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Abstract. This paper presents a method for extracting a low-cost rep-
resentation from restricted Boltzmann machines. The new representation
can be considered as a compression of the network, requiring much less
storage capacity while reasonably preserving the network’s performance
at feature learning. We show that the compression can be done by con-
verting the weight matrix of real numbers into a matrix of three values
{−1, 0, 1} associated with a score vector of real numbers. This set of
values is relatively similar to Boolean values which help us further trans-
late the representation into logical rules. In the experiments reported in
this paper, we evaluate the performance of our compression method on
image datasets, obtaining promising results. Experiments on the MNIST
handwritten digit classification dataset, for example, have shown that a
95% saving in memory can be achieved with no significant drop in accu-
racy.

Keywords: Restricted Boltzmann Machines, Low-cost Representation,
Knowledge Extraction

1 Introduction

Restricted Boltzmann Machines (RBMs) [8, 1] are a generative model which
can learn interesting hidden features from data. In many applications, RBMs
have been shown advantageous over traditional feature extraction at training
classifiers, especially when RBMs are stacked onto a deep network to form, e.g.
a Deep Belief Network [2]. However, due to their structural complexity, these
feature learning models require a large storage of memory. In this paper, we
propose a method for extracting a low-cost representation from RBMs, as a step
towards the use of Deep Belief Networks in memory-limited devices. The low-cost
representation is expected to require less memory for storage, while reasonably
preserving the performance of the RBMs. Furthermore, we show that our low-
cost representation can be translated into a logic-like language, thus providing an
intuitive understanding of the data and being compatible with boolean circuits.

We are concerned with the use of RBMs as feature extractors whereby the
hidden features are generated from a logistic function of the weighted combi-
nation of the original features, obtained from a dataset. For the low-cost repre-
sentation, we use the same logistic function with some changes to the weights.
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In particular, we convert the weight matrix of real values from an RBM into a
matrix where each entry has three possible states {−1, 0, 1}, and each column
vector has a real-valued score associated with it. Since there are only three pos-
sible values for each element of the matrix, one needs to use only two bits to
represent them. Furthermore, by removing any rows where the low-cost matrix
has value zero, a further compression can be achieved. The result, as we shall see,
is that the relationships among the input variables in an RBM can be represented
by logic rules, similarly to [10]. Experiments on the MNIST handwritten digit
classification dataset have shown that a 95% saving in memory can be achieved
with no significant drop in accuracy, and up to 99% saving can be achieved with
the low-cost feature extraction still offering a significant improvement on the
baseline SVM classification applied directly to the input data.

The remainder of the paper is organized as follows. In Section 2, we present
background on RBMs. In Section 3, we present the low-cost representation and
the network-compression algorithm. In Section 4, we recall the relationship be-
tween the compressed representation and logic. Section 5 contains experimental
results on the MNIST and related datasets, and Section 6 concludes the paper
and discusses directions for future work.

2 Background

A Restricted Boltzmann Machine [8] is a two-layer symmetric connectionist sys-
tem with no connections between units in the same layer. We use V and H to
denote, respectively, the visible and hidden layers of an RBM. We use W ∈ RI×J ,
where I is the number of visible units and J is the number of hidden units, to
denote the RBM’s weight matrix, with wij denoting the connection weight from
visible unit i to hidden unit j. The energy function of a network with states of
visible layer V = v and hidden layer H = h is given by:

E(v, h) = −
∑
ij

viwijhj −
∑
i

aivi −
∑
j

bjhj (1)

Here, wij , ai, bj are the connection weights, biases for visible units, and biases
for hidden units, respectively. The joint distribution of the network’s states is:

P (v, h) =
e−E(v,h)

Z
(2)

with Z =
∑

v,h e
−E(v,h). Given the state of a layer, the units in the other layer are

conditionally independent and can be sampled from the following distributions:

P (vi|h) = σ(
∑
j

wijhj + ai)

P (hj |v) = σ(
∑
i

wijvi + bj)
(3)

with σ(x) = 1
1+e−x , called a logistic function.
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Training RBMs is difficult due to the computational intractability of the
partition function Z. However, one can use efficient approximation methods
such as Contrastive Divergence [1] to estimate such parameters reasonably well.

In previous work, [10], we have shown that the memory cost of an RBM can
be reduced by pruning low-scoring feature detectors. In what follows, we show
that the memory cost can be further reduced by converting the weight matrix
into a three-valued matrix and a vector of scores.

3 Low-cost Representation for RBMs

RBMs have been used as a powerful tool for the extraction of features from
a dataset. Normally, the RBM is used to perform a non-linear transformation
of the data from its original space v to the space of hidden variables h. The
probability fj of unit hj in the hidden layer being activated given an input v, is
given by (from Eq. (3)):

fj = σ(w>j v + bj) (4)

where wj is column vector j in the weight matrix W of the RBM, and is also
known as a basis vector or feature detector.

We now propose a function to transform the features from the data space to
the same hidden space as follows:

f ′j = σ(cjs
>
j v + bj) (5)

where cj is a real value and sj ∈ {−1, 0, 1}I is a low-cost vector having the
same size as wj , with element sij having one of the values −1, 0, or 1. In order
to make our proposed features f ′j useful, we need to be able to extract cj and sj
from the feature detector wj of the RBM such that f ′j approximates fj . We do
this by minimizing the squared Euclidean distance between the basis vector wj

and the low-cost vector sj weighted by cj , as follow:

d(wj , cjsj) =
1

I

∑
i

‖wij − cjsij‖21 (6)

Note that (6) is quadratic, the optimal value of cj can be found by setting the
derivatives of the squared Euclidean to zeros, such that:

cj =

∑
i wijsij∑

i s
2
ij

(7)

Since the value of sij is in the set {−1, 0, 1}, we have:

‖wij − cjsij‖21 = ‖abs(wij)− cj
sij

sign(wij)
‖21

=

 (abs(wij) + cj)
2 if sij 6= sign(wij)

(abs(wij)− cj)2 if sij = sign(wij)
abs(wij)

2 if sij = 0

(8)
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Here, abs(wij) and sign(wij) are functions that return the absolute value and sign
of wij , respectively. Since (abs(wij) + cj)

2 > (abs(wij) − cj)2 and (abs(wij) +
cj)

2 > abs(wij)
2, sij = 0 will minimize the Euclidean distance if and only if

abs(wij)
2 ≤ (abs(wij)− cj)2 from which cj ≥ 2× abs(wij).

We are now able to describe the procedure to extract cj and sij from the RBM,
as follows:

Step 1: Initialize sj so that sij = sign(wij)
1

Step 2: For each hidden node j, compute cj using Eq. (7)

Step 3: For each connection weight wij , set sij = 0 if cj ≥ 2× abs(wij)

Step 4: Compute cj ; if cj is unchanged then stop, otherwise go to Step 3.

4 Relation to Logic Representation

In this section, we show that the use of low-cost vectors is similar to the con-
fidence logic representation from [9, 10]. A confidence-based logic formula is a
logic programming (if-then) implication of the form c : h← b1 ∧ · · · ∧ bn, where
h is a logical atom and each bi, 1 ≤ i ≤ n, is a logical literal (an atom or its
negation), labelled by a real-valued number c called a confidence-value. For ex-
ample: 1.5 : h← b1 ∧¬b2 ∧ b3 associates hypothesis (hidden unit) h with beliefs
(visible units) b1, not b2, b3 with confidence value 1.5.

If we remove every sij whose cj = 0 from the low-cost vector sj then we are able
present each function f ′j = σ(cjs

>
j v + bj) in the following confidence-logic form:

cj : f ′j ←
∧

si′j=1

vi′j ∧
∧

si′′j=−1
¬vi′′j (9)

In what follow, we present two examples, using the XOR function and the MNIST
images data set, to illustrate the above translation.

Example 1. XOR function

We trained an RBM with 10 hidden units on the truth-table of the XOR
function with 3 variables X,Y, Z. Suppose that we would like Z to be our target
variable (notice that we could have equally chosen X or Y without retraining the
model). Below, we present the confidence-logic rules in which literal hj appears
together with target literal z or ¬z. By combining rules of the form h ← z
and z ← h into h ↔ z, we obtain the set of rules below; treating hj as an
intermediate concept and combining each pair of rules to obtain rules relating
x, y and z directly, and ignoring the confidence-values, one obtains the four rules
for XOR, e.g., from h2 ← ¬x ∧ ¬y and ¬z↔ h2, one obtains ¬z← ¬x ∧ ¬y.

6.843 : h2 ← ¬x ∧ ¬y; 4.008 : ¬z↔ h2; 5.342 : h3 ← x ∧ y; 4.008 : ¬z↔ h3

3.984 : h5 ← ¬x ∧ ¬y; 4.008 : ¬z↔ h5; 2.668 : h6 ← x ∧ y; 4.008 : ¬z↔ h6

4.611 : h7 ← ¬x ∧ y; 4.008 : z↔ h7; 2.389 : h8 ← x ∧ y; 4.008 : ¬z↔ h8

3.847 : h9 ← x ∧ ¬y; 4.008 : z↔ h9; 4.015 : h10 ← ¬x ∧ y; 4.008 : z↔ h10
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0.765 : Zero ←
../ijcnn_14_ns/figs/im_rule/r_3.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_4.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_32.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_48.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_54.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_56.PNG

0.831 : One ←
../ijcnn_14_ns/figs/im_rule/r_2.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_4.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_17.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_24.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_33.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_40.PNG

0.524 : Two ←
../ijcnn_14_ns/figs/im_rule/r_1.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_2.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_21.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_26.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_37.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_49.PNG

0.687 : Three ←
../ijcnn_14_ns/figs/im_rule/r_38.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_47.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_49.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_50.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_51.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_59.PNG

0.348 : Four ←
../ijcnn_14_ns/figs/im_rule/r_19.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_20.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_33.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_35.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_39.PNG
∧

../ijcnn_14_ns/figs/im_rule/r_46.PNG

Example 2. Handwritten Characters
We have applied the same process from the previous example to the MNIST

dataset. We trained a sparse RBM[4] with 500 hidden units and 794 visible
units (784 pixel variables and 10 softmax class variables). Below, we present a
visualization of the confidence-logic rules whereby a positive literal vi is shown
as a white pixel, a negative literal ¬vi is shown as a black pixel, and a literal
that does not appear in the rule is shown as a grey pixel. Normally, the rules
are organized, by the way in which they are obtained, into two levels: one with
relations between pixel variables and hidden variables, and another with relations
between hidden variables and target variables. For ease of presentation, we omit
the scores (confidence-values) from the first level, and also omit the negative
literals from the second level, before we replace the hidden literals (intermediate
concepts) with the visible literals for visualization. Because of space restrictions,
we only show 6 images per rule for 5 (out of 10) rules.

5 Experimental Results

We performed experiments with the MNIST handwritten digits dataset2, TiCC
handwritten characters dataset3 and YALE face dataset4. In each dataset, we
divide the data into training, validation and test set. For the MNIST dataset,
we use a subset of the training data with 10, 000 samples (MNIST10K), 2000
validation samples, and 10, 000 test samples for a digits recognition task (from
0 to 9). We also use the same test set to test the representation extracted from
RBMs trained on the entire training set with 60, 000 samples5 (MNIST60K). The
TiCC dataset consists of 18, 189 training samples, 1, 250 validation samples, and
18, 177 test samples for a person’s letter recognition task (from A to Z). We di-
vide the YALE dataset into a training set with 135 samples, thus 9 samples per
person, and the test set with 30 samples. We used an SVM with Gaussian kernel

1 sij = 0 if wij = 0
2 http://yann.lecun.com/exdb/mnist/
3 http://algoval.essex.ac.uk:8080/icdar2005/index.jsp?page=ocr.html
4
http://vision.ucsd.edu/content/yale-face-database

5 Here, we re-use the hyper-parameters from the experiment with 10, 000 training
samples.
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as a classifier to measure the performance of the extracted low-cost representa-
tion in comparison with the RBMs. Model selection is performed by running a
grid-like search (except for the YALE dataset) over the learning rates for the
RBMs (between 0.001 and 1), cost (between 0.0001 and 100), and gamma (be-
tween 0.0001 and 100)) for the SVM, all on a log-scale. We did not select the
number of hidden units in the RBMs, instead we tested RBMs with 500 and
1000 hidden units only, simply to investigate whether the size of the network
affects the quality of the extracted low-cost representation. All the results using
the MNIST dataset can be reproduced using the MATLAB code provided at
https://github.com/sFunzi/Low-costRBM/. The reader can contact the authors
directly if interested in the results obtained using the other datasets.

The memory needed by each type of representation, i.e. RBMs and our low-
cost representation, can be defined as follows:

MRBM = T × Cword × I × J
Mlow−cost = (2× I × J) + (T × Cword × J)

(10)

where Cword is the number of bits of a computer word in a device, and T is
the number of computer words of a real-valued data type. For example, in a
32-bit machine, a RBM with 784 visible units and 500 hidden units will cost
2× 32× 784× 500 = 25, 088, 000 bits for a double precision floating point type.
In the case of an implementation of low-cost vectors in a computing device which
needs 2 bits to represent an element in the vector then the memory cost should
be (2× 784× 500) + (2× 32× 500) = 816, 000 bits. The ratio of memory saved
by the low-cost representation over the RBM can be measured by:

rsave =
MRBM −Mlow−cost

MRBM
× 100% (11)

float double

rsave no pruning 93.622% 96.747%
rsave 20% pruning 94.898% 97.398%
rsave 40% pruning 96.173% 98.048%
rsave 60% pruning 97.449% 98.699%
rsave 80% pruning 98.724% 99.349%

Table 1: The expected memory saving ratios for an RBM with 784 visible units
and 500 hidden units using standard floating point data types in a 32-bit com-
puter; pruning refers to the percentage of low-scoring hidden nodes removed
from the RBM

In our experiments, we have trained RBMs using double-precision floating
point weight matrices on a 32-bit computer in order to evaluate the performance
of the low-cost representation in comparison with that of the original RBMs at
performing feature extraction. Hence, our purpose is to compare the accuracy
and ratio of memory saved of the RBMs and their low-cost representation. We
assume the existence of a feasible hardware implementation of the low-cost rep-
resentation. We also investigate how accuracy drops as the RBMs are pruned,
in comparison with pruning of their low-cost representation with respect to the
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ratio of memory saved. Pruning of x% of a network (RBM or its low-cost counter-
part) means that the x% lowest-scoring vectors sj , i.e. with the smallest values
of cj , are removed, as done in [10].

Table 2 contains the accuracies of the RBMs with 500 and 1000 hidden nodes
trained on four datasets, and the accuracies of their low-cost counterparts, all
on the held-out test sets. We have run each experiment 10 times and report
the mean accuracy, along with standard deviation. The results show that the
performance of the low-cost representation can be almost identical to that of the
RBMs, with high consistency.

TiCC MNIST10K MNIST60K YALE face

RBM (J=500) 94.851%± 0.033 97.198± 0.060 98.553%± 0.031 95.000%± 2.833
Low-cost 94.711%± 0.072 97.240± 0.089 98.530%± 0.040 94.333%± 3.865

RBM (J=1000) 94.928%± 0.016 97.245%± 0.031 98.680%± 0.024 97.000%± 2.919
Low-cost 94.729%± 0.070 97.219%± 0.056 98.562%± 0.035 96.667%± 1.757

Table 2: Average test set performance of RBMs in comparison with their low-cost
representation on four different datasets

Next, we evaluate the effectiveness of the low-cost representation in compari-
son with pruning the RBM. For both the RBM and its low-cost counterpart, one
can rank and remove the low-scoring vectors sj , for which cj is relatively low. For
the sake of comparison, we prune 20%, 40%, 60%and80% of both the RBMs and
the low-cost representation, and evaluate performance. As expected, the average
test set error increases with the pruning. However, results show that more than
98% memory saving can be achieved by the low-cost representation with the
feature extraction still offering a significant improvement on the baseline SVM
classification obtained from the input data directly.

In order to show the usefulness of the compressed representation at feature
extraction, we use the classification accuracy obtained by an SVM on the orig-
inal input data as baseline. We found that for the MNIST60K and YALE face
datasets, the features extracted by either the RBM or the low-cost represen-
tation produced only a slight improvement on the original data trained using
an SVM. In the experiments with the TICC and MNIST10K datasets, however,
feature extraction outperformed the SVMs. Therefore, we have chosen the latter
two datasets to visualize and evaluate the effect of pruning, as shown in Figure
1 for RBMs containing 500 hidden units only.

In Figure 1, the SVM line indicates the test set error on the raw input data
without using RBMs at all. This line separates the space into an area where the
use of an RBM, low-cost or otherwise, can improve performance (on the left hand
side) and an area where feature extraction, whichever the memory capacity gains,
is not warranted (on the right hand side). Notice that, in the case of the MNIST
dataset, since a 0.2% increase in accuracy is generally accepted as a significant
improvement [3], Figure 1 shows that approximately 98% of memory capacity
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(a) TiCC dataset (b) MNIST dataset

Fig. 1: Error rate progression in comparison with memory capacity gains for
RBMs and low-cost RBMs pruned by 0, 20, 40, 60 and 80%

gains can be obtained from storing a low-cost RBM for feature extraction, while
preserving a significant improvement over the baseline SVM classification applied
to the raw input data.

6 Conclusions and Future Work

We have presented a method for the extraction of a low-cost representation
from restricted Boltzmann machines, which may be seen as a step towards the
integration of deep networks in memory limited devices. The new representation
offers a compression of the network, which theoretically requires less storage
memory, while preserving to some extent most of the network’s performance at
feature learning. In the experiments reported in this paper, it is shown that the
low-cost representation proposed here is advantageous over RBMs in terms of
memory efficiency. The experiments also indicate that the performance of the
low-cost RBMs is almost identical, in practice, or acceptably lower than that
of the full RBMs. As future work, we intend to consider details of hardware
implementation and a real application using lower-memory devices.
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