular value decomposition. However, in general, the constraints ai > 0 are given

as a fraction where the numerator and denominator are algebraic expressions of the

parameters c̃i raised to a power up to n. As the degree n of the original polynomial

f(s) increases, the complexity of the problem (7.64) increases drastically, and

this may cause serious numerical problems that could lead to erroneous results.
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But, because of the iterative nature of the RH-ERES algorithm, it is possible

to simplify the constraints ai > 0 to a non-fractional form and thus reduce the

complexity of the problem. This procedure is described in the following and we

will show that the minimisation problem (7.64) is equivalent to a more efficient

minimisation problem with simplified constraints.

Theorem 7.6. Given a real nominal and unstable polynomial

f(s) = sn +
n−1∑
k=0

ck s
k, ck ∈ R

the minimum distance to a stable polynomial

f̃ (s) = sn +
n−1∑
k=0

c̃k s
k, c̃k ∈ R

is given by the minimisation problem:
min

{∑k=n−1
k=0 (ck − c̃k)2

}
Ck > 0, ∀ k = 2, . . . , n− 1

c̃k > 0, ∀ k = 0, 1, . . . , n− 1

(7.65)

where the terms Ck are computed by applying the RH-ERES algorithm to f(s).

Proof. We will use the perturbed polynomial f̃(s) as an input polynomial to the

RH-ERES algorithm and, since it is assumed to be stable, the following conditions

must hold (Corollary 7.1):

c̃k = ck − δk > 0 , ∀ k = 0, 1, . . . , n− 1 (7.66)

ai = tr(Ai) > 0 , ∀ i = 1, 2, . . . , n (7.67)

where c̃k are the coefficients of f̃(s) and the terms ai correspond to the continued

fraction form (7.24). Furthermore,

Q (∆f) = δ2
n−1 + δ2

n−2 + . . .+ δ2
1 + δ2

0 =
n−1∑
k=0

(ck − c̃k)2

and thus the problems (7.64) and (7.65) have the same objective function to

be minimized. The computed terms ai from the RH-ERES algorithm has the

following general form:

a1 =
1

C1
, a2 =

C1
2

C2
, a3 =

C2
2

C1C3
, a4 =

C3
2

C2C4
, . . .

an−1 =
C2
n−2

Cn−3Cn−1
, an =

Cn−1

Cn−2Cn
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The terms Ci can be computed along with the terms ai from the RH-ERES

algorithm. Specifically, we have:

C0 = 1, C1 = cn−1, Cn = c0

and

Ck =
C2
k−1

Ck−2 ak
, for k = 2, 3, . . . , n− 1

Since we want ai > 0, it is necessary and sufficient to have Ci > 0 for all

i = 1, 2, . . . , n. Therefore, instead of using the rational terms ai in the minimisation

problem (7.64), we can use the terms Ci which simplify the constraints and

consequently reduce the complexity of the problem.

The next example describes a procedure for calculating the minimum distance

of an unstable to a stable polynomial by solving the optimisation problem (7.65).

Example 7.7. Consider the polynomial:

f(s) = s4 + s3 + 2 s2 + 2 s+ 1

with c0 = 1, c1 = 2, c2 = 2, c3 = 1. When we apply the RH-ERES algorithm to

f(s), the next sequence is produced:

Af =

{
1,

1

ε
,

ε2

2 ε− 1
,

2 ε− 1

ε

}
• For ε→ 0+ : sign{Af} = {+,+,−,−} ⇒ r+

f = 2

• For ε→ 0− : sign{Af} = {+,−,−,+} ⇒ r+
f = 2

regardless of the sign of ε, the number of roots with positive real parts is r+
f = 2.

Therefore, the given polynomial f(s) is unstable. We will attempt to find the

minimum distance of f(s) from a perturbed stable polynomial f̃(s) and compute

the perturbation ∆f(s).

Let the perturbed polynomial be:

f̃(s) = f(s)−∆f(s) = s4 + c̃3 s
3 + c̃2 s

2 + c̃1 s+ c̃0 (7.68)

and

c̃0 = 1− δ0, c̃1 = 2− δ1, c̃2 = 2− δ2, c̃3 = 1− δ3 (7.69)

Then, the performance index is:

Q (∆f) =
k=3∑
k=0

(ck − c̃k)2 = δ3
2 + δ2

2 + δ1
2 + δ0

2
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In the present case, n = deg{f(s)} = 4, and if we apply the RH-ERES algorithm

to the polynomial f̃(s), we get the sequence:

Af̃ = {ai = tr(Ai), i = 1, 2, 3, 4}

where

a1 =
1

c̃3

, a2 =
(c̃3)2

c̃2c̃3 − c̃1

,

a3 =
(c̃2c̃3 − c̃1)2

c̃3

(
c̃1c̃2c̃3 − (c̃1)2 − (c̃3)2c̃0

) , a4 =
c̃1c̃2c̃3 − (c̃1)2 − (c̃3)2c̃0

(c̃2c̃3 − c̃1) c̃0

.

Then,

C1 = c̃3, C2 = c̃2c̃3 − c̃1,

C3 = c̃1c̃2c̃3 − (c̃1)2 − (c̃3)2c̃0, C4 = c̃0.

Thereafter, if we substitute c̃k = ck − δk for all k = 0, 1, 2, 3 , we will have to solve

the following minimisation problem:
min

{∑k=3
k=0(ck − c̃k)2

}
Ck > 0, ∀ k = 2, 3

c̃k > 0, ∀ k = 0, 1, 2, 3

(7.70)

The above minimisation problem (7.70) can be seen as a linear least-squares

problem with non-linear inequality constraints. This problem can be solved by

using the routine LSSolve from the special package Optimization of Maple which

includes a built-in library of optimization routines provided by the Numerical

Algorithms Group (NAG). This library performs its computations in floating-point

arithmetic, and the LSSolve routine basically uses an iterative modified Gauss-

Newton method to compute a local minimum of a given objective function. As

the LSSolve requires, the objective function for the least-squares problem (7.70)

is given in the form:

Q (∆f) =
3∑

k=0

(ck − c̃k)2 = ‖c− In c̃‖2
2 ⇔

Q (∆f) =

∥∥∥∥∥∥∥∥∥∥


1

2

2

1

−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



c̃0

c̃1

c̃2

c̃3


∥∥∥∥∥∥∥∥∥∥

2

2

The produced results show that the minimum value of Q (∆f), i.e. the min-

imum distance of f(s) from the set of stable polynomials, in 16-digit precision,
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is

γf+ = 8.05133349284929689 · 10−2

for

c̃0 = 0.891379697058926057, c̃1 = 1.89894721183885218,

c̃2 = 2.17708868646499587, c̃3 = 1.16475101167653827.

Consequently, the minimum perturbation is found to be:

∆f(s) = −0.164751011676538 s3 − 0.177088686464996 s2

+0.101052788161148 s+ 0.1086203029410739

which corresponds to the perturbed polynomial:

f̃(s) = s4 + 1.16475101167653827 s3 + 2.17708868646499587 s2

+1.89894721183885218 s+ 0.891379697058926057

according to the formulae (7.68) and (7.69).

Now, we apply again the RH-ERES algorithm to f̃(s) and, after a singularity

of type 2 in the second iteration, we finally get the sequence:

Af̃ = { a1 = 0.8585525917, a2 = 2.130346045, a3 = 0.5, a4 = 1.226733429 }

Since there are no negative elements in Af̃ , all the roots of f̃(s) have negative

real parts, and therefore, it is verified that it is stable.

7.5 Discussion

In this chapter the problem of the evaluation of the stability of a linear time-

invariant system has been considered. The current study was focused on the

Routh-Hurwitz stability criterion and the representation of real polynomials in

a continued fraction form, which formed the basis for creating a new matrix-

based method for assessing the stability of a linear system. This method, which

is referred to as the RH-ERES method, is based on the ERES methodology

and uses the ERES operations to transform appropriately a basis matrix which

corresponds to a special rational form of the characteristic polynomial of a linear

system. The sequence of the traces of the matrices Ai, which perform the ERE

row transformations on the basis matrix, reveal an algebraic relationship which

characterise the stability of the linear system.

In normal cases, the developed RH-ERES algorithm computes the coefficients

ai that are necessary to form a continued fraction representation (7.19) for the
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characteristic polynomial of a linear system. The stability of the linear system

is deduced from the distribution of the roots of the characteristic polynomial

on the complex plane, which is determined by the signs of these coefficients.

However, in singular cases the algorithm continues according to Routh’s rules,

which are also used in Routh’s algorithm (Routh array). The RH-ERES algorithm

produces equivalent results with Routh’s algorithm, but it works faster than

Routh’s tabulation process, especially when the degree of the polynomial is high.

This fact becomes a significant advantage for the RH-ERES algorithm when

symbolic computations are used in order to study the stability of a linear system,

or the distribution of the roots of the characteristic polynomial, in theory.

The RH-ERES algorithm was also applied to the problem of finding the

minimum distance of an unstable polynomial from the “stability domain” (i.e. the

set characterising all stable polynomials). The current computational approach

has been based on the properties of the Routh-Hurwitz criterion in order to

formulate an appropriate optimization problem for calculating the minimum

norm stabilisation. The use of the RH-ERES method helped to transform the

original problem to a linear least-squares problem with simplified constraints

which provides the required minimum norm stabilisation for unstable polynomials.
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Conclusions and future work

In this study we have presented and analysed the principles of the ERES method

which formed the theoretical basis for the development of other different methods

and algorithms for solving problems requiring approximate algebraic computations

to be solved. The ERES method was initially proposed in [40, 57] as an iterative

matrix-based method for the numerical computation of the GCD of sets of many

polynomials in one variable with real coefficients. The method takes advantage of

the invariance of the GCD under elementary row operations and shifting. These

types of operations are applied iteratively on a basis matrix formed directly from

the coefficient vectors of the polynomials of the original set. Finally, they lead

to a unity rank matrix where theoretically every row of this rank-1 matrix gives

the vector of coefficients of the GCD of the set. However, there were several

theoretical and practical aspects of the method that had not been analysed in

depth until now. The conclusions of this research and the objectives that have

been achieved are summarised in the following.

1. The algebraic representation of the Shifting operation for matrices

and the ERES representation of the GCD.

A key problem in the present research was to prove that the ERES method

is numerical stable not only for a single iteration of its main procedure as

in [57], but for all the performed iterations. Therefore, an overall algebraic

representation of the ERES method was crucial to be established in order

to study its numerical stability in more detail. The algebraic representation

of the ERES method, which has been established in Chapter 3, requires

the Shifting operation to be written as a matrix product, just like the

elementary row operations, so as to have an algebraic equivalence between

the initial basis matrix and the last unity rank matrix. Although it is evident

that the ERES operations preserve the GCD of a set of polynomials, in

the previous work [57, 58] it was not clear how the iterative steps of the

method connect to each other, because the Shifting operation alters the
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column structure of the matrix in process. The shifting of the elements

in the rows of a matrix, as used in the ERES method, is not a common

transformation, but in essence it is an error-free transformation which can

be implemented in a programming environment without using arithmetic

operations. Nevertheless, the careful analysis in Chapter 3 has shown that

the Shifting operation, applied to upper trapezoidal matrices with full

rank, can be actually represented by a matrix product. This important

theoretical result is based on the invertibility property for matrices and it

has a direct application to the ERES representation of the GCD, because in

every iteration of the main procedure of the ERES method, a nonsingular

(invertible) upper trapezoidal matrix is involved. However, considering any

type of real matrix, the algebraic representation of the Shifting operation,

as described in Definition 3.7 and without modifying the original data of

the matrix, is an issue which requires further study.

2. The ERES representation of Euclid’s division algorithm.

The study of the properties of the ERES method led also to the investigation

of the link between the ERES operations and the Euclidean division of

two polynomials, which brought about: a) the ERES representation of

the remainder and quotient of the division of two polynomials, and b) the

development of an ERES-based algorithm for computing the quotient and

the remainder of the division of two polynomials, which is referred to as

the ERES Division algorithm. The provided ERES representation of the

Euclidean division suggests that the ERES method is actually the equivalent

of Euclid’s algorithm for several polynomials and the GCD is the total

quotient. Therefore, we may view the ERES method as a generalisation of

Euclid’s division of two polynomials to many polynomials, simultaneously.

3. Formulation of the PSVD1 method for the smart detection of a

unity rank matrix.

The numerical computation of the GCD of a set of polynomials with the

ERES method requires the development of a robust algorithm which must

consist of numerically stable algebraic processes and use an efficient termi-

nation criterion. The termination of the ERES algorithm is based on the

proper numerical detection of a rank-1 matrix during the iterations of the

main procedure of the algorithm. Under certain conditions, this criterion

(Proposition 4.1) relies on the singular value decomposition (SVD) of the

processed matrix. Therefore, in the present implementation of the ERES al-

gorithm a variation of the Partial SVD algorithm [75, 76] has been developed.

The introduced PSVD1 algorithm, as presented in Chapter 4, is suitable for

checking matrices with numerical rank equal to 1. Its use reduces the overall
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computational cost and significantly improves the performance for the ERES

algorithm. In addition, through the PSVD1 algorithm we can get different

estimates of the numerical tolerance that we have to use for computing an

approximate GCD. Therefore, having a set of several polynomials, it is now

possible to smartly compute more than one approximate GCDs of various

degrees for different values of the numerical tolerance εt.

4. Implementation of the ERES method in a hybrid computational

environment for computing the approximate GCD.

The ERES algorithm can be implemented in any programming environment

using stable and well known numerical processes like Gaussian elimination

with partial pivoting, Partial Singular Values Decomposition, and Normali-

sation according to the Frobenius norm. The main advantages of the ERES

method is that it starts with a basis matrix with no larger dimensions than

those which are implied by the original set of polynomials. In addition, the

successive triangularisations and Shifting lead to a fast reduction of the

dimension of the initial basis matrix, which increases the processing of the

data. These features helps the ERES algorithm to be economical in memory

bytes and faster than other methods which tend to create too large initial

matrices without further reduction of their dimensions. However, due to its

iterative nature, extra care must be taken when using floating-point data.

The present implementation of the ERES algorithm is based on the effective

use of symbolic-numeric (hybrid) computations, resulting in a more efficient

and numerically stable algorithm, which is referred to as the Hybrid ERES

algorithm. The use of hybrid computations helps to reduce the accumulation

of unnecessary numerical rounding errors, but also enables computations

within a specified tolerance in specific parts of the algorithm in order to get

approximate solutions. The iterative nature of the ERES method and the

use of hybrid computations makes it a useful mathematical tool in computing

approximate GCDs of a given set of many polynomials.

5. Improvement of the existed strength criterion for the evaluation

of the quality of an approximate GCD.

Numerical procedures, such as ERES, always produce estimates of an exact

solution. Estimating the size of the perturbations in the original data

provides the means to evaluate how good approximations are produced. The

investigation of the approximate GCD for a set of several polynomials has

been analysed in [22, 42] and the overall approach has been based on its

characterisation as a distance problem in a projective space. The study of

this problem has led to the definition of the strength of an approximate

GCD and its evaluation by using optimisation techniques. The strength of
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an approximate GCD is a very important indicator, which gives information

about the quality of the produced approximations. However, the method

for the evaluation of the strength of an approximate GCD, as proposed

in [22, 42], requires the computation of a global minimum, where in case

of large sets of polynomials it is very likely to give unsatisfactory results.

Alternatively, it is easier to get information about the quality of a given

approximation by computing some tight bounds for the strength and compute

the average strength. A method for computing the strength bounds and the

average strength has been presented in Chapter 5. The main characteristic

of this method is that it exploits the properties of resultant matrices in

order to produce meaningful results without using optimisation routines.

The combination of the Hybrid ERES algorithm and the Average Strength

algorithm suggests a complete procedure for the computation and evaluation

of an approximate GCD of a set of several polynomials.

6. Formulation of the Hybrid LCM method for computing an ap-

proximate LCM.

The analysis of the ERES method provided also the means for computing

the LCM of a set of several polynomials. In Chapter 3, the ERES operations

were appropriately used to represent the remainder of the Euclidean division

of two polynomials. This representation has played an important role in the

development of a new matrix-based method for computing the coefficients

of an approximate LCM. The new LCM method is actually based on the

fact that every polynomial of a set must divide evenly into LCM and thus

the remainder of the division must be equal to zero. The method has two

stages: i) the use of the ERES Division algorithm to symbolically compute

the remainder of the division of the LCM in an arbitrary symbolic form,

by each of the polynomials of the original set, and ii) the formulation of an

homogeneous system of linear equations with unknowns the coefficients of

the LCM. The initial matrix of the system created, has no greater dimensions

than the degree of the LCM implies and the solution is given by solving

a linear least-squares optimisation problem. The quality of the obtained

solution depends on the proper handling of the type of data and the proper

method to solve the final least-squares problem. The developed algorithm,

which is referred to as Hybrid LCM algorithm, is implemented in a hybrid

computational environment, because the first stage of the algorithm involves

computations with arbitrary variables and, on the other hand, the least-

squares solution requires floating-point numerical operations for computing

an approximate LCM within a specified numerical tolerance. Conclusively,

this method has three main advantages: a) it avoids the computation of

roots, b) it does not require the computation of the GCD of the polynomials
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of the given set, and c) it produces estimates of approximate LCMs. The

latter is of great interest when the initial data are given inexactly; then

the quality of the given approximation is determined by the residual of the

least-squares solution.

7. Formulation of the RH-ERES method for evaluating the stability

of a linear system.

Furthermore, the ERES methodology appeared to have a useful application

in the representation of continued fractions. This was the motivation to

study an alternative approach for assessing the stability of linear time-

invariant systems through the characteristic polynomial. The continued

fraction representation of the characteristic polynomial and the properties

of the Routh-Hurwitz stability criterion formed the basis for creating an

alternative matrix-based method for the evaluation of the stability of a linear

system. This method, which is referred to as the RH-ERES method, uses the

ERES operations to transform a basis matrix which corresponds to a special

rational form of the characteristic polynomial of a given linear system.

The sequence of the traces of the matrices Ai, which perform the ERE

row transformations on the basis matrix, reveal an algebraic relationship

which characterises the stability of the linear system. The developed RH-

ERES algorithm is implemented in a hybrid computational environment

and produces very accurate results. Moreover, the RH-ERES method has

been applied to the problem of finding the minimum distance of an unstable

to a stable polynomial, resulted in a least-squares problem with simplified

constraints.

ERES is a simple and effective method and, although it was originally de-

veloped for the computation of the GCD of sets of several polynomials, its use

can be extended to other algebraic problems and applications, and possibly pro-

vide us with new better results. However, the success of an algebraic method,

such as ERES or any other computational method, depends greatly on how it

is implemented in a computing environment. In recent years, there has been a

significant change in the area of numerical analysis with the presence of math-

ematical software packages that combine symbolic and numerical floating-point

arithmetic systems. This has changed a lot the way of implementing numerical

methods and motivated the construction of sophisticated algorithms that allow the

use of symbolic and numerical data through appropriate data structures. Under

certain conditions, the simultaneous use of symbolic and floating-point operations

(hybrid computations) improves the accuracy of the obtained results by reducing

the accumulation of rounding errors, and also preserves the ability of computing

approximate solutions.
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The hybridisation of the ERES method (i.e. the implementation of its algorithm

by using hybrid computations) was based on the requirement to reduce the

accumulation of rounding errors during the course of the main iterative procedure,

especially from the Gaussian elimination. Simultaneously, it was crucial to

maintain the ability of the algorithm to produce approximates results. Therefore,

the structure of the Hybrid ERES algorithm is based on the appropriate separation

of the procedures which form the algorithm, so as to meet the previous requirements.

The current separation of procedures follows the natural structure of the method,

which involves two main parts: i) the iterative transformation of the basis matrix,

and ii) the frequent check of the termination criterion. Numerous tests have

proven that the current formulation of the Hybrid ERES algorithm exploits to the

maximum the special structural properties of the ERES method and results in a

nearly optimal hybrid algorithm for this method. The same concept lies beneath

the formulation of the Hybrid LCM algorithm, which also involves two main parts

that are naturally separated. However, the other two ERES-based algorithms,

the ERES Division and the RH-ERES algorithm, which are developed in this

research, can be characterised as pure symbolic algorithms, because there is no

need to produce approximate results and arbitrary variables can be used freely.

Therefore, these algorithms may become quite useful computational tools for the

theoretical study of many related problems.

I Further research

Optimal hybridisation of an algorithm. The proper hybridisation of an

algorithm, is an issue that is not entirely clear. From our study so far, when it

comes to the implementation of methods and algorithms, there are three important

questions to be answered: a) When it is necessary to use hybrid computations? b)

Is it effective to use hybrid computations? c) How can the method be hybridised

in an optimal way?

The answer to the first two questions is rather simple. We can use pure

symbolic or hybrid computations when we want to increase the accuracy of

the obtained solution without messing with the system’s variable floating-point

precision. Or else, we can use hybrid computations in order to implement parts of

the method separately, so as to avoid the accumulation of rounding errors and at

the same time to maintain the ability of computing approximate solutions. Of

course, hybrid computations can be used any time, but it is not always effective

to use them, especially when we have large amounts of numerical data to be

processed. In this case, symbolic computations may not be effective at all, since

they require more computational time to be executed. Practically, numerical

floating-point computations in high precision (quadruple precision) is proved to be

more effective for algorithms with sequential procedures involving only numerical
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data. The last question cannot be answered directly. In general, we could define as

optimal hybridisation the implementation of the algorithm in a symbolic-numeric

computational environment so as to produce the “best” possible results in a “short”

period of time. However, this is an issue with multiple parameters that should be

examined very carefully in future research in order to develop the optimal hybrid

algorithm for the ERES and other related methods.

Generalisation of the Shifting operation for matrices. The Shifting trans-

formation is a crucial part of the ERES method which is responsible for reducing

the size of the initial basis matrix. The matrix representation for the Shifting

operation, established in Theorem 3.4, refers to nonsingular real upper trapezoidal

matrices and has a direct application to the overall matrix representation of the

ERES method. The developed representation of the Shifting operation is based on

the invertibility property of the original matrix and therefore cannot be directly

applied to rank deficient matrices. However, it could be applied to a proper

submatrix of the original matrix, but this would also change completely some of

the data of the shifted matrix. The essence of the current procedure is to form a

new vector from the diagonal elements of a square matrix without changing their

values, which is equivalent to form and theoretically study the mapping:

A 7−→ diag{A}

Hence, considering any type of real matrix, the algebraic representation of the

Shifting operation, as described in Definition 3.7 and without modifying the

original data of the matrix, is currently an issue which remains open. The Shifting

operation is a rare matrix transformation which can be useful to other algebraic

problems, such as the downsizing of expanded Sylvester matrices [73], and its

theoretical aspects require further investigation.

Optimal approximate common factors. The strength problem, as described

in Chapter 5, can be used not only for evaluating the quality of a given approximate

GCD, but also for computing an approximate GCD of a fixed degree by using

a proper optimization method. The process that was followed in Example 5.3

suggests an heuristic method for computing approximate common factors which

is based on the average strength of an arbitrary simple common factor of the

form v(s) = s + c ∈ R[s], c ∈ R r {0} (or the scaled form v(s) = c s + 1).

More particularly, the method relies on the minimisation of the derived objective

function Sav (c) which corresponds to the average strength of the factor v(s) for

a given set Ph+1,n. However, this heuristic method is not capable of providing

sufficient solutions to the approximate GCD problem in general; for example, in

the case of approximate common factors of degree equal or greater than 2, without
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real roots. Therefore, further investigation for a more robust technique is required.

An issue that arises from the study so far is the existence of approximate com-

mon factors which can be characterised as optimal approximate GCDs. Regarding

sets of several polynomials, this issue requires a thorough study of the properties

of the optimization problem (5.16). What is absolutely necessary is to find a more

efficient process of computing a certified global minimum. The obtained solution

can be regarded as the optimal strength of a given approximation.

In the present research, we proved that the objective function of the optimisa-

tion problem (5.16):

‖SQ‖F ,
∥∥∥SP − [Om,r|S̃(r)

P∗

]
· Φ̂v

∥∥∥
F

has certain bounds:

S(v) ≤ ‖SQ‖F ≤ S(v)

An exact common factor of a set of polynomials actually zeros the function ‖SQ‖F .

Therefore, a given approximate common factor may be considered as “optimal”,

if it has the least strength amongst all the approximate common factors of the

same degree. This can be extended to the approximate GCD case, provided that

a maximum polynomial degree of the GCD is certified. However, the computation

of the optimal approximate GCD of a set of several polynomials is a problem that

needs further investigation with critical issue the search for a robust optimisation

method, which can guarantee the existence of a global minimum.

Moreover, the issues and the results presented in Chapters 5 and 6 provide

the motives for further research on the subject of the approximate LCM of sets of

univariate polynomials which involves the search for an optimal combination of

symbolic and numerical computations as well as the selection of proper optimisation

methods, which eventually will set the basis for the computation of an optimal

approximate LCM for sets of many univariate polynomials.

Application of the ERES method to multivariate polynomials. The

Hybrid ERES algorithm can also be used for the computation of the GCD of a

set of multivariate polynomials, if we just change the procedure that constructs

the initial basis matrix. Considering the case of sets Pm,n,r of m polynomials in

two variables (s, t) (bivariate polynomials) with coefficients in rational numbers

Q, the basis matrix Pm can be formed according to the bivariate power basis:

En,r(s, t) = {(1, t, . . . , tr), (s, st, . . . , str), . . . , (sn, snt, . . . , sntr)} (8.1)

where n, r are the maximum powers of the variables s, t, respectively. The

dimension of the corresponding basis vector en,r(s, t) is equal to (n+ 1) · (r + 1).

Similar base vectors can be formed for polynomials in several variables. The
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produced matrix Pm is structured according to the bivariate power basis vector:

en,r(s, t) =



1 0 . . . 0

t 0 . . . 0
...

...
. . .

...

tr 0 . . . 0

0 1 . . . 0

0 t . . . 0
...

...
. . .

...

0 tr . . . 0
...

. . . . . .
...

0 . . . 0 1

0 . . . 0 t
...

. . .
...

...

0 . . . 0 tr



·


1

s
...

sn

 =



1

t
...

tr

s

st
...

str

...

sn

snt
...

sntr


The column dimension of the basis matrix Pm, is equal to (n+ 1) · (r + 1), where

n, r denote the maximal powers of s, t, respectively. For example, consider the

set of bivariate polynomials:

P3,2,2 =


p1(s, t) = (s− 3 t+ 1)(t− 1) = st− s− 3 t2 + 4 t− 1

p2(s, t) = (s− 3 t+ 1)(s− 2) = s2 − s− 3 st+ 6 t− 2

p3(s, t) = (s− 3 t+ 1)(s t− 3) = s2t− 3 s− 3 t2s+ 9 t+ st− 3


with GCD, g(s) = s− 3 t+ 1. The maximal power of the variable s is n = 2 and

the maximal power of the variable t is also r = 2. Then, the initial basis matrix

Pm for m = 3 and the basis vector of the variables s, t are:

P3 =

 −1 4 −3 −1 1 0 0 0 0

−2 6 0 −1 −3 0 1 0 0

−3 9 0 −3 1 −3 0 1 0

 ∈ Q3×9

e 2,2(s, t) =
[

1, t, t2, s, st, st2, s2, s2t, s2t2
]t

If we apply the ERES operations to P3, we finally get the vector of coefficients:

g = [1,−3, 0, 1, 0, 0, 0, 0, 0]

which obviously gives the GCD of the set P3,2,2 ,

gcd{P3,2,2} = g · e 2,2(s, t) = s− 3t+ 1

The Hybrid ERES algorithm can compute the GCD of bivariate polynomials,
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if we change the form of the basis matrix which is the main input. However, a

proper framework for the algebraic and geometric properties of the GCD of sets

of many polynomials in a multidimensional space has to be set in order to define

and evaluate exact or approximate solutions given by the ERES method. This

problem is challenging for further research, because several real-time applications,

such as image and signal processing, rely on GCD methods where multivariate

polynomials (especially in two variables) are used.

Extension of the application of the ERES methodology. The develop-

ment of ERES-based methods and algorithms for computing solutions of Diophan-

tine equations, expressing partial fraction expansion and Padé approximations, or

computing matrix divisors, are challenging problems for further research, which

can significantly contribute to the study of broader problems, such as the possible

extension of the framework to families of polynomials where the coefficients come

from a certain interval, the extension of the definition of almost GCD to the

definition of approximate matrix divisor, and the distance of a system to almost

uncontrolability and almost unobservability.
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Codes of Algorithms

All the algorithms presented in this thesis were implemented and tested in “Maple”.

Maple is a general-purpose commercial computer algebra system which was first

developed in 1980 by the Symbolic Computation Group at the University of

Waterloo in Waterloo, Ontario, Canada. The Maple computation engine combines

high-performance numeric computations with exceptional symbolic capabilities.

Maples hybrid system provides many advantages :

• It allows us to work with exact quantities such as fractions, radicals, and

symbols, eliminating accumulated round-off errors.

• Approximations can be computed at any precision that is required, and are

not restricted by hardware limitations.

• We can choose from a variety of approximate and exact techniques, as best

suits our needs.

• Maple allows us to defer numeric approximations until they are needed,

using symbolic parameters in our problem instead. The parameters are then

carried through each stage in our analysis, making it easy to do parameter

sweeps, optimize values, and study the behavior of the system.

• Symbolic computations allow us to obtain highly accurate results, eliminate

the need to simplify problems by hand, and provide insight into our problem

structure from which we can develop conjectures and conclusions about the

behavior.

• Internally, Maples solvers can also use a combination of symbolic and numeric

techniques, allowing it to solve problems for which either approach alone

would be insufficient.

• There is extensive support for numeric computations, to arbitrary precision,

as well as symbolic computation and visualization.
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Maple incorporates a dynamically typed imperative-style programming lan-

guage which is based on a small kernel, written in C, which provides the Maple

language. Many numerical computations are performed by the NAG Numerical

Libraries, ATLAS libraries, or GMP libraries. The following codes of algorithms

are written in Maple language using internal data structures and built-in routines

from the package LinearAlgebra, which provides several matrix-based procedures

such as Gaussian elimination, Singular Value Decomposition, Least-Squares min-

imisation and many others. The following procedures are specially designed for

the purposes of this thesis and they are not listed in any package of Maple.

A.1 The code of algorithms based on ERES

A.1.1 The procedure ERESDivision

The procedure ERESDivision computes symbolically the exact division of two

univariate polynomials and it corresponds to the algorithm 3.1.

Primary input parameters :

A, B : Numeric univariate polynomials. (Type: polynom)

Output parameters :

(Q, R): A pair of vectors corresponding to the Quotient and the Remainder of

the division. (Type: sequence of Vector)

Maple code :

ERESDivision := proc( A::polynom(anything), B::polynom(anything) )

description"The procedure gives the result of the division A/B

of two polynomials with degrees m and n, where m > n.";

local a,b,i,j,k,m,n,t,s,K,M,N,P,Q,R,RN,T,t1,output;

s := op(1, indets( A ) );

# Initialize vectors of input polynomials A(s), B(s).

a := ListTools:-Reverse( PolynomialTools[CoefficientList](A,s) );

b := ListTools:-Reverse( PolynomialTools[CoefficientList](B,s) );

# Determine dimensions of initial basis matrix P.
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m := degree( A, s );

n := degree( B, s );

if m <= n then

error" the degree of the 1st polynomial must be greater than

the degree of the 2nd polynomial."

end if;

# Initialize basis matrix P.

P := Matrix( 2, m+1, fill=0 );

for j from 1 to n+1 do

P[1,j] := b[j];

end do;

for j from 1 to m+1 do

P[2,j] := a[j];

end do;

# Initialize vector of quotient.

Q := Vector[column]( m-n+1, fill=0 );

# Normalise the rows of P using norm-2.

P := normrows( 2, m+1, P );

# Determine the number of steps of main iterative procedure.

N := m-n+1;

# Start of main iterative procedure.

for i from 1 to N do

# Gaussian elimination.

M := - P[2,1] / P[1,1];

P[2,1] := 0;
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for j from 2 to n+1 do

P[2,j] := P[2,j] + M * P[1,j];

end do;

Q[i] := -M;

# Matrix Shifting.

T := P[2, 2..m+1];

P[2, 1..m] := T;

P[2, m+1] := 0;ND OF PROCEDURE

end do;

# End of main iterative procedure.

R := LinearAlgebra:-Transpose( P[2,1..n] );

R := simplify( R/Q[1] );

Q := simplify( Q/Q[1] );

RN := evalf( LinearAlgebra:-Norm( R, infinity ) );

# Q = Quotient’s coefficients (first element corresponds to x^{m-n}).

# R = Remainder’s coefficients(first element corresponds to x^{n-1}).

# RN= Remainder’s Euclidean norm.

printf( "Remainder Norm = %e\n",RN );

if nargs > 2 then

if args[3] = ’quotient’ then

output := sort( add( Q[i]*x^(m-n+1-i), i=1..m-n+1 ) );

elif args[3] = ’remainder’ then

output := sort( add( R[i]*x^(n-i), i=1..n ) );

else

output := ( Q, R );

end if;

else

output := ( Q, R );

end if;

output
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end proc;

# End of procedure ERESDivision

A.1.2 The procedure HEresGCD

The procedure HEresGCD computes in hybrid mode the exact or an approximate

GCD of a list of univariate numeric polynomials and it corresponds to the Hybrid

ERES algorithm as presented in figure 4.1.

Primary input parameters :

P : Initial basis matrix formed from the coefficients of the polynomials of the

given set Pm,n. (Type: Matrix)

Secondary input parameters :

tolS : Numerical accuracy εt applied to the termination criterion of the Hybrid

ERES algorithm. (Type: float)

tolG : Numerical accuracy εG applied to the processed matrix in order to control

the magnitude of its elements. (Type: float)

digits : Number of digits which determine the system’s software accuracy.

(Type: posint)

stopit : Specifies a maximum number of iterations for the main procedure of the

Hybrid ERES algorithm. (Type: posint)

Output parameters :

GCD : The vector of coefficients of the GCD presented in ascending order ac-

cording to the degree of the main variable of the polynomials. (Type:

Vector)

Maple code :

HEresGCD := proc( P::Matrix )

description" The procedure HEresGCD computes in hybrid mode the exact

or an approximate GCD of a list of univariate numeric polynomials

using Maples package [LinearAlgebra].";

# Definition of local parameters.

local i, j, k, m, n, c, a, P, Pf, iter, param , GCD, r, init, w,

degs, vn, tol, N, maxdegs, mindegs, rowind, Sval, W, piv,
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maxi, M, t, t1, T, crit, Rec, eps, err, mintolS, svdtolS;

# Initial values for local parameters.

param[digits_] := Digits;

eps := evalhf(DBL_EPSILON);

param[tolS_] := eps;

param[tolG_] := eps;

param[inf] := false;

param[flpdata] := false;

Rec[tolS_] := 1.0;

param[stop_] := 0;

for i from 2 to nargs do

if op( 1, args[i] ) = ’digits’ then

param[digits_] := op( 2, args[i] );

Digits := param[digits_];

break;

end if;

end do;

# Specify the precision eps of the numeric system.

if Digits > evalhf(Digits) then

eps := evalf( 2^(-3*Digits) );

while evalf(1.0 + eps) > 1.0 do

eps := evalf( eps/2 )

end do;

param[tolG_] := eps;

param[tolS_] := eps;

end if;

# Assign values to the local parameters.

for i from 2 to nargs do

if op( 1, args[i] ) in

{ ’digits’, ’tolS’, ’tolG’,’stopit’ } then

if op( 1, args[i] ) = ’tolS’ then

param[tolS_] := evalf( op( 2, args[i] ) )

elif op( 1, args[i] ) = ’tolG’ then
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param[tolG_] := evalf( op( 2, args[i] ) )

elif op( 1, args[i] ) = ’stopit’ then

param[stop_] := op( 2, args[i] )

end if;

else

error"invalid parameters."

end if;

end do;

# Check the dimensions and data type of the initial basis matrix P.

m, n := LinearAlgebra:-Dimensions( P );

if hastype( P, float ) = true then

P := conversion( m, n, P );

param[flpdata] := true;

end if;

# Set the counter of main iterations and SVD calls.

iter := [0,0];

# Start the Main iterative procedure.

while iter[1] >= 0 do

# Check the degrees of the polynomials

# and compute of the maximum degree n.

degs := array(1..m);

for i from 1 to m do

j := n;

while P[i,j] = 0 do

j := j-1 ;

end do;

degs[i] := j;

end do;

maxdegs := max( seq(degs[i], i=1..m) );

mindegs := min( seq(degs[i], i=1..m) );

n := maxdegs;

# Reduce the dimensions of P.
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P := P[ 1..m, 1..n ];

# Check whether to continue with the main procedure or

# proceed to the Rank-1 procedure.

if mindegs <> maxdegs then

# Reorder the rows of P in descending order

# according to the degree of the polynomials.

rowind := convert( inssort( degs )[2], list );

init := [ seq( convert( LinearAlgebra:-Row ( P, rowind[i] ),

list ), i=1..m ) ];

# Convert P to rational format.

P := Matrix( m, n, init, storage=rectangular,

datatype=rational,order=Fortran_order,fill=0 );

else

# Start Rank-1 procedure.

# Convert P to numerical (floating-point) format.

Pf := evalf( P );

# Normalise the rows of P by using norm-2.

Pf := normrows( m, n, Pf );

# Compute the singular values of P by using PSVD1.

N, Sval, tol, w := psvd1( m, n, Pf, param[tolS_] );

iter[2] := iter[2] + 1;

# Determine the appropriate value for the

# termination criterion.

if N > 1 then

crit[1] := -1;

crit[2] := tol;
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else

crit[1] := abs( Sval - evalf( sqrt(m) ) );

crit[2] := tol;

end if;

# Record a new value for tolS and print info.

Rec[tolS_] := max( crit[1], crit[2] );

svdtolS[iter[2]] := Rec[tolS_];

if svdtolS[iter[2]] < 0.1 then

t := min( seq( max(seq(baseexp(P[i,j]),j=1..n)),i=1..m));

printf("GCD degree = %d, tolS > %.6e, tolG < %.6e,

Iterations = %d \n", n-1, Rec[tolS_], t, iter[1]);

end if;

# Decide whether to continue or stop the overall process.

if N=1 and crit[1] <= param[tolS_] and crit[2]<=param[tolS_]

or n=1 or m=1 then

if param[flpdata] = true then

# Numerical solution obtained from the right singular vector.

GCD := w;

else

maxi := max( seq( P[i,n], i=1..m ) );

i := 1;

while P[i,n] <> maxi do

i := i + 1

end do;

# Rational solution obtained from the last matrix.

GCD := simplify( LinearAlgebra:-Row ( P, i ) );

end if;

if iter[1] >= param[stop_] then

break;

end if;

end if;

end if;

238



Appendix A

# Apply Scaling to the rows of P in order to make P[1,1] the

# maximum element (in absolute value) in the first column.

maxi := max( evalf( seq( abs(P[i,1]), i=1..m ) ) );

if evalf( abs(P[1,1]) ) <= evalf( maxi ) then

t1 := baseexp( P[1,1] );

t := baseexp( maxi );

LinearAlgebra:-RowOperation( P , 1, (10*t)/t1 );

end if;

# Apply Gaussian elimination with partial pivoting to P.

P := LinearAlgebra:-GaussianElimination( P );

# Eliminate the zero rows according to the tolerance tolG.

i := m;

while i > 1 do

maxi := max( evalf( seq( abs(P[i,j]), j=1..n ) ) );

if evalf( maxi ) <= param[tolG_] then

P := LinearAlgebra:-DeleteRow ( P, i );

m := m-1;

i := i-1;

else

i := i-1;

end if;

end do;

# Eliminate all the elements of P which are approximately zero

# according to the tolerance tolG.

if param[tolG_] <> eps then

for i from 2 to m do

for j from i to n do

if evalf( abs(P[i,j]) ) < param[tolG_] then

P[i,j] := 0

end if;

end do;

end do;

end if;
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# Apply Shifting to the rows of P.

P := shifting( m, n, P );

iter[1] := iter[1] + 1;

end do;

# End of Main iterative procedure.

# Computational information.

for i from 1 to m do

P[i,1..n] := map( x -> x / P[i,1..n][n], P[i,1..n] );

end do;

GCD := map( x -> x / GCD[n], [1..n] );

err[1] := evalf( seq( LinearAlgebra:-Norm( P[i,1..n] - GCD , 2),

i=1..m ) );

err[2] := ( max( err[1] ) + min( err[1] ) ) /2;

mintolS := min( seq( svdtolS[i], i=1..iter[2] ) );

printf("Parameters = { tolS-> %e, tolG-> %e, digits-> %d } \n",

param[tolS_], param[tolG_], param[digits_] );

printf("Statistics = { Iterations = %d, SVDcalls = %d}\n",

iter[1],iter[2] );

printf("Distance from rational solution = %e,

Minimum termination tolerance = %e", err[2], mintolS);

end if;

# Final output.

GCD

end proc;

# End of procedure HEresGCD.

A.1.3 The procedure SREresLCM

The procedure SREresLCM computes the LCM of a set of several univariate

polynomials. The following procedure is the implementation of the algorithm

6.1 and involves the procedure HEresGCD for the computation of the GCD and

ERESDivision for the computation of the LCM.
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Primary input parameters :

P : Initial set of polynomials Pm,n. (Type: list(polynom))

Output parameters :

Ls : The LCM presented as polynomial. (Type: polynom)

Maple code :

SREresLCM := proc( P::list(polynom(anything)) )

description"The procedure computes the LCM of polynomials by using

the ERES and ERESDivision procedures in symbolic-rational mode.";

local h, Q, w, p, k, T, Ps, Gs, Ls;

# Detect the number of polynomials.

h := nops( P );

# Compute the (h-1)-combinations.

Q := combinat:-choose( h, h-1 );

# Compute the polynomial set T.

for w from 1 to h do

p[w] := mul( P[k], k=Q[w] );

end do;

T := [ seq( expand( p[w] ), w=1..h ) ];

# Compute of the polynomial P(s).

Ps := expand( mul( P[i], i=1..h ) );

# Compute the GCD of the polynomial set T.

Gs := HEresGCD( T );

# Compute the LCM of the input polynomial set P.
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Ls := ERESDivision ( Ps, Gs, quotient );

end proc;

# End of procedure SEresLCM.

A.1.4 The procedure HEresLCM

The procedure HEresLCM computes the approximate LCM of a set of several

univariate polynomials. The following procedure involves a slightly modified

version of the procedure ERESDivision which is referred to as EresDiv2 and

computes only the remainder vector of the division of two polynomials using

ERES operations. A special matrix is constructed and the built-in procedure

LeastSquares is properly applied in order to compute an approximate LCM.

Primary input parameters :

Pmn : Initial set of polynomials Pm,n. (Type: list(polynom))

tol : Numerical accuracy εt. (Type: float)

Output parameters :

lcm : The LCM presented as polynomial. (Type: polynom)

Maple code :

HEresLCM := proc( Pmn::list(polynom(anything)), tol::float )

description"The procedure HEresLCM computes the approximate LCM of

a set of univariate polynomials using ERES and Least-Squares."

local t0,t,m,n,x,i,j,k,p_ind,degs,P,A,R,R1,V,S,dlcm,dmax,

order,init,q,r,s,lc,lcm1,s_,F0,F1,FN,Cond,N,Ls;

global a;

# Create initial matrix P and set initial parameters.

p_ind := indets( Pmn );

if nops( p_ind ) > 1 then

error " invalid formal parameters. Only single variable

polynomials are permitted. "

else
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x := op(1, p_ind ) # VARIABLE NAME.

end if;

m := nops( Pmn );

degs := seq( degree( Pmn[i], x ), i=1..m );

dmax := max( degs );

dlcm := add( degs[i], i=1..m ); # MAXIMUM DEGREE OF LCM.

n := dmax + 1;

lc := [ seq( lcoeff( Pmn[i], x ), i=1..m ) ];

lcm1 := lcm( seq( lc[i], i=1..m ) );

init := [seq(ListTools:-Reverse(PolynomialTools[CoefficientList](

Pmn[i], x )) / lc[i], i = 1..m ) ];

P := Matrix( m, n, init, storage=rectangular, datatype=anything,

order=Fortran_order, fill=0 );

P := convert( P, rational);

# Start main procedure.

a:=’a’;

A := Matrix( dlcm, 1, fill=0);

q := 0;

for k from 1 to m do

R1 := EresDiv2( dlcm, degs[k], P[k,1..degs[k]+1] );

for i from 1 to degs[k] do

A[i+q,1] := R1[ degs[k]+1-i ];

end do;

q := q + degs[k];

end do;

m := dlcm;

n := dlcm+1;

A := subs( [ seq( a[i-1] = x^(i-1), i=1..n ) ], A );

init := [seq(PolynomialTools[CoefficientList](A[i,1],x), i=1..m )];

F0 := Matrix( m, n, init, datatype=rational );

FN := NormRows( m, n, evalf(F0) );

r := LinearAlgebra:-Rank( FN );

for i from 1 to m do

for j from 1 to n do
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if abs( FN[i,j] ) <= tol and abs( FN[i,j] ) > 0 then

FN[i,j] := 0.0;

end if;

end do;

end do;

F1 := FN[1..m,1..r];

V := - Vector[column]( FN[1..m, r+1] );

s := LinearAlgebra:-LeastSquares( F1, V );

s_ := norm( evalf[64]( F1.s-V ), 2);

S := SingularValues( F1[1..m, 1..r] );

Cond := evalf(S[1]/S[r]);

printf("Residual = %e\n",s_);

printf("Condition = %e\n",Cond);

# Final output.

Ls := sort( add( lcm1*s[i]*x^(i-1), i=1..r ) + lcm1*x^r );

end proc;

# End of procedure EresLCM.

A.1.5 The procedure RHEres in symbolic mode

The procedure RHEres evaluates the stability of a real univariate polynomial

combining ERES and Routh-Hurwitz methods and corresponds to the algorithm

7.1.

Primary input parameters :

f : Initial polynomial. (Type: polynom)

Output parameters :

A : Sequence of RH-ERES parameters. (Type: sequence)

Maple code :

RHEres := proc( f::polynom(anything), s::name )

description"The procedure RHEres evaluates the stability of a

244



Appendix A

univariate polynomial combining ERES and Routh-Hurwitz methods."

local i, j, k, l, np, n, a, temp, temp, M, polcoef;

global e;

# PROCEDURE’S PARAMETERS AND INITIAL VALUES.

polcoef := ListTools:-Reverse(

PolynomialTools[CoefficientList](f,s));

np := nops( polcoef );

n := np-1; # Degree of polynomial f(s).

k := trunc(n/2)+1; # Column dimension of initial matrix P.

# CREATE INITIAL MATRIX P.

P := Matrix(2,k, storage=rectangular, datatype=anything,

order=Fortran_order, fill=0);

for j from 1 to k do

P[1,j] := polcoef[2*j-1];

if np >= 2*j then

P[2,j] := polcoef[2*j];

end if;

end do;

# START OF MAIN ITERATIVE PROCESS.

for i from 1 to n do

# REORDERING THE ROWS OF MATRIX P.

temp := P[1,1..k];

P[1,1..k] := P[2,1..k];

P[2,1..k] := temp;

# GAUSSIAN ELIMINATION.

if P[1,1] = 0 then # Singular Case 1.

P[1,1] := e;

end if;
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M := - P[2,1] / P[1,1];

for j from 1 to k do

P[2,j] := P[2,j] + M * P[1,j];

end do;

P := simplify(P);

a[i] := -M;

if i < n then

if add(abs(P[2,j]),j=1..k) = 0 then # Singular Case 2.

for j from 1 to k do

P[2,j] := (n-i-2*(j-1))*P[1,j];

end do;

else

# MATRIX SHIFTING.

temp := P[2, 2..k];

P[2, 1..k-1] := temp;

P[2, k] := 0;

# DELETE ZERO COLUMNS.

for j from 1 to k do

if add(abs(P[l,k-j+1]), l=1..2) = 0 then

P := LinearAlgebra:-DeleteColumn(P,k-j+1);

k := k - 1;

break;

end if;

end do;

end if;

end if;

end do;

# END OF MAIN ITERATIVE PROCESS.

A := [seq( a[i], i=1..n )]

end proc;

# END OF PROCEDURE RHEres.
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A.2 The code of the Average Strength algorithm

The procedure AVStrength

The procedure AVStrength computes the strength bounds and the average strength

of a given approximate GCD and corresponds to the algorithm 5.1.

Primary input parameters :

polyL : Initial set of polynomials Pm,n. (Type: list(polynom))

GCD : The GCD of the set input set. (Type: polynom)

Output parameters :

S, S, C, Sa : Lower, upper strength bounds and condition number and

average strength. (Type: float)

Maple code :

strength := proc( polyL::list(polynom(anything)),

GCD::polynom(anything), varname::name )

description" The procedure evaluates the average strength of

approximation of an approximate GCD.";

local digits, i, m, n, p, r, x, c, degs, Pn, GCDcoeffs, F,

F_, SP, SPF, SP1, v, v1, v2, D, dim_D, k, j, N, GCD_;

# INITIAL VALUES.

digits := Digits;

if digits < 34 then Digits := 34 fi;

x := varname;

m := nops( polyL ); # NUMBER OF POLYNOMIALS.

Pn := expand(polyL); # INITIAL SET OF POLYNOMIALS - TYPE ARRAY.

degs := sort( [seq( degree( Pn[i], x ), i=1..m )] );

n := degs[m]; # 1st MAXIMUM DEGREE OF POLYNOMIALS.

p := degs[m-1]; # 2nd MAXIMUM DEGREE OF POLYNOMIALS.

r := degree( GCD, x); # DEGREE OF GCD.

SP := ResMatrix( Pn, x );
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v := PolynomialTools[CoefficientList]( GCD, x );

v := v/tcoeff(GCD);

c := 0;

for i from 1 to nops(v) do

if v[i] = 0 then

c := c+1

else break;

end if;

end do;

r := r-c;

GCDcoeffs := [ seq(v[i], i= 1+c..nops(v)) ];

GCDcoeffs := ListTools[Reverse]( GCDcoeffs );

# F => (n+p-r)x(n+p) CORRESPONDING TOEPLITZ MATRIX.

F := LinearAlgebra:-BandMatrix ( GCDcoeffs, r, n+p );

F_ := LinearAlgebra:-MatrixInverse( Matrix( F,

shape=triangular[lower]),method=subs );

SPF := LinearAlgebra:-MatrixMatrixMultiply( SP, F_ );

SP1 := copy(SPF);

# CONSTRUCT THE APPROPRIATE DEGREE-CHECK-MATRIX.

v1 := Vector[column]( p, fill=1 );

v2 := Vector[column]( n, fill=1 );

D := Matrix( n+p-degs[1], m, shape=rectangular, fill=0 );

dim_D := n+p-degs[1]; # ROW DIMENSION OF THE MATRIX D.

D[ 1..p, 1 ] := v1;

D[ 1..n, 2 ] := v2;

for i from 3 to m do

D[ p-degs[m-i+1]+1..n+p-degs[m-i+1], i ] := v2;

end do;

k := 0;

for j from 1 to m do

for i from 1 to dim_D do
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if D[i,j] = 1 then

k := k+1;

SP1[k, i+r..n+p] := Vector[row]( n+p-i-r+1, fill=0 );

end if;

end do;

end do;

N[1] := LinearAlgebra:-Norm(SP1,Frobenius);

N[2] := LinearAlgebra:-Norm(F_,Frobenius);

N[3] := LinearAlgebra:-ConditionNumber(F, Frobenius);

# LOWER STRENGTH BOUND.

N[4] := N[1] / N[2];

# UPPER STRENGTH BOUND.

SPF := SP1.F;

N[5] := p* add( SPF[1,j]^2, j=1..n+1 );

for k from 1 to h do

N[5] := N[5] + n* add( SPF[1+p+(k-1)*n,j]^2, j=1..p+1 );

end do;

printf("Lower Strength =%e, Upper Strength =%e, Condition =%e\n",

evalf( sqrt(N[4]) ), evalf( sqrt(N[5]) ), evalf( N[3]));

# FINAL OUTPUT - AVERAGE STRENGTH

output := evalf( 0.5 * sqrt( N[4] + sqrt(N[5])) );

end proc;

# END OF PROCEDURE AVStrength.

A.3 The code of the PSVD1 algorithm

The procedure psvd1

The procedure psvd1 computes the singular values of a numerical matrix using

the partial singular value decomposition method and corresponds to the PSVD1

algorithm 4.1.
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Primary input parameters :

A : Initial matrix. (Type: Matrix)

tolS : Initial numerical tolerance εt of the method. (Type: float)

Output parameters :

(N,sigma,tol,w) : Rank of matrix, singular values, new tolerance, right singular

vector. (Type: sequence(float))

Maple code :

psvd1 := proc( A::Matrix, tol::float )

description"The procedure psvd1 computes the singular values of a

numerical matrix using partial singular value decomposition.";

local BD, V, A_, p, q, j, n, N, tol, maxdiagBD,

v, sigma, w, c, s, d1, d2, UseBt, output;

p, q := LinearAlgebra:-Dimensions( A );

# Bidigonalization.

if p >= (5/3)*q then

A_ := LinearAlgebra:-QRDecomposition( evalf(A), output=’R’ );

BD := LinearAlgebra:-BidiagonalForm( A_, output=’B’ );

n := q;

UseBt := false;

elif p < q then

A_ := evalf(A);

BD := LinearAlgebra:-BidiagonalForm( A_, output=’B’ );

BD := LinearAlgebra:-Transpose( BD );

n := p;

UseBt := true;

else

A_ := evalf(A);

BD := LinearAlgebra:-BidiagonalForm( A_, output=’B’ );

n := q;

UseBt := false;

end if;
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# Rank-1 detection.

N, tol := SturmSeqBis( n, BD, tolS );

w := 0;

sigma := 0;

if N = 1 then

maxdiagBD := max( seq( abs(BD[i,i]), i=1..n ) );

j := 1;

while abs(BD[j,j]) <> maxdiagBD do

j := j + 1;

end do;

if j < n then

d1 := BD[j,j]^2 + BD[j,j+1]^2;

d2 := sqrt(d1);

sigma := d1/d2;

else

sigma := BD[n,n];

end if;

# Back transformation.

if UseBt = true then

V := LinearAlgebra:-BidiagonalForm( A_, output=’Vt’ );

w := V[j, 1..q];

else

V := LinearAlgebra:-BidiagonalForm( A_, output=’Vt’ );

if j = n then

w := V[j, 1..q];

else

c := BD[j,j]/d2;

s := BD[j,j+1]/d2;

w := < c | s >.V[ j..j+1, 1..q ];

end if;

end if;

end if;

# Final output.
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output := (N, sigma, tol, w);

end proc;

# End of procedure psvd1.

A.4 Complementary procedures

A.4.1 The procedure MakeMatrix

The procedure MakeMatrix is used for the formulation of the basis matrix Pm of

a set of polynomials Pm,n. The produced matrix is structured according to the

base vector en(s) = [ 1, s, s2, . . . , sn ]t.

Maple code :

MakeMatrix := proc( L::list(polynom(anything)), x::name )

description"The procedure MakeMatrix constructs the basis matrix of

a set of univariate polynomials.";

local i, output;

output := Matrix( [seq(PolynomialTools[CoefficientList]( L[i],x ),

i = 1..nops(L))] )

end proc;

# END OF PROCEDURE MakeMatrix.

A.4.2 The procedure bub

Maple code :

bub := proc( A::Matrix )

description"The procedure bub finds the best uncorrupted base

of the row space of a matrix A.";

local m, n, r, i, combs, ncombs, Gram, d, dmax, AN, output;

m, n := LinearAlgebra:-Dimension( A );

AN := normrows( m, n, A );
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r := LinearAlgebra:-Rank( AN );

if r <> m then

Gram := LinearAlgebra:-MatrixMatrixMultiply( AN,

LinearAlgebra:-Transpose(AN), outputoptions=[shape=symmetric]);

combs := combinat[choose]( m, r );

ncombs := nops( combs );

for i from 1 to ncombs do

d[i] := LinearAlgebra:-Determinant(LinearAlgebra:-SubMatrix(

Gram, combs[i], combs[i]) );

end do;

dmax := max( seq( d[i], i=1..ncombs ) );

for i do if dmax = d[i] then break end if end do;

output := (combs[i],LinearAlgebra:-SubMatrix(A,combs[i],1..n));

else

output := ( [1..m], A );

end if;

end proc;

# END OF PROCEDURE bub.

A.4.3 The procedure ResMatrix

Maple code :

ResMatrix := proc( PL::list(polynom(anything)), varname::name )

description"The procedure ResMatrix constructs a (n,p)-Extended

Sylvester Matrix (or Resultant Matrix ).";

local i, k, j, m, x, n, p, s, degs, degs_i, degss,

Pn, SM, D, C, dim_D, v1, v2, LastNonZero, output;

# INITIAL VALUES.

x := varname;
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m := nops( PL );

Pn := array( 1..m, expand(PL) );

degs := array(1..m);

degs_i := array(1..m);

for k from 1 to m do

degs[k] := degree( Pn[k], x );

end do;

degss := inssort( degs );

degs := degss[1];

degs_i := degss[2];

n := degs[m];

p := degs[m-1];

# CONSTRUCT THE SYLVESTER MATRIX.

SM := Matrix( p+(m-1)*n, n+p, shape=rectangular,

order=Fortran_order, fill=0 );

v1 := Vector[column]( p, fill=1 );

v2 := Vector[column]( n, fill=1 );

# CONSTRUCT THE APPROPRIATE DEGREE-CHECK-MATRIX.

D := Matrix( n+p-degs[1], m, shape=rectangular, fill=0 );

dim_D := n+p-degs[1];

D[ 1..p, 1 ] := v1;

D[ 1..n, 2 ] := v2;

for i from 3 to m do

D[ p-degs[m-i+1]+1..n+p-degs[m-i+1], i ] := v2;

end do;

# EXTRACT THE COEFFICIENTS OF THE POLYNOMIALS.

for i from 1 to m do

C[i] := PolynomialTools:-CoefficientList( Pn[i], x );

C[i] := ListTools:-Reverse( C[i] );

C[i] := convert( C[i], Vector[row] );

end do;
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# CREATE THE EXTENDED SYLVESTER MATRIX USING

# THE DEGREE-CHECK-MATRIX AS A GUIDE.

k := 0;

for j from 1 to m do

for i from 1 to dim_D do

if D[i,j] = 1 then

k := k+1;

SM[ k, i..i+degs[m-j+1] ] := C[ degs_i[m-j+1] ];

end if;

end do;

end do;

# FINAL OUTPUT

output := SM

end proc;

# END OF PROCEDURE ResMatrix.

A.4.4 The procedure normrows

Maple code :

normrows := proc( p::posint, q::posint, A::Matrix )

description" The procedure normrows normalizes the rows of the

initial matrix A. ";

local i, r, init, output;

r := array(1..p);

for i from 1 to p do

r[i] := LinearAlgebra:-Normalize (

LinearAlgebra:-Row ( A, i ), Frobenius );

end do;

init := [ seq( convert( r[i], list ), i = 1..p ) ];
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output := Matrix(p,q,init,storage=rectangular,datatype=anything,

order=Fortran_order, fill=0);

end proc;

# END OF PROCEDURE normrows.

A.4.5 The procedure baseexp

Maple code :

baseexp := proc( u::float )

description" The procedure baseexp computes the exponential

part of a floating point number.";

local eu, k, output;

eu := evalf( u );

k := length( SFloatMantissa( eu ) ) + SFloatExponent( eu );

output := 10^k

end proc;

# END OF PROCEDURE baseexp.

A.4.6 The procedure inssort

Maple code :

inssort := proc( a::array(integer) )

description" The procedure inssort sorts the elements

of an array of integers into ascending order.";

local N, i, j, tmp1, tmp2, ind, v, output;

N := nops( op(3, eval(a) ) );

v := array( 0..N, [0, seq( a[i], i=1..N )] );

ind := array( [seq( i, i=1..N )] );

for i from 2 to N do

tmp1 := v[i];

v[0] := tmp1;
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tmp2 := ind[i];

j := i-1;

while tmp1 < v[j] do

v[j+1] := v[j];

ind[j+1] := ind[j];

j := j-1;

end do;

v[j+1] := tmp1;

ind[j+1] := tmp2;

end do;

v := array( 1..N, [seq( v[i], i=1..N )] );

output := ( v, ind )

end proc;

# END OF PROCEDURE inssort.

A.4.7 The procedure shifting

Maple code :

shifting := proc( p::posint, q::posint, A::Matrix )

description" The procedure shifting constructs the

shifted form of a matrix.";

local i, k, r, B, output;

B := A;

for i from 2 to p do

k := 1;

while B[i,k] = 0 do

k := k+1;

end do;

r := B[i, k..q];

B[i, 1..q] := Vector[row]( q, fill=0 );

B[i, 1..q-k+1] := r;

end do;
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output := B

end proc;

# END OF PROCEDURE shifting.

A.4.8 The procedure conversion

Maple code :

conversion := proc( p::posint, q::posint, A::Matrix )

description" The procedure conversion converts the data of a matrix

to fractions with denominator a power of 10.";

local B, i, j, f, b, output;

B := Matrix( p, q, [], storage=rectangular, datatype=rational,

order=Fortran_order, fill=0 );

for i from 1 to p do

for j from 1 to q do

f := SFloatMantissa( evalf( A[i,j] ) );

b := SFloatExponent( evalf( A[i,j] ) );

B[i,j] := f / 10^(-b);

end do;

end do;

output := B

end proc;

# END OF PROCEDURE conversion.

A.4.9 The procedure SturmSeqBis

Maple code :

SturmSeqBis := proc( coldim::posint, B::Matrix, theta::float )

description"The procedure SturmSeqBis computes the Sturm sequence for

‘theta’ and uses a bisection method to find a new bound for ‘theta’."
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local i, n, a, b, c, N1, N2, eps, s1, s2, s3,

d, norminf_T, dim_c, tol, output;

if Digits < evalhf(Digits) then

Digits := 18;

eps := evalf( 2^(-52) );

else

eps := evalf( 2^(-2*Digits) );

while evalf(1.0 + eps) > 1.0 do

eps := evalf( eps*0.5 )

end do;

eps := evalf( 2.*eps );

end if;

n := coldim;

a := [ seq( B[i,i], i=1..n ) ];

b := [ seq( B[i,i+1], i=1..n-1 ) ];

c := ListTools:-Interleave( a, b );

dim_c := 2*n-1;

c := Array( 1..dim_c, c );

N1 := SignAgrees( dim_c, c, theta );

tol := theta;

if N1 >= 1 then

norminf_T := max( abs(c[1]),

seq(abs(c[i])+abs(c[i+1]), i=1..dim_c-1), abs(c[dim_c]));

s1 := 0.;

s2 := norminf_T;

d := norminf_T;

while d >= eps do

s3 := 0.5 * (s1+s2);

N2 := SignAgrees( dim_c, c, s3 );

if N2 < 2 then

s2 := s3

else

s1 := s3

end if;

tol := s3;

if s1 > 1e-1 then

break;
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end if;

d := abs( s2 - s1 );

end do;

end if;

output := ( N1, tol )

end proc;

# END OF PROCEDURE SturmSeqBis.

A.4.10 The procedure SignAgrees

Maple code :

SignAgrees := proc( dim::posint, b::Array, t::float)

description" The procedure SignAgrees computes the sign agreements

of the terms in the Sturm sequence."

local agrs, s1, s2, s, w, p, i, output;

if Digits <= evalhf(Digits) then

Digits := 18;

end if;

p[0] := 1;

p[1] := -t;

agrs := 0;

s1 := -1;

for i from 2 to dim+1 do

p[i] := - t * p[i-1] - b[i-1]^2 * p[i-2];

w := max( abs(p[i]), abs(p[i-1]) );

if w > 1e+10 then

s := 1e+10/w;

p[i] := s * p[i];

p[i-1] := s * p[i-1];

elif w < 1e-10 then

s := 1e-10/w;
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p[i] := s * p[i];

p[i-1] := s * p[i-1];

end if;

s2 := sign( p[i] );

if p[i] = 0. then

agrs := agrs + 1;

elif s2 = s1 then

agrs := agrs + 1;

else

s1 := s2;

end if;

if agrs = 2 then

break;

end if;

end do;

output := agrs

end proc;

# End of procedure SignAgrees.

A.4.11 The procedure EresDiv2

Maple code :

EresDiv2 := proc( m::posint, n::posint, b::Vector )

description"The procedure gives the theoretical result of the

division of two polynomial with degrees m and n where m > n.";

local i, j, M, P, T, output;

global a;

P := Matrix( 2,m+1,fill=0 );

for j from 1 to n+1 do

P[1,j] := b[j];
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end do;

for j from 1 to m+1 do

P[2,j] := a[m-j+1];

end do;

for i from 1 to m-n+1 do

# GAUSSIAN ELIMINATION.

M := - P[2,1] / P[1,1];

P[2,1] := 0;

for j from 2 to n+1 do

P[2,j] := P[2,j] + M * P[1,j];

end do;

# MATRIX SHIFTING.

T := P[2, 2..m+1];

P[2, 1..m] := T;

P[2, m+1] := 0;

end do;

output := LinearAlgebra:-Transpose( P[2,1..n] );

end proc;

# END OF PROCEDURE EresDiv2.

A.4.12 The procedure Make2dMatrix

Maple code :

Make2dMatrix:=proc(L::list(polynom(anything)),var1::name,var2::name)

description"The procedure Make2dMatrix constructs the basis matrix

of a set of polynomials in two variables.";

local i, j,m, k, d, P, r, t, V1, V2 , VV, XY, d1, d2, n2, output;
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m := nops(L);

d1 := max( seq( degree( L[k], var1 ), k=1..m ) ) + 1 ;

d2 := max( seq( degree( L[k], var2 ), k=1..m ) ) + 1 ;

n2 := d1*d2;

P := Matrix( m, n2, fill=0 );

for k from 1 to m do

r := Vector[row]( d1, PolynomialTools:-CoefficientList(

L[k], var1 ) );

for i from 1 to d1 do

t[i] :=Vector[row](d2, PolynomialTools:-CoefficientList(

r[i], var2 ) );

end do;

P[k,1..n2] := Vector[row]( [ seq( t[i], i=1..d1) ] );

end do;

V1 := Vector[column]( [seq( var1^i, i=0..d1-1 )] );

V2 := Vector[column]( [seq( var2^i, i=0..d2-1 )] );

VV := Matrix( n2, d1, fill=0 );

for j from 1 to d1 do

VV[ (j-1)*d2+1..j*d2, j ] := V2;

end do;

XY := VV.V1; # BASE VECTOR.

output := ( P, XY )

end proc;

# END OF PROCEDURE Make2dMatrix.
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