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FOREWORD

The thesis 1s submitted on the basis of papers published
tetween April, 1974 and July, 1976 (chapters 2-8). Minor editing
of the papers has been carried out for the sake of continuity of
the thesis as a whole. Since each of the papers was written to be
largely self-contained, however, a certain amount of repetition,
particularly of introductory remarks, is unavoidable. For this reason

' lists only those sections which introduce new material.

the '"'contents'
Chapter appendices have been placed immediately following the papers
to which they refer. In the majority of cases these were not

included with the original texts, but have been added here to expand

on points mentioned in the papers or dealt with during presentation.

The report supporting the submission is given in two sections:
an ilntroduction reviewlng the behaviour and analytical requirements of
tension structures which relates subsequent chapters to other
publications, and a conclusion correlating the papers into an overall
context of interactive design and analysis. For the sake of
completeness as a thesis, main appendices A-D have been included at
the end of the thesis to give comprehensive reviews of published work
relating respectively to static analysis, form—-finding, dynamic
analysis, and the development and mathematical basis of dynamic

relaxation. References in these appendices and the introduction

(chapter 1) are contained in the main bibliography, appendix E.
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ABSTRACT

Chapter | reviews the behaviour and characteristics of
tension-structures and the consequent analytical requirements for
form-finding, static and dynamic analysis. Various published
techniques, together with the work outlined in subsequent chapters,

are considered with respect to their compliance with these

requirements; particular emphasis being placed on the needs in form-
finding to cope with inaccurate topology and geometrical data, the

occurrence under static loading of buckling and zero stiffness

situations and, during dynamic response, the interaction of the

structure with the surrounding environment.

Chapter 2 examines the application of Dynamic Relaxation to
the analysis of cable networks. Numerical and experimental results
for a cable edged geodesic network subject to static loading are
compared, and recorded natural frequencies are correlated with those
obtained as a bye-product of the D.R. analysis. The stability of the
analytical  process is considered and an expression governing the
critical time interval is derived. Appendices to the chapter
consider in more detail the extraction of natural frequencies from
static analyses for various load cases, and compare the computational
efficiency of the DR process with a Modified Newton Raphson analysis.
In chapter 3 the method is extended to form—finding and static analysis
of networks with momentless compression boundaries, and to membrane

and pneumatic structures. The derivation and accuracy of principal



stress trajectoriles 1n prestressed anticlastic membranes idealized
as an assemblage of constant stress elements is illustrated for

normal load and for higher loads sufficient to cause buckling. For

dealing with structures employing very stiff elements compared with
cable links, thus creating a high condition number, a force transfer
procedure 1is derived and applied. An appendix to the chapter

considers the accuracy and stability of the central difference
integration scheme for cable and membrane structures with very low

damping which are subject to recurrent dynamic buckling.

Problems with form—finding of uniform stress membranes, in
particular the occurrence of quasi stable or unstable states due to
lnadequate transfer of concentrated support loads into the membrane,
are examined in chapter 4. States which appear to be similar are also
shown to occur due to inadequate idealization of the surfaces. The
derivation of momentless contours for such structures 1s extended
to include boundary traction forces, and these are shown to extend
greatly the variety of possible forms. The above considerations are
extended in chapter 7 to the case of variable stress membrane and
pneumatic structures and geodesic networks; emphasis being placed on
the value of DR when used interactively to simulate physical
behaviour, particularly for examining impending collapse states or

physically untenable specified stress distributions for trial forms.

A computational procedure for the explicit dynamic analysis of
tension structures, accounting for pneumatic stiffening and air and
visco-elastic material damping, is outlined in chapter 5; combined

creep and buckling effects being accounted for by means of an



incremental stain formulation. A simplified basis for deriving
series model visco-elastic constants by curve-fitting material

test results 1s also suggested. The validity of the procedures is
examined 1n chapter 6 by comparison with experimental results

obtained from vibration decay tests on a model pneumatic dome

subject to suddenly applied loading.

Chapter 8 considers the application of DR for optimizing the
form of modular space truss systems subject to a dominant design
loading. In contrast to mathematical programming techniques the
method 1s shown to yield a graded preference of members in
hyperstatic layouts which 1s 1deally suited to interactive design
procedures allowing.architectural design freedom. A basis for such
a procedure allowing for load variations and deflectlion limits 1s
also suggested. The final chapter summarises the advantanges of
DR for the design and analysis of tensilon space structures and

indicates lines of current research.
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CHAPTER I

LNTREODUCTION

THE CHARACTERISTICS AND BEHAVIOUR OF TENSION STRUCTURES

The chapter reviews the characteristics of tension systems
which have a major influence on the requirements for form-finding and
static and dynamic analyses. A detalled review of methods of analysis
which are appropriate for tension structures 1s given l1n appendlces

A - C (pages 289-370). References 1n these appendices and the present

chapter are contained in the main bibliography (appendix E p. 404 ).
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consist of high strength flexible cables or membranes sustalining

only tensile forces. The cross section of these members may thus be
fully utilized with pgrmissible stresses not limited by instability
effects. The use of high tensile components results in lightweight
structures which, in comparison with conventional structures, become
more economlc wilith increasing spans. Major cost factors, however, for
all tension systems are the bearing support structures, whicﬁ may be

subject to bendlng or compressive stresses, and the means of anchoring

the high tensions resulting from long spans and shallow curvatures
(113, 185).

Architecturally, tension structures may be aesthetically
pleasing, with structural function clearly expressed, primarily
because the internal force distribution and surface and boundary forms
are interdependent. Thus prestress ratios govern surface form and
preferred boundary shapes, and changes in stresses due to applied loads,
which depend on form, govern the required magnitudes of prestress.
As a consequence, efficient design and subsequent economy of construction
demand the closest collaboration between Architects and Engilneers at
all stages through repeated form—finding and analysis to detail design.
Whilst this is desirable for the design of any structure, for tension
structures it becomes essential because of the more direct 1nter-
relation between form, internal forces and behaviour in service. A
comprehensive discussion of these concepts for a large variety of

tension systems has been given by Frei Otto (144-146).

STATIC BEHAVIOUR

For the purpose of reviewing the general behaviour and analytical



Structural Mechanism
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requirements of tension systems it is convenient to group them in two

broad classes:

(1) Properly triangulated structural systems

(2) Structural mechanisms possessing degrees of mechanical
freedom.

Examples of the first group, provided elements remaln tensioned, are
triply threaded nets, prestressed suspended shells, and cable trusses;
whilst two way cable nets, cable girders, deadweight systems, and
stressed membranes without shear rigidity are all structural mechanisms
(figure 1). For continuous structures the degree of mechanical freedom,
or conversely the redundancy, cannot be quantified, but for discrete
pin—-jointed assemblies it may be expressed as (37):

DMF = £ - m + p
where f 1s the number of degrees of freedom of the join;s,'m 1s the
number of members, and p is the number of linearly independent force

systems which can be superimposed without disturbing the equilibrium

configuration. Normally, for a properly designed tension system p 1S
zero unless the system is regarded as weightless in which case p = I.
In the pretension condition the equation of equilibrium 1in the x

direction at a joint j, connected by links to adjacent nodes k, 1s

given by:

Ik
Z{%"Dx} - p°, (1)
k &L ]

where T is the tension and 7 the length of link jk, sz 1s the

component of self weight at node j in the x direction, and Dx = (xj-xk) .

After the application of live loads, P, the equilibrium condition

becomes:

2 {(T+AT) Lk p° +Pp . = P, (2)
k

X7 X7 X ]

(Z+AZY(Dx+D6x)
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where AT and Al are tension and length increments of link jk, and Do

= (6583' - (Sxk) , the difference in x displacements.

In matrix notation equations type (1) can be arranged in

three sets of i1ndependent linear equations:

(6Jd - (o2 (0] - (238 [0 = (3} oo

where, 1f n 1s the number of active nodes (excluding fixed boundary

nodes) , {X}, {Y}, {Z} are vectors of the unknown co-ordinates, each

of order n x I, {P;}, {P;}, {PZ} are self weight loading vectors

modified to incorporate the known boundary constraints, and 1H} 1s a

-

matrix, n x n, dependent solely on the tension coefficients. If these
are specified the geometry of the system can be found directly for

any self weight vectors and boundary conditions (169, 123, 162).

Equations type (1) could alternatively be arranged 1in the

form:

where {T} is an m x | vector of unknown tensions, and [G]his a matrix
(f x m) dependent solely on geometry. But for a structural mechanilism

m<f, and therefore the geometry cannot be arbitrarily specified but

depends on [T} and {PO}

For a properly triangulated structure, 1f members are assumed

inextensible no deformation would take place under loading and equations

(2) could be written in the form:

[G][T+AT} = { P}

with only changes in tensions required to accommodate the loading.
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For structural mechanism with m<f, however, [Pﬁ}cannot be arbitrary

unless [G:Ialso changes with the loading. Thus even when members

are assumed to be rigid, finite deformations of such systems must

take place.

The major difference in behaviour between triangulated
systems and structural mechanisms is that the latter are subject (o
much greater deformations under asymmetric loading, and dominant

natural frequencies are closely grouped and tend to be much lower
than the range for triangulated systems (13,_172). This 1s because
the variations 1n elastic strain energy of structural mechanisms
undergolng non-symmetric deformations are much lower. At one extreme,
deadweight systems sustaln asymmetric live loads, which must be

small in comparison with the dead load in order to limit deformations,
largely through geometric deformation; equilibrium being achieved
through changes in shape with only small variations in cable tension.
In lightweight prestressed systems the tie-down or prestressing
cables do not merely serve to pre-load the main hanging cables but
become elastically active in resisting deformations. Thus maximum
tensions in the main cables and the consequent costs of support
structures and anchorages may be lower than for deadweight systems;
the essential feature of prestressed systems being that they are

designed on the basis of maximum live load variations.

Under working loads, no links 1n prestressed cable structures
should be allowed to slacken, otherwise the system may become too
sensitive to dynamic loads with high local deformations. Elastically

triangulated structures, whilst stiffer under non-symmetric loads



because they are braced against shearing deformations, attract
greater tension changes in individual links, and the bracing cables
1n particular may slacken if the system is not sufficiently prestressed.
In structural mechanisms tension changes tend to be smoother and they
are less prone to cable slackening. On the other hand the geometric
stiffness 1s a large proportion of the total stiffness and, for a
given shape, 1s directly dependent on the level of prestress. In
practice, the distinction between the two systems may be imprecise.
In steeply curved two way cable nets, for example, following
deformation by applied loads, the cladding may provide some measure
of bracing across the tension diagonals of the mesh; being allowed

to buckle 1n the compressive directions. In this case however, the
cladding and jointing would have to be designed to accommodate the
deformations of the composite structure. Usual practice 1s to make
the jointing system very flexible 1n order to avoid distress 1n the
roofing surface which is then assumed only to transmit applied loads

to the structural net.

Analytical Requlrements

Well conditioned triangulated cable structures may be
approximately investigated under working loads by means of linear
elastic analysis. For structural mechanisms, however, an analysis
which accounts for geometric non-linearity at all stages of loading
must be used. Near ultimate load conditilons both systems may
additionally require account to be taken of either discontinuous oOT
continuous material non-linearities such as cable slackening and
slip at the joints (164) or the true stress/strain curve of the

material. The latter factors may enable a significant increase 1in
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the ultimate load carrying capacity of the structure through
redistribution of forces from highly strained links to those with
lower strains. Greenberg (72) for example, using a continuous
exponential function to represent the inelastic portion of the
stress/strain curve for steel cables, has shown that for practical
two way cable networks the ultimate load capacity may be increased
by more than 507 compared with an analysis assuming a linear stress/
strain relation throughout the range with the same ultimate stress.
This 1s due partly to the redistribution of stresses and partly to
the larger deflections and curvatures resulting from increased
strains. A similar effect occurs during material softening under
fire loading (88, 54) and, combined with the lack of instability

problems, results in prolonged fire resistance of tension systems.

The combination of geometrical and material non-linearities,
particularly where on/off non.linearities are involved, creates 1n
general a path dependent problem which should be solved by means
of an incremental solution technique in which loads are applied
1n small steps to obtain a unique solution. Many methods of
analysis, (discussed fully in Appendix A,p.289), such as 1iterative
Newton—-Raphson, modified Newton-Raphson, or minimization methods,
in fact may assume that a unique solution exists which 1s not path
dependent. For the most part, however, these analyses have been
applied to tension systems and verified assuming only geometrical
non-linearity. For such cases, proofs of uniqueness have been
eciven by Buchholdt et al.(39) and Mollmann (123). Assuming the
strain energy of a link is a strictly convex function of 1ts

extension, they show that the total potential energy of a pin-jointed
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assemblage is a convex function of the joint displacements for all
configurations in which members are in tension and that the
equilibrium state is therefore stable and unique. Mollmann further
shows that for a two-way anticlastic cable net subject to loads

which are constant in magnitude and direction the solution is

unlque provided all links in one family of cable lines remain in
tension. For a completely general case, however, in which some
compression elements may be employed, cable links may slacken, and
loading, for example normal pressure loading, is deformation
dependent, uniqueness of solution may not be theoretically guaranteed

unless a path dependent solution is used.

Published information concerning the performance of methods
of analysis in the presence of cable slackening is scarce. This
1s perhaps attributable to the normally accepted design requirement

that slackening should not be allowed to occur in practise, yet

final analyses for ultimate loads should reliably account for this.
Moreover, for membrane and pneumatic structures wrinkling in a
direction of zero principal strain will often occur under working
loads, particularly in regions where the flexible membrane adjoins

a rigld boundary or inclusion. The author (15) (Chapter 3 and
appendix 3.2) has examined the problems of convergence and stability
of a membrane analysis with buckling induced under both static and
dynamic loads. For static analysis of an anticlastic membrane
subject to normal pressure loads it was found that a unique solution
was obtained provided buckling in any membrane element occurred in
only one principal direction. When buckling occurred in both

directions, however, convergence to a unique solution was not obtailned.
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This was perhaps due to the type of elements and idealization used,

though other researchers at a recent conference (48) also reported

convergence difficulties with buckled membranes.

The poorly conditioned geometrical forms of many tension

systems may also give rise to numerical problems, particularly in

matrix solution methods involving a large number of unknowns. If
equations (1) are subtracted from (2), and the result is expressed

1n linearised and incremental form, the tangent stiffness relations

corresponding to the current load level may be obtained:

x [{as] = (o]

where [KtJ 1s composed of two parts: the elastic and the geometric

stiffness, [Ke] + [Kg].

In the stiffness matrix of a linear elastic structure the elementsof
the 1th column, kli, kK,i, kgjevevookyi..00.kyys represent the nodal

forces which would be required to maintain an 1mposed displacement
increment of AS8; = | with all other displacements zero. For a well

triangulated structure kj; would be greater than the off-diagonal

components kjj. For a shallow non-linear network structure, however,

the leading diagonal terms corresponding to deflection normal to the
surface may be very much less than the related off-diagonal terms.
Referring to figure 2, for example, the horizontal node forces requlired
to sustalin an imposed vertical displacement of 6u7 = | at node 3 will

be considerably larger than the direct vertical component of force at

node 3. Thus k <<k ;k ; k : k
757 357 5570 1257 14,7
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Figure 2

The non—-dominance of some main diagonal terms, coupled with the

greatly differing stiffness components along the leading diagonal, 1is

a cﬁaracteristic of poorly conditioned equations and 1s thus an 1lnherent
problem 1n the matrix analysis of tension structures (72). A

further problem with either iterative or incremental matrix analyses

1s that for certain states of load and displacement the matrix may

at some stage in the solution process become singular, with one or

more direct stiffness components zero, necessitating conditional

deflection controls (78).

Other than the characteristics discussed above, the analysis
of tension systems involves a special consideration of two major

aspects. The first is form—-finding which, as already mentioned, 1s
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directly coupled to the prestress distribution and consequent sStresses

under loading. And the second is dynamic behaviour; the lightweight

and flexibility of tension structures making them particularly

sensitive to dynamic loads.

DETERMINATION AND INFLUENCE OF FORM

Until 1969 model studies were the only practical basis for
the form-finding of cable nets and membranes, and thin fabric models
still provide a useful visual and experimental tool at preliminary
design stages (145, 146, 112). During the design of the Munich
Olympic games stadium, however, it was concluded that the
determination of geometrical properties from wire models was
dangerous owing to the error sensitivity of the structure;
inaccuracies of jointing being liable to induce considerable
discrepancies in the desired cable network forces, particularly 1in
those links close to the edge cables (76, 164). Prior to this, the
model design of cable networks, such as the German pavillion at

the Montreal Expo' 67, had been based on a three phase form-finding

procedure. The first phase was the study of soap films to simulate

minimum surfaces with uniform stress distribution. From this an
approximate form was obtained on which was based the pattern for
constructing an orthotropic fabric model without shear stiffness. The
fabric model provided a tactile means for investigating in more detail
the architectural form with adjustment of supports and network/edge

cable tension ratios, and also simulated a uniform mesh network more

closely than the uniform stress soap f£ilm; curvatures and stress
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distributions differing significantly because of distortion of the
fabric mesh angles., The final phase of form-finding was based on an
accurate uniform mesh wire model with geometric and elastic
slmilarity to the real structure. This wire model permitted further
small adjustments, following investigation of deflections and stresses

under load, after which final measurements were taken to provide

the scaled pattern for the real structure.

For the Munich Stadium Argyris, Scharpf and Angelopoulos
developed a computer form—finding analysis to replace the wire model
stage (6, 3). This was initially based on an iterative Newton—
Raphson matrix method using as starting geometry and tensions data
obtained from previous wire models of the structure. The prestress and
link lengths were correlated at each stage so as to ensure uniform
slack lengths throughout the interior of the cable mesh, together with
control links at the ends of each cable of the network in which the
slack length could be adjusted to ensure the design level of prestress.
It was found, however, that convergence was elther too slow or could
not be obtained due to the inaccuracies of the scaled model data.

For this reason a mathematical model had to be constructed which
consisted of smoothing the architectural data by quartic interpolation
in separate regions of the network. On this mathematical surface a
uniform mesh network was developed with the initial prestress values
in links calculated assuming a constant projected component of
tension throughout the length of each cable. The non-linear form-
finding analysis was then applied to the resulting data with the
tension at one end of each cable of the mesh held constant and edge

cable nodes adjusted at each stage of iteration to minimise distortion
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of the network at the boundaries and maintain close compliance

with the required edge cable curves.

The above account indicates briefly some of the problems
associated with analytical form-finding, detailed descriptions of
which are given in Appendix B, p. 326. The analysis for the Munich
Stadium was made more complex by the need to comply as closely as
possible to a previously described surface obtained from approximate
modelling, and by the fact that foundations for the main masts had
already been placed before the analytical form—-finding was commenced.
Thus, whilst the engineering design required checks on stress levels
and consequent adjustments to prestress distribution, i1t was at the
same time necessary to fit rather precise specifications of shape and
support points which in turn depended on the prestress yet were

derived independently.

Since the construction of the Munich Stadium more formalised
methods of correlating proposed architectural form snd engineering
design requirements have been developed by Knudson, Linkwitz, Schek
and others (97, 110, 132). The form-finding process may be posed in
the form of an optimisation problem such that, given a preferred
architectural shape (Xd) and, independently, a preferred force
distribution (Td), an exact figure of equilibrium is sought (satisfying

equations 3a-c) which minimlses:

L {x—xd}T. Pa . { x—xd} + > {T-Td}.r: Pg . {T-Td} (4)

where {x} and [T} are the true equilibrium shape and force

distribution, and P, and Py are respectively weighting factors glven
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to the architectural and engineering design preferences.

From the point of view of construction, cable networks are
generally formed either from a pre-jointed uniform mesh with identical
link lengths in the slack state, or as geodesic nets 1in which each
cable takes a path of minimum length over the surface, with constant
tension throughout its length, and nodes are jointed after
prestressing. Thus, whilst the minimum to expression (4) 1is
sought, constralnts must simulfaneously be applied to ensure
unlformity of either mesh lengths or tensions. The former type of
net 1s constructionally simpler and more appropriate for large
structures. But because of the constraints on node positions, and
hence also the cable trajectories, the network may contaln areas
in which the cables lie along lines of very shallow curvature.
Coupled with the effects of distortion of the mesh angles, 1nducing
significant variations in tension throughout cable lengths, this
may necessitate higher levels of pretension than for geodesic nets
in order to avoid areas which are too flexible and sensitive to

cust loading.

Other classifications of two-way nets, which to a large
extent are purely analytical, are:

a) Orthogonal nets, in which cables are assumed to lie
in vertical planes with known spacing, derived by solving only the

linear equations (3c) with specified horizontal tension components

(170,123).
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b) Uniform force-densities net derived by solving the three

sets of linear equations (3a=-c) assuming constant tension

coefficients (162).,

c) Isostatic nets in which cables follow the lines of
principal stress trajectories which would result from the application
of a uniform normal loading to a previously derived minimum surface
membrane ( 13). Each of these nets may be useful at preliminary
design stages. The first two enable a rapid search of feasible forms
with differing specified supports and, for the chosen form, can
provide 1nitial data for a subsequent non-linear analysis with
constralnts on mesh lengths or tensions (162). Alternatively, 1if
possible forms are investigated by means of a minimum surface
membrane analysis, simulating soap film experiments, and the chosen
form is analysed for normal loading, the stress trajectories derived
give an indication of the preferred orientation of cables for a
network (13,19). Since these trajectories follow lines of
principal curvature they give a net which, in an overall sense, is
stiffest to normal loading for the chosen surface shape. This may
be a useful guide for the design of geodesic nets with complex |
curvature and support conditions. Simillar comments relate to the
design of membrane structures. Ideally the directions of the
weave should coincide as closeiy as possible with lines of principal
curvature, though this may conflict with the need for simplicity
and economy in the cutting and jointing pattern. The most pragtical
alternative, which does not entail distortion of the weave, 1s to

base fabric cutting patterns on geodesic lines over the surface (87).
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For triangulated systems statical constraints do not govern
possible design forms to the same extent as for two-way networks
or membranes without shear resistance. Reinforcement of
pneumatlc structures with_a triply threaded grid of cables, for
example, enables greater freedom of design since effective stress
distributions may be more radically varied than those in an
orthogonal fabric membreane. Again, however, the need for

constructional simplicity may curtail this freedom.

Approaches to form-finding characterised by the minimisation
of expression (4) imply the need for an architectural specification
of shape which is initially independent of statical equilibrium
and ccnstructional constraints, except to the extent that the
modelling material and process may qualitatively simulate such
physical constraints. The model simulation, however, 1s not
sufficiently accurate to provide an estimate of design prestress
levels and distributions which take into account maximum and
minimum tension changes under various conditions of loading. In
consequence, approximate analytical modelling 1s desirable before
the commencement of the non-linear optimisation process. Moreover,
if the shape specification is based purely on crude physical modelling
it may be very difficult to assign realistic values to the weighting

factors PA and PEg. In this case 1t would seem more appropriate to

use an alternative approach to form-finding in which preliminary
architectural sketches or physical models are used only to provide
the conceptual topology of the structure. Feasible geometrical

arrangements are then searched using interactive computer graphics
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based on analytical techniques which satisfy engineering constraints

at each stage of the search and also permit the behaviour in service

of trial designs to be rapidly checked.

Two procedures for interactive design of tension Systems
have been described which may be classified as either discrete search
or dynamic search methods. The first method, by Grieger (73), uses
the interactive console to call and display the results of various
separate programs, developed at the I.S.D. in Stuttgart, for
approximate or exact form—finding, static and dynamic analyses. For
the non-linear form—-finding problem, with constraints accounting
for mesh type, complete matrix i1teration analyses to achieve or
closely approximate statlic equillibrium are required for each
change 1n support and prestress conditions. The system may thus
make heavy demands on computing time, core store and backing
facilities, but a large range of program and element types can be
incorporated. An alternative approach to interactive form—finding,
proposed by the author (17,19) (Chapters 5,7), 1s to treat the
search as a physically dynamic problem in which the alterations of
support and prestress conditions, and consequent changes in form,
may be continuous. The analysis, based on a procedure termed .
Dynamic Relaxation, allows constructional constraints to be
accounted for at both approximate and exact stages of form-finding;
the distinction between these stages being merely a matter of

degree of convergence, which initially is rapid (figure 3).
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The same program may also be used to examine both static and
dynamic behaviour under design loads, and it is thus theoretically
possible to treat the entire design as a continuous process. A
useful feature of the method is that the overall stiffness matrix
need not be formed and thus the topology of the structure may be
altered, for example by refining the idealisation or deleting
certain links when edge curves are amended, during the form-finding
process without having to reformulate the analysis. Another advantage
of a direct rather than matrix formulation is that core store 1is
considerably reduced, but a disadvantage is that, for efficiency,
1t 1s restricted to simple element types such as bar or cable

links, constant moment beam elements, and triangular membrane or

constant moment panel elements (Chapter 5, Appendex 2).
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vV .
One problem at present with the concept of interactive

form-finding is that surface shape and wind loading are interdependent,
and this is a particularly important aspect in the case of light-
welght temsion structures. For any surface shape the pressure
coefficients must usually be determined from wind tunnel tests

and, wilthout these tests, only very crude estimates of mean or
fluctuating components of wind loads are possible. It is, however,
necessary to qualitatively assess the effects of shape and other
design parameters on the behaviour and efficiency of a structural
system before embarking on wind tunnel testing. Critical wind
speeds, for example, may be estimated.fromthe lowest natural
frequencies and mode shapes, and these in turn depend on surface
curvatures, prestress levels and the elastic stiffnesses of the
cables, membrane cover and support structures (43). Also the
degree of pneumatic damping, dependent on permeability of the
structure, and anelastic material damping, particularly from
visco—elastic cladding elements, may be assessed (195,18) (Chapter
6). Nearly all of these factors are in turn governed by the static
load carrying requirements and, because of the light self welght,
the distribution of applied static loads may significantly affect
dynamic response. Thus for each such distribution the static and

dynamic behaviour should preferably be assessed together.

Since major cost items are the bearing structures, form-
finding procedures should account for their efficlent design
and shape determination simultaneously with that of the surface

structure. In the case of tension boundaries, assuming that when



necessary the topology of adjacent surface elements may be
convenlently expanded or contracted, furnicular edge curves may
be generated and amended automatically as tension elements in
the overall analysis. The generation of momentless compression
boundaries for structures of irregular shape, however, requires
speclial treatment in order that the analysis does not become
unstable. In a direct step-by-step procedure this entails
simply the reversal of force and stiffness components at edge
nodes at each stage of the formrfinding'process which 1s carried
out simultaneously with the surface shape determination (15,16)
(Chapters 3,4). In contrast, matrix methods require that the
aﬁalyses for funicular compression boundaries and surface shape
be de—-coupled and this considerably increases the number of
lterations compared with tension bounded structures in order to

obtaln convergence.

For orthotropically stressed membranes and networks with
symmetric plan forms it i1s possible to derive analytically the
required stress distributions in the suspension and prestress
directions to ensure that a specified compression bearing
contour with continuous curvature 1s approximately momentless
(113). Alternatively the saddle surface curvatures and hence
prestress ratios can be specified and thence the required
momentless boundary may be derived. In practice some compromise
between preferred boundary and surface forms may be required,

and for the general case of irregularly shaped structures
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numerical interactive form-finding is well suited to achieve a
satisfactory overall design. From the point of view of static
and dynamic behaviour in service, fairly uniform surface
curvatures should be sought and this restricts the possible
momentless boundary forms. An exception to this is the case
when the surface boundary is connected also to a continuous
support wall or network which is capable of transmitting shear
forces to the ground. By varying the magnitudes of these shear
forces, together with vertical loads acting along the bearing
contour, 1t 1s possible to generate a considerable variety of
regular or irregular boundary forms even for the support of

uniformly stressed surface membranes or networks (Chapter 4).

Internally balanced tension systems using contlnuous
compression boundaries to absorb cable forces from either
double layer or network systems are generally more economilc
than open systems involving support masts and tension anchorages
(113,185). The derivation of momentless -boundaries, however,
applies only to one condition of load and prestress and
compression boundaries must be capable of supporting the moments
induced by all variations of load and cable tensions. These
become more severe as boundary shapes depart from circular or
elliptical, but in considering the bending stresses induced 1in
compression boundaries under various conditicns of loading the
structure must be analysed as an integral unit, accountlng for

rhe beneficial effect of non-linear interaction between the

tension cable system and the bearing structure. This 1s
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particularly important in respect of bearing contour stability
since the cables not only transmit loads but also constitute an
elastic support which may stiffen with increase of external
load and provoke a simultaneous increase in the critical load
of the compression boundary as this deflects. In circular
saddle roofs subject to distributed'loading, for example,
deflection of the elastic boundary may induce an increase in
tension 1n both the suspension and prestress cables; the
stabilising effect of these cables, and consequent limitation
of bending moments, belng dependent on surface curvature and

prestress levels. Shallow curvatures with high pretension may

favour the use of slender ring beams and result in overall

economy (43, 126).

The foregoing discussion of form-finding has primarily
concerned tensioned structural mechanisms for which the form may
be regarded as a spatial funicular of the link or element forces
under prestress conditions. Another approach to structural form-
finding, which has been applied to truss and space structures, 1S
concerned with determining the arrangement of elements to achieve
a minimum weight design whilst complying with various limits on
deflections and stresses under differing loads. The majority of
mathematical optimization techniques appropriate to this problem
place severe constraints on freedom of architectural design and,
for multiple loading conditions, may result in highly irregular

structures. In contrast, the form of structural mechanisms which
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are prestressed to ensure stability under live load variations

reflect clearly their structural function because the prestress

dominates.

When the problem of minimum weight design of
triangulated space systems can alternatively be posed as finding
the most efficlent structural arrangement to support a maximum
average design load, together with variations from this loading,
the forms which result from optimization may also clearly
reflect their structural function. This approach has been
considered in Chapter 8 which outlines an optimisation process,
based on Dynamic Relaxation, épplicable to modular space
structures which are complex in function and form. The procedure
permits full emphasis to be placed on freedom of architectural
design which may be carried out interactively. Thus, for each
functional modification, applied and dead load conditions alter
the preferred structural policy, determined by an analysis which
continuously modifies member areas and allows topological
changes to be made in the direction of currently greatest

efficiency.

DYNAMIC BEHAVIQUR

The characteristics of tension systems which make them
attractive for spanning large areas, that is, their light weight
and the efficient use of tension members without flexural

rigidity, also contribute to the drawback of sensitivity to
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dynamic loading. This is particularly so in the case of
prestressed structural mechanisms, such as networks, for which
very low natural frequencies may possibly give rise to the
danger of flutter at high wind speeds (171), or may place these
frequencies 1in the high energy range of the gust frequency
spectrum (42). Furthermore, the close grouping of natural
frequenclies 1n mechanisms can result in the occurrence of

interference or beating phenomena, with dynamic response to

buffeting wind loads involving the participation of many modes

(96). Greater demands are thus placed on techniques of analysis

which may be further complicated by the need to account for

non-linear response, with stiffnesses, damping effects and

effective masses being partially dependent on nodal deformatioms,

velocities and accelerations (90,1,81). Wind tunnel tests are
essential for the determination of pressure coefficients and
also for the examination of frequencies of vortex shedding from

bluff edges which may influence detailed design. In the case

of the Munich Stadium, for example, following wind tunnel testing

the edge rim was shaped to avoid dynamic excitation of the
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structure by buffeting vortices (109). For very flexible surfaces,

such as pneumatic structures, the wind pressure coefficients,
together with the internal volume and pressure, may also change
significantly with deformations (25, 155); fully aeroelastic

model tests may not, however, be practicable.

The low natural frequencies of tension networks can be

increased by increasing the pretension, surface curvatures, Or



the stiffness of support structures (38). Increasing the
sectional area of cables has comparatively little effect on
fréquencies since the stiffening is offset by the additional
dead weight. For steeply curved surfaces, however, the
cladding may provide stiffening and triangulation across mesh
diagonals and thus increase and disperse the range of natural
frequencies (180). With shallow curvatures these effects are
likely to be less significant because the dominant stiffness
1s geometric, and much larger deflections would be necessary

to ensure the effective participation of initially unstressed

cladding.

Following deformations by wind loading, in addition to
the possible alteration of pressure coefficients, the high
flexibility of many tension systems can also give rise to
secondary 1lnteractions between the structure and the surrounding
or enclosed air which should be accounted for in dynamic
analyses. The 1inertial reaction of surrounding air to
accelerations of the roof surface may need to be included as
an 'added mass'" term with the mass components of the structure
(90, 1). The effect can be significant for very light open-sided
structures without superimposed loads (which otherwise may form
the dominant mass components), and results in a further reduction
of already low frequencies. For surface structures with closed
sides, however, variations of internal pressure as the structure
deforms may give rise to a stiffening effect which increases
the natural frequencies. The magnitude of this effect will

depend upon the mode of vibration. The first half-wave symmetric
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mode 1s the main volume displacing mode and this will entail

pressure changes which can have a considerable effect on

lnternal pressure and air stiffness resisting deformation. To
a lesser extent the same may apply to some higher symmetric modes,
but antil-symmetric modes tend not to be volume displacing and

are consequently little affected by additional air stiffness (1,

171, 195).

As a result of pressure stiffening the fundamental
modes and frequencies of fully or partially enclosed structures
may differ radically from those predicted by theory which does
not account for variations in ilnternal pressure, though this
will depend on the type of structure and the cable curvatures
employed (1). For triangulated truss and radial systems the
first half-wave mode tends to be dominant for the unclad structure
but 1s replaced by the first anti-symmetric mode as the
fundamental when the roof surface and sides are clad. For cable
girders with vertical struts or steeply curved networks thne
fundamental mode may be anti-symmetric whether or not the
structure 1s clad since this entails smaller changes in strain
energy than the first half-wave mode. For very shallow networks,
however, the first unclad mode may again be symmetric and

consequently volume displacing when the structure 1s clad.

In all tension systems the degree of damping 1s of major
importance. It is impossible to ensure that vibrations will not
occur but, with significant damping, amplitudes may be kept within

acceptable limits. The mechanisms of damping which can occur 1in

tension Structures are:
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a) Rheological material damping: due to visco—-elastic

behaviour of membrane cladding panels, and anelastic

behaviour of the cables

b) Friction damping: due to the mechanical construction

of cables and cladding and cable joints

c) Air damping: due to the kinetic energy of air

resistance to structural vibrations

d) Pneumatic damping: due to the decay of internal air

pressure changes lagging deformations of roof

structures with permeable sides

e) Rheological and friction damping 1n support structures

and foundations

f) Incorporation of damping elements in the design: for
example, dashpots at the junction of cladding and

cable nodes and in cable links or stays.

In tests on network and membrane structures with open sides

Jensen (90) found that the logarithmic decrement associated with
cladding or membrane damping ranged between 4-207 depending on the
type of material and jointing. For cables the range was 0.5-37
depending on the level of prestress, with the higher values
corresponding to low prestress. And air damping was found to be
significant only for very light structures. Zingali (195),
reporting on the design of the Palasport in Milan, showed by means

of a simplified single degree of freedom analysis that pneumatic
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damping, and the associated increase in stiffness due to changes

In internal pressure, was sufficient to eliminate the first

half-wave mode of vibration which otherwise would have been

critical. He assumed an exponential decay of the pressure changes
which depended on the permeability of the structure sides. The
author (18) (Chapter 6), in vibration tests on a closed pneumatic
dome subject to suddenly applied central ring loads, isolated the

effects of material damping, air damping and pressure stiffness

changes. The decay of vibrations was recorded and found to
correlate fairly closely with an explicit numerical integration
analysis which included all of these effects. The membrane was
represented as a series of elements with visco—-elastic properties
which approximately simulated material damping; the visco-elastic
constants having been obtained by means of a simple calibration

test.

The inclusion of damping terms 1n matrix methods of
dynamic analysis has traditionally had to be founded on previous
experience or vibration tests on similar large scale structures which,
in fact, have been comparatively rare. In modal superposition
methods the percentage of critical damping for each normal mode and
frequency is required. For implicit integration schemes, which are
more suited to non-linear structural behaviour, a complete damping
matrix is required which, for the purpose of obtaining a solution,

is normally taken as a linear combination of the stiffness and mass

matrices (K and M):

EIEE [cl[M] ' CZ[K:[HS'} +[x](3] - EP(t)}
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Neither procedure can truly represent the physical mechanisms

of damping and the coefficients can at best only be estimated.

The latter procedure, however, has the merit of qualitatively being
able to represent separate categories of damping. Thus, for
example, ailir damping 1is dependent on nodal velocities and can be

accounted for with an appropriate choice of C,; whereas material

damping 1s dependent on relative nodal velocities and is best
incorporated by adjusting the coefficient C,. A further difficdty
wlth matrix methods of solution for structures which interact non-
linearly with their environments is that the linearised mass,
damping and stiffness matrices may be unsymmetric, consequently
entalling increased computing effort (81). This results, for
axample, from the inclusion of added mass terms, directional drag
and pneumatic damping and stiffness. The latter effects are
most conveniently allowed for in the forcing function {P(t)} and
the solution is then greatly simplified by the use of explicit
integration methods which do not require the formation of the

various coefficient matrices.

Another problem concerning the coupling of structure
deformations and loading, which may arise for very wide span
flexible systems, 1s the danger of flutter. Classical flutter
is generally regarded as a self-excited oscillation, with a
sustained or divergent amplitude, which may occur when the
structure is subject to sufficiently high laminar wind speeds
(71). The basic cause is the extraction of energy from the flow
by elastic deformation of the structure, and feeding of this
energy into some particular mode of oscillation 1n such a way

that the work done by the air balances or exceeds the energy
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that 1s dissipated by damping. The small deflection elgenvalue
problem for the natural modes and frequencies, w, of a structure

not subject to excitation may be expressed as:

“:K] - WZEM]’ = 0

In the case of flutter, the modes and frequencies of motion are

determined through the interaction of the inertial, elastic and

aerodynamic forces:

[<]-w[e]-Gu [o]f - o

where /i’ and U are the air density and free stream speed, and [Q:{
1s a matrix of aerodynamic influence coefficients. The latter,

however, are not readily available except in the simplest cases.

The only analytical assessment of flutter relating to
tension roofs which i1s known to the author is that given by
Sofronie (173), who considered a very simplified structure
consisting of parallel cable girders on a long rectangular plan

with open sides or flexible column supports. Expressions for

critical wind velocities were obtalned 1n a similar manner to
analyses for aeroelastic stability of rigid wing structures with
coupling of bending and torsional degrees of freedom. These
simplifying conditions would, however, not generally apply even

for most rectangular truss or girder structures. It has been?
suggested (193) that the possibility of flutter may be precluded

in cable girders by ensuring differing tensions and load distributions

in the upper and lower cables. In fact, however, the system merely
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prevents mechanical vibrations without straining, since corresponding

natural modes and frequencies of the main cables considered in

1solation must always differ.

Siev (171) has examined the occurrence of flutter in
small scale wind tunnel tests of a stressed hypar membrane and
concluded that for membranes or cable networks of daring design
the possibility of flutter in practice does exist. A result of
interest relating to pneumatic stiffening was the elimination of
the lowest flutter frequency when the volume of the structure was
enclosed. Tsuboi (180), for the design of the Tokyo olympic
swimming pool roof, estimated critical wind speeds by regarding
a disturbed air stream moving across the structure as a system of
air blocks having various densities. By this analogy the critical
velocity for any normal mdde 1s glven by the'product of the wave
length and frequency of vibration of the mode. A check on Siev's
results for frequencies and critical velocities shows that the
latter could have been adequately predicted using the air-block
analogy, both for the fundamental and higher modes. Thus,
although accurate analyses or aeroelastic model investigatlons
for flutter may not in general be feasible, 1t appears that, for
shallow roof surfaces, useful information in thils respect may be

cained from a knowledge of natural modes and frequencles under

the various conditions of static load.
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The discussions 1n the preceding sections concerning
the characteristics of tension systems 1in relation to static
behaviour, form—-finding and dynamic behaviour have indicated, in
a broad sense, the needs of analytical techniques. The various
techniques appropriate to these problems are reviewed in Appendices
A, B and C respectively. Appendix D gives a more complete review
af the technique ¢of dynamic relaxation than is contained 1n the

papers which form the following chapters.



CHAPTER 2

DYNAMIC RELAXATION ANALYSIS OF TENSION NETWORKS

SUMMARY

The paper describes a general analysis based on the

method of Dynamic Relaxation proposed by A.S. Dagh? A

computational arrangement is outlined in a form applicable

to tensioned cable structures and space frames with cladding or
panel elements. The procedure reduces considerably the core
storage required compared wlith matrix literation schemes and
enables zero stiffness situations to be coped with. The

analysis may be used to determine pretension geometry and
behaviour under static or dynamic loading with account beling

taken of slackening of cables. A general expression for deriving

close bounds to the critical time interval is also given which
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avoids the need fOr trial runs or the determination of elgenvalues.

The paper concludes by illustrating the use of the method to
determine the initial geometry and subsequent behaviour under

loading of a cable edged geodesic network model.

The paper was presented at the Int. Conference on

Tension Structures, London, April 1974.



DYNAMIC RELAXATION

The basis of the method is to trace step by step,
tor small time increments At, the dynamic behaviour of a structure
from the time when it is initially loaded. For dynamic analyses
with time dependent, impulse or transient loading the trace is

terminated when the vibration characteristics and the maximum
stresses and deflections have been obtained. For static
loading, a high fictitious damping is imposed and the trace is
terminated when the structure reaches a steady equilibrium
state. The computational arrangement is similar for both

cases though the term '"Dynamic relaxation' strictly applies

only to the case of static analysis. For dynamic analysis

the real, usually light, structural damping would be used and
smaller time integration sSteps may be necessary. In addition,
the damping may not be applied as 'far-coupled' at the nodes but
as 'close-coupled’' within the structural members. This aspect
is considered in Chapters 5 and 6. The present application
concerns essentially the analysis of cable networks under static
loading, though as a by-product an indication of the dominant

natural frequencies 1s obtailned.

The masses of the structure are assumed to be

concentrated at the node points. It is also assumed 1in the
following that these nodes are jointed; sliding nodes
associated with geodesic networks beilng accounted for later by

means of a simple modification.
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The governing equation of motion in the x direction

of any node 1 at time t is:

C B v e
th - M{'Vx_i. + K{'in (1)
t ¢
where R ¢ 1s the residual force at node i in direction

X at time t.

M 1s the mass at node 1.
K i 1S the damping constant at node 1.

S - . . .
Veis Vi are respectively the velocity and acceleration

of node 1 1in direction X at time t.

Similar equations can be written for the vy and z directions.
In finite difference form equation (1) is:
c b+Abs, E-4b/2, E+ats,, &= At
Rei = MiVyy = Vg )+ RilVpg  + Vo ) (2)
At | 2
Note that as the trace is followed for successive time 1ntervals,
the residual forces are determined for times 0O, At, 20t ......
t=At, t, t+AL ...... etc. whilst the average velocities are

determined at the mid-points of these time intervals.

From (2) the velocity at time t+At/2 may be expressed as:

b+ AL/ . E-8¢t/
M/ At + Ky 2 M{/At+K{/2J

The damping factor K; may be defined as a constant for the

\
structure, or more convenlently may be defined as KL*=]KL£K/AI).
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The damping/unit mass, (K /At), may be taken as constant for

the structure but the actual damping will then be greatest
for the most heavily loaded nodes. This will be preferable
to uniform damping if, in addition to static deflections and

meémber forces, the analysis is required to give some estimate

of the range of dominant natural frequencies.

Equation (3) thus becomes:

C+At/2 \ " . b-Ab/e
V L‘- - Aﬁ . R‘x,‘{.. + B . Vx{ (38-)
‘ ]
where Ai = At a constant for each node
M, (1 + K'/2 )
B\ = rl - K\/2 a constant for the complete structure
l_l + K'/2

The total x deflection of node 1 at time t+At 1s:

C+AL = E+AE/4 .
O x4 = Oy * At Vi (4)

Similarly the velocities and deflections in the y and z directions

may be determined.

These calculations are carried out simultaneously for
ecach node of the structure to give the complete displaced form at
t+At. The current force in each bar or cable link m 1s then

given by:

\ o 8
where, for links which have not slackened, T,= T; the specified

) c+ar .
pretension, EAm=(EAm+ T;), and Lmand € m are reSpectlvely



The current extension may be determined by a square

root operation in the program, or more efficiently by means of
an expression which makes use of the previously calculated

: < .
extension e, (appendix 2.2).

If the link connects nodes i1 and k then the force which it

exerts i1n the x direction at 1 is:

crat c+ob I t+al E+at E+of
i f ron— " 1 —— o
ARJC.{th = Im L<XI'L *+0 x.h.) (X& + 0 zd ) - R:x.hm
F+Q
L

where X;, Xp are the co-ordinates in the pretension condition

C+AL |
and L _ 1s the current link length.

The contributions of all links connected to 1 are summed, with

the applied load of P.;,, to give the current residual force:

£+ AC E+AF E+AC

R:(,{. = Px{ + ARxim

The residual forces in the v and z directions may similarly

be derived.

The effect of cable slackening may be accounted for

by checking tensions at regular stages in the analysis (every
n time intervals), and setting to zero T‘ and EA} in slack
links until the next check. If a previously slack link 1s
then found to be taut, the original T (=T ) and EA values in
equation (5) are restored. Gradual changes in elastic modulus

dependent on stress level can be accounted for in a similar
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manner. For static analyses, with high viscous damping, the

checks may be made at infrequent intervals (n > 1).

The complete cycle of calculations takes the form:

FOR EACH NODE
Determine Vxi, §xi etc.
from (3a) and (&)

REPEAT
for n time

FOR EACH LINK ’ 1ntervals
- Determine ARyim, ARxam |

' and sum into appropriate |
locations for R.;, Ry, etc.
as in (6)

Check tensions and re—set
\ ’
T' and EA' values if necessary

A summary of computer storage and operation requirements is

given in appendix 2.3, and this is compared in addition with

the computational efficiency of a matrix iteration scheme.

Initial Conditions:

It 1s assumed 1in the analysis that the velocity changes

linearly over any time increment. Thus to satisfy the initial

A 0 0
conditions (Vx{ = 0, RJ({ = Pxs ),
At/ \ -0
Vi o= AL Px (8)
(1 + B)

CLADDING

Cladding membranes may be accounted for in the analysis

as a finite system of "

constant strain' triangular panel elements.
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In order to keep computer storage requirements to a minimum
the displacements {Gﬁ}of a typical element (fig.l) are

defined as the extensions, A, of the edges*. This reduces
the stiffness matrix for an element to (3x3) compared with the
usual (6x6) associated with two dispiacements per node. It
also complies with the programming procedure previously
outlined for cable links. The transformation into (9x9)

element stiffnesses required for procedures in which an overall

stiffness matrix 1s assembled 1s thus avoided.

P,

‘,..-—-"
’/f Figure 1

Corresponding element forces are the tensions along each edge:

{pe} = gp, ’

P, ¢

F

\P3 J

The strains are assumed constant along each edge and throughout

a
the panel and may be expressed in terms of {5}:
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©y S zJ (9a)

where x and y are convenlient element axes.

The terms 1n the matrix [G:]are given by the equations:

€< = - €y = ng = 1
b! o el! :a| Cl E:[[ ‘a, b| 61; 8., b] C;
bl Cy E‘_L‘ val o €, a, bz_ E:z_l a, b'?. c, (gb)
b3 C3 63 Ia3 C3 83 3.3 b3 €3 la3 b_? C3
T 1 - 1' *
where €,= 4,/ L,, a;=Cos0;, bi=Sin@Q, cy= Sin 0,Cos 0;
and ©; = inclination of edge i to the x axis.
The stresses 1n an element are:
)
{0} = | 0x | = l—d,, d. O (€ | = [D:H:GMG}
C)',,j : d.,_, d,, O 1.53 (]—O)
" L
T‘xﬂ) LO O d33 Y;{_SJ

In general, the orthotropic elastic constants, d;. , must correspond

J
with the element x,y axes. But for the particular case of an
isotropic plane stress element which has not buckled:

d — d - E ; drz. dll \)dll ; d33 ___...__.......____E
1 v
(1 - \)L) 2 (1 + \))

and for convenlience O, may be set to zero.

Having obtained the[C]and[D]matrices the element stiffness

relations are given by:
[pe} = [[G]T | D] [GJ t.A:z {ae} - (11)

where t.A = volume of the element.



With triangular element stiffness relations in this
form, panel elements can be 1ncorporated without transformations
in the basic program for cable or bar structures: the effect
of panel edge forces being included in the same way as cable

link forces. The effect of compressive buckling and consequent

alteration of the [D] matrix 1s considered in Chapter 3.

To account for 1n plane distortion of very flexible
membrane elements 1t may be necessary to reset the [G] matrix

at infrequent intervals. Distortion will alter the values of

Jd; 1n equation 9b, but lengths L, remain the unstressed lengths

upon which strains must be based. Similarly the volume of the

element, tA, in equation (11) will remain unchanged.

DAMPING CONSTANT

For static load analysis a high fictitious damping

constant must be used; the trace being terminated when the

structure and loads are sufficiently close to a steady

equilibrium state. To obtain bounds to the true equilibrium
state a sub-critical damping constant should be used (fig. 2).
Provided the damping is near the critical value, convergence
in the early stages is rapid. Over—damping should generally
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