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Abstract 

The goal of neural-symbolic computation is to integrate ro-
bust connectionist learning and sound symbolic reasoning. 
With the recent advances in connectionist learning, in par-
ticular deep neural networks, forms of representation learn-
ing have emerged. However, such representations have not 
become useful for reasoning. Results from neural-symbolic 
computation have shown to offer powerful alternatives for 
knowledge representation, learning and reasoning in neural 
computation. This paper recalls the main contributions and 
discusses key challenges for neural-symbolic integration 
which have been identified at a recent Dagstuhl seminar. 

 1. Introduction    

In order to respond to one of the main challenges of Artifi-

cial Intelligence (AI), that is, the effective integration of 

learning and reasoning (Valiant 2008), both symbolic in-

ference and statistical learning need to be combined in an 

effective way. However, over the last three decades, statis-

tical learning and symbolic reasoning have been developed 

largely by distinct research communities in AI (but see 

below for exceptions). More recently, developments in 

deep learning have been connected strongly with and have 

contributed novel insights into representational issues. So 

far these representations have been low level, and have not 

been integrated with the high-level symbolic representa-

tions used in knowledge representation.  It is exactly in this 

area that neural-symbolic learning and reasoning has been 

relevant for over two decades, having addressed many rel-

evant representational issues, e.g. the binding problem 

(Feldman, 2013; Sun, 1994). Neural-Symbolic Learning 

and Reasoning seeks to integrate principles from neural-

networks learning and logical reasoning. It is an interdisci-

plinary field involving components of knowledge represen-

tation, neuroscience, machine learning and cognitive sci-

ence. This note briefly overviews some of the achieve-

ments in neural-symbolic computation and outlines some 
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key challenges and opportunities. These challenges have 

been identified at a recent Dagstuhl seminar on Neural-

Symbolic Learning and Reasoning, in Wadern, Germany 

(September 2014), which marked the tenth anniversary of 

the workshop series on Neural-Symbolic Learning and 

Reasoning, which started at IJCAI 2005 in Edinburgh. For 

details about the seminar presentations, please visit: 

http://www.dagstuhl.de/14381. For more information about 

the workshop series, please visit www.neural-

symbolic.org. Another area that is relevant to Valiant’s 

challenge is that of statistical relational learning and prob-

abilistic logic learning (Getoor et al., 2007; De Raedt et al., 

2007), which aim at integrating probabilistic graphical 

models rather than connectionist methods with logical and 

relational reasoning. 

 The integration of the symbolic and connectionist para-

digms of AI has been pursued by a relatively small re-

search community over the last two decades and has yield-

ed several significant results.  Over the last decade, neural-

symbolic systems have been shown capable of overcoming 

the so-called propositional fixation of neural networks, as 

McCarthy (1988) put it in response to Smolensky (1988); 

see also (Hinton, 1990). Neural networks were shown ca-

pable of representing modal and temporal logics (d’Avila 

Garcez and Lamb, 2006) and fragments of first-order logic 

(Bader, Hitzler, and Hölldobler, 2008; d’Avila Garcez, 

Lamb, and Gabbay, 2009). Further, neural-symbolic sys-

tems have been applied to a number of problems in the 

areas of bioinformatics, control engineering, software veri-

fication and adaptation, visual intelligence, ontology learn-

ing, and computer games (Borges, d’Avila Garcez, and 

Lamb, 2011; de Penning et al., 2011; Hitzler, Bader, and 

d’Avila Garcez, 2005). Most of the work on knowledge 

representation and learning in neural networks has focused 

on variable-free logic fragments. However, one should 

note that several approaches have dealt with alternative 

formalizations of variable binding, and the representation 

of relations (Bader, Hitzler, and Hölldobler, 2008; d’Avila 

Garcez, Lamb, and Gabbay, 2009; Pinkas, Lima, and Co-

hen, 2012; Franca, d’Avila Garcez and Zaverucha, 2014).  

http://www.dagstuhl.de/14381
http://www.neural-symbolic.org/
http://www.neural-symbolic.org/


 In deep learning (Hinton, Osindero, and Teh, 2006), the 

generalization of abstract representations from raw data 

may be a fundamental objective, but how it happens is not 

fully understood (Tran and d'Avila Garcez, 2013). Deep 

architectures seek to manage complex issues of representa-

tion abstraction, modularity, and the trade-off between 

distributed and localist representations. Several techniques 

developed under the umbrella of neural-symbolic computa-

tion can be useful towards this goal. For instance, fibring 

neural networks offer the expression of levels of symbolic 

abstraction. Connectionist modal logics are modular by 

construction (d’Avila Garcez, Lamb, and Gabbay, 2007).  

 In what follows, challenges and opportunities for neural-

symbolic integration are outlined, as a summary of the dis-

cussions held at the Dagstuhl seminar. In a nutshell: (i) the 

mechanisms for structure learning remain to be fully un-

derstood, whether they consist of hypothesis search at the 

concept level, including (probabilistic) Inductive Logic 

Programming (ILP) and statistical AI approaches, or itera-

tive adaptation processes such as Hebbian learning and 

contrastive divergence; (ii) the learning of generalizations 

of symbolic rules is a crucial process and not well under-

stood - the adoption of neural networks that can offer de-

grees of modularity, such as deep networks, and the neural-

symbolic methods for knowledge insertion and extraction 

from neural networks may help shed light into this ques-

tion; (iii) effective knowledge extraction from large-scale 

networks remains a challenge - computational complexity 

issues and the provision of compact, expressive descrip-

tions continue to be a barrier for explanation, lifelong 

learning and transfer learning. Items (i)-(iii) above open up 

a number of research opportunities, to be discussed next. 

 

2. State-of-The-Art Results and Challenges  

Representation: Most of the work on neural-symbolic 

learning and reasoning has focused on propositional logics. 

Early approaches were based essentially on the connection-

ist representation of propositional logic, a line of research 

which has since been substantially extended to other 

finitary logics (d’Avila Garcez, Lamb, and Gabbay 2009). 

 Some primary proposals for overcoming the proposi-

tional fixation of neural networks include the representa-

tion of variable-free predicate logic within neural networks 

using category-theoretic Topoi (Gust, Kühnberger, and 

Geibel, 2007), the use of encodings of predicate Horn logic 

programs with function symbols as vectors of real numbers 

mediated by the Cantor set (Bader, Hitzler, and Hölldobler, 

2008), and learning first-order logic rules within neural 

networks by using an encoding of logical terms also as 

vectors (Guillame-Bert, Broda, and d’Avila Garcez, 2010). 

These systems have been shown to work in limited proof-

of-concept settings or small examples, and attempts to 

achieve useful performance in practice have so far not been 

successful. 

 In order to make further progress, it may be necessary to 

consider logics of intermediate expressiveness, such as (a) 

description logics (DL), in particular logics in the Horn DL 

family (Krötzsch, Rudolph, and Hitzler, 2013), (b) proposi-

tionalization methods, as used by ILP (Blockeel et. al, 

2011; França, Zaverucha, and d'Avila Garcez, 2014) and 

answer-set programming (Lifschitz, 2002), and (iii) modal 

logics (d'Avila Garcez, Lamb, and Gabbay, 2007), known 

to be more expressive than propositional logic and decida-

ble. In particular, recent results regarding the integration of 

DL and rules (Krisnadhi, Maier, and Hitzler, 2011, 

Krötzsch et al., 2011) indicate the feasibility of represent-

ing DL within a neural-symbolic system (Hitzler, Bader, 

and d’Avila Garcez, 2005). The variable binding problem, 

though, and the question of how neural networks should 

reason with variables remain central to the question of ad-

equate representation (d’Avila Garcez, Broda, and Gabbay 

2002; Feldman, 2006; Pinkas, Lima, and Cohen, 2012).  

 Along with the efforts towards the representation of ex-

pressive logics within neural networks there has been work 

on the extraction of logical expressions such as logic pro-

grams or decision trees from trained neural networks ( 

Craven and Shavlik, 1996; d’Avila Garcez, Broda, and 

Gabbay 2001, Lehmann, Bader, and Hitzler, 2010; Tran 

and d’Avila Garcez, 2013), including the use of such ex-

tracted knowledge to seed learning in other tasks. Mean-

while, there has been some suggestive recent work show-

ing that neural networks can learn entire sequences of ac-

tions, thus amounting to "mental simulation" of some con-

crete, temporally extended activity. There is also a very 

well developed logical theory of action, for instance related 

to the basic propositional logic of programs PDL (Harel, 

Kozen, and Tiuryn, 2001), capturing what holds true after 

various combinations of actions. A natural place to extend 

the aforementioned work would be to explore extraction 

from a trained network exhibiting this kind of simulation 

behavior. As argued by Feldman (2006), if the brain is not 

a network of neurons that represent things, but a network 

of neurons that do things, action models should be playing 

a central role.  

 As regards knowledge representation in the brain, one of 

the key challenges is to understand how neural activations, 

which are widely distributed and sub-symbolic, give rise to 

behavior that is symbolic, such as language and logical 

reasoning. Recent advances in fMRI and MEG analysis 

make it possible to develop and test such theories. For in-

stance, formal concept analysis (Ganter and Wille, 1999; 

Endres and Foldiak, 2009) leads to characterization of se-

mantic structures in the brain, and conceptual attribute rep-

resentations (Binder and Desai 2011) make it possible to 

model how semantics concepts map to brain areas. A major 

challenge for the future is to understand how such seman-

tics are constructed and affected by context, such as a se-

quence of words in a sentence.  



Consolidation: Learning to Reason (L2R) is a framework 

that makes learning an integral part of the reasoning pro-

cess (Khardon and Roth, 1997). L2R studies the process of 

learning a knowledge base (KB) from examples of the 

truth-table of a logical expression, and reasoning with that 

knowledge base by querying it with similar examples. 

Learning is done specifically for the purpose of reasoning. 

L2R has close connections to the neuroidal model of Val-

iant (2000) which examines computationally tractable 

learning and reasoning given PAC constraints. These con-

straints limit the agent’s environment via a probability dis-

tribution over the input space. Despite interesting early 

findings (Valiant, 2008; Juba, 2013), there is much work to 

be done to make this a practical approach. A major ques-

tion is how a L2R agent can develop a complete KB over 

time when examples of the logical expressions arrive with 

values for only part of the input space.  

 This suggests that a Lifelong Machine Learning (LML) 

approach is needed that can consolidate the knowledge of 

individual examples over many learning episodes (Silver, 

2013a; Fowler, 2011). The consolidation of learned 

knowledge facilitates the effective retention and transfer of 

knowledge e.g. rapid and beneficial inductive bias (Silver, 

2013b). This is a challenge for neural-symbolic integration 

because of the computational complexity of knowledge 

extraction and the need for compact representations that 

can enable efficient reasoning about what has been learned. 

Deep networks, however, by seeking to represent 

knowledge in a modular way, together with the representa-

tion adopted by connectionist modal logics, which are in-

trinsically modular (d’Avila Garcez, Lamb, and Gabbay, 

2007), may offer a sweet spot in the complexity-

expressiveness landscape (Vardi, 1996). Modularity of 

deep networks seems suitable for relational knowledge 

extraction, which can reduce the complexity of extraction 

further (Franca, d’Avila Garcez, and Zaverucha, 2015). 

Transfer: Knowledge transfer between, at first site, unre-

lated domains is a crucial cornerstone of human learning. 

In this process, the use of analogy is considered essential 

(Gentner, Holyoak, and Kokinov, 2001). Whilst most of 

the prominent computational models of analogy are logic-

based (Falkenhainer, Forbus, and Gentner 1989; Schmidt, 

Krumnack, Gust, Kühnberger, 2014), recent developments 

in structure learning in a neural-symbolic paradigm may 

open the way for an application of analogy at a sub-

symbolic level. The expected gain is enormous: instead of 

having to retrain a network model on a new domain, in-

sights already obtained could be transferred meaningfully 

between different networks. Yet, two fundamental ques-

tions remain: How can the knowledge-level notion of ana-

logical transfer be implemented in connectionist architec-

tures? How can possible analogies between different do-

mains be discovered sub-symbolically in the first place? 

Some work on heterogeneous transfer learning has been 

directed at these questions (Yang et al, 2009). 

Application: Neural-symbolic integration has been applied 

to training and assessment in simulators, normative reason-

ing, rule learning, integration of run-time verification and 

adaptation, action learning and description in videos (Bor-

ges, d’Avila Garcez, Lamb, 2011; de Penning et al., 2011). 

Future application areas that seem promising include the 

analysis of complex networks, social robotics and health 

informatics, and multimodal learning and reasoning, such 

as e.g. combining video and audio tagged with ontological 

metadata. Overall, neural-symbolic integration seems suit-

able to applications where large amounts of heterogeneous 

data exist and knowledge descriptions are required. This in 

the case in robot navigation and communication, medical 

imaging diagnosis, genomics, hardware/software specifica-

tion, earth observation, multimodal data fusion for infor-

mation retrieval, big data understanding and, ultimately, 

language understanding. Several features illustrate the ad-

vantages of neural-symbolic computation: explanation ca-

pacity, no a-priori assumptions, and its comprehensive 

cognitive models integrating symbolic and statistical learn-

ing with sound logical reasoning. Ultimately, however, in 

each of the above application areas, measurable criteria of 

success should include accuracy and efficiency measures, 

as well as knowledge readability.  

3. Conclusions 

Neural-symbolic computation reaches out to two commu-

nities and seeks to achieve the fusion of competing views 

when such fusion can be beneficial. In doing so, it sparks 

new ideas and promotes cooperation. Further, neural-

symbolic computation brings together an integrated meth-

odological perspective, as it draws from both neuroscience 

and cognitive systems. Methodologically, it bridges gaps, 

as new ideas can emerge through changes of representa-

tion. In summary, neural-symbolic computation is a prom-

ising approach, both from a methodological and computa-

tional perspective to answer positively to the need for ef-

fective knowledge representation, reasoning and learning. 

Both its representational generality (the ability to represent, 

learn and reason about several symbolic systems) and its 

learning robustness can open interesting opportunities lead-

ing to adequate forms of knowledge representation, be they 

purely symbolic, or hybrid combinations involving proba-

bilistic or numerical approaches implemented through neu-

ral networks. 

Acknowledgements: We are grateful to Jerry Feldman for 
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