

City, University of London Institutional Repository

Citation: Tsigkritis, Theocharis (2010). Diagnosing runtime violations of security and

dependability properties. (Unpublished Doctoral thesis, City University London)

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1181/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

City University, London

Department of Computing

Diagnosing Runtime Violations of

Security & Dependability Properties

Theocharis Tsigkritis

Submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing at City University,

London, April 2010

 2

TABLE OF CONTENTS

LIST OF TABLES.. 4

LIST OF FIGURES.. 5

ACKNOWLEDGEMENTS ... 7

DECLARATION .. 9

ABSTRACT ...10

CHAPTER 1: INTRODUCTION ..11

1.1 OVERVIEW ..11
1.2 THE NEED FOR DIAGNOSIS ...11
1.3 DYNAMIC VERIFICATION AND DIAGNOSIS ..12
1.4 THE DIAGNOSTIC APPROACH ..14
1.5 CONTRIBUTIONS..14
1.6 OUTLINE OF THE THESIS..16

CHAPTER 2: RELATED LITERATURE..18

2.1 OVERVIEW ..18
2.2 DYNAMIC VERIFICATION OF S&D PROPERTIES ...18

2.2.1 Security and Dependability Properties: An Overview..18
2.2.2 Dynamic verification ...20

2.3 ABDUCTIVE REASONING..64
2.3.1 Logic-Based Abduction..64
2.3.2 Temporal Abduction ..66
2.3.3 Selecting Abduced Explanations..67

CHAPTER 3: PRELIMINARIES..74

3.1 OVERVIEW ..74
3.2 EVENT CALCULUS ...74
3.3 THE EVEREST MONITORING FRAMEWORK ..75

3.3.1 Specification of monitoring rules and assumptions in EVEREST..75
3.3.2 Standard EVEREST assumptions...79

3.4 THE DEMPSTER – SHAFER THEORY OF EVIDENCE ...80

CHAPTER 4: EXTENDING EVEREST MONITORING FRAMEWORK FOR DIAGNOSIS85

4.1 OVERVIEW ..85
4.2 BASIC FORMULATION OF THE DIAGNOSTIC PROBLEM AND ASSUMPTIONS....................................85
4.3 EC SPECIFICATIONS OF THE AIR TRAFFIC MANAGEMENT SYSTEM (ATMS) MOTIVATING

EXAMPLE...89

CHAPTER 5: THE DIAGNOSTIC APPROACH..94

5.1 OVERVIEW ..94
5.2 GENERATION OF EXPLANATIONS ..96

5.2.1 The process of generating explanations ..96
5.2.2 Examples of explanation generation..102

5.3 IDENTIFICATION OF EXPLANATION EFFECTS ...106
5.3.1 The process of identifying explanation effects ...106
5.3.2 Examples of explanation effects identification...116

5.4 PLAUSIBILITY ASSESSMENT ..123
5.4.1 Foundations of the assessment ..124
5.4.2 Alternative explanations, expected consequences and search for supporting and refuting
evidence for alternative explanations ..128
5.4.3 Event Genuineness...131
5.4.4 Efficiency of the Event Genuineness Assessment ...132
5.4.5 Reconsideration of Event Genuineness Formal Definition..155
5.4.6 Belief Functions ...157

 3

5.5 DIAGNOSIS GENERATION ..175
5.5.1 The diagnosis generation process..175
5.5.2 Examples of diagnosis generation ...177

5.6 MATHEMATICAL APPENDIX: PROOFS OF THEOREMS IN CHAPTER 5 ..177

CHAPTER 6: EXPERIMENTAL EVALUATION OF THE DIAGNOSTIC PROTOTYPE............207

6.1 OVERVIEW ..207
6.2 EXPERIMENTAL SET UP OF LABORATORY SIMULATIONS ..208

6.2.1 Architecture of the EVEREST diagnostic prototype ..208
6.2.2 The monitored system ..212
6.2.3 The deployed simulator..218

6.3 EVALUATION CRITERIA AND METRICS ...222
6.3.1 Correctness metrics ...223
6.3.2 Responsiveness metrics..226

6.4 EVALUATION EXPERIMENTS DESIGN..228
6.4.1 The LBACS simulations ...229
6.4.2 Experimental configurations and evaluation experiments sets..232

6.5 EVALUATION EXPERIMENTS RESULTS ..235
6.5.1 ExplanationConfiguration1 Experiments Results ..238
6.5.2 ExplanationConfiguration2 Experiments Results ..274

CHAPTER 7: OPEN RESEARCH ISSUES AND FUTURE WORK ..299

7.1 OVERVIEW ..299
7.2 OPTIMIZATION OF THE DIAGNOSTIC PROTOTYPE ...301
7.3 FURTHER EXPERIMENTATION..302

7.3.1 Extended adversaries capabilities experiments ...302
7.3.2 Extended belief function constants experiments ..303
7.3.3 Extended underlying monitoring theory experiments ..304

7.4 COMBINING DIAGNOSIS RESULTS ...305
7.5 OTHER OPEN RESEARCH ISSUES...308

 CONCLUSIONS...310

CHAPTER 8: ...310

8.1 OVERVIEW ..310
8.2 SUMMARY OF THE RESEARCH WORK ...310
8.3 MAIN NOVELTIES ..312
8.4 LIMITATIONS ...313

REFERENCES ..315

APPENDIX A: LOCATION BASED ACCESS CONTROL SYSTEM MONITORING THEORY.331

 4

List of Tables

TABLE 2-1 - SUMMARY OF FORMAL LANGUAGES USED FOR DYNAMIC VERIFICATION34
TABLE 2-2 – SUMMARY OF DYNAMIC VERIFICATION TOOLS ...63
TABLE 3-1 – AXIOMS OF EVENT CALCULUS ...75
TABLE 3-2 – MEDICAL PROBLEM DS BELIEF MEASUREMENTS ...84
TABLE 5-1 - BELIEFS IN GENUINENESS OF VIOLATION OBSERVATIONS OF RULE ATMS.R1177
TABLE 6-1 – TYPES OF SEED EVENTS GENERATED BY LBACS DEVICE ..230
TABLE 6-2 – INTER-EVENT DELAY RANGES FOR SIMULATED EVENTS ...231
TABLE 6-3 – LBACS CONDUCTED EXPERIMENTS...235
TABLE 6-4 – EXAMPLE TABLE OF EGBT CORRECTNESS RESULTS ..236
TABLE 6-5 EXAMPLE TABLE OF VDT CORRECTNESS RESULTS ...238
TABLE 6-6 – EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_1.5..239
TABLE 6-7 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_1.5...240
TABLE 6-8 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF1_1.5242
TABLE 6-9 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_2.3 ..243
TABLE 6-10 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_2.3...244
TABLE 6-11 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF1_2.3245
TABLE 6-12 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_2.5 ..246
TABLE 6-13 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_2.5...248
TABLE 6-14 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF1_2.5249
TABLE 6-15 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_5 ...250
TABLE 6-16 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_5..251
TABLE 6-17 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF1_5252
TABLE 6-18 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_7.5 ..253
TABLE 6-19 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_7.5...254
TABLE 6-20 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF1_7.5256
TABLE 6-21 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_10 ...257
TABLE 6-22 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_10..258
TABLE 6-23 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF1_10259
TABLE 6-24 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF2_10% ..275
TABLE 6-25 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_10% ..276
TABLE 6-26 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF2_10%...................277
TABLE 6-27 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF2_20% ..278
TABLE 6-28 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_20% ..280
TABLE 6-29 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF2_20%...................281
TABLE 6-30 - EGBT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF2_30% ..282
TABLE 6-31 - VDT CORRECTNESS RESULTS FOR EXPERIMENT EXPCONF1_30% ..283
TABLE 6-32 - EGBT AND VDT RESPONSIVENESS RESULTS FOR EXPERIMENT EXPCONF2_20%...................284

 5

List of Figures

FIGURE 2-1 – CONCEPTUAL MODEL FOR DYNAMIC VERIFICATION ..22
FIGURE 2-2 – TAXONOMY OF MONITOR AND EVENT GENERATION FEATURES...23
FIGURE 2-3 – TAXONOMY OF EVENT EMISSION METHODS...35
FIGURE 2-4 – CONCEPTUAL REPRESENTATION OF ASPECT WEAVING [90]...37
FIGURE 2-5 – A CLIENT-SERVER ARCHITECTURE [19] ..42
FIGURE 2-6 – PROXY ARCHITECTURE [19]..42
FIGURE 2-7 - THE MODEL-CARRYING CODE FRAMEWORK [144] ...47
FIGURE 2-8 – THE JPAX ARCHITECTURE [75]...49
FIGURE 2-9 – THE JAVA-MAC ARCHITECTURE [93] ...53
FIGURE 2-10 – THE ARCHITECTURE OF JASSDA FRAMEWORK [25] ...55
FIGURE 2-11 – THE JPF ARCHITECTURE [166] ...58
FIGURE 2-12 – RUNTIME VERIFICATION IN JNUKE [13] ..61
FIGURE 2-13 – CLASSICAL APPROACH FOR DYNAMIC AND STATIC ANALYSIS [13] ...62
FIGURE 2-14- GENERIC ANALYSIS FOR BOTH A STATIC & DYNAMIC ENVIRONMENT [13]62
FIGURE 3-1 – GRAMMAR FOR SPECIFYING BOUNDARIES OF TIME VARIABLES...77
FIGURE 5-1 – THE OVERALL PROCESS OF THE DIAGNOSTIC APPROACH...94
FIGURE 5-2 - ALGORITHM FOR GENERATING EXPLANATIONS OF ATOMIC PREDICATES100
FIGURE 5-3 – EVENT LOG FOR ATMS ..103
FIGURE 5-4 – GRAPHICAL VIEW OF EXPLANATION GENERATION ..106
FIGURE 5-5 - ALGORITHM FOR COMPUTING THE TRANSITIVE CLOSURE OF DEDUCTIONS FROM ABDUCED

PREDICATES ..110
FIGURE 5-6 – ALGORITHM FOR COMPUTING THE TRANSITIVE CLOSURE OF DEDUCTIONS FROM RECORDED

EVENTS ...114
FIGURE 5-7 – STEP1 EXECUTED BY GENERATE_RE_CONSEQUENCES ..120
FIGURE 5-8 – STEP2 EXECUTED BY GENERATE_RE_CONSEQUENCES ..121
FIGURE 5-9 – STEP3 EXECUTED BY FLUENT MAINTENANCE MECHANISMS OF EVEREST.............................122
FIGURE 5-10 – STEP4 EXECUTED BY GENERATE_AE_CONSEQUENCES ..123
FIGURE 5-11 – EVENTS AND EXPLANATIONS ..134
FIGURE 5-12 – ALGORITHM FOR HANDLING EFFICIENTLY EXPLANATIONS, CONSEQUENCES AND MATCHING

RECORDED EVENTS ...139
FIGURE 5-13 – EVENT LOG FOR ATMS ..145
FIGURE 5-14 – EXPLANATIONS/CONSEQUENCES TREE FOR EVENT E6..146
FIGURE 5-15 – EXPLANATIONS/CONSEQUENCES TREE FOR EVENT E4 CONSIDERED AS MATCHING EVENT OF

CONSEQUENCE C’E6,2,3...153
FIGURE 5-16 - EXPLANATIONS/CONSEQUENCES TREE FOR EVENT E7 CONSIDERED AS MATCHING EVENT OF

CONSEQUENCE C’E4,2,3...154
FIGURE 5-17 – TIMELINE OF CAPTOR(EI) ..166
FIGURE 5-18 – FINAL DIAGNOSIS GENERATION ALGORITHM...176
FIGURE 6-1 – OVERALL EVEREST DESIGN WITH RESPECT TO DIAGNOSTIC PROTOTYPE209
FIGURE 6-2 – EGBT ARCHITECTURE ..211
FIGURE 6-3 – VDT ARCHITECTURE ..211
FIGURE 6-4 – LBACS ARCHITECTURE..212
FIGURE 6-5 – LBACS THEORY GRAPH PART I ..216
FIGURE 6-6 - LBACS THEORY GRAPH PART II..217
FIGURE 6-7 – LBACS SIMULATOR UML MODEL ...220
FIGURE 6-8 – LBACS SIMULATED COMPONENTS TOPOLOGY ...221
FIGURE 6-9 – ER, MONITOR AND EGBT TIMELINES...227
FIGURE 6-10 - MONITOR AND VDT TIMELINES ..228
FIGURE 6-11 – EGBT CORRECTNESS RESULTS FOR EXPCONF1_1.5..240
FIGURE 6-12 – VDT CORRECTNESS RESULTS FOR EXPCONF1_1.5..241
FIGURE 6-13 – EGBT CORRECTNESS RESULTS FOR EXPCONF1_2.3..244
FIGURE 6-14 – VDT CORRECTNESS RESULTS FOR EXPCONF1_2.3..245
FIGURE 6-15 – EGBT CORRECTNESS RESULTS FOR EXPCONF1_2.5..247
FIGURE 6-16 – VDT CORRECTNESS RESULTS FOR EXPCONF1_2.5..248
FIGURE 6-17 – EGBT CORRECTNESS RESULTS FOR EXPCONF1_5...251
FIGURE 6-18 – VDT CORRECTNESS RESULTS FOR EXPCONF1_5...252

 6

FIGURE 6-19 – EGBT CORRECTNESS RESULTS FOR EXPCONF1_7.5..254
FIGURE 6-20 – VDT CORRECTNESS RESULTS FOR EXPCONF1_7.5..255
FIGURE 6-21 – EGBT CORRECTNESS RESULTS FOR EXPCONF1_10...258
FIGURE 6-22 – VDT CORRECTNESS RESULTS FOR EXPCONF1_10...259
FIGURE 6-23 – EGBT_RECALLF RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO LOW

BELIEF RANGES ...261
FIGURE 6-24 - EGBT_RECALLF RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO HIGH

BELIEF RANGES ...262
FIGURE 6-25 - EGBT_PRECISIONF RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO LOW

BELIEF RANGES ...263
FIGURE 6-26 - EGBT_PRECISIONF RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO HIGH

BELIEF RANGES ...264
FIGURE 6-27 – EGBT_RECALLG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO LOW

BELIEF RANGES ...265
FIGURE 6-28 - EGBT_RECALLG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO HIGH

BELIEF RANGES ...266
FIGURE 6-29 - EGBT_PRECISIONG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO LOW

BELIEF RANGES ...267
FIGURE 6-30 - EGBT_PRECISIONG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO HIGH

BELIEF RANGES ...268
FIGURE 6-31 - VDT_RECALLF RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS..269
FIGURE 6-32 - VDT_PRECISIONF RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS..270
FIGURE 6-33 - VDT_RECALLG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS ...271
FIGURE 6-34 - VDT_PRECISIONG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS272
FIGURE 6-35 – EGBT BELIEF COMPUTATIONAL MEAN TIMES FOR DIFFERENT DIAGNOSIS WINDOWS............273
FIGURE 6-36 - VDT BELIEF COMPUTATIONAL MEAN TIMES FOR DIFFERENT DIAGNOSIS WINDOWS273
FIGURE 6-37 – EGBT CORRECTNESS RESULTS FOR EXPCONF2_10% ...276
FIGURE 6-38 - VDT CORRECTNESS RESULTS FOR EXPCONF2_10% ..277
FIGURE 6-39 – EGBT CORRECTNESS RESULTS FOR EXPCONF2_20% ...279
FIGURE 6-40 - VDT CORRECTNESS RESULTS FOR EXPCONF2_20% ..280
FIGURE 6-41 – EGBT CORRECTNESS RESULTS FOR EXPCONF2_30% ...283
FIGURE 6-42 - VDT CORRECTNESS RESULTS FOR EXPCONF2_30% ..284
FIGURE 6-43 – EGBT_RECALLF RESULTS FOR DIFFERENT DELAYED EVENTS PERCENTAGES WITH RESPECT TO

LOW BELIEF RANGES ...286
FIGURE 6-44 - EGBT_RECALLF RESULTS FOR DIFFERENT DELAYED EVENTS PERCENTAGES WITH RESPECT TO

HIGH BELIEF RANGES ..287
FIGURE 6-45 - EGBT_PRECISIONF FOR DIFFERENT DELAYED EVENTS PERCENTAGES WITH RESPECT TO LOW

BELIEF RANGES ...288
FIGURE 6-46 - EGBT_PRECISIONF RESULTS FOR DIFFERENT DELAYED EVENTS PERCENTAGES WITH RESPECT

TO HIGH BELIEF RANGES ...289
FIGURE 6-47 – EGBT_RECALLG RESULTS FOR DIFFERENT DELAYED EVENTS PERCENTAGES WITH RESPECT TO

LOW BELIEF RANGES ...290
FIGURE 6-48 - EGBT_RECALLG RESULTS FOR DIFFERENT DELAYED EVENTS PERCENTAGES WITH RESPECT TO

HIGH BELIEF RANGES ..290
FIGURE 6-49 - EGBT_PRECISIONG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO LOW

BELIEF RANGES ...291
FIGURE 6-50 - EGBT_PRECISIONG RESULTS FOR DIFFERENT DIAGNOSIS WINDOWS WITH RESPECT TO HIGH

BELIEF RANGES ...292
FIGURE 6-51 - VDT_RECALLF RESULTS FOR DIFFERENT PERCENTAGES OF DELAYED EVENTS293
FIGURE 6-52 - VDT_PRECISIONF RESULTS FOR DIFFERENT PERCENTAGES OF DELAYED EVENTS294
FIGURE 6-53 - VDT_RECALLG RESULTS FOR DIFFERENT PERCENTAGES OF DELAYED EVENTS295
FIGURE 6-54 - VDT_PRECISIONG RESULTS FOR DIFFERENT PERCENTAGES OF DELAYED EVENTS296
FIGURE 6-55 – EGBT BELIEF COMPUTATIONAL MEAN TIMES FOR DIFFERENT PERCENTAGES OF DELAYED

EVENTS ...297
FIGURE 6-56 - VDT BELIEF COMPUTATIONAL MEAN TIMES FOR DIFFERENT PERCENTAGES OF DELAYED

EVENTS ...297

 7

Acknowledgements

This thesis is the result of a long going process which revealed the author’s weaknesses

and sensitivity to external phenomena. Therefore, the author would like to thank the

people that supported, encouraged and assisted him to overcome all the occurred

obstacles. Without these people, the present thesis would have not been existed.

Firstly, the author would like to extend his gratitude and appreciation to his supervisor

and mentor, Professor George Spanoudakis. Professor G. Spanoudakis was constantly

and patiently encouraging, supporting and revealing multiple ways for addressing any

issues that happened to occur by respecting the author’s judgment and freedom of choice.

His insistence and emphasis on analyzing, evolving and expanding thoughts and ideas

was quite painful sometimes, however it was a way to awake the author’s focus and

awareness when necessary. The discussions between Professor G. Spanoudakis and the

author will be unforgettable for the author. For the short number of reasons mentioned

above, author is honoured to have cooperated with Professor G. Spanoudakis.

In addition to his supervisor, the author would like to express his appreciation to his

co-supervisor Dr. Christos Kloukinas for his valuable advices, his constant support and

his relaxing way to discuss any emerged issue.

Two more people that the author would like to express his sincere thankfulness are

Dr. Costas Lambrinoudakis and Dr. Stefanos Gkritzalis. Without their prompt and

counsel, the author would have never embarked upon the adventure behind this thesis.

The author would like also to give his thanks to Dr. Andrea Zisman for her support and

concern especially in the last phase of the thesis preparation, and Dr. Artur d'Avila

Garcez for his valuable comments during the initial stages of the research work presented

in this thesis.

The author would like to thank the School of Informatics for the financial support for

this research, as well, as the members of the Technical Support Team (TST) in the School

of Informatics for their constant and tireless services.

In addition to the above people, there are numerous colleagues and friends who were

extremely helpful over the years, each in their own way. These include Nikos

Konstantoudakis, Dr. Khaled Mahbub, Dr. Waraporn Zirapathong, Dr. Gilberto

 8

Cysneiros Filho, Dr. Shant Narsesian, Mark Firman, Amalia, Andreas and Eirini Spyrou,

Dr. Kelly Androutsopoulos, Dr. Jameel Syed, Anestis Benavidis, Dr. Vasiliki Efstathiou,

Anna Thanou, Leonidas Skoutas, Dr. Davide Lorenzoli, Dr. Marco Comuzzi, Ricardo

Contreras, Dr. Igor Siveroni, Kostas Poulios, Dr. Eirini Nedelkopoulou, Stavros Fakanas,

and Stelios Papakonstantinou.

Besides all the aforementioned people, the author feels mostly obliged to his family.

The author therefore is especially grateful to his parents, Athanasios and Loukia, for

supporting him in any possible way, whether it was love or advice, wherever and

whenever. Also, the author would like to express his sincere thankfulness to his brother

and cousin, Petros T. and Petros P., whose joyfulness made author’s hard times smoother,

and his aunt Marina, who hosted him in Kefallonia - a vitalising and rejuvenating piece of

land for the author. It would be impossible for the author to overstate how valuable the

contributions of his family were over these years.

Given the chance, the author would like to dedicate this thesis to his grandparents,

who are not with him in this life anymore. The author dedicates humbly and equally this

piece of work to the memory of Petros and Anastasia expressing his true gratitude for

everything that had lavishly given to him, and to the memory of Theocharis and Sofia,

even if the author did not have the chance to meet them alive and live with them. Both

couples of author’s grandparents are always in author’s mind considered as the very

origin of his life.

Last but not least, in addition to all people the author has thanked, the author would

like to thank humbly God for all the strength and enlightenment He had revealed within

the author during difficult times.

 9

Declaration

The author grants powers of discretion to the University Librarian to allow this thesis to
be copied in whole or in part without further reference to me. This permission covers
only single copies make for study purposes, subject to normal conditions of
acknowledgement.

 10

Abstract

Monitoring the preservation of security and dependability (S&D) properties of complex
software systems is widely accepted as a necessity. Basic monitoring can detect
violations but does not always provide sufficient information for deciding what the
appropriate response to a violation is. Such decisions often require additional diagnostic
information that explains why a violation has occurred and can, therefore, indicate what
would be an appropriate response action to it. In this thesis, we describe a diagnostic
procedure for generating explanations of violations of S&D properties developed as
extension of a runtime monitoring framewoek, called EVEREST. The procedure is based
on a combination of abductive and evidential reasoning about violations of S&D
properties which are expressed in Event Calculus.

 11

Chapter 1: Introduction

1.1 Overview

Monitoring security and dependability (S&D) properties of software systems at runtime

is widely accepted as a measure of increased resilience to dependability failures and

security attacks, and several approaches have been developed to support it (see [99] for a

survey). Whilst basic monitoring provides the core functionality for detecting violations

of such properties, it cannot always provide the information that is necessary in order to

understand the reasons that underpin the violation of a property and decide what would

be an appropriate reaction to it.

In this thesis, we present a diagnosis system that we have developed as extension of a

monitoring framework [109, 153, 155], called EVEREST (EVEnt REaSoning Toolkit).

EVEREST supports the specification and monitoring of properties expressed in Event

Calculus (EC) [149] as rules. The provision of diagnostic information is based on the

generation of alternative explanations for the events which are involved in the violations

of rules, and the assessment of the plausibility of these explanations based on whether

their effects correspond to events recorded during the operation of the monitored system

as already presented in [162, 163, 164]. The key characteristic of our approach is the use

of abductive reasoning [42, 122, 136] for the generation of explanations and belief based

reasoning [146] for the assessment of explanation plausibility.

1.2 The need for diagnosis

To appreciate the need for diagnosing the reasons underpinning violations of security and

dependability properties, consider an air traffic management system, referred to as ATMS

in the following. ATMS uses different radars to monitor the trajectories of airplanes in

different air spaces. It is also connected with a system that keeps a record of flight plans

which are submitted by different planes ahead of flights to indicate the expected route of

a flight and request flight permission.

The operations of ATMS may be monitored at runtime to ensure the integrity of its

components and the information generated by them. Monitoring, for example, may focus

on properties related to: (i) the liveness of the radars connected to ATMS, and (ii) the

generation of mutually consistent information by them. An example of property of this

kind relates to cases where air spaces are covered by different radars or have overlapping

 12

areas covered by different radars. In such cases, to check the integrity of the information

that is provided by the different radars which cover an airspace, we can monitor a rule

requiring that if one of these radars sends a signal indicating that an airplane is in the

airspace, every other radar that covers the same space should also send a signal indicating

the presence of the plane in it within a certain time period of time after the receipt of the

initial signal. Such a rule is violated in all cases where the monitor receives a signal event

by one of the radars of ATMS that cover a specific airspace but not the other. Clearly,

whilst in such cases, knowing that the rule has been violated is important for the

operation of ATMS but the violation report on its own is not sufficient for establishing

the reasons why the second expected signal was not received and taking appropriate

action (if possible). In fact, the violation may have been due to several reasons, including

the following:

• The radar that did not send the expected signal was malfunctioning (Cause 1).

• The communication link between the radar that did not send the expected signal and

the monitor was malfunctioning or an intruder captured the signal and prevented it

from reaching the monitor (Cause 2).

• The radar that sent the expected signal was malfunctioning or its identity was faked by

an intruder that sent a fake signal to the monitor (Cause 3).

Although the above list of possible causes is not exhaustive, it demonstrates that a

decision about what would be an appropriate reaction to the violation depends on the rea-

son(s) that have caused it and, therefore, the selection of the appropriate response action

cannot be made solely on the basis of knowledge about the violation but requires

additional diagnostic information. Therefore, identifying which of the above reasons has

caused the violation is important for taking actions that would restore the integrity of the

operation of ATMS.

1.3 Dynamic Verification and Diagnosis

Dynamic verification enables a software system to improve its dependability [14], by

checking whether its behaviour satisfies specific dependability properties while it is

running. On the other hand, diagnosis can be considered as the process whose aim is the

identification of the causes of symptoms and observations might occur during the

operation of an examined system. For instance, regarding the motivating example in

 13

Section 1.2, dynamic verification solutions used in ATMS would be responsible to check

at runtime the liveness of the radars connected to ATMS. In case that radar liveness

violations are detected, diagnosis tools could be used for providing additional information

by identifying the reasons have caused the detected violations.

However, in the context of software system dynamic verification, there are many

approaches [22, 66, 128, 139, 161] that consider diagnosis as the identification of system

observations, which resulted to a failure, fault or violation. For instance, in [22, 66, 128,

139, 161], synchronization of automata that model the expected behaviour of the

monitored system and the generated event sets are used for carrying out diagnostic tasks.

More specifically, Pencolé and Cordier [128] propose a decentralised fault diagnosis

approach that synchronization of automata is performed for individual system

components (fault detection at system components level), and then aggregated for the

global system (fault detection at system level). Also, in both approaches given by

Tripakis [161] and Bouyer et al. [22], the fault diagnosis problem is treated by generating

algorithms (diagnosers) that act as fault detectors of internal faults for any given

sequence of events generated by the system, which is modelled as a timed automaton [4].

In the present thesis, we assume a distinct separation between the dynamic

verification task and the diagnosis task. The goal of monitoring task is the detection of

inconsistencies with respect to the intended behaviour of a system with respect to some

dependability properties. Therefore, the approaches [22, 66, 128, 139, 161] mentioned

above could be considered as possible solutions to the monitoring task. An extended set

of approaches that focus on system runtime monitoring, as for instance the work by

Spanoudakis et al. [109, 153, 155] that the diagnostic approach presented in this thesis is

built upon, are discussed below in the document, in particular in Chapter 2.

Upon inconsistencies with respect to the intended behaviour of the system detected by

dynamic verification approaches, the diagnostic task comes to play for identifying the

reasons that have caused the detected inconsistencies. As discussed in Section 1.1, it

should be noted that the output of the diagnostic task is important for taking actions that

would restore the integrity of the operation of the monitored system. Examples of

research effort that focus on the diagnostic task, as the work by Console et al. [42] and

Santos [140], are discussed again in Chapter 2.

 14

1.4 The Diagnostic Approach

The overall aim of the diagnostic approach this thesis presents is the identification of

possible explanations for the violations of S&D properties [162, 163, 164] in order to aid

the selection of appropriate reactions to these violations. To generate such explanations,

the diagnostic mechanism uses abductive reasoning [42, 122, 136]. Then, following the

identification of possible explanations, the diagnosis mechanism also assesses the

plausibility of explanations by identifying any effects that they would have generated

from the explanations and checking whether these effects correspond to observations that

have occurred and are genuine. The assessment of the genuineness of the explanation

effects and the validity of explanations is based on the computation of beliefs using

functions that we have defined for this purpose. These functions have been defined using

the axiomatic framework of the Dempster-Shafer theory of evidence [146].

The diagnostic framework has been designed as an extention of EVEREST monitoring

framework described in [109, 153, 155]. EVEREST is able to monitor whether the

behaviour of a system is consistent with tis intended behaviour in parallel with the

operation of the monitored system without intervening with this operation in any form. In

EVEREST, the properties to be checked are specified as rules and ssumptions in a

language called EC-Assertion [109, 153, 155] that has its formal foundation in Event

Calculus [149]. EVEREST finally provides the infrastructure for storing properties

violations and other observations occurring during the operation of the monitored system

that are necessary inputs for the diagnostic process.

1.5 Contributions

The diagnostic approach this thesis presents is the result of the research work that

evolved as shown throughout our earlier publicatations [162, 163, 164]. In these

publications, the concept of event genuineness, as a criterion for event trustworthiness,

and its assemssment mechanisms have been introduced and presented to the outer

research world, starting from our initial intuitions, thoughts and formulations regarding

diagnosis via event trustworthiness assessment and evolving to concrete evidential

mechanisms in the same direction. What is presented in this thesis is the latest version of

the aforementioned concept and its assessment mechanism after reconsiderations and

corrections have been made. The main contributions of our research work are as follows:

• Design of a diagnostic framework for runtime S&D violations.

 15

The diagnostic framework firstly presented in [162, 163, 164] and discussed in

this thesis is designed to identify possible explanations for runtime S&D

violations rules specified in Event Calculus [149] in order to aid the selection of

appropriate reactions to these violations. The violations of S&D properties are

detected by a non-intrusive monitoring1 framework [109, 153, 155] at the runtime

of the monitored system. The diagnostic framework processes the detected

violations by taking into account other observations from the monitored system.

The diagnostic information that is produced refers to the cause of the detected

violations in terms of belief measurements in the genunieness of explanations

effects and the validity of explanations that were generated for the examined

violations.

• Abductive algorithm for generating explanations.

To compute the possible explanations of runtime violations of S&D properties

specified in Event Calculus [149], an algorithm that reasons abductively on the

observations involved in the examined violations has been devised (see Section

5.2.1 and [162, 163, 164]). Another key characteristic of the abductive algorithm

is that it reasons on the temporal aspects of violation observations against the

intended behaviour of the examined system by treating any occurring time

constraint satisfaction problem as linear programming problem. The output of the

algorithm is a list representing the alternative explanations for a particular

violation observation.

• Deductive algorithm for identifying expected consequences.

To assess the plausibility and validity of the abductive explanations, the diagnosis

process computes the explanations effects. For undertaking this task, a deductive

algorithm that reasons on the abductive explanations against the intended

behaviour of the system has been designed (see Section 5.3.1 and [162, 163,

164]). The deductive algorithm reasons again on the temporal aspects of the

abductive explanations by treating any occurring time constraint satisfaction

problem as linear programming problem. The output of the algorithm consists of

1 It should be noted that the term “non intrusive monitoring” here signifies a form of monitoring that is
carried out by a computational entity that is external to the system that is being monitored, is carried out in
parallel with the operation of this system and does not intervene with this operation in any form.

 16

an exhaustive list of the observations that could be derived from the abductive

explanations and the intended behaviour model of the system.

• Plausibility assessment scheme based on evidential reasoning.

An assessment scheme for observation genuineness based on the plausibility and

correctness of the alternative explanations that are generated for a violation

observation in the previous steps of the diagnostic process has been designed (see

Section 5.4). As presented in [162, 163, 164], the assessment of explanation

plausibility is based on the hypothesis that if the expected effects of an

explanation match with observations that have occurred (and recorded) during the

operation of the system that is being monitored, then there is evidence about the

validity of the explanation. However, there is the possibility that we would not be

able to confirm or disconfirm the validity of the explanation at the time that

diagnostic process searches for evidence. To deal with this uncertainty, the

diagnosis mechanism advocates an approximate reasoning approach which

generates degrees of belief in the membership of observations in the log of the

monitor and the existence of some valid explanation for it rather than strict logical

truth values. These degrees of belief are computed by functions founded in the

axiomatic framework of the Dempster-Shafer theory of evidence [146].

• Implementation of a diagnostic prototype.

A prototype based on the diagnostic framework this thesis presents has been

implemented. The diagnostic prototype has been integrated with the underlying

monitoring framework that is easy to set up and provides user flexibility in quite

satisfying levels. The underlying monitoring framework extended with diagnostic

capabilities allows the user to specify monitoring rules and assumptions of S&D

properties and indicate whether diagnostic results are needed.

1.6 Outline of the Thesis

The rest of the thesis is structured as follows.

Chapter 2 provides the reader with an overview of security and dependability

properties from the perspective of software system engineering and the technical

background on security and dependability dynamic verification or runtime monitoring.

This is important since the diagnosis approach discussed in this thesis focuses on security

and dependability proeperties and is based on a runtime monitoring framework. Also,

 17

Chapter 2 presents a short literature review on abductive reasoning, as our diagnosis

approach uses abductive reasoning as a technique for generating explanations that are

used as diagnostic information.

Chapter 3 focuses on the theoretical background that underpins our diagnosis

approach. More specifically, Chapter 3 presents the language that the reasoning

mechanisms of our diagnosis approach use. Also, the monitoring framework, which the

diagnosis approach in based on, is discussed by highlighting the formal specifications the

framework uses. Finally, a short overview of the axiomatic framework that the diagnosis

approach uses for handling uncertainty with respect to possible explanations of S&D

violations on the basis of the available evidence is also provided.

Chapter 4 discusses the basic formulation of the diagnostic task as it is carried out by

the presented diagnosis approach. The basic formulation is provided as formal

specifications extensions to the monitoring framework that the diagnosis approach is

based on. Having provided the basic formal characteristics of the diagnostic task, Chapter

4 concludes by presenting the formal specifications of the ATMS motivating example

that is discussed in Section 1.2. This example is used in following chapters in order to

demonstrate the technical aspects of the diagnosis approach.

In Chapter 5, a detailed description of our diagnostic approach is given. More

specifically, we give an overview of the diagnosis process and describe in detail the

algorithms and mathematical formulas used to carry out the forms of analysis which are

used in the different stages of this process.

Chapter 6 presents the set up and results of an experimental evaluation of the

diagnostic prototype that was implemented as a proof of concept for our diagnostic

approach. The experimental evaluation has been based on the monitoring of a simulated

case study.

Chapter 7 provides the reader with some of our insights regarding the open issues that

emerged from our work in diagnosis of security and dependability properties violations.

Finally, Chapter 8 concludes with the summary of the diagnosis approach that is

described in this thesis, the contributions of the research underpinning it, as well as some

limitations of the diagnostic approach and the prototype that implements it.

 18

Chapter 2: Related Literature

2.1 Overview

The purpose of this chapter is firstly to give an overview of the notions of security and

dependability properties from the perspective of software engineering and provide the

readers with the technical background on security and dependability dynamic verification

or runtime monitoring. Secondly, this chapter presents a short state of the art on

abductive reasoning as a technique for generating explanations.

More specifically, Section 2.2 covers the technical background on dynamic

verification or monitoring of system dependability and security by providing initially a

short overview of the security and dependability properties themselves, mostly based on

definitions given by Avizienis et al. [14]. Having provided definitions of security and

dependability properties, we present critical analysis of current research on dynamic

verification by presenting general purpose and security oriented dynamic verification

approaches. We also present comparative discussion on the presented security and

dependability dynamic verification lines of research.

Section 2.3 provides an overview of research in the area of abductive reasoning that it

is a key characteristic of the approach presented by the present thesis. Therefore, by

highlighting the basic aspects of abductive reasoning and the recent relevant research

approaches, Section 2.3 aims to enable the reader to understand the relationship of our

approach to abductive reasoning as a technique for generating explanations.

2.2 Dynamic Verification of S&D properties

The objective of this section is twofold: firstly to discuss about the notions of security

and dependability properties, and secondly to provide a review of the state of the art in

security and dependability dynamic verification or monitoring.

2.2.1 Security and Dependability Properties: An Overview

In order to be able to provide an overview of the security properties from the perspective

of software engineering, it would be necessary and quite helpful to examine and discuss

about the security requirements that appear across relevant bibliography [55, 62, 157].

According to [55, 62, 157], security requirements cover issues related to:

 19

• Confidentiality is the ability to maintain the secrecy of data and the messages

exchanged between a system and its collaborating actors over communication

channels.

• Integrity is the ability to ensure the accuracy and completeness of the data stored

and the messages exchanged by a system. Maintaining integrity involves allowing

only authorised users to change or create data and messages and applying controls

to ensure the correctness of these messages and data.

• Availability is concerned with ensuring that access to a system is possible when

required.

• Non-repudiation is concerned with making it impossible for an entity that has

participated in some communication with a system to deny this participation. In

message exchange, for instance, non- repudiation guarantees that the sender and

the receiver of a message cannot deny the dispatch and receipt of the message,

respectively.

• Authentication is the ability to determine whether an actor interacting with the

system has the identity that it claims to have.

• Authorization is concerned with the assignment of the right permissions to an

already authenticated entity.

• Privacy is the ability of a system to prevent personal information from becoming

known to entities other than those which own the information or the information

is about.

Regarding dependability properties, Avizienis et al. [14] have defined dependability as

"the ability of a (computer) system to avoid failures that are more frequent or more

severe, and outage durations that are longer, than is acceptable to the user(s)" and

"deliver service that can be justifiably trusted". The notion of service in this definition

corresponds to the system behaviour as viewed by the user, who may be a human

interacting with the system or another system. A service delivery is acceptable if it

implements the required system behaviour and satisfies certain quality constraints while

failures relate to events that make the service deviate from what is perceived to be a

correct delivery. According to Avizienis et al. [14], some of the aforementioned security

requirements (confidentiality, availability and integrity) are considered as attributes of

 20

dependability. In the same context, we could generalise and consider that security

properties are a subset of the dependability properties set, as the security properties of a

system aim to prevent from unaccepted leak of private information (man in the middle

attack [106]) and/or unaccepted delays in the deliverance of the provided services (denial

of service attack [2]).

An important element in the above definition of dependability is the notion of

"justifiable trust" which requires the ability to objectively verify that the delivered system

service does not deviate from the required system behaviour and associated quality

constraints. The development of system verification capabilities (i.e., the ability to verify

that a system satisfies certain properties) has been the focus of significant research over

the last few decades and has resulted in the development of a wide spectrum of, typically

tool-supported, methods that offer such capabilities. These methods are distinguished into

static and dynamic.

Static verification methods aim to show that the desired properties of a system will

always hold based solely on the specification of the system without considering its actual

run-time behaviour. Dynamic verification methods, on the other hand, aim to show that

desired properties hold based on observation of the run-time behaviour of a system and

its interactions with its operational environment.

Due to the fact that static verification is not the main area of interest of this thesis, we

are not providing an overview of methods that fall in this category. On the other hand, a

brief overview of the dynamic verification of systems is following in the rest of the

sections of the chapter.

2.2.2 Dynamic verification

Dynamic verification enables a software system to improve its dependability (and

therefore security) [14], by checking whether its behaviour satisfies specific

dependability and security properties while it is running. This can be accomplished by a

software module, which monitors the execution of the system and checks its conformity

with the specification of the relevant properties. This module can be either an external or

an internal module of the monitored system.

Software systems are increasingly becoming ubiquitous and heterogeneous and rely

on technologies such as mobile code and components off the shelf (COTS). Static

 21

verification and testing of dynamically adapted entities cannot provide adequate results,

each one for different reasons. Static verification is a formal method and can prove that a

system (or to be more accurate its model) is correct but is very time consuming and

demands substantial education and experience from practitioners. Testing [101] on the

other hand is an informal method which cannot prove a system correct since it can never

offer a complete coverage of all its possible executions but can be easily applied even

from inexperienced practitioners.

Being situated somewhere between static verification and testing, dynamic

verification techniques aim to achieve the benefits of both approaches, by merging testing

and formal specification. Thus, dynamic verification is considered to be a formal method

applied to the implementation of the system that avoids the pitfalls of ad hoc testing and

the complexity of full blown static verification techniques (model checking, theorem

proving).

Dynamic system verification has been investigated in the context of different areas

including requirements engineering, program verification, safety critical systems and

service centric systems.

According to literature on dynamic verification [20, 47, 75, 153], the basic stages of

dynamic verification are: (i) the development of a formal specification of a system

including various types of properties, like safety and security properties, (ii) the

application of methods for capturing events of interest and (iii) checking for violations by

a monitor which can verify whether the observed behaviour of a system satisfies the

required properties.

It should be noted that there are cases such as Aspect Oriented Programming [90] and

Monitoring Oriented Programming [34] in which a monitor is generated automatically

and inserted into the code that has to be monitored. Thus, in such cases, the second stage

includes the monitor generation as well. On the other hand, in all the other cases,

monitors are considered to be software modules, which have to be implemented [12, 75]

separately from the monitored system. The monitor inputs are the formal specification of

the system (product of first stage) and the flow of events generated during the execution

of the system. The monitor then reasons about the conformance of the captured runtime

 22

behaviour of the system (events flow) against the indented system behaviour (formal

specification).

Figure 2-1 – Conceptual Model for Dynamic Verification

Figure 2-1 shows the conceptual model we have constructed to indicate the entities

involved in dynamic verification. According to this model, the subject of dynamic

verification that is signified by the class MonitorableEntity can be either a System or a

System’s Environment. Dynamic verification is carried out by a Monitor which observes

the Runtime Behaviour of a system or its environment. The RuntimeBehaviour is a set of

events generated during the operation of the monitorable entities. These events are

generated by one or more Event Generator according to different Event Emission

Specifications. An event emission specification describes the particular Event Emission

Method to be used and one or more Event Emission Descriptions, which describe the

exact types of events which should be generated. The observation of the events in a

Runtime Behaviour by the Monitor is carried out according to a specific Monitoring

Policy which specifies the Monitoring Properties that should be verified at runtime and

the set of Monitoring Actions the Monitor should perform to enable the system control

and/or recover from violations of the monitoring properties.

 23

Figure 2-2 presents a taxonomy of monitor and event generation features. This

taxonomy has three layers which differentiate monitoring and event generation

capabilities according to (a) the controlling capabilities of a monitor, (b) the time of the

event emission with respect to the occurrence of the action described by the event, and (c)

the communication type between the monitor and the system.

Figure 2-2 – Taxonomy of Monitor and Event Generation Features

More specifically at the first layer a distinction is made based on whether the monitor has

observation only, observation and control or control only capabilities. These capabilities

can be summarised as follows:

• Observation (O): The monitor observes the runtime behaviour of the system by

receiving the generated events and it checks whether the monitoring properties

hold at runtime.

• Observation and Control (OC): The monitor observes the runtime behaviour of

the system by receiving the generated events, it checks whether the monitoring

properties hold at runtime and forces the system to execute specific actions. These

actions can be either preventive or perform recovery. This class is also known as

closed-loop control.

 24

• Control (C): The monitor forces the system to execute actions without needing to

observe the actual state of the system. This class is also known as open-loop

control.

The second layer of the taxonomy presents a distinction according to the time of the

event emission with respect to the occurrence of the action described by the event.

According to the criterion, we can distinguish between two cases:

• Emission preceding the action (pre): The event precedes the action which it

describes. For example, the event generator sends an event to the monitor

informing it that the system wishes to lock some resource before the system locks

it.

• Emission posterior to the action (post): The event follows the action which it

describes. For example, the event generator sends an event to the monitor

informing it that the system has completed some transaction.

Finally, the third layer of the taxonomy refers to the type of the communication between

the monitored system and the monitor. According to this criterion, we distinguish

between the following two types of communication:

• Synchronous communication (S): The event generator uses a blocking send

primitive to communicate with the monitor, waiting for a reply from it. This is

only used when the monitor can exert control over the system.

• Asynchronous communication (A): The event generator uses a non-blocking send

primitive to communicate with the monitor. It is mainly used when the monitor

cannot exert any control over the system or when the control actions can be

applied asynchronously. For example, the monitored system may notify the

monitor that it will attempt to perform some action and start performing it without

waiting for a permission to do so, as in optimistic transactions. If the monitor

subsequently decides that this action is undesirable it can send a signal to the

system to abort the action.

 25

2.2.2.1 Formalisation of Properties for Dynamic Verification

2.2.2.1.1 General Purpose Systems

In most of cases, the formal specification of the requirements that are to be dynamically

verified is based on Linear Temporal Logic (LTL) [129] and variations of it including

past and future time LTL (ptLTL and ftLTL respectively). Past and future time Linear

Temporal Logics are modal logics for specifying properties of concurrent reactive

systems and are used for analysing traces of execution of such systems. ptLTL provides

temporal operators that refer to the past states of an execution trace, while ftLTL provides

temporal operators that refer to the future/remaining part of an execution trace. In

particular, the Temporal Rover (TR) tool [57] supports a future and past time Metric

Temporal Logic (MTL). MTL [32] extends LTL with relative time and real time

constraints. All four LTL future time operators can be constrained by relative time and

real time constraints specifying the duration of the temporal operator. MTL constraints

can specify lower bounds, upper bounds, and ranges for relative time and real time

constraints.

In the context of monitoring oriented programming (MoP), any monitoring formalism

can be added to the system. ptLTL, ftLTL and extended regular expressions (ERE),

which can express patterns in strings in a compact way [145], have been used to

formalise properties to be monitored [34]. The proposed algorithms use binary transition

tree finite state machines (BTT-FSMs) to monitor ftLTL properties [34], as well as,

formulas written in a logic based on EREs [145].

Havelund et al. [72, 73, 74] have developed several algorithms, which are relative to

temporal logic generation and monitoring. For instance, they propose algorithms for past

time logic generation by using dynamic programming [74]. Also they have used the

MAUDE rewriting engine [37], for monitoring future time logic [72, 73] and have

proposed algorithms that generate Büchi automata adapted to finite trace LTL [64].

Other logics/languages used for formalising properties are EAGLE [20] and HAWK

[47]. EAGLE is a ruled-based language, which essentially extends the µ-calculus with

data parameterization and past time logic. HAWK can be viewed as a specialization of

EAGLE for JAVA, as it supports data binding and object reasoning. HAWK further

extends EAGLE with event expressions, where events are restricted to method calls and

returns. The integration of programming and logic as well as the notation and semantics

 26

of event expressions are similar to those used in modal logics like the π-calculus. HAWK

also supports extended regular expressions.

According to the concept of Design by Contract (DBC) technique, introduced by

Meyer [112] as a built-in feature of the Eiffel programming language, specifications of

pre-conditions and post-conditions can be associated with a class in the form of assertions

and invariants and subsequently be compiled into runtime checks. Jass [115] and

jContractor [1] are two Java-based DBC systems. Jass is a pre-compiler, which turns the

assertion comments into Java code. The JASS sub-language for specifying trace-

assertions is similar to CSP [78], and its syntax is more like a programming language.

jContractor is implemented as a Java library which allows programmers to associate

contracts, consisting of pre/post-conditions and invariants, with any Java class or

interface.

The Monitoring and Checking (MaC) framework [102] is based on a logic that

combines a form of past time LTL and models real-time via explicit clock variables.

JAVA MAC [93], a prototype implementation of the MaC framework for monitoring and

controlling applications written in Java, defines an event-based language to describe

monitors. Note that, in the context of the Java MaC framework, events refer to

information that holds instantly during the system runtime, while conditions are defined

to illustrate information that holds for a time period. The Java MaC framework is

composed of two specification event-based languages: the Primitive Event Definition

Language (PEDL) and the Meta Event Definition Language (MEDL). PEDL is used for

writing low-level specifications and is tightly related to the programming language. As

such it deals with primitive events and conditions that might occur during the program

execution, which are defined using program entities such as variables and methods. The

operations on events and conditions can be used to construct more complex events and

conditions from the primitive ones. A MEDL specification then makes use of these

primitive events and conditions in order to state high-level requirements. Using MEDL, a

user can specify the correctness requirements declaratively, without worrying about

operational issues related to the monitor. The MaC framework also supports the

declaration of variables of primitive types which can be updated by user-defined

assignment statements upon arrival of new events. These variables can be referred to in

formulas.

 27

Mahbub and Spanoudakis [109] have developed a framework for monitoring the

behaviour of service centric systems which expresses the requirements to be verified

against this behaviour in event calculus [149]. In this framework, event calculus is used

to specify formulas describing behavioural and quality properties of service centric

systems, which are either extracted automatically from the coordination process of such

systems (this process is expressed in WS-BPEL) or are provided by the user.

In the area of component based programming Barnett and Schulte [19] have proposed

a framework which uses executable interface specifications and a monitor to check for

behavioural equivalence between a component and its interface specification. In this

framework, there is no need for recompiling, re-linking, or any sort of invasive

instrumentation at all, due to the fact that a proxy module is used for event emission. The

component’s interface specifications are written in the Abstract State Machine Language

(AsmL) [70], which is based on Abstract State Machines (ASM) [69]. This language is

executable and supports non-deterministic specifications. Having native COM

connectivity, one can not only specify and simulate components in AsmL but also

substitute low-level implementations by high-level specifications. Specifications written

in AsmL are operational specifications of the behaviour expected of any implementation.

They provide a minimal model by constraining implementations as little as possible.

Robinson [137] has proposed a framework for requirements monitoring based on code

instrumentation in which the high-level requirements to be monitored are expressed in

KAOS. KAOS [48] is a framework for goal oriented requirements specification which is

based on temporal logic. The KAOS modelling language can support all the phases of

requirements acquisition and modelling, starting from initial functional and non-

functional goals, formalising the meaning of such goals using temporal logic formulas

and assigning the responsibility for the achievement of these goals to potential agents

which may signify the system in question, systems that interoperate with it, and human

actors interacting with the system. KAOS has also been used by Feather et al [61] in a

framework that they have developed to monitor system requirements at runtime and

which incorporates some capabilities regarding the reconciliation of requirements with

the runtime system behaviour.

In the context of software system monitoring, diagnosis focuses on the detection of

system failures. Diagnosis typically involves the identification of trajectories of system

observations, which have led to a failure. By using automata that recognise faulty

 28

behaviour [22, 66, 128, 139, 161], diagnosis is carried through the synchronisation of

automata modelling the expected behaviour of a monitored system and the events

captured from it. Pencolé and Cordier [128] propose a similar but decentralised approach

where synchronization is performed for individual system components and then

aggregated for the global system.

The problem of fault diagnosis, concerning time, has been studied and analysed by

Tripakis [161] and Bouyer et al. [22], where the system is modelled as a timed

automaton. Timed automata extend the finite state machine model with real time clocks

[4]. In both [22] and [161], the goal is the devising of algorithms (diagnosers) that would

function as efficient online fault detectors of internal faults for any given sequence of

observable events generated by the system. Tripakis has worked on the diagnosability of

a timed system (plant). In particular, Tripakis has shown that the problem of checking

whether a given timed system is diagnosable or not is a decidable problem and a

diagnoser can be constructed as an online algorithm in case that the system is indeed

diagnosable. The ∆-diagnosability diagnosis algorithm proposed by Tripakis is based on

state estimation in order to decide whether a fault has occurred and report the fault at

most ∆ time units after its occurrence, for a given set of observations. In particular, the ∆-

diagnosability algorithm keeps track of several possible control states and time ranges

(zones) that the clock values can be in. The ∆-diagnosability problem for timed automata

is PSPACE-complete. The complexity to diagnose faults from an observation is doubly

exponential with respect to the final states of the system and to the size of the

observations.

Due to the high complexity of the ∆-diagnosability algorithm by Tripakis [161],

Bouyer et al. [22] describe a diagnoser, with lower complexity, more appropriate for

online diagnosis. Bouyer et al. suggest two deterministic timed automata for realizing an

efficient online diagnoser. On one hand, Bouyer et al. consider general deterministic

timed automata (DTA) for realizing efficient online diagnosers. Bouyer et al. have proved

that the problem of checking whether there is a realizable DTA diagnoser for a given

timed system, provided that the number of clocks and the set of constants are well

defined and available to the diagnoser, is a decidable problem and is 2EXPTIME-

complete. On the other hand, Bouyer et al. study the fault diagnosis problem considering

a subclass of DTAs called Event Recording Automata (ERA) [4]. In the context of ERA,

there is an implicit clock attached to each action. The problem of checking whether there

 29

is a diagnoser realizable as an ERA, provided that the number of clocks and the set of

constants are well defined and available to the diagnoser, is decidable and PSPACE-

complete.

In [128], a decentralised model-based approach for diagnosing discrete event systems

has been proposed. In particular, the proposed formal framework is based on

communicating automata for computing online diagnosis of large discrete event systems.

According to the authors, the diagnosis is defined as the identification of failure events

and their propagations, which can explain the system observations. The system

observations are split into temporal windows. For each temporal window, diagnosis

(subsystem diagnosis) is performed for each well defined subsystem of the system. The

subsystem diagnoses are, then, merged to build the overall diagnosis for the system

(global diagnosis). Each subsystem is modelled as a communicating finite state machine.

The explicit behaviour of each subsystem can be computed by using a synchronization

operation, which is based on a transition system product [9] and applied to the component

models of the subsystem.

2.2.2.1.2 Security Oriented Systems

Some of the logics and languages reviewed in the previous section have also been used

either as they were initially proposed or with some semantic modifications and extensions

for the formalisation of security properties. Naldurg et al [117], for instance, have

proposed a framework for intrusion detection which takes advantage of the capabilities of

the EAGLE language for specifying the attack-safe behaviour of a system. EAGLE is

suitable for expressing temporal patterns that involve reasoning about the data values

observed in individual events and thus it allows the description of attacks whose

signatures appear to have statistical properties, e.g., password guessing or denial of

service attacks. For such attacks there is no clear distinction between an intrusion and a

normal behaviour and the detection of intrusions involves collecting statistics during

runtime and using them to evaluate the probability of the occurrence of an attack.

In the area of intrusion detection (see [99] for a survey), Ko et al [95] have proposed a

specification-based approach, which uses dynamic verification techniques to detect

exploitations of vulnerabilities in security-critical programs. According to this

framework, one has to specify a trace policy which describes the intended behaviour of

programs with regards to security properties. A trace policy determines security-valid

 30

operation sequences of the execution of one or more programs. For specifying such trace

policies, Ko et al. [95] have developed a grammar, called "parallel environment grammar

(PE-grammar)" whose alphabet consists of system operations. A PE-grammar can

express various classes of security trace policies, including behaviour related to access to

system objects, synchronization, and operation sequencing and race conditions in

concurrent or distributed programs.

Schneider [143] has developed a system called Execution Monitoring (EM) which can

monitor violations of security policies by monitoring the execution steps of a system.

This system is based on the security automata of Alpern and Schneider [3], which are a

special type of Büchi automata. EM also incorporates mechanisms that can terminate the

system execution if it is about to violate its security policy. Following the same automata-

based formalism, Ligatti et al [104] extended the control capabilities of security automata

by proposing edit automata, which can remove and add letters (i.e., system actions) to the

words (i.e. execution traces) they recognise.

Having proposed a security-policy enforcing model which follows the general

dynamic verification approach, Bandara et al. [15] have specified a language based on

Event Calculus to model the system behaviour and write security policy specifications.

The form of EC, which is used in this work, was presented in [138] and consists of: (i) a

set of time points (that can be mapped to the non-negative integers), (ii) a set of

properties that can vary over the lifetime of the system (fluents), and (iii) a set of event

types. System operations and domain-independent rules for policy enforcement were

specified in this approach using these constructs. According to Bandara et al. [15], one

can use EC to express system-models containing a combination of authorisation,

obligation and refrain policies.

Janicke et al [82] have proposed a security model that allows expressing dynamic

access control policies, which can be either time or event-driven. A system’s overall

security policy can then be composed out of smaller policies which capture specific

requirements and which can be verified individually. The advantage of the access control

model used in this work is that it allows expressing both parallel and sequential

composition. Janicke et al. [82] based their security model on Interval Temporal Logic

(ITL), a flexible notation for both propositional and first order reasoning about intervals

of time. ITL allows expressing properties for safety, liveness and timeliness. The policy

model of Janicke et al. [82] provides a wide range of operators, for example to allow the

 31

dynamic addition/deletion of rules or to select different sub-policies based on to the

occurrence of an event or a time-out. An important reason of choosing ITL was the

availability of an executable subset of the logic, known as Tempura [116]. The use of

ITL, together with its subset of Tempura, offers the benefits of traditional proof methods

with the speed and convenience of computer-based testing through execution and

simulation.

Brisset [24] has worked on establishing and ensuring the correct operation of a Java

platform security mechanism for runtime authorization of not trusted applications in

remote hosts. The resulting Java security mechanism, which is called SecurityManager

and belongs to the JAVA runtime library, essentially embodies the security policy of the

virtual machine. The verification technique used a CTL-based language, which extends

CTL with JVM-specific atomic propositions. Thus, JVM-specific atomic formulas can be

used for runtime authorization of not trusted applications. In order to verify an

application against these formulas its byte-code is translated into pre/post-condition

generators for CTL formulas on-the-fly.

Sekar et al. [144] presented an approach called model-carrying code (MCC) for

mobile code security. The main components of MCC are: (a) a policy language for

specifying security policies and a compiler for this language, (b) a language for

specifying program behaviour models and techniques for extracting them, and (c) a

policy refinement component which is based on model-checking techniques. Their

language for policies and behaviour models is called Behaviour Monitoring Specification

Language (BMSL) and it is compiled into extended finite state automata (EFSA). EFSA

are standard finite state automata (FSA) augmented with the ability to store values in a

fixed number of state variables. These state variables are capable of storing values over

both finite and infinite domains. The state of the EFSA is then characterized by its control

state (which has the same meaning as the notion of state in the case of FSA), plus the

values of these state variables. Each transition in the EFSA is associated with an event, an

enabling condition involving the event arguments and state variables, and a set of

assignments to state variables. For a transition to be taken, the associated event must

occur and the enabling condition must hold. The assignments associated with the

transition are performed when the transition is taken. In usual behavioural models the

event alphabet of the EFSA consists of system-call names. On the other hand, security

policies need to refer to particular uses of such system calls and be able to examine their

 32

respective arguments. These uses, for instance “read(sensitive_file)”, augment the

alphabet of EFSA with parameters to the initial system call names event alphabet. The

resulting language is therefore able to distinguish the difference between the opening of a

temporary file and the opening of a password file. Moreover, EFSA can also represent

properties that refer to the arguments to system calls in the past, e.g. a program opens a

file, whose name was given as an argument in the command line in the past.

For thoroughness we shall also mention certain higher-level languages and

frameworks, which have been proposed for security requirements and policies. The

KAOS framework, which we have already examined in the previous section on general-

purpose formalisms, has been extended for modelling, specifying and analysing security

requirements [166] by including the classical security concepts:

• Adversaries/attackers which are the malicious agents in the environment,

• Threats which are obstacles (anti-goals) intentionally set up by adversaries, and

• Assets, which must be protected against threats, are illustrated as passive or active

objects.

The Confidentiality, Integrity, Availability, Privacy, Authentication and Non-

repudiation requirements are sub-classes of the meta-class SecurityGoal in KAOS.

Finally, the formal first-order, real-time, linear temporal logic of KAOS has been

augmented with epistemic operators (Knows, Belief), which are needed in security-

related properties (e.g. Authorized, UnderControl, Integrity or Using predicates).

Damianou et al. [46] have defined a declarative, object-oriented language, called

Ponder, to specify security policies which can be monitored and applied at runtime.

Ponder can be used to specify security policies regarding role-based access control to

system resources, and general-purpose system management policies. Security policies are

distinguished by Damianou et al. [46] in authorisation, obligation, refrain and delegation

policies. Authorisation policies specify whether a subject is permitted to perform a

particular action on a target; obligation policies specify management operations that must

be performed when a particular event occurs and some supplementary guarding

conditions are true; refrain policies allow system administrators to specify conditions

under which certain operations should not be performed; and delegation policies specify

which actions subjects are allowed to delegate to others. Ponder has been designed with

the intention to be an extensible security policy specification language that would be able

 33

to cater for future types of policies and, rather than assuming a particular implementation

platform, it could map to, and co-exist with, different underlying platforms.

In Service Oriented Computing, Baresi and Guinea [16] have proposed a framework

for runtime monitoring of WS-BPEL processes. Monitoring rules are weaved at runtime

into the process they must monitor and a proxy module supports their dynamic selection

and execution [18]. Finally, they proposed a user-oriented language to integrate data

acquisition and analysis into monitoring rules. Their monitoring rules define runtime

constraints on WS-BPEL process executions and are expressed using the WSCoL

language (Web Service Constraint Language). This development of this language has

been inspired by the Java Modelling Language (JML) of Leavens, Baker and Ruby [100].

WS-CoL is a domain-independent policy assertion language for specifying user

requirements (constraints) on the execution of Web services, which can be used within

the framework of WS-Policy [142] and WS-Security [88]. WS-CoL is an assertion

language augmented with features for allowing one to retrieve information that originates

outside the process. It distinguishes between data collection and data analysis to

differentiate the phase in which information is collected (data collection), from the phase

in which this data is analysed (data analysis). Data can be collected from the process

directly (e.g., values of internal variable) but they can also come from external sources

(e.g., exchanged SOAP messages). An example of a monitoring rule in this language

could specify that all exchanged messages must be encrypted using the 3DES encryption

algorithm.

2.2.2.1.3 Summary of specification languages for security and other system

properties for dynamic verification

Table 2-1 gives a summary of various formal notations which have been used by different

dynamic verification methods to express the properties to be verified and other functional

and non functional characteristics of the systems and identifies languages and notations

that have been specifically developed for expressing and verifying security properties.

As shown in the table most of the approaches deploy languages which are based on

some form of temporal logic as these languages provide the necessary operators for

expressing conditions about the temporal ordering and boundaries of occurrence of

events which is required for the expression of most of the properties that need to be

verified at runtime. The most popular formal notation for expressing security properties is

 34

Linear Temporal Logic (LTL) or extensions of it and languages with similar expressive

power such as Event Calculus.

Table 2-1 - Summary of formal languages used for dynamic verification

Languages for expressing security

properties for dynamic verification

Languages for expressing all types of

properties for dynamic verification

Behaviour Monitoring Specification
Language (BMSL) and Extended finite
state automata (EFSA) EAGLE and HAWK

EAGLE CSP – like specification

PE Grammar LTL and its extensions

ITL PEDL and MEDL

CTL (extended) AsmL

 Security automata Event Calculus

 Ponder Ponder

 KAOS KAOS

 Event Calculus EC-Assertion

Some dynamic verification techniques reason about systems at both low and high level of

abstraction, such as Primitive Event Definition Language (PEDL) and Meta Event

Definition Language (MEDL) in Java Monitoring and Checking (JavaMaC) framework

[102]. PEDL is used for writing low-level specifications and is tightly related to the

programming language, while MEDL specification makes use of primitive events and

conditions in order to state high-level requirements.

2.2.2.2 Methods for Capturing Events

In the second stage of the general dynamic verification process, the goal is to apply

techniques so as to capture the real behaviour of the system during its execution.

As shown in Figure 2-3, existing event emission methods can be divided into code

modifying and non code modifying ones. Code modifying event emission methods require

direct access to the source or binary code of a system in order to insert code statements

that will generate the events of interest. Code instrumentation is an example of a code

modifying event emission method in which event generation statements are inserted

 35

manually into the code of a system. Aspect Oriented Programming (AOP) has also been

used to generate events (through the weaving of aspects into binary or source system

code). AOP is a code modifying event emission method, which can be considered as a

subcategory of code instrumentation. Monitoring Oriented Programming [34] and Design

by Contract [112] are also code modifying event emission methods which can be

regarded as subcategories of Aspect Oriented Programming [90].

Non code modifying event emission methods generate events without altering the code

of a system. Such methods access, modify and/or take advantage of capabilities of the

general computational environment in which a system is executed, in order to generate

the events flow. Reflective middleware approaches [30, 31, 110], proxy-based

architectures [19] and the use of application programming interfaces (APIs) [12, 26, 109]

constitute examples of event emission methods which belong to this category.

Figure 2-3 – Taxonomy of Event Emission Methods

2.2.2.2.1 Code-Modifying Event Capture Methods

2.2.2.2.1.1 Code Instrumentation

 36

The technique of code instrumentation can be described [137] as the insertion of

statements into the system’s code (source or binary code) for monitoring purposes.

Instrumentation can be done manually or automatically e.g. by using Jtrek-JSpy [65] or

Joie [39] which automatically instrument Java byte code. During the execution of the

instrumented code, an event stream is generated. The generated events can then be passed

directly to external monitors or pre-processed before they reach the verification stage.

A tool using code instrumentation for capturing events in Java-based systems is

RMon [137]. In Rmon, requirements are initially expressed in the KAOS framework

[48], which provides a goal-oriented formal specification language based on temporal

logic. Requirements are thus specified as high level goals which must be achieved by the

system. These goals must then be mapped onto low-level events which can be monitored

at runtime. The system’s code is then instrumented in order to capture these low level

events, using the Joie framework [39].

In the initial phase of the Java MaC architecture [93], low-level specifications (written

in PEDL) are inserted into the byte code of the monitored program through an automatic

instrumentation procedure. Furthermore, in the MONID tool [117] system-level events

are generated by appropriately instrumented source code.

2.2.2.2.1.2 Aspect Oriented Programming

Aspect Oriented Programming (AOP) [90], also called Aspect Oriented Software

Development (AOSD), was proposed to support the advanced identification, illustration

and separation of non-functional concerns, which crosscut the system’s main

functionality. Complex programs include various crosscutting concerns (properties of

interest such as QoS, energy consumption, fault tolerance, and security). While object-

oriented programming abstracts out commonalities among classes in an inheritance tree,

crosscutting concerns are scattered among different classes, complicating the

development and maintenance of applications. As depicted in Figure 2-4, AOP enables

the separation of crosscutting concerns during the development of the software.

Specifically, the code implementing crosscutting concerns of the system, called aspects,

is developed separately from other parts of the system. In AOP, locations in the program

where aspect code can be woven, called pointcuts, are typically identified during

development. Later, for example during compilation, an aspect weaver can be used to

weave different aspects of the program together so as to form a program with new

 37

behaviour. AOP proponents argue that disentangling crosscutting concerns leads to

simpler development, maintenance, and evolution of software [90]. Examples of AOP

approaches include AspectJ [91] and Hyper/J [159].

Figure 2-4 – Conceptual Representation of Aspect Weaving [90]

AOP supports dynamic re-composition in three major ways. First, most adaptations

are relative to some crosscutting concern, such as quality-of-service or fault tolerance.

AOP enables the code associated with these aspects to be written and managed

independently of the application code as well as other parts of the system, such as

traditional middleware platforms. Such a separation is needed in order to dynamically

replace one instantiation of a particular solution for a concern with another. Second,

although compile-time aspect weaving produces a tangled executable that cannot easily

be reconfigured, delaying the weaving process until runtime provides a systematic way to

realize dynamic re-composition [77, 169]. Finally, if adaptability itself is considered as a

“generic” aspect [49, 170], then runtime weaving can be used to enhance the program

with adaptive behaviour, not necessarily anticipated during the original development (e.g.

to tolerate newly discovered faults or to detect and respond to new security attacks). This

kind of upgrading is especially important in situations where the application is required to

run continuously and cannot be easily halted for upgrade. However, the need of a formal

aspect specification written in a domain-specific knowledge language or using logic,

rather than the host programming language itself, is expressed in [34]. The mapping from

specification to implementation, with the support of automatic code generation can then

be formally verified.

 38

In particular, AspectJ [91] provides an approach to implementing cross-cutting

features in Java. AspectJ provides a pattern mechanism, called pointcuts, for capturing

groups of events, called joinpoints, that may occur during a program’s operation (such as

method calls/receptions, constructor calls, field accesses, and exception events). The

pattern matching mechanism includes regular expression matching, with wild-carding

over fragments of method names, argument names, types etc. Extra code, called advices,

can be associated with pointcuts, and is inserted by the AspectJ compiler into the join-

points. Advices can inspect and modify data that are available at joinpoint events (e.g.

method-call arguments and return values), and can create new data dynamically that is

only shared with other advice.

For instance, Dingwall-Smith and Finkelstein [56] have developed an aspect oriented

approach, in which system providers specify instrumentation code in separate classes,

and define composition rules which determine how this code is to be merged with the

application code, by using Hyper/J [159]. Also, Baresi and Guinea [17] have proposed a

framework for runtime monitoring of WS-BPEL processes, in which monitoring rules are

specified and weaved dynamically into the process they belong to. Furthermore, the

instrumentation module of the JpaX framework performs a script-driven automated

instrumentation of the program to be verified. JSpy [65] is the automated AOP

environment package, which is used in JPaX [72, 75].

2.2.2.2.1.3 Design by Contract

Design by Contract (DBC), as proposed by Meyer [112] for the object-oriented language

Eiffel, is a practical approach to runtime checking in applications. DBC is a lightweight

formal technique, which allows one to add semantic information to a program by

specifying assertions regarding the program's runtime state. Then, checks for

specification violations are carried out at runtime. Such a technique stresses the

importance of explicitly specifying the constraints that hold before (pre-conditions) and

after a program is executed (post-conditions). The technique’s name refers to a contract,

which is made between the client and the supplier of a system module and defines

conditions before and after the execution of the module. Thus, for monitoring reasons the

entry and exit points of the module become the events that we want to observe.

In the context of the Eiffel object-oriented language, specifications of pre/post-

conditions can be associated with a class in the form of assertions and invariants.

 39

Subsequently, inserted specifications can be compiled into monitoring code. In the Java

language, there are two approaches which are based on DBC. Jass [21] is a pre-compiler

which turns the assertion comments into Java code. Properties in Jass are called trace

assertions and they specify permissible sequences of method calls in a CSP-like notation.

Thus, processes, parallelism, conditionals and data exchange among processes can also

be expressed. However, the trace assertions are interpreted loosely; no formal semantics

is provided. The Jass pre-compiler translates the trace assertions into runtime checks.

2.2.2.2.1.4 Monitoring Oriented Programming

Monitoring Oriented Programming (MoP) is a paradigm which combines a formal

specification with an implementation in order to form a system. In particular, it provides

a light-weight formal method for runtime specification checks against the behaviour of

the implementation. By using MoP, logical statements can be inserted anywhere in the

program. These statements are simply Boolean expressions which can refer to past and

future states of the program. A MoP user can insert such statements for different reasons

e.g. to guide the system’s execution, terminate the program or throw exceptions. Thus,

MoP can increase the dependability of a system by monitoring its requirements at

runtime and controlling it at the same time.

In particular, the statements, which can be inserted as annotations into the code, can

be divided into three parts. The first part consists of a keyword defining the logic in

which the rest of the inserted statements are expressed in. The second part comprises the

definitions of the predicates and the formula to be monitored. Finally, user defined code

which will be executed in case the monitored formula is violated is included in the third

part, called a violation handler.

The general MoP paradigm is language and specification formalism independent.

According to Chen and Rosu [34], a MoP environment should provide the capability of

adding any logic framework on top of any target programming language via logic plug-

ins, which can be publicly accessed. A logic plug-in consists of two modules, namely the

logic engine and the target language shell. Logic engines translate formulae into

monitors, encoded in an abstract representation (pseudocode). Then the language shell

transforms the monitor pseudocode into the target language code. Thus, the logic plug-in

can be considered as the code generator of the monitor.

 40

Moreover, a MoP environment allows users to specify whether the monitoring code

will be executed using the resources of the monitored program (internal monitor) or

within a different process (external monitor). In the first case, the inserted logic

statements contain the monitor’s specifications which are replaced by the generated

monitoring code in the end. Note that internal monitors, in general, cannot check for

program deadlocks and unexpected terminations. In case that a monitor is executed as a

different process, the inserted statements are replaced by instrumentation code which

operates as an event generator. The user can specify whether the monitor should be

executed synchronously or asynchronously with the monitored system and whether it

should be executed on the same machine with the system or a different one.

2.2.2.2.2 Non Code Modifying Event Capture Methods

2.2.2.2.2.1 Reflective Middleware

Middleware technologies [58] have been designed to support the development of

distributed systems. Their success has been mainly due to their ability of making

distribution transparent to both users and software engineers, so that systems appear as

single integrated computing facilities. However, hiding the implementation details from

the application completely is very difficult in a mobile setting and not even always

desirable, since mobile systems need to quickly detect and adapt to changes in their

environment. A new form of awareness is needed to allow application designers to

inspect the execution context and adapt the behaviour of the middleware accordingly.

Reflection and metadata can be successfully exploited to develop middleware targeted

to mobile settings. By using metadata, we separate the middleware in two parts: what the

middleware does and how the middleware does it. Reflection allows applications to

inspect and adapt their metadata. In this way, applications can influence the way their

middleware behaves, according to their current context of execution.

Capra, Emmerich and Mascolo [31] proposed a framework designed to ease the

adaptation of applications to changing execution conditions. The model considers

different layers (operating system, middleware, application, and user), each of which is

described using metadata in order to ease their interaction. When the application invokes

a service, the middleware uses both the application metadata and the metadata reflecting

the current execution conditions to decide how to offer the requested service.

 41

Applications can also ask the middleware to be notified when specific execution

conditions occur. This system allows for a fine adaptation of applications, but it requires

that service calls be coded explicitly in the applications. However, a complete

transparency is not possible if adaptation (which requires awareness) is desired.

CARISMA [31] is a context-awareness based reflective middleware. It includes a

reflective API, which allows applications to dynamically inspect their current

configuration and alter it to best suit the current environment. CARISMA maintains a

representation of the execution context by interacting with the underlying network

operating system. Based upon this representation, the application may behave in different

ways. For example, an application attempting to send messages in low bandwidth

availability may compress messages before emitting them, whereas it would send them

uncompressed when bandwidth availability is high. The behaviour of the middleware

with respect to the application is referred to as an application profile. There are two main

aspects of an application profile, services and policies. Services describe the services

offered to the application and which the middleware can customize. Policies describe the

different variations in which the services can be delivered. In the prior example, the

service the application is using is sending messages, and the different policies to deliver

the service are sending either compressed or uncompressed messages based upon the

context environment (high or low bandwidth). In CARISMA, each time a service is

invoked, the middleware examines the application profile. Based upon the context of the

application, the middleware determines which policy is best suited for the current

context. This relieves the application of the burden of determining how to optimise its

own behaviour.

XMIDDLE [110] is a middleware for mobile computing that focuses on the

synchronization of replicated XML documents. In order to enable application-driven

conflict detection and resolution, XMIDDLE supports the specification of conflict

resolution policies through meta-data definitions using an XML schema.

2.2.2.2.2.2 Proxy Architecture

A proxy module acts as an intermediate between the monitored system and its

environment, capturing their interaction and emitting the corresponding events. Thus,

there is no need for code recompiling, re-linking or any other sort of invasive

instrumentation at all.

 42

Figure 2-5 – A client-server architecture [19]

For component based programming, Barnett and Schulte [19] have proposed a

framework which uses executable interface specifications and a monitor to check for

behavioural equivalence between a component and its interface specification. Let us

assume that a client–server architecture is used, like the one illustrated in Figure 2-5.

Figure 2-6 – Proxy architecture [19]

A component, P, which essentially operates as a proxy, is inserted between the client

C and the server S as shown in Figure 2-6. Using a proxy allows the interaction of the

client C and the server S to be observed without having to modify either component. P

can be created automatically from the definition of the interfaces, which C and S use in

order to interact. The proxy forks all of the calls made from C to S so that they are

delivered to both S and the (AsmL specification based) model, M, managing the

concurrent execution of M and S. Then P compares the results from components M and

S. P checks at each interface whether the results agree in terms of their success/failure

codes as well as any return values. As long as, the results are the same, they are sent to C.

In any other case, S and M are deemed not to be behaviourally equivalent.

2.2.2.2.2.3 API-based Event Capturing

In the last non code modifying event emission subcategory, one finds approaches which

make use of specific APIs for capturing and emitting events.

For instance, the JNuke tool takes advantage of its virtual machine’s (VM) specific

API in order to observe the runtime behaviour of the monitored system. In particular, the

event-based runtime verification API of JNuke’s VM serves as a platform for various

runtime algorithms. This API provides access to events occurring during program

 43

execution. Event listeners can then query the VM for detailed data about its internal state

and thus implement any runtime verification algorithm, including detection of high-level

data races [10] or stale-value errors [11] (see Section 2.2.2.4.7 for more details).

In the same family of event capturing methods is the prototype implementation of the

specification based intrusion detection system, proposed by Ko et al. [95], which takes

advantage of audit trails provided by the operating system. The prototype runs under the

Solaris 2.4 operating system and uses the auditing services of the Sun BSM audit

subsystem. The BSM audit subsystem provides a log of the activities that occur in the

system. A BSM audit record contains information such as the process ID and the user ID

of the process involved, as well as, the path name and the permission mode of the files

being accessed. However, it does not contain information about the program the process

is running. Therefore, an audit record pre-processor is used to associate the program

identification with each audit record. The audit record pre-processor actually filters audit

records that are irrelevant to the monitoring system and translates the BSM audit records

into the format required by the monitoring system.

2.2.2.3 Checking for violations

The third stage of dynamic verification is concerned with the checks that a monitor

carries out to identify whether the runtime behaviour of a system conforms to certain

properties. According to the taxonomy of Figure 2-2, the monitors with the most

advanced capabilities are the "OC−pre−S" monitors. This category describes monitors,

which verify the system’s correct behaviour based on events describing the system’s state

before the execution of some action. The check is carried out while the system is halted,

waiting for the monitor’s reply. Once the monitor assures that the monitored properties

hold, it allows the system to continue with its normal execution. If however a violation is

reported, the monitor can force the system to execute some other action so as to remedy

the current violation.

2.2.2.3.1 Checks for Admission

A widely used type of runtime checks is the check for admission. In this check a

monitor checks an incoming request/application for admission, before actually

honouring/executing it. In the following we shall examine some of the solutions for

performing admission checks.

 44

2.2.2.3.1.1 Signed Code

Another technique for protecting a system, which is allowed to host mobile code, is by

signing code with a digital signature. Using digital signatures, one can confirm the

authenticity of the code, its origin, and its integrity. Typically the code signer is either the

code producer or a trusted entity that has reviewed the code. Especially in mobile agents

systems, where an agent can operate on behalf of an end-user or organization [158], the

signature of an agent is used as an indication of the authority under which the agent

operates.

Code signing is tightly bound with public key cryptography, which relies on a pair of

keys (private and public) associated with an entity. One key is kept private by the entity

and the other is made publicly available. Digital signatures benefit greatly from the

existence of a public key infrastructure (PKI), since certificates containing the identity of

an entity and its public key (i.e., a public key certificate) can be readily located and

verified. The code signer applies an irreversible hash function to the code. The result of

this function is a unique message digest of the code, which the code producer encrypts

with his private key, thus forming a digital signature of the code. Because the message

digest is unique, and thus bound to the code, the resulting signature also serves as an

integrity protection against any malicious code modifications. The produced signature

and the public key certificate can then be sent along with the code to the code consumer.

The code consumer can easily verify the source and authenticity of the code by using the

same hash function and the appropriate decrypting mechanism, which the code producer

used to sign the code. If the signature verification succeeds, the code consumer can

execute the code.

Note that the meaning of a signature may be different depending on the policy

associated with the signature scheme and the party who signs. For example, the code

producer, either an individual or an organization, may use a digital signature to indicate

who produced the code, but not to guarantee that the code will be executed without faults.

Microsoft's Authenticode [67], enables Java applets or Active X controls to be signed,

ensuring consumers that the software has not been tampered with and that the identity of

the code producer is verified. Moreover, JDK 1.1 introduced the capability to digitally

sign Java byte code (at least byte code files placed in a Java archive, called a JAR file),

which expanded more with Java 2 [111]. From a certificate authority perspective,

 45

VeriSign provided a solution which addressed signed code issues for specific Netscape

objects [167].

2.2.2.3.1.2 Proof Carrying Code

Proof Carrying Code (PCC) [118] can be used to increase security in systems executing

not-trusted, mobile code. With PCC, a program is supplied along with a proof of its

correctness and this proof is in a form which can be easily verified mechanically before

the program’s execution. Therefore, it is now the code producer’s responsibility to

formally prove that the program will assure the safety properties specified by the code

consumer, honouring the security policy of the underlying platform/system. Then, both

the code and its proof are sent to the code consumer, where the safety properties are

verified. A safety predicate is also generated directly from the native code to ensure that

the accompanying proof does in fact correspond to the code sent. Once verified, the code

can execute without any further checking. Any attempts to tamper with either the code or

the safety proof result in a verification error.

The PCC binary life-cycle includes three stages:

• Certification: During this stage, the code producer compiles and generates a proof

for the code, proving that the source program adheres to the safety policy of the

code consumer. The proof can be produced by theorem proving.

• Verification: This stage is performed in the code consumer side. The code

consumer verifies the proof part of the PCC binary code. The verification is

performed by a simple algorithm, which is trusted by the consumer.

• Execution: The code consumer can execute the code without any further run-time

checks.

For expressing safety policies Necula [118] has used first-order predicate logic,

extended with predicates for type-safety and memory-safety. The not-trusted code is in

the form of machine code. For relating machine code to specifications they used a form

of Floyd's verification-condition generator. Such a generator extracts the safety properties

of a machine code program as a predicate in first-order logic. This predicate must then be

proved by the code producer using axioms and inference rules supplied by the code

consumer as part of the safety policy. For generating the safety proof, a theorem prover

can be used, in the code producer’s side.

 46

Proof encoding can adequately be expressed using the Edinburgh Logical Framework

(LF). LF is general and can easily encode a wide variety of logics, including higher-order

logics. Another compact representation of proofs is a form of oracles, which guide a

simple non-deterministic theorem prover in verifying the existence of the proof. For

validating proofs encoded in LF, an LF type checker can be used. A non-deterministic

logic interpreter can be used in the case that a proof is encoded as an oracle.

Initial research has demonstrated the applicability of PCC for fine-grained memory

safety and shown the potential of it for other types of safety policies, such as controlling

resource use.

PCC is based on principles from logic, type theory, and formal verification. There are,

however, some potentially difficult problems to be solved before the approach is

considered practical. These include a standard formalism for describing security policies,

automated assistance for the generation of proofs and techniques for limiting the

potentially large size of proofs that in theory can arise. In addition, the technique is tied to

the hardware and operating environment of the code consumer, which may limit its

applicability.

Comparing PCC to signed code, PCC is a prevention technique, while code signing is

an authentication and identification technique used to deter the execution of unsafe code.

Furthermore, the proof is structured in such a way that simplifies its verification, since it

must be carried out efficiently without using any external assistance.

2.2.2.3.1.3 Model Carrying Code

Model Carrying Code (MCC) is an approach for supporting the safe execution of not-

trusted mobile code [144]. The central idea of MCC is that the code producer sends the

code along with a high-level model, which describes the code’s security-relevant

behaviour. It should be noted that the generated model has to be usable by all code

consumers. The automated model generation is based on model extraction via machine

learning from execution traces. In the consumer’s side, the model is checked for

compliance with the consumer’s security policy. If the security policy is satisfied, the

code can be executed. In case there are conflicts, the consumer’s policy can be refined,

taking into consideration the code’s functionality. When the code is executed, runtime

verification methods are used to guarantee that the consumer’s (refined) policy is not

violated by the code (Figure 2-7).

 47

By these means, the model bridges the semantic gap between the low-level binary

code and the high-level security policies of the consumer. Moreover, the code producer

does not have to know the consumer’s security policies (as in PCC). Assuming that a

model can be much less complex than the corresponding program, it is feasible for a

consumer to automatically determine whether a model conforms to his security policies.

Figure 2-7 - The Model-Carrying Code framework [144]

2.2.2.3.1.4 Java Virtual Machine Byte-Code Verifier

The basic Java Virtual Machine (JVM) security model provides the capability of carrying

out checks for admission for not trusted code, via a byte-code verifier [105]. In general

the basic JVM security model comprises three related parts, namely the byte-code

verifier, the class loader and the security manager. The JVM verifies all byte-code before

execution.

The byte-code verifier reconstructs type information by inspecting the byte-code

[171]. The types of all parameters of all byte-code instructions must be checked. The

JVM specification lists what must be checked and what exceptions may result from a

failed check. However, the JVM specification does not define when and how type

verification should be done. Thus, while the process of verification in Java is defined to

allow different implementations of the JVM, most Java implementations take a similar

approach to verification. The most common verification process consists of byte-code

 48

checks on the class file itself and runtime checks, which confirm whether the referenced

classes, fields and methods are existing and compatible to their attempted use.

The byte-code checks establish a basic level of security guarantees. In particular, the

class file format is checked whether it is correct. This check is carried out with the class

loader’s cooperation. The code is also verified for the correct hierarchical structure of its

classes. Thus, every class must have a super-class, final classes cannot have subclasses,

final methods cannot be overridden and all field and method references in the constant

pool (a heterogeneous array composed of five primitive types) must have legal names and

classes. Moreover, the byte-code is verified by using data-flow analysis. By this means, it

can be ensured that the operand stack can not be overflowed or underflowed, variables

are properly initialised, register access is checked for using the proper value type, that

method calls are done with the appropriate number and type of arguments, fields are

updated with the appropriate type and all opcodes have the proper type of arguments on

the stack and in the registers.

During the class execution runtime checks can occur, since some aspects of Java's

type system cannot be statically checked, like dynamic linking. Java loads each class only

when it is actually needed at runtime (dynamic linking). Thus, whenever an instruction

calls a method, or modifies a field, the runtime checks ensure that the method or field

exists, type-checks the call and checks that the executing method has the appropriate

access privileges.

2.2.2.3.2 Post – Mortem Checks

Monitors which can only observe the runtime behaviour of a system (“O, pre, A” and “O,

post, A”) perform post-mortem checks. Post-mortem checks deal with properties which

might not be of high importance. Proposed monitoring architectures for this category of

monitors, like AMOS [38] and FLEA [60] maintain event logs and offer proprietary

event pattern specification languages, or store events in relational databases and deploy

standard SQL querying for detecting requirement violations [137].

2.2.2.4 General Purpose Dynamic Verification Tools

2.2.2.4.1 The Java PathExplorer (JPaX) framework

 49

The Java PathExplorer (JPaX) is a tool for monitoring systems at their runtime [72, 75].

By using JPaX one can automatically instrument code and observe the system’s runtime

behavior. It can be used during development to provide more robust verification. It can

also be used in an operational setting, to help optimize and maintain systems as they

mature. Figure 2-8 illustrates an overview of JPaX architecture.

Figure 2-8 – The JPaX architecture [75]

JPaX consists of three modules:

1. Instrumentation module: It performs a script-driven automated instrumentation

of the program to be verified, through which the byte-code is automatically

instrumented.

2. Interconnection module: Its responsibility is to receive events about potential

errors and transmit them to the observer module.

3. Observer module: It performs two kinds of verification:

• Checks events against a user-provided requirement specification

written in Maude, a formal, modularized specification and verification

language. JPaX supports linear temporal logic (LTL), for both future

and past time. Future time LTL uses execution traces as an underlying

model making it convenient for program monitoring. Past time is

useful for verification of safety properties.

• Carries out error pattern analysis by exploring an execution trace and

detecting potential problems such as error-prone programming

 50

techniques, e.g. locking practices that may lead to data races and/or

deadlocks. The important and appealing capability of the error pattern

analysis algorithms is that they can find potential errors, even in the

case where errors do not explicitly occur in the examined execution

trace. However, error pattern analysis may sometimes find errors

which cannot exist. Two algorithms focusing on concurrency errors are

implemented for JPaX:

I. The “Eraser” data race analysis algorithm. A data race occurs

when two or more concurrent threads access a shared variable

simultaneously without any locking mechanism and at least one

thread intends to write in the variable. The “Eraser” keeps track

of thread locks and variables to find data race conditions.

II. Deadlock analysis algorithm. Deadlocks occur when multiple

threads take locks in different order. For example, a deadlock

condition occurs when:

� Thread A acquires Lock 1 while Thread B acquires

Lock 2

� Thread A retains Lock 1 and asks for Lock 2 while

Thread B retains Lock 2 and asks for Lock 1. JPaX

monitors locks during program execution to find

potential deadlocks.

Using JPaX, a Java program byte-code is automatically instrumented using instructions

from a user-provided script. This script defines what kind of error pattern detection

algorithms should be activated and what kind of logic-based monitoring should be

performed. The automated instrumentation tool, which is used in JPaX, is JSpy [65].

JSpy can be seen as an Aspect Oriented Programming tool in the sense that it is guided

by rules, or aspects, which specify how a program should be transformed to achieve

additional functionality. However, the main purpose of these aspects is to extract

information from a running program. JSpy itself is built on top of the low-level JTrek

instrumentation package [40].

As aforementioned, JPaX makes use of the Maude system [37]. Maude is a

specification and verification system which supports rewriting logic. Rewriting logic is

 51

appropriate for expressing concurrent changes, which can naturally deal with state and

with concurrent computations. Therefore, rewriting logic can be used like a universal

logic, due to the fact that the syntax and operational semantics of other logics (such as

temporal logics) can be expressed in rewriting logic.

The Maude rewriting engine can be used as:

• A monitoring engine during program execution. In JPaX, execution events are

submitted to the Maude program that evaluates them against the requirements

specification.

• Translation engine before execution. In JPaX, the specification is translated into a

data structure optimised for program monitoring. This data structure is then used

within the Java program to check the events at runtime.

JPaX produces either no output (when no errors are found) or a set of warnings. The

warnings deal not only with runtime violations of high-level requirements written in

temporal logic formulae but also with low-level error-detection procedures like

concurrency related problems such as deadlock and data race algorithms.

The JPaX Java instrumentation module can be replaced with a C++ module to

monitor C++ code. Experiments were conducted by the NASA Ames Robotic group on

C++ code to check for deadlocks. JPaX located a potential deadlock that had not been

previously detected during other testing [23].

To conclude, JPaX can also find potential errors, even in the case where errors do not

explicitly occur in the examined execution trace. However, its logic-based monitoring

adds an overhead to the normal execution of programs. Moreover, its error pattern

runtime analysis can detect problems that do not really exist (called false positives).

2.2.2.4.2 The Java Monitoring and Controlling Framework (Java-MaC)

The Java Monitoring and Controlling (Java-MaC) framework uses formally specified

properties to monitor Java programs at runtime [93]. Its architecture is shown in Figure

2-9. It can be divided in two main parts: the static phase (before a monitored entity runs)

and the runtime phase (while the monitored entity is executing). During the static phase,

the runtime modules, namely a filter (event generator), an event recognizer (event

processing module), and a run-time checker (external monitor), are automatically

generated from a formal requirements specification. During the runtime phase, events

 52

from the execution of the monitored program are collected and checked against the given

requirements specifications.

The static phase of the Java-MaC architecture starts with a formal requirements

specification, which is written in both high-level and low-level specifications. Java-MaC

makes use of two event-based formal languages, the Primitive and the Meta Event

Definition Languages (PEDL and MEDL), which are used for writing low and high level

specifications respectively. PEDL is tightly related to the programming language.

Specifications written in PEDL contain the definitions of primitive events and conditions

expressed using these events. Such definitions are given in terms of program entities such

as program variables and program methods and their purpose is to assign meanings to the

program entities. MEDL specifications consist of required safety properties. Primitive

events and conditions are used to express these safety properties. Intuitively, a condition

is a state predicate and an event is an instantaneous state change. The reporting

capabilities of the runtime checker are described in the MEDL specifications, as well.

MEDL uses alarms to express a violation of a property. An alarm is an event that should

not occur during an execution. If an alarm fires during an execution, then a user

notification is issued.

Once the specifications are written, the next step is the generation of the runtime

modules. Low-level specifications generate a filter that is inserted into the byte-code of

the monitored program using an automatic instrumentation procedure. An event

recognizer is also generated automatically by translating the PEDL specification.

Similarly, a runtime checker is generated automatically from the higher-level MEDL

specification.

 53

Figure 2-9 – The Java-MaC architecture [93]

During the runtime phase, the instrumented program is been monitored and checked

against the requirements specification. The filter keeps track of changes of monitored

objects and sends relevant information about the execution trace to the event recogniser.

The event recognizer detects events from the state information received by the filter. An

event can be either a primitive event (such as a method call) or a change in the state of a

condition. Recognized events are sent to the run-time checker, which determines whether

or not the current execution trace satisfies the requirements specification and raises an

alarm if a violation is detected.

2.2.2.4.3 The Java Monitoring-Oriented Programming Framework (Java-

MoP)

Chen and Rosu [34] proposed a development and analysis framework for Java, the Java

Monitoring-Oriented Programming (Java-MoP). Java-MoP follows the MOP paradigm

and thus monitoring is one of its fundamental principles. It also provides the capability of

recovering from errors (specification violations) at runtime.

According to its proposed distributed architecture, annotations formally describing

requirements on past, current and future states, have first to be inserted into the monitored

Java source code, in the client side. Java annotation processors send these annotations to

the appropriate logic plug-ins, which reside at the server side. Essentially, each of the

 54

logic plug-ins implements an algorithm for synthesising monitoring code for a specific

formalism. Logic plug-ins support past and future time variants of temporal logics, as

well as, extended regular expressions. Furthermore, Jass [21, 115] and JML [100]

annotations can be used. These specific annotations do not require a special logic plug-in,

only a Java shell to transform them into Java executable code.

Once the annotations have been transformed into Java executable code at the server

side, they are sent to the client side. Java assertion processors integrate the received code

in the system, according to the configuration attributes of the monitor. In addition, the

client side modules are also responsible for the system’s code instrumentation for

emitting events, in case of an external monitor. In this Java-MoP implementation,

AspectJ [91] is used as the instrumentation mechanism.

The checks, which can be carried out by using Java-MoP, depend on the monitoring

properties. Thus, a monitor implemented in Java-MoP can check for class invariants at

every change of class state or for method pre/post-conditions. Also, a monitor can be

configured to halt the program’s execution while it carries out specific checks which deal

with critical properties (synchronised keyword). In case that a non-critical property must

be checked, a monitor’s reply may not be important, so the system keeps running during

the check (not synchronised keyword).

MOP allows one to control the execution of a monitored program. By allowing users

to specify handlers for the violation or validation of monitored properties, Java-MoP can

support the runtime control and recovery of a monitored Java program. These handlers

can either simply report errors and throw exceptions or take more complicated actions,

like resetting states and performing alternative, error-correcting computations.

2.2.2.4.4 The Jassda Framework

As an alternative approach to Jass [21, 115], Jassda framework [25, 26] checks assertions

on traces by observing the events generated for debuggers through the Java Debug

Interface (JDI). An obvious shortcoming of this alternative is that the monitored program

must be running in the debugging mode.

The Jassda tool allows the dynamic verification of a system written in Java against a

CSP-like specification. The events from the monitored system are obtained through a

general event extraction and dispatching facility, the Jassda framework [25, 26]. This

 55

framework can also be used for other purposes, e.g., to log events or to stimulate a

program for testing purposes.

Figure 2-10 – The architecture of Jassda framework [25]

The architecture of the Jassda framework is shown in Figure 2-10. At the lowest level

JVMs execute the monitored system’s code (debuggees). These debuggees are connected

to the Broker, which is the central component of the Jassda framework. The “Registry”

database, an optional graphical user interface and the Broker build the Jassda core. Other

Jassda modules connect to this core requesting and consuming events. The connection

between the debuggees and the Jassda core transports the events that we want to observe.

This connection is established by using the Java Platform Debugger Architecture (JPDA).

The Jassda tool development aimed to achieve a method for monitoring Java programs

which would be as less code intrusive as possible. The Java Debug Interface (JDI) [157]

was used for this purpose.

During runtime the debuggees can be configured to generate events for several

situations, e.g. a method has started or terminated, an exception has occurred, a

breakpoint is reached, a class is loaded/unloaded, read/write access to a variable, a thread

was started/stopped. After having emitted an event, the debugging VM can be configured

to suspend execution and thus allow a deep view into the VM. For example, for each

currently running thread its stack trace can be analyzed or for each class its inner

structure (like super-classes and implemented interfaces) can be read. Even the byte-code

of every method can be accessed for further analysis.

 56

The Logger module logs the execution of a Java system by writing its sequence of

events into a file. The amount of information that can be derived from an event as well as

the alphabet of events can be configured by an XML-based configuration file. The most

important event listening module is the Jassda Trace–Checker. The Trace–Checker reads

one or more trace specifications written in CSPJassda and builds an internal process

representation for the set of legal traces. With every received event the Trace–Checker

will ensure that this actual sequence of events is a legal trace of the specification’s

process representation or stop the program and inform the user about the violation.

2.2.2.4.5 The Temporal Rover Toolset

The Temporal Rover [57] is a commercial toolset, which performs dynamic

verification of temporal properties over programs written in Java, C, C++, VHDL,

Verilog, and ADA. This is achieved by adding extra LTL/MTL assertions to the program

source code. These assertions are embedded as comments into the source code. The

Temporal Rover parser converts program files into new files, which are identical to the

original files except for the assertions that are now implemented in source code.

The Temporal Rover adopts a coarse-grained view of the state model. A state

constitutes the values of variables within the scope of a given method. Method execution

is viewed as an event that causes transition between states, and properties are evaluated

only at the completion of a method execution. Clearly, it misses invalid states that may

occur during the execution of a method. Properties are written inside methods and

predicates map to the variables within the scope of the method. Consequently, each

property has a unique perspective of the environment that it is validating and properties

may not be composed. For example, even though one would imagine that two

contradicting properties could be composed and reduced to “false”, this is not the case

under the Temporal Rover’s state model. A property’s notion of time refers to the next

execution of the method containing it. Two properties may therefore carry different

semantics for the next-state operator. Another limitation of Temporal Rover is that under

its state model one can not reason about control intensive properties such as method x

must never execute after method y. The DBRover is a distributed-monitor version of the

Temporal Rover where assertions are monitored on a remote machine, using HTTP,

sockets or serial communication with the underlying target application.

 57

2.2.2.4.6 The Java PathFinder (JPF) Framework

Java PathFinder (JPF) [168] is a model checker for Java byte code. More specifically, it

is a specialized Java Virtual Machine (JVMJPF), which runs on top of the underlying

host JVM. In contrast to the standard JVM, JVMJPF executes the program in all possible

ways. The state space of a program is thus the resulting computational tree, whose

branches are determined by the threads’ instructions and possible values of input data.

JPF supports depth-first, breadth-first as well as heuristic search strategies to guide the

model checker’s search in cases where the state explosion problem is too severe [168].

JPF contains no mechanism of its own to specify user-defined properties, but rather

integrates with the Bandera toolset [44] and accepts the Bandera Specification Language

(BSL) [43]. Even though JPF carries an elaborate state model (being able to capture

every state of the JVM), temporal property specification is limited to the capabilities of

BSL. Figure 2-11 depicts the JPF architecture.

Like other model checkers for concurrent programs, JPF supports the partial order

reduction (POR) [36]. The purpose of this technique is to lower the state space size via

including in the state space only one interleaving of instructions that are both independent

and executed by different threads. The consequence is that JPF actually traverses a

reduced state space where each state is associated with one of the following events

(“points”) in the byte code execution:

• Scheduling point: The current instruction is thread scheduling relevant (e.g. it

accesses a shared variable, starts/stops a thread, blocks a thread, etc.)

• Value point: A value selection takes place.

 58

Figure 2-11 – The JPF Architecture [168]

In order to check a code unit (e.g. a method) for different values of input data, JPF

contains a static class Verify which provides methods for a systematic selection of values

of virtually any type. The methods of Verify are to be called in the checked code. For

example, if the checked code unit executes Verify.random(3), an integer value from the

range 0..3 is selected. However, after reaching an end state, JPF backtracks up to the

Verify.random(3) call and selects another value from 0..3; this is repeated until all the

values from this interval have been used for execution. By employing methods of Verify

the state space size increases since each selected value creates a different branch in the

state space.

By default, JPF searches the state space of the checked program for “low-level”

properties like deadlocks, unhandled exceptions and failed assertions. However it is

extensible via the publisher/listener pattern and as such it allows for observing more

general properties. Since Java code assertions must always hold, temporal properties

specified outside of BSL can be checked as well. This way, listeners can check for

specific state-based properties.

Each state of a checked program in JPF consists of the heap, static area and stacks of

all threads. When traversing the state space, JPF checks whether the current state has

already been visited. If this is so, it backtracks to the nearest scheduling/value point, for

 59

which an unexplored branch exists and continues along that. This backtracking is based

on keeping a stack representing the currently explored path in the state space (an item in

the stack determines the list of yet unvisited branches).

The Bandera toolset [71] is a collection of program analysis, transformation, and

visualization components designed to allow experimentation with model-checking of

Java programs. Bandera takes as input a Java source code and a program specification

written in Bandera’s temporal Specification Language (BSL), and produces a program

model and a specification as input to model-checking applications, like Spin [80] and

Java PathFinder [168]. Then, Bandera uses the corresponding model-checker to prove

whether the model satisfies the required specification (i.e. whether the Java program

satisfies the BSL specification). If the specification is not satisfied, then a counter

example trace is returned. Bandera uses this to show the problematic execution path

directly in the original Java code. Bandera deals with the state explosion problem and the

fact that the program state models must be finite by providing data abstraction and

program slicing methods when customizing the model. These features help produce a

much smaller finite state model of the Java program.

In particular, Bandera consists of five major components:

• Property specification is supported in Bandera through the use of global

properties (e.g., deadlock) and application specific properties (e.g., assertions and

temporal logic formulas). Users define observations of the execution state of a

Java program, as predicates over program locations and data values in the

program. Assertions and temporal formulas are then defined in terms of those

observations.

• Program slicer: Automates the elimination of program components that are

irrelevant for the property under analysis. Slicing criteria are automatically

extracted from the observable predicates that are referenced in the property.

Bandera’s Java slicer treats multi-threaded programs [71] and is based on

calculation of the program’s data dependence graph.

• Program abstraction which can be summarized as: (i) definition of an abstraction

mapping, which is appropriate for the property being verified, (ii) use of the

abstraction mapping to transform the temporal property into an abstract property,

(iii) use of the abstraction mapping to transform the concrete program into an

 60

abstract program, (iv) checking whether the abstract program satisfies the abstract

property, (v) reasoning about the satisfaction of the concrete property by the

concrete program.

• Verification code generator: Transforms the sliced, abstracted program into the

input format of a selected model checker. This component is also responsible for

establishing the correspondence between the states of the produced model and the

states of the original program.

• Counter-example interpreter: Involves the mapping of low-level, verifier-specific

counter-examples back to the Java source code. Facilities for navigating through

the counter-example and displaying the values of both stack and heap allocated

data are provided through a debugger-like interface.

2.2.2.4.7 The JNuke Tool

JNuke is a framework for static and dynamic analysis of Java programs [12, 13]. It was

originally designed for dynamic analysis, including explicit-state software model

checking and runtime verification.

JNuke’s virtual machine (VM) is the core element of the framework. For generic

runtime verification, the engine executes only the program once according to a given

scheduling algorithm. The VM API allows for event-based runtime verification through

various runtime algorithms. This API provides access to events occurring during the

program execution. Event listeners can, then, query the VM for detailed data about its

internal state and thus implement any runtime verification algorithm, including detection

of high-level data races [10] and stale-value errors [11].

Before the execution of the monitored program, the class loader transforms the Java

byte code into a simplified form containing only 27 instructions, which is then

transformed into a register-based version [13]. Execution of the program generates an

event trace. During execution, the runtime verification API allows event listeners to

capture this event trace. These listeners are used to implement scheduling policies and

runtime verification algorithms, like Eraser [141] and detection of high-level data races

[10]. The verification algorithm is responsible to copy data it needs for later

investigation, as the VM is not directly affected by the listeners and thus may choose to

 61

free data not used anymore. Figure 2-12 presents an overview of the JNuke VM and how

a runtime verification algorithm can be executed by using callback functions in the VM.

Figure 2-12 – Runtime verification in JNuke [13]

JNuke was expanded with static analysis capabilities at a later stage. Static analysis is

usually faster than dynamic analysis but less precise, approximating the set of possible

program states. In static analysis, iterations over these approximated states are carried out

until a fix point of them is computed [45]. Properties checked with static analysis require

summary information of dependent methods or modules. Figure 2-13 illustrates the

separate classical approaches for dynamic and static analysis.

On the other hand, dynamic analysis examines properties against an event trace

originating from a program execution. By using a free data flow analysis graph [113]

static analysis can work similarly to the dynamic execution. Analysis algorithms based on

such a graph can allow for non-deterministic control-flow and use sets of states rather

than single states in its abstract interpretation [13]. Moreover, in such a graph data

locality is improved because an entire path of computation is followed as long as valid

new successor states are discovered. Thus, all Java methods can be executed, allowing for

a generic analysis algorithm to be executed under both static and dynamic analyses. The

chosen analysis algorithm runs until an abortion criterion is met or the full abstract state

space is exhausted.

 62

Figure 2-13 – Classical approach for dynamic and static analysis [13]

A generic analysis represents a single program state or a set of program states at a

single program location. It also includes a number of event handlers, which model the

semantics of byte code operations. Both static analysis and runtime analysis trigger an

intermediate layer, which evaluates the events. The environment hides its actual nature

(static or dynamic) from the generic algorithm and maintains a representation of the

program state that is suitably detailed.

Figure 2-14 shows the generic analysis principle. Run-time verification is driven by a

trace, a series of events e emitted by the runtime verification API. An event represents a

method entry or exit, or execution of an instruction at location l. Runtime analysis

examines these events directly. The dynamic environment, on one hand, uses the event

information to maintain a context c of algorithm-specific data before relaying the event to

the generic analysis. This context is used to maintain state information s that cannot be

updated uniformly for the static and dynamic case. It is updated similarly by the static

environment, which also receives events e, determining the successor states at location l

which are to be computed. The key difference for the static environment is that it updates

c with sets of states S. Sets of states are also stored in components used by the generic

algorithm. Operations on states (such as comparisons) are performed through delegation

to component members. Therefore the “true nature” of state components, whether they

embody single concrete states or sets of abstract states, is transparent to the generic

analysis algorithm, which can thus be used either statically or dynamically.

Figure 2-14- Generic analysis for both a static & dynamic environment [13]

The abstract domain for the static analysis is chosen based on the features required by

the generic analysis algorithm to evaluate given properties. Both the domain and the

properties are implemented as an observer algorithm in JNuke. Future algorithms may

include an interpreter for logics such as LTL. Interpretation of events with respect to

 63

temporal properties would then be encoded in the generic analysis while the event

generation would be implemented by the static and dynamic environment, respectively.

2.2.2.4.8 Summary of Dynamic Verification Tools

The following table summarizes the surveyed verification tools in terms of the general

dynamic verification approach steps of Table 2-2.

Table 2-2 – Summary of Dynamic Verification Tools

Tool

Language for

Properties

Formalization

Methods for

Events Emission

Monitor

Category

JPaX Temporal logic
in Maude
rewriting tool

Automated
instrumentation by
using JSpy
(modified JVM)

Observer O, pre/post, A

Java-MaC Past-time
interval
temporal logic

Automated
instrumentation
(instrumentor)

Runtime
Checker

O, pre/post, A

JMoP ptLTL, ftLTL,
EREs

Automated
instrumentation by
using AspectJ

Embedded in
code or parallel
process to the
system on the
same or
different
machine

OC, pre/post,
S/A

Jassda CSPJassda API based (from
JVMs by using the
Java Debug
Interface)

Trace checker OC, pre/post,
A

Temporal
Rover

LTL/MTL
assertions

Instrumentation Embedded
(using
alternating
finite automata)

OC, pre/post, S

JPF User defined
assertions, LTL
(by using
BANDERA)

BANDERA
abstraction
capability

JVMJPF OC, A

JNuke - API based (JNuke
VM with RV API)

Runtime
verification
algorithm

O, post, A

 64

2.3 Abductive reasoning

A key characteristic of the approach that has been undertaken for the generation of

diagnostic information for S&D violations is the use of abductive reasoning. Thus, in this

section we provide an overview of research in this area and highlight the basic aspects of

this research to enable the reader understand the relationship of our approach to it.

Abduction in general is defined as the reasoning process of generating explanations

for a set of observations and searching among them to find the best one. According to

Peirce [127], abduction is an inference process from effect to cause. In the context of

artificial intelligence, the standard formalization of abduction defines an explanation as a

set of assumptions/hypotheses, which, along with the underlying knowledge, logically

entails a set of observations [33]. Therefore, if ϕ explains ω, in connection with the

underlying theory T in an abductive fashion, then ω must be derivable from ϕ ∪ T.

Our overview of the related work related to abduction focuses on the logic based

approaches to abduction, including temporal logic based abduction, and the selection

criteria that have been proposed in the literature in order to make selections of

explanations produced by abduction in cases where more than one such explanations are

generated. This is because research in these areas is most closely related to the approach

that has been described above.

2.3.1 Logic-Based Abduction

Abduction based on models expressed in some logic-based language is the most widely

accepted approach by the researchers in the field of abduction [33, 59, 86, 87, 97, 122,

135]. In this approach, the knowledge, which is represented in any logical language for

deductive reasoning purposes, is also used in abductive reasoning. A logic-based

representation for abduction consists of a theory T, which is defined in some logic

language. The set of predicates or sentences or symbols, which can be accepted as

explanations to observations, are called abducibles [41, 135] and abducibles can only be

members of the body of the underlying theory formulas.

If the abductive process results in a sentence ϕ as an explanation of observation ω,

the following conditions must be satisfied:

 65

• T ∪ ϕ |- ω

• T ∪ ϕ to be consistent, and

• ϕ contains an abducible predicate or a set of abducible predicates

In the context of abduction, the relationship between ϕ and ω is considered as some kind

of causal relationship including for example interpretations of the form “ϕ is the reason

for ω being true”. However, as Levesque has shown [103], abduction is not concerned

exclusively with relationships between causes and effects. Levesque [103] suggests the

extension of the notion of explanation in order to grasp that ϕ is sufficient, and not only

necessary, to sanction a belief in the proposition ω. Consequently, there must not be a

direct causal relationship between both ϕ and ω, but, in connection with the domain

theory, ϕ is enough for ω to be true.

Generally, a basic abductive reasoning procedure operates as follows according to

[148]. The underlying domain knowledge is formulated in a set of clauses in some logic

language (a theory representation). For a given conjunction of input literals/sentences,

which have to be explained, the abductive inference procedure computes all the possible

abducibles by backward chaining on the input literals/sentences, using the clauses of the

underlying theory. This procedure is similar to the way that proofs are computed in

Prolog. In case that there is no fact or consequent of a rule in the underlying theory,

which can be unified with a sub-goal of the current proof, the proof does not fail. On the

contrary, the abductive reasoning procedure provides the choice of flagging that sub-goal

as an assumption/explanation, assuming that there are not any consistency implications.

The abductive reasoning procedure gives a proof of the conjunction of the input literals

using the rules and facts of the underlying theory, together with a set of

assumptions/hypotheses. Briefly, an abductive proof is considered as an explanation of

the input literals in connection with the logically encoded underlying knowledge.

In the context of logic programming with integrity constraints, Eshgi and Kowalski

[59] have also considered abduction as an alternative framework to the principle of

negation as failure (NAF). More specifically, these authors have shown that if negative

conditions are considered as abducibles and appropriate denials and disjunctions are

imposed as integrity constraints, negation as failure can be successfully simulated by

abductive reasoning. In this approach, logic programs using negation as failure are

converted into an abductive framework, where integrity constraints that are more general

than denials can be defined. For this reason, an abductive formulation includes a Horn

 66

clause theory (T) without denials (i.e., negated predicates), a set of integrity constraints

(I) and a set of abducible predicates (A). In this context, an explanation set E is an

abductive solution for the query q if and only if E consists of a set of variable free

abducible predicates, T ∪ E |= q and T ∪ E ∪ I is satisfiable. Note that in this approach,

integrity constraints can be considered as a selection criterion for alternative explanations

that are produced by abductive reasoning.According to this criterion, abduced

hypotheses, which do not satisfy the integrity constraints, are ruled out.

The transformation of NAF-formulation into an abductive formulation can be done in

three steps. Firstly, all negative atoms ¬n are replaced by new atoms n*. Subsequently

integrity constraints of the form “� n*(x) ∧ n(x)” are added to the theory. The newly

added integrity constraints ensure that both n(x) and n*(x) cannot be true simultaneously

for each value of x, as n* has replaced ¬n. Finally, all n* have to be declared as

abducibles. The above conversion procedure succeeds in eliminating all negative atoms

by introducing new unambiguous abducible atoms for them. Also, instead of testing the

provability of negated conditions by negation as failure, the consistency of abducible

predicates is checked.

2.3.2 Temporal Abduction

Temporal abduction refers to cases where the observations, which should be explained,

are associated with temporal information, as in the case of the diagnostic framework.

Console et al. [41] describe temporal abduction as a type of reasoning for “generating

explanations, which do not only account for the presence of observations, but also for

temporal information on them, based on temporal knowledge in the domain theory”. In

temporal abduction problems, temporal knowledge can be expressed as temporal

constraints [28, 41], which are associated to the rules of the underlying domain theory.

Such temporal constraints must be satisfied by the temporal information associated to the

generated explanation. On the other hand, in cases where the underlying theory is

expressed in some temporal language, like Event Calculus, temporal knowledge can be

represented as information embedded in the underlying theory formulas.

Console et al. [41] have proposed a temporal abduction approach, which makes use of

temporal constraints associated with the observations and the formulation of the

underlying domain theory. The temporal consistency check of each candidate explanatory

formula, which could lead to a plausible explanation, is used as a pruning criterion for the

 67

set of the accepted candidates, in every step of the abductive backward chaining

procedure. Thus, only the temporal consistent candidates are used for building a plausible

explanation. Since the temporal consistency checks required in each step of the abductive

procedure can be computationally expensive, the Simple Temporal Problem framework

(STP) [51] was used in this approach. The STP framework treats the temporal checks as a

constraint satisfaction problem. More specifically, in the STP framework, each of the

binary constraints, which represent time dependencies between the actual times of events,

contains only one time interval. In particular Console et al. [41] used LATER [29], which

is a general purpose temporal reasoning system dealing with special classes of temporal

constraints as the aforementioned ones.

The main differences between the work in model based diagnosis and our abduction

based explanation process are that our process is based on Event Calculus, treats the time

constraint satisfaction problem as a linear programming problem, generates all the

possible alternative explanations for the observations (whereas others’ frameworks

generate a single explanation), and provides overall beliefs in the validity of explanations

by looking at the consequences of such explanations. These beliefs are also used in order

to rank explanations and select some of them as the most plausible ones.

2.3.3 Selecting Abduced Explanations

Generally, the evaluation and selection of one or more explanations from the entire set of

explanations, which an abductive reasoning process can generate, is one of the main

problems in abductive reasoning. The problem is how to choose effectively among the

alternative explanations, which might have been generated by abductive inference for a

given observation. In the relevant literature, there are several criteria that have been

proposed in order to assess and select the most preferred abductive explanation.

Generally, these criteria fall into two categories. The first of these categories includes

criteria, which require the logical and syntactic simplicity of the abductive explanations

[87, 122]. The second category includes criteria which favour the explanation specificity

in the selection process [8, 120]. In the following, we review each of these categories in

more detail.

 68

2.3.3.1 Logical and Syntactic Simplicity Criteria

In the context of abductive reasoning, “simplicity” is generally interpreted as logical

simplicity. Logical simplicity means that the preferred assumptions/hypotheses are those

that contain the fewest different abducibles. Therefore, the preferred explanations are

those that require the fewest additional assumptions/hypotheses to what has been

observed.

The basic criteria that underpin syntactic simplicity in the literature are the criteria of

“non-triviality”, “basicness”, and “minimality”. To appreciate the basic criteria, which

underpin syntactic simplicity, suppose that T is a first-order theory (knowledge base) and

E is a set of hypotheses/explanations for an observation Ω. According to the simplicity

criteria, e can be considered as an accepted explanation, if it belongs to E and satisfies the

following conditions:

• T ∪ e must be consistent (i.e. a “consistency” criterion that is present in most

logic-based approaches to abduction)

• The observation Ω must not be a direct consequence of the hypothesis e. (this

condition precludes that Ω itself can be considered as a feasible explanation of

Ω (“non-triviality” criterion)

• Every consistent explanation e must be trivial, i.e., there must be no other

explanation for the explanation itself. This criterion favours the most specific

explanation (“basicness” criterion)

• There must not exist any more general explanations for Ω than e

(“minimality” criterion)

Although the importance of logical simplicity is stressed other forms of simplicity

have also been proposed in the literature. Peirce [127], for example, has proposed the use

of “psychological simplicity”. The criterion of “psychological simplicity” suggests the

selection of an explanation hypothesis if this hypothesis is the one that would be

intuitively preferred. Current research, though, favours logical simplicity selection

criteria, due to the fact that “psychological simplicity” is hard to define and implement.

 69

2.3.3.2 Specificity Selection Criteria

Following the logic simplicity criteria, someone may still end up with more than one

alternative explanations of an observation. Thus, additional selection criteria are often

required in order to reduce the set of alternative hypotheses. An additional criterion used

for this purpose is a criterion that requires the explanation to have a certain level of

specificity. Relevant approaches for selecting the preferred abductive explanation, which

focus on a certain level of specificity, have been classified into two groups by Appelt and

Pollack [8], namely the global and local criteria.

2.3.3.2.1 Global criteria

Global criteria are heuristics, which can be applied for directing the selection procedure

to the most preferred abductive explanation, by considering entire sets of explanations.

Appelt and Pollack [8] have distinguished some selection criteria, which are global

criteria, namely: cardinality based criteria, least presumptive or least specific abduction

and most specific abduction.

Cardinality comparisons were first introduced in diagnosis applications to ensure that

the preferred explanations imply the failure of the smallest number of components of the

under examination system. In diagnosis applications in particular, the system which is

under examination is considered as a set of distinguishable components whose intended

input and output behaviour is completely specified in terms of a base theory. The

diagnostic task in this setting involves an abductive inference procedure reasoning for the

faulty system behaviour, as it has been observed during the system’s runtime. The output

of the abductive procedure is an explanation set, which explains the captured faulty

behaviour of the system. More specifically, the explanation set identifies groups of

system components, which have failed, and whose failure could account for the faulty

behaviour of the system. The accepted explanation set, under the evaluation criterion of

this approach, should imply the failure of the smallest number of components. As Appelt

and Pollack note in [8], the cardinality comparison criterion cannot be generally applied,

due to the fact that it assumes that the system that is the subject of diagnosis always has a

set of distinguishable and enumerable components. However, in other contexts, for

example natural language understanding and plan recognition systems, the notion of

distinguishable and enumerable components is difficult to define.

 70

The “less presumptive explanation” criterion was suggested by Poole in [130], as an

alternative to the cardinality criterion. According to it, given two alternative sets of

explanation E1 and E2 and a logical theory T, E1 is less presumptive than E2 if and only

if T ∪ E2 |= E1. An abductive inference procedure, which is called “least specific

abduction” and realizes the aforementioned selection criterion, has been proposed by

Stickel in [156]. Note that the less presumptive or least specific explanations provide the

most general explanation. Thus, least specific abduction is not necessarily an appropriate

strategy for diagnostic tasks, which require very detailed knowledge about the origin of

failures and there are diagnostic tasks, as the ones that we are dealing with, where the

most specific explanation criterion is considered more adequate.

2.3.3.2.2 Local Criteria

Local criteria are considered as an alternative to global criteria for evaluating alternative

abductive explanation sets [8]. Generally, this category of criteria assumes that weights

are associated with the rules of the underlying theory. Each explanation set, then, is

evaluated by combining the weights of the rules, which were used to derive the members

of the set. Appelt and Pollack [8] distinguish further local criteria into: weighted

abduction, cost-based abduction and Bayesian statistical methods.

2.3.3.2.2.1 Weighted Abduction

Appelt and Pollack [8] have proposed another approach, called “weighted abduction”, for

assessing alternative explanations. This approach introduces the concept of explanations

costs during the abductive inference procedure.

Assuming that T is a theory used in abduction, an underlying preference order on the

models of T is assumed. In weighted abduction, one set of hypotheses/explanations A1 is

better than an alternative A2, if A1 restricts the models of T to a more highly valued

subset than A2 does. The weights, which are assigned on the literals/atoms of the rules of

T, impose implicitly constraints on the assumed preference order. For instance, a rule pα

⊃ q with a weighted literal p in its body (α<1) reflects that there is a preference order of

the models, which satisfy q. The models, which are more preferred than every model

satisfying q, are those satisfying p as well. By this means, if p is satisfied by a model then

that model provides an explanation for q.

 71

In general, in the context of weighted abduction, assuming that there is an abduction

problem with goal φ, an underlying theory T and a set of explanations A, an abductive

proof would be the search for a set of explanations A such that the preferred models of T

∪ {φ} to satisfy T ∪ A. Regarding the goal φ, the set of explanations A must be adequate

(T ∪ A |- φ), consistent (T ∪ A |/- ¬φ) and syntactically minimal (if ψ∈A then T ∪ A –

{ψ} |/- φ). The explanation set A, also, must satisfy a “semantic greatest lower bound”

condition requiring that the model which entails T ∪ A must be the most preferable one.

Finally, the A set must not entail the negation of its elements at a cost that is less than that

of the A set itself (i.e., the “defeat” condition).

According to the algorithm proposed in [8], all the explanation sets for a goal φ are

generated by using the theory rules, which are Horn clauses whose body literals are

associated with a weighting factor (i.e. rules of the form p1
w1 ∧ …∧ pn

wn ⇒ q). The goal

φ can be either assumed at its predefined assumption cost or unified with a fact in the

knowledge base (zero cost proof), or unified with another atom that has already been

assumed, or proved by applying backward chaining using a rule p1
w1 ∧ …∧ pn

wn ⇒ q. In

the latter case, the proof cost of the goal matched with q is computed by multiplying the

weights wi of the conditions pi in the body of the rule. In this process, the best solution of

the abduction problem is the explanation set with the lowest cost proof. The algorithm

also filters out explanation sets, which do not satisfy the consistency and the defeat

conditions.

The weighted abduction approach has some computational difficulties as pointed out

by Appelt and Pollack which arise due to the need to determine a candidate set at a

minimal cost, as well as, guarantee that all candidate explanations are consistent with the

underlying theory. In particular, the detection of the minimal cost explanation requires

the computation all possible explanations with a direct effect in the computational cost of

the overall process. Regarding the consistency of the abduced explanations with the base

theory, it has been claimed that in some domains an incomplete inconsistency check,

focusing only on specific points, could be applicable. For instance, in the context of

TACITUS text understanding system [79], most of the inconsistencies result from the

erroneous identification of two distinct individuals. Thus, most of the inconsistencies can

be detected by checking variable typing constraints for the assumed literals. An

incomplete consistency check can be computed relatively quickly and thus, where

 72

applicable, it is more preferable than the exhaustive detection of all the inconsistencies

that could arise.

Moreover, regarding the assignment of weighting factors on the literals/atoms of the

rules of the underlying theory, two issues have been identified in [8]. The first issue is

that, the encoding of preference as weighting factors assigned on the atoms of the theory

rules is difficult, because the rules might not provide the right collection of atoms for

attaching the weights. The second issue is that, the assignment of weight factors on a

particular rule may have an effect on the set of preferences as a whole. Thus, the

difficulty of the preference encoding process is that all the preferences introduced by

each rule must be considered in connection with all the other rules in the underlying

theory.

2.3.3.2.2.2 Cost-based Abduction

Ng and Mooney [120] have suggested a metric for assessing the quality of the abductive

explanations, called “explanatory coherence metric”. Briefly, explanatory coherence

controls the choice of the hypotheses, in a fashion that, the preferred hypotheses have the

more connections between any pair of observations in the proof graph. The explanations

generated by the coherence criterions, as Ng and Mooney [120] point out, are usually

syntactically simple explanations, due to the fact that tight connections between the

observations and explanations are preferred. In contrast with the weighted abduction

approach, the explanatory coherence is a more concrete criterion than rule weights, due to

the fact that the rule weights can be chosen arbitrarily. On the other hand, in order to cope

with incomplete information, the use of both coherence and likelihood knowledge has

also been considered.

2.3.3.2.2.3 Bayesian Inference Methods

Due to the fact that uncertainty is an inherent feature of abductive reasoning, the

likelihood of truthness of abducible explanations, can play significant role in the selection

of the most preferable abductive explanation. Thus, probabilistic models and, in

particular, Bayesian models [50, 83, 84, 85, 96, 123, 124, 125, 126, 131, 132] have been

used to identify the “most probable” abductive explanation. The use of Bayesian models

imposes some limitations in the generality of logic-based abductive reasoning. In

particular, the set of possible hypotheses must be determined in advance. Moreover, an a

 73

priori probability must be assigned to each of the possible hypothesis in advance, as well

as, the conditional probabilities of consequences, given particular assumptions, must be

predetermined. When these prerequisites are met, the Bayes’ theorem can be applied in

order to compute the conditional probabilities of the predefined possible hypotheses,

given the observations to be explained. Based on the outputs of the Bayes’s rule, the most

possible combination of hypotheses, which jointly explain the observations, is selected.

An approach, which addresses the diagnostic problem under the notions of abduction,

time and uncertainty, was proposed by Santos [140], Santos presents an extended model

of Bayesian networks, which except for abductive and uncertain reasoning; temporal

reasoning is considered as well. Also, Santos provides a description of a general

computation method for the proposed model, which is based on linear constraint

satisfaction that determines the least weighted explanation. The proposed model uses an

interval representation of time based on Allen’s interval algebra, while uncertainty is

expressed as a probability (weight) assigned to each rule in the knowledge base like in

Bayesian networks. In particular, the underlying domain knowledge is modelled as a

directed acyclic graph whereby nodes represent propositions/events that can be true or

false. Each node is associated with a time range in which the node is true or false due to

its truth-value. The nodes are connected with directed arcs, which illustrate the

logical/causal and temporal dependency between the connected nodes. Abductive

explanations can typically considered nodes without parents.

Our approach also uses a probabilistic explanation assessment approach. However,

our approach is not based on Bayesian abduction. The reason for this is to avoid the need

to elicit the a-priori and conditional probability measures which are required by this

approach. Furthermore, as also discussed in [162, 163, 164], the choice of the Dempster

Shafer theory of evidence [146] as the framework for calculating the likelihoods of

abduced explanations has been dictated by the need to represent the uncertainty regarding

the confirmation of the consequences of these explanations as we are discussing in

following section (see Section 5.4) and reason in the presence of this uncertainty.

 74

Chapter 3: Preliminaries

3.1 Overview

The aim of this chapter is to provide the reader with an overview of the underpinning

theoretical background of our approach. As already mentioned, our diagnostic approach

has been structured upon an event reasoning monitoring framework [109, 153, 154] that

is based on Event Caclulus [149]. Therefore, Section 3.2 provides a short overview on

Event Calculus.

Section 3.3 provides an extended discussion of the monitoring framework

highlighting on the formal specifications it uses. Finally, Section 3.4 covers the

principles of the Dempster Shafer theory of evidence [146] that underpins our

explanation validity assessment process.

3.2 Event Calculus

The event calculus (EC) [149] is a first-order temporal formal language that can be

used to specify properties of dynamic systems, which change over time. Such properties

are specified in terms of events and fluents.

An event in EC is something that occurs at a specific instance of time (e.g., invocation

of an operation), has instantaneous duration and may change the state of a system.

Fluents are conditions regarding the state of a system and are initiated and terminated by

events. A fluent may, for example, signify that a specific system variable has a particular

value at a specific instance of time. The occurrence of an event is represented by the

predicate Happens(e,t). This predicate signifies that an instantaneous event e occurs at

some time t.

The initiation of a fluent is signified by the EC predicate Initiates(e,f,t) whose

meaning is that a fluent f starts to hold after the event e at time t. The termination of a

fluent is signified by the EC predicate Terminates(e,f,t) whose meaning is that a fluent f

ceases to hold after the event e occurs at time t. An EC formula may also use the

predicates Initially(f) and HoldsAt(f,t) to signify that a fluent f holds at the start of the

operation of a system and that f holds at time t, respectively.

 75

Event calculus defines a set of axioms that can be used to determine when a fluent

holds based on initiation and termination events which may have occurred regarding this

fluent. These axioms are listed in Table 3-1.

Table 3-1 – Axioms of Event Calculus

(EC-A1) (∃e,t) Happens(e,t) ∧ t1<t<t2 ∧ Terminates(e,f,t) ⇒ Clipped(t1,f,t2)

(EC-A2) Initially(f) ∧ ¬Clipped(0,f,t) ⇒ HoldsAt(f,t)

(EC-A3) (∃e,t1) Happens(e,t1) ∧ t1<t ∧ Initiates(e,f,t1) ∧ ¬Clipped(t1,f,t) ⇒

 HoldsAt(f,t)

The axiom EC-A1 in Table 3-1 states that a fluent f is clipped (i.e., ceases to hold)

within the time range from t1 to t2, if an event e occurs at some time point t within this

range and e terminates f. The axiom EC-A2 states that a fluent f holds at time t, if it held

at time 0 and has not been terminated between 0 and t. Finally, the axiom EC-A3 states

that a fluent f holds at time t, if an event e has occurred at some time point t1 before t

which initiated f at t1 and f has not been clipped between t1 and t.

3.3 The EVEREST monitoring framework

In this section, we present the EVEREST (EVEnt REaSoning Toolkit) monitoring

framework [153, 154].

3.3.1 Specification of monitoring rules and assumptions in

EVEREST

In this section, we give an overview of the EC-Assertion language [109, 153, 155] that is

used by EVEREST monitoring framework in order to express properties (a.k.a. formulas)

to be checked at runtime.

As it has been discussed in [109, 153, 155], EVEREST uses two different types of

formulas during monitoring, namely monitoring rules and assumptions. The formulas of

the former of these types (i.e., monitoring rules) express the properties that need to be

checked at runtime. The formulas of the latter type (i.e., assumptions) are used in order to

derive information about the state of the system that is being monitored based on

observations of its behaviour and/or the state of the monitoring process itself.

Furthermore, as we will see later in the following chapters, in the context of diagnosis,

assumptions may also be used in order to express basic causal relations that can help the

identification of the possible causes of the violations of monitoring rules.

 76

Despite their different roles in the monitoring process, both monitoring rules and

assumptions are specified in EC-Assertion [109, 153, 155] a language that is based on

Event Calculus (EC) [149]. EC is a first-order temporal logic language, which can be

used for representing and reasoning about events and their effects over time.

As mentioned above, an event in EC is an occurrence that takes place at a specific

instance of time (e.g., invocation of a system operation, receipt or dispatch of a message)

and may have an effect. The effects of events in EC are represented by fluents, i.e.,

conditions which may change over time. A fluent may, for example, specify that a state

indicating that a system has received a message has been reached or that following the

receipt of a message a system variable is set to a specific value. In Event Calculus, fluents

are initiated and/or terminated by event occurrences.

The occurrence of an event in EC-Assertion is represented by the predicate

Happens(e,t,ℜℜℜℜ(lb,ub)). Happens(e,t,ℜℜℜℜ(lb,ub))denotes that an event e of

instantaneous duration occurs at some time t within the time range ℜ(lb,ub) (i.e., lb ≤ t ≤

ub). Exending standard EC, EC-Assertion Happens predicate definition includes the time

range ℜ(lb,ub) for the time variable t due to uniformity and compactness purposes. More

specifically, by including the time range for the time variable of the Happens predicate

within the predicate signature, we aim to have all the information (i.e., event e, time

variable t, and time constraints expressed by ℜ(lb,ub)) that is relevant to the Happens

predicate defined in a single predicate. It should be noted that the uniqueness of an event

e is based on its occurrence time represented by the time variable t constrained by

ℜ(lb,ub). Therefore, EVEREST is designed to treat and reason for an event as a set of

information that includes temporal constraints for its occurrence. EVEREST uses

temporal reasoning as a significant part of its event reasoning strategy. Moreover,

considering that ℜ(lb,ub) is equivalent to the inequality expression lb ≤ t ≤ ub that can be

specified as relational predicates, by using the ℜ(lb,ub) notation, we succedd in reducing

the number of predicates specified in EC-Assertion formulas. The boundaries lb and ub

that define time ranges are specified as expressions over time variables of the other

predicates in an EC-Assertion formula and time durations following the BNF grammar of

Figure 3-1.

 77

Figure 3-1 – Grammar for specifying boundaries of time variables

Thus, the boundary expressions for ub and lb are linear expressions of the form:

lb = l0 + l1 t1 + l2 t2 + … + ln tn

ub = u0 + u1 t1 + u2 t2 + … + un tn

where ti (i=1, ..., n).

Whilst the standard Event Calculus supports the specification of arbitrary events and

fluents, EC-Assertion that we use for the specification of monitoring rules and

assumptions can use only specific types of events and fluents. More specifically, events

represent invocations of system operations, responses from such operations, or exchanges

of messages between different system components and are specified using the following

form:

event(_id, _sender, _receiver, _status, _sig, _source)

In this form:

• _id is a unique identifier of the event

• _sender is the identifier of the system component that sends the message

represented by the event

• _receiver is the identifier of the system component that receives the message

represented by the event

• _status represents the processing status of an event. This status is: (i) REQ-B

(REQuest-Before), if the event is a request for the invocation of an operation or a

message that has been received but whose processing has not started yet; (ii)

<boundaryExp> ::= <timeVar> | <constant> | <boundaryExp> [“+”|“-”]

<durationExp>

<durationExp> ::= <pDuration> | <pDuration> “+” <pDuration> |

 <pDuration> “−” <pDuration> | <coeff> “*” <pDuration> |

 <constant>

<pDuration> ::= <timeVar> “−” <timeVar>

<timeVar> ::= “t1” | “t2” | … | “tn”

<constant> ::= <REAL>

<coeff> ::= <REAL>

Note: Numeric tokens are represented by <REAL>

 78

REQ-A (REQuest-After), if the event is a request for the invocation of an

operation or a message that has been received and whose processing has started;

(iii) RES-B (RESult-Before), if the event is a response generated upon the

completion of an operation that has not been dispatched yet; or (iv) RES-A

(RESult-After), if the event is a response generated upon the completion of an

operation that has already been dispatched.

• _sig is the signature of the dispatched message, or the operation invocation or

response that is represented by the event.

• _source is the identifier of the component where the event was captured.

Fluents also have a restricted form in EC-Assertion and are defined as relations between

objects of the following form:

relation(Object1, …, Objectn)

where relation is the name of a relation which associates n objects, namely Object1, …,

and Objectn.

The initiation or termination of a fluent f due to the occurrence of an event e at time t

is denoted by the predicates Initiates(e,f,t) and Terminates(e,f,t), respectively.

A formula may also use the predicates Initially(f,t0) and HoldsAt(f,t) to denote

that a fluent f holds at t0 i.e. the start of the execution of a system, and at any time t,

respectively.

The assumptions and monitoring rules are specified in terms of the aforementioned

predicates and have the general form

body ⇒ head

If a formula of the above form expresses a rule, the meaning of a rule is that if its body

evaluates to True, its head must eventually evaluate to True. A formula of the above form

that represents an assumption has the meaning that if body of the formula evaluates to

True then it can be deduced that its head evaluates to True.

Further to the above, it should be noted that the monitoring language requires that

only one of the Happens predicates in a rule or assumption can have unconstrained lower

and upper time boundaries. The predicate with the non constrained time variable in a

formula is called “unconstrained” predicate. Unconstrained predicates should always

 79

appear in the body of the formula. During the monitoring process, rules are activated by

events that can be unified with the unconstrained Happens predicates in their bodies.

When this unification is possible, the monitor generates a rule instance to represent the

partially unified rule and keeps this instance active until all the other predicates in it have

been successfully unified with events and fluents of appropriate types or it is deduced that

no further unifications are impossible. In the latter case, the rule instance is deleted.

When a rule instance is fully unified, the monitor checks if the particular instantiation

that it expresses is satisfied.

An example of a rule that can be expressed in the monitoring language is given by the

formula below:

∀ _eID1,_C1,_C3:String; t1:Time

 Happens(e(_eID1,_C3,_C1, REQ-A, op(), _C3),t1,ℜ(t1,t1)) ⇒

∃ _eID2:String ;t2:Time Happens(e(_eID2,_C3,_C1, RES-A, op(),

_C1),t2,ℜ(t1+1,t1+k))

The property expressed by this rule is that an event e(_eID1,_C3,_C1, REQ-A, op(), _C3)

representing the dispatch of a request for the invocation of the execution of the operation

op() in the component _C3 of a system must be followed by another event

e(_eID2,_C3,_C1, RES-A, op(), _C1) representing the receipt of the result of the

execution of the operation op() in the component _C3 by _C1 and that the latter event

must be captured at the _C1 component in no more than k time units after the dispatch of

the result by _C3. Thus, this rule expresses a bounded availability property for the

communication channel between the components _C3 and _C1 since it requires that

results generated by _C3 are transmitted within a bounded time period.

3.3.2 Standard EVEREST assumptions

Given the EC-based language that is used in EVEREST framework for specifying

monitoring rules and assumptions, we should note that are some standard EVEREST

assumptions with regards to the conditions that any given fluent holds. In the following,

we provide the specifications of the standard EVEREST assumptions.

SA1. Initiates(_e1,_f,t1,R(t1,t1)) ∧

¬∃_e2,t2. Terminates(_e2,_f,t2) ∧

t2 ≥ t1 ∧ t3 ≥ t1 ⇒

HoldsAt(_f,t3)

 80

SA2. Initially(_f,t0) ∧

¬∃_e1,t1. Terminates(_e1,_f,t1) ∧

t1 ≥ t0 ⇒

HoldsAt(_f,t1)

The first standard EVEREST assumption (SA1) states that if there is an event e1 that

initiates the fluent f at time point t1 and there is not an event e2 that terminates f at time

point t2, where t2 is greater than or equal to t1, then f holds at any time point t3, where t3

is greater than or equal to t1. In other words, to check whether a fluent f holds at some

time point t1, EVEREST is implemented to check whether an initiation of fluent f before

or at t1 is stored in EVEREST’s relevant data base. If there is such an initiation,

EVEREST then checks whether there is a termination of f at or after t1. If such a

termination does not exist, EVEREST considers that f holds at any time point after t1.

Similarly, the second standard EVEREST assumption (SA2) states that if the fluent f

holds since the start of the execution of the system being monitored and there is not an

event e1 that terminates f at time point t1, then f holds at time point t1.

3.4 The Dempster – Shafer Theory of Evidence

The key characteristic of the Dempster-Shafer theory that underpins our approach is that

provides a framework for handling ignorance when assessing the likelihood of a

proposition and its negation on the basis of the available evidence [146]. More

specifically, the Dempster-Shafer theory allows the assignment of likelihood measures m,

called “basic probability assignments” or “mass”, to a proposition P and its negation ¬ P

for which it might hold that m(P) + m(¬P) ≤ 13. A basic probability assignment or mass

function in the Dempster-Shafer theory is a function from the powerset of a set of

mutually exclusive propositions θ called "frame of discernment" to the range [0…1] or,

equivalently, a function m of the following form:

Axiom 1. m: ℘(θ) → [0…1]

3 In contrast, the axioms of the classic probability theory require that condition Prob(P) +
Prob(¬P) = 1 for all valid probability functions Prob and propositions P.

 81

A function m of this form provides a measure of belief in the truth of the disjunction of

the propositions in different subsets of θ (i.e., elements of its powerset ℘(θ)) which

cannot be attributed directly (split) to any of these propositions individually. Formally, a

function m of the above form is a basic probability assignment only if it also satisfies the

following two axioms:

Axiom 2. m(∅) = 0, and

Axiom 3. 1)(=∑ ⊆θP
Pm

The first of these axioms prevents basic probability assignments from assigning a non-

zero basic probability measure to an empty proposition set. The second axiom requires

that the sum of the basic probability measures which are assigned by a function m to

different subsets of a frame of discernment θ must be equal to 1. The subsets P of θ for

which m(P) > 0 are called “focals” of m and the union of these subsets is called “core” of

m. Each basic probability assignment function m in the Dempster-Shafer theory induces a

unique “belief” function Bel, which is defined as:

Axiom 4. Bel: ℘(θ) → [0…1], and

Axiom 5. ∑ ⊆
=

AB
BmABel)()(

A belief function Bel measures the total belief that is committed to the set of propositions

P by accumulating the basic probability measures which are committed to the different

subsets of P. Belief functions must also satisfy the following axioms:

Axiom 6. Bel(∅) = 0

Axiom 7. Bel(θ) = 1

Axiom 8. ∑ ≠⊆ =∈

+ ∪≤∩−
θIandnI iniiIi

I PBelPBel
},...,1{ ,...,1

1||)()()1(

 niandPnwhere ,...,1|,)(| =⊆℘= θθ

In the Dempster-Shafer theory, two basic probability assignments m1 and m2 can be

combined according to the rule of the "orthogonal sum":

Axiom 9. m1 ⊕ m2 (P) = (ΣX ∩ Y = P m1(X) × m2(Y)) / (1 – k0)

 where k0 = ΣV ∩ W = ∅ and V ⊆ θ and W ⊆ θ m1(V) × m2(W)

 82

In this formula, k0 is a normalising parameter used to increase the belief assigned to the

non-empty intersections of the focals of m1 and m2 in proportion to the belief that would

be assigned to the empty intersections of these focals.

The rule of the “orthogonal sum” can be applied as long as:

m1(A)m 2 (B)
A ∩ B ≠ ∅, A⊆θ and B⊆θ

∑ < 1

This condition precludes the combination of conflicting basic probability assignments(i.e.

assignments, one of which provides a degree of support of 1 to some proposition, while

the other provides an equal degree to the negation of this proposition). The total belief

about a proposition P, Bel(P) does not reflect the extent to which some- body fails to

doubt P. This is given by a third measure called “upper probability” (or “plausibility”

[146]), defined as:

Axiom 10. Pl(P) = 1 − Bel(P) = m(B) − m(A)
A ⊆P

∑ = m(B)
B ∩ P ≠ ∅

∑
B⊆θ

∑

Since m(B)
B ⊆ P

∑ ≤ m(B)
B ∩ P ≠ ∅

∑ , it also holds that Pl(P) ≥ Bel (P) .Hence, for

each proposition P, there is a range [Bel(P), Pl(P)] which its belief falls within.

Essentially, Pl(P) reflects the total belief which has not been assigned to the negation of

P.

To clarify the above definitions consider the following example. In a medical diagnosis

problem, there are four mutually exclusive hypotheses:

C(cold), F(flu), M(meningitis) and NP(no problem).

Thus, a frame θ discerning the potential dignosis of the medical problem is as follows:

θ ={C, F, M, NP).

Let assume that based on studies of relevant medical cases it is known that fever is a

symptom of C and F in the 40% of the examined cases, while fever occurs in the 30% of

M examined cases. Therefore, let assume that there is a basic probability assignment

(BPA) m1 specified as follows:

0.4, if P = {C, F}

0.3, if P = {M}

0.3, otherwise or if P=θ

m1(P) =

 83

Assume also that nausea is a symptom of C, F and M in the 80% of the examined cases.

Therefore, there is a BPA m2 specified as follows:

Let assume that a diagnosis for a patient experiencing fever and nausea is requested. To

compute the combination of m1 and m2 BPAs, the orthogonal sum given in Axiom 9 can

be used .It should be noted that the only intersection of given sets that yields to empty set

is {M}∩{C,F,NP}. Therefore, for k0 it holds that:

k0 = 0.3*0.8 =0.24

For instance, for {C, F}, it holds that:

m1 ⊕ m2 ({C,F}) = (ΣX ∩ Y = {C,F} m1(X) × m2(Y)) / (1 – k0)

 = 0.32 + 0.08 / 1 - 0.24

 = 0.526

The degree of belief that the combination of m1 and m2 assigns to the rest of the sets are

shown in

Table 3-2. Also, in

0.8, if P = {C, F, M}

0.2, otherwise or if P=θ

m2(P) =

 84

Table 3-2, the total belief and plausibility of the considered sets are shown. By taking

into account the belief and plausibility measures of

Table 3-2, the patient of our case possibly experiences C or F or NP with a possibility

that ranges within [0.842, 0.921], while there is a weak belief for the M cause that lies

within [0.079, 0.158].

Table 3-2 – Medical problem DS belief measurements

 Sets

BPAs

{C,F}

{M}

{C, F, NP}

θθθθ

m1 0.4 0.3 0 0.3

m2 0 0 0.8 0.2

m1⊕⊕⊕⊕ m2 0.526 0.079 0.316 0.079

Bel 0.526 0.079 0.842

Pl 0.921 0.158 0.921

 85

Chapter 4: Extending EVEREST

Monitoring Framework for

Diagnosis

4.1 Overview

This chapter discusses how the EVEREST monitoring framework extended to support the

basic formalization of the diagnostic task. In particular, Section 4.2 provides the basic

formulation of the diagnostic task and the relevant assumptions that should be taken into

account. Essentially, Section 4.2 provides the definitions of predicate sets necessary for

the formalization of the diagnostic task in the context of EC-Assertion.

Having given the basic formal characteristics of the diagnostic task in Section 4.2,

Section 4.3 provides the reader with the EC-Assertion specifications of the motivating

example of the ATMS discussed in the introductory chapter. More specifically, the

 86

example in Section 4.3 highlights the categorization of predicates that are used to specify

assumptions necessary for the undertaking of the diagnostic task according to our

approach.

4.2 Basic formulation of the diagnostic problem and

assumptions

The generation of explanations of individual events in the diagnosis process is based on

abductive reasoning. As defined in [122], the purpose of abductive reasoning is to find a

set of atomic formulas Φ, which in conjunction with a theory TH entail a set of

observations Ω. Formally, Φ is a set of atomic formulas that satisfy the following

conditions:

• TH ∪ Φ |- Ω, (Condition 1)

• ∀ f in Φ: predicates(f) ⊆ APreds (Condition 2)

In the above conditions, predicates(f) denotes the predicates of formula f (i.e., a

singleton set as Φ is assumed to be an atomic formula) and APreds is a set of abducible

predicates. Given that the above conditions are satisfied, the set of formulae Φ can be

seen as a possible cause of Ω or, in other words, as a possible explanation (or hypothesis)

of why Ω has happened.

The basis of abductive reasoning is the derivation of the precondition a of a logical

implication

a ⇒ b

when the consequence b of the implication is known to be true. Obviously this derivation

is only a conjecture, as the meaning of “a ⇒ b” is that b is true when a is true but not vice

versa or, in other words, that a is a sufficient condition for the occurrence of b but not a

necessary condition. Thus, b may have been the consequence of a different cause and the

derivation of a from b may be incorrect even if a is consistent with a broader logical

theory (i.e., it satisfies Condition 1 above). However, despite this widely discussed

logical fallacy of abductive reasoning, the use of it as a heuristic form of searching for

possible causes of effects is useful in the absence of any other alternatives and when the

likelihood of the derivations that can be generated by it can be assessed against further

 87

evidence. To this end, abductive reasoning has been used as one of the main approaches

for providing fault diagnosis [41].

In fault diagnosis, abduction is used to derive the faults that appear to be the likely

cause of the problem, given a theory that relates the faults with their effects and a set of

effects that have been observed. This idea also underpins the use of abductive reasoning

for diagnosis but the exact use of this form of reasoning has some key differences from

other approaches. In the following, we will discuss in more detail these differences and

the measures taken to assess the plausibility of the derivations obtained by abductive

reasoning in the diagnosis process. Before doing this, however, it is necessary to establish

the correspondences between the sets of formulas in the abstract formulation of abductive

reasoning and the key artefacts in the monitoring process.

More specifically, the sets of formulas in Condition 1 and Condition 2 above have the

following meanings:

• Ω is the set of the runtime (also referred as recorded or logged) events and

fluents which are involved in the violation of a monitoring rule. More

specifically, runtime events are atomic formulas that contain fully instantiated

Happens predicates. In the same manner, runtime fluents are atomic formulas

that contain fully instantiated HoldsAt predicates. In EVEREST context, a

predicate is considered as fully instantiated if all of the terms of the predicate

are ground. For instance, considering the ATMS scenario, we have specified

the following Happens predicate:

Happens(e(_id2,_r2,_receiver1,RES-A,signal(_r2,_a,_s),

 _source2),t2,R(t1, t1+5))

A fully instantiated predicate of the above type is as follows:

Happens(e(E14,Radar112,HLTAirBase,RES-A,

 signal(Radar112,BA3768,HLT_East),

 HLTAirBaseSource), 13,R(12,17))

while a partially instantiated one is the following:

Happens(e(_id,_r,_receiver,RES-A,signal(_r,BA3768,

 _s),_source),t2,R(12,17))

 88

• TH is the set of the assumptions specified for the system that is being

monitored and the events that have been recorded in the log of the monitoring

framework at the time t when the generation of an abductive explanation is

required excluding the runtime events, which belong to Ω. Since TH might

have different elements depending on the time point when the generation of an

abductive explanation is required in the rest of this report we will refer to it as

TH(t) to signify the time t of enquiring for an explanation explicitly.

• APreds is a predefined set of the predicates that can only appear in the leaves

of the different abductive trees, which can potentially be generated by the

given assumptions of theory TH. Esentially, the members of APreds (called

abducibles henceforth) can appear only as body predicates of the assumptions

of the underlying theory TH.

We should also note some further assumptions that we make about the formulas (i.e.,

assumptions and monitoring rules) and the events used in the monitoring framework.

More specifically, if the set of the assumptions for a system that is being monitored is

denoted by AS and the set of all the events of this system that have been recorded in the

log of the monitoring framework at some time point t is denoted by RE(t), we assume

that:

• TH(t) = AS ∪ (RE(t) − Ω) (Condition 3)

We also assume that the predicates used in the assumptions and monitoring rules

belong to one of the following three sets [162, 163, 164]:

• The set of observable predicates OPreds. A predicate is observable if it can be

unified with an event, which is generated during the operation of the system

being monitored, is captured by the captors of the EVEREST framework and

is finally recorded in the event log of the EVEREST framework. The truth

value of the observable predicates can be established by the successful

unification process of the predicates themselves with runtime events or by

deduction on the assumptions of the system being monitored based on

recorded events of the event log of the EVEREST framework and other

previously derived predicates.

• The set of derived predicates DPreds. A predicate is derived if it can be

grounded only by applying unification and deductive reasoning on the

 89

assumptions of the system being monitored based on recorded events of the

event log of the EVEREST framework and other previously derived

predicates. Regarding the evaluation of the truth value of the derived

predicates, the truth value of this kind of predicates can be established by

deductive reasoning.

• The set of abducible predicates APreds has been defined above. The truth

value of abducibles can be established by abductive reasoning on the

assumptions of the system being monitored based on recorded events of the

event log of the EVEREST framework and other previously derived

predicates.

Finally, we assume that:

• The standard Event Calculus predicate Initially, whose formal specification

contain fluent, is considered as observable predicate or formally:

Initially ∈ OPreds (Condition 4)

• The remaining standard Event Calculus predicates Initiates, Terminates and

HoldsAt, whose formal specifications contain fluents, are always derived

predicates. Assuming that FluentContainersPreds = {Initiates,

Terminates, HoldsAt}, we formally have:

FluentContainersPreds ⊆ DPreds (Condition 5)

• The set DPreds have no elements is common with APreds, while OPreds and

may have common elements with DPreds and APreds or formally:

DPreds ∩ APreds = ∅ (Condition 6)

(DPreds ∩ OPreds ≠ ∅) ∨ (DPreds ∩ OPreds = ∅) (Condition 7)

(APreds ∩ OPreds ≠ ∅) ∨ (APreds ∩ OPreds = ∅) (Condition 8)

• The assumptions, which are used for generating abductive explanations, are

formulated as Horn clauses [7].

• The set of assumptions, which is used for generating abductive explanations,

is hierarchical. This means that the dependency graph of the theory, i.e. the

graph connecting two assumptions A1 and A2 with an arc from A1 to A2 if a

 90

predicate in the head of A1 appears also in the body of A2, is acyclic (see

[33]).

4.3 EC Specifications of the Air Traffic Management System

(ATMS) Motivating Example

As an example of cases where monitoring information needs to be enhanced by

diagnostic explanations, consider an air traffic management system, referred to as

“ATMS” in the following. ATMS uses different radars to monitor the trajectories of

airplanes in different air spaces. It is also connected with a system that keeps a record of

flight plans which are submitted by different planes ahead of flights to indicate the

expected route of a flight and request flight permission.

The operations of ATMS may be monitored at runtime to ensure the integrity of its

components and the information generated by them. Monitoring, for example, may focus

on properties related to: (i) the liveness of the radars connected to ATMS, and (ii) the

generation of mutually consistent information by them. An example of a property of this

kind relates to cases where air spaces are covered by different radars or have overlapping

areas covered by different radars. In such cases, to check the integrity of the information

that is provided by the different radars which cover an airspace, we can monitor a rule

requiring that if one of these radars sends a signal indicating that an airplane is in the

airspace, every other radar that covers the same space should also send a signal indicating

the presence of the plane in it within a certain period of time after the receipt of the initial

signal. Such a rule can be specified in the monitoring language of EVEREST framework

as follows:

ATMS.R1. ∀t1∈Time, ∃t2∈Time, ∀_r1∈Radars, ∀_receiver1,

 ∀_a∈Airplanes, ∀_s∈Airspaces, ∀_r2∈Radars, ∀_source1.

Happens(e(_id1,_r1,_receiver1,RES-A,signal(_r1, _a, _s),

 _source1),t1,R(t1,t1)) ∧

HoldsAt(covers(_r1,_s),t1) ∧

HoldsAt(covers(_r2,_s), t1) ∧

_r2 ≠ _r1 ⇒

Happens(e(_id2,_r2,_receiver1,RES-A,signal(_r2, _a, _s),

 _source1),t2,R(t1, t1+5))

 91

Rule ATMS.R1 is violated in all cases where the monitor receives a signal event by

one of the radars of ATMS that covers a specific airspace but not the other. Clearly,

whilst in such cases, knowing that the rule has been violated is important for the

operation of ATMS. However, the violation report on its own is not sufficient for

establishing the reasons why the second expected signal was not received and taking

appropriate action (if possible). In fact, the violation may have been due to several

reasons, including the following:

• The radar that did not send the expected signal was malfunctioning (Cause 1).

• The communication link between the radar that did not send the expected

signal and the monitor was malfunctioning or an intruder captured the signal

and prevented it from reaching the monitor (Cause 2).

• The radar that sent the expected signal was malfunctioning or its identity was

faked by an intruder that sent a fake signal to the monitor (Cause 3).

Identifying which of the above reasons has caused the violation is important for

taking actions that would restore the integrity of the operation of ATMS.

The assumptions of ATMS are as follows:

ATMS.A1. Initially(covers(R1,S1),t0)

ATMS.A2. Initially(covers(R2,S1),t0)

The first two assumptions ATMS.A1 and ATMS.A2 state that radars R1 and R2 cover

airspace S1 since the start of the execution of ATMS.

ATMS.A3. ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

∀_a∈Airplanes, ∀_s∈Airspaces, ∃_r∈Radars.

 Happens(e(_id1,_sender1,_receiver2,RES-A,inspace(_a,_s),

 _source2),t1,R(t1,t1)) ∧

 HoldsAt(covers(_r,_s),t1) ⇒

 Happens(e(_id2,_r,_receiver2,RES-A,signal(_r,_a,_s),

 _source2),t2,R(t1,t1+5))

Assumption ATMS.A3 states that if there is an airplane _a moving in airspace _s at

some time point t1 and it holds that radar _r covers _s at t1, then it is expected that there

is a signal from _r notifying that _a moves in _s at some time point t2 within t1 and 5

time units after t1. Please note that the predicate Happens(e(_id1,_sender1,

_receiver2, RES-A, inspace(_a,_s), _captor2), t1, R(t1,t1)) is an abducible

 92

predicate, while the predicate Happens(e(_id2, _r, _receiver2, RES-A,

signal(_r,_a,_s), _captor2), t2, R(t1,t1+5)) is an observable predicate.

ATMS.A4. ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

∀_a∈Airplanes, ∀_s∈Airspaces.

 Happens(e(_id1,_sender1,_receiver2,RES-A,inspace(_a,_s),

 _source2),t1,R(t1,t1)) ⇒

 Happens(e(_id2,_a,_receiver2,RES-A,permissionRequest(_a,

 _s),_source2),t2,R(t1-20,t1-1))

Assumption ATMS.A4 states that if there is an airplane _a moving in airspace _s at

some time point t1, then it was expected that _a has requested permission for entering _s

at some time point t2 within 20 and 1 time units before t1.

ATMS.A5. ∀t1∈Time, ∀_sender, ∀_receiver, ∀_source, ∀_a∈Airplanes,

∀_s∈Airspaces.

 Happens(e(_id1,_sender,_receiver,RES-A,inspace(_a,_s),

 _source),t1,R(t1,t1)) ⇒

 Initiates(e(_id1,_sender,_receiver,RES-A,inspace(_a,

 _s), _source), inairspace(_a,_s),t1)

Assumption ATMS.A5 states that if there is an airplane _a moving in airspace _s at

some time point t1, then the fluent inairspace is initiated at t1.

ATMS.A6. ∀t1∈Time, ∃t2∈Time, ∀_receiver, ∀_source, ∀_a∈Airplanes,

∀_s∈Airspaces, ∃_airportX∈Airports.

 Initiates(e(_id1,_sender,_receiver,RES-A,inspace(_a,

_s),_source),inairspace(_a,_s),t1) ∧

 HoldsAt(landing_airspace_for(_s,_airportX),t1) ⇒

 Happens(e(_id2,_a,_receiver,RES-A,

 landingRequest(_a,_airportX),_source),t2,

 R(t1-10,t1))

Assumption ATMS.A6 states that the fluent inairspace is initiated at t1 by an airplane

_a moving in airspace _s at t1 and it holds that the landing airspace for_airportX is _s at

t1, then it was expected that _a has requested landing permission from the control base of

_airportX at some time point t2 within 10 time units before t1 and t1.

ATMS.A7. ∀t1∈Time, ∀_sender, ∀_receiver, ∀_source, ∀_a∈Airplanes,

∀_airportX∈Airports, ∃_s∈Airspaces.

 Happens(e(_id1,_sender,_receiver,RES-A,

 93

 changeOfLandingApproach(_airportX,_s),

 _source),t1,R(t1,t1)) ⇒

 Initiates(e(_id1,_sender,_receiver,RES-A,

 changeOfLandingApproach(_airportX,_s),_source),

 landing_airspace_for(_s,_airportX),t1)

Assumption ATMS.A7 states that if there is an event that changes the landing

approach of _airportX to _s at t1, then the fluent, which specifies that airspace _s is the

landing airspace of _airportX is initiated at t1.

ATMS.A8. ∀t1∈Time, ∀_sender, ∀_receiver, ∀_source, ∀_a∈Airplanes,

∀_airportX∈Airports, ∃_s∈Airspaces.

 Happens(e(_id1,_sender,_receiver,RES-A,

 removeLandingApproach(_airportX,_s),

 _source),t1,R(t1,t1)) ⇒

 Terminates(e(_id1,_sender,_receiver,RES-A,

 removeLandingApproach(_airportX,_s),_source),

 landing_airspace_for(_s,_airportX),t1)

Assumption ATMS.A8 states that if there is an event that reconfigures the ATMS by

setting airspace _s as a no longer valid landing approach of _airportX at t1, then the

fluent, which specifies that airspace _s is the landing airspace of _airportX, is terminated

at t1.

In terms of the predicate sets APreds, DPreds and OPreds, which are defined in

Section 4.1, the membership of the predicates of the ATMS theory (i.e. the set of ATMS

rule and assumptions) is as follows:

APreds = {Happens(e(_id,_r,_receiver,RES-A,inspace(_a,_s),

 _source2),t,R(t,t))

 }

Dpreds = { HoldsAt(covers(_r,_s),t),

 Initiates(e(_id,_sender,_receiver,RES-A,inspace(_a,

 _s), _source), inairspace(_a,_s),t),

 HoldsAt(landing_airspace_for(_s,_airportX),t),

 Initiates(e(_id,_sender,_receiver,RES-A,

 94

 changeOfLandingApproach(_airportX,_s),_source),

 landing_airspace_for(_s,_airportX),t)

 }

OPreds = { Initially(covers(R1,S1),t0), Initially(covers(R2,S1),t0),

 Happens(e(_id,_r,_receiver,RES-A,signal(_r, _a, _s),

 _source),t,R(t,t)),

 Happens(e(id,_a,_receiver,RES-A,permissionRequest(_a,

 _s),_source),t,R(t,t)),

 Happens(e(_id,_a,_receiver,RES-A,

 landingRequest(_a,_airportX),_source),t,R(t,t)),

 Happens(e(_id,_sender,_receiver,RES-A,

 changeOfLandingApproach(_airportX,_s),

 _source),t,R(t,t))

 }

Chapter 5: The Diagnostic Approach

5.1 Overview

The aim of this chapter is to provide the reader with a detailed description of our

diagnostic approach. As a roadmap for the content of this chapter, we initially provide a

high level overview of the diagnostic process.

The overall process of diagnosing the causes of S&D monitoring rule violations has four

main stages as discussed in [162, 163, 164]. As shown in Figure 5-1, these stages are:

1. Explanation generation

2. Explanation effect identification

3. Explanation plausibility assessment

4. Diagnosis generation

 95

Figure 5-1 – The overall process of the diagnostic approach

In the first of these stages (i.e., explanation generation), the diagnosis process generates

all the possible explanations for the individual events which have caused an S&D

monitoring rule violation. These events are referred to as “violation observations” in the

following. The possible explanations of violation related observations are generated from

assumptions that have been given to the monitor regarding the operation of the system

that is being monitored using abductive reasoning. The explanations generation step is

discussed in details in Section 5.2.

After generating explanations for the individual violation observations, the diagnosis

process enters its second stage, namely the stage of explanation effect identification,

which is discussed in Section 5.3. This stage is concerned with the identification of all the

possible consequences of the explanations of the individual violation observations if

these explanations were valid. Whilst the generation of individual explanations from the

observation violations are generated by abductive reasoning, the effects of individual

explanations are derived by deduction using the assumptions specified in S&D patterns.

Following the identification of the effects of individual explanations, the diagnosis

process enters its third stage. At this stage, the process assesses the likelihood of the

event log

Violation
observations

explanations

Effects of
explanations

Explanation
Generation (1)

Explanation
Effect

Identification (2)

Plausibility

Assessment (3)

explanation
beliefs

Diagnosis
Generation (4)

final
diagnosis

system
assumptions

 96

validity of the individual event explanations. To do so, the expected effects of the

individual explanations are checked against the event log of the EVEREST monitoring

framework to find if there are events in the log that match the expected effects. Every

match that is found between an expected effect and an event in the log casts confirming

evidence to the explanation associated with the effect. On the other hand, the absence of a

matching event for an effect casts disfavouring evidence to the explanation. Based on the

confirming and disconfirming elements of evidence which are identified during this

stage, the diagnosis process estimates a belief and a plausibility measure for each

individual explanation. The diagnosis process third step details are worked out in Section

5.4.

Finally, at the fourth stage of the diagnosis process, namely the stage of diagnosis

generation which is discussed in Section 5.5, the diagnosis framework constructes

alternative aggregated explanations for the S&D rule violation from the explanations of

the individual violation observations and computes beliefs in the validity of these

aggregate explanations. Using these beliefs the framework also identifies the most

plausible aggregate explanation for the violation.

In the rest of this chapter, we discuss each of the above stages in detail presenting the

reasoning mechanisms which are deployed in them and giving examples of applying

these mechanisms.

5.2 Generation of Explanations

5.2.1 The process of generating explanations

Abductive reasoning is used only in the first stage of the diagnosis process, as a

mechanism of trying to find possible causes of the runtime events that have caused a

violation of an S&D monitoring rule. Establishing the possible causes of the events which

are involved in a rule violation has a dual role in the diagnosis process: first it provides a

possible explanation of the individual events and fluents which have caused the violation,

and second it provides confirmatory evidence that these events have indeed taken place

and have not been the result of some attack or malfunctioning in the monitoring

framework and/or the system(s) being monitored by it. The latter role of individual event

explanations is very significant as the possibility of attacks in the monitoring framework

and the systems, which are being monitored by it, cannot be precluded. In the scenario

 97

that we introduced in Section 0, for instance, received radar signals may be the result of a

radar malfunctioning or an attack by an intruder who has faked the identity of a radar R

and sends signals which appear to have been sent by R.

The explanations of the events, which are involved in the violation of an S&D

monitoring rule, are generated by backward chaining. More specifically, when the

diagnostic framework is given a specific event E to find an explanation for, it searches

through the assumptions, which are known about the system that is being monitored to

see if they have a predicate P in their head that can be unified with E. This check is

performed in two steps. For every assumption A that has such a predicate, the framework

checks if the unification between P and E covers all the non time variables of A (i.e., it

provides bindings for all these variables) and, if it does, it tries to generate an explanation

for E using A. More specifically, the framework checks if the time constraints which are

imposed by the event E on the instantiated predicates (conditions) in the body of A, can

lead to concrete and feasible time ranges for these predicates. To do this, the framework

retrieves the constraints that relate the time variable of the predicate P in the head of A

that was matched with E and the time variables of each of the predicates in the body of A,

replaces the time variable tp of P with the time stamp of the event E that needs to be

explained and calculates the maximum and minimum possible values for the time

variables of the predicates in the body of A.

The calculation of the minimum and maximum values of the time variables of the

predicates in the body of A is treated as a linear programming problem. This is possible

due to the way in which constraints for time variables are specified in the monitoring rule

(note that the same language is used to specify both monitoring rules and assumptions.

As we discussed in Section 3.3, according to this language, each Event Calculus formula

that specifies a monitoring rule or assumption must define an upper and a lower boundary

for the time variables of all the predicates in the formula.

Thus, the upper and lower boundaries ub and lb of a time variable t of a predicate in a

formula become effectively linear expressions of the form:

lb = l0 + l1 t1 + l2 t2 + … + ln tn

ub = u0 + u1 t1 + u2 t2 + … + un tn

where ti (i=1, ..., n) are other time variables in the formula and the constraints related to t

are of the form:

 98

l0 + l1 t1 + l2 t2 + … + ln tn ≤ TE (C1)

TE ≤ u0 + u1 t1 + u2 t2 + … + un tn (C2)

Then from the above formulas, it might be possible to compute the minimum and

maximum possible values of any variable ti (i=1, ..., n) in them by solving the linear

optimization problems max(1ti + ∑j=1,…,n, j≠i 0*tj) and min(1ti + ∑j=1,…,n, j≠i 0*tj) subject to

the constraints C1 and C2. An evident candidate method for solving these problems is

George Dantzig’s classic Simplex method, which is revisited in [63]. By solving these

problems for each of the time variables of the predicates in the body of an assumption A,

it can be established if a concrete and feasible time range exists for these variables.

In cases that such ranges exist, the explanation generation procedure applies the most

general unifier of E and P to the predicates in the body of A and checks if the instantiated

predicates which result in the body of A are abducible predicates or can be matched with

events already recorded in the event log of the monitor. In both sub-cases, the instantiated

abducible predicates in the body of A are added to the ongoing explanation. In sub-cases

where an instantiated predicate in the body of A is neither an abducible predicate nor

does it correspond to a recorded event, backward chaining is applied again on it to try to

find other assumptions which have predicates in their head that can be unified with it.

Such predicates are retrieved and the process is repeated for the predicates in the bodies

of the relevant assumptions. In the case of an assumption that has been retrieved for

constructing an explanation for an event E but has some predicate P’ in its body that does

not correspond to abducible predicate or a recorded event and, furthermore, cannot be

explained through other assumptions, the assumption is abandoned and no explanation is

constructed from it E.

 99

Explain(e, tmin(e), tmax(e), finit)

1. // let Φe be a list keeping the disjunction of possible explanations of atomic predicate e

2. Φe = []OR

3. // e is an abducible atom; add e to the current explanation

4. If e ∈ ABD Then

5. Φe = append(Φe , [(e, tmin(e), tmax(e))])

6. //let AbductivePathe[] be the list keeping the identifiers of f that were visited for abducing e

7. append(AbductivePathe[], finit)

8. // e is not an abducible atom; find explanations for it

9. Else

10. // try all alternative explanations by reasoning on all f that belong to the assumptions set AS

11. For all f ∈ AS Do

12. // let function mgu return the most general unifier of e and a predicate p if this unifier exists

13. u = mgu(head(f), e)

14. If u ≠ ∅ and u covers all non time variables in body(f) Then

15. // let CNDf be a list keeping the body predicates of formula f (conditions of f henceforth)

16. Copy body(f) into CNDf

17. FormulaFailed = False

18. // let Φf be a list keeping a conjunction of elements explaining the conditions of f

19. Φf = []AND

20. While FormulaFailed = False and CNDf ≠ ∅ DO

21. Remove some condition C from CNDf

22. Compute the min and max possible values tmin(C), tmax(C) of C based on tmin(e) and tmax(e)

23. // tmin(C), tmax(C) are not undeterminable

24. If tmin(C) ≠ NULL and tmax(C) ≠ NULL Then

25. Cu = ApplyUnification(u, C)

26. // C is an abducible atom; add it to current explanation

27. If C ∈ ABD Then

28. Φf = append (Φf , [(Cu, tmin(C), tmax(C))]ABD)

29. append(AbductivePathCu[], f)

30. // C is not an abducible atom

31. Else

32. find a derived or recorded predicate ec such that: ec can be unified with Cu and

33. tmin(ec) ≥ tmin(C) and t(ec) ≤ tmax(C)

34. // no recorded or derived predicate matching C has been found

35. If ec = NULL Then

36. ΦC = Explain(C, tmin(C), tmax(C), f)

37. If ΦC is empty Then

38. FormulaFailed = True

39. Else

40. Φf = append(Φf , ΦC)

41. End If

42. End If

43. End If

44. End If

45. End While

46. If FormulaFailed = False Then Φe = append (Φe,Φf) End if

47. End if

48. End For

49. End If

50. return(Φe)

END Explain

 100

Figure 5-2 - Algorithm for generating explanations of atomic predicates

The algorithm for generating explanations for an atomic predicate E is called Explain and

is listed in Figure 5-2. This algorithm generates a list representing the alternative

explanations for a particular atomic predicate. In general there might be zero or more

alternative explanations for an atomic predicate and each of these explanations consist of

abduced atomic formulas.

The algorithm starts by getting as input an atomic predicate e for which an

explanation is required and the boundaries of the time range of this predicate tmin(e) and

tmax(e). It also has a fourth input parameter, called finit, which represents the initial

formula that is to be used for generating explanations. This parameter is not used in the

initial invocation of Explain since the objective of the process is to find all the possible

alternative explanations of the input predicate. In subsequent recursive invocations of the

algorithm, however, it is used to indicate the identifier of the last formula that was used in

the generation of an ongoing explanation since along with explanations the algorithm

records the backward chaining path through which the abduced atomic predicates of each

explanation were generated (see lines 7 and 29 in Figure 5-2). Given an input predicate e

that is to be explained, if the predicate symbol of e is an abducible predicate, a pair of the

predicate e and its time range (i.e., (e, tmin(e), tmax(e))) is added to the current list of

explanations (i.e., list Φe) and the algorithm terminates by returning this list of

explanations (see lines 4, 5 and 50 in Figure 5-2). If, however, e is not an abducible

predicate, Explain checks through the known assumptions of the system that is being

monitored (i.e., the elements of the set AS) to find those whose head could be unified

with e. The unification test is performed by calling the function mgu that returns the most

general unifier of two formulas [94]. In general, the general unifier can be considered as a

list containing value bindings for all the variables of the two input formulas. However,

the mgu function adaptation in EVEREST returns value bindings for all the non-time

variables of the input formulas. Thus, if a non empty unifier is found between e and a

predicate in the head of an assumption f, the algorithm checks if the unification covers all

the predicates in the body of the assumption and, if it does, it creates a condition list

(called CNDf) with the predicates of the body of the assumption and tries to explain each

of these predicates (see lines 14-16 in Figure 5-2). More specifically, for each of these

predicates, the algorithm computes initially the minimum and maximum possible values

(tmin(C), tmax(C)). This computation is based on the Simplex algorithm [63] using as

 101

constraints the constraints defined by all the particular assumption f between the time

variable of the current body predicate and the time variable of the predicate P in the head

of f that was unified with e and two more constraints to ensure that the time variable of P

is within the time range tmin(e) and tmax(e) of e (see line 22 in Figure 5-2). If this

optimisation problem has a solution and the boundaries for the time variable of the

predicate in the body of f can be identified, the Explain algorithm applies the detected

unification between f and e to the current predicate in the body of f in order to instantiate

it (see line 25 in Figure 5-2), and checks if the instantiated predicate is an abducible

predicate (see line 27 in Figure 5-2). If the current instantiated predicate in the body of f

is an abducible predicate, it is added to a temporary explanation list for the assumption

(Φf) along with its time range, while the list that keeps the abductive path of the predicate

(AbductivePathCu[]) is updated with the identifier f of the assumption from which it has

been abduced (see lines 28 and 29 in Figure 5-2). Please note that the id of the event of

each atomic formula, which is added to the explanation list, is set to ABD. Otherwise, if

the current predicate is not an abducible predicate, the algorithm checks if there is a

runtime event matching it and if it cannot find such an event it tries to generate an

explanation of the predicate by abduction by calling itself recursively (see lines 31−36 in

Figure 5-2). If this recursive call succeeds in generating an explanation of the current

predicate by abduction, this explanation is added to the current explanation list and the

algorithm proceeds by investigating the next condition of f.

The iteration over the conditions of f continues until either all the predicates in the

body of f have been successfully explained or correspond to runtime events or until the

algorithm encounters a predicate that cannot be explained. In this case, it terminates

unsuccessfully for f.

The Explain algorithm is called for all the atomic predicates, which are involved in

the violation of an S&D monitoring rule in order to generate all the possible explanations

that can be found for these predicates. If an atomic predicate appears in a negated form in

an S&D violation and the invocation of the algorithm Explain does not produce any

explanations for the negated form of the predicate, the algorithm is invoked to produce

explanations for the non-negated form of the predicate.

In the following section, we give an example of using the Explain algorithm to

generate possible explanations for atomic predicates.

 102

5.2.2 Examples of explanation generation

As an example of how the algorithm Explains works consider the generation of

explanations for runtime events that cause a violation of Rule ATMS.R1, which was

introduced in Sections 1.2 and 4.3 and is specified as follows:

ATMS.R1∀t1∈Time, ∃t2∈Time, ∀_r1∈Radars, ∀_receiver1,

 ∀_a∈Airplanes, ∀_s∈Airspaces, ∀_r2∈Radars, ∀_source1.

Happens(e(_id1,_r1,_receiver1,RES-A,signal(_r1, _a, _s),

 _soure1),t1,R(t1,t1)) ∧

HoldsAt(covers(_r1,_s),t1) ∧

HoldsAt(covers(_r2,_s), t1) ∧

_r2 ≠ _r1 ⇒

Happens(e(_id2,_r2,_receiver1,RES-A,signal(_r2, _a, _s),

 _source1),t2,R(t1, t1+5))

Assuming that the monitor has received the events shown in the log of Figure 5-3, Rule

ATMS.R1 is violated by:

• the event (E4) (i.e., Happens(e(E4,R1,AirBase,RES-A,signal(R1,A1,S1),

AirBaseCaptor),7,R(7,7))) in the event log of Figure 5-3

• the atomic formula Happens(e(NF,R2,AirBase,signal(R2,A1,S1),

AirBaseCaptor),t,R(7,12)), which signifies the absence of a signal from

radar R2 within the time period expected by Rule ATMS.R1 given the signal of

radar R1, and

• the atomic formulas HoldsAt(covers(R1,S1),7) and

HoldsAt(covers(R2,S1),7)

Event Log for ATMS:

(E1) Happens(e(E1,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-

 a,S2),AirBaseCaptor),0,R(0,0))

(E2) Happens(e(E2,R2,AirBase,RES-A,signal(R2,A2,S2),AirBaseCaptor),1,

 R(1,1))

(E3) Happens(e(E3,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-

 a,S1),AirBaseCaptor),2,R(2,2))

(E4) Happens(e(E4,R1,AirBase,RES-A,signal(R1,A1,S1),AirBaseCaptor),7,

 R(7,7))

(E5) Happens(e(E5,R2,AirBase,RES-A,signal(R2,A5,S1),AirBaseControl),13,

 R(13,13))

 103

Figure 5-3 – Event log for ATMS

The truth value of the atomic formula Happens(e(NF,R2,AirBase,signal(R2,A1,S1),

AirBaseCaptor),t,R(7,12)) has been evaluated to False by virtue of the principle of

negation as failure due to the fact that the monitor has received the events (E2) and (E5)

from radar R2 at the time points T=1 and T=13 but no other event from the same radar

between these two points. Also, the atomic formulas HoldsAt(covers(R1,S1), 7) and

HoldsAt(covers(R2,S1), 7) are deduced by the monitor from:

• the standard EVEREST assumption SA2 that is specified as follows:

Initially(_f,t0) ∧

¬∃_e1,t1. Terminates(_e1,_f,t1) ∧

t1 ≥ t0 ⇒

HoldsAt(_f,t1)

• the Initially ground predicates of assumptions ATMS.A1 and ATMS.A2, which

signify that radars R1 and R2 cover the airspace S1 since the start of the execution

of the ATMS, and

• the absence of any event that signifies the repositioning of any of the two radars

until the time point T=7, when the monitor receives the signal for the presence of

aircraft A1 in S1 from R1, and could essentially terminate the ground fluents

covers(R1,S1) and covers(R2,S1) before time point T=7

Before describing the explanation generation process based on the given theory and

event log, it would not be harmful to the understanding of the process itself to interpret

the information, which is provided by the given theory and log event, about the ATMS.

Firstly, as we have discussed above, the assumptions ATMS.A1 and ATMS.A2 along

with the absence of any event that signifies the repositioning of any of the two radars

until the time point T=7 signify that the airspace S1 is under the surveillance of the

ATMS, and more specifically is covered by the radars R1 and R2.

By interpreting event (E1), it is signified that, besides airspace S1, airspace S2 and

airport AR-a is under the surveillance of the ATMS. Additionally, given the assumption

ATMS.A7 and the standard EVEREST assumption SA2, it holds that S2 is the airspace

used for landing approach to AR-a at time point T=0 onwards, until the time point when

an event, which can terminate this condition according to assumption ATMS.A8, occurs.

 104

Similarly, event (E3) informs that airspace S1 can also be used for landing approach to

AR-a at time point T=2 onwards, until again an event that can terminate this condition

according to assumptions ATMS.A8 occurs. Moreover, event (E1) and (E3) introduce the

system components AirBase and AirBaseCaptor, as the sender and receiver, and captor

arguments of their signature respectively.

Events (E2), (E4) and (E5) signify the actual runtime information about the moving

objects within the sections of airspace that is under surveillance of the ATMS. More

specifically, by interpreting (E2), it is signified that there was a signal, which was

generated by radar R2 and informs that airplane A2 was in airspace S2 at time point T=1.

Also, from (E4), we understand that there was a signal, which was generated by radar R1

and informs that the airplane A1 was in airspace S1 at time point T=7. Finally, event (E5)

signifies that there was a signal, which was generated by radar R2 and informs that the

airplane A5 was in airspace S1 at time point T=13. It is notable that the three events do

not introduce any new knowledge regarding the ATMS components.

The explanation generation process starts by trying to generate explanations for the

formulae that signify the existence and absence of events involved in the violation of

Rule ATMS.R1, namely Happens(e(E4,R1,AirBase,RES-

A,signal(R1,A1,S1),AirBaseCaptor),7,R(7,7)) and

Happens(e(NF,R2,AirBase,signal(R2,A1,S1),AirBaseCaptor),t,R(7,12)). As we have

discussed in Section 3.3.2 and 4.3, the following assumptions are also part of the

formulas given to the diagnosis tool:

SA1 Initiates(_e1,_f,t1,R(t1,t1)) ∧

¬∃_e2,t2. Terminates(_e2,_f,t2) ∧

t2 ≥ t1 ⇒

HoldsAt(_f,t2)

SA2 Initially(_f,t0) ∧

¬∃_e1,t1. Terminates(_e1,_f,t1) ∧

t1 ≥ t0 ⇒

HoldsAt(_f,t1)

ATMS.A1 Initially(covers(R1,S1),t0)

ATMS.A2 Initially(covers(R2,S1),t0)

 105

ATMS.A3 ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

 ∀_a∈Airplanes, ∀_s∈Airspaces, ∃_r∈Radars.

 Happens(e(_id1,_sender1,_receiver2,RES-A,inspace(_a,_s),

 _source2),t1,R(t1,t1)) ∧

 HoldsAt(covers(_r,_s),t1) ⇒

 Happens(e(_id2,_r,_receiver2,RES-A,signal(_r,_a,_s),

 _source2),t2,R(t1,t1+5))

Given the assumptions above, when given the atomic formula

Happens(e(E4,R1,AirBase,RES-A,signal(R1,A1,S1),AirBaseCaptor),7,R(7,7)) to explain,

the Explain algorithm detects that the formula can be unified with the predicate

Happens(e(_id2, _r, _receiver2, RES-A, signal(_r,_a,_s), _captor2), t2,

R(t1,t1+5)) in the head of assumption ATMS.A3, and the most general unifier of the

two formulae (i.e., {_id2/E4, _r/R1, _receiver2/AirBase, _a/A1, _s/S1,

_captor2/AirBaseCaptor}) covers all the non time variables which appear in the body

of this assumption. Furthermore, the linear constraint system that is generated from the

definition of the boundaries of the time variable t2 in ATMS.A3 after substituting the

timestamp T=7 of the event Happens(e(E4,R1,AirBase,RES-

A,signal(R1,A1,S1),AirBaseCaptor),7,R(7,7)) for this variable consists of the

constraints t1 ≤ 7 and 7 ≤ t1 + 5. From these two constraints, it is easy to see that the time

range for the time variable t1 is [2, 7]. Thus, the conditions of Explain are satisfied and

the algorithm generates the atomic formula Happens(e(ABD,R1,AirBase,RES-

A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7)) as a possible explanation of

Happens(e(E4, R1, AirBase, RES-A, signal(R1,A1,S1), AirBaseCaptor),

7,R(7,7)). Due to the fact that the predicate Happens(e(_id,_r,_receiver,RES-

A,inspace(_a,_s),_source2),t,R(t,t))belongs to the set of the abducible predicates

APreds (see Section 4.2) this intermediary explanation needs no further elaboration and

can be used as an abduced explanation. Note, however, that as the explanation

Happens(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7))

has been generated by the assumption ATMS.A3, the candidate explanation will be

maintained only if the other instantiated predicate of the body of ATMS.A3, namely

HoldsAt(covers(R1,S1),t1), holds when t1 takes values in the range R(2,7). The

validity of this predicate, however, can be deduced from the standard EVEREST

assumption SA2, the assumption ATMS.A3 and the absence of an event that could

reposition R1 and therefore needs no further exploration by backward chaining. Hence,

 106

the Explains algorithm will return the atomic formula Happens(e(ABD,

R1,AirBase,RES-A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7))as an explanation

of the event Happens(e(E4, R1, AirBase, RES-A, signal(R1,A1,S1),

AirBaseCaptor), 7,R(7,7)). Figure 5-4 shows graphically the reasoning path through

which the explanation of this event is generated and the list of explanations returned by

the algorithm Explain in this case.

Figure 5-4 – Graphical view of explanation generation

5.3 Identification of Explanation Effects

5.3.1 The process of identifying explanation effects

After the generation of the possible explanations for the events involved in the violation

of a rule, the diagnosis process identifies the expected effects of these explanations and

uses them to assess the plausibility of the explanations. The assessment of explanation

plausibility is based on the hypothesis that if the expected effects of an explanation match

with events that have occurred (and recorded) during the operation of the system that is

being monitored, then there is evidence about the validity of the explanation. This is

Happens(e(_id2,_r,_receiver2,RES-A,signal(_r,_a,_s),

 _captor2),t2, R(t1,t1+5))

SA2

HoldsAt(covers(_r,_s),t1)

Happens(e(_id1,_sender1,_receiver2,RES-
 A,inspace(_a,_s),_captor2),t1,R(t1,t1))

Event to be explained:

Happens(e(E4,R1,AirBase,RES-
A,signal(R1,A1,S1),AirBaseControl),7,R(7,7))

Initially(covers(_r,_s),t0)

ATMS.A3

¬Terminates(e,covers(_r,_s),t1)

Unification with unifiers =
{_id2/E4, _r/R1,
_receiver2/AirBase,
_a/A1, _s/S1,
_captor2/AirBaseCaptor}

Deductive reasoning path

Abductive reasoning path

Explanations = [Happens(e(E4,R1,AirBase,RES-A,

 signal(R1,A1,S1),AirBaseCaptor),7,R(7,7)),

 [[(Happens(e(ABD,R1,AirBase,RES-A,

 inspace(A1,S1),AirBaseCaptor),

 t1,R(2,7)))]ABD]AND]OR

 107

because the recorded events that match the expected effects of the explanation may have

also been caused by the explanation itself. In case that any constituent abduced predicate

of an explanation can be occurred or formally belongs to the OPreds set (see Section 4.2),

it casts positive evidence to the plausibility of the explanation that is part of. It should be

noted that under the same hypothesis the violation observation (event) that the

explanation was generated for also casts positive evidence for the explanation. However,

only the evidence that arises from this event is disregarded to avoid cycles in the

reasoning process.

The identification of the expected effects of explanations is based on deductive

reasoning. More specifically, given an explanation Exp = P1 ∧…∧ Pn that is expressed as

a conjunction of abduced predicates, the diagnosis process iterates over its constituent

predicates Pi. In case that any Pi is an observable predicate (i.e. belongs to the OPreds set

(see Section 4.1)), then Pi itself is considered as expected consequence of explanation

Exp. For each Pi, the diagnosis process finds the system assumptions B1 ∧ … ∧ Bn ⇒ H

that have a predicate Bj in their body which can be unified with Pi and the rest of the

predicates Bu (u = 1,…,n and u ≠ j) in it are True. For such assumptions, if the predicate

H in the head of the assumption is fully instantiated and its time range is determined, H is

derived as a possible consequence of Pi. Then, if H is an observable predicate, i.e., a

predicate that can be matched with recorded events, H is added to the expected effects of

Exp. If H, however, is not an observable predicate, the effect identification process tries

to generate the consequences of H recursively and, if it finds any such consequences that

correspond to observable events, it adds them to the set of the expected effects of Exp. In

this way, the diagnosis process computes the transitive closure of the effects of Exp.

To clarify the basis of this principle, assume that explanations of an event E1, which

has been involved in the violation of a rule, need to be found based on the following set

of assumptions:

(A1) A ∧ B ⇒ E1

(A2) C ⇒ E1

(A3) C ⇒ E2

(A4) A ⇒ E3

(A5) B ⇒ E4

 108

Given the assumptions (A1) - (A5) and assuming that A, B and C are abducible

atomic formulae, while C belongs to the OPreds set too, the algorithm Explain would

generate the following two alternative explanations for E1:

[E1, [[[(A3:A)]ABD, [(A3:B)]ABD]AND,[[(A4:C)]ABD]]OR

or, equivalently in a logical form, the explanations are as follows:

Exp1(E1)∨ Exp2(E1)

 where:

Exp1(E1) = A ∧ B, and

 Exp2(E1) = C

To assess the plausibility of each of these explanations, we can identify the

consequences that the individual atomic formulae that constitute them would have.

Following this line of exploration, we can identify that

• if A had occurred it should have caused E3 due to assumption (A4)

• if B had occurred it should have caused E4 due to assumption (A5), and

• if C had occurred, there are two expected effects:

ATMS.A1'. C should be included in the event log, due to the fact that C is

observable predicate, and

ATMS.A2'. C would have caused E2 due to assumption (A3)

Subsequently, if we assume that the event log of the monitoring infrastructure

includes the events E1, E2, C, E3 and E5, the occurrence of C and E2 would cast

supporting evidence for the hypothesis that C is true or, equivalently, that Exp2(E1) is

valid. This evidence would be casted by the event E2. Similarly, E3 would cast some

evidence that A is true and the absence of an event E4 in the log would provide some

evidence that B is not true. Thus, there would be conflicting evidence for explanation

Exp1(E1).

The assessment of the plausibility of alternative explanations in the diagnostic

framework is based on this principle of collecting evidence about the truth of the abduced

atomic formulae in explanations by searching for events in the log of the monitoring

infrastructure that confirm or disconfirm the expected consequences of these abduced

 109

formulae. This evidence is then used to compute belief measures in the existence of

explanations using the Dempster Shafer theory of evidence [146] as we explain in

Section 5.4.

Before, however, looking into the estimation of such beliefs, we present the process

of generating the expected consequences of explanations. The generation of such

consequences is based on the algorithm Generate_AE_Consequences, which is shown in

Figure 5-5.

 110

Figure 5-5 - Algorithm for computing the transitive closure of deductions from

abduced predicates

The algorithm shown in Figure 5-5 takes as input the set of the abduced ground

predicates Pi (i=1,…,n) of the conjunctive formula P1 ∧ P2 ∧ … ∧ Pn that constitutes an

explanation (i.e. the AF input parameter) and finds all the grounded observable predicates

Generate_AE_consequences(AF: Set of Grounded Atomic Formulas, TLIST: List of Assumption Templates,
CNS: Set of Consequences)

1. CNS = { }

2. TLIST’ = copy of TLIST

3. For each atomic formula Pi ∈ AF Do

4. If Pi is observable Then

5. CNS = CNS ∪ { Pi }

6. End If

7. For each assumption template T in TLIST’ Do

8. For each predicate Q ∈ body(T) Do

9. If mgu(Pi,Q) ≠∅ and CompatibleTimeRange(Pi,Q) Then

10. T’ := copy of T

11. Apply mgu(Pi,Q) onto T’

12. Set the truth value of Q in T’ to True

13. Update time ranges of other predicates in T’ based on the time range of Pi

14. If for all predicates R ∈ Body(T’) such that R≠Q, R is true Then

15. If head(T’) is fully instantiated Then

16. If head(T’) is observable Then

17. CNS = CNS ∪ { (T.id, head(T’)) }

18. delete T’

19. Else /*head(T’) is a derived predicate */

20. CNS’ = { }

21. Generate_consequences({head(T’)}, TLIST’, CNS’)

22. CNS = CNS ∪ CNS’

23. End If

24. End If

25. Else /* there is a predicate R in Body(T’) whose truth value is unknown */

26. If for all predicates R ∈ Body(T’) such that R≠Q and

27. R is not true and

28. R is an abducible predicate Then

29. TLIST’ = append (T’, TLIST’)

30. End If

31. End If

32. End If

33. End For

 111

(i.e. the returned CNS input parameter) that could be derived from them. The

computation of consequences is based on the assumptions specified for the system

involved. The algorithm uses a set of templates of the given system assumptions (i.e., the

input parameter TLIST). Let a template of any given assumption be a copy of the

assumption formula. Please note that the aforementioned informal definition of a

template implies implicitly that there is a process, which creates and deletes copies of any

given assumption formula. During the reasoning process, a template can be partially or

fully instantiated as result of the unification process that may take place.

To derive the possible consequences, the algorithm iterates over the input predicates

Pi. For each Pi, in case that any Pi is an observable predicate (i.e. belongs to the OPreds

set (see Section 4.2)) (see lines 3−6 in Figure 5-5), the algorithm adds Pi to the CNS set.

Subsequently, the algorithm tries to find which of the partially instantiated assumption

templates of the form A: Body ⇒ Head have a predicate P in Body that can be unified

with Pi and has a compatible time range with it (see lines 7-9 in Figure 5-5). For each

assumption template that has such a predicate Q, the algorithm creates a new copy T’ of it

in order to represent the update (further instantiation) of the template with Pi and, in the

new copy T’, it applies the unification found between Q and Pi to all the predicates of T’,

sets the truth value of the predicate Q that was unified with Pi to True and updates the

time ranges of all the predicates in T’ based on the time range of Pi (see lines 10-13 in

Figure 5-5). The creation of a new copy of the assumption template at this stage is

necessary in order to ensure the completeness of the reasoning process. More specifically,

by creating a new copy of the assumption template, there will be an opportunity to match

the original assumption instance that is represented by the template T with some other

predicate Pj in the conjunctive formula P1 ∧ P2 ∧ … ∧ Pn, when the algorithm visits Pj.

Following the creation of the new template instance T’ for Pi, the algorithm

Generate_AE_Consequences checks whether the rest of the predicates in the body T’ (if

there are any) are also satisfied, i.e., they are grounded predicates and their truth value is

True (see line 14 in Figure 5-5). For a Happens, Initiates or Terminates predicate R, this

test is realized by checking the truth value of the predicate that is stored in the template

since in cases where a grounded observable or derived predicate has already been unified

with R, the truth value of R must have been set to True. For HoldsAt predicates, however,

the test is a query to the fluent initiation and termination database of the monitoring

framework that checks whether the condition expressed by the standard EVEREST

 112

assumption SA1 and SA2 (see Section 3.3.2) is satisfied for the HoldsAt predicate at the

required time point. Following this test, if the truth value of all the predicates R in the

assumption template is True and, furthermore, the predicate head(T’) in the head of T’ is

fully instantiated (i.e., all of head(T’) variables have concrete values after the application

of mgu(Pi,Q) on T’) and the exact boundaries of its time range can be determined, the

algorithm checks whether predicate head(T’) that can been deduced from T’ is an

observable predicate (see line 16 in Figure 5-5). If head(T’) is observable predicate, the

algorithm adds it along with the identifier of the assumption that it used to derive it, to the

possible consequences of the explanation P1 ∧ P2 ∧ … ∧ Pn (see line 17 in Figure 5-5). In

this case, the algorithm also deletes T’ as this fully instantiated predicate will be not

useful to reasoning. If, however, the predicate head(T’)is not an observable predicate, the

algorithm still treats it as a derived predicate and recursively tries to identify the

consequences of head(T’) by invoking itself having head(T’) as input (see line 21 in

Figure 5-5). If the recursive invocation finds any consequences of head(T’), it adds them

to the set of the expected consequences of the explanation (see line 22 in Figure 5-5). In

this way, Generate_AE_Consequences computes the transitive closure of all the possible

consequences of the abduced conjunctive explanation formula P1 ∧ P2 ∧ … ∧ Pn, which

could be matched with recorded events. These consequences are used in the next stage of

the diagnosis process in order to find which of them indeed match with recorded events

and which do not and calculate the likelihood of P1 ∧ P2 ∧ … ∧ Pn.

Note that if, during the execution of the Generate_AE_Consequences algorithm, an

input ground atomic formula can be unified with a predicate in the body of an assumption

template T’ but the rest of the body predicates of T’ whose truth values cannot be

established yet, the algorithm stops exploring T’ further in the current iteration. However,

T’ is appended to the list of templates TLIST’ in case that the predicates in the body of T’

whose truth values cannot be established yet are abducible predicates (see lines 26-29 in

Figure 5-5). By appending T’ to TLIST’, we succeed in making T’ available for

consideration at a next iteration when another input atomic formula in AF (or,

equivalently, in P1 ∧ P2 ∧ … ∧ Pn) is considered. This is not necessary in the case of

partially instantiated templates that have body predicates, which are not evaluated yet but

correspond to derived or observable predicates. Such templates are not appended to

TLIST’ due to the fact that the truth value of derived or observable predicates is not

 113

changing until the end of the execution of the current invocation of

Generate_AE_Consequences (this point is discussed further below).

The specification of the algorithm Generate_AE_Consequences assumes that, when

the algorithm is invoked, the set of the assumption templates TLIST encodes the

following:

• any event (i.e ground observable predicate), which has been recorded and

stored in the log of the EVEREST monitoring framework up to the invocation

time of the algorithm, and

• any ground derived predicate, which can be generated from the recorded

events up to the time of the invocation of the algorithm.

The above assumption is valid since as soon as a new recorded event arrives at the

monitoring framework. Any new recorded event, en, is checked against the set of the

assumption templates, which exist up to that point, to identify if there are body predicates

of the existing templates, which en could be unified with. If there are such templates, en is

unified with them, and all the head predicates of the templates, which can be derived

following this unification, are generated. The algorithm, which processes recorded events

in order to update the assumption template list and generate the transitive closure of the

predicates that can be derived from recorded events, is shown in Figure 5-6. This

algorithm is called Generate_RE_Consequences and operates based on the same forward

reasoning process as Generate_AE_Consequences.

 114

Figure 5-6 – Algorithm for computing the transitive closure of deductions from

recorded events

The differences between the Generate_RE_Consequences and

Generate_AE_Consequences are that:

1. Generate_RE_Consequences is invoked to process ground observable predicates

that represent recorded events whilst Generate_AE_Consequences is invoked to

process ground abducible predicates representing abduced explanations, and

Generate_RE_consequences(AF: Set of Grounded Atomic Formulas, TLIST: List of Assumption
Templates, CNS: Set of Consequences)

1. CNS = { }

2. For each atomic formula Pi ∈ AF Do

3. For each assumption template T in TLIST Do

4. For each predicate Q ∈ body(T) Do

5. If mgu(Pi,Q) ≠∅ and CompatibleTimeRange(Pi,Q) Then

6. T’ := copy of T

7. Apply mgu(Pi,Q) onto T’

8. Set the truth value of Q in T’ to True

9. Update time ranges of other predicates in T’ based on the time range of Pi

10. If for all predicates R ∈ Body(T’) such that R≠Q, R is true Then

11. If head(T’) is fully instantiated Then

12. If head(T’) is observable Then

13. CNS = CNS ∪ { (T.id, head(T’)) }

14. delete T’

15. Else /*head(T’) is a derived predicate */

16. CNS’ = { }

17. Generate_consequences({head(T’)}, TLIST, CNS’)

18. CNS = CNS ∪ CNS’

19. End If

20. End If

21. Else /* there is a predicate R in Body(T’) whose truth value is unknown */

22. TLIST = append (T’, TLIST)

23. End If

24. End If

25. End For

26. End For

27. Return (CNS)

END Generate_RE_consequences

 115

2. Instead of operating on a copy of the assumption template list (TLIST) as

Generate_AE_Consequences does, Generate_RE_Consequences operates on this

list directly and updates it when possible (see lines 21−23 in Figure 5-6).

Thus, at the end of an invocation of Generate_RE_Consequences, any templates, which

remain partially instantiated after the unification process with a recorded or derived

predicate, are made available for further updates. Further updates can be done either by

the same algorithm, Generate_RE_Consequences, when a new recorded event occurs and

the algorithm is invoked to process it or by Generate_AE_Consequences when the latter

algorithm is called to generate consequences of abduced explanations.

It should be noted that the Generate_RE_Consequences algorithm is invoked every

time that a new recorded event arrives to the monitoring framework and its results are

required for the normal monitoring process since derived predicates are also necessary in

detecting violations with respect to derived and recorded events.

Generate_AE_Consequences, on the other hand, is invoked every time that a request for

the diagnosis of a rule violation is made by the user of the monitoring framework. When

any of the two algorithms is invoked, it obtains a lock over the current set of assumption

templates (TLIST) to ensure that the other algorithm cannot process TLIST.

We should also note that the set of the consequences, which is produced by the

algorithm Generate_AE_Consequences, does not include all the possible consequences,

which could be produced from the abduced predicates P1 ∧ P2 ∧ … ∧ Pn constituting an

explanation. It includes only the complete set of consequences that can be derived based

on the knowledge of the system (i.e., the set of the ground observabe and derived

predicates) at the time of the algorithm’s invocation. This set of consequences is

generally a subset of the set of all potential consequences, which could have been

generated by using the available relevant knowledge. This can be explained, as we

mentioned above, due to the fact that there might be assumption templates, whose body

predicates that can be instantiated with recorded and derived events are not known yet at

the time of the invocation of Generate_AE_Consequences algorithm. Such templates

cannot be used for deriving any consequences

 116

5.3.2 Examples of explanation effects identification

To elaborate on the process of generating explanation consequences, let us consider the

ATMS example and more specifically the diagnosis of the violation of rule ATMS.R1,

which was initially introduced in Section 4.3 and whose specifications is as follows:

ATMS.R1 ∀t1∈Time, ∃t2∈Time, ∀_r1∈Radars, ∀_receiver1,

 ∀_a∈Airplanes, ∀_s∈Airspaces, ∀_r2∈Radars, ∀_source1.

Happens(e(_id1,_r1,_receiver1,RES-A,signal(_r1, _a, _s),

 _soure1),t1,R(t1,t1)) ∧

HoldsAt(covers(_r1,_s),t1) ∧

HoldsAt(covers(_r2,_s), t1) ∧

_r2 ≠ _r1 ⇒

Happens(e(_id2,_r2,_receiver1,RES-A,signal(_r2, _a, _s),

 _source1),t2,R(t1, t1+5)

Assuming that the monitor has received the events shown in the log of Figure 5-3, the

rule ATMS.R1 is violated by:

• the event (E4) (i.e., Happens(e(E6, R1, AirBase, RES-A, signal(R1, A1,

S1),AirBaseCaptor),7,R(7, 7)))in the event log of Figure 5-3

• the atomic formula Happens(e(NF,R2,AirBase,signal(R2,A1,S1),

AirBaseCaptor),t,R(7,12)), which signifies the absence of a signal from

radar R2 within the time period expected by ATMS.R1 given the signal of radar

R1, and

• the atomic formulas HoldsAt(covers(R1,S1),7) and

HoldsAt(covers(R2,S1),7)

Also, as it is shown in Section 5.2.2, the computed explanation of event (E4) is as

follows:

[Happens(e(E4,R1,AirBase,RES-A, signal(R1,A1,S1),AirBaseCaptor),7,R(7,7)),

[

 [(Happens(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),AirBaseCaptor),

 t1,R(2,7)))]ABD

]AND

]OR

 117

Recall, also, that the following assumptions are considered for the ATMS example in

Section 4.3:

ATMS.A5 ∀t1∈Time, ∀_sender, ∀_receiver, ∀_source, ∀_a∈Airplanes,

 ∀_s∈Airspaces.

 Happens(e(_id1,_sender,_receiver,RES-A,inspace(_a,_s),

 _source),t1,R(t1,t1)) ⇒

 Initiates(e(_id1,_sender,_receiver,RES-A,inspace(_a,

 _s), _source), inairspace(_a,_s),t1

ATMS.A6 ∀t1∈Time, ∃t2∈Time, ∀_receiver, ∀_source, ∀_a∈Airplanes,

 ∀_s∈Airspaces, ∃_airportX∈Airports.

 Initiates(e(_id1,_a,_receiver,RES-A,inspace(_a,

_s),_source),inairspace(_a,_s),t1) ∧

 HoldsAt(landing_airspace_for(_s,_airportX),t1) ⇒

 Happens(e(_id2,_a,_receiver,RES-A,

 landingRequest(_a,_airportX),_source),t2,

 R(t1-10,t1))

ATMS.A7 ∀t1∈Time, ∀_sender, ∀_receiver, ∀_source, ∀_a∈Airplanes,

 ∀_airportX∈Airports, ∃_s∈Airspaces.

 Happens(e(_id1,_sender,_receiver,RES-A,

 changeOfLandingApproach(_airportX,_s),

 _source),t1,R(t1,t1)) ⇒

 Initiates(e(_id1,_sender,_receiver,RES-A,

 changeOfLandingApproach(_airportX,_s),_source),

 landing_airspace_for(_s,_airportX),t1)

ATMS.A8 ∀t1∈Time, ∀_sender, ∀_receiver, ∀_source, ∀_a∈Airplanes,

 ∀_airportX∈Airports, ∃_s∈Airspaces.

 Happens(e(_id1,_sender,_receiver,RES-A,

 removeLandingApproach(_airportX,_s),

 _source),t1,R(t1,t1)) ⇒

 Terminates(e(_id1,_sender,_receiver,RES-A,

 removeLandingApproach(_airportX,_s),_source),

 landing_airspace_for(_s,_airportX),t1)

 118

Recalling the meaning of the above assumptions, assumption ATMS.A5 states that

when an event that signifies the entrance of an aircraft _a in an airspace _s becomes

known, and at that timepoint a fluent called inairspace(_a,_s)should be initiated to

signify the presence of the aircraft in the particular airspace. The second assumption (i.e.,

assumption ATMS.A6) states that when an aircraft _a enters an airspace _s that is used

for approaching the final landing route to an airport then the aircraft _s must have made a

landing request for the particular airport within the last 10 time units before entering _s.

In this assumption, the airspace that is used as the landing approach for an airport is

indicated by the fluent landing_airspace_for(_s,_airportX) and landing requests

are expressed by operations of the form landingRequest(_a, _airportX). Finally the

third and fourth assumptions above, namely ATMS.A7 and ATMS.A8, are used for

setting the airspace that is used as the landing approach for an airport. This is done by

initiating and terminating respectively the fluent landing_airspace_for(_s,

_airportX) every time operations of the form changeOfLandingApproach(

_airportX, _s)and removeLandingApproach(_airportX, _s) are called.

Using the assumptions ATMS.A5 and ATMS.A6, we can derive certain expected

consequences for the abduced formula Happens(e(ABD,R1,AirBase,RES-

A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7))) that was generated as a possible

explanation of the event Happens(e(E4, R1, AirBase, RES-A, signal(R1, A1,

S1),AirBaseCaptor),7,R(7,7)) in the way we described in Section 5.2.2. In summary,

if we assume that the airspace S1 is the landing airspace of the airport AR-a, then the

entrance of the aircraft A1 into S1 would make us expect that there should be some

request from A1 to land in AR-a or, equivalently, that a runtime event

Happens(e(DER,A1,AirBase,RES-A,landingRequest(A1,AR-a), AirBaseCaptor),

t2, R(0,6)) should have occurred. This runtime event would, thus, be an expected

consequence of the abduced explanation Happens(e(ABD,R1,AirBase,RES-

A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7))).

The reasoning path for deriving Happens(e(DER,A1,AirBase,RES-

A,landingRequest(A1,AR-a), AirBaseCaptor), t2, R(0,6)) is as follows:

1. Step-1: From the event (E3) in the log of Figure 5-3 (i.e.,

Happens(e(E3,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-a,

S1),AirBaseCaptor),2,R(2,2)) and the assumption ATMS.A7 we can derive

the fluent initiation formula:

 119

Initiates(e(E5,AirBase,AirBase,RES-A,changeOfLandingApproach

(AR-a,S1),AirBaseCaptor),landing_airspace_for(AR-a,S2),2) (DP1)

2. Step-2: From the atomic formula Happens(e(ABD, R1, AirBase, RES-A,

inspace(A1,S1),AirBaseCaptor),t1,R(2,7))) that was abduced as an

explanation of Happens(e(E4, R1, AirBase, RES-A, signal(R1, A1, S1),

AirBaseCaptor),7,R(7,7)) and assumption ATMS.A5, we can derive the

fluent initiation formula:

 Initiates(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),

 AirBaseCaptor),t1,R(2,7)),inairspace(A1,S1),

 t1,R(2,7))) (DP2)

• Step-3: From (DP1), the standard EVEREST assumption SA1, and the absence of

any event e generated by the call of operation

removeLandingApproach(_airportX,_s), which could terminate the fluent

landing_airspace_for(AR-a,S2) due to assumption ATMS.A8, within the

time range [2,7], we can deduce the atomic formula DP3 that is given below.

Please note that the check whether DP3 is True for t in [2, 7] is done by a query

to the fluent initiation and termination database of EVEREST.

 ∀t∈[2,7].HoldsAt(landing_airspace_for(S1,AR-a),t) (DP3)

3. Step-4: From (DP3), (DP2) and ATMS.A6, we can deduce the formula:

 Happens(e(DER,A1,AirBase,RES-A,landingRequest(A1,AR-a),

 AirBaseCaptor),t2,R(0,6)) (DP4)

At this point we explain how the algorithms Generate_RE_Consequences and

Generate_AE_Consequences will take the steps of the above reasoning path. Step-1

(Figure 5-7) will be executed first by the algorithm Generate_RE_Consequences when

the event Happens(e(E3,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-a,

S1),AirBaseCaptor),2,R(2,2)) occurs at time t=2 and Generate_RE_Consequences

is invoked to process it. To generate the formula (DP1) that is derived in this step,

Generate_RE_Consequences will:

i) create a new template of the formula ATMS.A7,

 120

ii) unify the runtime event Happens(e(E3,AirBase,AirBase,RES-

A,changeOfLandingApproach(AR-a, S1), AirBaseCaptor),2,R(2,2)) with

the only predicate in the body of the template, and

iii) create the derived predicate Initiates(e(E3, AirBase, AirBase, RES-A,

changeOfLandingApproach(AR-a, S1), AirBaseCaptor), 2, R(2, 2)),

landing_airspace_for(S1, AR-a), 2) as an instantiation of the head of the

template.

Figure 5-7 – Step1 executed by Generate_RE_Consequences

Subsequently, Step-2 (Figure 5-8) will be executed by the algorithm

Generate_AE_Consequences at some time point following the time point t=10 when the

violation of ATMS.R1 is detected and the generation of a diagnosis of this violation is

requested. Suppose that Generate_AE_Consequences is invoked to generate the

consequences of the abduced explanation Happens(e(ABD, R1, AirBase, RES-A,

inspace(A1, S1), AirBaseCaptor), t1, R(2,7))) immediately of the detection of

the violation of ATMS.R1 at t=11. Upon its invocation, Generate_AE_Consequences

will:

i) create a new template of the formula ATMS.A5,

Happens(e(E3,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-a,S1),AirBaseCaptor),2,R(2,2))

Initiates(e(E3,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-a,S1),AirBaseCaptor),2,R(2,2)),

 landing_airspace_for(S1, AR-a), 2) (DP1)

ATMS.7

Deductive reasoning path

Observed predicate (aka runtime
event)

Derived predicate

 121

ii) unify Happens(e(ABD, R1, AirBase, RES-A, inspace(A1, S1),

AirBaseCaptor),t1,R(2,7))) with the single predicate in the body of this

template, and

iii) generate the derived predicate Initiates(e(ABD, R1, AirBase, RES-A,

inspace(A1, S1), AirBaseCaptor), t1, R(2,7)), inairspace(A1, S1),

t1, R(2, 7))) as an instantiation of the head of the template.

Figure 5-8 – Step2 executed by Generate_RE_Consequences

Following this, since Initiates(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),

AirBaseCaptor),t1,R(2,7)),inairspace(A1,S1), t1,R(2,7)) is not an observable

predicate, Generate_AE_Consequences will invoke itself recursively to generate further

consequences from this predicate. Thus, at this point, Generate_AE_Consequences will

execute Step-4.

In order to execute Step-4, Generate_AE_Consequences will identify that the derived

predicate Initiates(e(ABD, R1, AirBase, RES-A,inspace(A1,

S1),AirBaseCaptor),t1,R(2,7)),inairspace(A1,S1),t1,R(2,7)) can be unified

with a predicate in the body of the assumption ATMS.A6. Thus, it will create a new

template of ATMS.A6 by unifying the derived predicate

Initiates(inspace(A1,S1),t1,R(2,7)), inairspace(A1,S1),t1,R(2,7))) with

this template. Following this, it will check if the remaining predicates in the body of the

newly created assumption template (i.e., HoldsAt(landing_airspace_for(S1,AR-

Happens(e(ABD,R1,AirBase, RES-A, inspace(A1,S1),AirBaseCaptor),t1,R(2,7)))

ATMS.A5

Deductive reasoning path

Abduced predicate

Derived predicate

Initiates(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7)),inairspace(A1,S1),t1,R(2,7)) (DP2)

 122

a),t) for all t in [2,7]) is True. As this predicate is a HoldsAt predicate,

Generate_AE_Consequences will query the fluent database of the monitoring framework

to check if the HoldsAt predicate is true. During the execution of this query, the

monitoring framework will execute Step-3 (Figure 5-9), and to check the truthness of the

HoldsAt predicate.

Figure 5-9 – Step3 executed by fluent maintenance mechanisms of EVEREST

When it is verified that the HoldsAt(landing_airspace_for(S1,AR-a),t) is True

for t in [2,7], Generate_AE_Consequences will derive the consequence

Happens(landingRequest(A1,AR-a), t2, R(0,6)) as an instantiation of the head of

the formula ATMS.A6 (Figure 5-10).

SA1

HoldsAt(landing_airspace_for(S1,AR-a),t), t∈[2,7] (DP3)

¬¬¬¬∃∃∃∃e. Terminates(e, landing_airspace_for(S1,AR-a), t) ∧

 (t ≥ 2) ∧ (7 ≥ t)

Initiates(e(E3,AirBase,AirBase,RES-A,changeOfLandingApproach(AR-a,S1),AirBaseCaptor),2,R(2,2)),

 landing_airspace_for(S1, AR-a), 2) (DP1)

Deductive reasoning path

Derived predicate

 123

Figure 5-10 – Step4 executed by Generate_AE_Consequences

As we discussed earlier, the algorithm Generate_AE_Consequences might fail to

generate all the possible consequences of a given explanation if certain runtime events

required for them have not arrived yet. Assume, for instance, that in the above example

the event Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2)) had not arrived

at the monitoring framework until the time point T=14 due to a delay in the

communication channel between the event captor that captures events of these type and

the monitoring framework. In this case, Generate_RE_Consequences would not have

executed Step-1, when the algorithm Generate_AE_Consequences was invoked.

Therefore, Generate_AE_Consequences algorithm would not be able to find that the

predicate HoldsAt(landing_airspace_for(S2,AR-a),t) was True for all t in [2, 7].

Thus, in this case it would also be unable to deduce the formula

Happens(landingRequest(A1,AR-a), t2, R(0,6)) from ATMS.A6.

5.4 Plausibility Assessment

In this section, we describe the next step of the diagnostic process that is namely the

assessment of the genuineness of the events involved in S&D rule violations. Goal of this

step is to provide an assessment scheme for event genuineness based on the plausibility

and correctness of the alternative explanations that are generated for an event in the

previous steps of the diagnostic process.

ATMS.A6

Happens(e(DER,A1,AirBase,RES-A,landingRequest(A1,AR-a), AirBaseCaptor),t2,R(0,6)) (DP4)

Initiates(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),AirBaseCaptor),t1,R(2,7)),inairspace(A1,S1),t1,R(2,7)) (DP2)

HoldsAt(landing_airspace_for(S1,AR-a),t), t∈[2,7] (DP3)

Deductive reasoning path

Derived predicate

 124

5.4.1 Foundations of the assessment

The goal of the diagnostic process is to provide the most plausible cause of S&D

violations. The causes of violations are provided in terms of genuineness of the violation

observations and other correlated events. Let events be the set of the ground observables

predicates. All the events are associated with a timestamp and a time range. In case

events do not have a specific value for their timestamp, let them be called parametric

events. On the other hand let the events that have a specific value for their timestamp be

called fully specified events. Consequently, the events recorded in the log of the

monitoring framework are fully specified. It should also be noted that the time range

boundaries of any parametric event are different numbers, while the corresponding ones

of any fully specified event are both equal to the timestamp of the event. Our initial

hypothesis for event genuineness considers that:

• An event is genuine, if it has occurred and is a result of the monitored system’s

intended behaviour and not of an attack or fault (Hypothesis 1)

5.4.1.1 Event occurrence

Evaluating whether an event has occurred is based on the log of the monitoring

framework. More specifically, if an event ei, with timestamp tei and time range [tei
LB,

tei
UB], can be matched with an event recorded in the log of the monitoring framework, we

assume that ei has occurred. A match between a recorded event elog in the log, which has

been produced by an event captor Captor(e
log

) and has a timestamp te
log

, and an event ei,

whose occurrence is under question is detected only if the following three conditions are

satisfied:

• elog has been produced by the same event captor as the captor that ei is expected to

be produced from or, formally, if Captor(elog) = Captor(ei) (Condition 9)

• elog can be unified with ei or formally mgu(elog, ei) ≠∅ (Condition 10)

• The timestamp of the event elog is equal to the timestamp of ei in case that ei is

fully specified (i.e., te
log

 = tei) or falls within the time range of ei in case that ei is

parametric(i.e., tei
LB ≤ te

log
 and telog ≤ tei

UB) (Condition 11)

The absence of a matching recorded event for an event ei at the time of the search

does not necessarily mean that such an event has not occurred. The absence of a matching

 125

recorded event could have been caused by delays in the “channel” between the event

captors and the monitoring framework.

More specifically, there might be cases where, although a recorded event that satisfies

the conditions 9 - 11 above may have occurred, this event might not have arrived at the

event log of the monitoring framework yet, due to communication delays in the

“channel” between the event captor, which captured the event, and the framework. To

cope with this possibility, in cases where no matching recorded event is found at the time

of the initial search, the search process should take into account the time of the last

recorded event that has been received from the captor of ei. If this time is less than the

upper boundary tei
UB of the time variable of ei, the search process should wait until either

a recorded event that matches ei or a not matching recorded event with a timestamp that

is greater than tei
UB arrives from the relevant captor. The arrival of the first recorded event

e’ from the captor of ei which does not match ei and has a timestamp that is greater than

tei
UB would be sufficient to establish with certainty that no recorded event matching ei has

occurred so far. The reason that the arrival of such a recorded event would be sufficient

for establishing the absence of any match for ei is that we assume that the communication

connections between event captors and the monitoring framework realise the TCP/IP

protocol and, therefore, the events which are generated by a specific captor arrive at the

monitoring framework in exactly the same order as the order in which they were captured

and dispatched. Thus, it is valid to assume that if there was a recorded event matching ei

that had been captured and dispatched before e’, this event should have arrived at the

monitoring framework before e’.

It should be appreciated, however, that although a “wait” search process would allow

assessing with more certainty whether an expected consequence of an explanation has

been confirmed or not by recorded events, the adoption of this approach could create two

problems. The first problem is that it could delay the diagnosis generation process

significantly, depending on the amount of traffic in the communication channels between

the captors that generate the expected events and the monitoring framework and the

speed of these channels. Such a delay might not be desirable in cases where a timely

diagnosis is necessary in order to decide how to react to an S&D rule violation. The

second potential problem of a “wait” search process is that if an event captor and/or the

communication channel between it and the monitoring framework become unavailable,

the diagnosis process could also be stalled.

 126

To avoid these potential problems, the search for the occurrence of ei in the log

establishes the negation of ei that is expected to have been produced by the captor

Captor(ei) if:

• there is no recorded event e satisfying Conditions 9-11 above at the time of the

search, and

• the last known value of the clock of Captor(ei) (i.e., the timestamp of the last

event in the log that has arrived from this captor) is greater than tei
UB

.

However, there is also a possibility that we would not be able to confirm or

disconfirm the occurrence of an event or observable predicate at the time of the search.

These would events ei for which no matching recorded event satisfying the Conditions 9-

11 could be found at the time of the search and the last received event from the relevant

captor had a timestamp that was less than or equal to their upper time boundary (i.e.,

lastTimestamp(Captor(ei)) ≤ tei
UB). To cope with this uncertainty, we have decided to use

the Dempster Shafer theory of evidence [146] (see Section 3.4 for a brief theory

introduction) for assessing whether an event has been occurred based on the log of the

monitoring framework, and therefore whether can be considered genuine.

5.4.1.2 Event as a result of intended system’s behaviour

In order to evaluate whether an event ei results from the system intended behaviour

can be based on the co-occurrence of other events ej (j ≠ i) that can be related to ei

according to the specifications of the underlying monitoring theory. Let the events ej (j ≠

i) be the set of correlated events of ei due to theory T. Particularly, in EVEREST, an

underlying monitoring theory T includes a partial model of the intended behaviour of the

monitored system (assumptions) that specifies causal relations between events. Thus, the

occurrence of an event ei can follow, as a consequence of, or be followed by, as a cause

of the occurrence of its correlated events ej (j ≠ i). In the former case, backwards chaining

can be applied on the assumptions of the underlying theory T by starting from ei and

reaching members of ej that could potentially explain the occurrence of ei. Similarly,

regarding the latter case, forward chaining can be applied on the assumptions of the

underlying theory T by starting from ei and reaching members of ej that, according to the

assumptions of T, can be considered logical consequences of the occurrence of ei. In

order to traverse backward and forward through the assumptions of T, we devised

algorithms based on abduction (see Section 2.3 for the underpinning theory of abductive

 127

reasoning and 5.2.1 for the devised algorithm) and deduction (see Section 5.3 for the

devised algorithm). For instance, assume the theory that includes the five formulas as

follows:

F1. E1 ⇒ E2

F2. E3 ∧ E4 ⇒ E2

F3. E1 ⇒ E5

F4. E5 ⇒ E6

F5. E3 ⇒ E7

From F1 and F2, E2 is specified as a consequence of E1 and the conjunction of E3

and E4 respectively. Thus, in case that E2 occurs, then we can consider the hypothesis

that the occurrence of either E1 or E3 and E4 could explain the occurrence of E2. In F3,

E1 is specified as a possible explanation of E5, and thus if E1 occurs, E5 should occur as

well. Similarly, formula F4 specifies that E6 is a (direct) consequence of E5. Please, also,

note that E6 can be deductively inferred as an (indirect) consequence of E1 as well due to

F3 and F4. Finally, formula F5 specifies that E7 is a (direct) consequence of E3.

By using abductive reasoning, we can only generate hypotheses for the occurrence of

other events ej (j ≠ i) that could potentially explain the occurrence of an event ei. Thus,

the abductive explanations should be checked for their correctness and plausibility. The

correctness and plausibility of abductive explanations could be validated by the

occurrence of their expected consequences, which can be generated by deductive

reasoning on the assumptions of the underlying theory T. Particularly, it is the

occurrence of the consequences that can validate an explanation. Thus, the expected

consequences of an explanation, which are generated by deduction, should match with

events recorded in the log of EVEREST in order that the explanation could be considered

plausible and correct, and therefore valid. Also, in cases that a generated explanation can

be matched with an event recorded in the log of EVEREST, the explanation itself can be

considered as a consequence of itself due to deduction (i.e., A ⇒ A is true for any A).

However, the recorded events that match to the generated consequences, as any other

recorded event, should be questioned whether they result from the intended behaviour of

the system, or equivalently whether they are genuine.

 128

5.4.1.3 Underpinning principles for event genuineness

After taking into consideration the above remarks, our initial hypothesis (Hypothesis

1) was reconsidered, and finally the following hypotheses have been concluded:

• An event is genuine if it has occurred, i.e. is recorded in the log of the monitoring

framework, and all of its explanations are valid (Hypothesis 2)

• An explanation is valid, i.e. plausible and correct, if all of its expected consequences

match with events recorded in the log of the monitoring framework, which are genuine

themselves (Hypothesis 3)

As a prerequisite for providing the formal framework of the assessment of event

genuineness, the definition of the alternative explanations of an event and the search of

supporting and refuting evidence for the generated alternative explanations are provided

in the next section.

5.4.2 Alternative explanations, expected consequences and search

for supporting and refuting evidence for alternative

explanations

Following the identification of the expected consequences of alternative explanations

of events, the diagnosis process searches the event log of the monitoring framework to

find recorded events that can match these consequences, and therefore, cast evidence to

the validity of the alternative explanations.

Let the set of alternative explanations of an event ei is formally be defined as follows:

Definition 1: The explanation set of an event ei is defined as follows:

EXP(ei) = {Φi1, …, ΦiN}

where,

• Φij (j=1,…,N) is a conjunction of abduced events of the form Pij1 ∧ … ∧ PijK that

constitute a possible explanation of ei and has been produced by the algorithm

Explain (Figure 5-2).

At this point, it should be noted that in case that ei belongs to APreds ∩ OPreds (i.e. ei

is an abducible and observable predicate), no explanation can be generated for ei, thus,

EXP(ei) = ∅.

 129

Definition 2: The set of the expected consequences of the exlanation Φij of an event ei is

defined as follows:

CONS(ei,Φij) = {Cij1, …, CijL}

where,

1. Cij1,…,CijL are atomic formulae, which can be derived from the conjunction of the

abduced atomic formulae Pij1 ∧ … ∧ PijK that constitute the explanation Φij and

indicate parametric events that would have been caused by Φij, if explanation Φij

had indeed occurred. The set {Cij1,…,CijL} is formally defined as:

{Cij1,…,CijL} = Consequences({Pij1,…,PijK})

where Consequences(S) is the set of expected consequences that is generated

from a set of atomic formulas S by the algorithm Generate_AE_Consequences

(Figure 5-5).

Please note that, given the algorithm Generate_AE_Consequences (Figure 5-5),

Φij
C includes the parametric events whose derivation path involves at least one of

the abduced atomic formulae Pij1,…,PijK. The consequences of each subset of the

set of the abduced atomic formulas Pij1,…, PijK are considered consequences of the

explanation Φij due to the fact that

Pij1 ∧ … ∧ PijK ⇒ ∧ S⊆Φij and Px∈S Px

Based on the above definition, assume that we have the following three explanations

of an event ei that is involved in an S&D rule violation:

Φi1 = Happens(AE1,t1,R(0,5))

Φi2 = Happens(AE1,t1,R(0,5)) ∧ Happens(AE2,t2,R(5,5))

Φi3 = Happens(AE2,t1,R(12,12))

Also, assume that AE2 belongs to the observable predicates set OPreds and the following

assumptions constitute the underlying theory:

Assumption A. Happens(AE1,t1,R(t1,t1)) ⇒ Happens(E1,t1,R(t1+1,t1+1))

Assumption B. Happens(AE1,t1,R(t1,t1)) ⇒ Happens(DE1,t2,R(t1,t1+1))

 130

Assumption C. Happens(DE1,t1,R(t1,t1)) ∧ Happens(AE2,t2,R(t1,t1+1)) ⇒

Happens(E2,t3,R(t2,t2))

Assumption D. Happens(AE2,t1,R(t1,t1)) ⇒ Happens(E3,t1,R(t1,t1))

The set of the consequences of the abduced explanation Φi2, CONS(ei,Φi2), will include

the atomic formulae (i.e. events) Happens(AE2,t1,R(12,12)), Happens(E2, t3,

R(6, 6)), Happens(E1, t1, R(1, 6)) and Happens(E3, t1, R(5, 5)). More

specifically, CONS(ei,Φi2) includes the event Happens(AE2,t1,R(12,12)) due to the

fact that it is observable predicate. CONS(ei,Φi2) also includes the consequences whose

derivation path includes both atomic formulas of Φi2, Happens(AE1, t1, R(0, 5)) and

Happens(AE2, t2, R(5, 5)). Thus, the event Happens(E2,t3,R(6,6)) is included in

CONS(ei,Φi2) as its derivation fits the criterion of Definition 1 since:

• from Assumption B and Happens(AE1,t1,R(0,5)) we derive

Happens(DE1,t2,R(0,6)), and

• from Happens(DE1,t2,R(0,6)), Happens(AE2,t2,R(5,5)) and Assumption C

we derive Happens(E2,t3,R(6,6)).

Moreover, the event Happens(E1,t1,R(0,6)) is included in CONS(ei,Φi2)
 since:

• from Assumption A and Happens(AE1,t1,R(0,5)) we derive

Happens(E1,t1,R(1,6)).

Finally, Happens(E3, t1, R(t1, t1)) is also included in CONS(ei,Φi2)
 since:

• from Assumption D and Happens(AE2,t2,R(5,5)) we derive Happens(E3, t1,

R(5, 5))

After deriving the expected consequences of an explanation Φij, the diagnostic

process searches the log of the monitoring framework to find recorded events that can

match these consequences, as it will be shown in the folloing. It should be also noted that,

as discussed in Section 5.4.1.1, a match between an event e in the log and a consequence

Cijk (k=1,…,K) is detected only if the Conditions 9-11 are satisfied.

However, as discussed in Section 5.4.1.1, there is also a possibility that we may not

be able to confirm or disconfirm some of the expected consequences of an explanation at

the time of the search. These will be consequences Cijk, with time range [tijk
lB,tijk

UB], for

which no matching event satisfying the Conditions 9-11 (Section 5.4.1.1) could be found

 131

at the time of the search and the last received event from the relevant captor had a

timestamp that was less than or equal to their upper time boundary (i.e.,

lastTimestamp(Captor(Cijk)) ≤ tijk
UB). As in the case of the uncertainty that appears in the

occurrence of an event (discussed in Section 5.4.1.1), the use of Dempster Shafer theory

of evidence [146] (see also Section 3.4) would be sufficient to cope with the uncertainty

regarding the search for evidence for the validity of the generated explanations.

5.4.3 Event Genuineness

Based on Hypotheses 2 and 3, and Definition 1, the event genuineness is defined as

follows:

Definition 2: The genuineness of an event e is defined as:

Genuine(e) = ∧∧∧∧ei ∈U(e) (Explainable(ei))

where,

• U(e) is the set of the events that are recorded in the log of the monitoring

framework and can be matched with e according to Conditions 9-11 or formally:

U(e) = { ei |ei ∈ EventLog and Captor(e) = Captor(ei) and mgu(e, ei) ≠ ∅ and

 teLB ≤ tei and tei ≤ te
UB }

where,

o EventLog is the set of the events in the log of the monitor

o mgu(X,Y) is the most general unifier of the events X and Y [94], and

o Captor(X) is the captor that produced X, in case that X is a fully specified

event, or it is the expected captor to produce X, in case that X is a

parametric event

o teLB and teUB are the lower and upper boundary of the specified time range

of e (or is expected to occur)4

4 te
LB and te

UB are both equal to the timestamp te of e, if e is a fully specified event stored in the log of the
monitor.

 132

• Explainable(ei) is a proposition denoting that the all of the explanations of event ei

are valid and is formally defined as:

Explainable(ei) = ∧∧∧∧Φj∈EXP(ei)Valid(Φj)

 where,

o EXP(ei) is the set of the alternative explanations that can be generated for the

event ei

o Valid(Φj) is a proposition denoting that the explanation Φj is valid and is

defined as:

Valid(Φj) = ∧∧∧∧ eq ∈ CONS(ei,Φj)Genuine(eq)

where,

� CONS(ei,Φj)
 is the set of the expected consequences of Φj (see Section

5.4.2)

5.4.4 Efficiency of the Event Genuineness Assessment

In this section, the factors that might impact the efficiency of an assessment process

based on Definition 2 are discussed. More specifically, due to the fact that the event

genuineness is recursively defined, the number of the recorded events that are stored in

the log of the monitoring infrastructure and are taken into account by the assessment

process, as well as, the circles that might occur during reasoning, are considered critical

for the efficiency of the assessment process. In the following, more details and

optimization suggestions are provided.

5.4.4.1 Diagnosis window

An assessment process for the genuineness of events based on Definition 2 takes into

account all the events recorded in the log of the monitoring framework until the time of

the assessment. Although such an assessment would be more precise with respect to the

recorded behaviour of the system, the adoption of this approach could be problematic

regarding the efficiency of the diagnosis generation process. More specifically, the

recursive definition of event genuineness would lead to an exhaustive search of the entire

log of the monitor, and therefore the completion time of the diagnosis generation process

would increase significantly. As discussed in Section 5.4.1.1, such completion times

 133

might not be desirable in cases where a timely diagnosis is necessary in order to decide

how to react to an S&D rule violation.

To address this potential issue, we restrict the space where the search for matching

events is done by imposing time boundaries for the accepted matching events and,

therefore, for evidence for the event genuineness that is to be assessed [164]. More

specifically, the time period over which the genuineness of an event is assessed is defined

by the absolute time range TR = [Tmin,Tmax]. This range is determined by the constant w,

which is called diagnosis window and required in any particular monitoring setting, and

the timestamp of the original event ei, whose occurrence was used as confirming

evidence for the detection of a monitoring rule violation by EVEREST, by using the

formulas:

Tmin = ti − w/2, and

Tmax = ti + w/2

It should be noted that the diagnosis window is set by the user of EVEREST and

determines the time boundaries within which the search for evidence for events

genuineness is performed. For instance, consider the events of Figure 5-11. Let the

diagnosis window be equal to 130 sec and assume that the timestamp of the event e2,

whose occurrence was used as confirming evidence for the detection of a monitoring rule

violation that is under diagnosis by EVEREST, is equal to 4500 sec. Also, assume that

the genuineness of e2 is being assessed. According to above formulas, the defined time

range within which the search of evidence should be performed is TR = [4435, 4565]

(because Tmin = 4500 – 130/2 = 4435 and Tmax = 4500 +130/2 = 4565). Also, assume

that the time range of e1, which is the expected consequence of the explanation Φ21 of e2,

is computed to be equal to TR(e1) = [4400, 4500] by the Generate_AE_consequences

algorithm (see Section 5.3.1). However, by taking into account the diagnosis time range,

the diagnostic process searches for recorded events that match e1 within the time range

TR(e1)’= TR(e1) ∩ TR = [4400, 4500] ∩ [4435, 4565] = [4435, 4500]. Thus, any

recorded event ex, which matches to e1, and therefore, cast positive evidence to the

validity of explanation of Φ21 of e2 and its timestamp is within [4435, 4500], is taken into

account by the assessment process.

 134

Figure 5-11 – Events and explanations

At this point, it should be also noted that nor do we impose time boundaries on neither

do we exclude generated explanations due to diagnosis window. The reason we do not

filter out generated explanations due to diagnosis window is that abduced events, which

are members of a generated explanation and are specified partially or completely out of

the diagnosis time range TR = [Tmin,Tmax], can have consequences within the diagnosis

time range according to the temporal constraints of the underlying theory, i.e., the

temporal constraints of the assumptions that are used during the abductive and deductive

stages of the diagnostic process. For instance, assume that we have the following

assumptions:

A1: Happens(AE1,t1,R(t1,t1)) ⇒ Happens(E1,t1,R(t1+5,t1+7))

A2: Happens(AE1,t1,R(t1,t1)) ⇒ Happens(DE1,t2,R(t1,t1+8))

Also, assume that the genuineness of an event E1 occurred at t=25 is assessed, while the

diagnosis window is set to w=2. Therefore the diagnosis time range is TR=[24,26]. From

A1, the explanations set of E1 includes only the abduced event

Happens(AE1,t1,R(18,20)), whose time range is specified completely out of TR as

[18,20] ∩ [24,26] = ∅. From A2 the derived event Happens(DE1,t1,R(18,28)) can be

identified as expected consequence of the above explanation. Thus, while the explanation

of our example is specified out of TR, an expected consequence of this explanation is

specified partially within TR, as [18,28] ∩ [24,26] = [24,26].

e1
[4400, 4500] e2

[4500,4500]

Φ11 Φ21

Deductive reasoning path:

Without taking into account
the diagnosis window

e1
[4435, 4500] e2

[4500,4500]

Φ11 Φ21

By taking into account the
diagnosis window

Diagnosis window: w =130
sec

Diagnosis time range: [4435, 4565]

 135

5.4.4.2 Circles occurrence

As any recursive process, the event genuineness assessment process of an event es is

prone to circles occurrence. In particular, any recorded event that is reached and

processed more than once, an infinite loop occurs in the assessment process of es.

However, there is another factor that must be taken into account. In case that a recorded

event er can cast evidence to the validity of n alternative explanations Φi1,…, Φin of an

event ei, which is processed during the assessment of es, the evidence of er should be

equally distributed to the aforementioned explanations. Thus, as loops must be avoided, it

is also significant for the assessment process to distribute equally the evidence of any

recorded event that is repeatedly reached as actual consequence of alternative

explanations of the same event ei.

To address the above issues, our diagnostic process assesses any recorded event only

once, while it keeps the number of times that recorded event are reached as consequences

of alternative explanations of the same event ei. More specifically, any recorded event

that is taken into account by our process is assessed only the first time that is reached,

amd the result of the assessment is stored in the memory of diagnostic process. For

understanding whether a recorded event has been already reached before, the diagnostic

process keeps in its memory the following two lists, UTotal and Uo. The diagnostic process

stores in the list UTotal the lists of matching recorded events for each event ei, U(ei) (see

Section 5.4.3), during all the recursive invocations for the assessment of es.

On the other hand, the list Uo contains lists for the recorded events that have been

reached at least once during the assessment process of es. Except for the reached recorded

event ei, each sub-list of Uo contains the number of times (occurenceTimes(ei)) that ei was

reached as a consequence of alternative explanations of the same event ex, two Boolean

variables to flag whether ei has been already explained (isExplained(ei)) and whether the

process has assessed the explainability of event ei (isExplainabilityComputed(ei)), and

two placeholders for the assessment result of the explanability of ei

(assessmentOf(Explainable(ei)) and assessmentOf(¬Explainable(ei))). It should be noted

that isExplained(ei) flag is updated with regards to, once the diagnostic process finds

explanations for ei, while the isExplainabilityComputed(ei) flag and the two placeholders

assessmentOf(Explainable(ei)) and assessmentOf(¬Explainable(ei)) are updated when the

process assesses the explainability of ei for the first time. Also, the reason we have two

placeholders for the assessment result in the explainability of ei, and how Uo is updated

 136

with regards to these two placeholders is discussed below in Section 5.4.6. The Uo is

formally specified as:

If UTotal ≠∅, then ∀ U(e) ∈ UTotal and ∀ ei ∈ U(e) ∃ sublistUo(ei)
 ∈ Uo such that:

sublistUo(ei) = [ei,occurrenceTimes(ei),isExplained(ei), isExplainabilityComputed(ei),

 assessmentOf(Explainable(ei)), assessmentOf(¬Explainable(ei))]

Regarding the identification of an already considered recorded event, it should be

reminded that the recorded events are fully specified events. Thus, if UTotal is not empty, a

recorded event ex is an already considered recorded event iff there is a recorded event ey,

which belongs to a sub-list U(e) of UTotal, it holds that ey can be unified with ex and the

timestamps of ey and ex are equal, or formally ex is an already considered recorded event

iff:

UTotal ≠∅ and ∃ U(ey)
 ∈ UTotal and ey

 ∈ EventLog and mgu(ex, ey)≠∅ and tx = ty

The means that the lists Uo and UTotal are populated with respect to the diagnosis

window and used by the assessment process are dicussed below, in Sections 5.4.4.3 and

5.4.6, respectively. It should be noted that Uo and UTotal are set equal to the empty list in

the beginning of the assessment of es.

It should be also noted that unless there was a repeated recorded event, it is unlikely

that repeated generated explanations and expected consequences would occur. Before

arguing on the reason why it is unlikely to have repeated explanations and consequences

without processing an already processed event, it should be reminded that a generated

explanation is a set of abduced parametric events, while an expected consequence is a

derived parametric event. Also, as discussed in Section 5.4.4.1, the time ranges of the

parametric events that consist the generated explanations or the expected consequenes are

not restricted by the diagnosis window. Thus, the time ranges of generated explanations

and consequences can be as wide as the time constraints of the underlying theory

assumptions allow. Therefore, there are two cases that repeated explanations or

consequences can occur. The first case presumes that an already considered recorded

event is processed again, and therefore already considered explanations and

consequences occur in the line of reasoning. However, this case is avoided by the means

we have shown in the beginning of the section.

 137

The second case presumes that two conditions should be satisfied for having repeated

explanations and consequences. These two conditions are as follows:

i) The underlying theory includes at least two assumtpions Ai and Aj, whose body

predicates and both body and head time constraints are the same, but their head

predicates are different. Assume that pi and pj are the head predicates of Ai and Aj

respectively.

ii) While there is an already considered recorded event ei, i.e., belongs to UTotal, that

can be unified with pi, there is a recorded event ej that respectively can be unified

with pj and has occurred at the same timepoint as ei had occurred, i.e., their

timestamps are equal tj=ti.

However, due to the fact that the recorded events timestamps are measured in msec, it is

very unlikely that two different events can have equal timestamps. Thus, without harming

the generality of our approach, assume that two different events cannot occur at the exact

same point, and therefore their timestamps are not equal. By these means, the

aforementioned condition can never be satisfied.

5.4.4.3 Handling efficiently explanations, conequences and matching

recorded events

At this point, we describe how the diagnostic process handles explanations,

consequences, and matching recored events by taking into account the diagnosis window

and the already considered recorded events for avoiding loops. The algorithm for

handling efficiently the generated explanations, the expected consequences and the

matching recorded events that may appear during the genuineness assessment of an event

e is a breadth-first search algorithm and is called Preprocess. The Preprocess algorithm

is listed as follows:

 138

 139

Figure 5-12 – Algorithm for handling efficiently explanations, consequences and

matching recorded events

It should be noted that the Preprocess algorithm is invoked by the diagnostic process

before the assessment of the genuineness belief of e starts. The primary objective of the

algorithm is to generate a set of the recorded events, Uo, that are taken into account

during the genuineness assessment of a given event e, as firstly introduced in Section

5.4.4.2. Uo also contains the number of times that a recorded event is reached as a

consequence of the same event, as well as, a placeholder for the assessment result for

each considered recorded event. On the other hand, the secondary objective is to compute

all the necessary explanations, consequences and matching recorded events that may

appear during the genuineness assessment of e. As soon as all the necessary explanations,

consequences and matching recorded events are compiled by the Preprocess algorithm,

the diagnostic process can use them for the actual genuineness assessment of e. For this

reason, the algorithm is called Preprocess. Finally, as a convention, in the algorithmic

specifications in Figure 5-12, it should be noted that the expression x ∈ y means that

element x is a member of y, in case that y is a list of elements of type x, or x is a member

of any sublist of elements of type x of y, in case that y is a complex construct of

multilevel lists. Similarly, assume the corresponding interpretation for the expression x ∉

y.

The Preprocess algorithm starts by getting as input:

 140

• a list of events. It should be noted that when the genuineness of an event e is

questioned, thus the diagnostic process invokes the Preprocess algorithm for

first time for the event e, the list toBeProcessed contains only the event e.

• the diagnostic time range TR, whose boundaries are computed as discussed in

Section 5.4.4.1,

• the list of considered recorded events Uo, as discussed above, and

• the lists UTotal, EXPTotal and CONSTotal, which the diagnostic process uses to

store the matching recorded events, the generated explanations, and the

expected consequences, respectively, for each event ei that may appear during

the recursive invocations of the assessment process of e

For the given list toBeProcessed, the algorithm creates a new empty list

U(toBeProcessed,TR) (see line 1 in Figure 5-12), which is used for storing the recorded

events that match with the events in the list toBeProcessed. Thus, for each event e in list

toBeProcessed, the algorithm creates a new empty list U(e,TR) (see lines 2-3 in Figure

5-12), which is used for storing the matching recorded events of e. For each event ei that

is recorded in the event log of EVEREST and is occurred within TR(e) (see line 4 in

Figure 5-12), the algorithm checks whether ei can be unified with e (see line 5 in Figure

5-12). If false, the algorithm disregards ei. Otherwise, it is checked whether ei has been

already taken into account in previous recursive invocations of the algorithm, i.e.,

whether ei belongs to UTotal list (see line 6 in Figure 5-12). If true, the algorithm again

disregards ei. Otherwise, the algorithm checks whether ei has been already considered

during the current invocaton of the algorithm, by checking whether Uo contains a sublist

with regards to occeurrences of ei. In case that ei belongs to Uo, the algorithm updates Uo,

by increasing by one the occurrence times of ei (see lines 8-9 in Figure 5-12). On the

other hand, in case that ei has not been considered yet, the algorithm updates the already

matching recorded events list Uo with the information regarding the first occurrence of ei

(see lines 11-13 in Figure 5-12). Once Uo has been updated for the current occurrence of

ei, the algorithm appends ei in U(e,TR) (see line 15 in Figure 5-12). As soon as there is no

other event occurred within TR(e) and recorded in the event log, thus, the algorithm has

compiled the matching recorded event list U(e,TR) for e, the algorithm appends U(e,TR)

to U(toBeProcessed,TR) (see line 19 in Figure 5-12). Also, when all events in

 141

toBeProcessed have been considered, the algorithm appeands all elements of

toBeProcessed to UTotal (see line 21 in Figure 5-12).

Having compiled the list U(toBeProcessed,TR), the algorithm focuses on the

explanations that are related to the events of U(toBeProcessed,TR). Thus, the algorithm

creates a new empty list, EXP(toBeProcessed), for storing the aforementioned

explanations (see line 22 in Figure 5-12). More specifically, for each non empty U(e,TR)

in U(toBeProcessed,TR), the algorithm creates a new empty list, EXPRel(e), for storing

relevant explanations of e (see lines 23-25 in Figure 5-12). As relevant explanations to e,

the algorithm considers the explanations, which can be generated for each matching event

of e, em, only if em has not been already explained during the current recursive invocation,

i.e., isExplained(em) is currently False (see lines 26-27 in Figure 5-12). Consequently, the

algorithm generates an explanation list for each em in U(e,TR), EXP(em), by invoking the

Explain algorithm (discussed in Section 5.2.1) for each em, and it appends EXP(em) to

EXPRel(e), while updates Uo that em has now been explained (see lines 28-31 in Figure

5-12). Finally, when all matching recorded events relevant to e have been considered, the

algorithm appends EXPRel(e) to EXP(toBeProcessed) and EXPTotal (see line 34-35 in

Figure 5-12).

The algorithm resumes by compiling all the expected consequences that are related to

any event e in the list toBeProcessed. Therefore, a new empty list CONS(toBeProcessed,

TR) is created (see line 38 in Figure 5-12). Thus, for each EXPRel(e) in

EXP(toBeProcessed), the algorithm continues by creating a new empty list CONSRel(e,

TR) for storing the consequences of the explanations contained in EXPRel(e) (see lines 39-

40 in Figure 5-12). As discussed below in this paragraph, the algorithm focuses only on

consequences of the explanations of the matching events of e, which are identified within

the diagnosis time range TR, while any other consequence is disregarded. Thus, if

EXPRel(e) is not empty, for each non empty explanation list EXP(em) in EXPRel(e), and for

each explanation Φe in EXP(em), the algorithm identifies consequences for Φe by

invoking the Generate_AE_consequences algorithm and stores them in a consequences

list CONS(Φe) (see lines 41-45 in Figure 5-12). However, due to the fact that our focus is

only on consequences, which are identified within the diagnosis time range TR, and

because the Generate_AE_consequences algorithm identifies consequences without

taking into account TR, the Preprocess algorithm transforms the list CONS(Φe) into the

list CONS(Φe, TR), which contains only consequences with respect to TR (see lines 46-52

 142

in Figure 5-12). Each new CONS(Φe, TR) is checked whether is empty. If true, the

algorithm sets CONS(Φe, TR) equal to a list [CNULL] that contains only the item CNULL

(see lines 54-56 in Figure 5-12). CNULL is a special event, which denotes that no

consequences can be identified. Once the last check is finished, the algorithm appends

CONS(Φe, TR) to CONSRel(e, TR) (see line 57 in Figure 5-12). As soon as all explanations

of matching recorded events of e have been considered, the algorithm appends

CONSRel(e, TR) to CONS(toBeProcessed, TR) and CONSTotal (see lines 62-63 in Figure

5-12).

Having obtained the list CONS(toBeProcessed, TR) by compiling the lists CONSRel(e,

TR), which contain the consequences of the explanations of the matching recorded events

of any e in toBeProcessed list with respect to TR, the Preprocess algorithm invokes itself

for a new list, called toPreprocess (see line 65 in Figure 5-12). The toPreprocess list

contains all the identified consequences stored in the lists CONS(e, TR). In particular, for

each non empty CONSRel(e, TR) (see lines 66-67 in Figure 5-12), the algorithm goes

through each consequences lists CONSe of CONSRel(e, TR) (see line 68 in Figure 5-12).

Then, if CONSe is not equal to [CNULL], for each consequence of CONSe, Ck, the

algorithm appends Ck to toPreprocess (see lines 69-73 in Figure 5-12). When all

individual consequences, related to e, have been taken into account, and if toPreprocess

list is not empty, the algorithm invokes itself (see lines 75-77 in Figure 5-12). Finally, as

soon as no other recursive invocations can be made, the algorithm returns Uo (see line 79

in Figure 5-12), by having also compiled the lists UTotal, EXPTotal, and CONSTotal.

5.4.4.3.1 Example of handling efficiently explanations, conequences and

matching recorded events

As an example of handling efficiently explanations, consequences and matching recorded

events by using the Preprocess algorithm (Figure 5-12) consider the violation of rule

ATMS.R1 (see Section 4.3). For sake of compactness, the following indicative example

of the Preprocess algorithm is not based on the set of ATMS assumptions, which was

firstly introduced in Section 4.3 due to the extended number of assumtpions. Instead, the

example is based on a more compact set of assumptions. The compact ATMS

assumptions set consists of the following assumptions:

ATMS.A1'. Initially(covers(R1,S1),t0)

 143

ATMS.A2'. Initially(covers(R2,S1),t0)

ATMS.A3'. Initially(landing_airspace_for(S1,AR-a),t0)

ATMS.A4'. ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

∀_a∈Airplanes, ∀_s∈Airspaces, ∃_r∈Radars.

 Happens(e(_id1,_sender1,_receiver2,RES-A,inspace(_a,_s),

 _source2),t1,R(t1,t1)) ∧

 HoldsAt(covers(_r,_s),t1) ⇒

 Happens(e(_id2,_r,_receiver2,RES-A,signal(_r,_a,_s),

 _source2),t2,R(t1,t1+5))

ATMS.A5'. ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

∀_a∈Airplanes, ∀_s∈Airspaces.

 Happens(e(_id1,_sender1,_receiver2,RES-A,inspace(_a,_s),

 _source2),t1,R(t1,t1)) ⇒

 Happens(e(_id2,_a,_receiver2,RES-A,permissionRequest(_a,

 _s),_source2),t2,R(t1-20,t1-1))

ATMS.A6'. ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

∀_a∈Airplanes, ∀_s∈Airspaces, ∃_r∈Radars.

 Happens(e(_id1,_a,_receiver2,RES-A,landingRequest(_a,

 _airportX),_source2),t1,R(t1,t1)) ∧

 HoldsAt(landing_airspace_for(_s,_airportX),t1) ∧

 HoldsAt(covers(_r,_s),t1) ⇒

 Happens(e(_id2,_r,_receiver2,RES-A,signal(_r,_a,_s),

 _source2),t2,R(t1,t1+5))

ATMS.A7'. ∀t1∈Time, ∃t2∈Time, ∀_sender1, ∀_receiver2, ∀_source2,

∀_a∈Airplanes, ∀_s∈Airspaces, ∃_r∈Radars.

 Happens(e(_id1,_a,_receiver2,RES-A,landingRequest(_a,

 _airportX),_source2),t1,R(t1,t1)) ∧

 HoldsAt(landing_airspace_for(_s,_airportX),t1) ⇒

 Happens(e(_id2,_a,_receiver2,RES-A,permissionRequest(_a,

 _s),_source2),t2,R(t1-10,t1-2))

In particular, the first four assumptions, ATMS.A1', ATMS.A2', ATMS.A4', and

ATMS.A5', are the same as the assumptions, ATMS.A1, ATMS.A2, ATMS.A3, and

ATMS.A4 respectively, which have been already discussed in Section 4.3. Assumption

ATMS.A3' specifies that the landing airspace for airport AR_a is airspace S1 since the

start of the execution of ATMS. Assumption ATMS.A6' states that if an airplane _a

requests a permission to land at airport _airportX at some timepoint t1, and it holds that

the landing airspace for_airportX is airspace _s and radar _r covers airspace _s at t1, then

it is expected that there should be a signal from _r notifying that _a moves in _s at some

 144

time point t2 within t1 and 5 time units after t1. Similarly, assumption ATMS.A7'

specifies that if an airplane _a requests a permission to land at airport _airportX at some

timepoint t1, and it holds that the landing airspace for_airportX is _s at t1, then it was

expected that _a has requested permission for entering _s at some time point t2 within 10

and 2 time units before t1. In terms of the predicate sets APreds’, DPreds’ and OPreds’,

which are defined in Section 4.1, the membership of the predicates of the above compact

ATMS theory is as follows:

APreds’ = {Happens(e(_id,_r,_receiver,RES-A,inspace(_a,_s),

 _source2),t,R(t,t)),

 Happens(e(_id1,_a,_receiver2,RES-A,landingRequest(_a,

 _airportX),_source2),t,R(t,t))

 }

Dpreds’ = { HoldsAt(covers(_r,_s),t),

 HoldsAt(landing_airspace_for(_s,_airportX),t)

 }

OPreds’ = { Initially(covers(R1,S1),t0), Initially(covers(R2,S1),t0),

 Initially(landing_airspace_for(S1,AR-a),t0),

 Happens(e(_id,_r,_receiver,RES-A,signal(_r, _a, _s),

 _source),t,R(t,t)),

 Happens(e(id,_a,_receiver,RES-A,permissionRequest(_a,

 _s),_source),t,R(t,t)),

 Happens(e(_id,_a,_receiver,RES-A,

 landingRequest(_a,_airportX),_source),t,R(t,t))

 }

Suppose also that the following events have taken place and been received by EVEREST

at time t=25 when a request for diagnosing the violation of ATMS.R1, which has been

caused by the events Happens(e(E7,R1,AirBase,RES-

A,signal(R1,A1,S1),R1Captor),17,R(17,17)) (referred as E6 henceforth) and

Happens(e(NF,R2,AirBase,signal(R2,A1,S1),R2Captor),t,R(17,22)), is requested:

Event Log for ATMS:

 145

E1 Happens(e(E1,R2,AirBase,RES-A,signal(R2,A2,S2),R2Captor),1,

 R(1,1))

E2 Happens(e(E2,R2,AirBase,RES-A,signal(R2,A2,S2),R2Captor),5,

 R(5,5))

E3 Happens(e(E3,R2,AirBase,RES-A,signal(R2,A2,S2),R2Captor),8,

 R(8,8))

E4 Happens(e(E4,A1,AirBase,RES-A,permissionRequest(A1,S1),

 AirBaseCaptor),10,R(10,10))

E5 Happens(e(E5,A1,AirBase,RES-A,landingRequest(A1,AR-a),

 AirBaseCaptor),13,R(13,13))

E6 Happens(e(E7,R1,AirBase,RES-A,signal(R1,A1,S1),R1Captor),17,

 R(17,17))

E7 Happens(e(E8,R2,AirBase,RES-A,signal(R2,A5,S1),R2Captor),23,

 R(23,23))

Figure 5-13 – Event log for ATMS

Assuming that the genuineness of E6 is being assessed, and therefore the Preprocess

algorithm is invoked for E6, let the diagnosis window, w, be equal to 26. Thus, due to the

fact that the event E7 (Figure 5-13) was used as the confirming evidence for the detection

of ATMS.R1 violation by EVEREST, the diagnosis time range, TR, is computed as

follows:

TR = [tE7 – w/2, tE7 + w/2] = [23-13, 13+13] = [10, 36]

Initial invocation: Phase of seach for matching recorded events

For the initial invocation of the Preprocess algorithm, while the lists Uo, UTotal,

EXPTotal, and CONSTotal are empty, the algorithm processes the list toBeProcessedo =

[E6]. Figure 5-14 illustrates the generated explanations/consequences tree that the initial

invocation of Preprocess algorithm generated for event E6.

 146

Figure 5-14 – Explanations/Consequences tree for event E6

The algorithm starts by compiling the list U(toBeProcessedo,TR). For populating the

aforementioned list, the algorithm compiles the list U(E6,TR). Once all matching recoded

events for E6 are found by searching the event log, illustrated in Figure 5-13, with respect

 147

to the diagnosis time range and to already considered recorded events in the current and

previous recursive invocations, the algorithm updates the lists Uo, U(toBeProcessedo,TR),

and UTotal. The aforementioned lists are currently compiled as follows:

U(E6,TR) = [E6]

Uo = [[E6,1,null]]

U(toBeProcessedo,TR) = [[U(E6,TR) : E6]]

UTotal = [[U(E6,TR) : E6]]

Initial invocation: Phase of explanation generation

The algorithm resumes by compling the EXP(toBeProcessedo). For compiling the

aforementioned list, the algorithm searches for explanations for each U(e,TR) in

U(toBeProcessedo,TR). At this point, there is only U(E6,TR) in U(toBeProcessedo,TR), as

well as, U(E6,TR) contains only E6. Thus, the algorithm compiles the lists EXP(E6) and

EXPRel(E6) after the invocation of the Explain algorithm for each matching recorded

event of the given event E6, and updates EXP(toBeProcessedo) and EXPTotal as illustrated

in Figure 5-14 and as follows:

EXP(E6) = [[ΦE6,1]AND, [ΦE6,2]AND]OR],

where

ΦE6,1: Happens(e(ABD,R1,AirBase,RES-A,inspace(A1,S1),AirBaseCaptor),

 t1,R(12,17))

ΦE6,2: Happens(e(ABD,R1,AirBase,RES-A,landingRequest(A1,AR-a),

 AirBaseCaptor),t1,R(12,17))

EXPRel(E6) = [EXP(E6): [[ΦE6,1]AND, [ΦE6,2]AND]OR]]

EXP(toBeProcessedo) = [EXPRel(E6) : [EXP(E6): [[ΦE6,1]AND, [ΦE6,2]AND]OR]]]

EXPTotal = [EXPRel(E6) : [EXP(E6): [[ΦE6,1]AND, [ΦE6,2]AND]OR]]]

Initial invocation: Phase of consequence identification

 148

After the EXP(toBeProcessedo) is populated, the algorithm resumes by compiling the list

CONS(toBeProcessedo,TR), which should contain all the expected consequences of all

the alternative explanations of E6 with respect to the diagnosis window. For populating

the aforementioned list, the algorithm constructs the list CONSRel(E6,TR). The algorithm

populates the list CONSRel(E6,TR) by compiling the list CONS(E6,TR), which contains

the the identified consequences of the only matching event for E6. The expected

consequences CONS(ΦE6,1) and CONS(ΦE6,2) of the alternative explanations of E6, ΦE6,1

and ΦE6,2 respectively, are identified with two invocations of the

Generate_AE_consequences algorithm for each of alternative explanations. The

Preprocess algorithm, then, transforms the lists CONS(ΦE6,1) and CONS(ΦE6,2) to

CONS(ΦE6,1,TR) and CONS(ΦE6,2,TR) respectively, by disregarding any individual

consequence that is identified out of the diagnosis time range TR. All the aforementioned

lists, along with the the lists CONS(toBeProcessedo,TR) and CONSTotal are computed as

follows (see also Figure 5-14):

CONS(ΦE6,1) = [CE6,1,1, CE6,1,2, CE6,1,3],

where

CE6,1,1: Happens(e(DER,R1,AirBase,RES-A,signal(R1,A1,S1),R1Captor),t1,

 R(12,22))

CE6,1,2: Happens(e(DER,R2,AirBase,RES-A,signal(R2,A1,S1),R2Captor),t1,

 R(12,22))

CE6,1,3: Happens(e(DER,A1,AirBase,RES-A,permissionRequest(A1,S1),

 AirBaseCaptor),t1,R(0,11))

CONS(ΦE6,1,TR) = [C’E6,1,1, C’E6,1,2, C’E6,1,3],

where

C’E6,1,1: Happens(e(DER,R1,AirBase,RES-A,signal(R1,A1,S1),R1Captor),t1,

 R(12,22))

C’E6,1,2: Happens(e(DER,R2,AirBase,RES-A,signal(R2,A1,S1),R2Captor),t1,

 R(12,22))

C’E6,1,3: Happens(e(DER,A1,AirBase,RES-A,permissionRequest(A1,S1),

 149

 AirBaseCaptor),t1,R(10,11))

CONS(ΦE6,2) = [CE6,2,1, CE6,2,2, CE6,2,3, CE6,2,4],

where

CE6,2,1: Happens(e(DER,R1,AirBase,RES-A,signal(R1,A1,S1),R1Captor),t1,

 R(12,22))

CE6,2,2: Happens(e(DER,R2,AirBase,RES-A,signal(R2,A1,S1),R2Captor),t1,

 R(12,22))

CE6,2,3: Happens(e(DER,A1,AirBase,RES-A,permissionRequest(A1,S1),

 AirBaseCaptor),t1,R(2,10))

CE6,2,4: Happens(e(ABD,R1,AirBase,RES-A,landingRequest(A1,AR-a),

 AirBaseCaptor),t1,R(12,17))5

CONS(ΦE6,2,TR) = [C’E6,2,1, C’E6,2,2, C’E6,2,3, C’E6,2,4],

where

C’E6,2,1: Happens(e(DER,R1,AirBase,RES-A,signal(R1,A1,S1),R1Captor),t1,

 R(12,22))

C’E6,2,2: Happens(e(DER,R2,AirBase,RES-A,signal(R2,A1,S1),R2Captor),t1,

 R(12,22))

C’E6,2,3: Happens(e(DER,A1,AirBase,RES-A,permissionRequest(A1,S1),

 AirBaseCaptor),t1,R(10,10))

C’E6,2,4: Happens(e(ABD,R1,AirBase,RES-A,landingRequest(A1,AR-a),

 AirBaseCaptor),t1,R(12,17))

CONS(E6,TR) = [[CONS(ΦE6,1,TR): C’E6,1,1, C’E6,1,2, C’E6,1,3],

 [CONS(ΦE6,1,TR): C’E6,2,1, C’E6,2,2, C’E6,2,3, C’E6,2,4]]

CONSRel(E6,TR) = [CONS(E6,TR)]

CONS(toBeProcessedo,TR) = [CONSRel(E6,TR)]

5 It should be noted that ΦE6,2 is included as a consequence of itself (CE6,2,4), as the landingRequest
events are abducible and observable, i.e., they belong to the intersection of APreds and OPreds.

 150

CONSTotal = [CONSRel(E6,TR)]

Initial invocation: Phase of self-invocation preparation

Once the list CONS(toBeProcessedo,TR) is compiled, the algorithm prepares the list

toPreprocesso for invoking itself. Recall that the toPreprocesso list should contain all the

expected consequences of the alternative explanations of all the matching events of E6,

which are not equall to CNULL. At this point, there is no CNULL identified, thus the

toPreprocesso list is compiled as follows as follows:

toPreprocesso = [C’E6,1,1, C’E6,1,2, C’E6,1,3, C’E6,2,1, C’E6,2,2, C’E6,2,3, C’E6,2,4]

1st self-invocation: Phase of seach for matching recorded events

The algorithm compiles the U(toBeProcessed1,TR) list by processing each event in

toPreprocesso list with respect to the already considered events in the initial invocation.

As illustrated in Figure 5-14, we have for:

C’E6,1,1:

U(C’E6,1,1,TR) = [], as E6 that is the only recorded event and can match with C’E6,1,1 has

been already considered in the previous invocation, i.e., E6 is already in UTotal. Thus, Uo

is not updated, while U(toBeProcessedo,TR) becomes:

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :]]

C’E6,1,2:

U(C’E6,1,2,TR) = []

Thus, Uo and U(toBeProcessedo,TR) become:

Uo = [[E6,1,null]]

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :]]

C’E6,1,3:

U(C’E6,1,3,TR) = [E4]

 151

Thus, Uo and U(toBeProcessedo,TR) become:

Uo = [[E6,1,null], [E4,1,null]]

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :],

 [U(C’E6,1,3,TR) : E4]]

C’E6,2,1:

U(C’E6,2,1,TR) = [], as E6 that is the only recorded event and can match with C’E6,2,1 has

been already considered in the previous invocation, i.e., E6 is already in UTotal. Thus, Uo

is not updated, while U(toBeProcessedo,TR) becomes:

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :],

 [U(C’E6,1,3,TR) : E4], [U(C’E6,2,1,TR) :]]

C’E6,2,2:

U(C’E6,2,2,TR) = [].

Uo = [[E6,1,null], [E4,1,null]]

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :],

 [U(C’E6,1,3,TR) : E4], [U(C’E6,2,1,TR) :],

 [U(C’E6,2,2,TR) :]]

C’E6,2,3:

U(C’E7,1,3,TR) = [E4]

At this point, it should be noted that although E4 can match C’E6,1,3, the algorithm takes

into account E4 as a matching recorded event of C’E6,2,3 as well, due to the fact that both

consequences are processed in the same recursive invocation. In other words, the

permission request from airplane A1 (denoted by E4) can cast evidence in the validity of

both alternaive explanations that state that the airplane A1 moves in airspace S1 within

12 and 17 (denoted by ΦE6,1) or the airplane A1 has requested permission to land at

 152

airport AR-a again within 12 and 17 (denoted by ΦE6,2). Thus, the algorithm updates the

occurrence times variable of E4 in list Uo, while U(toBeProcessedo,TR) becomes:

Uo = [[E6,1,null], [E4,2,null]]

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :],

 [U(C’E6,1,3,TR) : E4], [U(C’E6,2,1,TR) :],

 [U(C’E6,2,2,TR) :], [U(C’E6,2,3,TR) : E4]]

Finally, for C’E6,2,4, we have:

U(C’E6,2,4,TR) = [E5]

Thus, Uo and U(toBeProcessedo,TR) become:

Uo = [[E6,1,null], [E4,2,null], [E5,1,null]]

U(toBeProcessed1,TR) = [[U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :],

 [U(C’E6,1,3,TR) : E4], [U(C’E6,2,1,TR) :],

 [U(C’E6,2,2,TR) :], [U(C’E6,2,3,TR) : E4],

 [U(C’E6,2,4,TR) : E5]]

As soon as, matching recorded events for all in toBeProcessed1 are found, the algorithm

appends all elements of U(toBeProcessed1,TR) to UTotal. Thus, UTotal becomes:

UTotal = [[U(E6,TR) : E6], [U(C’E6,1,1,TR) :], [U(C’E6,1,2,TR) :],

 [U(C’E6,1,3,TR) : E4], [U(C’E6,2,1,TR) :], [U(C’E6,2,2,TR) :],

 [U(C’E6,2,3,TR) : E4], [U(C’E6,2,4,TR) : E5]]

Invocating similarly the Prerpocess algorithm for event E4 which is considered as the

only matching event of consequence C’E6,2,3, the explanations/consequences tree pictured

in Figure 5-15 is generated.

 153

Figure 5-15 – Explanations/Consequences tree for event E4 considered as matching

event of consequence C’E6,2,3

 154

Similarly, Figure 5-16 illustrates the explanations/consequences tree for event E7

considered as matching event of consequence C’E4,2,3.

Figure 5-16 - Explanations/Consequences tree for event E7 considered as matching

event of consequence C’E4,2,3

 155

By resuming the algorithm, we can observe that Uo does not change furthermore. For

this reason, and due to the fact that, although we have taken into consideration a compact

ATMS theory and the small event set of Figure 5-13, the example over-expands, we

provide you the final list Uo, and the initial parts of the final lists UTotal, EXPTotal, and

CONSTotal, as generated for E6 by the Preprocess algorithm. The output lists are as

follows:

Uo = [[E7,1,null], [E6,2,null], [E4,2,null], [E5,1,null]]

UTotal = [[U(E7,TR) : E7], [U(C’E7,1,1,TR) :], [U(C’E7,1,2,TR) : E6],

 [U(C’E7,1,3,TR) : E4], [U(C’E7,2,1,TR) :], [U(C’E7,2,2,TR) : E6],

 [U(C’E7,2,3,TR) : E4], [U(C’E7,2,4,TR) : E5],…]

EXPTotal = [[EXPRel(E7) : [EXP(E7): [[ΦE7,1]AND, [ΦE7,2]AND]OR]],…]

CONSTotal = [[[CONS(ΦE7,1,TR): C’E7,1,1, C’E7,1,2, C’E7,1,3],

 [CONS(ΦE7,1,TR): C’E7,2,1, C’E7,2,2, C’E7,2,3, C’E7,2,4]],…]

5.4.5 Reconsideration of Event Genuineness Formal Definition

Based on the remarks regarding the efficiency of the event genuineness assessment

discussed in the previous section, the definition of event genuineness is reconsidered by

taking into account the necessity of introducing a window to restrict the search space of

the event genuineness assessment and excluding already considered recorded events.

Therefore, the reconsidered version of the event genuineness definition is based on the set

Uo, UTotal, EXPTotal, and CONSTotal as they are introducesd in Section 5.4.4.3 and is given

as follows:

Definition 3: The genuineness of an event e given the sets of already considered

matching recorded events, Uo, and a diagnostic time range of interest TR = [Tmin, Tmax] is

defined as:

Genuine(e,Uo,TR) = ∨∨∨∨ei∈U(e,TR)(Explainable(ei,Uo,TR))

where,

• U(e,TR) is an element of UTotal, and contains events that are recorded in the log of

the monitoring framework with respect to TR, and can be unified with e (see also

Sections 5.4.4.2 and 5.4.4.3), or formally:

 156

U(e,TR) ∈ UTotal, and

U(e,TR) = { ei |ei ∈ EventLogTR and Captor(e) = Captor(ei) and mgu(e, ei) ≠ ∅

 and teLB ≤ tei and tei ≤ te
UB }

where,

o EventLogTR is the part of monitor log that contains recorded events whose

timestamps are within TR, or formally:

∀x ∈ EventLogTR , tx ∈ TR

o Captor(X) is the captor that produced X, in case that X is a fully specified

event, or it is the expected captor to produce X, in case that X is a

parametric event

o mgu(X,Y) is the most general unifier of the events X and Y [94]

o tx is the timestamp of the event x

o tx
UB and tx

LB is the upper and lower boundary of the time range TR(x) that

event x is specified within

o UTotal is the list that the diagnostic process uses to store the matching

recorded events for each event x that may appear during the recursive

invocations of the assessment process of y and is compiled by the

Preprocess algorithm (as discussed in Section 5.4.4.3)

• Explainable(ei, Uo, TR) is a proposition denoting that the event ej has at least one

valid explanation. The proposition is formally defined as:

Explainable(ei, Uo, TR) =∨∨∨∨Φj∈EXP(ei)Valid(ei,Φj, Uo, TR)

where,

o EXP(ei) is an element of EXPTotal, and contains the alternative explanations

that can be generated for the event ei (see also Sections 5.4.2 and 5.4.4.3)

o EXPTotal is the list which the diagnostic process uses to store the generated

explanations for each event x that may appear during the recursive

 157

invocations of the assessment process of y, and is compiled by the

Preprocess algorithm (as discussed in Section 5.4.4.3)

o Valid(ei,Φj, Uo, TR) is a proposition denoting that explanation Φj of event

ei is valid within the time range of interest TR = [Tmin,Tmax]. This

proposition is defined as:

Valid(ei,Φj,Uo,TR) =∨∨∨∨eq ∈CONS(Φj,TR)Genuine(eq,Uo,TR)

 where,

� CONS(Φj,TR) is is an element of CONSTotal, and contains the expected

consequences of the explanation Φj, which occurred within TR =

[Tmin,Tmax] (see also Section 5.4.4.3)

� CONSTotal is the list which the diagnostic process uses to store the

expected consequences of all generated explanations for each event x

that may appear during the recursive invocations of the assessment

process of y, and is compiled by the Preprocess algorithm (as

discussed in Section 5.4.4.3)

It should be noted that even though our hypotheses about event genuineness (Hypotheses

2-3) consider an event as genuine if all of its explanations are valid and an explanation as

valid if all of its consequences are genuine events, Definition 3 specifies an event as

genuine if at least one of its explanations is valid and an explanation as valid if at least

one of its consequences is genuine event. This is a relaxation of our initial hypotheses

regarding event genuineness, which is introduced due to the introduction of the diagnosis

time window and the exclusion of already considered recorded events. By using the

diagnosis time window and the concept of already considered recorded events, there is

the possibility that no actual explanations, consequences or matching recorded events

could be generated, identified and found, respectively, at any recursive invocation of the

genuineness assessment of an event.

5.4.6 Belief Functions

Definition 3 establishes the logical criteria for the assessment of event genuineness. As

discussed in Section 5.4.1.1, during the diagnosis process there might be uncertainty

regarding the occurrence, and therefore the genuineness of the involved events. To deal

 158

with this uncertainty, the diagnosis mechanism does not use strict logical values for the

genuineness of an event. On the contrary, the diagnosis process advocates an approximate

reasoning approach, which generates a degree of belief in the genuineness of an event by

computing intermediate degrees of belief in the membership of an event in the log of the

monitor and the existence of some valid explanation for the event. These degrees of

belief are computed by combining partial beliefs to genuineness, explainability and

validity that are assigned by basic probability assignments or mass functions founded in

the axiomatic framework of the Dempster Shafer theory of evidence [146] (denoted as

DS Theory in the following). The three basic probability assignemnts or mass functions

that are used by the diagnostic process for computing the degree of belief in the

genuineness of an event are as follows:

• the function mGN, which measures the likelihood that an event e is genuine with

respect to the diagnostic time range of interest TR and previously considered

recorded events Uo, i.e., the likelihood of the proposition denoted by

Genuine(e,Uo,TR) = ∨∨∨∨ei ∈U(e,TR)(Explainable(ei,Uo,TR)),

• the function mi
EX, which measures the likelihood that an event ei is explainable

with respect to the diagnostic time range of interest TR and previously considered

recorded events Uo, i.e., the likelihood of the proposition denoted by

Explainable(ei,Uo,TR) =∨∨∨∨Φj∈EXP(ei)Valid(ei,Φj,Uo,TR), and

• the function mj
VL, which measures the likelihood that an explanation Φj of an

event ei is valid with respect to the diagnostic time range of interest TR and

previously considered recorded events Uo, i.e., the likelihood of the proposition

denoted by Valid(ei,Φj,Uo,TR) =∨∨∨∨eq∈CONS(Φ,TR)Genuine(eq,Uo,TR)

It should be noted that the above mass functions are used in order to assess the

genuineness of the events involved in runtime S&D violations. More specifically, the

above functions viewed as an individual mechanism process other genuine events in

EVEREST event log in order to check whether they can cast confirming or refuting

evidence to the violations observations genuineness. The genuineness of events is

assessed based on their explainability, the validity of their explanations, and the

genuineness of the expected effects of their explanations. The way how the concepts of

 159

event genuineness, event explainability and explanation validity have been evolved to

reach the definitions we are presenting in this thesis can be tracked in the series of our

earlier publications [162, 163, 164]. The motivation throughout this research line of work

has been the limitation of existing runtime monitoring and diagnosis approaches, as

presented in Chapter 2, to perform runtime checks based on runtime events that they

receive and analyse from the monitored system without assessing the trustworthiness of

these events. Therefore, our approach has been devised to provide a mechainsm that

assesses the trustworthiness of streams of events used for runtime monitoring by

considering and using the concept of event genuineness as a term to model the event

trustworthiness.

5.4.6.1 Frames of discerment

In accordance to the DS Theory, a prerequisite for defining formally and combining the

above functions is the introduction of frames of discernment, i.e., sets of mutually

exclusive propositions representing exhaustively the properties that the functions assign

belief to. For defining the frames of discernment for the above functions suppose that the

belief in the genuineness of event es is questioned. Thus, we have:

Definition 5: The frame of discernment θes discerns the genuineness property of event es.

Therefore, θes describes the propositions Genuine(es,Uo,TR) and ¬Genuine(es,Uo,TR).

Assuming for simplicity that these propositions are denoted as GNs and ¬GNs,

respectively, then the frame of discernment θes can be defined as a set of vectors of

Boolean variable of the form [Gs] where, in each vector, the Boolean variable Gs denotes

whether es is genuine or not by taking the values True or False respectively. The frame of

discernment θes will contain 2 vectors. Given the above assumptions about the

construction of the frame of discernment θes, the propositions Gs, ¬Gs and Gs ∨ ¬Gs will

correspond to the following subsets of θes:

• GNs will correspond to {[Gs = True]} referred to as GNs henceforth

• ¬GNs will correspond to {[Gs = False]} referred to as GNs’ henceforth

• GNs ∨ ¬ GNs will correspond to {[Gs = True or False]} which is equal to θes

 160

Definition 6: The frame of discernment θes
EX discerns the explainability property of the

matching recorded events of event es that consist the set U(es,TR). Therefore, θes
EX

describes the propositions Explainable(ei,Uo,TR) and ¬Explainable(ei,Uo,TR), where ei ∈

U(es,TR). Assuming for simplicity that these propositions are denoted as EXi and ¬EXi,

respectively, then the frame of discernment θes
EX can be defined as a set of vectors of

Boolean variables of the form [E1, E2, …, En], where n = |U(es,TR)| and the Boolean

variable Ei in each vector denotes whether the recorded event ei is explainable or not by

taking the values True or False respectively. Furthermore, suppose that by convention a

vector denotes the conjunction of the propositions expressed by its variables and a set of

vectors denotes the disjunction of the propositions that are represented by its elements.

The frame of discernment θes
EX will contain 2n vectors to denote all the different

combinations of values of E1, E2, …, En. Given the above assumptions about the

construction of the frame of discernment θes
EX, the propositions EXi, ¬EXi and EXi ∨

¬EXi will correspond to the following subsets of θes
EX:

• EXi will correspond to {[E1, …, En] | Ei = True} referred to as EXi henceforth

• ¬EXi will correspond to {[E1, …, En] | Ei = False} referred to as EXi’ henceforth

• EXi ∨ ¬EXi will correspond to {[E1, …, En] | Ei = True or Ei =False} which is

equal to θes
EX

Definition 7: The frame of discernment θes
VL discerns the validity property of the

alternative explanations of a matching recorded event ei of event es that consist the set

EXP(ei). Therefore, θes
VL describes the propositions Valid(ei,Φj,Uo,TR) and

¬Valid(ei,Φj,Uo,TR), where Φj ∈ EXP(ei). Assuming for simplicity that these

propositions are denoted as VLj and ¬VLj, respectively, then the frame of discernment

θes
VL can be defined as a set of vectors of Boolean variables of the form [V1, V2,…, Vm],

where m = |EXP(ei)| and the Boolean variable Vj in each vector denotes whether the

alternative explanation Φj is valid or not by taking the values True or False respectively.

Furthermore, suppose that by convention a vector denotes the conjunction of the

propositions expressed by its variables and a set of vectors denotes the disjunction of the

propositions that are represented by its elements. The frame of discernment θes
VL will

contain 2m vectors to denote all the different combinations of values of V1, V2,…, Vm.

Given the above assumptions about the construction of the frame of discernment θes
VL,

 161

the propositions VLj, ¬VLj and VLj ∨ ¬VLj will correspond to the following subsets of

θes
VL:

• VLj will correspond to {[V1,V2,…,Vm] | Vj = True} referred to as VLj henceforth

• ¬VLj will correspond to {[V1,V2,…,Vm] | Vj=False} referred to as VLj’ henceforth

• VLj ∨ ¬VLj will correspond to {[V1,V2,…,Vm] | Vj = True or Vj =False} which is

equal to θes
VL

Definition 8: The frame of discernment θes
GN discerns the genuineness property of the

expected consequences of an alternative explanation Φj of a matching recorded event ei

of event es that consist the set

CONS(Φj,TR). Therefore, θes
GN describes the propositions Genuine(eq,Uo,TR) and

¬Genuine(eq,Uo,TR), where eq ∈ CONS(Φj,TR). Assuming for simplicity that these

propositions are denoted as GNq and ¬GNq, respectively, then the frame of discernment

θes
GN can be defined as a set of vectors of Boolean variables of the form [G1, G2,…, Gr],

where r = |CONS(Φj,TR)| and the Boolean variable Gq in each vector denotes whether

the expected consequence eq is valid or not by taking the values True or False

respectively. Furthermore, suppose that by convention a vector denotes the conjunction

of the propositions expressed by its variables and a set of vectors denotes the disjunction

of the propositions that are represented by its elements. The frame of discernment θes
GN

will contain 2r vectors to denote all the different combinations of values of G1, G2,…, Gr.

Given the above assumptions about the construction of the frame of discernment θes
GN,

the propositions GNq, ¬GNq and GNq ∨ ¬GNq will correspond to the following subsets of

θes
GN:

• GNq will correspond to {[G1,G2,…,Gr] | Gq = True} referred to as GNq henceforth

• ¬GNq will correspond to {[G1,G2,…,Gr]|Gq=False} referred to as GNq’ henceforth

• GNq ∨ ¬GNq will correspond to {[G1,G2,…,Gr] |Gq = True or Gq =False} which is

equal to θes
GN

5.4.6.2 Definitions of basic probability assignments

In this section, having defined the frames θes, θes
EX, θes

V, that discerns the genuineness,

explainability and validity properties of individual events and sets of events that may

 162

appear during the assessment of the belief in genuineness of the event es, we provide the

definitions of the functions mGN, mi
EX, and mj

VL that assigns partial belief to subsets of the

aforementioned frames. The proof of the theorems that are used in the definitions of the

functions below can be found in Section 5.5.

Definition 9: mGN is a function measuring the basic probability of the genuineness and

non-genuineness of the event e, by assigning basic probability to the propositions

Genuine(e,Uo,TR) and ¬Genuine(e,Uo,TR) that are denoted as GN and ¬GN in the

following and are described by subsets of θes and θes
GN (see Definitions 5 and 8

repectively in Section 5.4.6.1), and is defined as:

1. If U(e,TR) ≠ ∅, i.e. according to Conditions 9 -11, there are matching recorded

events for e in the event log with respect to the diagnosis time range TR and

previously considered recorded events Uo, we have the following cases:

i) If e = CNULL, i.e., CNULL is a special event introduced to denote that all of the

identified consequences of an explanation are not accepted due to the diagnosis

time range TR (see Section 5.4.4.3), we have for mGN:

mGN(GN) = α2

mGN(¬GN) = 1 - α2

mGN(GN ∨∨∨∨¬ GN) = 1 - mGN(GN) - ms
GN(¬GN) = 0

 where,

• α2 is a belief value within 0 and 1 that is predetermined by the user of the

diagnostic framework

As the following theorem indicates for this case, mGN is a basic probability

assignment to the genuineness of an event e, according to the axiomatic

definition of such assignments in the context of the Dempster-Shafer theory of

evidence with respect to θes and θes
GN

 (see Definitions 5 and 8 repectively in

Section 5.4.6.1).

 Theorem 5.1: The evidence measure m
GN

 defined as:

α2, if P = Genuine(e,Uo,TR)

1 - α2, if P = ¬ Genuine(e,Uo,TR)

0, otherwise

mGN(P) =

 163

where α2 is a value within 0 and 1, is a DS basic probability assignment with

respect to frames of discerment θes and θes
GN

 (see Definitions 5 and 8

repectively in Section 5.4.6.1).

ii) Otherwise, we have for mGN:

mGN(GN) = Bel(∨∨∨∨i=1,…, |U(e,TR)| Explainable(ei,Uo,TR))

mGN(¬GN) = Bel(∧∧∧∧i=1,…, |U(e,TR)| ¬Explainable(ei,Uo,TR))

mGN(GN∨∨∨∨¬GN) = 1 - mGN(GN) - mGN(¬GN)

where, as the following theorem indicates,

• Bel(∨∨∨∨i=1,…, |U(e,TR)| Explainable(ei,Uo,TR)) =

= ΣΣΣΣI⊆U(ei,TR) and I≠∅(−1)|I|+1{ΠΠΠΠi∈I mi
EX(Explainable (ei,Uo,TR))}

• Bel(∧∧∧∧i=1,…, |U(e,TR)| ¬Explainable(ei,Uo,TR)) =

= ΠΠΠΠei∈ U(e,TR){mi
EX(¬Explainabe(ei,Uo,TR))}

Theorem 5.2: If e is an event and U(e,TR) is the set of the events that are

recorded in the log of the monitoring framework and can be unified with e,

and it holds that U(e,TR)≠∅ with n = |U(e,TR)|, i.e. the number of the

members of U(e,TR), the belief in the explainability of at least one recorded

event in U(e,TR), Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)), and in the explainability

of none of the events in U(e,TR), Bel(∧∧∧∧i=1,…,n ¬ Explainable(ei,Uo,TR)), are

measured by the following functions:

 164

Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) =

= ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I mi
EX(Explainable(ei,Uo,TR))}

 Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)) =

= ΠΠΠΠ i=1,…,n {mi
EX

(¬Explainabe(ei,Uo,TR)) }

where mi
EX

 (i=1,…, n) is the basic probability assignment associated with the

event ei.

Furthermore, as the following theorem indicates for this case, mGN is a basic

probability assignment to the genuineness of an event e, according to the

axiomatic definition of such assignments in the context of the Dempster-Shafer

theory of evidence with respect to θes and θes
GN (see Definitions 5 and 8

repectively in Section 5.4.6.1).

 Theorem 5.3: The evidence measure mGN defined as:

where n = |U(e,TR)|, i.e., the number of the matching recorded events of e, is a

DS basic probability assignment with respect to frames of discerment θes and

θes
GN (see Definitions 5 and 8 repectively in Section 5.4.6.1).

2. Else, if U(e,TR) = ∅, i.e., no recorded events matching with e were found in the

event log with respect to the diagnosis time range TR and previously considered

recorded events either because the matcing recorded events for e are already

considered during previous recursive invocations of the Preprocess algorithm (see

Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)), if P = Genuine(e,Uo,TR)

Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)), if P = ¬ Genuine(e,Uo,TR)

1 - Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) - Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)),

otherwise

mGN(P) =

 165

Section 5.4.4.3) or because no such events are stored in the event log, we have the

following cases:

i) If the last known value of the clock of Captor(e), i.e., the timestamp of the last

event in the log that has produced by Captor(e) at the time of the search is

greater than the upper boundary of the time range that is specified for e, or

formally lastTimestamp(Captor(e)) > teUB, we have for mGN:

mGN(GN) = Bel(∧∧∧∧i=1,…, |A(e)| ¬Explainable(ei,Uo,TR))

 mGN(¬GN) = Bel(∨∨∨∨i=1,…, |A(e)| Explainable(ei,Uo,TR))

mGN(GN ∨∨∨∨¬ GN) = 1 - mGN(GN) - mGN(¬GN)

where,

• A(e) contains the recorded events, eA, which have been produced by

Captor(e), cannot be unified with e, and their timestamps, teA, are within a

time range whose lower boundary is open and equal to the upper boundary

of e, teUB, while the upper boundary is close and equal to the sum of teUB

and lastTimestamp(Captor(e)), or formally:

A(e) = { eA | eA ∈ EventLog and mgu(e, eA) = ∅ and

 Captor(e) = Captor(eA) and teA> te
UB

and

 teA ≤ lastTimestamp(Captor(e))}

• and from Theorem 5.2 and by replacing U(e,TR) with A(e), it holds that:

� Bel(∧∧∧∧i=1,…, |A(ei)| ¬Explainable(ei,Uo,TR)) =

= ΠΠΠΠei∈ A(ei){mi
EX(¬Explainabe(ei,Uo,TR))}

� Bel(∨∨∨∨i=1,…, |A(ei)| Explainable(ei,Uo,TR))

=ΣΣΣΣI⊆ A(ei) and I≠∅(−1)|I|+1{ΠΠΠΠi∈I mi
EX(Explainable(ei,Uo,TR)}

Furthermore, from Theorem 5.3 and by replacing again U(e,TR) with A(e), mGN

is a basic probability assignment to the genuineness of an event e, according to

 166

the axiomatic definition of such assignments in the context of the Dempster-

Shafer theory of evidence with respect to θes and θes
GN (see Definitions 5 and 8

repectively in Section 5.4.6.1).

To give a picture of the above case, Figure 5-17 illustrates some time points on

the timeline of Captor(ei), which are significant for the aforementioned case.

These significant time points are the lower and upper boundaries, tei
LB and

tei
UB, which ei is specified within, and the upper boundary,

lastTimestamp(Captor(ei)), that the search for events for A(ei) should respect.

For being fair in cases as the above, the belief function mGN defines that the

belief in the not genuineness of ei depends on the explainability of recorded

events that have produced by Captor(ei) and occurred at timepoints within tei
UB

and lastTimestamp(Captor(ei)). On the other hand, mGN defines that the belief

in the genuineness of ei depends on recorded events that again have produced

by Captor(ei) and occurred at timepoints within tei
UB and

lastTimestamp(Captor(ei)) but cannot be explained.

Figure 5-17 – Timeline of Captor(ei)

ii) Else, if the last known value of the clock of Captor(ei), i.e., the timestamp of

the last event in the log that has produced by Captor(ei) at the time of the

search is less than or equal to the upper boundary of the time range that is

specified for ei, or formally lastTimestamp(Captor(ei)) ≤ tei
UB, we have for

m
GN:

mGN(GN) = 0.5

mGN(¬GN) = 0.5

Timeline(Captor(ei))

tei
LB tei

UB lastTimestamp(Captor(ei))

Search space for A(ei)

 167

mGN(GN∨∨∨∨¬GN) = 1 - mGN(GN) - mGN(¬GN) = 0

It should be noted that, from Theorem 5.1 and by setting α2 equal to 0.5, mGN is

a basic probability assignment to the genuineness of an event e, according to

the axiomatic definition of such assignments in the context of the Dempster-

Shafer theory of evidence with respect to θes and θes
GN

 (see Definitions 5 and 8

repectively in Section 5.4.6.1).

iii) Else, the last known value of the clock of Captor(ei) is null, i.e., there is no

recorded event that is produced from Captor(ei), we have for mGN:

mGN(GN) = 0

mGN(¬GN) = 0

mGN(GN ∨∨∨∨¬ GN) = 1 - mGN(GN) - mGN(¬GN) = 1

Similarly, from Theorem 5.1 and by setting α2 equal to 0 for this case, mGN is a

basic probability assignment to the genuineness of an event e, according to the

axiomatic definition of such assignments in the context of the Dempster-Shafer

theory of evidence with respect to θes and θes
GN

 (see Definitions 5 and 8

repectively in Section 5.4.6.1).

It should be noted that such case could occur in the beginning of the

monitoring session for the underlying system. More specifically, the fact that

no recorded events produced from Captor(ei) can be found, it might not mean

necessarily that there is a system behaviour that deviates from the intended

system behaviour. On the contray, it might mean that Captor(ei) has not

correctly produced yet any event according to systems specifications.

Definition 10: mi
EX is a function measuring the degree of belief in the existence of a valid

explanation for an event ei by assigning basic probability to the propositions

Explainable(ei,Uo,TR) and ¬ Explainable(ei,Uo,TR) that are denoted as EXi and ¬EXi in

the following and are described by subsets of θes
EX (see Definition 6 in Section 5.4.6.1),

and is defined as:

• If isExplainabilityComputed(ei) =False, where isExplainabilityComputed(ei) is a

Boolean flag stored in the sublist for ei in Uo and denotes that the process has not

 168

assessed the explainability of event ei in previous recursive invocation, and

therefore, the variables assessmentOf(Explainable(ei)) and

assessmentOf(¬Explainable(ei)) have still null values (see also in Sections 5.4.4.2

and 5.4.4.3), we have the following cases:

i) If EXP(ei) = ∅ , i.e., no explanations can be generated for ei due to the fact

that ei is abducible and observable predicate (see also Definition 1 in Section

5.4.2), we have that:

mi
EX(EXi) = α1

mi
EX(¬EXi) = 1 - α1

mi
EX(EXi ∨∨∨∨¬ EXi) = 1 - mi

EX(EXi) - mi
EX(¬EXi) = 0

 where,

α1 is a belief value within 0 and 1 that is predetermined by the user of the

diagnostic framework

As the following theorem indicates for this case, mi
EX is a basic probability

assignment to the explanablity of an event ei, according to the axiomatic

definition of such assignments in the context of the Dempster-Shafer theory of

evidence with respect to θes
EX (see Definition 6 in Section 5.4.6.1).

 Theorem 5.4: The evidence measure mi
EX defined as:

where α1 is a value within 0 and 1, is a DS basic probability assignment with

respect to frame of discerment θes
EX (see Definitions 6 in Section 5.4.6.1).

ii) Else if EXP(ei) ≠∅, we have that:

mi
EX(EXi) = Bel(∨∨∨∨j=1,…, |EXP(ei)| Valid(ei,Φj,Uo,TR))

a1, if P = Explainable(ei,Uo,TR)

1 – α1, if P = ¬ Explainable(ei,Uo,TR)

0, otherwise

mi
EX (P) =

 169

 mi
EX(¬EXi) = Bel(∧∧∧∧j=1,…, |EXP(ei)| ¬Valid(ei,Φj,Uo,TR)))

mi
EX(EXi ∨∨∨∨¬ EXi) = 1 - mi

EX(EXi) - mi
EX(¬EXi)

where, as the following theorem indicates,

• Bel(∨∨∨∨j=1,…, |EXP(ei)| Valid(ei,Φj,Uo,TR)) =

=ΣΣΣΣJ⊆EXP(ei) and J≠∅(−1)|J|+1{ΠΠΠΠj∈J m j
VL(Valid(ei,Φj,Uo,TR)))}

• Bel(∧∧∧∧j=1,…, |EXP(ei)| ¬Valid(ei,Φj,Uo,TR))) =

=ΠΠΠΠΦj∈EXP(ei){ m j
VL(¬Valid(ei,Φj,Uo,TR)))}

Theorem 5.5: If ei is an event and EXP(ei) is the set of the alternative

explanations that are generated for ei, and it holds that EXP(ei)≠∅ with m =

|EXP(ei)|, i.e. the number of the members of EXP(ei), the belief in the validity

of at least one alternative explanation in EXP(ei), Bel(∨∨∨∨j=1,…,m

Valid(ei,Φj,Uo,TR)), and in the validity of none of the alternative explanations

in EXP(ei), Bel(∧∧∧∧j=1,…,m ¬Valid(ei,Φj,Uo,TR)), are measured by the following

functions:

Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)) =

= ΣΣΣΣJ ⊆{1,…,m} and J≠Ø(−1)
|J|+1{ΠΠΠΠj∈J mj

VL
(Valid(ei,Φj,Uo,TR))}

 Bel(∧∧∧∧j=1,…,m ¬Valid(ei,Φj,Uo,TR)) =

= ΠΠΠΠ j=1,…,m {mj
VL(¬Valid(ei,Φj,Uo,TR))}

where mj
VL

 (j=1,…, n) is the basic probability assignment associated with the

alternative explanation Φj of ei.

Furthermore, as the following theorem indicates for this case, mi
EX is a basic

probability assignment to the explainability of an event ei, according to the

 170

axiomatic definition of such assignments in the context of the Dempster-Shafer

theory of evidence with respect to θes
EX (see Definition 6 in Section 5.4.6.1).

 Theorem 5.6: The evidence measure mi
EX defined as:

where m = |EXP(ei)|, i.e., the number of alternative explanations of ei, is a DS

basic probability assignment with respect to frame of discerment θes
EX (see

Definition 6 in Section 5.4.6.1).

As soon as the assessment process finishes the computation of the belief in the

explainability of ei for first time, the process updates the sublist of ei in Uo (see

Section 5.4.4.2). In particular, the process sets the Boolean flag

isExplainabilityComputed(ei) to True, and sets values to the two placeholders for

the assessment result of the explanability of ei, assessmentOf(Explainable(ei))

and assessmentOf(¬Explainable(ei)), as follows:

isExplainabilityComputed(ei) = True

assessmentOf(Explainable(ei)) = mi
EX(EXi)

assessmentOf(¬Explainable(ei)) = mi
EX(¬EXi)

2. If isExplainabilityComputed(ei) =True, we have for mi
EX:

mi
EX(EXi) = assessmentOf(Explainable(ei)) / occurrenceTimes(ei)

mi
EX(¬EXi) = assessmentOf(¬Explainable(ei)) / occurrenceTimes(ei)

mEX(EXi∨∨∨∨¬EXi) = 1 - mi
EX(EXi) - mi

EX(¬EXi)

It should be noted that by these means the assessment process distributes equally

the evidence of any recorded event that is repeatedly reached as actual

Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)), if P = Explainable(ei,Uo,TR)

Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)), if P = ¬ Explainable(ei,Uo,TR)

1-Bel(∨∨∨∨j=1,…,mValid(ei,Φj,Uo,TR))-Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)),

otherwise

 mi
EX

(P) =

 171

consequence of alternative explanations of the same event ex. Moreover, we

observe that occurrenceTimes(ei) is always equal to or greater than 1. Also, the

values assessmentOf(Explainable(ei)) and assessmentOf(Explainable(¬ei)), which

are respectively equal to mi
EX(EXi) and mi

EX(¬EXi), are within 0 and 1 as mi
EX

satisfies Axiom 1 of DS Theory (see Section 3.4) shown in Theorem 5.6. Based on

the aforementioned observations, the following theorem indicates that mi
EX

 is a

basic probability assignment to the explainability of an event ei, according to the

axiomatic definition of such assignments in the context of the Dempster-Shafer

theory of evidence with respect to θes
EX (see Definition 6 in Section 5.4.6.1).

Theorem 5.7: The evidence measure mi
EX defined as:

where occurrenceTimes(ei)≥1 , i.e., the number of times that ei was reached as a

consequence of alternative explanations of the same event es, and the values

assessmentOf(Explainable(ei)) and assessmentOf(Explainable(¬ei)) are within 0

and 1, is a DS basic probability assignment with respect to frame of discerment

θes
EX

 (see Definition 6 in Section 5.4.6.1).

Definition 11: mj
VL is a function measuring the degree of belief in the existence of a

genuine consequence of an explanation Φj generated for an event ei by assigning basic

probability to the propositions Valid(ei,Φj,Uo,TR) and ¬Valid(ei,Φj,Uo,TR) that are

assessmentOf(Explainable(ei))/occurrenceTimes(ei),
if P = Explainable(ei,Uo,TR)

assessmentOf(¬Explainable(ei))/occurrenceTimes(ei),

if P = ¬ Explainable(ei,Uo,TR)

1-[assessmentOf(Explainable(ei))+assessmentOf(¬Explainable(ei))

/occurrenceTimes(ei))], otherwise

 mi
EX(P) =

 172

denoted as VLj and ¬VLj in the following and are described by subsets of θes
VL (see

Definition 7 in Section 5.4.6.1), and is defined as:

mj
VL(VLj) = Bel(∨∨∨∨q=1,…, |CONS(Φj,TR)| Genuine(eq,Uo,TR))

mj
VL(¬VLj) = Bel(∧∧∧∧q=1,…, |CONS(Φj,TR)| ¬Genuine(eq,Uo,TR))

mj
VL(VLj∨∨∨∨¬VLj) = 1 - mj

VL(VLj) - mj
VL(¬VLj)

where, as the following theorem indicates,

Bel(∨∨∨∨q=1,…, |CONS(Φj,TR)| Genuine(eq,Uo,TR))

=ΣΣΣΣQ⊆CONS(Φj,TR) and Q≠∅(−1)|Q|+1{ΠΠΠΠq∈Q mq
GN(Genuine(eq,Uo,TR))}

Bel(∧∧∧∧q=1,…, |CONS(Φj,TR)| ¬Genuine(eq,Uo,TR))

=ΠΠΠΠeq ∈ CONS(Φj,TR){ mq
GN(¬Genuine(eq,Uo,TR))}

Theorem 5.8: If Φj is an alternative explanation of ei and CONS(Φj,TR) is the set of the

expected consequences that are identified for Φj, and it holds that CONS(Φj,TR)≠∅ with

r = |CONS(Φj,TR)|, i.e. the number of the members of CONS(Φj,TR), the belief in the

genuineness of at least one expected consequence in CONS(Φj,TR), Bel(∨∨∨∨q=1,…,r

Genuine(eq,Uo,TR)), and in the genuineness of none of the expected consequences in

CONS(Φj,TR), Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)), are measured by the following

functions:

Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)) =

= ΣΣΣΣQ⊆CONS(Φj,TR) and Q≠∅(−1)|Q|+1{ΠΠΠΠq∈Q mq
GN(Genuine(eq,Uo,TR))}

 Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)) =

=ΠΠΠΠeq ∈ CONS(Φj,TR){ mq
GN(¬Genuine(eq,Uo,TR))}

 173

where mq
GN

 (q=1,…, r) is the basic probability assignment associated with the expected

consequence eq of the alternative explanation Φj of ei.

Furthermore, as the following theorem indicates for this case, mj
VL is a basic probability

assignment to the validity of an alternative explanation Φj, according to the axiomatic

definition of such assignments in the context of the Dempster-Shafer theory of evidence

with respect to θes
VL (see Definition 7 in Section 5.4.6.1).

Theorem 5.9: The evidence measure mj
VL defined as:

where r = |CONS(Φj,TR)|, i.e., the number of expected consequences of the Φj, is a DS

basic probability assignment with respect to frame of discerment θes
VL

 (see Definition 7 in

Section 5.4.6.1).

As indicated in case 1.i) of Definition 9, mGN assigns a predetermined belief value α2

to null consequences. Whilst the reasoning principle underpinning the diagnosis

framework favours explanations, which are confirmed by the fact that they have

consequences matched by genuine events other than the event that they were generated

for, it would be unfair to disregard entirely explanations that have no other such

consequences. Cases of such explanations are more likely to arise when the diagnosis

window is narrow and, therefore, it may be possible to end up with explanations with no

further consequences falling within the given diagnosis window. For such explanations, it

is important to assign some belief measure in their validity but at the same time keep this

measure low to reflect the absence of any evidence of runtime event in the given

diagnosis interval. The definition of the belief function mGN introduces the parameter α2

to define the belief measure that should be used in such cases and leaves the choice of its

exact value to the user of the framework. The expectation, however, is that this value will

Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)), if P = Valid(ei,Φj,Uo,TR)

Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)), if P = ¬Valid(ei,Φj,Uo,TR)

1-Bel(∨∨∨∨q=1,…,rGenuine(eq,Uo,TR))-Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)),

otherwise

 mj
VL(P) =

 174

be a number close to zero to ensure that explanations with no consequences cannot affect

significantly the overall belief in the genuineness of events.

Similarly, as indicated in case .i) of Definition 10, mEX
 assigns some belief α1 in the

genuineness of events which have no explanations. This is a relaxation of the logical

definition of event genuineness in Definition 3 that is introduced for the following reason.

An event ei with no explanations of its own may be required to provide confirmatory

evidence for a consequence of an explanation of another event ej. If this were the case,

the assignment of a zero belief in the explainability of ei (due to the absence of an

explanation for it) would reduce or even make equal to zero the basic probability of the

genuineness of the event ej whose explanation had to be confirmed by ei. The stance

reflected by Definition 5 in this case is that the very presence of ei in the log of the

monitoring infrastructure should provide some evidence for the validity of the

explanation of ej even though ei is not explainable itself and that the belief in the validity

of this explanation should be higher than in cases where none of its consequences were

matching with events in the log of the monitoring infrastructure. Thus, m
EX assigns a

small belief in the genuineness of events with no explanation that is determined by the

parameter α1, which exact value is chosen by the user of the framework. The value of this

parameter should be set very close to zero, in order to provide a close approximation of

the logical definition of explainability (Definition 3) in cases where an event does not

have any explanation. It should be noted that the predetermined measures, α1 and α2,

must respect an order, which ensures that the effect of these values on the final

assessment result is fair and reasonable. In particular, α1 must be less than α2 to ensure

that null explanations affect less the assessment result by being compared to null

consequences that may occur due to diagnosis window.

As a final remark regading the sets of belief values we have selected for mGN in the

cases 1.ii) and 1.iii) of Definition 9, both sets represent uncertainty. In 1.ii), mGN is a

Bayesian function, i.e., the sum of mGN(Genuine(ei,Uo,TR)) and mGN(¬Genuine(ei,Uo,TR))

equals to 1 [146], that provides a model regarding the uncertainty for the genuineness of

ei, which restricts ei to be either genuine or not, given the evidence that Captor(ei) is

operable and produces events according to the monitored system specifications. On the

other hand, in 1.iii), mGN represents a model of total uncertainty for the genuineness of ei,

and therefore the occurrence of ei, as no confirming or refuting evidence have been

produced by Captor(ei). Thus, in 1.iii), the correct behaviour of Captor(ei) could be

 175

questioned as well. Of course, as a future line of work, it would be interesting to explore

uncertainty models in terms of belief functions that could be more appropriate for

answering plausibly the different questions that may appear in both cases.

5.5 Diagnosis Generation

5.5.1 The diagnosis generation process

The last phase of the diagnosis process is concerned with the generation of a final

diagnosis of a violation based on the beliefs computed for the genuineness of the

individual events involved in it. This final diagnosis is a report of the confirmed and

unconfirmed predicates, which are involved in the violation that is generated as shown in

the algorithm of Figure 5-18.

Generate_Violation_Explanation(R: Instance of Violated Rule)

1. For each predicate P in R Do
2. If P is negated Then

3. Explanations(P) = explain(¬P, tmin(P), tmax(P), NULL)
4. Generate_AE_Consequences(Explanations(P), Assumptions, P_Consequences)
5. Else
6. Explanations(P) = explain(P, tmin(P), tmax(P), NULL)
7. Generate_AE_Consequences(Explanations(P), Assumptions, P_Consequences)
8. End If
9. [Bel(P), Pls(P)] = ComputeBeliefRange(P, Explanations(P), P_Consequences)
10. If 1-Pls(P) < Bel(P) Then
11. If P is negated Then

12. UnconfirmedPredicates = UnconfirmedPredicates ∪ {P}
13. Else

14. ConfirmedPredicates = ConfirmedPredicates ∪ {P}
15. End if
16. End if
17. End For
18. For all P in ConfirmedPredicates Do report P as a confirmed predicate End for
19. For all P in UnconfirmedPredicares Do report P as unconfirmed predicate End for

END

 176

Figure 5-18 – Final diagnosis generation algorithm

More specifically, this algorithm takes as input a template that represents an in-

stantiation of an S&D monitoring rule that has been violated and generates explanations

for the individual predicates which are involved in the violation by calling the Explain

algorithm initially (see lines 3 and 6 in Figure Figure 5-18). In the case of negated

predicates, the explanations are generated for the positive form of the predicate. This is

because negated predicates cannot appear in the head of assumptions and, therefore, it is

not possible to generate explanations for them directly. By virtue, however, of attempting

to generate an explanation for the positive form of a negated predicate, the diagnosis

process can still establish beliefs in the genuineness of the event represented by the

predicate as we discussed above. It should also be noted that, as they do not appear in

assumption heads, negated predicates cannot have been generated by deduction from

assumptions during the monitoring process. Thus, their presence in violated rule

instances is established by the principle of negation as failure when the expected

predicate has not been seen in the event log of the monitoring system within the time

range that it is expected to occur. Thus, an attempt to generate an explanation for the

positive form of the predicate during the diagnosis process provides a means of

confirming or not whether the application of the principle of negation as failure was

reasonable given evidence from other events in the event log.

Having generated explanations for the individual predicates, the Gener-

ate_Violation_Explanation algorithm computes a belief range for the event repre-sented

by each predicate and classifies the predicate as confirmed or unconfirmed depending on

whether the belief in the genuineness of the event represented by it exceeds the belief in

the non genuineness of this event. More specifically, a non negated predicate P will be

classified as a confirmed predicate if Bel(P) ≥ Bel(¬P)6. A negated predicate ¬P, will be

classified as a unconfirmed predicate if Bel(P) ≤ Bel(¬P). Finally, the algorithm reports

the classifications of individual predicates as confirmed or unconfirmed to the user (see

lines 18-19 in Figure 5-18).

6 Bel(P) and Bel(¬P) represent the proposition Bel(Genuine(e,Uo,TR)) and Bel(¬Genuine(e,Uo,TR)) respectively.

 177

5.5.2 Examples of diagnosis generation

In the case of the example regarding the violation of Rule ATMS.R1, the algorithm will

report P1: Happens(e(E4,R1,AirBase,RES-A,signal(R1,A1,S1),

AirBaseCaptor),7,R(7,7)) as a confirmed predicate and P2:

Happens(e(NF,R2,AirBase,signal(R2,A1,S1), AirBaseCaptor),t,R(7,12)) as an

unconfirmed predicate. This will be due to the beliefs in the genuineness and non

genuineness of the events unified with these predicates which are shown in Table 5-1.

Table 5-1 - Beliefs in genuineness of violation observations of Rule ATMS.R1

Predicate
(P)

Bel(Genuine(P,Uo,TR)) Bel(¬Genuine(P,Uo,TR)) Confirmed

P1 2α1 - α1
2 0 YES

P2 0 2α1 - α1
2 NO

It should be noted that in order to calculate the belief and disbelief in the genuineness of

P2, the algorithm calculates the belief and disbelief in the genuineness of ¬P2 assuming

that there is an event of signal sent from the radar R2 at some time point from t=7 to t=12

in the event log.

5.6 Mathematical Appendix: Proofs of Theorems in Chapter 5

Theorem 5.1: The evidence measure mGN defined as:

1 - α2, if P = ¬ Genuine(e,Uo,TR)

0, otherwise

mGN(P) =

α2, if P = Genuine(e,Uo,TR)

 178

where α2 is a value within 0 and 1, is a DS basic probability assignment with respect to

frame of discerment θes and θes
GN (see Definitions 5 nad 8 repectively in Section 5.4.6.1).

Proof: To prove that mGN is a DS basic probability assignment it is sufficient that mGN

satisfies the axioms Axiom 1, Axiom 2, and Axiom 3 of DS Theory (see Section 3.4).

(Axiom 1): Regarding θes, Axiom 1 is satisfied since:

If P = GNs, ms
GN(P) = α2 where 0 < α2 < 1.

If P = ¬GNs, ms
GN(P) = 1 - α2 with 0 < 1 - α2 < 1 since 0 < α2 < 1.

If P ≠ GNs or P ≠ ¬GNs, ms
GN(P) = 0 by definition.

Similarly, Axiom 1 is satisfied with respect to θes
GN since:

If P = GNq, mq
GN(P) = α2 where 0 < α2 < 1.

If P = ¬GNq, mq
GN(P) = 1 - α2 with 0 < 1 - α2 < 1 since 0 < α2 < 1.

If P ≠ GNq or P ≠ ¬GNq, mq
GN(P) = 0 by definition.

(Axiom 2): Regarding θes, Axiom 2 is satisfied by ms
GN since its focals GNs and GNs’ are

non empty sets by definition of θes:

GNs ={[Gs = True]} ≠ ∅ and

GNs’ ={[Gs = False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by ms
GN is ms

GN(∅) = 0

Similarly, Axiom 2 is satisfied by ms
GN with respect to θes

GN since its focals GNq and

GNq’ are non empty sets by definition of θes
GN:

GNq ={[G1,G2,…,Gr] | Gq = True}≠ ∅ and

GNq’ ={[G1,G2,…,Gr] | Gq = False} ≠ ∅.

Thus, the basic probability assigned to the empty set by mq
GN is mq

GN(∅) = 0

(Axiom 3): Regarding θes, Axiom 3 is satisfied since:

ms

GN (P)
P ⊆θ es

∑ = ms

GN (P)
P ⊆θ es

and P ≠GNs and P ≠¬GNs

∑ + ms

GN (GNs) + ms

GN (¬GNs)

=0 + a2 +1 − a2 =1

 179

Similarly, Axiom 3 is satisfied with respect to θes
GN since:

mq

GN (P)
P ⊆θ es

GN∑ = mq

GN (P)
P ⊆θ es

GN and P ≠GNq and P ≠¬GNq

∑ + mq

GN (GNq) + mq

GN (¬GNq)

=0 + a2 +1− a2 =1

♦

Lemma 5.1: If Pi and ¬Pi (i=1,…,n) are propositions, which denote whether some

property P holds for some element Li of set S, with n=|S|, and are described by subsets of

the frame of discernment θ, and according to Dempster-Shafer Theory there are m1,…,

mn functions, which assign basic probability to the property of elements L1,…,Ln, and

therefore to the subsets of θ that describe Pi,…, Pn respectively, and can be combined

using the rule of the orthogonal sum with k0 = 0, the total belief in the disjunction of Pi,

i.e., in the truth of one at least Pi, Bel(∨∨∨∨i=1,…,n Pi), and in the conjunction of Pi, i.e., in the

non truth of all Pi, Bel(∧∧∧∧i=1,…,n ¬Pi), are measured by the following functions:

Bel(∨∨∨∨i=1,…,n Pi) =ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)
|I|+1{ΠΠΠΠ i∈I mi(Pi)}

Bel(∧∧∧∧i=1,…,n ¬ Pi) =ΠΠΠΠ i=1,…,n {mi(¬Pi) }

Proof: The belief function Bel in the lemma must be obtained by combining the BPAs

m1, …, mn
 which are associated with P1, …, Pn. The combination of the basic probability

assignments mi (i=1,…,n) requires their mapping on a common frame of discernment.

Assume that the common frame of discernment for combining m1, …, mn is θ. Suppose

also that θ is defined as a set of vectors of Boolean variables of the form [p1, p2, …, pn],

where the Boolean variable pi in each vector denotes whether property Pi holds for

element ei or does not by taking the values True or False respectively. Furthermore,

suppose that by convention a vector denotes the conjunction of the propositions

expressed by its variables and a set of vectors denotes the disjunction of the propositions

that are represented by its elements. The frame of discernment θ will contain 2n vectors to

denote all the different combinations of values of p1, p2, …, pn.

 180

Given the assumptions about the construction of the frame of discernment θ, the focals Pi,

¬Pi and Pi ∨ ¬Pi of each of the basic probability assignments mi will correspond to the

following subsets of θ:

• Pi will correspond to {[p1, …, pn] | pi = True} referred to as Pi henceforth

• ¬Pi will correspond to {[p1, …, pn] | pi = False} referred to as Pi’ henceforth

• Pi ∨ ¬Pi will correspond to {[p1, …, pn] | pi = True or pi =False} which is equal to

θ

Having established the common frame of discernment θ for combining m1, …, mn, and

assuming that m1, …, mn can be combined by using the simplified version of the rule of

the orthogonal sum with k0 = 0:

m(P) = mi⊕ mj(P) = Σ X ∩ Y = P mi(X) × mj(Y)

(T5.1.1)

we can now prove this lemma by induction on n or, equivalently, by proving first the case

for n=2, assuming that the lemma holds for n=k and proving finally that the lemma also

holds for n=k+1.

For n=2, we have that:

Given the frame of discernement θ that we introduced above, the focals of the BPAs m1

and m2 and the basic probability measures that m1 and m2 will assign to them will be:

m1:

P1= {[p1, p2] | p1=True} with basic probability measure m1(P1)

P1’= {[p1, p2] | p1=False} with basic probability measure m1 (P1’)

P1 ∪ P1’ = {[p1, p2] | p1=True or p1 = False} with basic probability measure

m1(P1∪P1’)=(1−m1(P1) −m1(P1’))

m2:

P2= {[p1, p2] | p2=True} with basic probability measure m2(P2)

P2’= {[p1, p2] | p2=False} with basic probability measure m2(P2’)

P2 ∪ P2’ = {[p1, p2] | p2=True or p2 = False} with basic probability measure

 181

m2(P2∪P2’) = (1−m2(P2)- m2(P2’))

Thus from (T5.1.1), we have that the combination of m1 and m2 will provide basic

probability assignments to the following subsets of θ:

P1 ∩ P2 : m1(P1) × m2(P2)

P1 ∩ P2’ : m1(P1) × m2(P2’)

P1 ∩ (P2 ∪ P2’) = P1 : m1(P1) × (1 − m2(P2) − m2(P2’))

P1’ ∩ P2 : m1(P1’) × m2(P2)

P1’∩ P2’ : m1(P1’) × m2(P2’)

P1’∩ (P2 ∪ P2’) = P1’ : m1(P1’) × (1 − m2(P2) − m2(P2’))

(P1 ∪ P1’) ∩ P2 = P2 : (1 − m1(P1) − m1(P1’)) × m2(P2)

(P1 ∪ P1’) ∩ P2’ = P2’ : (1 − m1(P1) − m1(P1’)) × m2(P2’)

(P1∪P1’) ∩ (P2∪P2’) = θ : (1 − m1(P1) − m1(P1’)) × (1 − m2(P2) − m2(P2’))

Having obtained the focals of m1⊕m2, we then obtain Bel(EX1 ∨ EX2) or, equivalently,

Bel(EX1 ∪ EX2) from axiom Axiom 5 of the Dempster Shafer theory (Section 3.4), i.e.

the formula Bel(A) = ΣB ⊆ A m(B). By applying this formula, we will have (assuming that

m = m1⊕m2):

Bel(P1 ∪ P2) = ΣB where B ⊆ (P1 ∪ P2) m1⊕m2 (B)

= m(P1∩ P2) + m(P1 ∩P2’) + m(P1) + m(P1’ ∩ P2) + m(P2)

= m1(P1) × m2
 (P2) +

 m1(P1) × m2(P2’) +

 m1(P1) × (1 − m2(P2) − m2(P2’)) +

 m1(P1’) × m2(P2) +

 ((1 − m1(P1) − m1(P1’)) × m2(P2)

= m1(P1) × m2(P2) +

 m1(P1) × m2(P2’) +

 m1(P1) − m1(P1) × m2(P2) − m1(P1) × m2(P2’)) +

 182

 m1(P1’) × m2(P2) +

 m2(P2) − m1(P1) × m2(P2) − m1(P1’) × m2(P2)

= m1(P1) + m2(P2) − m1(P1) × m2(P2)

Also,

Bel(P1’∩ P2’) = ΣB where B ⊆ (P1’∩ P2’) m1⊕m2(B)

 = m(P1’∩ P2’)

= m1(P1’) × m2(P2’)

Thus the lemma holds for n=2.

For n=k, we assume that the lemma holds or, equivalently, that

Bel(∨∨∨∨i=1,…,kPi) = Bel (∪∪∪∪i=1,…,k Pi)

 =ΣΣΣΣI ⊆{1,…,k} and I ≠ Ø(-1)|I|+1{ΠΠΠΠi∈I{mi(Pi)}}

and

Bel(∧∧∧∧i=1,…,k¬Pi) = Bel(∩∩∩∩i=1,…,k Pi’)

 = ΠΠΠΠi ∈{1,…,k}{mi(Pi’)}

Then, for n=k+1, the lemma can be proven as follows.

From Theorem 3.4 in [146] (p. 63), we have that the combination of BPAs m1⊕

m2⊕… ⊕ mk⊕ mk+1 = (m1⊕ m2⊕ … ⊕ mk) ⊕ mk+1. Thus, if we assume that mT
k = m1⊕

m2⊕ … ⊕mk there will be that m1⊕ m2⊕… ⊕ mk⊕ mk+1 = mT
k ⊕ mk+1. To combine mT

k

and mk+1, we can consider the intersections of the focal elements of interest of the two

functions. Let also PT
k = {∪∪∪∪i=1,…,k (Pi)} and PT

k’ = {∩∩∩∩i=1,…,k (Pi’)}. Then the

combinations of the focals of interest of mT
k and mk+1

EX will be:

PT
k
 ∩ Pk+1 : mT

k(PT
k) × mk+1(Pk+1)

PT
k
 ∩ Pk+1’ : mT

k(PT
k) × mk+1(Pk+1’)

PT
k
 ∩ (Pk+1∪ Pk+1’) = PT

k
 : mT

k(PT
k) × (1 − mk+1(Pk+1) − mijk+1(Pijk+1’))

 183

PT
k’ ∩ Pk+1 : mT

k(PT
k’) × mk+1(Pk+1)

PT
k’ ∩ Pk+1’ : mT

k(PT
k’) × mk+1(Pk+1’)

PT
k’ ∩ (Pk+1 ∪ Pk+1’) = PT

k’ : mT
k(PT

k’) × (1 − mk+1(Pk+1) − mk+1(Pk+1’))

(PT
k
 ∪ PT

k’) ∩ Pk+1= Pk+1 : (1 − mT
k(PT

k) − mT
k(PT

k’)) × mk+1(Pk+1)

(PT
k
 ∪ PT

k’) ∩ Pk+1’ = Pk+1’ : (1 − mT
k(PT

k) − mT
k(PT

k’)) × mk+1(Pk+1’)

(PT
k∪PT

k’) ∩(Pk+1∪ Pk+1’)=θ : (1 − mT
k(PT

k) − mT
k(PT

k’)) ×

 (1 − mk+1(Pk+1) − mk+1(Pk+1’))

Thus, for Bel(∨i=1,…,k+1 EXi) we will have that:

Bel(∨∨∨∨i=1,…,k+1Pi) = Bel(∪i=1,…,k+1 Pi)

= Bel({∪i=1,…,k Pi } ∪ Pk+1)

 = Bel(PT
k ∪ Pk+1)

 = ΣΣΣΣ B where B ⊆ (PT
k
 ∪ Pk+1) mT

k ⊕ mk+1(B)

 = mT
k(PT

k) × mk+1(Pk+1) +

 mT
k(PT

k) × mk+1(Pk+1’) +

 mT
k(PT

k) × (1 − mk+1(Pk+1) − mk+1(Pk+1’)) +

 mT
k(PT

k’) × mk+1(Pk+1) +

 ((1 − mT
k(PT

k) − mT
k(PT

k’)) × mk+1(Pk+1)

 = mT
k(PT

k) + mk+1(Pk+1) − mT
k(PT

k) × mk+1(Pk+1)

Then, since

mT
k(PT

k) = mT
k({∪∪∪∪i=1,…,k (Pi)})

 = ΣΣΣΣI⊆{1,…,k} and I ≠ Ø(-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}}

we will have that,

Bel(∨∨∨∨i=1,…,k+1Pi) =

 184

= ΣΣΣΣi⊆{1,…,k} and I ≠ Ø (-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} + mk+1(Pk+1) −

 ΣΣΣΣI⊆{1,…,k} and I ≠ Ø (-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}}× mk+1(Pk+1)

= ΣΣΣΣI⊆{1,…,k} and I ≠ Ø (-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} +

 ΣΣΣΣI={k+1}(-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} −

 ΣΣΣΣI⊆{1,…,k} and I ≠ Ø (-1)|I|+1{ΠΠΠΠi∈I{ mk+1(Pk+1) × mi(Pi)}}

= ΣΣΣΣI⊆{1,…,k} and I ≠ Ø (-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} +

 ΣΣΣΣI={k+1}(-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} −

 ΣΣΣΣI’=I ∪{k+1} and I⊆{1,…,k} and I ≠ Ø (-1)|I ∪{k+1}|+1{ΠΠΠΠ i∈I’ { mi(Pi)}}

In the above sum however,

• the item ΣΣΣΣI⊆{1,…,k} and I ≠ Ø (-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} covers all the subsets of

{1,…,k+1} that do not include the element k+1

• the item ΣΣΣΣI={k+1}(-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}} covers only the singleton subset

{k+1} of {1,…,k+1}

• finally, the item ΣΣΣΣI’=I ∪{k+1} and I⊆{1,…,k} and I ≠ Ø (-1)|I ∪{k+1}|+1{ΠΠΠΠ i∈I’ { mi(Pi)}}

covers all the subsets of {1,…,k+1} that include the element k+1 except from

the singleton set {k+1}

Thus,

Bel(∨∨∨∨i=1,…,k+1Pi) = Bel(∪i=1,…,k+1 Pi)

= ΣΣΣΣI⊆{1,…,k+1}and I≠∅(-1)|I|+1{ΠΠΠΠi∈I{ mi(Pi)}}

Also for Bel(∧∧∧∧i=1,…,k+1Pi’) we will have that

 185

Bel(∧∧∧∧i=1,…,k+1Pi’) = Bel(∩∩∩∩i=1,…,k+1 Pi’)

 = Bel(PT
k’ ∩ Pk+1’)

= ΣΣΣΣ B where B ⊆ (PT
k
‘ ∩ Pk+1’) mT

k ⊕ mk+1(B)

= mT
k (PT

k’) × mk+1(Pk+1’)

Then since,

mT
k(PT

k’) = mT
k({∩∩∩∩i=1,…,kPi’})

 = ΠΠΠΠi ∈{1,…,k} { mi(Pi’)}

we will have that,

Bel(∧∧∧∧i=1,…,k+1Pi’) = ΠΠΠΠ i ∈{1,…,k}{ mi(Pi’)}× m(+1(Pk+1’)

 = ΠΠΠΠi ∈{1,…,k+1}{ mi(Pi’)}

Thus,

Bel(∧∧∧∧i=1,…,k+1Pi’) = Bel(∩∩∩∩i=1,…,k+1 Pi’)

 = ΠΠΠΠi∈{1,…,k+1}{ mi(¬Pi’)}

♦

Theorem 5.2: If e is an event and U(e,TR) is the set of the events that are recorded in the

log of the monitoring framework and can be unified with e, and it holds that U(e,TR)≠∅

with n = |U(e,TR)|, i.e. the number of the members of U(e,TR), the belief in the

explainability of at least one recorded event in U(e,TR), Bel(∨∨∨∨i=1,…,n

Explainable(ei,Uo,TR)), and in the explainability of none of the events in U(e,TR),

Bel(∧∧∧∧i=1,…,n ¬ Explainable(ei,Uo,TR)), are measured by the following functions:

Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) =

 186

= ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I mi
EX(Explainable(ei,Uo,TR))}

 Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)) =

= ΠΠΠΠ i=1,…,n {mi
EX

(¬Explainabe(ei,Uo,TR)) }

where mi
EX

 (i=1,…, n) is the basic probability assignment associated with the event ei.

Proof: The belief function Bel in the theorem must be obtained by combining the BPAs

m1
EX, …, mn

 EX which are associated with e1, …, en. The combination of the basic

probability assignments mi
EX (i=1,…,n) requires their mapping on a common frame of

discernment, i.e., a set of mutually exclusive propositions representing exhaustively the

properties that mi
EX assign belief to. This common frame of discernment has been defined

as θes
EX (see Definition 6) in Section 5.4.6.1.

Given the assumptions about the construction of the frame of discernment θes
EX, the

focals EXi, ¬EXi and EXi ∨ ¬EXi of each of the basic probability assignments mi
EX will

correspond to the following subsets of θes
EX:

• EXi will correspond to {[E1, …, En] | Ei = True} referred to as EXi henceforth

• ¬EXi will correspond to {[E1, …, En] | Ei = False} referred to as EXi’ henceforth

• EXi ∨ ¬EXi will correspond to {[E1, …, En] | Ei = True or Ei =False} which is

equal to θes
EX

Thus, the core (see page 40 in [146]) of each mi
EX

 will be Ci = EXi ∪ EXi’ ∪ θes
EX = θes

EX

for all i (i=1, …, n) and:

∩i=1,…,nCi = θes
EX ≠ ∅ (T5.2.1)

Due to (T5.2.1) and Theorem 3.2 (see page 40 in [146]), it follows that the basic

probability assignments mi
EX (i=1,…,n) can be combined.

Furthermore assuming that Si
+
 represents the focal set EXi of the basic probability

assignment mi
EX, we observe that

∀ I ⊆ {1,2,…,n} ∩iεISi
+
 = {[E1, …, E|I|] | ∀ i ∈ I Ei=True} ≠ ∅

 187

Similarly, assuming that Si
-
 represents the focal set EXi’ of the basic probability

assignment mi
EX, we observe that

∀ I ⊆ {1,2,…,n} ∩iεISi
-
 = {[E1, …, E|I|] | ∀ i ∈ I Ei=False} ≠ ∅

Finally, assuming that Si
θ
 represents the focal set EXi ∨ ¬EXi of the basic probability

assignment mi
EX, we observe that

∀ I ⊆ {1,2,…,n} ∩iεISi
θ
 = θes

EX ≠ ∅

Thus, in general, assuming that Si represents one of the three possible focal sets of the

basic probability assignment mi
EX we will also have that

∀ I ⊆ {1,2,…,n} ∩iεISi ≠ ∅ (T5.2.2)

Subsequently from (T5.2.2), we have that:

ΣiεI , jεI, i ≠ jΣSi ∩ Sj=Ø mi(Si) × mj(Sj) = 0 (T5.2.3)

Therefore, according to Theorem 3.1 (see page 60 in [146]), the basic probability

assignments mi
EX

 can be combined using the rule of the orthogonal sum (defined by

Axiom 9 in Section 3.4) which, since k0 = 0 due to (T5.2.3) above, is simplified to the

following formula:

mEX(P) = mi
EX⊕ mj

EX(P) = Σ X ∩ Y = P mi
EX(X) × mj

EX(Y) (T5.2.4)

Having established the common frame of discernment for combining m1
EX, …, mn

EX , and

the simplified version of the rule of the orthogonal sum for obtaining the combination

m1
EX⊕ m2

EX⊕…⊕mn
EX, the theorem holds due to Lemma 5.1, by using the following

substitutions in Lemma 5.1: S := U(e,TR), Li := ei, Pi := Explainable(ei,Uo,TR), ¬Pi :=

¬Explainable(ei,Uo,TR), θ := θes
EX, pi := Ei, and mi := mi

EX.

♦

Lemma 5.2: If ∀ i ∈ {1,2,…,n}, 0 ≤ xi ≤ 1, it holds that

 0 ≤ ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } ≤ 1

Proof: This lemma can be proven by induction on n.

For n=2 we have

 188

i) x1 + x2 - x1x2 ≥ 0 ⇒ x1(1- x2) ≥ - x2 (L5.2.1)

 However

x2 ≥ 0 ⇒ - x2 ≤ 0 (L5.2.2)

and

x2 ≤ 1 ⇒ 0 ≤ 1 - x2 (L5.2.3)

From (L5.2.2) and (L5.2.3), (L5.2.1) holds due to the fact that x1 and (1- x2) are

individually equal to or greater than 0, and thus their product is equal to or greater

than 0 and consequently greater than - x2, which is less than or equal to 0.

ii) x1 + x2 - x1x2 ≤ 1 ⇒ x1(1- x2) ≤ 1 - x2 ⇒ x1(1- x2) – (1 - x2) ≤ 0 ⇒

 (x1 - 1)(1 - x2) ≤ 0 (L5.2.4)

However

x1 ≤ 1 ⇒ x1 - 1 ≤ 0 (L5.2.5)

From (L5.2.5) and (L5.2.2), (L5.2.4) holds due to the fact that (x1 - 1) is less than

or equal to 0 while (1- x2) is equal to or greater than 0, and thus their product is

less than or equal to 0.

Thus the lemma holds for n=2.

For n=k, we assume that the lemma holds or, equivalently, that

0 ≤ ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } ≤ 1 (L5.2.6)

Then, for n=k+1, the lemma can be proven as follows.

ΣΣΣΣI ⊆{1,…,k+1} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } =

= ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } + xk+1 –

 [ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi }] × xk+1 (L5.2.7)

Assuming that X = ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi }, with 0 ≤ X ≤ 1from (L5.2.6), we

have for (L5.2.7)

 189

ΣΣΣΣI ⊆{1,…,k+1} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } = X + xk+1 – X × xk+1

(L5.2.8)

However, due to the fact that 0 ≤ X ≤ 1 and 0 ≤ xk+1 ≤ 1, as we have shown in the case

n=2, it holds that 0 ≤ X + xk+1 – X × xk+1 ≤ 1.

Thus, it holds that

0 ≤ ΣΣΣΣI ⊆{1,…,k+1} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } ≤ 1

♦

Lemma 5.3: If ∀ i ∈ {1,2,…,n}, 0 ≤ xi ≤ 1, it holds that

 0 ≤ ΠΠΠΠi ∈ {1,…,n} xi ≤ 1

Proof: This lemma can be proven by induction on n.

For n=2 we have

i) The inequality x1x2 ≥ 0 holds due to the fact that x1 and x2 are individually equal

to or greater than 0, and thus their product is equal to or greater than 0 as well.

ii) x1x2 ≤ 1 ⇒ x1x2 ≤ x2 + 1 – x2 ⇒ x2(x1-1) ≤ 1 – x2 (L5.3.1)

However

x1 ≤ 1 ⇒ x1 - 1 ≤ 0 (L5.3.2)

 and

 x2 ≤ 1 ⇒ 1 – x2 ≥ 0 (L5.3.3)

Due to the fact that x2 is equal to or greater than 0, and we have from (L5.3.2) that

x1 – 1 is less than or equal to 0, the product x2(x1 - 1) is less than or equal to 0, and

consequently less than 1 – x2, which is equal to or greater than 0 due to (L5.3.3).

Thus, (L5.3.1) holds.

Thus the lemma holds for n=2.

For n=k, we assume that the lemma holds or, equivalently, that

0 ≤ ΠΠΠΠ i ∈ {1,…,k} xi ≤ 1 (L5.3.4)

 190

Then, for n=k+1, the lemma can be proven as follows.

ΠΠΠΠ i ∈ {1,…,k+1} xi = (x1x2…xk)xk+1

 = [ΠΠΠΠ i ∈ {1,…,k} xi] × xk+1 (L5.3.5)

However, due to the fact that we have from (L2.4) that 0 ≤ ΠΠΠΠ i ∈ {1,…,k} xi ≤ 1 and 0 ≤

xk+1 ≤ 1, as we have shown in the case n=2, it holds that 0 ≤ [ΠΠΠΠ i ∈ {1,…,k} xi] × xk+1 ≤ 1.

Thus, it holds that

0 ≤ ΠΠΠΠ i ∈ {1,…,k+1} xi ≤ 1

♦

Lemma 5.4: If ∀ i ∈ {1,2,…,n}, 0 ≤ xi ≤ 1, 0 ≤ xi’≤ 1, and 0 ≤ xi +xi’≤ 1, it holds that

 0 ≤ ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } + ΠΠΠΠ i ∈ {1,…,n} xi’ ≤ 1

Proof: This lemma can be proven by induction on n.

For n=2 we have

i) x1 + x2 - x1x2 + x1’x2’≥ 0 (L5.4.1)

 However, as we have shown in Lemma 1, we observe that

0 ≤ x1 + x2 - x1x2 ≤ 1 (L5.4.2)

and as we have shown in Lemma 2, we observe that

0 ≤ x1’x2’≤ 1 (L5.4.3)

From (L5.4.2) and (L5.4.3), (L5.4.1) holds due to the fact that x1 + x2 - x1x2 and

x1’x2’ are individually equal to or greater than 0 and less than or equal to 1, and

thus their sum is equal to or greater than 0.

ii) Before proving the inequality

x1 + x2 - x1x2 + x1’x2’ ≤ 1 (L5.4.4)

we know that

 191

 x1 + x1’ ≤ 1 ⇒ x1’ ≤ 1 - x1 (L5.4.5)

and also

x2 + x2’ ≤ 1 ⇒ x2’ ≤ 1 – x2 (L5.4.6)

However, we observe from (L5.4.5) and (L5.4.6) that

x1 + x2 - x1x2 + x1’x2’ ≤ x1 + x2 - x1x2 + (1 - x1)(1 – x2) (L5.4.7)

Thus, we can prove (L5.4.4) by proving that

x1 + x2 - x1x2 + (1 - x1)(1 – x2) ≤ 1 (L5.4.8)

Indeed, we have for (L5.4.8) that

x1 + x2 - x1x2 + (1 - x1)(1 – x2) ≤ 1 ⇒ x1 + x2 - x1x2 + 1 - x2 - x1 + x1x2 ≤ 1 ⇒

⇒ 1 ≤ 1 (L5.4.9)

The inequality (L5.4.9) holds, consequently (L5.4.4) holds.

Thus the lemma holds for n=2.

For n=k, we assume that the lemma holds or, equivalently, that

0 ≤ ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i ∈ I xi }+ ΠΠΠΠ i ∈ {1,…,k} xi’ ≤ 1 (L5.4.10)

Then, for n=k+1, the lemma can be proven as follows.

ΣΣΣΣI ⊆{1,…,k+1} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } + ΠΠΠΠ i ∈ {1,…,k+1} xi’ =

= [ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } + xk+1 –

 [ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi }] × xk+1] +

 [{ΠΠΠΠ i ∈ {1,…,k} xi’} × xk+1’] (L5.4.11)

Assuming that X = ΣΣΣΣI ⊆{1,…,k} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi }, with 0 ≤ X ≤ 1from Lemma 5.2,

and X’ = ΠΠΠΠ i ∈ {1,…,k} xi’, with 0 ≤ X’≤ 1 from Lemma 5.3, we have for (L5.4.11) that

ΣΣΣΣI ⊆{1,…,k+1} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } + ΠΠΠΠ i ∈ {1,…,k+1} xi’ =

 192

= X + xk+1 – X × xk+1 + X’ × xk+1’ (L5.4.12)

However, due to the fact that the following inequalities hold

0 ≤ X ≤ 1

0 ≤ X’≤ 1

0 ≤ xk+1 ≤ 1

0 ≤ xk+1’≤ 1

0 ≤ xk+1+ xk+1’≤ 1

and also we have from (L5.4.10) that

0 ≤ X+X’≤ 1

Thus, as we have shown in the case n=2, it holds that

0 ≤ X + xk+1 – X × xk+1 + X’ × xk+1’ ≤ 1

Consequently, it holds that

0 ≤ ΣΣΣΣI ⊆{1,…,k+1} and I≠Ø(−1)|I|+1{ΠΠΠΠ i∈I xi } + ΠΠΠΠ i ∈ {1,…,k+1} xi’ ≤ 1

♦

Theorem 5.3: The evidence measure m
GN

 defined as:

where n = |U(e,TR)|, i.e., the number of the the matching recorded events of e, is a DS

basic probability assignment with respect to frames of discerment θes and θes
GN (see

Definitions 5 and 8 repectively in Section 5.4.6.1).

Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)), if P = Genuine(e,Uo,TR)

Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)), if P = ¬ Genuine(e,Uo,TR)

1 - Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) - Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)),

otherwise

mGN(P) =

 193

Proof: To prove that mGN is a DS basic probability assignment it is sufficient that mGN

satisfies the axioms Axiom 1, Axiom 2, and Axiom 3 of DS Theory (see Section 3.4).

(Axiom 1): Regarding θes, Axiom 1 is satisfied when:

i) If P = GNs, then it must hold that 0 ≤ ms
GN(P) ≤ 1, or equivalently:

0 ≤ Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) ≤ 1 (T.5.3.1)

From Theorem 5.2, we have that:

Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) =

= ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠi∈I mi
EX(Explainable(ei,Uo,TR))} (T.5.3.2)

Thus, by using (T.5.3.2), we have equivalently for (T.5.3.1):

0 ≤ ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠi∈I mi
EX(Explainable(ei,Uo,TR))} ≤ 1

(T.5.3.3) However, from Theorems 5.4, and 5.6, we have that mi
EX is DS basic

probability assignment, and therefore, mi
EX satisfies Axiom 1 of DS Theory, or

equivalently:

∀i∈{1,…,n} , 0 ≤ mi
EX ≤ 1 (T.5.3.4)

Therefore, from (T.5.3.4) and by substituting xi with mi
EX(Explainable(ei,Uo,TR))

in Lemma 5.2, the inequality (T.5.3.3) holds. Thus, (T.5.3.1) holds.

ii) If P = ¬GNs, then it must hold that 0 ≤ ms
GN(P) ≤ 1, or equivalently:

0 ≤ Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)) ≤ 1 (T.5.3.5)

From Theorem 5.2, we have that:

Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)) =

= ΠΠΠΠ i=1,…,n {mi
EX(¬Explainabe(ei,Uo,TR))} (T.5.3.6)

Thus, by using (T.5.3.6), we have equivalently for (T.5.3.5):

0 ≤ ΠΠΠΠ i=1,…,n {mi
EX(¬Explainabe(ei,Uo,TR))} ≤ 1 (T.5.3.7)

 194

However, from (T.5.3.4) and by substituting xi’ with mi
EX(¬Explainabe(ei,Uo,TR))

in Lemma 5.3, the inequality (T.5.3.7) holds. Thus, (T.5.3.5) holds.

iii) If P ≠ GNs or P ≠ ¬GNs, then it must hold that 0 ≤ ms
GN(P) ≤ 1, or equivalently:

0 ≤Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR))+Bel(∧∧∧∧i=1,…,n ¬Explainable(ei,Uo,TR)) ≤ 1

 (T.5.3.8)

From (T.5.3.2) and (T.5.3.6), we have equivalently for (T.5.3.8):

0 ≤ ΣΣΣΣI ⊆{1,…,n} and I≠Ø(−1)|I|+1{ΠΠΠΠi∈I mi
EX(Explainable(ei,Uo,TR))}+ΠΠΠΠ i=1,…,n

{mi
EX(¬Explainabe(ei,Uo,TR))}≤ 1 (T.5.3.9)

However, from (T.5.3.4) and by substituting xi with mi
EX(Explainable(ei,Uo,TR))

and xi’ with mi
EX(¬Explainable(ei,Uo,TR)) in Lemma 5.3, the inequality (T.5.3.9)

holds. Thus, (T.5.3.8) holds.

Similarly, Axiom 1 is satisfied with respect to θes
GN, for the cases that P = GNq, P = ¬

GNq, and P ≠ GNq or P ≠ ¬GNq.

(Axiom 2): Regarding θes, Axiom 2 is satisfied by ms
GN

 since its focals GNs, GNs’ and GNs

∪ GNs’ are non empty sets by definition of θes:

GNs ={[Gs = True]} ≠ ∅,

GNs’ ={[Gs = False]} ≠ ∅ and

GNs ∪ GNs’= {[Gs = True or False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by ms
GN is ms

GN(∅) = 0

Similarly, Axiom 2 is satisfied by ms
GN with respect to θes

GN since its focals GNq, GNq’

and GNq ∪ GNq’ are non empty sets by definition of θes
GN:

GNq ={[G1,G2,…,Gr] | Gq = True}≠ ∅,

GNq’ ={[G1,G2,…,Gr] | Gq = False} ≠ ∅ and

GNq ∪ GNq’= {[Gq = True or False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by mq
GN is mq

GN(∅) = 0

(Axiom 3): Regarding θes, Axiom 3 is satisfied since:

 195

ms

GN (P)
P ⊆θ es

∑ = ms

GN (P)
P ⊆θ es

and P ≠GNs and P ≠¬GNs

∑ + ms

GN (GNs) + ms

GN (¬GNs)

= 1-Bel(∨∨∨∨i=1,…,nExplainable(ei,Uo,TR))-Bel(∧∧∧∧i=1,…,n¬Explainable(ei,Uo,TR)) +

 Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) + Bel(∧∧∧∧i=1,…,n¬Explainable(ei,Uo,TR)) =

=1

Similarly, Axiom 3 is satisfied with respect to θes
GN since:

mq

GN (P)
P ⊆θ es

GN∑ = mq

GN (P)
P ⊆θ es

GN and P ≠GNq and P ≠¬GNq

∑ + mq

GN (GNq) + mq

GN (¬GNq)

= 1-Bel(∨∨∨∨i=1,…,nExplainable(ei,Uo,TR))-Bel(∧∧∧∧i=1,…,n¬Explainable(ei,Uo,TR)) +

 Bel(∨∨∨∨i=1,…,n Explainable(ei,Uo,TR)) + Bel(∧∧∧∧i=1,…,n¬Explainable(ei,Uo,TR)) =

=1

♦

Theorem 5.4: The evidence measure mi
EX

 defined as:

where α1 is a value within 0 and 1, is a DS basic probability assignment with respect to

frame of discerment θes
EX (see Definitions 6 in Section 5.4.6.1).

Proof: To prove that mi
EX is a DS basic probability assignment it is sufficient to show

that mi
EX satisfies the axioms Axiom 1, Axiom 2, and Axiom 3 of DS Theory (see Section

3.4).

(Axiom 1): Axiom 1 is satisfied since:

If P = EXi, mi
EX(P) = α1 where 0 < α1 < 1.

a1, if P = Explainable(ei,Uo,TR)

1 – α1, if P = ¬ Explainable(ei,Uo,TR)

0, otherwise

mi
EX (P) =

 196

If P = ¬ EXi, mi
EX(P) = 1 – α1 with 0 < 1 – α1 < 1 since 0 < α1 < 1.

If P ≠ EXi or P ≠ ¬EXi, mi
EX(P) = 0 by definition.

(Axiom 2): Axiom 2 is satisfied by mi
EX

 since its focals EXi and EXi’ are non empty sets

by definition of θes:

EXi ={[Ei = True]} ≠ ∅ and

EXi’ ={[Ei = False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by mi
EX is mi

EX(∅) = 0

(Axiom 3): Axiom 3 is satisfied since:

mi

EX (P)
P ⊆θ es

EX∑ = mi

EX (P)
P ⊆θ es

EX and P ≠EX i and P ≠¬EX i

∑ + mi

EX (EX i) + mi

EX (¬EX i)

=0 + a1 +1− a1 =1

♦

Theorem 5.5: If ei is an event and EXP(ei) is the set of the alternative explanations that

are generated for ei, and it holds that EXP(ei)≠∅ with m = |EXP(ei)|, i.e. the number of

the members of EXP(ei), the belief in the validity of at least one alternative explanation in

EXP(ei), Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)), and in the validity of none of the alternative

explanations in EXP(ei), Bel(∧∧∧∧j=1,…,m ¬Valid(ei,Φj,Uo,TR)), are measured by the

following functions:

Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)) =

= ΣΣΣΣJ ⊆{1,…,m} and J≠Ø(−1)|J|+1{ΠΠΠΠj∈J mj
VL(Valid(ei,Φj,Uo,TR))}

 Bel(∧∧∧∧j=1,…,m ¬Valid(ei,Φj,Uo,TR)) =

= ΠΠΠΠ j=1,…,m {mj
VL(¬Valid(ei,Φj,Uo,TR))}

where mj
VL

 (j=1,…, n) is the basic probability assignment associated with the alternative

explanation Φj of ei.

 197

Proof: The belief function Bel in the theorem must be obtained by combining the BPAs

m1
VL,…, mm

VL which are associated with Φ1, …, Φm. The combination of the basic

probability assignments mj
VL (j=1,…,m) requires their mapping on a common frame of

discernment, i.e., a set of mutually exclusive propositions representing exhaustively the

properties that mj
VL assign belief to. This common frame of discernment has been defined

as θes
VL (see Definition 7) in Section 5.4.6.1.

Given the assumptions about the construction of the frame of discernment θes
VL, the

focals VLj, ¬VLj and VLj ∨ ¬VLj of each of the basic probability assignments mj
VL will

correspond to the following subsets of θes
VL:

• VLj will correspond to {[V1, …,Vm] | Vj = True} referred to as VLj henceforth

• ¬VLj will correspond to {[V1, …, Vm] | Vi = False} referred to as VL’ henceforth

• VLj ∨ ¬VLj will correspond to {[V1, …, Vm] | Vj = True or Vj =False} which is

equal to θes
VL

Thus, the core (see page 40 in [146]) of each mj
VL

 will be Cj = VLj ∪ VLj’ ∪ θes
VL = θes

VL

for all j (j=1,…, m) and:

∩j=1,…,mCj = θes
VL ≠ ∅ (T5.5.1)

Due to (T5.5.1) and Theorem 3.2 (see page 40 in [146]), it follows that the basic

probability assignments mj
VL (j=1,…, m) can be combined.

Furthermore assuming that Sj
+
 represents the focal set VLj of the basic probability

assignment mj
VL, we observe that

∀ J ⊆ {1,2,…, m} ∩jεJSj
+
 = {[V1, …, V|J|] | ∀ j ∈ J Vj=True} ≠ ∅

Similarly, assuming that Sj
-
 represents the focal set VLj’ of the basic probability

assignment mj
VL, we observe that

∀ J ⊆ {1,2,…, m} ∩jεJSj
-
 = {[V1, …, V|J|] | ∀ j ∈ J Vj=False} ≠ ∅

Finally, assuming that Sj
θ
 represents the focal set VLj ∨ ¬VLj of the basic probability

assignment mj
VL, we observe that

 198

∀ J ⊆ {1,2,…, m} ∩jεJSj
θ
 = θes

VL ≠ ∅

Thus, in general, assuming that Sj represents one of the three possible focal sets of the

basic probability assignment mj
VL we will also have that

∀ J ⊆ {1,2,…, m} ∩jεJSj ≠ ∅ (T5.5.2)

Subsequently from (T5.5.2), we have that:

ΣiεI , jεI, i ≠ jΣSi ∩ Sj=Ø mi(Si) × mj(Sj) = 0 (T5.5.3)

Therefore, according to Theorem 3.1 (see page 60 in [146]), the basic probability

assignments mj
VL

 can be combined using the rule of the orthogonal sum (defined by

Axiom 9 in Section 3.4) which, since k0 = 0 due to (T5.5.3) above, is simplified to the

following formula:

mVL(P) = mi
VL⊕ mj

VL(P) = Σ X ∩ Y = P mi
VL(X) × mj

VL(Y) (T5.5.4)

Having established the common frame of discernment for combining m1
VL,…, mm

VL , and

the simplified version of the rule of the orthogonal sum for obtaining the combination

m1
VL⊕ m2

VL⊕…⊕mm
VL, the theorem holds due to Lemma 5.1, by using the following

substitutions in Lemma 5.1: S := EXP(ei), Li := Φj, Pi := Valid(ei,Φj,Uo,TR), ¬Pi = ¬

Valid(ei,Φj,Uo,TR), θ = θes
VL, pi = Vj, and mi = mj

VL.

♦

Theorem 5.6: The evidence measure mi
EX defined as:

Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)), if P = Explainable(ei,Uo,TR)

Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)), if P = ¬ Explainable(ei,Uo,TR)

1-Bel(∨∨∨∨j=1,…,mValid(ei,Φj,Uo,TR))-Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)),

otherwise

 mi
EX

(P) =

 199

where m = |EXP(ei)|, i.e., the number of alternative explanations of ei, is a DS basic

probability assignment with respect to frame of discerment θes
EX (see Definition 6 in

Section 5.4.6.1).

Proof: To prove that mi
EX is a DS basic probability assignment it is sufficient to show

that mi
EX satisfies the axioms Axiom 1, Axiom 2, and Axiom 3 of DS Theory (see Section

3.4).

(Axiom 1): Axiom 1 is satisfied when:

i) If P = EXi, then it must hold that 0 ≤ mi
EX(P) ≤ 1, or equivalently:

0 ≤ Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)) ≤ 1 (T.5.6.1)

From Theorem 5.5, we have that:

Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)) =

= ΣΣΣΣJ ⊆{1,…,m} and J≠Ø(−1)|J|+1{ΠΠΠΠj∈J mj
VL(Valid(ei,Φj,Uo,TR))}

(T.5.6.2)

Thus, by using (T.5.6.2), we have equivalently for (T.5.6.1):

0 ≤ ΣΣΣΣJ ⊆{1,…,m} and J≠Ø(−1)|J|+1{ΠΠΠΠj∈J mj
VL(Valid(ei,Φj,Uo,TR))} ≤ 1 (T.5.6.3)

However, from Theorem 5.9, we have that mj
VL is DS basic probability

assignment, and therefore, mj
VL satisfies Axiom 1 of DS Theory, or equivalently:

∀j∈{1,…,m} , 0 ≤ mj
VL ≤ 1 (T.5.6.4)

Therefore, from (T.5.6.4) and by substituting xi with mj
VL(Valid(ei,Φj,Uo,TR)) in

Lemma 5.2, the inequality (T.5.6.3) holds. Thus, (T.5.6.1) holds.

ii) If P = ¬EXi, then it must hold that 0 ≤ mi
EX(P) ≤ 1, or equivalently:

0 ≤ Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)) ≤ 1 (T.5.6.5)

From Theorem 5.5, we have that:

Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)) =

= ΠΠΠΠ j=1,…,m {mj
VL(¬Valid(ei,Φj,Uo,TR))} (T.5.6.6)

 200

Thus, by using (T.5.6.6), we have equivalently for (T.5.6.5):

0 ≤ ΠΠΠΠ j=1,…,m {mj
VL(¬Valid(ei,Φj,Uo,TR))} ≤ 1 (T.5.6.7)

However, from (T.5.6.4) and by substituting xi’ with mj
VL(¬Valid(ei,Φj,Uo,TR))

in Lemma 5.3, the inequality (T.5.6.7) holds. Thus, (T.5.6.5) holds.

iii) If P ≠ EXi or P ≠ ¬EXi, then it must hold that 0 ≤ mi
EX(P) ≤ 1, or equivalently:

0 ≤ Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)) + Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)) ≤ 1

 (T.5.6.8)

From (T.5.6.2) and (T.5.6.6), we have equivalently for (T.5.6.8):

0 ≤ ΣΣΣΣJ ⊆{1,…,m} and J≠Ø(−1)|J|+1{ΠΠΠΠj∈J mj
VL(Valid(ei,Φj,Uo,TR))} + ΠΠΠΠ j=1,…,m

{mj
VL(¬Valid(ei,Φj,Uo,TR))}≤ 1 (T.5.6.9)

However, from (T.5.6.4) and by substituting xi with mj
VL(Valid(ei,Φj,Uo,TR)) and

xi’ with mj
VL(¬Valid(ei,Φj,Uo,TR)) in Lemma 5.3, the inequality (T.5.6.9) holds.

Thus, (T.5.6.8) holds.

 (Axiom 2): Axiom 2 is satisfied by mi
EX

 since its focals EXi, EXi’ and EXi ∪ EXi’ are non

empty sets by definition of θes
EX:

EXi ={[Ei = True]} ≠ ∅

EXi’ ={[Ei = False]} ≠ ∅ and

EXi ∪ EXi’= {[Ei = True or False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by mi
EX is mi

EX(∅) = 0

(Axiom 3): Axiom 3 is satisfied since:

mi

EX (P)
P ⊆θ es

EX∑ = mi

EX (P)
P ⊆θ es

EX and P ≠EX i and P ≠¬EX i

∑ + mi

EX (EX i) + mi

EX (¬EX i)

= 1- Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR))- Bel(∧∧∧∧j=1,…,m ¬Valid(ei,Φj,Uo,TR)) +

 Bel(∨∨∨∨j=1,…,m Valid(ei,Φj,Uo,TR)) + Bel(∧∧∧∧j=1,…,m ¬Valid(ei,Φj,Uo,TR)) =

= 1

♦

 201

Theorem 5.7: The evidence measure mi
EX defined as:

where occurrenceTimes(ei)≥1 , i.e., the number of times that ei was reached as a

consequence of alternative explanations of the same event es, and the values

assessmentOf(Explainable(ei)) and assessmentOf(Explainable(¬ei)) are within 0 and 1, is

a DS basic probability assignment with respect to frame of discerment θes
EX (see

Definition 6 in Section 5.4.6.1).

Proof: To prove that mi
EX is a DS basic probability assignment it is sufficient to show

that mi
EX satisfies the axioms Axiom 1, Axiom 2, and Axiom 3 of DS Theory (see Section

3.4). For this purpose, suppose that:

β = assessmentOf(Explainable(ei))/occurrenceTimes(ei), and

γ = assessmentOf(¬Explainable(ei))/occurrenceTimes(ei),

where 0 < β < 1, 0 < γ < 1, and 0 < 1- β - γ < 1

 (Axiom 1): Axiom 1 is satisfied since:

If P = EXi, mi
EX(P) = β with 0 < β < 1.

If P = ¬ EXi, mi
EX(P) = γ with 0 < γ < 1 since 0 < α1 < 1.

If P ≠ EXi or P ≠ ¬EXi, mi
EX(P) = 1- β - γ with 0 < 1- β - γ < 1.

(Axiom 2): Axiom 2 is satisfied by mi
EX since its focals EXi, EXi’ and EXi ∪ EXi’ are non

empty sets by definition of θes:

EXi ={[Ei = True]} ≠ ∅

assessmentOf(Explainable(ei))/occurrenceTimes(ei),
if P = Explainable(ei,Uo,TR)

assessmentOf(¬Explainable(ei))/occurrenceTimes(ei),

if P = ¬ Explainable(ei,Uo,TR)

1-[assessmentOf(Explainable(ei))+assessmentOf(¬Explainable(ei))

/occurrenceTimes(ei))], otherwise

 mi
EX(P) =

 202

EXi’ ={[Ei = False]} ≠ ∅ and

EXi ∪ EXi’= {[Ei = True or False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by mi
EX is mi

EX(∅) = 0

(Axiom 3): Axiom 3 is satisfied since:

mi

EX (P)
P ⊆θ es

EX∑ = mi

EX (P)
P ⊆θ es

EX and P ≠EX i and P ≠¬EX i

∑ + mi

EX (EX i) + mi

EX (¬EX i)

=1− β − γ + β + γ =1

♦

Theorem 5.8: If Φj is an alternative explanation of ei and CONS(Φj,TR) is the set of the

expected consequences that are identified for Φj, and it holds that CONS(Φj,TR)≠∅ with

r = |CONS(Φj,TR)|, i.e. the number of the members of CONS(Φj,TR), the belief in the

genuineness of at least one expected consequence in CONS(Φj,TR), Bel(∨∨∨∨q=1,…,r

Genuine(eq,Uo,TR)), and in the genuineness of none of the expected consequences in

CONS(Φj,TR), Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)), are measured by the following

functions:

Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)) =

= ΣΣΣΣQ⊆CONS(Φj,TR) and Q≠∅(−1)|Q|+1{ΠΠΠΠq∈Q mq
GN(Genuine(eq,Uo,TR))}

 Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)) =

=ΠΠΠΠeq ∈ CONS(Φj,TR){ mq
GN(¬Genuine(eq,Uo,TR))}

where mq
GN

 (q=1,…, r) is the basic probability assignment associated with the expected

consequence eq of the alternative explanation Φj of ei.

Proof: The belief function Bel in the theorem must be obtained by combining the BPAs

m1
GN,…, mr

GN which are associated with e1, …, eq. The combination of the basic

probability assignments mq
GN (q=1,…, r) requires their mapping on a common frame of

discernment, i.e., a set of mutually exclusive propositions representing exhaustively the

 203

properties that mq
GN assign belief to. This common frame of discernment has been defined

as θes
GN (see Definition 8) in Section 5.4.6.1.

Given the assumptions about the construction of the frame of discernment θes
GN, the

focals GNq, ¬GNq and GNq ∨ ¬GNq of each of the basic probability assignments mq
GN

will correspond to the following subsets of θes
GN:

• GNq will correspond to {[G1, …,Gr] | Gq = True} referred to as GNq henceforth

• ¬GNq will correspond to {[G1, …,Gr] | Gq = False} referred to as GNq’ henceforth

• GNq ∨ ¬GNq will correspond to {[G1, …,Gr] | Gq = True or Gq = False} which is

equal to θes
GN

Thus, the core (see page 40 in [146]) of each mq
GN

 will be Cq = GNq ∪ GNq’ ∪ θes
GN =

θes
GN for all q (q=1,…, r) and:

∩q=1,…,rCq = θes
GN ≠ ∅ (T5.8.1)

Due to (T5.8.1) and Theorem 3.2 (see page 40 in [146]), it follows that the basic

probability assignments mq
GN (q=1,…, r) can be combined.

Furthermore assuming that Sq
+
 represents the focal set GNq of the basic probability

assignment mq
GN, we observe that

∀ Q ⊆ {1,2,…, r} ∩qεQSq
+
 = {[G1, …, G|r|] | ∀ q ∈ Q Gq=True} ≠ ∅

Similarly, assuming that Sq
-
 represents the focal set GNq’ of the basic probability

assignment mq
GN, we observe that

∀ Q ⊆ {1,2,…, r} ∩qεQSq
-
 = {[G1, …, G|r|] | ∀ q ∈ Q Gq=False} ≠ ∅

Finally, assuming that Sq
θ
 represents the focal set GNq ∨ ¬GNq of the basic probability

assignment mq
GN, we observe that

∀ Q ⊆ {1,2,…, r} ∩qεQSq
θ
 = θes

GN ≠ ∅

Thus, in general, assuming that Sq represents one of the three possible focal sets of the

basic probability assignment mq
GN we will also have that

 204

∀ Q ⊆ {1,2,…, r} ∩qεQSq ≠ ∅

(T5.8.2)

Subsequently from (T5.8.2), we have that:

ΣiεI , jεI, i ≠ jΣSi ∩ Sj=Ø mi(Si) × mj(Sj) = 0 (T5.8.3)

Therefore, according to Theorem 3.1 (see page 60 in [146]), the basic probability

assignments mq
GN

 can be combined using the rule of the orthogonal sum (defined by

Axiom 9 in Section 3.4) which, since k0 = 0 due to (T5.8.3) above, is simplified to the

following formula:

mGN(P) = mi
GN⊕ mj

GN(P) = Σ X ∩ Y = P mi
GN(X) × mj

GN(Y) (T5.8.4)

Having established the common frame of discernment for combining m1
GN,…, mr

GN , and

the simplified version of the rule of the orthogonal sum for obtaining the combination

m1
GN⊕ m2

GN⊕…⊕mr
GN, the theorem holds due to Lemma 5.1, by using the following

substitutions in Lemma 5.1: S := CONS(Φj,TR), Li := eq, Pi := Genuine(eq,Uo,TR), ¬Pi =

¬Genuine(eq,Uo,TR), θ = θes
GN, pi = Gq, and mi = mq

GN.

♦

Theorem 5.9: The evidence measure mj
VL defined as:

where r = |CONS(Φj,TR)|, i.e., the number of expected consequences of the Φj, is a DS

basic probability assignment with respect to frame of discerment θes
VL

 (see Definition 7 in

Section 5.4.6.1).

Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)), if P = Valid(ei,Φj,Uo,TR)

Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)), if P = ¬Valid(ei,Φj,Uo,TR)

1-Bel(∨∨∨∨q=1,…,rGenuine(eq,Uo,TR))-Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)),

otherwise

 mj
VL(P) =

 205

Proof: To prove that mj
VL is a DS basic probability assignment it is sufficient to show

that mj
VL satisfies the axioms Axiom 1, Axiom 2, and Axiom 3 of DS Theory (see Section

3.4).

(Axiom 1): Axiom 1 is satisfied when:

i) If P = VLj, then it must hold that 0 ≤ mj
VL(P) ≤ 1, or equivalently:

0 ≤ Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)) ≤ 1 (T.5.9.1)

From Theorem 5.8, we have that:

Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)) =

=ΣΣΣΣQ⊆CONS(Φj,TR)andQ≠∅(−1)|Q|+1{ΠΠΠΠq∈Qmq
GN(Genuine(eq,Uo,TR))}

(T.5.9.2)

Thus, by using (T.5.9.2), we have equivalently for (T.5.9.1):

0 ≤ ΣΣΣΣQ⊆CONS(Φj,TR)andQ≠∅(−1)|Q|+1{ΠΠΠΠq∈Qmq
GN(Genuine(eq,Uo,TR))} ≤ 1

(T.5.9.3) However, from Theorem 5.1 and 5.3, we have that mq
GN is DS basic

probability assignment, and therefore, mq
GN satisfies Axiom 1 of DS Theory, or

equivalently:

∀q∈{1,…, r} , 0 ≤ mq
GN ≤ 1 (T.5.9.4)

Therefore, from (T.5.9.4) and by substituting xi with mq
GN(Genuine(eq,Uo,TR)) in

Lemma 5.2, the inequality (T.5.9.3) holds. Thus, (T.5.9.1) holds.

ii) If P = ¬VLj, then it must hold that 0 ≤ mj
VL(P) ≤ 1, or equivalently:

0 ≤ Bel(∧∧∧∧j=1,…,m¬Valid(ei,Φj,Uo,TR)) ≤ 1 (T.5.9.5)

From Theorem 5.8, we have that:

Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)) =

=ΠΠΠΠeq∈CONS(Φj,TR){mq
GN(¬Genuine(eq,Uo,TR))}

(T.5.9.6)

Thus, by using (T.5.9.6), we have equivalently for (T.5.9.5):

 206

0 ≤ ΠΠΠΠeq∈CONS(Φj,TR){mq
GN(¬Genuine(eq,Uo,TR))} ≤ 1 (T.5.9.7)

However, from (T.5.9.4) and by substituting xi’ with mq
GN(¬Genuine(eq,Uo,TR))

in Lemma 5.3, the inequality (T.5.9.7) holds. Thus, (T.5.9.5) holds.

iii) If P ≠ VLj or P ≠ ¬VLj, then it must hold that 0 ≤ mj
VL(P) ≤ 1, or equivalently:

0 ≤ Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)) + Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)) ≤ 1

 (T.5.9.8)

From (T.5.9.2) and (T.5.9.6), we have equivalently for (T.5.9.8):

0≤ΣΣΣΣQ⊆CONS(Φj,TR)andQ≠∅(−1)|Q|+1{ΠΠΠΠq∈Qmq
GN(Genuine(eq,Uo,TR))}+

ΠΠΠΠeq∈CONS(Φj,TR){mq
GN(¬Genuine(eq,Uo,TR))}≤1 (T.5.9.9)

However, from (T.5.9.4) and by substituting xi with mq
GN(Genuine(eq,Uo,TR)) and

xi’ with mq
GN(¬Genuine(eq,Uo,TR)) in Lemma 5.3, the inequality (T.5.9.9) holds.

Thus, (T.5.9.8) holds.

 (Axiom 2): Axiom 2 is satisfied by mj
VL since its focals VLj, VLj’ and VLj ∪ VLj’ are non

empty sets by definition of θes
VL:

VLj ={[Vj = True]} ≠ ∅

VLj’ ={[Vj = False]} ≠ ∅ and

VLj ∪ VLj’= {[Vj = True or False]} ≠ ∅.

Thus, the basic probability assigned to the empty set by mj
VL is mj

VL(∅) = 0

(Axiom 3): Axiom 3 is satisfied since:

m j

VL (P)
P ⊆θ es

VL∑ = m j

VL (P)
P ⊆θ es

VL and P ≠VL j and P ≠¬VL j

∑ + m j

VL (VL j) + m j

VL (¬VL j)

= 1- Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR))- Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR))+

 Bel(∨∨∨∨q=1,…,r Genuine(eq,Uo,TR)) + Bel(∧∧∧∧q=1,…,r¬Genuine(eq,Uo,TR)) =

= 1

♦

 207

Chapter 6: Experimental Evaluation of

the Diagnostic Prototype

6.1 Overview

In this chapter, the experimental evaluation of the diagnostic prototype is discussed. In

Section 6.2, we initially provide the experimental set up of laboratory simulations taken

place for the evaluation of the diagnostic prototype. Particularly, an architectural

overview of the EVEREST prototype and the diagnostic prototype that were used are

provided. Having provided the designs of the prototypes used in our experiments, the

target application of the evaluation is described with focus on its EC-Assertion formal

monitoring specifications. It should be noted that the EC-Assertion formal monitoring

specifications of the target application are a key point for our experimentation as they

specify the monitoring theory (i.e., assumptions and rules formulas) as well as the events

and fluents that are processed by the monitoring and diagnostic prototypes. Regarding the

events that were used, Section 6.2 concludes with a discussion on the simulator deployed

for the generation of events that could simulate the operation of the target application.

In Section 6.3, a discussion about the diagnostic framework performance

characteristics that the evaluation is focused on is provided. After introducing the

performance characteristics, the metrics that were used for the analysis and the

measurement of our diagnosis framework performance are presented.

Having specified the significant performance characteristics for our evaluation, Section

6.4 introduces the factors that we selected to experiment with. The selected factors were

selected by taking into account hypotheses regarding their impact on the key performance

characteristics of the diagnostic prototype, and therefore our diagnostic approach.

Provided the overview on the factors that may affect the performance of the diagnostic

prototype, Section 6.4 presents the set of selected experiments through an accumulative

experiments table. Finally, in Section 6.5, we provide the experimental results through

relevant tables and charts, and try to give plausible explanations for their occurrence.

(Perhaps, we could have used our or another diagnostic prototype for the results

explanation!).

 208

6.2 Experimental Set Up of Laboratory Simulations

6.2.1 Architecture of the EVEREST diagnostic prototype

This section describes the design of the diagnosis prototype and its integration with the

other components of the EVEREST framework. In particular, the diagnosis prototype

consists of two separate tools, namely the event genuineness belief tool (referred as EGBT

henceforth) and the violations diagnosis tool (referred as VDT henceforth). The task that

EGBT performs is to compute the genuineness belief range of events. On the other hand,

VDT is responsible for generating diagnoses for any violation that the monitor of

EVEREST detects. It should be noted that the VDT diagnosis results are generated by use

of the genuineness belief ranges that EGBT computes for each violation observation.

In the following, Section 6.2.1.1 gives the overall EVEREST design focusing on the

diagnosis prototype components, while Sections 6.2.1.2 and 6.2.1.3 detail the EGBT and

VDT architectures respectively.

6.2.1.1 Overall EVEREST design

EGBT and VDT that consist the diagnostic prototype have been implemented as

component of EVEREST framework. The framework uses EGBT to compute genuineness

belief ranges of runtime events, and VDT to diagnose detected violations. Figure 6-1

illustrates the overall design of EVEREST framework and the most relevant interactions

between the event receiver component, monitor, EGBT and VDT.

 209

Figure 6-1 – Overall EVEREST design with respect to diagnostic prototype

When the framework receives an event e, the Event Receiver (ER) collects the event

and stores it into the events database. Then, it notifies the monitor and EGBT of the new

event. Upon this notification, EGBT computes a belief range in the genuineness of the

event and stores it into the genuineness beliefs database whilst the monitor detects

violations of all the monitoring rules that the event e can be unified with. Once a

violation v is detected, the monitor stores it into the violations database and notifies VDT

of violation v. Once notified, VDT analyzes violations v by extracting the violation

observations, i.e., the events that were taken into account for the detection of violation v.

For each violation observation, VDT requests their genuineness belief range from EGBT.

Once the genuineness belief ranges b of the given violation observations are computed,

EGBT stores b into the genuineness beliefs database and therefore VDT is able to read b

from the aforementioned database. Finally, VDT generates a diagnosis for violation v by

reasoning on b and updates the record of violation v in the violations database.

The components of the framework have been designed based on the objective of

having a loose coupling between them. To achieve this, most of the data exchanges

among them are not realized through direct method calls, but through a shared database.

Thus, EGBT and VDT have been implemented as threads, and have been designed in such

 210

a way to store their results into relevant databases. This implies, for instance, that when

VDT invokes EGBT, it does not need to wait for the result of EGBT, but continues to

operate until notified with EGBT results. Once notified, VDT can retrieve the computed

result directly from the shared database, i.e., the genuineness beliefs database in .

It should also be noted that EGBT uses the events database for computing the

genuineness belief ranges. EGBT needs to access the events database in read mode only

as it only extract events from it in order to compute the belief range in the genuineness of

an event. EGBT accesses the genuineness beliefs database in write mode because it needs

to store in it the results of its computations. VDT accesses the genuineness database in

read mode only as its computations do not require the modification of information stored

in the genuineness beliefs database. In particular, when VDT needs an event genuineness

belief range, VDT checks the genuineness beliefs database and if the required belief

range is not stored in it, it calls directly EGBT to get the required information.

6.2.1.2 Event Genuineness Belief Tool

EGBT is composed by two main components: the Event Genuineness Belief Interface and

the Event Belief Handler (EBH). The former component realizes and exposes the EGBT

interface, whilst the latter computes event genuineness belief ranges.

EGBT architecture has been designed to support the case in which the Event Receiver

(ER) sends events to the EGBT with a rate that is faster than the rate at which EGBT can

consume these events given the time that it needs to compute genuineness belief ranges

for previous events. For instance, ER sends an event to EGBT every one second and

EGBT takes two seconds for computing the corresponding genuineness belief range.

The implementation is based on the Consumer/Producer design pattern, as shown in

Figure 6-2. In this pattern, two processes, the producer and the consumer, share a

common fixed-size buffer. The producer's task is to generate a piece of data, put it into

the buffer and start again. At the same time the consumer is consuming data elements and

removes them from the buffer (one element at a time). In EGBT, the producers are ER

and VDT, whilst EBH plays the role of consumer. Once EBH computes the genuineness

belief range for an event that it has removed from the buffer, it takes the next event from

the head of the buffer and computes its own genuineness belief range. Thus, the event

queue operates in FIFO mode.

 211

Figure 6-2 – EGBT architecture

6.2.1.3 Violations Diagnosis Tool

Similarly, VDT is composed by two main components: the Violation Diagnosis Interface

and the Violation Handler (VH). The former component realises and exposes the VDT

interface, whilst the latter generates the diagnosis for given violations. VDT architecture

supports the case in which the monitor sends violations to the VDT with a rate that is

faster than the rate at which VDT can consume these violations given the time that it

needs to generate diagnoses for previous violations.

As in the case of EGBT, VDT implementation is based on the Consumer/Producer

design pattern, as shown in 3. In this pattern, two processes, the producer and the

consumer, share a common fixed-size buffer. In VDT, the producer is the monitor, whilst

VH plays the role of consumer. Again, the violation queue operates in FIFO mode as

once VH generates the diagnosis for a violation that it has removed from the violation

buffer, it takes the next violation from the head of the buffer and generates a diagnosis for

it.

Figure 6-3 – VDT architecture

Violations Diagnosis Tool
(VDT)

<Thread>

v

Monitor

Violation

Handler

(VH)

synchronised violation
buffer

v

Event Genuineness Belief
Tool (EGBT)

e

<Thread>

e

Event Receiver

(ER)

Violations

Diagnosis Tool

(VDT)

Event Belief

Handler

(EBH)

synchronised event
buffer

v_o

 212

6.2.2 The monitored system

To evaluate the diagnosis prototype, we used a Location Based Access Control System

(referred to LBACS in the following) as the system to be monitored. The LBACS manages

access to different resources of an organisation, through a combination of user

authentication, device identification and device location detection capabilities. In LBACS,

users entering and moving within the premises of an organisation, using mobile

computing devices (e.g., a notebook or smart phone) may be given access to different

resources, such as the enterprise intranet, printers or the Internet, depending on the

credentials of these devices and their exact location within the physical space of the

organization. Resource access is granted depending on policies, which determine when

access to a particular type of resource is considered to be harmful or not. For instance, a

policy may determine that an authenticated employee of the organization who is trying to

access a printer via the local wireless network, whilst being in an area of the premises

that is accessible to the public, should be granted access, whilst authenticated visitors

should only be given access to printers when they are in one of the organization’s

meeting rooms. The general architecture of LBACS is shown in Figure 6-4.

Figure 6-4 – LBACS architecture

 213

As shown in the figure, LBACS is based on two servers: a location and an access

control server. The control server polls the location server at regular intervals, in order to

obtain the position of the devices of all the users who are currently authenticated in the

system. To ensure the availability of accurate information about the location of mobile

devices in LBACS, each device is expected to send signals to the location detection server

periodically. The location of a device in LBACS is determined by the strength of signals

sent from the device to the location server. In particular, a daemon in mobile devices

sends signals to location server via location sensors. Based on the signals received from

different sensors, the location server can calculate the position of a device with some

accuracy measure.

The effectiveness of the access control solution of LBACS depends on several

conditions regarding the operation of the different components that constitute it at

runtime including, for example:

• The continuous availability of the location server (C1). The availability of these

components is a prerequisite for the availability of device position, which is

necessary for the access control system at runtime.

• The liveness of signal daemons in mobile devices (C2). Each device that is known

to the access control server should send signals to the location server periodically

and the maximum period of not receiving a signal should not be less than m time

units

For the undertaken evaluation, the following operational scenario for LBACS was

considered. A mobile device d is operable in the premises that are controlled by LBACS.

The daemon of the device d broadcasts periodically signal to the location sensors of

LBACS. As long as the location sensors receive signals from d, they forward the signals

to the location server. While the device d is operable in the premises, the user of d may

need to access to a resource r of the premises (e.g. a printer in some room). Thus, a

request for access to the resource r is sent to the access control server by device d. In

order to decide whether device d can access to resource r, the access control server needs

information with regards to the location of device d. Therefore, the access control server

interacts with the location server to get the location information of device d. The location

server calculates the location of device d based on the forwarded signals from the

location sensors and sends the location to the access control server. Since, the access

 214

control server has received the location of the device d, it makes a decision on whether

device d can have access to resource r and let device d know of the generated decision. In

case that the decision of the access control server allows device d to access to resource r,

device d can make use of resource r but should release r as long as device d tasks are

over. On the other hand, in case that device d is not granted the access privilege, it can

request again access to resource r.

Moreover, as shown in Figure 6-4, LBACS includes two wireless network

controllers, the intranet and Internet routers namely. The operational scenario considers

that intranet router provides access to the local wireless network for authenticated

employees of the organization, whilst Internet router provides access to the Internet only

for authenticated employees and visitors. However, the access control policy adopted in

the scenario specifies a condition (C3) regarding the connection of authenticated devices

to the routers that provide access to the organization intranet and Internet wireless

networks. In particular, C3 specifies that no user should be allowed to login onto intranet

and Internet routers simultaneously to reduce scope for masquerading attacks.

6.2.2.1 Monitoring specifications

In this section, the rules and assumptions that are used for monitoring LBACS are given.

Condition C1 can be specified in the monitoring language of EVEREST framework as

follows:

LBACS.R1. ∀t1∈Time, ∃t2∈Time, ∀_LServerId ∈ LocationServers,

∀_ACServerId ∈ AccessControlServers, ∀_deviceId∈Devices,

∀_source.

Happens(e(_Id1,_ACServerId,_LServerId,REQ-B,locationRequest

 (_deviceId),_source), t1, R(t1,t1)) ⇒

Happens(e(_Id2,_LServerId,_ACServerId,REQ-A,locationResponse

 (_deviceId),_source), t2, R(t1+1,t1+3000))

The monitoring rule LBACS.R1 is violated in all cases where, povided that the access

control server of LBACS requests location information for a device from the location

server of LBACS, the location server does not provide such information within the next 3

seconds after the corresponding request occurrence.

Condition C2 can be checked by two rules that are specified as:

 215

LBACS.R2. ∀t1∈Time, ∃t2∈Time, ∀_LServerId ∈ LocationServers,

∀_ACServerId ∈ AccessControlServers, ∀_deviceId∈Devices,

∀_receiver1∈Sensors, ∀_source1, ∀_source2.

Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source1), t1, R(t1,t1)) ∧∧∧∧

¬Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source1), t2, R(0,t1-1)) ⇒

Happens(e(_Id2,_deviceId,_receiver1,REQ-A,signal(_deviceId),

 _source2), t3, R(t1-2000,t1-1))

LBACS.R3. ∀t1∈Time, ∃t2∈Time, ∀_deviceId∈Devices, ∀_receiver1∈Sensors,

∀_source1.

Happens(e(_Id1,_deviceId,_receiver1,REQ-A, signal(_deviceId),

 _source1), t1, R(t1,t1)) ⇒

Happens(e(_Id2,_deviceId,_receiver1,REQ-A,signal(_deviceId),

 _source1), t2, R(t1+1,t1+2000))

Rule LBACS.R2 checks when the first signal from a device should occur. In particular,

the first signal from a given device is expected within the last two seconds before the first

request for the device location made by the LBACS access control server. Once, a device

sends its first signal, rule LBACS.R3 checks the periodical receipt of signals from the

device, with maximum period of two seconds.

Finally, condition C3 can be specified as:

LBACS.R4. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀t3 ∈ Time, ∀_deviceId ∈ Devices,

∀_userId ∈ Users, ∀_source1, ∀_source2.

Happens(e(_Id1,intranetRouter,_deviceId,REQ-B,

 loginAcknowledgment(_userId),_source1),

 t1,R(t1,t1)) ∧

Happens(e(_Id2,internetRouter,_deviceId,REQ-B,

 loginAcknowledgment(_userId),_source2),

 t2,R(t1+1,t2)) ⇒

Happens(e(_Id3,intranetRouter,_deviceId,REQ-B,

 logoutAcknowledgment(_userId)

 _source1),t3,R(t1+1,t2-1))

 216

The monitoring rule LBACS.R4 is violated in all cases where a user known to LBACS

logs into the Internet router of the system, while he is still logged into the LBACS

intranet router by using in both cases the same device.

Figure 6-5 – LBACS theory graph part I

In the following, the LBACS assumptions are provided in the form of a directed graph, as

shown in Figure 6-5 and Figure 6-6. More specifically, the graph in Figure 6-5 represents

assumptions, which model LBACS intended behaviour with respect to device signalling,

 217

resource access authorization and device location identification, as discussed in the

operational scenario above. On the other hand, the graph in Figure 6-6 represents

assumptions regarding the login and logout operations that can take place between

LBACS devices and routers.

Figure 6-6 - LBACS theory graph part II

In the above graphs, a node represents observable and abducible events, i.e., events

that can be captured by EVEREST captors at LBACS runtime and can be abduced by

EVEREST diagnostic process, respectively. A directed edge (arrow) that connects two

nodes represents the existence of an assumption that correlates the two events the

connected nodes model. The direction of the edge shows the implication direction of the

assumption, while labels on both edge ends show the relevant time ranges of the

correlated events. For instance, LBACS.A1 in Figure 6-6 represents the following

assumption expressed in EVEREST specification language:

 218

LBACS.A1. ∀t1∈Time, ∃t2∈Time, ∀_deviceId∈Devices, ∀_receiver,

∀_sender, ∀_source.

Happens(e(_Id1,_sender,_receiver,REQ-A,operableInPremises

 (_deviceId),_source),t1,R(t1,t1)) ⇒

Happens(e(_Id2,_deviceId,_receiver,REQ-A,signal(_deviceId),

 _source),t2,R(t1-2000,t1)

In particular, assumption LBACS.A1 states that if a device is operable in premises at

some time point t1, it is expected that a signal should have sent from the device within

the last two seconds before t1. As shown in Figure 6-6, the operableInPremises event is

abducible, while the signal event is observable. The EVEREST specifications of all the

assumptions that the graphs in Figure 6-5 and Figure 6-6 represent are provided in

Appendix A.

6.2.3 The deployed simulator

For the undertaken evaluation, a generic simulator, which was developed by members of

software engineering group of City University, was used to simulate the operational

LBACS scenario discussed in Section 6.2.2 and generate corresponding event sequences.

The simulator is based on a common channel architecture, which connects all simulated

components and is used for message exchange between the components. The output of a

simulation is the messages exchanged between the simulated components, referred to as

simulated events in the following. Each simulated event specifies the sender component

(senderId), the receiver component (receiverId), the actual payload of the message, which

is the operation that sender component calls and its parameters

(operationName(parameters)), and a timestamp indicating the event generation time (t).

Thus, the signature of a simulated event is as follows:

e(senderId, receiverId, operationName(parameters), t)

The simulator should be aware of the specifications of each simulated component. A

simulated component specification includes the simulated events that the component can

generate and the trigger conditions upon which the simulated event generation should be

done. Such trigger conditions, for instance, can be the receipt of a message or the end a

specific time period. For capturing the incoming and outgoing simulated events of a

simulated component, an event captor might be specified and attached to the simulated

component.

 219

Moreover, the simulator should be fed with the initial simulated events types - called

seed events henceforth - that can trigger other components to generate events, for starting

the simulation. The simulator should also be notified with the total number of seed events

that must be generated, as well as, a time range per seed event type, whose boundaries

restrict the occurrence period of the generated seed events. In particular, assuming that

[tsmax, t
s
min] is the time range that restricts the generation period of seed events of es type,

and es
n is an es type event generated at tn, then es

n+1 is generated at tn which is result of

adding to tn a random number t within [tsmax, t
s
min]. It should be noted that the simulator

has a feature that enables the storage of seed events, which are generated during a

simulation. By these means, a seed of each simulation is stored and, therefore, each

simulation can be repeated. Once the seed events are generated, the simulator channel

manager takes over the responsibility to dispatch the seed events to their specified

recipient components. The recipient components, then, generate simulated events acting

upon their specifications.

However, to be able to evaluate the diagnostic process and, especially, assess whether

the diagnostic process results i.e., the genuineness belief ranges and final diagnosis

reports, are correct, the above simulator is extended to take into account components,

which are not legitimate and authorised components of the simulated system, referred to

as adversaries henceforth. Adversaries objective is to create conditions according to

which the simulated system deviates from its intended behaviour. To do so, the simulator

should be notified with the number and exact capabilities of adversaries. Therefore, the

specifications of an adversary should detail which types of simulated events the adversary

can intercept, i.e. specify the adversary position in the simulated components topology,

and how can affect the events, i.e., the types of attacks the adversary can carry out. The

types of attack that the simulator supports at the moment are as follows:

• Delay of simulated events: The dispatch of the legitimate simulated events is

carried out with some delay.

• Block of simulated events: The simulated events do not reach their initial and

legitimate recipient.

Figure 6-7 pictures a UML model for a controlled simulation of LBACS based on the

generic simulator discussed above.

 220

Figure 6-7 – LBACS simulator UML model

The above UML model can generate the LBACS model represented in Figure 6-8. More

specifically, the model in Figure 6-8 represents the topology of LBACS simulated

components and adversaries.

 221

Figure 6-8 – LBACS simulated components topology

As shown in Figure 6-7 and Figure 6-8, the simulated LBACS components that have been

taken into account are: a Device, a Sensor, a Location Server, an Access Control Server,

an Intranet Router and an Internet Router. The LBACS simulator considers also an event

captor for each one of the aforementioned simulated components except for Device. This

decision was taken due to the generic case that a device is not equipped with an event

captor. In fact, a device may be owned by a visitor of the organization premises protected

by LBACS. A visitor’s device might not be equipped with an event captor that could

intercept the incoming and outgoing message traffic.

The models in above figures include also six types of adversaries. In particular,

Adverary01 is able to intercept and affect events exchanged between Device and Sensor.

Adversary02 can intervene and affect the message traffic between the Sensor and

Location Server, whilst Adversary03 and Adversary04 are able to act similarly between

Device and Access Control Server, and between Location Server and Access Control

Server, respectively. Adversary05 and Adversary06, finally, intercept and affect the event

 222

traffic between Device and Intranet Router, and Device and Internet Router, respectively.

In a simulation, an adversary configuration specifies the number of instances of each

adversary type, as well as, the details of the attack that each adversary instance can carry

out.

6.3 Evaluation criteria and metrics

The aim of the diagnostic framework evaluation is the experimental assessment of the

diagnostic prototype performance. In particular, the evaluation takes into account two

performance characteristics of the diagnostic process. The first characteristic is the

correctness of the belief ranges that the diagnostic process generates for the genuineness

of events, as well as, the final diagnosis that the process generates for any given violation.

This characteristic is measured by using the metrics precision and recall with respect to

the genuineness belief ranges that event genuineness belief tool (EGBT) computes for any

given event, and the final diagnosis that violations diagnosis tool (VDT) generates for any

given violation.

The second characteristic of interest is the diagnostic process responsiveness that is

strongly related to two computational time periods of interest, namely the belief

computational time and the diagnosis generation time. More specifically, the former

refers to the time that elapses while the genuineness belief range of an event is computed

by EGBT, whilst the latter is specified as the time that VDT takes to generate the final

diagnosis for a given violation. Furthermore, due to EGBT and VDT architecture, which

is based on the Consumer/Producer design pattern, as discussed in Section 6.2.1.2, the

queue delay of both components is measured as a supportive metric for the assessment of

the diagnostic prototype responsiveness. In particular, the EGBT queue delay is defined

as the time interval between an event insertion to and withdrawal from the EGBT local

events queue (see Figure 6-2). Similarly, VDT queue delay refers to the time interval that

a violation remains stored in the VDT local violations queue (see 3).

In Section 6.3.1, the metrics precision and recall that are used for evaluating the

diagnostic prototype correctness are introduced, whilst the metrics regarding belief

computational time, diagnosis generation time, and queue delays, which are used for the

diagnostic prototype responsiveness assessment are given in Section 6.3.2.

 223

6.3.1 Correctness metrics

The evaluation of the diagnostic framework correctness is covered by the measurement

of the recall and precision with respect to genuineness belief ranges that EGBT computes

for any event, as well as, the final diagnosis that VDT generates for any violation. For

being able to reason upon and eventually evaluate the diagnostic process correctness, the

a priori knowledge of the genuineness of events used in the experimental evaluation is

required.

6.3.1.1 Genuine and fake event sets

More specifically, the events used in the experiments are classified into two event sets,

namely the genuine and fake events sets. Thus, assume that genuine events are events

generated by legitimate components of the monitored system in accordance to monitored

system intended behaviour. On the other hand, fake events are genuine events that have

been captured and affected by not authorized components, adversaries, whose aim is to

make the monitored system to deviate from its intended behaviour. As discussed in

Section 6.2.3, for the undertaken evaluation, adversaries can delay or block intercepted

genuine events.

Upon the capabilities of adversaries, the evaluation of the diagnostic process takes

into account three categories of fake events. The first category includes genuine events

that are captured and delayed by adversaries. Particularly, the delay impact on the

genuine events is the alteration of their occurrence time, i.e., their timestamp, as

discussed in Section 6.2.3.

Finally, the second category considers as fake events the events that are generated by

legitimate components of the system being monitored, but are blocked by adversaries,

and therefore EVEREST framework never receives them. However, in case that the

specifications of monitoring rules that EVEREST uses to monitor the system include

predicates that can be unified with such blocked events, their presence in violated rules

instances is established by the principle of negation as failure when the expected event

has not been seen in the EVEREST event log within the time range that it is expected to

occur.

 224

6.3.1.2 EGBT recall and precision

The EGBT recall and precision are measured with respect to definite fake and genuine

events. In particular, given a belief range [Bmin Bmax), EGBT recall with respect to fake

events, referred to as EGBT_RecallF henceforth, expresses the ratio of definite fake

events whose genuineness belief is bounded by [Bmin Bmax). Given again the belief range

[Bmin Bmax), EGBT precision with respect to fake events, referred to as EGBT_PrecisionF

in the following, is defined as the ratio of events, which correspond to eventual fake

events, and their genuineness belief is within [Bmin Bmax).

Similarly, given a belief range [Bmin Bmax), EGBT_RecallG, which refers to EGBT

recall with respect to genuine events, is equal to the ratio of definite genuine events

whose genuineness belief is within [Bmin Bmax). Given again the belief range [Bmin Bmax),

EGBT precision with respect to genuine events, referred to as EGBT_PrecisionG

henceforth, expresses the ratio of events, which correspond to eventual genuine events ,

and their genuineness belief is within [Bmin Bmax).

In the undertaken expernimental evaluation, given a particular range of belief values

[Bmin Bmax), EGBT_RecallF, EGBT_PrecisionF, EGBT_RecallG, and EGBT_PrecisionG

are measured according to the following formulas:

EGBT _ RecallF =
|WR ∩ F |

| F |
 (6.2.1.2.1)

EGBT _ Pr ecisionF =
|WR ∩ F |

|WR |
 (6.2.1.2.2)

EGBT _ RecallG =
|WR ∩ G |

| G |
 (6.2.1.2.3)

EGBT _ Pr ecisionG =
|WR ∩ G |

|WR |
 (6.2.1.2.4)

where in a given experiment:

• WR is the set of events whose genuineness belief computed by EGBT is within

[Bmin Bmax)

• F is the set of fake events

• G is the set of genuine events, and

• |X| is the cardinality of set X

 225

EGBT recall and precision with respect to fake and genuine events were measured for

ten different belief ranges. More specifically, the experimental evaluation took into

account belief ranges from 0 to 0.1, 0.1 to 0.2, …, and 0.9 to 1. The use of different levels

spanning the entire range of possible belief values, i.e., [0,1], enabled the evaluation of

EGBT recall and precision when considering results at different belief ranges.

6.3.1.3 VDT recall and precision

Regarding the correctness of violations final diagnoses that are generated by VDT, it

might be useful to recall that a final diagnosis of a violation is a report of the confirmed

and unconfirmed violation observations i.e. events involved in the violation. More

specifically, a violation observation P will be classified as a confirmed event if the belief

in the genuineness of P is greater than or equal to the corresponding disbelief, i.e.,

Bel(Genuine(P)) ≥ Bel(¬Genuine(P)). It should be noted again that VDT recall and

precision are measured with respect to fake and genuine events.

Thus, VDT_RecallF, which refers to VDT recall with respect to fake events set F in the

following, represents the ratio of definite fake events that are flagged as uncofirmed in

corresponding final diagnosis reports. VDT precision with respect to F, referred to as

VDT_PrecisionF henceforth, is defined as the ratio of events that are flagged as

uncofirmed in final diagnosis reports generated by VDT and correspond to eventual fake

events.

Similarly, VDT_RecallG, which refers to VDT recall with respect to genuine events set

G in the following, expresses the ratio of definite genuine events that are flagged as

cofirmed in corresponding final diagnosis reports. VDT precision with respect to G,

referred to as VDT_PrecisionG henceforth, is defined as the ratio of events that are

flagged as cofirmed in final diagnosis reports generated by VDT and correspond to

eventual genuine events.

In the undertaken evaluation, the formulas used for measuring VDT_RecallF,

VDT_PrecisionF, VDT_RecallG, and VDT_PrecisionG are as follows:

VDT _ RecallF =
|UC ∩ F |

| F |
 (6.2.1.3.1)

||

||
Pr_

UC

FUC
ecisionVDT F

∩
= (6.2.1.3.2)

 226

VDT _ RecallG =
| CN ∩ G |

| G |
 (6.2.1.3.3)

VDT _ Pr ecisionG =
| CN ∩ G |

| CN |
 (6.2.1.3.4)

where in a given experiment:

• UC is the set of events that were flagged as unconfirmed in final diagnosis reports

generated by VDT

• CN is the set of events that were flagged as confirmed in final diagnosis reports

generated by VDT

• F is the set of fake events

• G is the set of genuine events, and

• |X| is the cardinality of set X

6.3.2 Responsiveness metrics

The evaluation of the diagnostic prototype responsiveness is based on statistic analysis of

the EGBT belief computational time and the VDT diagnosis generation time. In

particular, the following statistic measures are used:

• The mean, standard deviation/variance, and minimum and maximum EGBT belief

computational time

• The mean time, standard deviation, variance, minimum and maximum VDT

diagnosis generation time

To understand better the above measures, it may be useful to recall briefly the overall

architecture of EVEREST framework (see Figure 6-1) and the interactions that take place

between the event receiver (ER), the monitor, and the EGBT and VDT components. In

EVEREST framework architecture, ER notifies the monitor and EGBT of new events

sequentially. Also, once the monitor detects a violation, it notifies VDT of the new

violation. Finally, VDT notifies EGBT of violation observations whose genuineness belief

ranges are significant for generating violations final diagnoses. Since EGBT and VDT

have been implemented as threads, and the monitor does not wait for any result from any

of them, the computation time of the monitor is affected neither by EGBT belief

computational time nor by VDT diagnosis generation time.

 227

Regarding the first interaction, Figure 6-9 pictures the timelines of ER, monitor and

EGBT components. As shown in the figure, ER notifies monitor and EGBT at times

Tn
monitor and Tn

EGBT respectively of event ei. The notification of event ei that causes the

initiation of monitor computations at Ts
monitor will subsequently trigger computations in

EGBT at time Ts
EGTB. It should be noted that, as shown in the figure, EGBT may not

process event ei immediately after notification, and therefore the overhead introduced by

EGBT event queue is the time distance between Tn
EGBT and Ts

EGBT. Finally, even if the

monitor terminates with the processing of the event ei, EGBT might still be performing

computations upon the event. Thus, as shown in Figure 6-9, for instance, EGBT

computations may continue after the end time of the monitor Te, with EGBT

computational time for the event ei being equal to the distance between Ts
EGBT and

Te
EGBT. Analogously, DVT and EGBT components behave much the same with respect to

their interaction.

Figure 6-9 – ER, Monitor and EGBT timelines

Regarding the interaction between the monitor and VDT component, Figure 6-10

demonstrates the timelines of the monitor and VDT components. Once the monitor

detects a violation vi at time Td
v, it notifies VDT of vi at time Tn

VDT. As shown in the

figure, VDT may not process violation vi immediately after notification, and therefore an

overhead equal to the distance between Tn
DVT and Ts

DVT is introduced by VDT violation

queue.

 228

Figure 6-10 - Monitor and VDT timelines

6.4 Evaluation experiments design

To evaluate the diagnostic framework, the experiments were designed to investigate and

analyse the impact of factors – referred to as sensitivity factors henceforth - on the

performance of the diagnostic process. A non-exhaustive list of sensitivity factors that we

have identified is as follows:

• Underlying monitoring theory characteristics like the number of assumptions being

used during the abductive and deductive phases of our approach and the coverage

of theory against the set of observed runtime events.

• Diagnosis window

• Constants α1 and α2 that are used in belief functions (see Section 5.4.6.2)

• Characteristics of the event set

To restrict the boundaries of the experimental evaluation presented in this thesis, we

have decided to experiment with a specific set of experimental configurations regarding

the sensitivity factors mentioned above.

Therefore, the experimental evaluation of our diagnosis approach was undertaken by

using two experimental configurations that generated two experiments sets. The objective

of the first experimental configuration – referred to as experimentalConfiguration1

henceforth - focuses on examining the sensitivity of our approach with respect to the

relation that can be observed between the intended behaviour of the system and the

diagnosis window. More specifically, experimentalConfiguration1 specifies experiments

that expose how our prototype reacts on the utilization of different diagnosis windows,

provided that the selected diagnosis windows have a mathematical relation with the time

ranges of a common set of assumptions.

 229

Having defined the objective of experimentalConfiguration1 above, we found equally

interesting to examine the sensitivity of our approach against the relation that could be

identified between different runtime behaviours of the simulated system and the intended

behaviour of the system. Therefore, the objective of the second experimental

configuration – referred to as experimentalConfiguration2 henceforth -highlights the

sensitivity of our approach against different events sets provided that the generation of

diagnosis results is based on a common monitoring theory.

In the following, we provide a detailed description of the experimental configurations

used and an accumulative table for all the conducted experiments.

6.4.1 The LBACS simulations

Having introduced the sensitivity factors that we experimented with, the details of the

LBACS simulations that have been performed for sake of the undertaken experimental

evaluation are given. In Section 6.4.1.1, details for the generations of the seed events set

that was used for the performed simulations are discussed, whilst the specifications for

the simulation of the rest of LBACS events are provided in Section 6.4.1.2. Finally

Section 6.4.1.3 discusses the attacks that have been simulated and examined in the

experiments.

6.4.1.1 The LBACS simulations seed

In all LBACS simulations conducted for the evaluation of the diagnosis process, a

common set of seed events have been used. The decision of using a common set of seed

events was taken for ensuring that the results of the different performed simulations are

independent of the initial experimental input that in our case is the seed events set.

The common set of seed events contain only events that the Device component of the

LBACS simulator can generate. More specifically, the type of seed events that were

generated for the undertaken evaluation are the ones corresponding to signalling

operation, resource access request and resource release operations, login and logout

operations. The following table summarizes the type of events that are included in the

common set of seed events by displaying the operation name, the receiver component and

the time range that restricts the generation period of each event type.

 230

Table 6-1 – Types of seed events generated by LBACS Device

Operation name Receiver component Generation period time range (sec)

signal Sensor [2,2]

accessTo Access Control Server [3, 3.5]

resourceRelease Access Control Server [6, 7]

login Intranet Router [10, 15]

logout Intranet Router [10, 15]

login Internet Router [10, 15]

logout Internet Router [10, 15]

It should be noted that the max generation period of signal events is 2 sec for complying

with monitoring rule LBACS.R1. The generation periods of the rest seed events types

were selected randomly. By feeding the LBACS simulator with a seed event set

complying with the type of events specified in LBACS monitoring theory (see Appendix

A), LBACS simulator is able to generate all the event chains that are shown in Figure 6-8.

6.4.1.2 The LBACS simulation inter-event delays

Regarding the rest LBACS events that are generated by the simulator triggered by the

seed events we discussed above, the following table provides the delay - referred to as

inter-event delay henceforth - that simulator introduces. Upon an incoming event, a

simulated component generates the predefined response by introducing a delay that

simulates the execution of the requested operation. Table 6-2 shows the inter-event

delays for each pair of simulated and triggering seed events. For instance, once the

LBACS sensor component receives a signal event at t, the sensor generates a

forwardSignal event at t’, where t’ is equal to t plus a random delay value that was

chosen from the range [0.5, 1.5].

 231

 Table 6-2 – Inter-event delay ranges for simulated events

Simulated event

operation name

Triggerring seed

event

Inter - delay

range (sec)

forwardSignal signal [0.5, 1.5]

accessToResponse accessTo [1, 3.6]

loginAcknowledgment login [1, 3.6]

logoutAcknowledgment logout [1, 3.6]

One could observe that the above inter-event delay ranges are specified with

significantly small time distance between their boundaries. There are two reasons to have

such ranges. Firstly, we wanted to have inter-event delay ranges that could map to the

operation of an LBACS system, as presented in Figure 6-8, in a realistic time frame. For

instance, a forwardSignal event will be realistically generated within [0.5, 1.5] after the

occurrence of a signal seed event.

Moreover, it should be noted that for all simulated event types except forwardSignal,

the chosen inter-event delay range is [1, 3.6]. One could observe that this repeated range

has a median equal to 2.3 that was not randomly selected. On the contrary, by examining

the time ranges specified for the LBACS assumptions used for the presented experiments

(see Appendix A), the average of the time ranges length is computed equal to 2.3 again.

Therefore, the above time range was selected in order that the simulated events are

generated according to the intended behaviour of LBACS, as specified by the LBACS

assumptions.

6.4.1.3 The LBACS simulated attack

The LBACS simulated attack that was analyzed during the undertaken evaluation is

described by one adversary configuration. As mentioned above (Section 6.2.3), an

adversary configuration specifies the number of instances of each adversary type, as well

as, the details of the attack that each adversary instance can carry out in a simulation

The delay attack configuration specifies that there is one instance per each adversary

type. Each adversary instance is randomly activated during the simulation, and randomly

selects the event to affect from the events that can intercept. Also, all adverasies carry out

 232

delay attacks. More specifically, the specifications of all adversaries include a predefined

delay time range for each event type the adversaries can intercept and eventually affect.

This predefined delay time range for a given event can guarantee a low genuineness

belief for the event. During the simulation, the actual delay length for each affected event

is selected randomly from the aforementioned predefined delay time range.

6.4.2 Experimental configurations and evaluation experiments sets

As discussed in the opening paragraphs of Section 6.4, the experimental evaluation of our

diagnosis approach was undertaken by using two experimental configurations that

generated two experiments sets. The objective of the first experimental configuration,

experimentalConfiguration1, focuses on examining the sensitivity of our approach with

respect to the relation that can be observed between the intended behaviour of the system

and the diagnosis window. More specifically, experimentalConfiguration1 specifies

experiments that expose how our prototype reacts on the utilization of different diagnosis

windows, provided that the selected diagnosis windows have a mathematical relation

with the time ranges of a common set of assumptions.

On the other hand, with experimentalConfiguration2 we aim to examine the

sensitivity of our approach against the relation that could be identified between different

runtime behaviours of the simulated system and the intended behaviour of the system.

Therefore, the objective of experimentalConfiguration2 highlights the sensitivity of our

approach against different events sets provided that the generation of diagnosis results is

based on a common monitoring theory.

Both experimental configurations specify experiments sets with some common input.

This common input refers to the underlying monitoring theory and the selected values of

belief functions constants. Regarding the underlying monitoring theory used in all

conducted experiments, we used a subset of LBACS assumptions discussed in Section

6.2.2.1 and fully deployed in Appendix A. More specifically, we used assumptions

LBACS.A1 to LBACS.A9 that model LBACS intended behaviour with respect to device

signalling, resource access authorization and device location identification processes of

the LBACS operational scenario. Regarding the belief functions constants α1 and α2, we

have used common values for each conducted experiment. The constants α1 and α2 were

set to 0.3 and 0.4 respectively. It should be noted that by setting the aforementioned

values to the belief function constants, the diagnostic prototype is expected to assign a

 233

higher degree of belief to cases that no consequences can be identified within the given

diagnosis window than to cases that empty explanations sets are generated.

6.4.2.1 First experimental configuration

Besides the common assumptions set and the common couple of belief functions

constants described above, we have used a set of events and a set of different diagnosis

windows to achieve the objective of experimentalConfiguration1. More specifically, to

conduct the evaluation experiments specified by experimentalConfiguration1, we

generated a common event set with the LBACS simulator. The cardinality of the set is

5000 and was generated by using the seeds events set and the inter-event delays presented

in Sections 6.4.1.1 and 6.4.1.2 respectively. As the delay attack configuration specifies in

Section 6.4.1.3, experimentalConfiguration1 experiments event set includes fake events

that were generated by six adversaries. Each adversary was intercepting randomly and

delaying the 20% of its incoming events by introducing a delay randomly selected from 2

sec to 6 sec. The delay attack range was specified with the aforementioned boundaries in

order to assure that indeed fake events could trigger violations for the monitoring rules

LBACS.R1 to LBACS.R4 (see Appendix A). It should be noted that it is the violations

generated for the aforementioned rules that are given as input to VDT, in order to check

the performance characteristics of both VDT and EGBT. As discussed in Section 6.2.1.3,

given a monitoring rule violation, VDT extracts the violation observations, i.e., events

involved in the violation, and requests EGBT to compute their genuineness belief and

plausibility values.

Regarding the different values of diagnosis windows, we selected the following

values: 1.5 sec, 2.3 sec, 2.5 sec, 5 sec, 7.5 sec, and 10 sec. The diagnosis windows were

selected by taking into account the inter-event delays discussed in Section 6.4.1.2, and

the time ranges of the underlying monitoring theory assumptions that were used. As

mentioned in Section 6.4.1.2, for each type of simulated events, except for the

forwardSignal event type, the inter-event delays (2.3 sec) were set equal to the average of

the median of the time ranges specified in the assumptions. Therefore, the first diagnosis

window (1.5 sec) is less than, the second diagnosis window (2.3 sec) is equal to, while

the rest of windows as set greater than the given common inter-event delay. Our intuition

is that our diagnosis performance would be optimal for diagnosis windows around the

 234

common inter-event delay, whilst it would be decreasing as the diagnosis window

increases and gets greater than the common inter-event delay.

6.4.2.2 Second experimental configuration

To achieve the objective of experimentalConfiguration2, three different event sets that

have been generated by using a common seed events set and inter-event delays were

used. More specifically, each set contains 5000 events generated by using the seeds

events set and the inter-event delays presented in Sections 6.4.1.1 and 6.4.1.2

respectively.

The sets differ in the number of the contained fake and genuine events. For the

generation of all three events sets, the delay attack configuration was used again. As

discussed in Section 6.4.1.3, a simulation that runs according to delay attack

configuration results in event sets containing fake events that are generated by six

adversaries. Regarding the first event set – referred to as eventSet1 henceforth - each

adversary was specified to intercept randomly and delay the 10% of its incoming events.

Similarly, regarding the second event – referred to as eventSet2 henceforth – the 20% of

the incoming events of each adversary was intercepted randomly and delayed, whilst the

third event set was generated with adversaries intercepting and delaying the 30% of their

incoming events. For all three events sets generation, adversaries were introducing a

delay randomly selected within [2, 6] seconds. The delay attack range was specified as

such in order to assure that indeed fake events could trigger violations for the monitoring

rules LBACS.R1 to LBACS.R4 (see Appendix A).

Regarding the diagnosis window, we have selected to set it equal to the average of the

median of the time ranges specified in the assumptions, as discussed in Section 6.4.2.1.

Therefore, the time window we used to conduct the experiments specified by

experimentalConfiguration2 was set equal to 2.3 sec.

6.4.2.3 Evaluation experiments sets

Having given the exact specifications of experimentalConfiguration1 and

experimentalConfiguration1, Table 6-3 presents the set of experiments we conducted for

the evaluation of our approach. It should be noted that for each conducted experiment, we

have given a unique id hoping that this will help the reader to associate experiments of

different experimental configuration with its results given in the following section.

 235

Table 6-3 – LBACS conducted experiments

ExperimentalConfiguration2 Adversaries Capabilities

Delay in

10% of incoming

events

Delay in

20% of incoming

events

Delay in

30% of incoming

events

1.5 expConf1_1.5

2.3 expConf2_10% expConf1_2.3 /
expConf2_20%

expConf2_30%

2.5 expConf1_2.5

5 expConf1_5

7.5 expConf1_7.5

Experimental

Configuration1

Diagnosis

Window (sec)

10

expConf1_10

6.5 Evaluation Experiments Results

The results of the experimentalConfiguration1 and experimentalConfiguration2 are

presented and discussed in Sections 6.5.1 and 6.5.2 respectively. The presentation

structure specifies that for each explanation configuration and for each individual

experiment, we provide tables and discuss the experimental observations regarding the

EGBT and VDT correctness and responsiveness metrics as specified in Sections 6.3.1.2,

6.3.1.3, and 6.3.2. For each experimental configuration, Sections 6.5.1 and 6.5.2

concludes with charts presenting an overall view of the individual experiments per

configuration and a comparative discussion on the experimental observations against the

objective of the relevant experimental configuration.

Regarding the EGBT and VDT correctness metrics especially, to try to help the reader

to read and understand the relevant given tables and charts, brief examples are given in

the following. Assume that Table 6-4 presents experimental results for EGBT correctness

metrics according to the formulas discussed in Section 6.3.1.2.

 236

Table 6-4 – Example table of EGBT correctness results

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.10 1.00 0.00 0.00

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.25 0.26 0.17 0.74

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.25 0.38 0.10 0.62

[0.7, 0.8) 0.25 0.22 0.22 0.78

[0.8, 0.9) 0.05 0.08 0.14 0.92

[0.9, 1] 0.10 0.15 0.13 0.85

 A brief guide of how Table 6-4 can be read and interpreted is as follows:

• EGBT_RecallF for a given belief range equals to the percentage of fake events

whose belief values lie within the given belief range. For instance, the

EGBT_RecallF for belief range [0, 0.1) that equals to 0.10 shows that the belief

values of the 10% of the fake events lie within [0, 0.1). EGBT_RecallF values with

respect to lower belief ranges should ideally be greater than 0.5, whilst the values

with respect to higher belief ranges should be ideally less than 0.5.

• EGBT_PrecisionF for a given belief range equals to the percentage of events that

their belief values lie within the given belief range and happen to be fake. For

instance, the EGBT_PrecisionF for belief range [0, 0.1) that equals to 1 shows that

the 100% of the events whose belief values lie within [0, 0.1) are fake.

EGBT_PrecisionF values with respect to lower belief ranges should ideally be

greater than 0.5, whilst the values with respect to higher belief ranges should be

ideally less than 0.5.

• EGBT_RecallG for a given belief range equals to the percentage of genuine events

whose belief values lie within the given belief range. For instance, the

EGBT_RecallG for belief range [0.3, 0.4) that equals to 0.24 shows that the belief

values of the 24% of the genuine events lie within [0.3, 0.4). EGBT_RecallG

 237

values with respect to lower belief ranges should ideally be less than 0.5, whilst

the values with respect to higher belief ranges should be ideally greater than 0.5.

• EGBT_PrecisionG for a given belief range equals to the percentage of events that

their belief values lie within the given belief range and happen to be genuine. For

instance, the EGBT_PrecisionG for belief range [0.3, 0.4) that equals to 1 shows

that the 100% of the events whose belief values lie within [0.3, 0.4) are genuine.

EGBT_RecallG values with respect to lower belief ranges should ideally be less

than 0.5, whilst the values with respect to higher belief ranges should be ideally

greater than 0.5.

• N/A cell value means that the corresponding value could not be computed as it

maps to a fraction with zero denominator. For instance, the N/A value of

EGBT_PrecisionG for belief range [0.2, 0.3) means that there no events whose

belief values lie within [0.2, 0.3). It should be noted that rows with N/A cell values

are not taken into account in our discussion, as they provide no experimental

observations.

• Light grey highlighted rows include the EGBT correctness results for belief ranges

within [0.3, 0.7). According to our intuition, the values in light grey highlighted

rows are excluded from the results analysis, as they might not be useful and

enough indicative information to be taken into account by a recovery decision

making process.

Similarly, assume that the following table (Table 6-5) present experimental results of

VDT correctness as specified in Section 6.3.1.3. Regarding the correctness of violations

final diagnoses that are generated by VDT, it might be useful to recall that a final

diagnosis of a violation is a report based on confirmation criterion discussed in Section

5.5.1. Therefore, the final diagnosis of a violation reports the confirmed and unconfirmed

violation observations i.e. events involved in the violation. More specifically, a violation

observation P is classified as a confirmed event if the belief in the genuineness of P is

greater than or equal to the corresponding disbelief, i.e., Bel(Genuine(P)) ≥

Bel(¬Genuine(P)).

 238

Table 6-5 Example table of VDT correctness results

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.35 0.17 0.59 0.79

A brief guide of how the reader should read and interpret Table 6-5 is as follows:

• VDT_RecallF equals to the percentage of fake violation observations that

classified as unconfirmed. For instance, the VDT_RecallF that equals to 0.35

shows that the 35% of the total fake violation observations have been classified as

unconfirmed. Ideally, we would like to have VDT_RecallF values greater than 0.5.

• VDT_PrecisionF equals to the percentage of the violation observations that

classified as unconfirmed and happen to be fake events. For instance, the

VDT_PrecisionF that equals to 0.17 shows that the 17% of the total violation

observations that have been classified as unconfirmed are fake events. Ideally, we

would like to have VDT_PrecisionF values greater than 0.5.

• VDT_RecallG equals to the percentage of genuine violation observations that

classified as confirmed. For instance, the VDT_RecallG that equals to 0.59 shows

that the 59% of the total genuine violation observations have been classified as

confirmed. Ideally, we would like to have VDT_RecallG values greater than 0.5.

• VDT_PrecisionG equals to the percentage of the violation observations that

classified as confirmed and happen to be genuine events. For instance, the

VDT_PrecisionG that equals to 0.79 shows that the 79% of the total violation

observations that have been classified as confirmed are genuine events. Ideally,

we would like to have VDT_PrecisionG values greater than 0.5.

6.5.1 ExplanationConfiguration1 Experiments Results

In this section, the results of experiments expConf1_1.5, expConf1_2.3, expConf1_2.5,

expConf1_5, expConf1_7.5, and expConf1_10 specified in Section 6.4.2.1 are presented.

As a reminder, the results of the above experiments have been generated by running the

monitoring and diagnosis prototype with the following common inputs:

• a set of 5000 events that have been generated as discussed in Section 6.4.2.1

 239

• the LBACS monitoring theory as described in Section 6.4.2, and

• the belief functions a1 and a2 set to 0.3 and 0.4 respectively (see also Section

6.4.2)

6.5.1.1 expConf1_1.5 results

The following results have been generated by setting the diagnosis window equal to 1.5

sec.

6.5.1.1.1 EGBT correctness results

Table 6-6 contains the results for the EGBT correctness metrics for experiment

expConf1_1.5, whilst Figure 6-11 illustrates a representative chart of the given

experimental results.

Table 6-6 – EGBT correctness results for experiment expConf1_1.5

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.10 1.00 0.00 0.00

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.25 0.26 0.17 0.74

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.25 0.38 0.10 0.62

[0.7, 0.8) 0.25 0.22 0.22 0.78

[0.8, 0.9) 0.05 0.08 0.14 0.92

[0.9, 1] 0.10 0.15 0.13 0.85

Observing the EGBT_RecallF results in above table, there is an undesired low

percentage (10%) of fake events whose belief values lie within [0, 0.1), whilst the

percentages of fake events in higher ranges are low and quite satisfying.

EGBT_PrecisionF results are quite satisfying as all events, whose belief value computed

within [0, 0.1), happen to be fake. Also, the percentages of events having belief values

within belief ranges higher than 0.7 and being fake, are as low as ideally expected.

 240

Regarding EGBT_RecallG, the results in low belief ranges are as expected due to none

genuine event with belief value within [0, 0.3) found. However, the EGBT_RecallG

results in higher belief ranges are not satisfying due to the fact that there are low

percentages of genuine events with belief values within [0.7, 1]. Finally, the

EGBT_PrecisionG results are quite satisfying because none low belief valued events

happened to be genuine, and the percentages of events having belief values greater than

0.7 and being genuine are quite high.

EGBT correctness results for expConf1_1.5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e

rc
e

n
ta

g
e

EGBT_RecallF EGBT_PrecisionF

EGBT_RecallG EGBT_PrecisionG

Figure 6-11 – EGBT correctness results for expConf1_1.5

6.5.1.1.2 VDT correctness results

The following table (Table 6-7) accumulates the results of VDT correctness metrics for

experiment expConf1_1.5, whilst Figure 6-12 illustrates a representative chart of the

given experimental results.

Table 6-7 - VDT correctness results for experiment expConf1_1.5

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.35 0.17 0.59 0.79

 241

Table 6-7 presents rather undesired VDT_RecallF and VDT_PrecisionF results. In

particular, VDT has classified as unconfirmed events only the 35% of the total fake

violation observations. Also, only the 17% of the total unconfirmed violation

observations happened to be fake events.

On the other hand, VDT_RecallG and VDT_PrecisionG results are quite satisfying.

More specifically, the 59% of the total genuine violation observations have been flagged

as confirmed events by VDT. Finally, the 79% of the total confirmed violation

observations happened to be genuine events.

VDT correctness results for expConf1_1.5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Figure 6-12 – VDT correctness results for expConf1_1.5

6.5.1.1.3 Responsiveness results

The following table (Table 6-8) presents the results of responsiveness metrics as specified

in Section 6.3.2.

 242

Table 6-8 - EGBT and VDT responsiveness results for experiment expConf1_1.5

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time

20.57

11.51

44.64

0.74

VDT diagnosis

generation time

41.16

22.74

88.98

0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 20.57 sec in average, with a standard deviation

of 11.51 sec. The max and min computational times occurred are 44.64 sec and 0.74 sec

respectively.

The time VDT consumed to generate a final diagnosis for a violation was is 41.16 sec

in average, with a standard deviation of 22.74 sec. The max and min final diagnosis

generation times occurred were 88.98 sec and 0 sec respectively.

6.5.1.2 expConf1_2.3 results

The following results have been generated by setting the diagnosis window equal to 2.3

sec.

6.5.1.2.1 EGBT correctness results

Table 6-9 contains the results for the EGBT correctness metrics for experiment

expConf1_2.3, whilst Figure 6-13 illustrates a representative chart of the given

experimental results.

 243

Table 6-9 - EGBT correctness results for experiment expConf1_2.3

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.15 1.00 0.00 0.00

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.45 0.31 0.24 0.69

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.20 0.22 0.17 0.78

[0.7, 0.8) 0.15 0.20 0.14 0.80

[0.8, 0.9) 0.05 0.08 0.14 0.92

[0.9, 1] 0.00 0.00 0.06 1.00

Observing the EGBT_RecallF results in above table, there are undesired low

percentages (15%, 0% and 0%) of fake events whose belief values lie within [0, 0.3),

whilst the percentages of fake events in higher ranges are low as ideally expected.

EGBT_PrecisionF results are quite satisfying. This is because all events, whose belief

value computed within [0, 0.1), happen to be fake. Also, the percentages of events having

belief values within ranges higher than 0.6 (20%, 8%, and 0%) and being fake, are as low

as expected.

Regarding EGBT_RecallG, the results in low belief ranges are quite satisfying as none

genuine event with belief value within [0, 0.3) found. However, the EGBT_RecallG

results in higher belief ranges are not satisfying as there are low percentages (14%, 14%,

and 6%) of genuine events with belief values within [0.7, 1]. Finally, the

EGBT_PrecisionG results are quite satisfying as none event with low belief value

happened to be genuine, and the percentages of events, whose belief values were

computed greater than 0.7 and which happened to be genuine, are quite high (80%, 92%,

and 100%).

 244

EGBT correctness results for expConf1_2.3

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e

rc
e

n
ta

g
e

EGBT_RecallF EGBT_PrecisionF

EGBT_RecallG EGBT_PrecisionG

Figure 6-13 – EGBT correctness results for expConf1_2.3

6.5.1.2.2 VDT correctness results

The following table (Table 6-10) accumulates the results of VDT correctness metrics for

experiment expConf1_2.3, whilst Figure 6-14 illustrates a representative chart of the

given experimental results.

Table 6-10 - VDT correctness results for experiment expConf1_2.3

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.60 0.23 0.52 0.84

Table 6-10 presents a quite satisfying VDT_RecallF result. In particular, VDT has

classified as unconfirmed events the 60% of the total fake violation observations. On the

other hand, the VDT_PrecisionF result is rather undesired due to the fact that only the

23% of the total unconfirmed violation observations happened to be fake events.

VDT_RecallG and VDT_PrecisionG results are quite satisfying. More specifically, the

52% of the total genuine violation observations have been flagged as confirmed events by

 245

VDT. Finally, the 84% of the total confirmed violation observations happened to be

genuine events.

VDT correctness results for expConf1_2.3

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Figure 6-14 – VDT correctness results for expConf1_2.3

6.5.1.2.3 Responsiveness results

The following table (Table 6-11) presents the results of responsiveness metrics as

specified in Section 6.3.2.

Table 6-11 - EGBT and VDT responsiveness results for experiment expConf1_2.3

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time

26.42

14.34

55.08

0.19

VDT diagnosis

generation time

52.86

28.42

109.66

0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 26.42 sec in average, with a standard deviation

of 14.34 sec. The max and min computational times occurred are 55.08 sec and 0.19 sec

respectively.

 246

The time VDT consumed to generate a final diagnosis for a violation was is 52.86 sec

in average, with a standard deviation of 28.42 sec. The max and min final diagnosis

generation times occurred were 109.66 sec and 0 sec respectively.

6.5.1.3 expConf1_2.5 results

The following results have been generated by setting the diagnosis window equal to 2.5

sec.

6.5.1.3.1 EGBT correctness results

Table 6-12 contains the results for the EGBT correctness metrics for experiment

expConf1_2.5, whilst Figure 6-15 illustrates a representative chart of the given

experimental results.

Table 6-12 - EGBT correctness results for experiment expConf1_2.5

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.25 0.71 0.02 0.29

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.30 0.21 0.27 0.79

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.25 0.28 0.16 0.72

[0.7, 0.8) 0.15 0.20 0.14 0.80

[0.8, 0.9) 0.05 0.11 0.10 0.89

[0.9, 1] 0.00 0.00 0.07 1.00

Observing the EGBT_RecallF results in above table, there are undesired low

percentages (25%, 0%, and 0%) of fake events whose belief values lie within [0, 0.3),

whilst the percentages of fake events in higher ranges are low as ideally expected (15%,

5%, and 0%). EGBT_PrecisionF results are quite satisfying. This is because the 71% of

the events, whose belief value computed within [0, 0.1), happen to be fake. Also, the

percentages of events having belief values within ranges greater than 0.7 and being fake,

are as low as expected (20%, 11%, and 0%).

 247

Regarding EGBT_RecallG, the results in low belief ranges are quite satisfying as only

the 2% of genuine events found with a belief value within [0, 0.1), and none genuine

event found with a belief value within [0.1, 0.3). However, the EGBT_RecallG results in

higher belief ranges are not satisfying as there are low percentages of genuine events with

belief values within [0.7, 1] (14%, 10%, and 7%). Finally, the EGBT_PrecisionG results

are almost satisfying as only the 29% of events with low belief value (within [0, 0.1))

happened to be genuine, and the percentages of events, whose belief values were

computed greater than 0.7 and which happened to be genuine, are quite high (80%, 89%,

and 100%).

EGBT correctness results for expConf1_2.5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e

rc
e

n
ta

g
e

EGBT_RecallF EGBT_PrecisionF

EGBT_RecallG EGBT_PrecisionG

Figure 6-15 – EGBT correctness results for expConf1_2.5

6.5.1.3.2 VDT correctness results

The following table (Table 6-13) accumulates the results of VDT correctness metrics for

experiment expConf1_2.5, whilst Figure 6-16 illustrates a representative chart of the

given experimental results.

 248

Table 6-13 - VDT correctness results for experiment expConf1_2.5

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.55 0.20 0.47 0.81

Table 6-13 presents an almost satisfying VDT_RecallF result. In particular, VDT has

classified as unconfirmed events the 55% of the total fake violation observations. On the

other hand, the VDT_PrecisionF result is rather undesired due to the fact that only the

20% of the total unconfirmed violation observations happened to be fake events.

VDT_RecallG result is rather undesired due to fact that only the 47% of the total

genuine violation observations have been flagged as confirmed events by VDT. On the

contrary VDT_PrecisionG result is quite satisfying, as the 81% of the total confirmed

violation observations happened to be genuine events.

V D T co rrect ness result s f o r expC onf 1_ 2 .5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Figure 6-16 – VDT correctness results for expConf1_2.5

 249

6.5.1.3.3 Responsiveness results

The following table (Table 6-14) presents the results of responsiveness metrics as

specified in Section 6.3.2.

Table 6-14 - EGBT and VDT responsiveness results for experiment expConf1_2.5

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time

27.62

14.35

55.31

0.19

VDT diagnosis

generation time

55.26

28.46

110.08

0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 27.62 sec in average, with a standard deviation

of 14.35 sec. The max and min computational times occurred are 55.31 sec and 0.19 sec

respectively.

The time VDT consumed to generate a final diagnosis for a violation was is 55.26 sec

in average, with a standard deviation of 28.46 sec. The max and min final diagnosis

generation times occurred were 110.08 sec and 0 sec respectively.

6.5.1.4 expConf1_5 results

The following results have been generated by setting the diagnosis window equal to 5

sec.

6.5.1.4.1 EGBT correctness results

Table 6-15 contains the results for the EGBT correctness metrics for experiment

expConf1_5, whilst Figure 6-17 illustrates a representative chart of the given

experimental results.

 250

Table 6-15 - EGBT correctness results for experiment expConf1_5

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.60 0.29 0.35 0.71

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.05 0.17 0.06 0.83

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.25 0.17 0.30 0.83

[0.7, 0.8) 0.05 1.00 0.00 0.00

[0.8, 0.9) 0.05 0.20 0.05 0.80

[0.9, 1] 0.00 N/A 0.00 N/A

The EGBT_RecallF results in above table are quite satisfying. This is due to facts that

the 60% of fake events found with belief values lying within [0, 0.1), and the percentages

of fake events in higher ranges are low as ideally expected (5%, 5% and 0%). On the

other hand, EGBT_PrecisionF results are rather undesired. Only the 29% of the events,

whose belief value computed within [0, 0.1), happen to be fake. Also, another undesired

result indicated that all events having belief values within [0.7, 0.8), were fake. Finally,

only for the belief range [0.8, 0.9), EGBT_PrecisionF is quite low (20%) as expected.

Regarding EGBT_RecallG, the results in low belief ranges are almost satisfying as the

35% of genuine events found with a belief value within [0, 0.1). However, the

EGBT_RecallG results in higher belief ranges are undesired as there are low percentages

of genuine events with belief values within [0.7, 1] (0%, 5%, and 0%). Similarly, the

EGBT_PrecisionG result for the low range [0, 0.1) is quite undesired as the 71% of events

with such low belief values happened to be genuine. Also, there were no genuine events

among the events, whose belief values within [0.7, 0.8). On the contrary, there is a

satisfying observation with regards to events having belief values within [0.8, 0.9). In

particular, the 80% of such events happened to be genuine.

 251

EGBT correctness results for expConf1_5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e

rc
e
n

ta
g

e

EGBT_RecallF EGBT_PrecisionF

EGBT_RecallG EGBT_PrecisionG

Figure 6-17 – EGBT correctness results for expConf1_5

6.5.1.4.2 VDT correctness results

The following table (Table 6-16) accumulates the results of VDT correctness metrics for

experiment expConf1_5, whilst Figure 6-18 illustrates a representative chart of the given

experimental results.

Table 6-16 - VDT correctness results for experiment expConf1_5

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.65 0.19 0.35 0.81

Table 6-16 presents a satisfying VDT_RecallF result. In particular, VDT has classified

as unconfirmed events the 65% of the total fake violation observations. On the other

hand, the VDT_PrecisionF result is rather undesired due to the fact that only the 19% of

the total unconfirmed violation observations happened to be fake events.

VDT_RecallG result is rather undesired due to fact that only the 35% of the total

genuine violation observations have been flagged as confirmed events by VDT. On the

contrary VDT_PrecisionG result is quite satisfying, as the 81% of the total confirmed

violation observations happened to be genuine events.

 252

VDT correctness results for expConf1_5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Figure 6-18 – VDT correctness results for expConf1_5

6.5.1.4.3 Responsiveness results

The following table (Table 6-17) presents the results of responsiveness metrics as

specified in Section 6.3.2.

Table 6-17 - EGBT and VDT responsiveness results for experiment expConf1_5

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time

69.53

51.66

263.52

0.19

VDT diagnosis

generation time

139.07

103.46

526.88

0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 69.53 sec in average, with a standard deviation

of 51.66 sec. The max and min computational times occurred are 263.52 sec and 0.19 sec

respectively.

 253

The time VDT consumed to generate a final diagnosis for a violation was is 139.07

sec in average, with a standard deviation of 103.46 sec. The max and min final diagnosis

generation times occurred were 526.88 sec and 0 sec respectively.

6.5.1.5 expConf1_7.5 results

The following results have been generated by setting the diagnosis window equal to 7.5

sec.

6.5.1.5.1 EGBT correctness results

Table 6-18 contains the results for the EGBT correctness metrics for experiment

expConf1_7.5, whilst Figure 6-19 illustrates a representative chart of the given

experimental results.

Table 6-18 - EGBT correctness results for experiment expConf1_7.5

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.70 0.25 0.51 0.75

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.25 0.23 0.20 0.77

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.05 0.25 0.04 0.75

[0.7, 0.8) 0.00 0.00 0.01 1.00

[0.8, 0.9) 0.00 N/A 0.00 N/A

[0.9, 1] 0.00 N/A 0.00 N/A

The EGBT_RecallF results in above table are quite satisfying. This is due to the fact

that the 70% of fake events found with belief values lying within [0, 0.1), and the

percentages of fake events with respect to range [0.7, 1] are zero as ideally expected. On

the other hand, EGBT_PrecisionF results are rather complicated. Only the 25% of the

events, whose belief value computed within [0, 0.1), happen to be fake. On the contrary, a

rather satisfying result indicated that all events having belief values within [0.7, 0.8),

were no fake.

 254

Regarding EGBT_RecallG, the results in the low belief ranges are rather undesired as

the 51% of genuine events found with a belief value within [0, 0.1). Moreover, the

EGBT_RecallG results in higher belief ranges are undesired as well. In particular there are

very low (1%) and zero percentages of genuine events with belief values within [0.7, 1].

Similarly, the EGBT_PrecisionG result for the low range [0, 0.1) is quite undesired as the

75% of events with such low belief values happened to be genuine. On the contrary, there

is a satisfying experimental observation with regards to events having belief values

within [0.7, 0.8). In particular, the 100% of such events happened to be genuine.

EGBT correctness results for expConf1_7.5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e
rc

e
n

ta
g

e

EGBT_RecallF EGBT_PrecisionF

EGBT_RecallG EGBT_PrecisionG

Figure 6-19 – EGBT correctness results for expConf1_7.5

6.5.1.5.2 VDT correctness results

The following table (Table 6-19) accumulates the results of VDT correctness metrics for

experiment expConf1_7.5, whilst Figure 6-20 illustrates a representative chart of the

given experimental results.

Table 6-19 - VDT correctness results for experiment expConf1_7.5

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.95 0.19 0.05 0.80

 255

Table 6-19 presents a quite satisfying VDT_RecallF experimental result. In particular,

VDT has classified as unconfirmed events the 95% of the total fake violation

observations. On the other hand, the VDT_PrecisionF result is rather undesired due to the

fact that only the 19% of the total unconfirmed violation observations happened to be

fake events.

VDT_RecallG result is quite undesired due to fact that only the 5% of the total genuine

violation observations have been flagged as confirmed events by VDT. On the contrary

VDT_PrecisionG result is quite satisfying, as the 80% of the total confirmed violation

observations happened to be genuine events.

VDT correctness results for expConf1_7.5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Figure 6-20 – VDT correctness results for expConf1_7.5

6.5.1.5.3 Responsiveness results

The following table (Table 6-20) presents the results of responsiveness metrics as

specified in Section 6.3.2.

 256

Table 6-20 - EGBT and VDT responsiveness results for experiment expConf1_7.5

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time

138.28

115.87

619.53

0.19

VDT diagnosis

generation time

276.57

231.04

1237.75

0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 138.28 sec in average, with a standard

deviation equal to 115.87 sec. The max and min computational times occurred are 619.53

sec and 0.19 sec respectively.

The time VDT consumed to generate a final diagnosis for a violation was 276.57 sec

in average, with a standard deviation equal to 231.04 sec. The max and min final

diagnosis generation times occurred were 1237.75 sec and 0 sec respectively.

6.5.1.6 expConf1_10 results

The following results have been generated by setting the diagnosis window equal to 10

sec.

6.5.1.6.1 EGBT correctness results

Table 6-18 contains the results for the EGBT correctness metrics for experiment

expConf1_10, whilst Figure 6-21 illustrates a representative chart of the given

experimental results.

 257

Table 6-21 - EGBT correctness results for experiment expConf1_10

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 1.00 0.24 0.75 0.76

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.00 N/A 0.00 N/A

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.00 N/A 0.00 N/A

[0.7, 0.8) 0.00 N/A 0.00 N/A

[0.8, 0.9) 0.00 N/A 0.00 N/A

[0.9, 1] 0.00 0.00 0.01 1.00

The EGBT_RecallF results in above table are quite satisfying. This is due to facts that

all fake events found with belief values lying within [0, 0.1), and the percentages of fake

events with respect to ranges [0.7, 1] are zero as ideally expected. On the other hand,

EGBT_PrecisionF results are rather complicated. Only the 24% of the events, whose

belief value computed within [0, 0.1), happen to be fake. On the contrary, a rather

satisfying result indicated that all events having belief values within [0.9, 1], were no

fake.

Regarding EGBT_RecallG, the result with respect to range [0, 0.1) is undesired as the

75% of genuine events found with a belief value within [0, 0.1). On the contrary, the

EGBT_RecallG results in belief range [0.1, 0.3) are satisfying, as no genuine event having

a belief value within the aforementioned range. The zero and very low (1%) percentages

of genuine events with belief values within [0.7, 1] are totally undesired observations.

Similarly, the EGBT_PrecisionG result for the low range [0, 0.1) is undesired as the 76%

of events with such low belief values happened to be genuine. On the contrary, there is a

totally satisfying experimental observation with regards to events having belief values

within [0.9, 1]. In particular, the 100% of such events happened to be genuine.

 258

EGBT correctness results for expConf1_10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e
rc

e
n

ta
g

e

EGBT_RecallF EGBT_PrecisionF

EGBT_RecallG EGBT_PrecisionG

Figure 6-21 – EGBT correctness results for expConf1_10

6.5.1.6.2 VDT correctness results

The following table (Table 6-22) accumulates the results of VDT correctness metrics for

experiment expConf1_10, whilst Figure 6-22 illustrates a representative chart of the

given experimental results.

Table 6-22 - VDT correctness results for experiment expConf1_10

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 1.00 0.20 0.01 1.00

Table 6-22 presents a totally satisfying VDT_RecallF experimental result. In

particular, VDT has classified as unconfirmed events all of the fake violation

observations. On the other hand, the VDT_PrecisionF result is rather undesired due to the

fact that only the 20% of the total unconfirmed violation observations happened to be

fake events.

VDT_RecallG result is quite undesired due to fact that only the 1% of the total genuine

violation observations has been flagged as confirmed events by VDT. On the contrary

VDT_PrecisionG result is quite satisfying, as all of the confirmed violation observations

happened to be genuine events.

 259

VDT correctness results for expConf1_10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Figure 6-22 – VDT correctness results for expConf1_10

6.5.1.6.3 Responsiveness results

The following table (Table 6-23) presents the results of responsiveness metrics as

specified in Section 6.3.2.

Table 6-23 - EGBT and VDT responsiveness results for experiment expConf1_10

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time

323.56

348.40

2106.11

0.19

VDT diagnosis

generation time

647.13

665.56

3679.74

0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 323.56 sec in average, with a standard

deviation equal to 348.40 sec. The max and min computational times occurred are

2106.11 sec and 0.19 sec respectively.

The time VDT consumed to generate a final diagnosis for a violation was 647.13 sec

in average, with a standard deviation equal to 665.56 sec. The max and min final

diagnosis generation times occurred were 3679.74 sec and 0 sec respectively.

 260

6.5.1.7 ExplanationConfiguration1 overall charts and discussion

In this section, we present charts that accumulate and compare the results of the

individual explanationConfiguration1 experiments. Based on the aforementioned charts,

discussion on the experimental observations against the objective of the relevant

experimental configuration follows.

6.5.1.7.1 EGBT correctness results charts and discussion

The following sections include charts and discussion on the overall

experimentalConfiguration1 results for each EGBT correctness metric i.e.,

EGBT_RecallF, EGBT_PrecisionF, EGBT_RecallG, and EGBT_PrecisionG. For each

aforementioned metric, we provide charts with respect to low belief ranges, i.e., ranges

within [0, 0.3), and high belief ranges, i.e., ranges within [0.7, 1]. It should be noted that

results found within [0.3, 0.7) have been excluded from these charts and the following

results analysis, as they might be considered as non useful and enough indicative

information to be taken into account by a recovery decision making process.

6.5.1.7.1.1 EGBT_RecallF

Regarding the overall experimental EGBT_RecallF results, Figure 6-23 and Figure 6-24

present the experimental EGBT_RecallF behaviour against different diagnosis windows.

More specifically, Figure 6-23 illustrates EGBT_RecallF behaviour with respect to low

belief ranges, i.e., ranges within [0, 0.3). Similary, Figure 6-24 shows EGBT_RecallF

behaviour with respect to belief ranges within [0.7, 1].

 261

EGBT RecallF results for different diagnosis windows with respect to low

belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

R
ec

al
lF

_1
.5

E
G
B
T_

R
ec

al
lF

_2
.3

E
G
B
T_

R
ec

al
lF

_2
.5

E
G
B
T_

R
ec

al
lF

_5

E
G
B
T_

R
ec

al
lF

_7
.5

E
G
B
T_

R
ec

al
lF

_1
0

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-23 – EGBT_RecallF results for different diagnosis windows with respect to

low belief ranges

By observing the chart of Figure 6-23, EGBT_RecallF seems to increase as the

diagnosis window increases. It should be noted that, EGBT_RecallF should ideally have

values much greater than 0.5 in low belief ranges. Therefore, although there are undesired

low EGBT_RecallF values for diagnosis windows less than 5 sec, EGBT_RecallF

increases quite satisfyingly as the diagnosis window is increased. Therefore, EGBT seems

to compute belief values for fake events more correctly in case where long diagnosis

windows are given and therefore more evidence is available, rather than when shorter

diagnosis windows are given, and consequently less evidence is available.

 262

EGBT RecallF results for different diagnosis windows with respect to high

belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

R
ec

al
lF

_1
.5

E
G
B
T_

R
ec

al
lF

_2
.3

E
G
B
T_

R
ec

al
lF

_2
.5

E
G
B
T_

R
ec

al
lF

_5

E
G
B
T_

R
ec

al
lF

_7
.5

E
G
B
T_

R
ec

al
lF

_1
0

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-24 - EGBT_RecallF results for different diagnosis windows with respect to

high belief ranges

Regarding belief ranges within [0.7, 1], it is expected that EGBT_RecallF values

should be quite low, i.e., much less than 0.5. For all explanationConfiguration1 diagnosis

windows, Figure 6-24 illustrates that indeed values are quite satisfying, as the max

EGBT_RecallF value is 0.25. Finally, one can observe that EGBT_RecallF values are

improving while the diagnosis window is increased.

As an overall observation about sensitivity of EGBT with respect to the belief values

of fake events, we could say that the longer the given diagnosis window is, the greater

probability is that EGBT would compute the fake events belief values within low ranges,

Therefore, EGBT operates as expected with respect to fake events when long diagnosis

windows are given.

6.5.1.7.1.2 EGBT_PrecisionF

The charts regarding the overall experimental EGBT_PrecisionF results with respect to

low and high belief ranges are presented in Figure 6-25 and Figure 6-26 respectively.

 263

EGBT PrecisionF results for different diagnosis windows with respect to

low belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

Pre
ci
si
on

F_1
.5

E
G
B
T_

Pre
ci
si
on

F_2
.3

E
G
B
T_

Pre
ci
si
on

F_2
.5

E
G
B
T_

Pre
ci
si
on

F_5

E
G
B
T_

Pre
ci
si
on

F_7
.5

E
G
B
T_

Pre
ci
si
on

F_1
0

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-25 - EGBT_PrecisionF results for different diagnosis windows with respect

to low belief ranges

Regarding belief ranges within [0, 0.3), EGBT_PrecisionF should ideally be much

greater than 0.5. For all explanationConfiguration1 diagnosis windows, Figure 6-25

illustrates that EGBT_PrecisionF values are quite satisfying only for the shortest

diagnosis windows we have been experimenting with, as the min EGBT_PrecisionF value

for time windows 1.5, 2.3 and 2.5 sec. is 0.7. On the other hand, one can observe that

EGBT_RecallF values are rather undesired for diagnosis windows greater or equal to 5

sec. It seems that EGBT computes correctly low belief values for events that happen to be

fake in cases that the given diagnosis windows are quite close to the inter-event delay and

the time ranges medians average of the underlying monitoring theory. More specifically,

for diagnosis windows around 2.3 sec, EGBT_PrecisionF results with respect to low

belief ranges are optimal. It should be recalled that both the inter-event delay and the time

ranges medians average of the underlying monitoring theory we have used for the series

of experimentalConfiguration1 experiments are both equal to 2.3 (see also Section

6.4.2.1).

 264

EGBT PrecisionF results for different diagnosis windows with respect to

high belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

EG
B
T_

Pre
ci
si
on

F_1
.5

EG
B
T_

Pre
ci
si
on

F_2
.3

EG
B
T_

Pre
ci
si
on

F_2
.5

E
G
BT_

Pre
ci
si
on

F_5

EG
B
T_

Pre
ci
si
on

F_7
.5

EG
B
T_

Pre
ci
si
on

F_1
0

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-26 - EGBT_PrecisionF results for different diagnosis windows with respect

to high belief ranges

Ideally, EGBT_PrecisionF results with respect to high belief ranges should be much

less than 0.5. By observing the chart illustrated in Figure 6-26, EGBT_PrecisionF results,

except the result with respect to range [0.7, 0.8) and diagnosis window equal to 5 sec,

seem quite satisfying. Also, one can observe that EGBT_RecallF values are minimized

while the diagnosis window is increased and is set equal to or greater than 7.5 sec.

As an overall observation about EGBT_PrecisionF presents sensitivity with respect to

the inter-event delay and the time ranges medians average of the underlying monitoring

theory. More specifically, the closest the time window is to the inter-event delay and the

time ranges medians average of the underlying monitoring theory, the higher the

probability is to have EGBT computing belief values less than 0.5 for fake events.

6.5.1.7.1.3 EGBT_RecallG

The charts regarding the overall experimental EGBT_RecallG results with respect to low

and high belief ranges are presented in Figure 6-27 and Figure 6-28 respectively.

 265

EGBT RecallG results for different diagnosis windows with respect to low

belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

R
ec

al
lG

_1
.5

E
G
B
T_

R
ec

al
lG

_2
.3

E
G
B
T_

R
ec

al
lG

_2
.5

E
G
B
T_

R
ec

al
lG

_5

E
G
B
T_

R
ec

al
lG

_7
.5

E
G
B
T_

R
ec

al
lG

_1
0

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-27 – EGBT_RecallG results for different diagnosis windows with respect to

low belief ranges

The chart in above figure (Figure 6-27) illustrates that EGBT has not correctly

computed low belief values for genuine events, as expected, in cases that diagnosis

windows were set to values within [1.5, 5]. More specifically, the percentage of genuine

events found to have belief values within [0, 0.3) is almost zero for time windows of 1.5,

2.3, and 2.5 sec, while this percentage increased to 35% when the time window was set to

5 sec. On the other hand, we got some low belief values for genuine events as the time

windows increased. Half of the genuine events found to have belief values within [0, 0.1]

for time window equal to 7.5 sec, while this percentage increased to 70% when the time

window increased to 10 sec.

 266

EGBT RecallG results for different diagnosis windows with respect to high

belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

R
ec

al
lG

_1
.5

E
G
B
T_

R
ec

al
lG

_2
.3

E
G
B
T_

R
ec

al
lG

_2
.5

E
G
B
T_

R
ec

al
lG

_5

E
G
B
T_

R
ec

al
lG

_7
.5

E
G
B
T_

R
ec

al
lG

_1
0

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-28 - EGBT_RecallG results for different diagnosis windows with respect to

high belief ranges

Regarding belief ranges within [0.7, 1], EGBT_RecallG should ideally be much

greater than 0.5. For all explanationConfiguration1 diagnosis windows, Figure 6-28

illustrates that EGBT_RecallG values are quite undesired for all the time windows we

have been experimenting with.

As an overall observation of the EGBT recall sensitivity with respect to genuine

events, we could say that EGBT operated as expected only in cases that the time window

was set to values around the inter-event delay and the time ranges medians average of the

underlying monitoring theory, with respect only to lower belief ranges.

6.5.1.7.1.4 EGBT_PrecisionG

The charts regarding the overall experimental EGBT_PrecisionG results with respect to

low and high belief ranges are presented in Figure 6-29 and Figure 6-30 respectively.

 267

EGBT PrecisionG results for different diagnosis windows with respect to

low belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

Pre
ci
si
on

G
_1.

5

E
G
B
T_

Pre
ci
si
on

G
_2.

3

E
G
B
T_

Pre
ci
si
on

G
_2.

5

E
G
B
T_

Pre
ci
si
on

G
_5

E
G
B
T_

Pre
ci
si
on

G
_7.

5

E
G
B
T_

Pre
ci
si
on

G
_10

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-29 - EGBT_PrecisionG results for different diagnosis windows with respect

to low belief ranges

By observing the chart of the above figure (Figure 6-29), EGBT precision with

regards to genuine events was as low as expected only for the shortest time windows we

have used in the current series of experiments. More specifically, the EGBT_PrecisionG

max value was 0.3 for the cases where diagnosis window was set to 1.5, 2.3, 2.5, and 5

sec. On the other hand, EGBT_PrecisionG results are quite undesired for longer diagnosis

windows, as the percentage of genuine events whose belief values were computed within

[0, 01) is greater than 70% for both diagnosis windows of 7.5 and 10 sec.

 268

EGBT PrecisionG results for different diagnosis windows with respect to

high belief ranges

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

E
G
B
T_

Pre
ci
si
on

G
_1.

5

E
G
B
T_

Pre
ci
si
on

G
_2.

3

E
G
B
T_

Pre
ci
si
on

G
_2.

5

EG
B
T_

Pre
ci
si
on

G
_5

E
G
B
T_

Pre
ci
si
on

G
_7.

5

E
G
B
T_

Pre
ci
si
on

G
_10

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-30 - EGBT_PrecisionG results for different diagnosis windows with respect

to high belief ranges

Regarding belief ranges within [0.7, 1], it is expected that EGBT_PrecisionG values

should be quite high, i.e., greater than 0.5. For all explanationConfiguration1 diagnosis

windows, Figure 6-30 illustrates that indeed values are quite satisfying, as the min

EGBT_ PrecisionG value is 0.78.

As an overall observation about sensitivity of EGBT with respect to the belief values

of genuine events, we could say that EGBT_PrecisionG found to have a rather

unsatisfying behaviour regarding long (i.e., greater than 5 sec) diagnosis windows and

with respect to low belief ranges. For any other case, EGBT_PrecisionG results were

satisfying.

6.5.1.7.2 VDT correctness results charts and discussion

Similarly to above charts and discussion regarding EGBT correctness, the following

sections include charts and discussion on the overall experimentalConfiguration1 results

for each VDT correctness metric i.e., VDT_RecallF, VDT_PrecisionF, VDT_RecallG, and

VDT_PrecisionG.

 269

6.5.1.7.2.1 VDT_RecallF

The charts regarding the overall experimental VDT_RecallF results are presented in

Figure 6-31.

VDT Recall F values for different diagnosis windows

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF_1.5 VDT_RecallF_2.3 VDT_RecallF_2.5 VDT_RecallF_5 VDT_RecallF_7.5 VDT_RecallF_10

P
e

rc
e

n
ta

g
e

Figure 6-31 - VDT_RecallF results for different diagnosis windows

From the above chart (Figure 6-31), we could say that VDT_RecallF results are quite

satisfying. As it is expected, VDT_RecallF were greater than 0.5, except for the case that

the diagnosis window was set equal to 1.5 sec. Also one could observe that VDT_RecallF

was improving while the diagnosis window was being increased. Therefore, VDT seems

to classify correctly fake events as unconfirmed, especially in cases with long diagnosis

windows.

6.5.1.7.2.2 VDT_PrecisionF

While the VDT_RecallF experimental results were quite satisfying, the VDT_PrecisionF

results are rather undesired, as they are presented in Figure 6-32.

 270

VDT Precision F values for different diagnosis windows

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VD
T_

Pre
ci
si
on

F_
1.

5

VD
T_

Pre
ci
si
on

F_
2.

3

VD
T_

Pre
ci
si
on

F_
2.

5

VD
T_

P
re

ci
si
on

F_
5

VD
T_

Pre
ci
si
on

F_
7.

5

VD
T_

Pre
ci
si
on

F_
10

P
e

rc
e

n
ta

g
e

Figure 6-32 - VDT_PrecisionF results for different diagnosis windows

More specifically, while it is expected to have VDT_PrecisionF high values (i.e.,

ideally much greater than 0.5), our VDT_PrecisionF experimental results are quite low for

all different diagnosis windows, with max value equal to 0.25. That means that VDT

prototype classified unsuccessfully as unconfirmed events mostly genuine events rather

than fake ones.

6.5.1.7.2.3 VDT_RecallG

The charts regarding the overall experimental VDT_RecallG results are presented in

Figure 6-33.

 271

VDT Recall G values for different diagnosis windows

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallG_1.5 VDT_RecallG_2.3 VDT_RecallG_2.5 VDT_RecallG_5 VDT_RecallG_7.5 VDT_RecallG_10

Figure 6-33 - VDT_RecallG results for different diagnosis windows

From the above chart (Figure 6-33), we could say that VDT_RecallG results are rather

undesired; except for the cases that diagnosis window was set equal to 1.5 sec and 2.3. As

it is expected, VDT_RecallG is greater than 0.5 only in the aforementioned cases. For the

rest of the diagnosis windows we experimented with, VDT_RecallG was declining as the

diagnosis window was being increased. Therefore, VDT seems to classify correctly

genuine events as confirmed only in cases with diagnosis windows having values around

the common inter-event delay and the time ranges medians average of the underlying

monitoring theory, while it fails to do so as diagnosis window is being increased.

6.5.1.7.2.4 VDT_PrecisionG

While the VDT_RecallG experimental results are rather undesired, the VDT_PrecisionG

results are quite satisfying, as they are presented in Figure 6-34.

 272

VDT Precision G values for different diagnosis windows

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

V
D
T_P

re
ci
si
onG

_1
.5

V
D
T_P

re
ci
si
onG

_2
.3

V
D
T_P

re
ci
si
onG

_2
.5

V
D
T_P

re
ci
si
onG

_5

V
D
T_P

re
ci
si
onG

_7
.5

V
D
T_P

re
ci
si
onG

_1
0

Figure 6-34 - VDT_PrecisionG results for different diagnosis windows

More specifically, our VDT_PrecisionG experimental results values are quite high for

all different diagnosis windows, as ideally expected. The above results show that VDT

prototype classified successfully as confirmed events the genuine ones.

6.5.1.7.3 EGBT and VDT responsiveness results charts and discussion

In this section, we present charts regarding the EGBT and VDT responsiveness as

occurred throughout the explanationConfiguration1 experiments series. It should be

noted that the charts in the flowing figures (Figure 6-35 and Figure 6-36) focus only on

the mean EGBT and VDT computational times.

 273

EGBT belief computational mean times for different diagnosis windows

0

100

200

300

400

500

600

700

800

900

1000

Mean_1.5 (sec) Mean_2.3 (sec) Mean_2.5 (sec) Mean_5 (sec) Mean_7.5 (sec) Mean_10 (sec)

C
o

m
p

u
ta

ti
o

n
a
l
ti

m
e
 (

s
e
c
)

Figure 6-35 – EGBT belief computational mean times for different diagnosis

windows

VDT diagnosis generation mean times for different diagnosis windows

0

100

200

300

400

500

600

700

800

900

1000

Mean_1.5 (sec) Mean_2.3 (sec) Mean_2.5 (sec) Mean_5 (sec) Mean_7.5 (sec) Mean_10 (sec)

C
o

m
p

u
ta

ti
o

n
a
l
ti

m
e
 (

s
e
c
)

Figure 6-36 - VDT belief computational mean times for different diagnosis windows

From both charts, we can observe that the mean computational times for both EGBT

and VDT are increasing exponentially while the diagnosis window is being increased.

The behaviour of both EGBT and VDT computational times against the increment of

diagnosis window is expected. This is because the increment of diagnosis window

implies the increment of the event set EGBT should take into account as evidence pool.

 274

Therefore, the larger event set EGBT takes into account, the longer time EGBT needs to

compute the belief and plausibility of a given event.

Regarding VDT, it should be recalled that given a violation, VDT requests the belief

values of violation observations to be computed by EGBT. Therefore, it is reasonable to

observe the VDT final diagnosis generation time depending on the given diagnosis

window. Also, it should be noted that the VDT computational times are quite high as the

analysis of the events in a diagnosis window of 10 seconds takes more than 8 minutes,

and even in the case of a window of 1.5 seconds the computational time needed is about

one minute. These quite high values occur due to the number of events a violated

monitoring rule that VDT analyzes includes, the number of assumptions EGBT uses to

compute the genuineness belief of the violation observations and finally the volume of

evidence that is taken into account and depends analogously to the diagnosis window.

Due to the fact that none of the above factors can be restricted in a real life scenario, the

EGBT and (therefore) VDT computational times could be improved by the introduction of

an extra step in our diagnostic process. More specifically, as discussed below in Section

7.2, a premature thought of a static analysis of the monitoring theory assumptions in

order to generate explanations and consequences trees at symbolic level for each event

included in the theory before the analysis of occurred violations could improve the EGBT

and VDT computational times.

6.5.2 ExplanationConfiguration2 Experiments Results

In this section, the results of experiments expConf2_10%, expConf2_20%, and

expConf2_30% specified in Section 6.4.2.2 are presented. As a reminder, the results of

the above experiments have been generated by running the monitoring and diagnosis

prototype with the following common inputs:

• a diagnosis window set equal to 2.3 sec as discussed in Section 6.4.2.2

• the LBACS monitoring theory as described in Section 6.4.2, and

• the belief functions a1 and a2 set to 0.3 and 0.4 respectively (see also Section

6.4.2)

 275

6.5.2.1 expConf2_10% results

The following results have been generated by using a set of 5000 events that have been

generated by six adversaries. Each adversary was specified to intercept randomly and

delay the 10% of its incoming events by introducing a delay capable to cause violations

for the monitoring rules LBACS.R1 to LBACS.R4 (see Appendix A).

6.5.2.1.1 EGBT correctness results

Table 6-24 contains the results for the EGBT correctness metrics for experiment

expConf2_10%, whilst Figure 6-37 illustrates a representative chart of the given

experimental results.

Table 6-24 - EGBT correctness results for experiment expConf2_10%

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.00 N/A 0.00 N/A

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.26 1.00

[0.4, 0.5) 0.00 0.00 0.19 1.00

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.00 0.00 0.13 1.00

[0.7, 0.8) 0.00 0.00 0.11 1.00

[0.8, 0.9) 0.00 0.00 0.28 1.00

[0.9, 1] 1.00 0.33 0.04 0.67

Observing the EGBT_RecallF results in above table, we could say that EGBT failed

totally to compute low belief values for the fake events of expConf2_10%, as all the fake

events found to have belief values within range [0.9, 1], while there is an undesired zero

percentage of fake events whose belief values lie within [0, 0.3). On the other hand,

EGBT_PrecisionF results are more encouraging, as only the 33% of the events whose

belief values ranged within [0.9, 1] happened to be fake.

Regarding EGBT_RecallG, the results in low belief ranges are quite satisfying as none

genuine event with belief value within [0, 0.1) found. However, the EGBT_RecallG

 276

results in higher belief ranges are not satisfying due to the fact that there are low

percentages (11%, 28%, and 4%) of genuine events with belief values within [0.7, 1].

Finally, the EGBT_PrecisionG results are quite satisfying because all events that found to

have a belief value within [0.7, 0.9] were also genuine events. Also, the 67% of the

events that found to have belief values within [0.9, 1] were genuine events as well.

EGBT correctness for event set w ith 10% delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Belief Ranges

P
e
rc

e
n

ta
g

e Recall F

Precision F

Recall G

Precision G

Figure 6-37 – EGBT correctness results for expConf2_10%

6.5.2.1.2 VDT correctness results

The following table (Table 6-25) accumulates the results of VDT correctness metrics for

experiment expConf2_10%, whilst Figure 6-38 illustrates a representative chart of the

given experimental results.

Table 6-25 - VDT correctness results for experiment expConf1_10%

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.00 0.00 0.55 0.96

Table 6-25 presents a rather undesired VDT_RecallF result. In particular, VDT has

classified as unconfirmed events none of the fake violation observations. Similarly, the

VDT_PrecisionF result is again rather undesired due to the fact that none unconfirmed

violation observation happened to be fake event.

VDT_RecallG result is rather satisfying due to fact that the 55% of the total genuine

violation observations have been flagged as confirmed events by VDT. Similarly and

 277

evenly better, VDT_PrecisionG result is quite satisfying, as the 96% of the total confirmed

violation observations happened to be genuine events.

VDT correctness for event set w ith 10% delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall F Precision F Recall G Precision G

P
e
rc

e
n

ta
g

e

Figure 6-38 - VDT correctness results for expConf2_10%

6.5.2.1.3 Responsiveness results

The following table (Table 6-26) presents the results of responsiveness metrics as

specified in Section 6.3.2.

Table 6-26 - EGBT and VDT responsiveness results for experiment expConf2_10%

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time 24.55 14.38 50.64 0.17

VDT diagnosis

generation time 50.23 28.19 100.77 0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility of an event was 24.55 sec in average, with a standard deviation

of 14.38 sec. The max and min computational times occurred are 50.64 sec and 0.17 sec

respectively.

The time VDT consumed to generate a final diagnosis for a violation was is 50.23 sec

in average, with a standard deviation of 28.19 sec. The max and min final diagnosis

generation times occurred were 100.77 sec and 0 sec respectively.

 278

6.5.2.2 expConf2_20% results

The following results have been generated by using a set of 5000 events that have been

generated by six adversaries. Each adversary was specified to intercept randomly and

delay the 20% of its incoming events by introducing a delay capable to cause violations

for the monitoring rules LBACS.R1 to LBACS.R4 (see Appendix A).

6.5.2.2.1 EGBT correctness results

Table 6-27 contains the results for the EGBT correctness metrics for experiment

expConf2_20%, whilst Figure 6-39 illustrates a representative chart of the given

experimental results.

Table 6-27 - EGBT correctness results for experiment expConf2_20%

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.15 1.00 0.00 0.00

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.24 1.00

[0.4, 0.5) 0.45 0.31 0.24 0.69

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.20 0.22 0.17 0.78

[0.7, 0.8) 0.15 0.20 0.14 0.80

[0.8, 0.9) 0.05 0.08 0.14 0.92

[0.9, 1] 0.00 0.00 0.06 1.00

The EGBT_RecallF experimental results in above table show that EGBT failed to

compute low belief values for the fake events of expConf2_20%, as only the 15% of the

fake events found to have belief values within range [0, 0.1). On the other hand, it is

rather satisfying result to have only the 20% (i.e. 15% and 5%) of the fake events found

to have belief values within range [0.7, 0.9). Similarly, EGBT_PrecisionF results are quite

encouraging. In particular, all events that found to have belief values within [0, 0.1) were

fake as well. In addition to that, only the 9.3% in average of the events found with belief

values ranged within [0.7, 1] happened to be fake too. It should be noted that the above

 279

9.3% in average was computed by measuring the average of the EGBT_PrecisionF results

for the belief ranges [0.7, 0.8), [0.8, 0.9) and [0.9, 1] which were 20%, 8% and 0%

respectively.

Regarding EGBT_RecallG, the results in low belief ranges are quite satisfying as none

genuine event with belief value within [0, 0.3) found. However, the EGBT_RecallG

results in higher belief ranges are not satisfying due to the fact that there are low

percentages (14%, 14%, and 6%) of genuine events with belief values within [0.7, 1].

Finally, the EGBT_PrecisionG results are quite satisfying because the 91% in average of

events that found to have a belief value within [0.7, 1] were also genuine events. It should

be noted that the above 91% in average was computed by measuring the average of the

EGBT_PrecisionG results for the belief ranges [0.7, 0.8), [0.8, 0.9) and [0.9, 1] which

were 80%, 92% and 100% respectively.

EGBT correctness for event set w ith 20% delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Percentage

B
e
li
e
f

R
a
n

g
e
s Recall F

Precision F

Recall G

Precision G

Figure 6-39 – EGBT correctness results for expConf2_20%

6.5.2.2.2 VDT correctness results

The following table (

Table 6-28) accumulates the results of VDT correctness metrics for experiment

expConf2_20%, whilst Figure 6-40 illustrates a representative chart of the given

experimental results.

 280

Table 6-28 - VDT correctness results for experiment expConf1_20%

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.60 0.23 0.52 0.84

Table 6-28 presents a rather satisfying VDT_RecallF result. In particular, VDT has

classified as unconfirmed events the 60% of the total fake violation observations. On the

contrary, the VDT_PrecisionF result is rather undesired due to the fact that only the 23%

of the unconfirmed violation observations happened to be fake events.

VDT_RecallG result is almost satisfying due to fact that the 52% of the total genuine

violation observations have been flagged as confirmed events by VDT. Similarly and

evenly better, VDT_PrecisionG result is quite satisfying, as the 84% of the total confirmed

violation observations happened to be genuine events.

VDT correctness for event set with 20% delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall F Precision F Recall G Precision G

P
e
rc

e
n

ta
g

e

Figure 6-40 - VDT correctness results for expConf2_20%

6.5.2.2.3 Responsiveness results

The following table (Table 6-29) presents the results of responsiveness metrics as

specified in Section 6.3.2.

 281

Table 6-29 - EGBT and VDT responsiveness results for experiment expConf2_20%

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time 26.42 14.34 55.08 0.19

VDT diagnosis

generation time 52.86 28.42 109.66 0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility values of an event was 26.42 sec in average, with a standard

deviation of 14.34 sec. The max and min computational times occurred are 55.08 sec and

0.19 sec respectively.

The time VDT consumed to generate a final diagnosis for a violation was is 52.86 sec

in average, with a standard deviation of 28.42 sec. The max and min final diagnosis

generation times occurred were 109.66 sec and 0 sec respectively.

6.5.2.3 expConf2_30% results

The following results have been generated by using a set of 5000 events that have been

generated by six adversaries. Each adversary was specified to intercept randomly and

delay the 30% of its incoming events by introducing a delay capable to cause violations

for the monitoring rules LBACS.R1 to LBACS.R4 (see Appendix A).

6.5.2.3.1 EGBT correctness results

Table 6-30 contains the results for the EGBT correctness metrics for experiment

expConf2_30%, whilst Figure 6-41 illustrates a representative chart of the given

experimental results.

 282

Table 6-30 - EGBT correctness results for experiment expConf2_30%

Belief Range EGBT_RecallF EGBT_PrecisionF EGBT_RecallG EGBT_PrecisionG

[0, 0.1) 0.24 0.90 0.01 0.10

[0.1, 0.2) 0.00 N/A 0.00 N/A

[0.2, 0.3) 0.00 N/A 0.00 N/A

[0.3, 0.4) 0.00 0.00 0.16 1.00

[0.4, 0.5) 0.27 0.30 0.27 0.70

[0.5, 0.6) 0.00 N/A 0.00 N/A

[0.6, 0.7) 0.11 0.17 0.22 0.83

[0.7, 0.8) 0.11 0.19 0.20 0.81

[0.8, 0.9) 0.16 0.46 0.08 0.54

[0.9, 1] 0.11 0.50 0.05 0.50

The EGBT_RecallF experimental results in above table show that EGBT failed to

compute low belief values for the fake events of expConf2_20%, as only the 24% of the

fake events found to have belief values within range [0, 0.1). On the other hand, it is

rather satisfying result to have only the 38% (i.e. 11%, 16% and 11%) of the fake events

found to have belief values within range [0.7, 1]. Similarly, EGBT_PrecisionF results are

quite encouraging. In particular, the 90% of events that found to have belief values within

[0, 0.1) were fake as well. In addition to that, only the 19% of the events found with

belief values ranged within [0.7, 0.8) happened to be fake too. Finally, the

EGBT_PrecisionF results regarding events found to have belief values ranged within [0.8,

0.9) and [0.9, 1] are not that optimal. More specifically, a rather high and almost

undesired percentage (46%) of the events found to have belief values within [0.8, 0.9)

happened to be fake. Also, we can observe similar behaviour for the events found to have

belief values within [0.9, 1]. The percentage of such events that happened to be fake as

well was quite high too (50%).

Regarding EGBT_RecallG, the results in low belief ranges are quite satisfying as only

the 1% of the genuine events with belief value within [0, 0.3) found. However, the

EGBT_RecallG results in higher belief ranges are not satisfying due to the fact that there

are quite low percentages (20%, 8%, and 5%) of genuine events with belief values within

 283

[0.7, 1]. On the contrary, the EGBT_PrecisionG results with respect to low belief ranges

are quite satisfying because only the 10% of events found to have belief values within [0.

0.1) happened to be genuine events. Also, the 81% of events that found to have a belief

value within [0.7, 0.8) were also genuine events. Finally, the EGBT_PrecisionG results

regarding events found to have belief values ranged within [0.8, 0.9) and [0.9, 1] could

have been better. More specifically, a rather low percentage (54%) of the events found to

have belief values within [0.8, 0.9) happened to be genuine. Also, we can observe similar

behaviour for the events found to have belief values within [0.9, 1]. The percentage of

such events that happened to be genuine events as well was quite low too

(50%).

EGBT correctness for event set w ith 30% delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Percentage

B
e
li
e
f

R
a
n

g
e
s Recall F

Precision F

Recall G

Precision G

Figure 6-41 – EGBT correctness results for expConf2_30%

6.5.2.3.2 VDT correctness results

The following table (Table 6-31) accumulates the results of VDT correctness metrics for

experiment expConf2_30%, whilst Figure 6-42 illustrates a representative chart of the

given experimental results.

Table 6-31 - VDT correctness results for experiment expConf1_30%

Confirmation

criterion

VDT_RecallF VDT_PrecisionF VDT_RecallG VDT_PrecisionG

Bel(Genuine(P))

≥

Bel(¬Genuine(P)) 0.51 0.33 0.55 0.72

 284

Table 6-31 presents a rather neutral VDT_RecallF result. In particular, VDT has

classified as unconfirmed events the 51% of the total fake violation observations. On the

contrary, the VDT_PrecisionF result is rather undesired due to the fact that only the 33%

of the unconfirmed violation observations happened to be fake events.

VDT_RecallG result is almost satisfying due to fact that the 55% of the total genuine

violation observations have been flagged as confirmed events by VDT. Similarly and

evenly better, VDT_PrecisionG result is quite satisfying, as the 72% of the total confirmed

violation observations happened to be genuine events.

VDT correctness for event set with 30% delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall F Precision F Recall G Precision G

P
e

rc
e
n

ta
g

e

Figure 6-42 - VDT correctness results for expConf2_30%

6.5.2.3.3 Responsiveness results

The following table (Table 6-32) presents the results of responsiveness metrics as

specified in Section 6.3.2.

Table 6-32 - EGBT and VDT responsiveness results for experiment expConf2_20%

Computational

time types

Mean (sec) Standard deviation (sec) Max (sec) Min (sec)

EGBT belief

computational

time 29.22 13.78 68.36 0.19

VDT diagnosis

generation time 59.19 26.20 136.67 0.00

According to the results presented in above table, the time EGBT needed to compute

the belief and plausibility values of an event was 29.22 sec in average, with a standard

deviation of 13.78 sec. The max and min computational times occurred are 68.36 sec and

0.19 sec respectively.

 285

The time VDT consumed to generate a final diagnosis for a violation was is 59.19 sec

in average, with a standard deviation of 26.20 sec. The max and min final diagnosis

generation times occurred were 136.67 sec and 0 sec respectively.

6.5.2.4 ExplanationConfiguration2 overall charts and discussion

In this section, we present charts that accumulate and compare the results of the

individual explanationConfiguration2 experiments. Based on the aforementioned charts,

discussion on the experimental observations against the objective of the relevant

experimental configuration follows.

6.5.2.4.1 EGBT correctness results charts and discussion

The following sections include charts and discussion on the overall

experimentalConfiguration2 results for each EGBT correctness metric i.e.,

EGBT_RecallF, EGBT_PrecisionF, EGBT_RecallG, and EGBT_PrecisionG. For each

aforementioned metric, we provide charts with respect to low belief ranges, i.e., ranges

within [0, 0.3), and high belief ranges, i.e., ranges within [0.7, 1]. It should be noted that

results found within [0.3, 0.7) have been excluded from these charts and the following

results analysis, as they might be considered as non useful and enough indicative

information to be taken into account by a recovery decision making process.

6.5.2.4.1.1 EGBT_RecallF

Regarding the overall experimental EGBT_RecallF results, Figure 6-43 and Figure 6-44

present the experimental EGBT_RecallF behaviour against different diagnosis windows.

More specifically, Figure 6-43 illustrates EGBT_RecallF behaviour with respect to low

belief ranges, i.e., ranges within [0, 0.3). Similarly, Figure 6-44 shows EGBT_RecallF

behaviour with respect to belief ranges within [0.7, 1].

 286

EGBT RecallF for low belief ranges [0, 0.3)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall F_10% Recall F_20% Recall F_30%

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-43 – EGBT_RecallF results for different delayed events percentages with

respect to low belief ranges

The chart in Figure 6-43 illustrates that even though EGBT_RecallF is quite low in

general, it seems to increase as the percentage of randomly delayed (fake) events

increases. It should be noted that, EGBT_RecallF should ideally have values much greater

than 0.5 in low belief ranges. Therefore, we could say that EGBT seems to converge to its

intended behaviour, i.e., computing low belief values for fake events, as long as the

number of fake events increases.

 287

EGBT RecallF for low belief ranges [0.7, 1]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall F_10% Recall F_20% Recall F_30%

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-44 - EGBT_RecallF results for different delayed events percentages with

respect to high belief ranges

Regarding belief ranges within [0.7, 1], it is expected that EGBT_RecallF values

should be quite low, i.e., much less than 0.5. Analyzing expConf2_10% experiment,

where the percentage of randomly delayed (fake) events was 10%, Figure 6-44 illustrates

that EGBT behaved rather undesirably, as all fake events found to have belief values

within [0.9, 1). On the contrary, the other two experiments, expConf20% and

expConf30%, where the percentage of delayed (fake) events was 20% and 30%

respectively, EGBT behaved as expected, as the max EGBT_RecallF value was less than

0.20.

As an overall observation about sensitivity of EGBT with respect to the belief values

of fake events, we could say that the larger the fake event set we introduce, the greater

probability is that EGBT would compute the fake events belief values within low ranges,

Therefore, EGBT operates as expected with respect to fake events when more fake events

occur and are taken into account.

6.5.2.4.1.2 EGBT_PrecisionF

The charts regarding the overall experimental EGBT_PrecisionF results with respect to

low and high belief ranges are presented in Figure 6-45 and Figure 6-46 respectively.

 288

EGBT PrecisionF for low belief ranges [0, 0.3)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Precision F_10% Precision F_20% Precision F_30%

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-45 - EGBT_PrecisionF for different delayed events percentages with

respect to low belief ranges

Regarding belief ranges within [0, 0.3), EGBT_PrecisionF should ideally be much

greater than 0.5. Figure 6-45 illustrates that EGBT_PrecisionF result with respect to the

case we had the 10% of events delayed is undesired, as was found equal to zero. On the

other hand, the EGBT_PrecisionF results with respect to higher percentages of delayed

events, namely 20% and 30%, are quite satisfying, as were found equal to 0.9 and 1,

respectively. A meaning to the above observations could be that, while the number of

fake events was increasing, more events that found to have belief values within [0, 0.3)

happened to be fake.

 289

EGBT PrecisionF for high belief ranges [0.7, 1]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Precision F_10% Precision F_20% Precision F_30%

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-46 - EGBT_PrecisionF results for different delayed events percentages with

respect to high belief ranges

Ideally, EGBT_PrecisionF results with respect to high belief ranges should be much

less than 0.5. By observing the chart illustrated in Figure 6-46, EGBT_PrecisionF results

seem almost satisfying. While EGBT_PrecisionF results with respect to 10% and 20%

delayed events configurations are quite low ranging within 0.08 and 0.32, there is a rather

undesired high EGBT_PrecisionF value (0.5) regarding the case we had 30% of the

events delayed and the belief range [0.9, 1]. The EGBT_PrecisionF result regarding the

same case and the belief range [0.8, 0.9]) found quite high (0.46) as well.

As an overall observation we could say that EGBT_PrecisionF presents sensitivity

with respect to the delayed events percentages. More specifically, EGBT_PrecisionF

seem to increase as the percentages of the delayed events are increasing, independently to

the belief ranges we might use for analysis. Therefore, provided that the number of fake

events is increasing, we might get EGBT_PrecisionF values with respect to low belief

ranges, which would be, as ideally desired. However, the corresponding values with

respect to high belief ranges would be undesirably high as well.

6.5.2.4.1.3 EGBT_RecallG

The charts regarding the overall experimental EGBT_RecallG results with respect to low

and high belief ranges are presented in Figure 6-47 and Figure 6-48 respectively.

 290

EGBT RecallG for low belief ranges [0, 0.3)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall G_10% Recall G_20% Recall G_30%

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-47 – EGBT_RecallG results for different delayed events percentages with

respect to low belief ranges

The chart in above figure (Figure 6-47) illustrates that as ideally expected EGBT has

not computed low belief values for genuine events in all three cases of different delayed

events percentages. More specifically, the percentage of genuine events found to have

belief values within [0, 0.3) is almost zero for all three cases.

EGBT RecallG for low belief ranges [0.7, 1]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall G_10% Recall G_20% Recall G_30%

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-48 - EGBT_RecallG results for different delayed events percentages with

respect to high belief ranges

On the contrary, Figure 6-48 illustrates that EGBT_RecallG values with respect to

high belief ranges are quite undesired for all three cases of delayed events we have been

 291

experimenting with. While, EGBT_RecallG values should ideally be much greater than

0.5, the experimental results we got were quite low, with a max EGBT_RecallG value less

than 0.3.

As an overall observation of the EGBT recall sensitivity with respect to genuine

events, we could say that EGBT failed to compute belief values greater than 0.5 for

genuine events.

6.5.2.4.1.4 EGBT_PrecisionG

The charts regarding the overall experimental EGBT_PrecisionG results with respect to

low and high belief ranges are presented in Figure 6-49 and Figure 6-50 respectively.

EGBT PrecisionG for low belief ranges [0, 0.3)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Precision G_10% Precision G_20% Precision G_30%

[0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

Figure 6-49 - EGBT_PrecisionG results for different diagnosis windows with respect

to low belief ranges

By observing the chart of the above figure (Figure 6-49), EGBT precision with

regards to genuine events was as low as expected for all three cases of delayed events.

More specifically, the EGBT_PrecisionG max value we got was equal to 0.1 for the case

where the 30% of events were delayed.

 292

EGBT PrecisionG for low belief ranges [0.7, 1]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1]

Figure 6-50 - EGBT_PrecisionG results for different diagnosis windows with respect

to high belief ranges

Regarding belief ranges within [0.7, 1], it is expected that EGBT_PrecisionG values

should be quite high, i.e., greater than 0.5. For all explanationConfiguration2

experiments, Figure 6-50 illustrates that indeed values are quite satisfying, as the min

EGBT_ PrecisionG value is 0.5.

As an overall observation about sensitivity of EGBT_PrecisionG with respect to the

percentage of delayed events, we could say that EGBT_PrecisionG found to have no

particular sensitivity.

6.5.2.4.2 VDT correctness results charts and discussion

Similarly to above charts and discussion regarding EGBT correctness, the following

sections include charts and discussion on the overall experimentalConfiguration2 results

for each VDT correctness metric i.e., VDT_RecallF, VDT_PrecisionF, VDT_RecallG, and

VDT_PrecisionG.

6.5.2.4.2.1 VDT_RecallF

The charts regarding the overall experimental VDT_RecallF results are presented in

Figure 6-51.

 293

VDT RecallF for different percentage of delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallF_10% VDT_RecallF_20% VDT_RecallF_30%

Figure 6-51 - VDT_RecallF results for different percentages of delayed events

From the above chart (Figure 6-51), we could say that VDT_RecallF results are quite

satisfying. As it is expected, VDT_RecallF were greater than 0.5, except for the case that

the 10% of the events were delayed. Therefore, VDT seems to classify correctly fake

events as unconfirmed, especially while the number of fake events increases.

6.5.2.4.2.2 VDT_PrecisionF

While the VDT_RecallF experimental results were quite satisfying, the VDT_PrecisionF

results are rather undesired, as they are presented in Figure 6-52.

 294

VDT PrecisionF for different percentage of delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_PrecisionF_10% VDT_PrecisionF_20% VDT_PrecisionF_30%

Figure 6-52 - VDT_PrecisionF results for different percentages of delayed events

More specifically, while it is expected to have VDT_PrecisionF high values (i.e.,

ideally much greater than 0.5), our VDT_PrecisionF experimental results are quite low for

all different percentages of delayed events, with max value equal to 0.32. That means that

VDT prototype classified unsuccessfully as unconfirmed events mostly genuine events

rather than fake ones.

6.5.2.4.2.3 VDT_RecallG

The charts regarding the overall experimental VDT_RecallG results are presented in

Figure 6-53.

 295

VDT RecallG for different percentage of delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_RecallG_10% VDT_RecallG_20% VDT_RecallG_30%

Figure 6-53 - VDT_RecallG results for different percentages of delayed events

From the above chart (Figure 6-53), we could say that VDT_RecallG results are rather

satisfying. As it is expected, VDT_RecallG is greater than 0.5 for all three different cases

we experimented with. Therefore, VDT seems to classify correctly genuine events as

confirmed independently to the number of fake events the event set might contain.

6.5.2.4.2.4 VDT_PrecisionG

VDT_PrecisionG results are quite satisfying, as they are presented in Figure 6-54.

 296

VDT PrecisionG for different percentage of delayed events

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

VDT_PrecisionG_10% VDT_PrecisionG_20% VDT_PrecisionG_30%

Figure 6-54 - VDT_PrecisionG results for different percentages of delayed events

More specifically, our VDT_PrecisionG experimental results values are quite high for

all different percentages of delayed events, as ideally expected. However, one can

observe that while the percentage of delayed events is increasing the precision value

decreases. Therefore, the above results show that VDT prototype classified successfully

as confirmed events the genuine ones, but with a declining rate while the percentage of

delayed events was increasing.

6.5.2.4.3 EGBT and VDT responsiveness results charts and discussion

In this section, we present charts regarding the EGBT and VDT responsiveness as

occurred throughout the explanationConfiguration2 experiments series. It should be

noted that the charts in the flowing figures (Figure 6-55 and Figure 6-56) focus only on

the mean EGBT and VDT computational times.

 297

EGBT belief computational mean time for different percentages of delayed events

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Mean_10% (sec) Mean_20% (sec) Mean_30% (sec)

C
o

m
p

u
ta

ti
o

n
a
l

ti
m

e
 (

s
e

c
)

Figure 6-55 – EGBT belief computational mean times for different percentages of

delayed events

VDT diagnosis generation mean time for different percentages of delayed events

44.00

46.00

48.00

50.00

52.00

54.00

56.00

58.00

60.00

Mean_10% (sec) Mean_20% (sec) Mean_30% (sec)

C
o

m
p

u
ta

ti
o

n
a

l
ti

m
e
 (

s
e
c

)

Figure 6-56 - VDT belief computational mean times for different percentages of

delayed events

From both charts, we can observe that the mean computational times for both EGBT

and VDT are increasing almost linearly while the percentage of events randomly delayed

is being increased. The behaviour of both EGBT and VDT computational times against

the increment of the percentage of delayed events is as expected. This is because, given a

 298

common diagnosis window, the increment of events randomly delayed implies the

increment of the time ranges EGBT should take into account when it computes the belief

values of events. Consequently, for the belief computation of a given event, the longer

the time ranges EGBT should take into account, the more events should be processed by

EGBT. Therefore, the more delayed events there are, the longer time EGBT needs to

compute the belief and plausibility of a given event.

Regarding VDT, it should be recalled that given a violation VDT requests the belief

values of violation observations to be computed by EGBT. Therefore, it is reasonable to

observe VDT final diagnosis generation time depending on the percentage of delayed

events.

 299

Chapter 7: Open Research Issues and

Future Work

7.1 Overview

The aim of this chapter is to provide the reader with some of our insights regarding the

open issues that emerged from our work in diagnosis of security and dependability

violations, and we would like to put research effort on, hopefully, the near future.

The reason we would like to put extra research effort to improve the performance and

extend the capabilities of the diagnostic prototype, as discussed in the rest of this chapter,

is due to the significance of the role diagnostic mechanisms could play in the evolution of

systems from a security perspective. EVEREST, and subsequently its diagnostic

extension presented in this thesis, has already been used as the monitoring framework of

the SERENITY project [146, 154]. Briefly, one of the key objectives of SERENITY has

been the support of systems which operate in dynamic environments to configure, deploy

and adapt mechanisms for realising S&D Properties dynamically. In particular,

SERENITY project has produced a runtime framework, known as SERENITY Runtime

Framework (SRF), enabling the dynamic selection, configuration and deployment of

components that realise S&D Properties according to S&D Patterns. An S&D Pattern in

SERENITY specifies a reusable S&D Solution for realising a set of S&D properties. It

also specifies the contextual conditions under which this solution becomes applicable,

and invariant conditions that need to be monitored at runtime in order to ensure that the

solution described by the pattern behaves correctly. EVEREST has been used as a service

to the SRF and when an S&D Pattern is activated it undertakes responsibility for

analysing and checking conditions regarding the runtime operation of the components

that implement the pattern. Runtime analysis was complemented by the diagnosis

mechanism, described in this thesis, which deduces belief metrics for the plausible

reasons for a mismatch between service/component modelling and actual behaviour.

Further work on the limitations of our diagnostic approach could improve the

performance of the process itself and the quality of the generated diagnostic information

by aiming to provide sufficient information for preserving the evolvable systems users’

privacy and security.

 300

By analyzing the evaluation results, presented in Chapter 6:, one of the first lines of work is

the optimization of our diagnostic approach. Some premature thoughts for optimization are

discussed in Section 7.2.

Another interesting line of future work refers to further experimentation with our

approach and is discussed in Section 7.3. The objective of this line of work is to provide

us with an extended view of the potential and weaknesses of our diagnostic approach. To

this direction, it would be interesting to explore the sensitivity of the diagnostic approach

against factors and experimental configurations that we have not experimented with so

far. In particular, future work plans, discussed in Section 7.3.1, aim in experimentation

with an extended variation of adversaries capabilities and simulated attacks besides the

delay attack used for the experimental evaluation of this thesis (see Section 6.2.3). Also,

investigating the sensitivity of our approach against an extended set of values for our

approach belief functions constants α1 and α2 (see Section 5.4.6.2) is another line of

further experimentation work and is discussed in Section 7.3.2. The results of such

experimentation could be also analyzed on theoretical basis to study the relation of the

constants values and the uncertainty interpretations that could be generated. Finally,

another line of further experimentation work, discussed in Section 7.3.3, is to investigate

the sensitivity of our diagnostic approach against some characteristics of the underlying

monitoring theory like the number of assumptions and the coverage of theory against the

set of observed runtime events.

From a security perspective, the generation of notifications that would indicate faulty

system components or components sensors could be valuable to the recovery action

decision making process. In particular, Section 7.4 discusses some of our premature

thoughts regarding a notification scheme that could generate notification reports,

indicating the likelihood of system components or components sensors to be faulty, based

on the diagnosis results of detected violations our diagnostic approach produces. It should

be noted that the present version of out diagnostic approach generates diagnostic results,

which flags events involved in detected violations as confirmed or confirmed by taking

into account belief metrics in the event genuineness.

Finally, Section 7.5 introduces briefly other interesting lines of work and open

research questions emerged during our work on diagnosis.

 301

7.2 Optimization of the diagnostic prototype

The results of our diagnostic prototype experimental evaluation presented in Section 6.5

reveals some weaknesses that would concern us as a line of future work. More

specifically, from an EGBT and VDT correctness (see Section 6.3.1) point of view, it

would be interesting to investigate the reasons for having rather undesired results for our

tools precision with respect to fake events (see definitions of EGBT_PrecisionF and

VDT_PrecisionF in Sections 6.3.1.2 and 6.3.1.3 respectively) and recall regarding

genuine events (see definitions of EGBT_RecallG and VDT_RecallG again in Sections

6.3.1.2 and 6.3.1.3 respectively). Of course, one reason to cause such results could be the

event set that was used for the evaluation included in the present thesis. Therefore,

rechecking how the event set was generated by our simulator, and the characteristics of

the used event set would be one of the first tasks of this optimization line of future work.

From an EGBT and VDT responsiveness (see Section 6.3.2) perspective, it would be

desired to have lower belief values and diagnosis generation computational times (see

Sections 6.3.2). A premature thought to improve these computational times can be the

introduction of an extra step to our approach after the diagnosis prototype is notified with

the selected monitoring theory assumptions and diagnosis window. During this step the

monitoring theory assumptions would be statically analyzed to compute and store all the

possibly generated explanations and consequences trees at symbolic level. Particularly,

for each predicate specified in a given theory assumptions, an explanation and

consequences tree would be computed; however no specific values would be assigned to

the involved predicates parameters, timestamps and time ranges. Therefore, when a

diagnosis result would be required at runtime for some monitoring rule violation, our

diagnostic approach could make use of the explanation and consequences trees generated

during the static analysis. More specifically, for each violation observation the

corresponding explanations and consequences tree could be retrieved and instantiated

with the actual runtime values of the observation itself and other available runtime

recorded events that could be unified with the predicates of the retrieved tree. The gain of

the assumptions static analysis phase would be the reduction of time consumed at runtime

by invocating multiple times the processes implementing the algorithms Explain and

Derive_AE_Consequences (see Sections 5.2.1 and 5.3.1 respectively) to compute sets of

possible explanations and expected consequences of events that are modeled by the same

predicate at symbolic level.

 302

7.3 Further Experimentation

7.3.1 Extended adversaries capabilities experiments

It would be interesting to investigate how various adversaries capabilities and therefore

simulated attacks may affect the performance of our approach. As a reminder, it should

be noted that the delay attack simulated for the present thesis experimental evaluation

specified adversaries implemented to intercept randomly events of a set of predefined

event types and introduce a delay to events dispatch time stamp (see Sections 6.2.3 and

6.4.1.3). Another attack, we would like to experiment with, would specify adversaries

implemented to intercept randomly and block events of a set of predefined event types.

Our intuition is that this block attack should affect the performance of our approach

prototype by reducing the event set and therefore the potential evidence our approach

uses to compute belief values and deciding whether observations involved in a violation

are confirmed or unconfirmed, according to the criterion introduced in Section 5.5.1.

Two more complicated and interesting simulated attack would specify adversaries

implemented to have memory. The first of these attacks specify adversaries having

memory and being capable of replicating events intercepted in the past, and dispatch

random numbers of replicated events with an updated timestamp. The effect of such

replicating attack would be the increment of number of events with same payload (if

events are considered as messages) but different time stamps. Our intuition is that

especially for long diagnosis windows the diagnostic prototype would take into account

the events generated by this attack as genuine events. Therefore, the prototype

performance would not be that optimal in such circumstances.

The second attack that could use adversaries with memory could specify adversaries

implemented to alter the content and context information of the events. It should be noted

that, as specified in Section 3.3.1, the event signature arguments could be considered as

the event content, whilst context information could be considered the event parameters

_sender, _receiver, _status, and _source. It would be interesting to evaluate the

performance of our diagnostic approach with such altered events, as at the moment there

is no specific insight regarding the performance of our approach under such events

conditions.

Whilst experimental evaluation taking into account the above adversary models

individually is interesting to investigate, the experimentation with simulated attacks that

 303

specify the orchestration of multiple instances of different adversary models is intriguing

due to the fact that at the moment we cannot foresee the performance of our approach

against such attacks. Such orchestration attacks could specify adversaries orchestration to

cause undesired effects on different components of the simulated system, like a combined

denial of service attack on two key components of the simulated system. In the same

direction, the usage of an operation trace, which has been used for benchmarking

intrusion detection systems like the DARPA data set [27], could be another alternative to

evaluate our approach against attacks occurred and recorded at real time system

operations.

7.3.2 Extended belief function constants experiments

Another alternative line of further experimentation refers to evaluation of our approach

against an extended set of values for constants α1 and α2 that are used in the belief

functions of our approach. As discussed in Section 6.4.2, we used only a couple of

constants values for the experimental evaluation included in the present thesis. Future

plans presume an extended set of values within range [0, 0.4] and a number of possible

combinations of values for the two constants. It should be noted that the above range is

specified with relatively low valued boundaries due to the fact that α1 and α2 constants

are used as the actual masses assigned to events for which no consequences can be

identified (by using α2) and no explanations can be generated (by using α1). Therefore, as

discussed in Section 5.4.6.2, such cases with no identified consequences or generated

explanations should result with low belief values.

Besides the examination of our approach sensitivity against the belief functions

constants, analysis of the experiment results generated from a range of constants values

combinations could also be worthy to study on theoretical basis the relation between the

two belief function constants against the uncertainty interpretations that would be

generated for a common set of events. It should be noted that, as discussed in Section

5.4.6.2, α2 should be greater than α1 to favor cases where no consequences can be

identified within a given time window against cases where no explanations can be

generated. However, it would be interesting to examine cases where constants are equal

or α1 is greater than α2. Examining and comparing the results of such cases, we might get

indications of the means that the relation between the constants affects the interpretation

of the uncertainty an event set could carry. Of course, the uncertainty interpretations

 304

would only be expressed in terms of belief metrics in the genuineness of the examined

events.

7.3.3 Extended underlying monitoring theory experiments

Two are the monitoring theory characteristics whose impact on our diagnostic prortotype

performance seems quite interesting for extended investigation. More specifically, the

number of assumptions, which are used during the diagnostic process abductive and

deductive phases, as well as, the theory coverage against the set of the observed runtime

events may affect the diagnosis result, according to our intuition.

From an abductive process-wise point of view, the more assumptions we have for a

specific type of event, the more explanations can be generated for it. From a deductive

perspective, the more assumptions there are to identify the effects of a type of event, the

more consequences are generated. Due to the fact that our event genuineness belief

assessment scheme is based on additive functions, and therefore compute belief values

analogously to the cardinality of sets taken into account, our intuition is that a theory A

with relatively bigger number of assumptions than theory B will generate higher belief

values. Of course, the frequency of recorded events that could be taken into account as

matching recorded events by our process as well as the values of constants α1 and α2 that

are used in belief functions could play significant role to the diagnosis outcome.

Moreover, the number of assumptions of a theory is likely to affect the responsiveness of

the diagnostic process by introducing analogously computational delays.

The theory coverage against the set of the observed runtime events is another

characteristic that could play significant role in the performance of our diagnostic

process. More specifically, the higher coverage a theory has against the set of the runtime

and recordable events, the higher possibility there is that we entail with high belief values

and belief computational times. As a counter example that makes our intuition stronger,

assume the explanation generation process for an event e. In case that there are no

assumptions formulas containing e in their head, no explanations for e can be generated

and effectively according to belief function mi
EX (see Definition 10 in Section 5.4.6.2), e

belief value is set instantly equal to α1.

 305

7.4 Combining Diagnosis Results

From a security perspective, a significant research question that we have pointed out is

whether and how reasoning on diagnosis results of multiple monitoring rules violations

could generate indications (containing perhaps likelihoods) for faulty components or

components sensors. It should be noted that the diagnosis results generated by the current

version of our diagnostic approach contains only belief metrics in the genuineness of the

events involved in monitoring rules violations. It is these belief metrics that perhaps an

administrator of the monitored system should take into account in order to initiate

recovery actions after detection of violations. What we are suggesting as future line of

work in the present section is a notification scheme that includes indications for faulty

system components or sensors.

The notification scheme should specify a reasoning module that should take into a

predefined number of monitoring rules violations and their diagnosis results within a

predefined time window. The notification reasoning module would then reason on the

belief values included in the diagnosis results and generate notification reports about the

likely faulty components and sensors involved in the examined violations. It should be

noted that the notification scheme should specify a structured notification report schema

that would allow the communication of notification reports among the relevant parties.

More specifically, the notification reasoning module should generate notification reports

according to the notification schema in order that a recovery action decision making

process or a security administrator could be able to use the reports to decide for and

initiate the appropriate recovery actions.

To illustrate our premature thoughts, please consider the following example. Assume

that during a given time window and for a given threshold of detected violations, the

framework that monitors and diagnoses violation occurred in LBACS, generates a

number of violations that exceeds the predefined threshold for rules LBACS.R1 and

LBACS.R2 as are specified below.

LBACS.R1. ∀t1∈Time, ∃t2∈Time, ∀_LServerId ∈ LocationServers,

∀_ACServerId ∈ AccessControlServers, ∀_deviceId∈Devices, ∀_source.

Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source), t1, R(t1,t1)) ⇒

Happens(e(_Id2,_LServerId,_ACServerId,REQ-A,locationResponse

 (_deviceId),_source), t2, R(t1+1,t1+3000))

 306

LBACS.R2. ∀t1∈Time, ∃t2∈Time, ∀_LServerId ∈ LocationServers,

∀_ACServerId ∈ AccessControlServers, ∀_deviceId∈Devices,

∀_receiver1∈Sensors, ∀_source1, ∀_source2.

Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source1), t1, R(t1,t1)) ∧∧∧∧

¬Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source1), t2, R(0,t1-1)) ⇒

Happens(e(_Id2,_deviceId,_receiver1,REQ-A,signal(_deviceId),

 _source2), t3, R(t1-2000,t1-1))

The monitoring rule LBACS.R1 is violated in all cases where, provided that the

access control server of LBACS requests location information for a device from the

location server of LBACS, the location server does not provide such information within

the next 3 seconds after the corresponding request occurrence. Therefore, a violation of

LBACS.R1 contains:

- an occurrence of a locationRequest event at R1.t1 – referred to as

locationRequest@R1.t1 henceforth – and

- a negated locationRequest event time-stamped at R1.t1+3000 – referred to as

¬locationRequest@R1.t1+3000, which is generated by negation as failure and indicates

that no locationRequest event occurred within [R1.t1+1, R1.t1+3000] .

It should be noted that all events specified in LBACS.R1 are captured from the receiver

side sensors, as all predicates status is set to REQ-A. The REQ-A predicate status value

signifies that the event represented by the given predicate is captured after request from

receiver’s sensor (see Section 3.3.1).

Rule LBACS.R2 checks when the first signal from a device should have occurred. In

particular, the first signal from a given device is expected within the last two seconds

before the first request for the device location made by the LBACS access control server.

A violation of LBACS.R2 contains:

- an occurrence of a locationRequest event at R2.t1 – referred to as

locationRequest@R2.t1 henceforth;

- a non occurrence of a locationRequest event at R2.t1-1 - referred to as

¬locationRequest@R2.t1-1 henceforth – indicating that no locationRequest occurred

within [0, R2.t1-1], and

 307

- a negated signal event time-stamped at R2.t1-1 – referred to as ¬signal@R2.t1-1-

that is generated by negation as failure and indicates that no signal event occurred

within [0, R2.t1-1].

It should be noted again that all events specified in LBACS.R2 are captured from the

receiver side sensors, as all predicates status is set to REQ-A.

Moreover, assume that in the most of the final diagnosis results the diagnosis module

generates for rule LBACS.R1 violations, event ¬locationRequest@R1.t1+3000 is

flagged as confirmed, whilst event locationRequest@R1.t1 is flagged as unconfirmed.

Also, by taking into account the average of the belief values for the involved events for

all examined LBACS.R1 violations, assume that the average of belief in genuineness of

the event locationRequest@R1.t1 is quite lower that the corresponding belief value of the

event ¬locationRequest@R1.t1+3000. According to above diagnosis results and belief

metrics, the occurrence of locationRequest@R1.t1 seems less plausible from the

occurrence of ¬locationRequest@R1.t1+3000. Therefore, a notification that the

component that generates or the sensor that captures the event locationRequest@R1.t1 is

faulty can be made.

By reasoning on diagnosis results of rule Chapter 1: violations, the above notification

might be enhanced. This could happen in case that initially there is a Chapter 1:

violations number that exceeds the predefined violation threshold. Moreover, in the most

of the Chapter 1: violations diagnosis results, event locationRequest@R2.t1 should be

flagged as unconfirmed, whilst the events ¬locationRequest@R2.t1-1 and

¬signal@R2.t1-1 should be flagged as confirmed. Finally, in the examined Chapter 1:

violations, events locationRequest@R2.t1 should have a lower average of belief values

than the average belief values of events ¬locationRequest@R2.t1-1 and ¬signal@R2.t1-

1. By these means, events locationRequest@R2.t1 seems again less plausible than the

events ¬locationRequest@R2.t1-1 and ¬signal@R2.t1-1, enhancing our hypothesis that

the component that generates or the sensor that captures the event

locationRequest@R1.t1 is faulty.

Of course, the above notification might not be totally accurate; however, it can be

taken into account as an indication during the recovery action decision making process.

To try to ameliorate the notifications accuracy, research effort should be put on the

business logic of the reasoning notification module, i.e., how the reasoning module

 308

reasons on a set of diagnosis results. For instance, in the above example, we have

mentioned a comparison on the average of the belief values of the events involved in a set

of detected violations of the same rule. Also, the factors that might affect the accuracy of

such notifications like the predefined violation threshold, and the time window, which

examined violations lie within, might be of significance importance. On the other hand,

regarding the notification report schema, it should be designed carefully to meet

requirements regarding the support of recovery action decision making process.

7.5 Other open research issues

This section discusses briefly other open research questions emerged with our diagnosis

oriented work. More specifically, other open issues we have pointed out are as follows:

• Quality assessment and update of underlying monitoring theory assumptions. Our

diagnosis process could be extended to keep track of the number of times a

monitoring theory assumption is used during the abductive and deductive phases.

Premature thoughts presume that the generated assumption usage frequencies

could be used to rank the monitoring theory assumptions and provide indications

for the quality of the monitoring specifications. Having as reference research work

on Bayesian networks, which are graphical models for encoding causal and

probabilistic relationships among variables of interest of a given knowledge

domain [84, 85, 123, 124, 125, 126], and especially Bayesian inference and

learning techniques like approaches presented by Heckerman [76], monitoring

theory assumptions with lower frequency could be reconsidered or restructured to

generate new assumptions. The newly generated assumptions could then specify

events correlations that have not been specified within the initial monitoring

theory.

• Extensive comparison between Dempster Shafer theory of evidence (DS theory)

[146] and Bayesian reasoning [84, 85, 123, 124, 125, 126] for handling

uncertainty. Having been aware of approaches that handle uncertainty by using

Bayesian networks as the approach by Pan et al. [121], an interesting theoretical

line of research is a comparison of our present diagnostic process that is based on

DS theory to a similar diagnostic process based on Bayesian reasoning. To this

direction, another version of our diagnostic approach based on Bayesian reasoning

would be necessary. To obtain such a diagnosis approach, the foreseen challenges

 309

might be faced should refer to the theoretical and practical differences between DS

theory and Bayesian reasoning. For instance, an issue might emerge regarding the

specification of prior probabilities that are required by the Bayesian reasoning in

order to function. Of course, we have faced something similar during the design of

the present diagnosis approach when it was required to assign preliminary masses

that reflect the initial knowledge of the examined system. The results of an

extensive comparison between these two uncertainty handling frameworks against

a common use case could provide the basis for a discussion on the relative merits

and demerits, as the ones pointed out in [96, 151, 152].

 310

Chapter 8: Conclusions

8.1 Overview

The final chapter of the present thesis provides an overview of the research work resulted

in the diagnosis approach, which was presented through out the previous chapters.

Besides the overview, the present chapter points out the diagnosis approach main

novelties and the contributions that our research has made to the state of the art. Our

claims are founded on a comparison with other diagnostic approaches. Finally, the

diagnostic approach limitations are given.

8.2 Summary of the research work

Designed as an extension of EVEREST monitoring framework [109, 153, 155], the

diagnostic framework this thesis presented aims to the identification of possible

explanations for the violations of S&D properties specified as EVEREST monitoring

rules. To design the diagnostic framework, we have specified some extensions in EC-

Assertion language that EVEREST monitoring rules and assumptions are specified. These

extensions were made to support the basic formulation of the diagnosis problem as

discussed in Section 4.2.

As a mechanism of trying to find possible causes of the runtime events that have

caused a violation of an S&D monitoring rule, abductive reasoning [122] is used. More

specifically, to generate the possible explanations of S&D violations, we devised an

abductive algorithm for generating explanations for events that are involved in the

detected violations discussed in Section 5.2. This algorithm generates a list representing

the alternative explanations for a particular event by taking into account the intended

behaviour of the monitored system as it is specified in EC-Assertion assumptions. It

should be noted that the aforementioned algorithm treats any occurring time constraint

satisfaction problem as linear programming problem by using the Simplex method [63].

After the generation of the possible explanations for the events involved in the

violation of a rule, the diagnosis process identifies the expected effects of these

explanations and uses them to assess the plausibility of the explanations. The assessment

of explanation plausibility is based on the hypothesis that if the expected effects of an

explanation match with events that have occurred (and recorded) during the operation of

 311

the system that is being monitored, then there is evidence about the validity of the

explanation. To identify therefore any effects of the generated explanations, a deductive

algorithm that generates all the possible derived observations from the abductive

explanations by using the system assumptions has been devised. The consequences

identification algorithm presented in Section 5.3 treats again any occurring time

constraint satisfaction problem as linear programming problem by using the Simplex

method [63].

Having identified the expected effects of the abductive explanations of the violation

observations, the diagnosis mechanism assesses the genuineness of violation

observations. Based on the hypothesis mentioned above, i.e. if the expected effects of an

explanation match with observations that have occurred (and recorded) during the

operation of the system that is being monitored, then there is evidence about the validity

of the explanation, there is the possibility that we would not be able to confirm or

disconfirm the validity of the explanation at the time that diagnostic process searches for

evidence. To deal with this uncertainty, the diagnosis mechanism advocates an

approximate reasoning approach which generates degrees of belief in the membership of

observations in the log of the monitor and the existence of some valid explanation for it

rather than strict logical truth values. These degrees of belief are computed by functions

founded in the axiomatic framework of the Dempster-Shafer theory of evidence [146]

(see also Section 5.4.6).

Finally, we have provided a scheme for final diagnosis reports of detected S&D

violations. Based on the beliefs computed for the genuineness of the individual events

involved in an S&D violation (i.e. violation observations), the scheme generates as a final

diagnosis for the given violation a report of the confirmed and unconfirmed violations

observations. As discussed in Section 5.5, a violation observation P will be classified as a

confirmed event if the belief in the genuineness of P is greater than or equal to the

corresponding disbelief, i.e., Bel(P) ≥ Bel(¬P)7. A negated violation observation ¬P, will

be classified as a unconfirmed predicate if Bel(P) ≤ Bel(¬P).

7 Bel(P) and Bel(¬P) represent the proposition Bel(Genuine(e,Uo,TR)) and Bel(¬Genuine(e,Uo,TR)) respectively.

 312

8.3 Main novelties

To generate explanations for the violations of S&D properties specified as EVEREST

monitoring rules, the diagnostic mechanism uses abductive reasoning [122] that takes

into account the temporal aspects of the violation observations (i.e. time stamps) and the

underlying monitoring rules and assumptions (i.e. time ranges have been specified to

indicate the intended behaviour of the monitored system). In other temporal abduction

approaches [28, 41, 42, 53, 140], temporal knowledge can be expressed as temporal

constraints, which are associated to the rules of the underlying domain theory. Such

temporal constraints must be satisfied by the temporal information associated to the

generated explanations. On the other hand, our temporal abductive approach that is based

on reasoning on events and formulas specified in EC-Assertion whose formal foundations

are based in Event Calculus, temporal knowledge can be represented as information

embedded in the underlying theory formulas. As mentioned in Section 8.2, our abductive

mechanism treats any occurring time constraint satisfaction problem as linear

programming problem by using the Simplex method [63]. Therefore, our approach draws

upon work on temporal abductive reasoning [28, 41, 42, 53, 140] and its applications to

diagnosis [52, 130], but is based on a newly developed algorithm for abductive search

with Event Calculus that generates all the possible explanations of a formula (unlike [53,

140]).

Due to the fact that uncertainty is an inherent feature of abductive reasoning, the

likelihood of abducible explanations truthness, can play significant role in the selection of

the most preferable abductive explanation. Thus, probabilistic models and, in particular,

Bayesian models have been used to identify the most plausible abductive explanation

[50, 83, 90, 97, 123, 124, 125, 126, 131, 132, 140]. The use of Bayesian models imposes

some limitations in the generality of logic-based abductive reasoning. In particular, the

set of possible hypotheses must be determined in advance. Moreover, an a priori

probability must be assigned to each of the possible hypothesis in advance, as well as, the

conditional probabilities of consequences, given particular assumptions, must be

predetermined. When these prerequisites are met, the Bayes’ theorem can be applied in

order to compute the conditional probabilities of the predefined possible hypotheses,

given the observations to be explained. Based on the outputs of the Bayes’s rule, the most

possible combination of hypotheses, which jointly explain the observations, is selected.

Our approach also uses a probabilistic explanation assessment approach. However, our

 313

approach is not based on Bayesian abduction. The reason for this is to avoid the need to

elicit the a-priori and conditional probability measures which are required by this

approach. Furthermore, the choice of the Dempster-Shafer theory of evidence [146] as

the framework for calculating the likelihoods of abduced explanations has been dictated

by the need to represent the uncertainty regarding the confirmation of the consequences

of these explanations as discussed Section 5.4 and reason in the presence of this

uncertainty.

8.4 Limitations

The diagnosis approach for S&D properties violations we have presented in the thesis

happens to have some limitations. These limitations are enlisted below:

• The property specification language of EVEREST, and therefore of our diagnostic

framework, is expressive enough to support a wide spectrum of S&D properties.

However, the use of the language for the specification of such properties may be

difficult for users who are not familiar with formal languages.

• The diagnostic prototype as it is presented in Section 6.2.1 does not implement the

function that computes the basic probability assignment in the genuineness of an

event e for the 2.i case of Definition 9 (see Section 5.4.6.2). More specifically, the

aforementioned case refers to circumstances that:

o no recorded events matching with e were found in the event log, and

o the last known value of the clock of Captor(e), i.e., the timestamp of the

last event in the log that has produced by Captor(e), at the time of the

search is greater than the upper boundary of the time range that is

specified for e.

At such cases, events occurred within the upper boundary of e and the last time

stamp of Captor(e) are used to compute the basic probability assignment in the

genuineness of e.

• As discussed in Section 7.2, the results of our diagnostic prototype experimental

evaluation presented in Section 6.5 reveal some weaknesses that would concern us

as a line of future work. More specifically, from an EGBT and VDT correctness

(see Section 6.3.1) point of view, it would be interesting to investigate the reasons

for having rather undesired results for our tools precision with respect to fake

 314

events (see definitions of EGBT_PrecisionF and VDT_PrecisionF in Sections

6.3.1.2 and 6.3.1.3 respectively) and recall regarding genuine events (see

definitions of EGBT_RecallG and VDT_RecallG again in Sections 6.3.1.2 and

6.3.1.3 respectively).

 315

References

1. Abercrombie P and Karaorman M (2002) jContractor: Bytecode instrumentation

techniques for implementing design by contract in java. In Electronic Notes in

Theoretical Computer Science, volume 70. Elsevier Science Publishers

2. Álvarez G and Petrović S (2003) A new taxonomy of web attacks suitable for

efficient encoding. Computers and Security, 22(5), pp. 435-449

3. Alpern B and Schneider FB (1987) Recognizing safety and liveness. Distrib.

Comput. 2, 117–126

4. Alur R, Fix L and Henzinger TA (1994) A determinizable class of timed automata.

In Proc. 6th Int. Conf. on Computer Aided Verification (CAV’94), vol. 818 of

LNCS, pp. 1–13. Springer

5. Anderson T and Lee PA (1990) Fault Tolerance: Principles and Practice. Springer-

Verlag, Wien - New York

6. Andrieux A et al. (2004) Web Services Agreement Specification. Global Grid

Forum, available from:

http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-

agreement.pdf

7. Angluin D, Frazier M, and Pitt L (1992) Learning Conjunctions of Horn Clauses.

Machine Learning 9, 2-3 (Jul. 1992), 147-164. DOI=

http://dx.doi.org/10.1007/BF00992675

8. Appelt DE, Pollack M (1992) Weighted abduction for plan ascription. Technical

report, Artificial Intelligence Center and Center for the Study of Language and

Information, SRI International, Menlo Park, California

9. Arnold A (1987) Transition systems and concurrent processes. In Mathematical

Problems in Computation Theory, Banach Center, Warsaw, pp. 9–21

10. Artho C, Havelund K, and Biere A (2003) High-level data races. Journal on

Software Testing, Verification & Reliability (STVR), 13(4).

11. Artho C, Biere A, and Havelund K (2004) Using block-local atomicity to detect stale

value concurrency errors. In Farn Wang, editor, Proc. ATVA ’04. Springer.

 316

12. Artho C, Schuppan V, Biere A, Eugster P, Baur M. and Zweimüller B (2004) JNuke:

Efficient Dynamic Analysis for Java. In Proc. 16th Intl. Conf. On Computer Aided

Verification (CAV 2004), volume 3114 of LNCS, pp. 462–465, Boston, USA.

Springer

13. Artho C, and Biere A (2005) Combined Static and Dynamic Analysis. In Proc.

AIOOL '05, Paris, France.

14. Avizienis A, Larpie JC and Randell B (2000) Fundamental Concepts of

Dependability. In Information Survivability Workshop

15. Bandara AK, Lupu EC, and Russo A (2003) Using event calculus to formalise policy

specification and analysis. Policies for Distributed Systems and Networks

Proceedings, POLICY 2003, pp. 26- 39.

16. Baresi L and Guinea S (2005) Dynamo: Dynamic Monitoring of WS-BPEL

Processes. ICSOC 05, 3rd International Conference On Service Oriented Computing,

Amsterdam, The Netherlands

17. Baresi L, and Guinea S (2005) Towards Dynamic Monitoring of WS-BPEL

Processes. ICSOC 05, 3rd International Conference On Service Oriented Computing,

Amsterdam, The Netherlands.

18. Baresi L, Guinea S, and Plembani P (2005) Using WS-Policy in Service Monitoring.

TES 05, 6th VLDB Workshop on Technologies for E-Services, Trondheim, Norway.

19. Barnett M, and Schulte W (2001) Spying on Components: A Runtime Verification

Technique. In Proceedings of OOPSLA 2001 Workshop on Specification and

Verification of Component Based Systems, Tampa, FL, USA.

20. Barringer H, Goldberg A, Havelund K and Sen K (2004) Rule-Based Runtime

Verification. 5th International Conference on Verification, Model Checking, and

Abstract Interpretation (VMCAI’04), LNCS 2937, Springer, pp. 44-57

21. Bartetzko D, Fischer C, Moller M, and Wehrheim H (2001) Jass – Java with

assertions. In Workshop on Runtime Verification held in conjunction with the 13th

Conference on Computer Aided Verification, CAV'01. Published in Electronic Notes

in Theoretical Computer Science, K. Havelund and G. Rosu (eds.), 55(2).

 317

22. Bouyer P, Chevalier F and D'Souza D (2005) Fault Diagnosis using Timed

Automata. In Proc. 8th International Conference on Foundations of Software Science

and Computation Structures (FoSSaCS'05), LNCS 3441, pp.219-233, Springer

23. Brat G, Drusinsky D, Giannakopoulou D, Goldberg A, Havelund K, Lowry M,

Pasareanu C, Visser W, and Washington R (2004) Experimental Evaluation of

Verification and Validation Tools on Martian Rover Software. Formal Methods in

System Design, 25(2).

24. Brisset P (2000) A Case Study in Java Software Verification. Appeared in Workshop

on Security, Middleware, and Languages, Stockholm.

25. Brörkens M, and Möller M (2002) Dynamic event generation for runtime checking

using the JDI. In Havelund, K. and Rosu, G., editors, Proceedings of the Federated

Logic Conference Satellite Workshops, Runtime Verification, Copenhagen,

Denmark. Electronic Notes in Theoretical Computer Science 70(4).

26. Brörkens M, and Möller M (2002) Jassda trace assertions, runtime checking the

dynamic of java programs. In Schieferdecker, I., König, H., and Wolisz, A., editors,

Trends in Testing Communicating Systems, International Conference on Testing of

Communicating Systems, Berlin, Germany, pp. 39-48.

27. Brugger, S. T. and J. Chow (2007). An assessment of the DARPA IDS Evaluation

Dataset using Snort. Technical Report CSE-2007-1, University of California, Davis,

Department of Computer Science, Davis, CA.

http://www.cs.ucdavis.edu/research/tech-reports/2007/CSE-2007-1.pdf.

28. Brusoni V, Console L, Terenziani P, Dupré DT (1997) An Efficient Algorithm for

Temporal Abduction. In Proceedings of the 5th Congress of the Italian Association

For Artificial intelligence on Advances in Artificial intelligence. M. Lenzerini, Ed.

Lecture Notes In Computer Science, vol. 1321. Springer-Verlag, London, pp. 195-

206

29. Brusoni V, Console L, Terenziani P, Pernici B (1997) LATER: Managing Temporal

Information Efficiently. IEEE Expert: Intelligent Systems and Their Applications 12,

4.

30. Capra L, Emmerich W and Mascolo C (2001) Reflective middleware solutions for

context-aware applications. In Yonezawa A, Matsuoka S, eds.: Proceedings of

 318

Reflection 2001, The Third International Conference on Meta-level Architectures

and Separation of Crosscutting Concerns, Kyoto, Japan. LNCS 2192, AITO,

Springer-Verlag, pp.126–133

31. Capra L, Emmerich W, and Mascolo C (2003) CARISMA: Context-Aware

Reflective mIddleware System for Mobile Applications. In IEEE Transactions on

Software Engineering, 29(10), pp.929-945.

32. Chang E, Pnueli A, Manna Z (1994) Compositional Verification of Real-Time

Systems. Proc. 9'th IEEE Symp. On Logic In Computer Science, 1994, pp. 458-465.

33. Charniak E, McDermott D (1985) Introduction to Artificial Intelligence. Addison

Wesley, Reading, MA.

34. Chen F and Rosu G (2003) Towards Monitoring-Oriented Programming: A

Paradigm Combining Specification and Implementation. In Electronic Notes in

Theoretical Computer Science 89 No. 2, Published by Elsevier Science B.V.

35. Clark K (1978) Negation as Failure, Logic and Databases. Editors: H. Gallaire, J.

Minker, Plenum Press, pp. 293-322, New York

36. Clarke EM, Grumberg O, and Peled D (1999) Model Checking. MIT Press

37. Clavel M, Durán FJ, Eker S, Lincoln Martí-Oliet N, Meseguer J, and Quesada JF

(1999) The Maude System. In Proceedings of the 10th International Conference on

Rewriting Techniques

38. Cohen D, Feather M, Narayanswamy K, and Fickas S (1997) Automatic Monitoring

of Software Requirements. In Proc. of the 19th Int. Conf. on Software Engineering.

39. Cohen G, Chase J, and Kaminsky D (1998) Automatic Program Transformation with

JOIE. In Proceedings of the 1998 USENIX Annual Technical Symposium.

40. Cohen S (1999) Jtrek, Developed by Compaq.

http://www.compaq.com/java/download/jtrek.

41. Console L, Dupre DT, Torasso P (1991) On the Relationship between Abduction and

Deduction. Journal of Logic and Computation, 1(5).

42. Console et al. (2002) Local Reasoning and Knowledge Compilation for Efficient

Temporal Abduction. IEEE Trans. on Knowledge & Data Engineering 14(6): 1230-

1248.

 319

43. Corbett J, Dwyer M, Hatcliff J, and Robby (2001) Expressing Checkable Properties

of Dynamic Systems: The Bandera Specification Language. KSU CIS Technical

Report 2001-04.

44. Corbett J, Dwyer M, Hatcliff J, Pasareanu C, Robby, Laubach S, and Zheng H

(2000). Bandera: Extracting Finite-state Models from Java Source Code. In

Proceedings of the 22nd International Conference on Software Engineering, June.

45. Cousot P, and Cousot R (1977) Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc.

Symp. of Principles of Programming Languages. ACM Press.

46. Damianou N, Dulay N, Lupu EC, and Sloman MS (2001) The Ponder Policy

Specification Language. Presented at Policy 2001: Workshop on Policies for

Distributed Systems and Networks, Bristol, UK.

47. d'Amorim M and Havelund K (2005) Event-based runtime verification of java

programs. In Proceedings of the Third international Workshop on Dynamic Analysis

(St. Louis, Missouri, May 17 - 17, 2005). WODA '05. ACM Press, New York, NY,

pp.1-7

48. Dardenne A, van Lamsweerde A, and Fickas S (1993) Goal-Directed Requirements

Acquisition. Science of Computer Programming, 20, pp. 3-50.

49. David PC, Ledoux T, and Bouraqadi-Saadani NMN (2001) Two-step weaving with

reflection using AspectJ. In OOPSLA 2001 Workshop on Advanced Separation of

Concerns in Object-Oriented Systems.

50. Dawid AP (1992) Applications of a general propagation algorithm for probabilistic

expert systems. Stat. Comput., vol. 2, pp. 25-36

51. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif. Intell. 49, 1-

3, pp. 61-95

52. De Kleer J., and Williams B.C. (1987) Diagnosing Multiple Faults. Artif. Itell.32(1):

97-130.

53. Denecker M. et al. (1992) Temporal reasoning with abductive event calculus. 10th

ECAI.

 320

54. Denning D (1987) An Intrusion-Detection Model. IEEE Transactions on Software

Engineering, Vol. SE-13, No. 2, pp. 222-232

55. Desai N (2003) Intrusion Prevention Systems: the Next Step in the Evolution of IDS.

SecurityFocus, http://www.securityfocus.com/infocus/1670

56. Dingwall-Smith A, and Finkelstein A (2002) From Requirements to Monitors by

Way of Aspects. Proc. of 1st Int. Conf. on Aspect-Oriented Software Development.

57. Drusinsky D (2000) The Temporal Rover and the ATG Rover. In K. Havelund, J.

Penix, and W. Visser, editors, SPIN Model Checking and Software Verification,

volume 1885 of LNCS, pp. 323–330, Springer.

58. Emmerich W (2000) Software Engineering and Middleware: A Roadmap. In The

Future of Software Engineering - 22nd Int. Conf. on Software Engineering

(ICSE2000), pages 117–129, ACM Press.

59. Eshgi K, Kowalski R (1988) Abduction through deduction. Technical report,

Imperial College of Science and Technology, Department of Computing

60. Feather M, and Fickas S (1995) Requirements Monitoring in Dynamic

Environments. In Proc. of Int. Conf. on Requirements Engineering.

61. Feather MS, Fickas S, van Lamsweerde A, and Ponsard C (1998) Reconciling

System Requirements and Runtime Behaviour. Proc. of 9th Int. Work. on Software

Specification & Design.

62. Firesmith D (2003) Engineering Security Requirements. In Journal of Object

Technology, vol. 2, no. 1, January-February 2003, pp. 53-68.

http://www.jot.fm/issues/issue_2003_01/column6

63. Gale D. (2007) Linear programming and the simplex method. Notices of the AMS,

54(3):364–369

64. Giannakopoulou D and Havelund K (2001) Automata-Based Verification of

Temporal Properties on Running Programs. In Proceedings of International

Conference on Automated Software Engineering (ASE’01), pp. 412–416. ENTCS.

Coronado Island, California.

 321

65. Goldberg A, and Havelund K (2003) Instrumentation of Java Bytecode for Runtime

Analysis. In Proc. Formal Techniques for Java-like Programs, volume 408 of

Technical Reports from ETH Zurich, Switzerland. ETH Zurich.

66. Grastien A, Cordier M, Largouët C (2005) Incremental Diagnosis of Discrete-Event

Systems.15th Int. Work. On Principles of Diagnosis (DX05)

67. Grimes R (2004) Authenticode. Microsoft Corporation TechNet, Microsoft

Authenticode Reference Guide.

68. Gritzalis S, Katsikas S and Gritzalis D (2003) Computer Network Security. (In

Greek) Papasotiriou Publishers

69. Gurevich Y (1993) Evolving algebras: An attempt to discover semantics. In G.

Rozenberg and A. Saloma, editors, Current Trends in Theoretical Computer Science,

pp. 266-292. World Scientific.

70. Gurevich Y, Schulte W, Campbell C, and Grieskamp W (2001) The Abstract State

Machine Language. The Abstract State Machine Language, Microsoft Corporation.

71. Hatcliff J, and Dwyer, M, (2001) Using the Bandera tool set to model-check

properties of concurrent Java software. In CONCUR 2001, LNCS 2154, pages 39–

58.

72. Havelund K, and Rosu G (2001) Monitoring Java Programs with Java PathExplorer.

In Proceedings of the 1st International Workshop on Runtime Verification (RV’01)

[1], pp. 97–114.

73. Havelund K, and Rosu G (2001) Monitoring Programs using Rewriting. In

Proceedings of International Conference on Automated Software Engineering

(ASE’01), pp. 135–143. Institute of Electrical and Electronics Engineers. Coronado

Island, California.

74. Havelund K and Rosu G (2002) Synthesizing Monitors for Safety Properties. In

Tools and Algorithms for Construction and Analysis of Systems (TACAS’02),

volume 2280 of LNCS, pp. 342–356. Springer.

75. Havelund K and Roşu G (2004) An Overview of the Runtime Verification Tool Java

PathExplorer. Methods Syst. Des. 24, pp.189-215

 322

76. Heckerman, D. (1998) A tutorial on learning with Bayesian networks, in M.I.

Jordan, ed., Learning in Graphical Models, Kluwer, Dordrecht, Netherlands.

77. Hirschfeld R, and Kawamura K (2004) Dynamic service adaptation. In Proceedings

of the Fourth IEEE International Workshop on Distributed Auto-adaptive and

Reconfigurable Systems (with ICDCS’04), Tokyo, Japan.

78. Hoare C (1985-2004) Communicating Sequential Processes. Electronic version of

Communicating Sequential Processes, first published in 1985 by Prentice Hall

International, http://www.usingcsp.com/cspbook.pdf.

79. Hobbs JR, Stickel M, Martin P, Edwards D (1988) Interpretation as abduction. In

26th Annual Meeting of the Association for Computational Linguistics, Buffalo, NY,

pp.95-103

80. Holzmann GJ, and Smith MH (1997) The model checker SPIN. IEEE trans. SE,

23(5), pp. 279–295.

81. Jahanian J, Rajkumar R, and Raju S (1994) Runtime monitoring of timing

constraints in distributed real-time systems. Technical Report CSE-TR 212-94,

University of Michigan

82. Janicke H, Siewe K, Jones F, Cau A, and Zedan H (2005) Analysis and Run-time

Verification of Dynamic Security Policies. AAMAS 05 workshop on Defence

Applications of Multi-Agent Systems, Utrecht.

83. Jensen FV, Lauritzen SL, Olesen KG (1990) Bayesian updating in causal

probabilistic networks by local computations. Computational Statistics Quarterly,

4:269-282

84. Jensen, F. (1996). An Introduction to Bayesian Networks. Springer.

85. Jensen, F. and Nielsen, D. (1996) Bayesian Networks and Decision Graphs – Second

Edition, Information and Science Statistics, Springer.

86. Kakas A, Mancarella P (1990) Generalised stable models: a semantics for abduction.

In Proceedings of the 9th European Conference on Artificial Intelligence, pp. 385-

391

 323

87. Kakas A, Kowalski R, Toni F (1992) Abductive logic programming. Department of

Computer Science, University of Cyprus, Nicosia, and Imperial College of Science,

Technology and Medicine, London

88. Kaler C, and Nadalin A (editors) (2005) Web Services Security Policy Language

(WS-SecurityPolicy). http://www-128.ibm.com/developerworks/library/specification/ws-

secpol/.

89. Karaorman M and Freeman J (2004). jMonitor: Java runtime event specification and

monitoring library. Proceedings of 4
th

Workshop on Run-time Verification, 2004

90. Kiczales G and Lamping J (1997) Aspect-oriented programming. In Mehmet Aksit

and Satoshi Matsuoka, editors, Proceedings European Conference on Object-

Oriented Programming, volume 1241, pages 220-242. Springer-Verlag, Berlin,

Heidelberg, and New York

91. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, and Griswold WG (2001).

An Overview of AspectJ. In Proceedings of the 15th European Conference on

Object-Oriented Programming, pages 327–353. Springer-Verlag.

92. Kim JH, Pearl J (1983) A computational model for causal and diagnostic reasoning

in inference systems. In Proceedings of the 8th International Joint Conference on

Artificial Intelligence, pp. 190 – 193

93. Kim M, Kannan S, Lee I, Sokolsky O, and Viswanathan M (2001) Java-mac: a run-

time assurance tool for java programs. In Electronic Notes in Theoretical Computer

Science, volume 55. Elsevier Science Publishers

94. Knight K (1989) Unification: a multidisciplinary survey. ACM Computing Surveys,

21(1):93-124. DOI= http://doi.acm.org/10.1145/62029.62030.

95. Ko C, Ruschitzka M and Levitt K (1997) Execution monitoring of security-critical

programs in distributed systems: A specication-based approach. In Proceedings of

the IEEE Symposium on Security and Privacy, pp. 175-187, Oakland, CA, USA

96. Koks D, and Chall S, (2005) An introduction to Bayesian and Dempster-Shafer Data

Fusion. DSTO–TR–1436. DSTO Systems Sciences Laboratory,

97. Konolige K (1990) Closure + minimization implies abduction. In PRICAI-90,

Nagoya, Japan

 324

98. Lauritzen SL, Spiegelhalter DJ (1990) Local computations with probabilities on

graphical structures and their application to expert systems. In Readings in Uncertain

Reasoning, G. Shafer and J. Pearl, Eds. Morgan Kaufmann Publishers, San

Francisco, CA, 415-448

99. Lazarevic A., Kumar V., Srivastava J. (2005) Intrusion detection: a survey, In

Managing cyber-threats: issues approaches & challenges, Springer.

100. Leavens G, Baker A, and Ruby C (2003) Preliminary Design of JML: A Behavioural

Interface Specification Language for Java. Technical Report 9806u, Iowa State

University, Department of Computer Science, http://www.jmlspecs.org/.

101. Lee D and Yannakakis M (1996) Principles and Methods of Testing Finite State

Machines – A Survey. Proceedings of the IEEE, vol. 84, n. 8, August, p. 1090-1123

102. Lee I, Kannan S, Kim M, Sokolsky O, and Viswanathan. M (1999) Runtime

Assurance Based on Formal Specifications. In Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications.

103. Levesque H (1989) A knowledge-level account of abduction. In Proceedings of the

11th International Joint Conference on Artificial Intelligence, pp. 1061-1067

104. Ligatti J, Bauer L, and Walker D (2005) Edit Automata: Enforcement Mechanisms

for Run-time Security Policies. International Journal of Information Security, 4(1–2).

105. Lindholm T, and Yellin F (1996) The Java Virtual Machine specification. Web

document at URL

http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html, Sun

Microsystems.

106. Lowe G (1995) An attack on the Needham-Schroeder public-key authentication

protocol. Inf. Process. Lett. 56, 3, pp.131-133. DOI: http://dx.doi.org/10.1016/0020-

0190(95)00144-2

107. Ludwig H, Keller A, Dan A, King RP, and Franck R (2003) Web Service Level

Agreement (WSLA) Language Specification. Version 1.0, IBM Corporation,

http://www.research.ibm.com/wsla

 325

108. Lutz R (2000) Software Engineering for Safety: A Roadmap. Proceedings of the 22
nd

International Conference on Software Engineering (ICSE 2000), Limerick, Ireland,

June 4-11, ACM

109. Mahbub K and Spanoudakis G (2004) A Framework for Requirements Monitoring

of Service Based Systems. In Proceedings of the 2nd International Conference on

Service Oriented Computing, NY, USA

110. Mascolo C, Capra L, Zachariadis S, and Emmerich W (2002) XMIDDLE: A Data-

Sharing Middleware for Mobile Computing. In International Journal on Wireless

Personal Communications, 21(1), pp.77-103. Kluwer Academic Publisher.

111. McGraw G, and Felten E (1999) Securing JAVA. Getting Down to Business with

Mobile Code. Chapter 3, published by John Wiley & Sons, Inc., Securing Java:

Getting Down to Business with Mobile Code.

112. Meyer B (2000) Object-Oriented Software Construction. 2nd edition. Prentice Hall,

Upper Saddle River, New Jersey.

113. Mohnen M (2002) A graph-free approach to data-flow analysis. In Proc. 11th CC,

pages 46–61, Grenoble, France. Springer.

114. Mok AK and Liu G (1997) Efficient run-time monitoring of timing constraints. In

Real-Time Technology and Applications Symposium

115. Moller M, Bartetzko D, Fischer C, and Wehrheim H (2001) Jass - java with

assertions. In Electronic Notes in Theoretical Computer Science, volume 55.

Elsevier Science Publishers.

116. Moszkowski B (1996) The programming language Tempura. Journal of Symbolic

Computation, 22(5/6):730—733.

117. Naldurg P, Sen K, and Thati P (2004) A Temporal Logic Based Framework to

Intrusion Detection. In Proceedings of the International Conference on Formal

Techniques for Networked and Distributed Systems (FORTE 2004)

118. Necula G (1997) Proof-Carrying Code. In Proceedings of the 24th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

’97), Paris, France.

 326

119. Nelson S and Pecheur C (2002) V&V for advanced systems at NASA. TASK NO:

10 TA-5.3.3 (WBS 1.4.4.5.3), prepared for Northrop Grumman Corp

120. Ng HT, Mooney RJ (1990) On the role of coherence in abductive explanation. In

Proceedings of the 8th National Conference on Artificial Intelligence, pp. 337-342

121. Pan R., Peng Y., and Ding Z. (2006) Belief Update in Bayesian Networks Using

Uncertain Evidence. In Proceedings of the 18th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI '06). IEEE Computer Society, Washington,

DC, USA, 441-444. DOI=10.1109/ICTAI.2006.39

http://dx.doi.org/10.1109/ICTAI.2006.39

122. Paul G (1993) Approaches to Abductive Reasoning: an overview. Artificial

Intelligence, 7, pp. 109-152

123. Pearl J. (1988): “Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference”. Morgan Kauffman, San Mateo, CA

124. Pearl J (1994) Bayesian networks. Tech. rep. R-216, Computer Science Department,

University of California, Los Angeles

125. Pearl J (1995) Bayesian Networks. In Handbook of Brain Theory and Neural

Networks, MIT Press

126. Pearl J and Russel S (2000) Bayesian networks. UCLA Cognitive Systems

Laboratory, Technical Report (R-278)

127. Peirce CS (1931-1958) Collected Papers of Charles Sanders Peirce (eds. C.

Hartshore et al.). Harvard University Press

128. Pencolé Y and Cordier M (2005) A formal framework for the decentralised

diagnosis of large scale discrete event systems & its application to

telecommunication networks. Artif. Intell. 164, pp.121-180.

129. Pnueli A (1977) The Temporal Logic of Programs. In Proceedings of the 18th IEEE

Symposium on Foundations of Computer Science, pp. 46–77.

130. Poole D (1989) Explanation and prediction: an architecture for default and abductive

reasoning. Computational Intelligence, 5(2), pp.97-110

131. Poole D (1991) Representing Bayesian networks within probabilistic Horn

abduction. In Proceedings of the Seventh Conference on Uncertainty in Artificial

 327

intelligence (Los Angeles, California, United States). B. D. D'Ambrosio, P. Smets,

and P. P. Bonissone, Eds. Morgan Kaufmann Publishers, San Francisco, CA, pp.

271-278

132. Poole D. (1993): “Probabilistic Horn abduction and Bayesian networks”. Artif.

Intell. 64(1), pp. 81-129

133. Porras PA and Neumann PG (1997) EMERALD: Event monitoring enabling

responses to anomalous live disturbances. In Proc. 20th NISTNCSC National

Information Systems Security Conference, pp. 353 – 365

134. Ragsdale D, Carver CA, Humphries J. and Pooch U (2000) Adaptation techniques

for intrusion detection and intrusion response system. Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics at Nashville, Tennessee,

pp. 2344 - 2349

135. Ray O and Kakas A (2006) ProLogICA: a practical system for Abductive Logic

Programming. Proc. 11th Int. Workshop on Non-monotonic Reasoning, pp304-312

136. Reiter R. (1987) A theory of diagnosis from first principles, Artif. Intell. 32(1): 57-

96.

137. Robinson W (2002) Monitoring Software Requirements using Instrumented Code. In

proceedings of the Hawaii Int. Conf. on Systems Sciences

138. Russo A, Miller A, Nuseibeh B, and Kramer J (2002) An Abductive Approach for

Analysing Event-Based Requirements Specifications. Presented at 18th Int. Conf. on

Logic Programming (ICLP), Copenhagen, Denmark.

139. Sampath M, Sengupta R, Lafortune S, Sinnamohideen K and Teneketzis DC (1996)

Failure diagnosis using discrete-event models. IEEE Trans. on Control Systems

Technology, 4(2), pp.105-124

140. Santos E Jr (1996) Unifying time and uncertainty for diagnosis. Journal of

Experimental and Theoretical Artificial Intelligence, 8 pp. 75-94

141. Savage S, Burrows M, Nelson G, Sobalvarro P, and Anderson T (1997) Eraser: A

dynamic data race detector for multithreaded programs. In ACM Trans. on

Computer Systems, 15(4).

 328

142. Schlimmer J (editor) (2006) Web Services Policy Framework (WS-Policy

Framework), http://www.ibm.com/developerworks/library/specification/ws-polfram/.

143. Schneider FB (1998) Enforceable Security Policies. Cornell University Technical

Report TR98-1664.

144. Sekar R, Venkatakrishnan VN, Basu S, Bhatkar S, and DuVarney D (2003) Model -

Carrying Code: A Practical Approach for Safe Execution of Untrusted Applications.

ACM Symposium on Operating Systems Principles. (SOSP'03; Bolton Landing,

New York).

145. Sen K, and Rosu G (2003) Generating Optimal Monitors for Extended Regular

Expressions. In Proceedings of the 3rd International Workshop on Runtime

Verification (RV’03) [1], pp. 162–181

146. SERENITY, System Engineering for Security & Dependability,

http://www.serenity-project.org/ (last visited at 06/04/2011).

147. Shafer G (1975) A Mathematical Theory of Evidence. Princeton University Press.

148. Shanahan M (1989) Prediction is deduction but explanation is abduction. In

Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1055

- 1060, San Mateo, CA

149. Shanahan M (1999) The Event Calculus Explained. In Artificial Intelligence Today,

LNAI 1600:409-430

150. Shanahan M, (2000) Abductive Event Calculus Planner. J. Logic Programming 44:

207-239.

151. Simon, C., and Weber, P. (2006) Bayesian Networks Implementation of the

Dempster Shafer Theory to Model Reliability Uncertainty. ARES 2006: 788-793

152. Simon, C., Weber, P., and Levrat, E. (2007) Bayesian Networks and Evidence

Theory to Model Complex Systems Reliability. JCP 2(1): 33-43.

153. Spanoudakis G, Mahbub K (2006) Non intrusive monitoring of service based

systems. Int. J. of Cooperative Inform. Systems, 15(3):325–358

154. Spanoudakis G, Mana A, and Kokolakis S (Editors) (2009) Security and

Dependability for Ambient Intelligence, Information Security Series, Springer.

 329

155. Spanoudakis G, Kloukinas C and Mahbub K (2009) The Runtime Monitoring

Framework of SERENITY. In Security and Dependability for Ambient Intelligence,

Information Security Series, Springer, pp. 213-237

156. Stickel M (1988) A Prolog-like inference system for computing minimum-cost

abductive explanations in natural-language interpretation. In International Computer

Science Conference, Hong Kong, pp. 343-350

157. Sun Microsystems (2003) Securing Web Services - Concepts, Standards, and

Requirements. White Paper

158. Tardo J, and Valente L (1996) Mobile Agent Security and Telescript. In Proceedings

of IEEE COMPCON '96, Santa Clara, California, pp. 58-63, February 1996, IEEE

Computer Society Press.

159. Tarr PL, Ossher H, Harrison WH, and Sutton SM Jr. (1999) “N degrees of

separation: Multi-dimensional separation of concerns. In International Conference

on Software Engineering, pages 107–119.

160. Thane H (2000) Design for deterministic monitoring of distributed real-time

systems. Technical report, Malardalen Real-Time Research Centre

161. Tripakis S (2002) Fault diagnosis for timed automata. In Proc. 7th Int. Symp. Formal

Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02), vol. 2469 of

LNCS, pp. 205–224, Springer

162. Tsigkritis T, Spanoudakis G (2008) Diagnosing Runtime Violations of Secrity and

Dependability Properties. In Proc of 20th Int. Conference in Software Engineering

and Knowledge Engineering, pp. 661-666.

163. Tsigkritis T, Spanoudakis G (2008) A temporal abductive diagnosis process fo

runtime properties violations. ECAU 2008 Workshop on Explanation Aware

Computing.

164. Tsigkritis T, Spanoudakis G, Kloukinas C, and Lorenzoli D (2009) Diagnosis and

Threat detection capabilities of the SERENITY Runtime Framework, In Security

and Dependability for Ambient Intelligence, Information Security Series, Springer,

pp. 239-272

 330

165. van Lamsweerde A. (1996) Divergent Views in Goal-Driven Requirements

Engineering. In proc. Viewpoints ’96 – ACM SIGSOFT Workshop of Viewpoints in

Software Development, October

166. van Lamsweerde, A. (2004) Elaborating Security Requirements by Construction of

Intentional Anti-Models. In Proceedings of ICSE’04, 26th International Conference

on Software Engineering, Edinburgh, May. 2004, ACM-IEEE, pp. 148-157.

167. VeriSign (2005) VeriSign Code Signing for Netscape Object Signing, in Business

Guide. Chapters 2 & 3, VeriSign, http://www.verisign.com/static/030997.pdf.

168. Visser W, Havelund K, Brat G, and Park SJ (2000) Model Checking Programs. In

Proceedings of ASE-2000: The 15th IEEE Conference on Automated Software

Engineering. IEEE CS Press. Grenoble, France.

169. Wagelaar D (2004) Towards a context-driven development framework for ambient

intelligence. In Proceedings of the Fourth IEEE International Workshop on

Distributed Auto-adaptive and Reconfigurable Systems (withICDCS’04), Tokyo,

Japan.

170. Yang Z, Cheng BH, Stirewalt RE, Sowell J, Sadjadi SM, and McKinley PK (2002)

An aspect-oriented approach to dynamic adaptation. In Proceedings of the ACM

SIGSOFT Workshop On Self-healing Software (WOSS’02).

171. Yellin F (1996) Low-level security in Java. Web document at URL

http://www.javasoft.com/sfaq/verifier.html, Sun Microsystems.

 331

Appendix A: Location Based Access Control System

Monitoring Theory

LBACS.R1. ∀t1∈Time, ∃t2∈Time, ∀_LServerId ∈ LocationServers,

∀_ACServerId ∈ AccessControlServers, ∀_deviceId∈Devices,

∀_source.

Happens(e(_Id1,_ACServerId,_LServerId,REQ-B,locationRequest

 (_deviceId),_source), t1, R(t1,t1)) ⇒

Happens(e(_Id2,_LServerId,_ACServerId,REQ-A,locationResponse

 (_deviceId),_source), t2, R(t1+1,t1+3000))

LBACS.R2. ∀t1∈Time, ∃t2∈Time, ∀_LServerId ∈ LocationServers,

∀_ACServerId ∈ AccessControlServers, ∀_deviceId∈Devices,

∀_receiver1∈Sensors, ∀_source1, ∀_source2.

Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source1), t1, R(t1,t1)) ∧∧∧∧

¬Happens(e(_Id1,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source1), t2, R(0,t1-1)) ⇒

Happens(e(_Id2,_deviceId,_receiver1,REQ-A,signal(_deviceId),

 _source2), t3, R(t1-2000,t1-1))

LBACS.R3. ∀t1∈Time, ∃t2∈Time, ∀_deviceId∈Devices,

∀_receiver1∈Sensors, ∀_source1.

Happens(e(_Id1,_deviceId,_receiver1,REQ-A, signal(_deviceId),

 _source1), t1, R(t1,t1)) ⇒

Happens(e(_Id2,_deviceId,_receiver1,REQ-A,signal(_deviceId),

 _source1), t2, R(t1+1,t1+2000))

LBACS.R4. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀t3 ∈ Time, ∀_deviceId ∈ Devices,

∀_userId ∈ Users, ∀_source1, ∀_source2.

Happens(e(_Id1,intranetRouter,_deviceId,REQ-B,

 loginAcknowledgment(_userId),_source1),

 t1,R(t1,t1)) ∧

Happens(e(_Id2,internetRouter,_deviceId,REQ-B,

 loginAcknowledgment(_userId),_source2),

 t2,R(t1+1,t2)) ⇒

Happens(e(_Id3,intranetRouter,_deviceId,REQ-B,

 logoutAcknowledgment(_userId)

 332

 _source1),t3,R(t1+1,t2-1))

LBACS.A1. ∀t1∈Time, ∃t2∈Time, ∀_deviceId∈Devices, ∀_receiver,

∀_sender, ∀_source.

Happens(e(_Id1,_sender,_receiver,REQ-A,operableInPremises

 (_deviceId),_source),t1,R(t1,t1)) ⇒

Happens(e(_Id2,_deviceId,_receiver,REQ-A,signal(_deviceId),

 _source),t2,R(t1-2000,t1))

LBACS.A2. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_deviceId ∈ Devices, ∀_resourceId ∈

Resources, ∀_ACServerId ∈ AccessControlServers, ∀_sender,

∀_receiver, ∀_source.

Happens(e(_Id1,_sender,_receiver,REQ-A,operableInPremises

 (_deviceId),_source),t1,R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId_ACServerId,REQ-A,accessTo

 (_deviceId, _resourceId), _source), t2,

 R(t1-2000,t1))

LBACS.A3. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_deviceId ∈ Devices, ∀_resourceId ∈

Resources, ∀_receiver1 ∈ AccessControlServers, ∀_receiver2 ∈

Sensors, ∀_source1, ∀_source2.

Happens(e(_Id1,_deviceId,_receiver1,REQ-A,accessTo(_deviceId,

 _resourceId),_source1), t1, R(t1,t1))⇒

Happens(e(_Id2,_deviceId,_receiver2,REQ-A,signal(_deviceId),

 _source2), t2, R(t1-2000,t1))

LBACS.A4. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_deviceId ∈ Devices, ∀_resourceId ∈

Resources, ∀_ACServerId ∈ AccessControlServers, ∀_receiver ∈

LocationServers, ∀_source1, ∀_source2.

Happens(e(_Id1,_ACServerId,_receiver,REQ-B,locationRequest

 (_deviceId), _source1), t1, R(t1,t1))⇒

Happens(e(_Id2,_deviceId,_ACServerId,REQ-A,accessTo

 (_deviceId,_resourceId),_source2),t2,R(t1-5000,t1))

LBACS.A5. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_deviceId ∈ Devices, ∀_resourceId ∈

Resources, ∀_ACServerId ∈ AccessControlServers, ∀_source.

Happens(e(_Id1,_ACServerId,_deviceId,REQ-B,accessToResponse

 (_deviceId,_resourceId),_source), t1, R(t1,t1))⇒

Happens(e(_Id2,_deviceId,_ACServerId,REQ-A,accessTo

 333

 (_deviceId,_resourceId),_source),t2,R(t1-5000,t1))

LBACS.A6. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_deviceId ∈ Devices, ∀_LServerId ∈

LocationServers, ∀_ACServerId ∈ AccessControlServers,

∀_source.

Happens(e(_Id1,_LServerId,_LServerId,REQ-B,locationResponse

 (_deviceId),_source), t1, R(t1,t1))⇒

Happens(e(_Id2,_ACServerId,_LServerId,REQ-A,locationRequest

 (_deviceId),_source), t2, R(t1-2000,t1))

LBACS.A7. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_deviceId ∈ Devices, ∀_ACServerId ∈

AccessControlServers, ∀_resourceId ∈ Resources, ∀_LServerId

∈ LocationServers, ∀_source1, ∀_source2.

Happens(e(_Id1,_ACServerId,_deviceId,REQ-B,accessToResponse

 (_deviceId,_resourceId),_source1), t1, R(t1,t1))⇒

Happens(e(_Id2,_LServerId,_ACServerId,REQ-B,locationResponse

 (_deviceId),_source2), t2, R(t1-1000,t1))

LBACS.A8. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_sender, ∀_receiver, ∀_deviceId ∈

Devices, ∀_ACServerId ∈ AccessControlServers, ∀_resourceId ∈

Resources, ∀_source1, ∀_source2.

Happens(e(_Id1, _sender, _receiver, REQ-B,

 accessControlServerIsRunning(_ACServerId),

 _source1), t1, R(t1,t1))⇒

Happens(e(_Id2,_ACServerId,_deviceId,REQ-B,accessToResponse

 (_deviceId,_resourceId),_source2),t2,R(t1-1000,t1))

LBACS.A9. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_sender, ∀_receiver, ∀_LServerId ∈

LocationServers, ∀_deviceId ∈ Devices, ∀_source1, ∀_source2.

Happens(e(_Id1, _sender, _receiver, REQ-B,

 locationServerIsRunning(_LServerId),_source1),t1,

 R(t1,t1))⇒

Happens(e(_Id2,_LServerId,_LServerId,REQ-B,locate

 (_deviceId),_source), t2, R(t1-1000,t1))

LBACS.A10. ∀t1 ∈ Time, ∃t2 ∈ Time, ∀_sender, ∀_receiver, ∀_LServerId

∈ LocationServers, ∀_ACServerId ∈ AccessControlServers,

∀_deviceId ∈ Devices, ∀_source1, ∀_source2.

Happens(e(_Id1, _sender, _receiver, REQ-B,

 334

 locationServerIsRunning(_LServerId),_source1),t1,

 R(t1,t1))⇒

Happens(e(_Id2,_LServerId,_ACServerId,REQ-B,locationResponse

 (_deviceId),_source2), t2, R(t1-1000,t1))

LBACSNT.A1. ∀t1∈Time,∃t2∈Time,∀_sender,∀_receiver,∀_deviceId∈Devices,

∀_routerId∈Routers, ∀_userId∈Users, ∀_source1, ∀_source2.

Happens(e(_Id1,_sender,_receiver,REQ-A,operableInPremises

 (_deviceId),_source),t1,R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_routerId,REQ-A,login(_userId,

 _deviceId,_routerId),_source),t2,R(t1-1000,t1))

LBACSNT.A2. ∀t1∈Time,∃t2∈Time,∀_deviceId∈Devices, ∀_routerId∈Routers,

∀_sensorId∈Sensors, ∀_userId∈Users, ∀_source1, ∀_source2.

 Happens(e(_Id1,_deviceId,_routerId,REQ-A, login(_userId,

 _deviceId,_routerId),_source1),t1,R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_sensorId,REQ-A, signal

 (_deviceId),_source2),t2,R(t1-2000,t1))

LBACSNT.A3. ∀t1∈Time,∃t2∈Time,∀_routerId∈Routers, ∀_deviceId∈Devices,

∀_userId∈Users, ∀_source.

Happens(e(_Id1, _routerId, _deviceId, REQ-B,

 loginAcknowledgment(_deviceId,_routerId),

 _source),t1,R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_routerId,REQ-A,login(_userId,

 _deviceId,_routerId),_source),t2,R(t1-5000,t1))

LBACSNT.A4. ∀t1∈Time, ∃t2∈Time, ∀_sender, ∀_receiver, ∀_routerId∈

Routers, ∀_deviceId ∈ Devices, ∀_source.

Happens(e(_Id1, _sender, _receiver, REQ-A,

 routerIsRunning(_routerId),_source),t1,

 R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_routerId,REQ-B,

 loginAcknowledgment(_deviceId,_routerId),

 _source),t2, R(t1-1000,t1))

LBACSNT.A5. ∀t1∈Time,∃t2∈Time,∀_sender,∀_receiver,∀_deviceId∈Devices,

∀_routerId∈Routers, ∀_userId∈Users, ∀_source1, ∀_source2.

Happens(e(_Id1,_sender,_receiver,REQ-A,operableInPremises

 (_deviceId),_source),t1,R(t1,t1)) ⇒

 335

 Happens(e(_Id2,_deviceId,_routerId,REQ-A,logout(_userId,

 _deviceId,_routerId),_source),t2,R(t1-1000,t1))

LBACSNT.A6. ∀t1∈Time,∃t2∈Time,∀_deviceId∈Devices, ∀_routerId∈Routers,

∀_sensorId∈Sensors, ∀_userId∈Users, ∀_source1, ∀_source2.

 Happens(e(_Id1,_deviceId,_routerId,REQ-A,logout(_userId,

 _deviceId,_routerId),_source1),t1,R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_sensorId,REQ-A, signal

 (_deviceId),_source2),t2,R(t1-2000,t1))

LBACSNT.A7. ∀t1∈Time,∃t2∈Time,∀_routerId∈Routers, ∀_deviceId∈Devices,

∀_userId∈Users, ∀_source.

Happens(e(_Id1, _routerId, _deviceId, REQ-B,

 logoutAcknowledgment(_deviceId,_routerId),

 _source),t1,R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_routerId,REQ-A,login(_userId,

 _deviceId,_routerId),_source),t2,R(t1-5000,t1))

LBACSNT.A8. ∀t1∈Time, ∃t2∈Time, ∀_sender, ∀_receiver, ∀_routerId∈

Routers, ∀_deviceId ∈ Devices, ∀_source.

Happens(e(_Id1, _sender, _receiver, REQ-A,

 routerIsRunning(_routerId),_source),t1,

 R(t1,t1)) ⇒

 Happens(e(_Id2,_deviceId,_routerId,REQ-B,

 logoutAcknowledgment(_deviceId,_routerId),

 _source),t2, R(t1-1000,t1))

