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FOREWORD 

The thesis is submitted on the basis of papers published 

between April, 1974 and July, 1976 (chapters 2-8). Minor editing 

of the papers has been carried out for the sake of continuity of 

the thesis as a whole. Since each of the papers was written to be 

largely self-contained, however, a certain amount of repetition, 

particu ar yo introductory remarks, is unavoidable. For this reason 

the "contents" lists only those sections which introduce new material. 

Chapter appendices have been placed immediately following the papers 

to which they refer. In the majority of cases these were not 

included with the original texts, but have been added here to expand 

on points mentioned in the papers or dealt with during presentation. 

The report supporting the submission is given in two sections: 

an introduction reviewing the behaviour and analytical requirements of 

tension structures which relates subsequent chapters to other 

publications, and a conclusion correlating the papers into an overall 

context of interactive design and analysis. For the sake of 

completeness as a thesis, main appendices A-D have been included at 

the end of the thesis to give comprehensive reviews of published work 

relating respectively to static analysis, form: -finding, dynamic 

10 analysis, and the development and mathematical basis of dynamic 

relaxation. References in these appendices and the introduction 

(chapter 1) are contained in the main bibliography, appendix 
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ABSTRACT 

Chapter I reviews the behaviour and characteristics of 

tension-structures and the consequent analytical requirements for 

form-finding, static and dynamic analysis. Various published 

techniques, together with the work outlined in subsequent chapters, 

are considered with respect to their compliance with these 

requirements; particular emphasis being placed on the needs in form- 

finding to cope with inaccurate topology and geometrical data, the 

occurrence under static loading of buckling and zero stiffness 

situations and, during dynamic response, the interaction of the 

structure with the surrounding environment. 

Chapter 2 examines the application of Dynamic Relaxation to 

the analysis of cable networks. Numerical and experimental results 

for a cable edged geodesic network subject to static loading are 

compared, and recorded natural frequencies are correlated with those 

obtained as a bye-product of the D. R. analysis. The stability of the 

analytical process is considered and an expression governing the 

critical time interval is derived. Appendices to the chapter 

consider in more detail the extraction of natural frequencies from 

static analyses for various load cases, and compare the computational 

efficiency of the DR process with a Modified Newton Raphson analysis. 

In chapter 3 the method is extended to form-finding and static analysis 

of networks with momentless compression boundaries, and to membrane 

and pneumatic structures. The derivation and accuracy of principal 



stress trajectories in prestressed anticlastic membranes idealized 

as an assemblage of constant stress elements is illustrated for 

normal load and for higher loads sufficient to cause buckling. For 

dealing with structures employing very stiff elements compared with 

cable links, thus creating a high condition number, a force transfer 

procedure is derived and applied. An appendix to the chapter 

considers the accuracy and stability of the central difference 

integration scheme for cable and membrane structures with very low 

damping which are subject to recurrent dynamic buckling. 

Problems with form-finding of uniform stress membranes, in 

particular the occurrence of quasi stable or unstable states due to 

inadequate transfer of concentrated support loads into the membrane, 

are examined in chapter 4. States which appear to be similar are also 

shown to occur due to inadequate idealization of the surfaces. The 

derivation of momentless contours for such structures is extended 

to include boundary traction forces, and these are shown to extend 

greatly the variety of possible forms. The above considerations are 

extended in chapter 7 to the case of variable stress membrane and 

pneumatic structures and geodesic networks; emphasis being placed on 

the value of DR when used interactively to simulate physical 

behaviour, particularly for examining impending collapse states or 

physically untenable specified stress distributions for trial forms. 

A computational procedure for the explicit dynamic analysis of 

tension structures, accounting for pneumatic stiffening and air and 

visco-elastic material damping, is outlined in chapter 5; combined 

creep and buckling effects being accounted for by means of an 



incremental stain formulation. A simplified basis for deriving 

series model visco-elastic constants by curve-fitting material 

test results is also suggested. The validity of the procedures is 

examined in chapter 6 by comparison with experimental results 

obtained from vibration decay tests on a model pneumatic dome 

subject to suddenly applied loading. 

Chapter 8 considers the application of DR for optimizing the 

form of modular space truss s7stems subject to a dominant design 

loading. In contrast to mathematical programming techniques the 

method is shown to yield a graded preference of members in 

hyperstatic layouts which is ideally suited to interactive design 

procedures allowing. architectural design freedom. A basis for such 

a procedure allowing for load variations and deflection limits is 

also suggested. The final chapter summarises the advantanges of 

DR for the design and analysis of tension space structures and 

indicates lines of current research. 
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CHAPTER I 

I-NTRODU=N 

THE CHARACTERISTICS AND BEHAVIOUR OF TENSION STRUCTURES 

The chapter reviews the characteristics of tension systems 

which have a major influence on the requixements for form-finding and 

static and dynamic analyses. A detailed review of methods of analysis 

which are appropriate for tension structures is given in appendices 

A-C (pages 289-370). References in these appendices and the present 

chapter are contained in the main bibliography (appendix E p. 404 ). 
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The primary characteristic of tension structures is that main 

structural elements transmitting applied loads to bearing structures 

consist of high strength flexible cables or membranes sustaining 

only tensile forces. The cross section of these members may thus be 

fully utilized with permissible stresses not limited by instability 

effects. The use of high tensile components results in lightweight 

structures which, in comparison with conventional structures, become 

more economic with increasing spans. Major cost factors, however, for 

all tension systems are the bearing support structures, which may be 

subject to bending or compressive stresses, and the means of anchoring 

the high tensions resulting from long spans and shallow curvatures 0 

(113,185). 

Architecturally, tension structures may be aesthetically 

pleasing, with structural function clearly expressed, primarily 

because the internal force distribution and surface and boundary forms 

are interdependent. Thus prestress ratios govern surface form and 

preferred boundary shapes, and changes in stresses due to applied loads, 

which depend on form, govern the required magnitudes of prestress. 

As a consequence, efficient design and subsequent economy of construction 

demand the closest collaboration between Architects and Engineers at 

all stages through repeated form-finding and analysis to detail design. 

Whilst this is desirable for the design of any structure, for tension 

structures it becomes essential because of the more direct inter- 

relation between form, internal forces and behaviour in service. 

comprehensive discussion of these concepts for a large variety of 

tension systems has been given by Frei Otto (144-146). 

STATIC BEHAVIOUR 

A 

For the purpose of reviewing the general behaviour and analytical 
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Structuxal Mechanism 

Triangulated SYstem 

Figure 1 Pretensioned Cable Structures 
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requirements of tension systems it is convenient to group them in two 

broad classes: 

(1) Properly triangulated structural systems 

Structural mechanisms possessing degrees of mechanical 

freedom. 

Examples of the first group, provided elements remain tensioned, are 

triply threaded nets, prestressed suspended shells, and cable trusses; 

whilst two way cable nets, cable girders, deadweight systems, and 

stressed membranes without shear rigidity are all structural mechanisms 

(figure 1). For continuous structures the degree of mechanical freedom, 

or conversely the redundancy, cannot be quantified, but for discrete 

pin-jointed assemblies it may be expressed as (37): 

DMF =f-m+p 

where f is the number of degrees of freedom of the joints, m is the 

number of members, and p is the number of linearly independent force 

systems which can be superimposed without disturbing the equilibrium 

configuration. Normally, for a properly designed tension system p is 

zero unless the system is regarded as weightless in which case 

In the pretension condition the equation of equilibrium in the x 

direction at a joint j, connected by links to adjacent nodes k, is 

given by: 

E T. Dx jk 
= po. 

kz xj 
(1) 

where T is the tension and L the length of link jk, P0 is the 
xj 

component of self weight at node j in the x direction, and Dxx = (xj-xk) . 

After the application of live loads, P, the equilibrium condition 

becomes: 

Z 
(T+AT )-(DX+Dýx)ý jk 

=P0. +p. = PIN, . 
k 

(Z+AZ) f xj xj xj 
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where AT and AZ are tension and length increments of link jk, and D6 
x 

= (6 -6), the difference in xdisplacements. xi xk 

In matrix notation equations type (1) can be arranged in 

three sets of independent linear equations: 
[H][XI 

= 
[Pxoj; [H]ýYj 

= 
ýPoý; [H]ýZý 

= 
ýPoý 

(3a-c) 
yz 

where, if n is the number of active nodes (excluding fixed boundary 

nodes), [XI, ýYý, ýZj are vectors of the unknown co-ordinates, each 

of order nx1, Px'ý, [P'ý, ýPoj 
are self weight loading vectors y 

modified to incorporate the known boundary constraints, and 
[H] is a 

matrix, nxn, dependent solely on the tension coefficients. If these 

are specified the geometry of the system can be found directly for 

any self weight vectors and boundary conditions (169,123,162). 

Equations type (1) could alternatively be arranged in the 

orm: 

[G ] ýT )= [Pol 

where [Tj is an mxI vector of unknown tensions, and 
[GI is a matrix 

(f x m) dependent solely on geometry. But for a structural mechanism 

m<f, and therefore the geometry cannot be arbitrarily specified but 

depends on [TI and [Poj 
. 

For a properly triangulated structure, if members are assumed 

inextensible no deformation would take place under loading and equations 

(2) could be written in the form: 

[GJýT+ýiTj 
= 

[Pý'ý 

with only changes in tensions required to accommodate the loading. 
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For structural mechanism with m<f , however, [P*11ý cannot be arbitrary 

unless [G] also changes with the loading. Thus even when members 

are assumed to be rigid, finite deformations of such systems must 

take place. 

The major difference in behaviour between triangulated 

systems and structural mechanisms is that the latter are subject ýo 

much greater deformations under asymmetric loading, and dominant 

natural frequencies are closely grouped and tend to be much lower 

than the range for triangulated systems (13,172). This is because 

the variations in elastic strain energy of structural mechanisms 

undergoing non-symmetric deformations are much lower. At one extreme, 

deadweight systems sustain asymmetric live loads, which must be 

small in comparison with the dead load in order to limit deformations, 

largely through geometric deformation; equilibrium being achieved 

through changes in shape witft only small variations in cable tension. 

In lightweight prestressed systems the tie-down or prestressing 

cables do not merely serve to pre-load the main hanging cables but 

become elastically active in resisting deformations. Thus maximum 

tensions in the main cables and the consequent costs of support 

structures and anchorages may be lower than for deadweight systems; 0 

the essential feature of prestressed systems being that they are 

designed on the basis of maximum live load variations. 

Under working loads, no links in prestressed cable structures 

should be allowed to slacken., otherwise the system may become too 

sensitive to dynamic loads with high local deformations. Elastically 

triangulated structures, whilst stiffer under non-symmetric loads 
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because they are braced against shearing deformations, attract 

greater tension changes in individual links, and the bracing cables 

in particular may slacken if the system is not sufficiently prestressed. 

In structural mechanisms tension changes tend to be smoother and they 

are less prone to cable slackening. On the other hand the geometric 

stiffness is a large proportion of the total stiffness and, for a 

given shape, is directly dependent on the level of prestress. In 

practice, the distinction between the two systems may be imprecise. 

In steeply curved two way cable nets, for example, following 

deformation by applied loads, the cladding may provide some measure 

of bracing across the tension diagonals of the mesh; being allowed 

to buckle in the compressive directions. In this case however, the 

cladding and jointing would have to be designed to accommodate the 

deformations of the composite structure. ýsual practice is to make 

the jointing system very flexible in order to avoid distress in the 

roofing surface which is then assumed only to transmit applied loads 

to the structural net. 

Analytical Requirements 

Well conditioned triangulated cable structures may be 

approximately investigated under working loads by means of linear 

elastic analysis. For structural mechanisms, however, an analysis 

which accounts for geometric non-linearity at all stages of loading 

must be used. Near ultimate load conditions both systems may 

additionally require account to be taken of either discontinuous or 

continuous material non-linearities such as cable slackening and 

slip at the joints (164) or the true stress/strain curve of the 

material. The latter factors may enable a significant increase in 
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the ultimate load carrying capacity of the structure through 

redistribution of forces from highly strained links to those with 

lower strains. Greenberg (72) for example, using a continuous 

exponential function to represent the inelastic portion of the 

stress/strain curve for steel cables, has shown that for practical 

two way cable networks the ultimate load capacity may be increased 

by more than 50% compared with an analysis assuming a linear stress/ 

strain relation throughout the range with the same ultimate stress. 

This is due partly to the redistribution of stresses and partly to 

the larger deflections and curvatures resulting from increased 

strains. A similar effect occurs during material softening under 

fire loading (88,54) and, combined with the lack of instability 

problems, results in prolonged fire resistance of tension systems. 

The combination of geometrical and material non-linearities, 

particularly where on/off non. linearities are involved, creates in 

general a path dependent problem which should be solved by means 

of an incremental solution technique in which loads are applied 

in small steps to obtain a unique solution. Many methods of 

analysis, (discussed fully in Appendix A, p. Z89), such as iterative 

Newton-Raphson, modified Newton-Raphson, or minimization methods, 

in fact may assume that a unique solution exists which is not path 

dependent. For the most part., however, these analyses have been 

applied to tension systems and verified assuming only geometrical 

non-linearity. For such cases, proofs of uniqueness have been 

given by Buchholdt et al. (39) and Mollmann (123). Assuming the 

strain energy of a link is a strictly convex function of its 

extension, they show that the total potential energy of a pin-jointed 
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assemblage is a convex function of the joint displacements for all 

configurations in which members are in tension and that the 

equilibrium state is therefore stable and unique. Mollmann further 

shows that for a two-way anticlastic cable net subject to loads 

which are constant in magnitude and direction the solution is 

unique provided all links in one family of cable lines remain in 

tension. For a completely general case, however, in which some 

compression elements may be employed, cable links may slacken, and 

loading, for example normal pressure loading, is deformation 

dependent, uniqueness of solution may not be theoretically guaranteed 

unless a path dependent solution is used. 

Publi--hed information concerning the performance of methods 

of analysis in the presence of cable slackening is scarce. This 

is perhaps attributable to the normally accepted design requirement 

that slackening should not be allowed to occur in practise,, yet 

final analyses for ultimate loads should reliably account for this. 

'Moreover, for membrane and pneumatic structures wrinkling in a 

direction of zero principal strain will often occur under, working 

loads, particularly in regions where the flexible membrane adjoins 

a rigid boundary or inclusion. The author (15) (Chapter 3 and 

appendix 3.2) has examined the problems of convergence and stability 

of a membrane analysis with buckling induced under both static and 

dynamic loads. For static analysis of an anticlastic membrane 

subject to normal pressure loads it was found that a unique solution 

was obtained provided buckling in any membrane element occurred in 

only one principal direction. When buckling occurred in both 

directions, however, convergence to a unique solution was not obtained. 
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This was perhaps due to the type of elements and idealization used, 

though other researchers at a recent conference (48) also reported 

convergence difficulties with buckled membranes. 

The poorly conditioned geometrical forms of many tension 

systems may also give rise to numerical problems, particularly in 

matrix solution methods involving a large number of unknowns. if 

equations (1) are subtracted from (2), and the result is expressed 

in linearised and, incremental form, the tangent stiffness relations 

corresponding to the current load level may be obtained: 

I 
Kt 

I[ 
A6 

ý= [A, Pý 

where 
[Ktj is composed of two parts: the elastic and the geometric 

stiffness, 
[Ke] + [Kg]- 

In the stiffness matrix of a linear elastic structure the elementsof 

the ith column, k1i, k 2i ,k 3i'** .. kii ..... kni, represent the nodal 

forces which would be required to maintain an imposed displacement 

increment of A6i =I with all other displacements zero. For a well 

triangulated structure kii would be greater than the off-diagonal 0 

components kji. For a shallow non-linear network structure, however, 

the leading diagonal terms corresponding to deflection normal to the 

surface may be very much less than the related off-diagonal terms. 

Referring to figure 2, for example, the horizontal node forces required 

to sustain an imposed vertical displacement of 6u 
7=I at node 3 will 

be considerably larger than the direct vertical component of force at 

node 3. Thus k << k; k; k; k 
7 3,7 3)75,7 12 )7 14., 7 



24 

The non-dominance of some main diagonal terms, coupled with the 

greatly differing stiffness components along the leading diagonal, is 

a characteristic of poorly conditioned equations and is thus an inherent 

problem in the matrix analysis of tension structures (72). A 

further problem with either iterative or incremental matrix analyses 

is that for certain states of load and displacement the matrix may 

at some stage in the solution process become singular, with one or 

more direct stiffness components zero, necessitating conditional 

deflection controls (78). 

Other than the characteristics discussed above, the analysis 

of tension systems involves a special consideration of two major 

aspects. The first is form-finding which, as already mentioned, is 

Fi gure 2 



25 

directly coupled to the prestress distribution and consequent stresses 

under loading. And the second is dynamic behaviour; the lightweight 

and flexibility of tension structures making them particularly 

sensitive to dynamic loads. 

DETERMINATION AND INFLUENCE OF FORM 

Until 1969 model studies were the only practical basis for 

the form7finding of cable nets and membranes, and thin fabric models 

still provide a useful visual and experimental tool at preliminary 

design stages (145,146,112). During the design of the Munich 

Olympic games stadium, however, it was concluded that the 

determination of geometrical properties from wire models was 

dangerous owing to the error sensitivity of the structure; 

inaccuracies of jointing being liable to induce considerable 

discrepancies in the desired cable network forces, particularly in 

those links close to the edge cables (76,164). Prior to this, the 

model design of cable networks, such as the German pavillion at 

the Montreal Expo' 67, had been based on a three phase form-finding 

procedure. The first phase was the study of soap films to simulate 

minimum surfaces with uniform stress distribution. From this an 

approximate form was obtained on which was based the pattern for 

constructing an orthotropic fabric model without shear stiffness. The 

fabric model provided a tactile means for investigating in more detail 

the architectural form with adjustment of supports and network/edge 

cable tension ratios, and also simulated a uniform mesh network more 

closely than the uniform stress soap film; curvatures and stress 
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distributions differing significantly because of distortion of the 

fabric mesh angles. The final phase of form-finding was based on an 

accurate uniform mesh wire model with geometric and elastic 

similarity to the real structure. This wire model permitted further 

. 
small adjustments, following investigation of deflections and stresses 

under load, after which final measurements were taken to provide 

the scaled pattern for the real structure. 

For the Munich Stadium Argyris, Scharpf and Angelopoulos 

developed a computer forur-finding analysis to replace the wire model 

stage (6,3). This was initially based on an iterative Newton- 

Raphson matrix method using as starting geometry and tensions data 

obtained from previous wire models of the structure. The prestress and 

link lengths were correlated at each stage so as to ensure uniform 

slack lengths throughout the interior of the cable mesh, together with 

control links at the ends of each cable of the network in which the 

slack length could be adjusted to ensure the design level of prestress. 

It was found, however, that convergence was either too slow or could 

not be obtained due to the inaccuracies of the scaled model data. 

For this reason a mathematical model had to be constructed which 

consisted of smoothing the architectural data by quartic interpolation 

in separate regions of the network. On this mathematical surface a 

uniform mesh network was developed with the initial prestress values 

in links calculated assuming a constant projected component of 

tension throughout the length of each cable. The non-linear form- 

finding analysis was then applied to the resulting data with the 

tension at one end of each cable of the mesh held constant and edge 

cable nodes adjusted at each stage of iteration to minimise distortion 
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of the network at the boundaries and maintain close compliance 

with the required edge cable curves. 

The above account indicates briefly some of the problems 

associated with analytical form-finding, detailed descriptions of 

which are given in Appendix B, p. 32,6. The analysis for the Munich 

Stadium was made more complex by the need to comply as closely as 

possible to a previously described surface obtained from approximate 

modelling, and by the fact that foundations for the main masts had 

already been placed before the analytical form-finding was commenced. 

Thus, whilst the engineering design required checks on stress levels 

and consequent adjustments to prestress distribution, it was at the 

same time necessary to fit rather precise specifications of shape and 

support points which in turn depended on the prestress yet were 

derived independently. 

Since the construction of the Munich Stadium more formalised 

methods of correlating proposed architectural form and engineering 

design requirements have been developed by Knudson, Lir. kwitz, Schek 

and others (97,110,132). The form7-finding process may be posed in 
CD 

the form of an optimisation problem such that, given a preferred 

architectural shape (Xd) and, independently, a preferred force 

distribution (Td), an exact figure of equilibrium is sought (satisfying 

equations 3a-c) which minimises: 

X-xdý 
T. 

PA, [ X-xdý + 2: ýT-Td T 
PE T-Td 

where ýxj and ýTý are the true equilibrium shape and force 

distribution. 'and PA and PE are respectively weighting factors given 
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to the architectural and engineering design preferences. 

From the point of view of construction, cable networks are 

generally formed either from a pre-jointed uniform mesh with identical 

link lengths in the slack state, or as geodesic nets in which each 

cable takes a path of minimum length over the surface, with constant 

tension throughout its length, and nodes are jointed after 

prestressing. Thus, whilst the minimum to expression (4) is 

sought, constraints must simultaneously be applied to ensure 0 

uniformity of either mesh lengths or tensions. The former type of 

net is constructionally simpler and more appropriate for large 

structures. But because of the constraints on node positions, and 

hence also the cable trajectories, the network may contain areas 

in which the cables lie along lines of very shallow curvature. 

Coupled with the effects of distortion of the mesh angles, inducing 

significant variations in tension throughout cable lengths, this 0 

may necessitate higher levels of pretension than for geodesic nets 

in order to avoid areas which are too flexible and sensitive to 

gust loading. 

Other classifications of two-way nets, which to a large 

extent are purely analytical, are: 

a) Orthogonal nets, in which cables are assumed to lie 

in vertical planes with known spacing, derived by solving only the 

linear equations (3c) with specified horizontal tension components 

(170,123). 
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b) Uniform force-densities net derived by solving the three 

sets of linear equations (3a-c) assuming constant tension 

coefficients (162). 

c) Isostatic nets in which cables follow the lines of 

principal stress trajectories which would result from the application 

of a uniform normal loading to a previously derived minimum surface 

membrane ( 13). Each of these nets may be useful at preliminary 

design stages. The first two enable a rapid search of feasible forms 

with differing specified supports and, for the chosen form, can 

provide initial data for a subsequent non-linear analysis with 

constraints on mesh lengths or tensions (162). Alternatively, if 

possible forms are investigated by means of a minimum surface 

membrane analysis, simulating soap film experiments, and the chosen 

form is analysed for normal loading, the stress trajectories derived 

give an indication of the preferred orientation of cables for a 

network (13,19). Since these trajectories follow lines of 

principal curvature they give a net which, in an overall sense, is 

stiffest to normal loading for the chosen surface shape. This may 

be a useful guide for the design of geodesic nets with complex ý 

curvature and support conditions. Similar comments relate to the 

design of membrane structures. Ideally the directions of the 

weave should coincide as closely as possible with lines of prin. cipal 

curvature, though this may conflict with the need for simplicity 

and economy in the cutting and jointing pattern. The most practical 

alternative, which does not entail distortion of the weave, is to 

base fabric cutting patterns on geodesic lines over 'the surface (87). 
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For triangulated systems statical constraints do not govern 

possible design forms to the same extent as for two-way networks 

or membranes without shear resistance. Reinforcement of 

pneumatic structures with a triply threaded grid of cables, for 

example, enables greater freedom of design since effective stress 

distributions may be more radically varied than those in an 

orthogonal fabric membreane. Again, however, the need for 

constructional simplicity may curtail this freedom. 

Approaches to form-finding characterised by the minimisation 

of expression (4) imply the need for an architectural specification 

of shape which is initially independent of statical equilibrium 

and ccnstructional constraints, except to the extent that the 

modelling material and process may qualitatively simulate such 

physical constraints. The model simulation, however., is not 

sufficiently accurate to provide an estimate of design prestress 

levels and distributions which take into account maximum and 

minimum tension changes under various conditions of loading. In 

consequence, approximate analytical modelling is desirable before 

the commencement of the non-linear optimisation process. Moreover, 

if the shape specification is based purely on crude physical modelling 

it may be very difficult to assign realistic values to the weighting 

factors PA and PE. In this case it woýuld seem more appropriate to 

use an alternative approach to forur-finding in which preliminary 

architectural sketches or physical models are used only to provide 

the conceptual topology of the structure. Feasible geometrical 

arrangements are then searched using interactive computer graphics 
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based on analytical techniques which satisfy engineering constraints 

at each stage of the search and also permit the behaviour in service 

of trial designs to be rapidly checked. 

Two procedures for interactive design of tension systems 

have been described which may be classified as either discrete search 

or dynamic search methods. The first method, by Grieger (73), uses 

the interactive console to call and display the results of various 

separate programs, developed at the I. S. D. in Stuttgart, for 

approximate or exact form-finding, static and dynamic analyses. For 

the non-linear form-finding problem, with constraints accounting 

for mesh type, complete matrix iteration analyses to achieve or 

closely approximate static equilibrium are required for each 

change in support and prestress conditions. The system may thus 

make heavy demands on computing time, core store and backing 

facilities, but a large range of program and element types can be 

incorporated. An alternative approach to interactive form: -finding, 

proposed by the auth. or (17,19) (Chapters 5,7), is to treat the 

search as a physically dynamic problem in which the alterations of 

support and prestress conditions, and consequent changes in form, 

may be continuous. The analysis, based on a procedure termed 

Dynamic Relaxation, allows constructional constraints to be 

accounted for at both approximate and exact stages of form-finding; 

the distinction between these stages being merely a matter of 

degree of. convergence, which initially is rapid (figure 3). 
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The same program may also be used to examine both static and 

dynamic behaviour under design loads, and it is thus theoretically 

possible to treat the entire design as a continuous process. A 

useful feature of the method is that the overall stiffness matrix 

need not be formed and thus the topology of the structure may be 

altered, for example by refining the idealisation or deleting 

certain links when edge curves are amended, during the form-finding 

process without having to reformulate the analysis. Another advantage 

of a direct rather than matrix formulation is that core store is 

considerably reduced, but a disadvantage is that, for efficiency, 

it is restricted to simple element types such as bar or cable 

links, constant moment beam elements, and triangular membrane or 

constant moment panel elements (Chapter 5, Appendex 2). 
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One problem at present with the concept of interactive 

form-finding is that surface shape and wind loading are interdependent, 

and this is a particularly important aspect in the case of light- 

weight tension structures. For any surface shape the pressure 

coefficients must usually be determined from wind tunnel tests 

and, without these tests, only very crude estimates of mean or 

fluctuating components of wind loads are possible. It is, however, 

necessary to qualitatively assess the effects of shape and other 

design parameters on the behaviour and efficiency of a structural 

system before embarking on wind tunnel testing. Critical wind 

speeds, for example, may be estimated from the lowest natural 

frequencies and mode shapes, and these in turn depend on surface 
I 

curvatures, prestress levels and the elastic stiffnesses of the 

cables, membrane cover and support structures (43). Also the 

degree of pneumatic damping, dependent on permeability of the 

structure, and anelastic material damping, particularly from 

visco-elastic cladding elements, may be assessed (195,18) (Chapter 

6). Nearly all of these factors are in turn governed by the static 

load carrying requirements and, because of the light self weight, 

the distribution of applied static loads may significantly affect 

dynamic response. Thus for each such distribution the static and 

dynamic behaviour should preferably be assessed together. 

Since major cost items are the bearing structures, form- 

finding procedures should account for their efficient design 

and shape determination simultaneously with that of the surface 

structure. In the case of tension boundaries, assuming that when 
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necessary the topology of adjacent surface elements may be 

convenient y expanded or contracted, furnicular edge curves may 

be generated and amended automatically as tension elements in 

the overall analysis. The generation of momentless compression 

boundaries for structures of irregular shape, however, requires 

special treatment in order that the analysis does not become 

unstable. In a direct step-by-step procedure this entails 

simply the reversal of force anJ stiffness components at edge 

nodes at each stage of the form7finding process which is carried 

out simultaneously with the surface shape determination (15,16) 

(Chapters 3,4). In contrast, matrix methods require that the 

analyses for funicular compression boundaries and surface shape 

be de-coupled and this considerably increases the number of 

iterations compared with tension bounded structures in order to 

obtain convergence. 

For orthotropically stressed membranes and networks wit 

symmetric plan forms it is possible to derive analytically the 

required stress distributions in the suspension and prestress 

directions to ensure that a specified compression bearing 

contour with continuous curvature is approximately momentless 

(113). Alternatively the saddle surface curvatures and hence 

prestress ratios can be specified and thence the required 

momentless boundary may be derived. In practice some compromise 

between preferred boundary and surface forms may be required, 

and for the general case of irregularly shaped structures 
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numerical interactive form-finding is well suited to achieve a 

satisfactory overall design. From the point of view of static 

and dynamic behaviour in service, fairly uniform surface 

curvatures should be sought and this restricts the possible 

momentless boundary forms. An exception to this is the case 

when the surface boundary is connected also to a continuous 

support wall or network which is capable of transmitting shear 

forces to the ground. By varying the magnitudes of these shear 

forces, together with vertical loads acting along the bearing 

contour, it is possible to generate a considerable variety of 

regular or irregular boundary forms even for the support of 

uniformly stressed surface membranes or networks (Chapter 4). 

Internally balanced tension systems using continuous 

compression boundaries to absorb cable forces from either 

double layer or network systems are generally more economic 

than open systems involving support masts and tension anchorages 

The derivation of momentless-boundaries, however, 
I 

applies only to one condition of load and prestress and 

compression boundaries must be capable of supporting the moments 

induced by all variations of load and cable tensions. These 

become more severe as boundary shapes depart from circular or 

elliptical, but in considering the bending stresses induced in 

compression boundaries under various conditions of loading the 

structure must be analysed as an integral unit, accounting for 

the beneficial effect of non-linear interaction between the 

tension cable system and the bearing structure. This is 
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particularly important in respect of bearing contour stability 

since the cables not only transmit loads but also constitute an 

elastic support which may stiffen with increase of external 

load and provoke a simultaneous increase in the critical load 

of the compression boundary as this deflects. In circular 

saddle roofs subject to distributed loading, for example, 

deflection of the elastic boundary may induce an increase in 

tension in both the suspension and prestress cables; the 

stabilising effect of these cables, and consequent limitation 

of bending moments, being dependent on surface curvature and 

prestress levels. Shallow curvatures with high pretension may 

favour the use of slender ring beams and result in overall 

economy (43,126). 

The foregoing discussion of form-finding has primarily 

concerned tensioned structural mechanisms for which the form may 

be regarded as a spatial funicular of the link or element forces 

under prestress conditions. Another approach to structural form- 

finding, which has been applied to truss and space structures, is 

concerned with determining the arrangement of elements to achieve 

a minimum weight design whilst complying with various limits on 

deflections and stresses under differing loads. The majority of 

mathematical optimization techniques appropriate to this problem 

place severe constraints on freedom of architectural design and, 

for multiple loading conditions, may result in highly irregular 

structures. In contrast, the form of structural mechanisms which 
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are prestressed to ensure stability under live load variations 

reflect clearly their structural function because the prestres-s 

dominates. 

When the problem of mini-mum weight design of 

triangulated space systems can alternatively be posed as finding 

the most efficient structural arrangement to support a maximum 

average design load, together with variations from this loading, 

the forms which result from optimization may also clearly 

reflect their structural function. This approach has been 

considered in Chapter 8 which outlines an optimisation process, 

based on Dynamic Relaxation, applicable to modular space 

structures which are complex in function and form. The procedure 

permits full emphasis to be placed on freedom of architectural 

design which may be carried out interactively. Thus, for each 

functional modification, applied and dead load conditions alter 

the preferred structural policy, determined by an analysis which 

continuously modifies member areas and allows topological 

changes to be made in the direction of currently greatest 

efficiency. 

DYNAMIC BEHAVIOUR 

The characteristics of tension systems which make them 

attractive for spanning large areas, that is, their light weight 

and the efficient use of tension members without flexural 

rigidity, also contribute to the drawback of sensitivity to 
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dynamic loading. This is particularly so in the case of 

prestressed structural mechanisms, such as networks, for which 

very low natural frequencies may possibly give rise to the 

danger of flutter at high wind speeds (171), or may place these 

frequencies in the high energy range of the gust frequency 

spectrum ('42). Furthermore, the close grouping of natural 

frequencies in mechanisms can result in the occurrence of 

interference or beating phenomena, with dynamic response to 

buffeting wind loads involving the participation of many modes 

(96). jGreater demands are thus placed on techniques of analysis 

which may be further complicated by the need to account for 

non-linear response, with stiffnesses, damping effects and 

effective masses being partially dependent on nodal deformations, 

velocities and accelerations (90., 1,81). Wind tunnel tests are 

essential for the determination of pressure coefficients and 

also for the examination of frequencies of vortex shedding from 

bluff edges which may influence detailed design. In the case 

of the Munich Stadium, for example, following wind tunnel testing 

the edge rim was shaped to avoid dynamic excitation of the 

structure by buffeting vortices (109). For very flexible surfaces, 

such as pneumatic structures, the wind pressure coefficients, 

together with the internal volume and pressure, may also change 

significantly with deformations (25,155); fully aeroelastic 

model tests may not, however, be practicable. 

The low natural frequencies of tension networks can be 

increased by increasing the pretension, surface curvatures, or 
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the stiffness of support structures (38). Increasing the 

sectional area of cables has comparatively little effect on 
frequencies since the stiffening is offset by the additional 

dead weight. For steeply curved surfaces, however, the 

cladding may provide stiffening and triangulation across mesh 

diagonals and thus increase and disperse the range of natural 

frequencies (180). With shallow curvatures these effects are 

likely to be less significant because the dominant stiffness 

is geometric, and much larger deflections would be necessary 

to ensure the effective participation of initially unstressed 

cladding. 

Following deformations by wind loading, in addition to 

the possible alteration of pressure coefficients, the high 

flexibility of many tension systems can also give rise to 

secondary interactions between the structure and the surrounding 

or enclosed air which should be accounted for in dynamic 

analyses. The inertial reaction of surrounding air to 

accelerations of the roof surface may need to be included as 

an "added mass" term with the mass components of the structure 

(90,1). The effect can be significant for very light open-sided 

structures without superimposed loads (which otherwise may form 

the dominant mass components), and results in a further reduction 

of already low frequencies. For surface structures with closed 

sides, however, variations of internal pressure as the structure 

deforms may give rise to a stiffening effect which increases 

the natural frequencies. The magnitude of this effect will 

depend upon the mode of vibration. The first half-wave symmetric 
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mode is the main volume displacing mode and this will entail 

pressure changes which can have a considerable effect on 

internal pressure and air stiffness resisting deformation. To 

a lesser extent the same may apply to some higher symmetric modes, 

but anti-symmetric modes tend not to be volume displacing and 

are consequently little affected by additional air stiffness (I., 

171 ý 195). 

As a result of pressure stiffening the fundamental 

modes and frequencies of fully or partially enclosed structures 

may differ radically from those predicted by theory which does 

not account for variations in internal pressure, though this 

will depend on the type of structure and the cable curvatures 

employed (1). For triangulated truss and radial systems the 

first half-wave mode tends to be dominant for the unclad structure 

but is replaced by the first anti-symmetric mode as the 

fundamental when the roof surface and sides are clad. For cable 

girders with vertical struts or steeply curved networks the 

fundamental mode may be anti-symmetric whether or not the 

structure is clad since this entails smaller changes in strain 

energy than the first half-wave mode. For very shallow networks, 

however, the first unclad mode may again be symmetric and 

consequently volume displacing when the structure is clad. 

In all tension systems the degree of damping is of major 

importance. It is impossible to ensure that vibrations will not 

occur but, with significant damping, amplitudes may be kept within 

acceptable limits. The mechanisms of damping which can occur in 

tension structures are: 
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a) Rheological material damping: due to visco-elastic 

behaviour of membrane cladding panels, and anelastic 

behaviour of the cables 

b) Friction damping: due to the mechanical construction 

of cables and cladding and cable joints 

c) Air damping: due to the kinetic energy of air 0 

resistance to structural vibrations 

d) Pneumatic damping: due to the decay of internal air 

pressure changes lagging deformations of roof 

structures with permeable sides 

e) Rheological and friction damping in support structures 

and foundations 

f) Incorporation of damping elements in the design: for 

example,, dashpots at the junction of cladding and 

cable nodes and in cable links or stays. 

In tests on network and membrane structures with open sides 

Jensen (90) found that the logarithmic decrement associated with 

cladding or membrane damping ranged between 4-20% depending on the 0 

type of material and jointing. For cables the range was 0.5-3% 

depending on the level of prestress, with the higher values 

corresponding to low prestress. And air damping was found to be 

significant only for very light structures. Zingali (195), 

reporting on the design of the Palasport in Milan, showed by means 

of a simplified single degree of freedom analysis that pneumatic 
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damping, and the associated increase in stiffness due to changes 

in internal pressure, was sufficient to eliminate the first 

half-wave mode of vibration which otherwise would have been 

critical. He assumed an exponential decay of the pressure changes 

which depended on the permeability of the structure sides. The 

author (18) (Chapter 6), in vibration tests on a closed pneumatic 

dome subject to suddenly applied central ring loads, isolated the 

effects of material damping, air damping and pressure stiffness 

changes. The decay of vibrations was recorded and found to 

correlate fairly closely with an explicit numerical integration 

analysis which included all of these effects. The membrane was 

represented as a series of elements with visco-elastic properties 

which approximately simulated material damping; the visco-elastic 

constants having been obtained by means of a simple calibration 

test. 

The inclusion of damping terms in matrix methods of 

dynamic analysis has traditionally had to be founded on previous 

experience or vibration tests on similar large scale structures which, 

in fact, have been comparatively rare. In modal superposition 

methods the percentage of critical damping for each normal mode and 

frequency is required. For implicit integration schemes, which are 

more suited to non-linear structural behaviour, a complete damping 

matrix is required which, for the purpose of obtaining a solution, 

is normally taken as a linear combination of the stiffness and mass 

matrices (K and M): 

[ *. I [K]Jýýj + 
[P(Oý 

MJý6 + 
[CI[M] 

+ C2 
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Neither procedure can truly represent the physical mechanisms 

of damping and the coefficients can at best only be estimated. 

The latter procedure, however, has the merit of qualitatively being 

able to' represent separate categories of damping. Thus, for 

example, air damping is dependent on nodal velocities and can be 

accounted for with an appropriate choice of Cj; whereas material 

damping is dependent on relative nodal velocities and is best 

incorporated by adjusting the coefficient C2- A further difficLity 

with matrix methods of solution for structures which interact non- 

linearly with their environments is that the linearised mass, 

damping and stiffness matrices may be unsymmetric, consequently 

entailing increased computing effort (81). This results, for 

example, from the inclusion of added mass te=s,, dir ectional drag 

and pneumatic damping and stiffness. The latter effects are 

most conveniently allowed for in the forcing function ýP(t)j and 

the solution is then greatly simplified by the use of explicit 

integration methods which do not require the formation of the 

various coefficient matrices. 

Another problem concerning the coupling of structure 

deformations and loading, which may arise for very wide span 

flexible systems, is the danger of flutter. Classical flutter 

is generally regarded as a self-excited oscillation, with a 

sustained or divergent amplitude, which may occur when the 

structure is subject to sufficiently high laminar wind speeds 

(71). The basic cause is the extraction of energy from the flow 

by elastic deformation of the structure, and feeding of this 

energy into some particular mode of oscillation in such a way 

that the work done by the air balances or exceeds the energy 
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that is dissipated by damping. The small deflection eigenvalue 

problem for the natural modes and frequencies, w, of a structure 

not subject to excitation may be expressed as: 

w2-[Mll =0 

In the case of flutter, the modes and frequencies of motion are 

determined through the interaction of the inertial, elastic and 

aerodynamic forces: 

W2 [M] 
_ 1ý Qjj = 

where and U are the air density and free stream speed, and 

is a matrix of aerodynamic influence coefficients. The latter, 

however, are not readily available except in the simplest cases. 

The only analytical assessment of flutter relating to 

tension roofs which is known to the author is that given by 

Sofronie (173), who considered a very simplified structure 

consisting of parallel cable girders on a long rectangular plan 

with open sides or flexible column supports. Expressions for 

critical wind velocities were obtained in a similar manner to 

analyses for aeroelastic stability of rigid wing structures with 

coupling of bending and torsional degrees of freedom. These 

simplifying conditions would, however, not generally apply even 

for most rectangular truss or girder structures. It has been 

suggested (193) that the possibility of flutter may be precluded 

in cable girders by ensuring differing tensions and load distributions 

in the upper and lower cables. In fact, however, the system merely 
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prevents mechanical vibrations without straining, since corresponding 

natural modes and frequencies of the main cables considered in 

isolation must always differ. 

Siev (171) has examined the occurrence of flutter in 

small scale wind tunnel tests of a stressed hypar membrane and 

concluded that for membranes or cable networks of daring design 

the possibility of flutter in practice does exist. A result of 

interest relating to pneumatic stiffening was the elimination of 

the lowest flutter frequency when the volume of the structure was 

enclosed. Tsuboi (180), for the design of the Tokyo olympic 

swimming pool roof, estimated critical wind speeds by regarding 

a disturbed air stream moving across the structure as a system of 

air blocks having various densities. By this analogy the critical 

velocity for any normal mode is given by the product of the wave 

length and frequency of vibration of the mode. A check on Sievfs 

results for frequencies and critical velocities shows that the 

latter could have been adequately predicted using the air-block 

analogy, both for the fundamental and higher modes. Thus, 

although accurate analyses or aeroelastic model investigations 

for flutter may not in general be feasible, it appears that, for 

shallow roof surfaces, useful information in this respect may be 

gained from a knowledge of natural modes and frequencies under 

the various conditions of static load. 
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The discussions in the preceding sections concerning 

the characteristics of tension systems in relation to static 

behaviour, form: -finding and dynamic behaviour have indicated, in 

a broad sense, the needs of analytical techniques. The various 

techniques appropriate to these problems are reviewed in Appendices 

Aq B and C respectively. Appendix D gives a more complete review 

Qf the technique cf dynamic relaxation than is contained in the 

papers which form the following chapters. 



47 

CHAPTER 2 

DYNAMIC RELAXATION ANALYSIS OF TENSION NETWORKS 

SUMMARY 

The paper describes a general analysis based on the 

1, L method of Dynamic Relaxation proposed by A. S. Day .A 

computational arrangement is outlined in a form applicable 

to tensioned cable structures and space frames with cladding or 

panel elements. The procedure reduces considerably the core 

storage required compared with matrix iteration schemes and 

enables zero stiffness situations to be coped with. The 

analysis may be used to determine pretension geometry and 

behaviour under static or dynamic loading with account being 

taken of slackening of cables. A general expression for deriving 

close bounds to the critical time interval is also given which 

avoids the need for trial runs or the determination of eigenvalues. 

The paper concludes by illustrating the use of the method to 

determine the initial geometry and subsequent behav-Lour under 

loading of a cable edged geodesic net. work model. 

The paper was presented at the Int. Conference on 

Tension Structures, London, April 1974. 
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DYNAMIC RELAXATION 

The basis of the method is to trace step by step, 

for small time increments At, the dynamic behaviour of a structure 

from the time when it is initially loaded. For dynamic analyses 

with time dependent, impulse or transient loading the trace is 

terminated when the vibration characteristics and the maximum 

stresses and deflections have been obtained. For static 

loading, a high fictitious damping is imposed and the trace is 

terminated when the structure reaches a steady equilibrium 

state. The computational arrangement is similar for both 

cases though the term "Dynamic relaxation" strictly applies 

only to the case of static analysis. For dynamic analysis 

the real) usually light, structural damping would be used and 

smaller time integration steps may be necessary. In addition, 

the damping may not be applied as 'far-coupled' at the nodes but 

as 'close-coupled' within the structural members. This aspect 

is considered in Chapters 5 and 6. The present application 

concerns essentially the analysis of cable networks under static 

loading, though as a by-product an indication of the dominant 

natural frequencies is obtained. 

The masses of the structure are assumed to be 

concentrated at the node points. It is also assumed in the 

following that these nodes are jointed; sliding nodes 

associated with geodesic networks being accounted for later by 

means of a simple modification. 
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The governing equation of motion in the x direction 

of any node i at time t is: 

where 

x at time t- 

s 

Similar equations can be written for the y and z directions. 

of node i in direction x at time t. 

In finite difference form equation (1) is: 

xý. 
,tt 

K. VL 
t' X-L (1) 

is the residual force at node i in direction 

is the mass at node 

is the damping constant at node 

t. t 
vxý, vxý are respectively the velocity and acceleration 

t -A t 
Mý (vt+64/2, 

Xý - VX +Ký (V. 
X. ý + vxý 

At 2 
(2) 

Note that as the trace is followed for successive time intervals, 

the residual forces are determined for times 0, At, 2At 

t3, t+At ...... etc. whilst the average velocities are 

determined at the mid-points of these time intervals. 

From (2) the velocity at time t+At/2 may be expressed as: 

ý-C 

X-t 
Rx +v x4- 

mý/At -2 
Ký/ 2 MdAt + Kd2 Mý/At + Ký/2>1 

The damping factor K, - may be defined as a constant for the 

structure,, or more conveniently may be defined as K,, Mt. (K/ A t) 
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The damping/unit mass, (K \ /At), may be taken as constant for 

the structure but the actual damping will then be greatest 

for the most heavily loaded nodes. This will be preferable 

to uniform damping if, in addition to static deflections and 

member forces, the analysis is required to give some estimate 

of the range of dominant natural frequencies. Cý 

Equation (3) thus becomes: 

et6 t/2. t 
v- Aý, R+BV (3a) X-4. X4- X4. 

where Aý. At a constant for each node 
Mý (1 + K\/2 )l 

I 

I-K/a constant for the complete structure 
1+ K'/ 

ý2 ] 

The total x deflection of node i at time t+At is: 

At vxý (4) 

Similarly the velocities and deflections in the y and z directions 

may be determined. 

These calculations are carried out simultaneously for 

each node of the structure to give the complete displaced form at 

t+At. The current force in each bar or cable link m is then 

given by: 

TT0+ LA). T, + (Eý)meý-, *6ý 
rn mm in L 

%0 

where, for links which have not slackened, Tm= Tm the specified 
A0 ý+6 t" 

pretension, EA, =(EA, + T. ), and Lmand em are respectively 
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the link length under pretension and the extension from that 

state. The current extension may be determined by a square 

root operation in the program, or more efficiently by means of 

an expression which makes use of-the previously calculated 
t 

extension em (appendix 2.2- 

If the link connects nodes i and k then the force which it 

exerts in the x direction at i is: 

ýtAt7 reat 
ARXZM Trn xýz +6 xk 

(X + -R x- iz rn 
Lm 

where Xý, XA, are the co-ordinates in the pretension condition 

and Lm is the current link length. 

The contributions of all links connected to i are summed, with 

the applied load of P, -, to give the current residual force: 4. 

ý+. k t7+44 t: -ý6t 

R. 
Xý =P Xý + ARxým 

The residual forces in the y and z directions may similarly 

be derived. 

The effect of cable slackening may be accounted for 

by checking tensions at regular stages in the analysis (every 

n time intervals), and setting to zero T and EA in slack 

links until the next check. If a previously slack link is 

then found to be taut, the original T (=T 0) and EA values in 

equation (5) are restored. Gradual changes in elastic modulus 

(6) 

(7) 

dependent on stress level can be accounted for in a similar 
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manner. For static analyses, with high viscous damping, the 
0 

checks may be made at infrequent intervals (n>, > 1). 

The complete cycle of calculations takes the form: 

FOR EACH NODE 
Determine Vxý I 6; xý etc. 
from (3a) and (4) 

REPEAT 
for n time 

FOR EACH LINK intervals 
Determine ARxim, ARxom 
and sum into appropriate 
locations for R, Z, Rx& etc. 1 :> as in (6) 1 

Check tensions and re-set 
T% and EAývalues if necessary 

A summary of computer storage and operation requirements is 

given in appendix 2.3, and this is compared in addition with 

the computational efficiency of a matrix iteration scheme. 

Initial Conditions: 

It is assumed in the analysis that the velocity changes 

linearly over any time increment. 

a00 
conditions (V. ý = 0, Rxý = Pxz 

%0 
Aý Pxý 

(1 + B') 

CLADDING 

Thus to satisfy the initial 

(8) 

Cladding membranes may be accounted for in the analysis 

as a finite system of "constant strain" triangular panel elements. 
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In order to keep computer storage requirements to a minimum 

the displacements [6"Jof 
a typical element (fig. 1) are 

defined as the extensions, A, of the edges+. This reduces 

the stiffness matrix for an element to (3x3) compared with the 

usual (6x6) associated with two displacements per node. it 

also complies with the programming procedure previously 

outlined for cable links. The transformation into (9x9) 

element stiffnesses required for procedures in Twhich an overall 

stiffness matrix is assembled is thus avoided. 

----j. ---- -- 

:1= 
2. 

x 

Corresponding element forces are the tensions along each edge: 

lp 

The strains are assumed constant along each edge and throughout 

the panel and may be expressed in terms of 
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Ex 

y 

where x and y are convenient element axes. 

The terms in the matrix [G] 
are given by the equations: 

EX- Eb Yxg 1 

b, C, E:, a, ca, bý E a, bi c, 
b, c 1. F- Z. a, ca, b, E: a, b, C, ý 
b3 ci E31 a3 C3E3 a3 b,; E3- a, b3 c3 

where E: 
_, 

aý = Cos E)ý, b, ý= Sin E)ý, c. ý Sin E), Cos E)ý 

and 0ý = inclination of edge i to the x axis 

The stresses in an element are: 

cy dl, d0 

cyý d, d, 0 

Txý 00 d33 

[D] EG 

y 

(9a) 

(9b) 

(10) 

In general, the orthotropic elastic constants, dý 
j, must correspond 

with the element x, y axes. But for the particular case of an 

isotropic plane stress element which has not buckled: 

d1l dE dil = dj = vd,, d33 =E 

- VL) 2 (1 + V) 

and for convenience 01 may be set to zero. 

Having obtained the EG] and [D] matrices the element stiffness 

relations are given by: 

[[G]T ED] [Gj t. Aj 
[6eý (11) 

where t. A volume of the element. 
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With triangular element stiffness relations in this 

form, panel elements can be incorporated without transformations 

in the basic program for cable or bar structures; the effect 

of panel edge forces being included in the same way as cable 

link forces. The effect of compressive buckling and consequent 

alteration of the [D] matrix is considered in Chapter 3. 

To account for in plane distortion of very flexible 

membrane elements it may be necessary to reset the [G] matrix 

at infrequent intervals. Distortion will alter the values of 

in equation 9b, but lengths LZ remain the unstressed lengths 

upon which strains must be based. Similarly the volume of the 

element, tA, in equation (11) will remain unchanged. 

DAMPING CONSTANT 

For static load analysis a high fictitious damping 

constant must be used; the trace being terminated when the 

structure and loads are sufficiently close to a steady 

equilibrium state. To obtain bounds to the true equilibrium 

state a sub-critical damping constant should be used (fig. 2). 

Provided the damping is near the critical value, convergence 

in the early stages is rapid. Over-damping should generally 

be avoided, except in cases of static load failure analYses, 

such as the ultimate load of structures involving progressive 

buckling or cracking, when collapse should be approached from 

one si e. 
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TIME INTERVAL 

When the time interval exceeds a certain critical 

value, numerical instability of the calculations will occur. 

Considering only the x axis component of vibrations of a node i 

with structural connections to adjacent nodes k: 

t+A% t-4*4 % t7 
From (3a) vxý B. V, ý + Ak* R;,. ý 

For the next interval, assuming that the motions of nodes k 

and i are parallel to the x axis: 

where 

v 
t+ 

- 

3&t/'7- 

=B, 
e+ A -/: L +A 

1ý 
It-, 

6.6 tt 

+a ') (13) 
; IL4- VX;. (R 

X4. Sx Z ý. -M -X ý it 
aLL Unks at 

t+4ý. 
S Xi ý- is the x axis direct stiffness of node 

i relative to adjacent nodesk due to the 

structural element connecting nodes i and k. 

f node At is the increment of x deflection o 

relative to ad j acent nodesk during the 

time interval t-ot+At. 
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Thus if the time interval is large when the stiffness/mass 

ratio (Sxih. /Mý) is large, instability in the form of successive 

reversal and build up in the amplitude of velocities and 

deflections may result. 

Bounds to At may be obtained by considering adjacent 

nodes I and K of a part of the structure at which the S/M ratio 

of the nodes, or one of the nodes is highest. The most 

critical structural configuration and state of motion will be 

such that all nodes k adjacent to I are different from all 

nodes i adjacent to K, with the relative vibrations of nodes 

i and k exactly out of phase. 

t 
Substituting R,,, ý from (12) into (13) - For node. I: 

+3A 
(B'+ 1)V, + B. V, -A (S,, M x1t VX I 

Similarly for node K: 

t+ 3. &e/2, kýf. 4 e/2. '- t. -d t/7. t: +At 

VXK - (B + 1)VmK + B'Vl 
K -AK (S 

x ýýi 
CýLL ý 

For the most critical condition assume that the direct stiffness/ 

mass ratios of all nodes i and k are equal and for oscillations 

which are just stable: all Y 
x-L x, and all xK* 

Hence subtracting (15) from (14): 

e+34/2.5 f7/7- % t-AL-A % 

B vx, ý, +B. Vx, A, (Sx: [ 2M xIx 
(16) VXIK (+ 1) K 

where V.,: j, 
is the velocity of I relative to K 

Sx: r is the direct stiffness of node I relative to all 

adjacent nodes (assumed highest in the x direction). 
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The limiting case of stability is when Vx: cK during one time 

increment produces relative deflection changes ý6 
xLK such that 

vXIK in the next time increment is equal and opposite to the 

previous value. 

ý-+, at/x L-+Lt, 
Henc e -2 (B + 1)Vy: [ýt -A,: - S,,,, - 2M 

(B + 1) SX1 
I At 

At 2M, (17a) s XT 

Assuming alternatively (when subtracting (15) from 

sx"ý/Mj,. << SxT /MT 

At 
Crit4ML = 

FSMXII (17b) 

In calculating a permissible value for At. constant throughout 

the analysis for the whole structure, the highest ratio of S/M 

at any node in any co-ordinate direction must be considered. 

In practice the true critical time interval has been found to 

lie within the limits given above for all cable and space 

structures so far analysed. 

APPLICATION TO A GEODESIC NETWORK 

Pretension Geometry: 

The initial geometry of geodesic networks is such that 

each cable takes a path of minimum length over the network 

surface and has a uniform tension throughout its length The 
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geometry of a network with f ixed boundary nodes can be determined 

from the analysis simply by holding the tension constant 
0 throughout each cable. Thus in equation (6) Tm = Tm, the 

specified pretension. At the start of the analysis any 

nodal co-ordinates may be assumed. It has been found in 

trials that rapid convergence to the correct geometry is 

obtained even when the assumed initial geometry is extremely 

inaccurate. The reason for this is that the stiffness of any 

node relative to adjacent nodes is very low; being controlled 

only by changes in geometry and not by the elastic properties of 

the cables. Therefore the critical time interval is comparatively 

large. 

For geodesic networks in which the surface cables are 

jointed to edge cables the geometry is determined in the same way 

for surface cables, but for edge cables the tension in only one 

link of each cable is held constant at the required value whilst 

the other edge links are assumed to start from a slack state for 

which their lengths are specified; the tensions in them being 

controlled elastically. 

Behaviour in Service: 

After erection the nodes of a geodesic network would be 

jointed at least at the points of attachment of the cladding 

membrane. When all nodes are jointed the analysis follows the 

standard form. When only some of the nodes are jointed, with 

the rest being free to slide, tensions will be uniform over 

certain segments of each cable containing several links. The 
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analysis for nodes within these segments takes the same form 

but with the tensions being changed after each iteration due 

to elastic deformation of the segments in an overall sense. 

In the analysis of the model network under imposed loading all 

nodes were jointed, and the network was tested and analysed 

in an unclad condition. 

MODEL NETWORK TEST 

The model network (figs. 3& 4), measuring 2.6m across 

low points, 3.2m across high points, with a height dif f erence of 

560mm was constructed from 12 concave or sagging cables, 11 convex 

cables and four edge cables. The cables were of stainless steel 

and had EA values of 421 M, 316 kN and 2740 kN respectively. 

The total number of nodes was 100, four of which were fixed 

anchorages corresponding to the high and low points at the ends 

of the edge cables. 

The network was pretensioned by means of stainless steel 

turnbuckles at one end of all cables; tensions being recorded 

by means of two strain gauges in series on each turnbuckle. The 

applied cable tensions and the lengths between the edge nodes 

were such that the network was as nearly as possible symmetrical. 

The approximate tensions were 9000 N in edge cables and 450 N in 

all surface cables except the three central convex ca les in 

which the tension was 670 N. 

After tensioning the network, the nodes were jointed with 

wire clips and 13 N loads were applied at eight of the surface 
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nodes as shown in fig. 5. Deflections at these nodes could be 

recorded by means of a cathetometer. In addition to these 

static deflections, the lowest resonant frequencies of each 

loaded node and the central edge cable nodes were determined; 

resonance being induced and recorded with a small electronic 

vibrator. The comparatively small loads used in these tests 

were chosen to enable precise recording of the dynamic response. 

Equally good results have been obtained for much higher loads 

involving considerable distortion of the network. 

Figure 5 
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RESULTS 

Pretension Geometry: 

For the calculations of the geodesic geometry the time 

increment was At = 0.00012 sec- and the damping constant per unit 

mass was 0.03/At. A print-out was obtained for every 30 

iterations (i. e. at time intervals of 0.0036 sec). The starting 

positions of the nodes in the calculation were based on the 

assumption that the surface was a diamond shaped hyperbolic 

parabaloid with straight boundaries. In spite of large 

deflections the analysis had converged after 10 print-outs, 

(300 iterations). It can be seen from the plot for a typical 

surface node (fig. 6) that the motion was nearly critically damped. 

Fi gure 6 
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Behaviour Under Applied Loading: 

With all nodes jointed the stiffness/mass ratios in 

some areas of the network were higher, but the most critical 

points were at nodes adjoining links which contained a turnbuckle 

since the EA values were considerably higher than the values 

for typical cable links. As a result, and because no use was 

made of fictitious masses, the analysis took longer to converge 

than the pretension analysis. Bounds to the critical time 

interval given by equations (17) were: 

0.000038 <Atcrýt < 0.000054 

The time interval used was 0.000045 sec, and the damping constant 

per unit mass was 0.005/At. A subsequent analysis using a time 

interval of 0.000049 proved to be unstable. A total of 40 
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print-outs at time intervals of 0.0018 sec (or every 40 iterations) 

was required to obtain sufficient accuracy. 

Fig. 7 shows a plot of the dominant vertical motion of 

one of the four central loaded nodes. The final deflection of 

0.0345" (0.876 mm) compares with a measured value of 0.036" (0.914mm). 

Results of similar accuracy were obtained for the other observed 

deflections. The analysis gave a damped frequency for load 

points 1--*4 of about 13 Hz, and for nodes 5-8 about 9 Hz- These 

results compare respectively with observed values in the regions 

14.5 and 11 Hz Hz). As would be expected the theoretical 

values are low because of the high fictitious damping at the 

loaded nodes in the analysis. A subsequent analysis wit no 

damping gave frequencies of 15.5 and 12.5 respectively. 



Figure 7 
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Fig-8 shows a plot of the damped motion of a node in 

the centre of one edge cable. The observed frequency agreed 

to within I Hz of the calculated frequency of 42 Hz; the 

difference between the values obtained from the damped and 

undamped analyses being negligible owing to the comparatively 

light damping at edge nodes. 

Comments: 

It can be seen from the rapid convergence of the 

calculations for the geodesic geometry that a Dynamic Relaxation 

analysis is particularly suited to this type of network when 

nodes are not jointed. For determining the static deflections 

of the jointed network under applied loads the analysis converged 

more slowly, which in large measure is due to the limitation of 

the critical time interval due to the turnbuckles. However, 

by using increased (fictitious) masses at the end nodes of 

edge cables the number of iterations for the loaded state 

analysis reduced to 800, and this had negligible effect on the 

frequency response of surface nodes. Since the dynamic relaxation 

process when used for static loading gives only an indication of 

frequency response, this reduction is very worthwhile. A further 

reduction in computing time could be obtained by using a higher 

damping constant and fictitious masses throughout the entire 

structure (considered in chapter3 ) but no indication of frequencies 

would be obtained. 

For lightweight network roofs, estimates of the range 

ofdominant natural frequencies for each of various distributions of 

snow or other static load are required. Dynamic Relaxation may 
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provide such estimates as a bye-product of the static analyses. 

For the model test structure the dominant frequencies were 

obtained merely by inspection of the output. This was justified 

by the fact that the loads were released on the structure 

simultaneously and thus the damped dynamic trace contained 

components of only the lowest modes. Contributions from higher 

modes might be induced by staggering the application of the loads 

or imposing, on one or more unloaded nodes, initial displacements 

not compatible with any normal mode shape. After propogation 

and decay of these displacements, coupled with the effect of the 

applied loading, Fourier analysis of the output at any node should 

yield an estimate of the range of natural frequencies -A brief 

consideration is given to this in Appendix 2.1. 
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N. B. A list of references concerning dynamic relaxation., 
discussion relating to the development of the method, 
and consideration of the optimum convergence rate 
are given in appendix D (page 371). 
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APPENDIX 2.1 

MODAL DE-COMPOSITION OF AN EXPLICIT DYNAMIC RESPONSE ANALYSIS 

The results of a damped or undamped dynamic relaxation (or 

central difference) analysis of a linear elastic structure, in which 

one or more nodes are displaced from their equilibrium positions and 

suddenly released., can be de-composed to obtain an estimate of the 

natural frequencies of the structure. When the initial displacements 

are proportional to one of the normal modes the resulting vibration will 

consist entirely of this normal mode. If the initial displacements 

are not proportional to a normal mode -then the response will consist of 

a superposition of vibrations in all the normal modes. The frequency 

content of the recorded motion can be determined from methods based on 

Fourier series if the motion can be treated as periodic, or from methods 

that utilize the Fourier integral when the motion is non-periodic [5 1. 

Ij- a damped analysis is used (D. R. ), the damping should be 

light in order that frequencies (particularly the lower ones) are not 

attenuated. For this reason it may be uneconomic to attempt, by Fourier 

de-composition, to obtain the dominant natural frequencies from a dynamic 

relaxation analysis which is intended primarily to yield a solution to the 

static load behaviour of a cable structure. In practice, however, it is 

probable that a lightly damped trial run would be carried out to obtain 

a value for the critical damping (see Chapter 3). In such cases a 

Fourier analysis, incorporated as a simple routine within the program, 

may be useful in yielding an estimate of the range of dominant frequencies 

for each static mass distribution considered. 
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Fourier Analy is of D. R. output 

The resultant displacement y of any particle in a wave 

represented by a complex periodic vibration is: 

y= f(t) = A* + a,, Cos(wt+ý) + a,: Cos(2wt+-n.. ) + .... + an -Cos ('nwt+rl, ) 

or y= A<, <A,, Cos(rwt) +ýýSin(rwt) (1) 

r=1: t r=1: fl 

where TI, etc. are phase angles and A, , B, etc. represent the amplitudes 

of the various fundamental and harmonic terms, the fundamental frequency 

being given by w/27r. A,, is a constant term representing the mean level 

of the ordinates since, by integrating both sides of (1) with respect to 

t over a complete vibration of period T= 27r/w it follows that all the 

terms on the right-hand side are zero except A,,. Hence: 

TT 

0f 
(t) dt = 

Jo 
Aodt = AOT 

T 
AO y f(t)dt = Average value of f(T) over one cycle. 

0 

To evaluate the amplitude coefficients use is made of the 

orthogonality of sines and cosines - if the product of two sinusoids of 

different frequencies is integrated over a complete cycle the integral will 

be zero: 

T 
Sin(mwt)Sin(nwt) dt =0 

0 
mýn 

T 

Cos (mwt) Cos (nwt) . dt =0 
0 mOn 

T 
S in (mwt) Cos (nwt) .dt 

m--n 
or m4n 
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T2T 
.1T But Sin(mwt). dt Cos(mwt). dt 

002 

Hence, by multiplying (1) by Cos(rwt) and integrating for a complete 

cycle: 

f(t)Cos(rwt). dt =AT 2 
0 

or Arl =2 
IT 

f(t)Cos(rwt). dt T 
0 

Similarly the coefficients of the Sine series may be determined by 

multiplying by Sin(rwt) and integrating: 

2T 
Byf (t)Sin(rwt) dt 

0 

The above theory applies to periodic vibrations. The output from a 

damped central difference analysis may be treated as such in the following 

way: 

The full line in figure I represents a trace of the damped or 

undamped displacements or velocities of any node of the structure: 

ç(x) 

x 

Fi gure 1 
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The dashed linerepresents the reflected image of the trace from X to 

X+x,, where X is the last maximum or minimum of the trace and X-X, is 

the first. Associating 2X, with the period: 

A� =1 f(x)dx x r, 

1 

X-x rt 

hence, assuming n intervals (of length 6x = Xn/n) from X-X, to X, and 

(x) = c<,, at the mid-point of interval m then by discrete summation: 

m--n 
Ao ý Oe-I rr% 

M=l 

X+Xn 

A=2 )Cos(rwx). dx +2-f (x) Co s (rwx) . dx t2 in 
X 

fx(mx 74 
X 

or, redefining origins for x' and x": 

X" 
A=1f (x') Cos (rwx') d x' xn 

0 

1 
Xn 

+ Xrt 
0f 

(x") Cos (rwx") . dx" 

I 
(2m-1) 8x = (2m71) X, 

and, since f (x') =f (x") = at x' =2 2n 

and x" = Xr, - 
(2m7l)6x 

2 

m=n 
Ar =ý 2ýO (Cos (rwx') 6x + Cos (rwX, -rwx') 6x) 

M-- 1xr, 

hence, since w= Tr/X,: 

m--n I r7rx 
Ar c'<mCos (-X )(l+CosriT) =0 for all odd integers r 

n 
M--l 

2 m=n rTr Cos(-ý-(2=1)) or all even integers r 
n nmn M=l 
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Similarly for the Sine coefficients: 

M=U 
Br c; <,, (S in (rwx') 

n 
M-- 1 

+ Sin(rwX,, - rwxl) ) 

M=n oý,, Sin(rwx) (1 - CosriT) 
n M=j 

=0 for all even integers r 

2 M=U 
B 7-- 

ý oým. Sin (-!, -'-T(2m-1) for all odd integers r n 2n 
M=I 

The application and accuracy of the above de-composition method 

compared in the following sections with eigenvalue and model test analyses 0 

for a plane prestressed net and a cable edged spatial network. 

PLANE PRESTRESSED NET 

The plane network shown in figure 2, when subject to constant 

prestress in each set of cables (S and T) and identical nodal masses, is 

amenable to a simple natural frequency analysis given by Grigorian [6]. 

bC/c, 

b 

b 

Fi gure 
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If the normal displacement of any intersection (x, y) in time (t) is 

given by a function L(x, y, t) , then the equation of equilibrium at the 

ifitersection may be expressed as: 

[-bt2d +T (E -2+E-, -1 
x+S 

(E 
J- 2+E Lý(X, Y, t) =0 (2) 

dt' a 

where the mathematical operators carry out the functions: 

-1 
E 

)ý 
A(X, Y, t) = A((X+1), Y, t); E)c - A(x, y, t) = A((x-1) y, t) 

A function A(x, y, t) which satisfies the boundary conditions 

of a completely supported net is: 

A(X, Y, t) D Sin( 
i 

-MIIX) - Sin( 
j 

-: 
Y) 

- Sinwt 

where D is an arbitrary term. 

Substituting the function (3) into the governing difference 

equation (2) gives: 

S in" S- Sinl T ('12 -nTr) 2 

F[', 

MT*. a+m. b 
T. 

Assuming the following parameters in equation (4): 

S= 20N; T= 60N; M=0.123 kg; a=b=0.353m. 

(4) 

the natural frequencies f ýj = wýj /27r are as follows: 

f=5.2 Hz 8.65 Hz 11.2 Hz 

6.6 Hz 

7.8 Hz 

9.6 Hz 

10.4 Hz 

Typical modes f 1. and f, are shown in figure 3 

F1 f-L 

11.9 Hz 

f= 12.6 Hz 

Fi aure 3 
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Dynamic Relaxation and Fourier Analyses 

The stiffness of the network normal to the surface is given 

approximately by: 

p 
(60 20 SH=2)= 453 N/m a 0.353 ' 0.353 

This assumes deflections are sufficiently small not to increase tensions 

signif icantly. Since the same assumption is made in Grigorian's theory 

the tensions in the DR analysis were held constant. 
2M 

Hence: At 0.0233 sec. rS 

Based on the lowest frequency of 5.2 Hz, the critical damping per unit 

mass is given approximately by: 

r-rLt = 4TTf=65 K 

For the DR analyses of the net, node I was initially displaced 

5mm normal to the surface with all other nodes held at their equilibrium 

positions. The nodes were then suddenly released and the vertical 

deflection of node 2 was traced to provide input for the Fourier analysis. 

Two cases were considered: 

a) At = 88% Atrlr, ýt K= 40% Kc, ýt traced for 0.52 sec. 

b) At = 22% Atrýt ,K=0, - traced for 0.9 sec. 

In each case the beginning and end points of the trace corresponded to 

minima or maxima. 

For case (a) the deflection trace is shown in figure 4 and the 

result of the fourier analysis for the coefficients Ar and Br is shown in 

f igure 5. This suggests frequencies approximately in the range 4-+11 Hz. 

The spectrum of coefficients is however very diffuse. For case (b) the 
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Figure 
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fourier analysis is shown in figure 6. The predicted frequencies 

lie in the range 5.0-*12.2 Hz, corresponding reasonably with the 

theoretical range of 5.2-+12.6 Hz. 

CABLE EDGED SPA TIAL NE TWORK 

A model network with the same overall dimensions as the 

structure in the main text, but with a reduced number of surface cables, 

was tested for dominant natural frequencies by means of a vibrator placed 

at each of the loaded nodes 1-*-6 in turn and at the centre of each edge 

cable. A plan of the network indicating the applied load points and the 

tensions in each cable is shown in figure 7. The masses of the loaded, 

unloaded, and edge nodes were respectively 1.33 kg, 0.05 kg and 0.3 kg, 

and the EA values of the cables were as given in the text. 

2-7 Ln w 

14 

ý4ýh 

< 

13 

L+ 

162, 136 

+ 2-56 

16 

> 

175 

ýL3 

Fi gure 7 Tension indicated 2-SS N- 
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Table 1 shows the frequencies recorded in the test compared 

with the first ten natural frequencies obtained from a linearized 

eigenvalue analysis (see first term eq. 2, Appendix 2.3). The full 

set of 72 eigenvalues so determined ranged from 6.4 Hz-+1271 Hz, but 

the first ten, given in table 1, correspond to the six dominant surface 

modes involving vibration of the loaded nodes normal to the surface 

together with the four fundamental modes of the edge cables. The 
0 

highest eigenvalues correspond to modes involving vibration of the 

unloaded nodes tangential to the surface or along edge cables. 

Experimental 6.2 6.7 6.9 7.7 8.2 11.7 15.0 17.3 17.4 18.5 

Eigenvalue analysis 6.4 7.3 7.4 ý7.5 8.3 11.3 15.4 16.2 16.5 17.4 

Table 1: Dominant Frequencies 

Coefficient r 3 4 5 6 9 

Amplitude Ar. Br 
1 

0.160 
-I 

-0-291 
I 

-0.239 
I 

0.070 
I 

-0.032 
I 

Frequency = 2.15r 6.4 8.6 10.7 12.9 19.3 

TaKe 2: Fourier De-composition - dominant 
frequency components 

An undamped central difference analysis was carried out using 

a time interval of 95% of the critical value. Node 4 was displaced 

10mm in the z direction (approximately normal to the network surface) 

and suddenly released. The z displacement of node 1 was then recorded 

at each time interval for a total time, between initial and final 

minimag equal to 1.5 times the lowest period of vibration. A fourier 
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de-composition of this record yielded frequencies ranging from 

6.4Hz to 215 Hz, with dominant components up to 19.3 Hz as shown in 

table 2. The amplitudes of the remaining frequency components were 

as follows: 

Frequencies between 19.3-*47.2 Hz: 

4 7.3-*70.78Hz: 

70.9-+215 Hz: 

Ar, Br < ±0.008 

Ar, Br < ±0.003 

Ar, Br < ±0.001 

A short undamped analysis using 60% of the critical time interval 

with the unloaded node 8 initially displaced 10m in the x direction, and 

the recorded y deflection of node 11 de-composed by fourier analysis, 

yielded frequencies up to a maximum of 1140 Hz- In practice, however, it 

would be unnecessary to use a fourier analysis to estimate an upper bound 

to the range of natural frequencies since this can be obtained directly 

from the critical time interval )) - 

Comments on Results 

For the plane net, natural frequencies were closely grouped 

because tensions were held constant in the analysis and thus all modes 

were dominant and involved only motions normal to the surface. For this 

reason it proved necessary to use a time interval less than 50% of the 

critical value in order to obtain reasonable results. For the spatial 

net, however, in which cable intersections were treated as jointed and 

thus tensions varied with deformation, the critical time interval was 

limited by motion tangential to the surface. Since the stiffness normal 

to the surface, which governs the dominant frequencies, was very much less 

than the tangential stiffness, a short trial run using a time interval 

almost equal to the critical value yielded a reasonable design estimate 

of the range of dominant frequencies. 
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APPENDIX 2.2 

LINK EXTENSIONS 

The extensions of links may be calculated either by means of 

square root operations at each stage or by making use of previously 

calculated extensions: 

let L= Initial lengthq and e= current extension of a link 

Dx= X(2)-X(l) = difference in the initial X co-ordinates of the 
two ends of the link 

DSx = 
S,,. (2)- = difference in current X displacements 

similarly for Dý, Dz. and DSý, DSz, 

1. 'L 

then (L+e) = 
ý(Dx 

+ Nxý L'- +ý (2D,. Dg + DS, 

X9YPZ 

DSx(2D, 
- 

+ DS, ) 
(2L + e) 

When iterative analysis such as dynamic relaxation is used 

equation (1) may be applied in a modified form: 

-n: ýDS., (2D,, +D6x) =QI 
(2L + e, ) (2L+ep) (2) 

where er = current extension; ep = previously calculated extension 

Provided oscillations damp to a steady equilibrium state 

equation (2) precludes the possibility of accumulated errors since at 

each stage the total extension is calculated. When the time interval 

approaches the critical value, however, a form of instability can develop 

which is due to the fact that lej as calculated from (2) may be larger 

than the true value. This can be overcome by taking two "terms" in the 

expression for e, , thus: 

e. Q 
(2L+ýQ 

2L+ep 
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APPENDIX 2.3 

COMPARISON OF D. R. AND MATRIX ITERATION SCHEME 

COMPUTER STORAGE AND OPERATION REQUIREMENTS FOR DYNAMIC RELAXATION 

The total storage required and the number of numerical 

operations per iteration of the DR process may be assessed as 

follows for a structure employing only cable or bar-elements. 

The recurrence equations for the iteration scheme 

(given in the text and appendix 2-2) are: 

For each node (in direction x and similarly for y and z): 

t7 +, 6 t/z % t' -64: /2, %e 
VX B. vx + A. Rx 

(Set R px 

ý t, 6 C* t: 

VX 

For each member (joining nodes i and k): 

eQ AR (Dx-+DS; c) T"+ (EA+To) e L- 

(2L + Q/ (2L+et)) (L+e t+6c* L 

where Q= Dgý, (2D_x + Dgx) 

X, ý) z 

J: +6t t7+. 6t t-+4t 
(Set R,,., Rx ý+ ARx 

Core Store: 

and Dgx = Exiz 9 Xt 

b--t a b--t-zi t ý-t 
R AR 

For each member storage is required (or convenient) for 

aN% 
e, L, T, EA, T, (EA/L), D, (c=x, yz), and N(l), N(2), where N 

are the node numbers at ends 1 and 2. For each node storage is 
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required for co-ordinates, velocities, deflections, applied loads, 

residual forces and 
ý; in each case the number of components 

being equal to the number of degrees of freedom. Thus for 

a system with n nodes, m members, and DF degrees of freedom 

the total storage requirement, excluding the program and 

control parameters, is approximately: 

m(8 + DF) + 6n. DF 

Operations: 

The number of sum (t) and product operations 

required per iteration is as follows: 

For each node: 2 DF sums; 3DF products 

For each member: (4+6DF) sums; (5+3DF) products. 

STOPACE AND OPERATION REQUIREMENTS FOR MATRIX ITERATION 

A Modified Newton Raphson iteration scheme equivalent to those given 

by Mollmann [7], Siev [8] and Eras and Else [9] is a widely used 

procedure which provides a suitable basis for comparison with dynamic 

relaxation. The procedure summarised below is set out fully in ref. 

[10] in a form which caters for slackening of cables by the use of 

"equivalent" sectional stiffnesses (EA') which ensure equilibrium of forces 

and compatibility of strains and deformations throughout the analysis. 

(See Appendix A, page 298). 
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Procedure 

The changed geometry of the deformed structure is taken into 

account by means of a non-linear load/displacement relationship of the 

orm: 

ý6ý 
+ [WJ + [CLI 

=0 (1) 

where: 
ýWý is the vector of applied nodal loads 

ýCLI is a correction vector, the elements of which are 
non-linear in displacements 

[K] is the stiffness matrix 
ý61 is the vector of nodal displacements 

The cycle of computations is as shown in figure 1. 

Se t [CLI 
=0 

Form [kjand 

partially invert 

A 

YES 

I Sol ve for [S II 

B 
I is number of 

iteration <n? 

YES 

i 
Fo= [CLI I 

compute member 

strains and forces 

Are any new 

able links slack? 

NO 

Write forces 

and deflections 

Fi gure 1 
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In explicit terms, assuming three degrees of freedom per 

node, a typical equation in the matrix set (1) expressing equilibrium 

in the x direction at a node i, with member connections to adjacent 

nodes k, is given by: 

(T+ATO) L+ (EL) -ý-A- (pU +qV+ rW +w, LL 

ik 

TU' 
[EA(B+C') 

- ATOI 0 (2) 

The notation is as follows: 

T, LTO - Initial tension and estimated tension change in link ik 

L, EA - Length and sectional stiffness of link ik 

P, q, r - Projections of initial length of ik on x, y, z axes 

U, V, W - Projections of extension of ik on x, y, z axes 

Ut, V', W'- Values of U, V, W determined in preceding iteration 

The correction factors, based on previously calculated displacements are 

given by: 

B= 2U' + qV' + rW' 

L 
cuf+ 

vy + wl 

2L 

and CT is the previous value of C 

Similar equations may be written for equilibrium in the y and z directions. 

Core Store 

The storage vectors required (or computationally convenient) for 

each member are: T, AT, )L, C !pD 31 E, S where D and E are working 

stores for * and **, and S is the 'strain' based on nodal displacements 

(required to be stored in connection with the checking and re-setting of 

EA values for slack cables 
1 10]. Additionally, arrays will be required 
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for EA and EA', node numbers at ends 1 and 2 of each member, and 

preferably for p, q, (& r). The member storage requirements are 

thus m(l. ',. +DF) array elements, where m is the number of members and 

DF the number of degrees of freedom per node. 

For each node, co-ordinates, displacements, applied loads 

and correcting loads must be stored and updated, requiring a total of 

4-n. DF array locations, where n is the number of nodes. 

In solving the set of simultaneous equations, if slack cables 

are allowed for and encountered, Gaussian reduction and elimination, in 

a form suitable for dealing with subsequently changed loading vectors, 

may be more efficient than matrix inversion (furthermore, for large 

structures Gaussian reduction entails considerably less storage). For 

such a solution process, unless backing store is utilized, the matrix 

storage required will be approximately n. DFL(B+1), where B is the maximum 

difference in the node numbers of any member. With disc or tape backing 

storage and the use of a frontal solution technique, the minimum core 

store required would be DF IL 
. 

(B+1)". The use of backing store may be 

essential for large structures, but should preferably be avoided in 

iterative analysis of non-linear systems. 

Summarising, the total convenient storage requirements 

(excluding the program) are: 

m(ll+DF) +4n. DF + n. DF (B+l) 

Operations 

The number of operations (sums and products) required for each 

iteration is approximately as follows: 
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Correction term (line 2 of equation (2)) for each member: 

(2+6DF) Sums; (9+6DF) products 

Strains, forces and resetting EA for each member: 

2 sums; 2 products 

Setting the stiffness matrix, above the leading diagonal, by summation 

f or each member: 

:LI 
(1+2DF+2DF )sums; (4+DF+DF ) products 

Gaussian reduction of stiffness matrix (6uter loop A in figure 1) - 

approximate number of operations per node: 

3 2ý 

DF. (B+I) /2 sums; DF. (B+l) /2 products 

Reduction of new force vector (inner loop B in figure 1): 

1 2, 
DF. (B+l) sums; 2DF. (B+l products - per node 

Back-substitution (or elimination) of a reduced stiffness matrix and force 

vector (inner loop B) : 

2. 
DF. (B+l)sums; DF2(B+l) products-per node 

The maximum and minimum bounds to the total number of operations 

required per iteration are thus : 

m. M + 5N<Sums + Products<m. lM + N(5+DF(B+1)) 

where M= (20 +15DF + 3DF ); N=n. DF (B+I) 

The lower bound will give the closest estimate for systems in which slack 

cables do not occur (with the stiffness matrix reduced once only). 



89 

COMPARISON OF D. R. AND NEWTON RAPHSON ITERATION SCHEMES 

When using time sharing facilities the operational cost of 

a program might be taken as approximately proportional to the product 

of core store and the number of operations. On this basis the 

relative costs per iteration of DR and Newton Raphson schemes are 

summarised in table 1 for systems with 2 and 3 degrees of freedom per 

node. For the Newton Raphson matrix analysis it is assumed that the 

number of iterations of loop B to the number of loops A is in the ratio 

8: 3. 

Dynamic Relaxation Newton Raphson 

0 (27m + 10n) (62m +n (3B2* + 26B + 23)) 
2 F 

x (10M + 12n) x (13m + n(4B + 12)) 

0 (36m + 15n) (92m +n (10B" + 65B + 55)) 
F 3 

x (Ilm + l8n) x (14m + n(9B +21)) 

Tab le I 

Examples: 

(1) Plane Cable Truss 

For the truss system shown in figure 2, B=2 and m= (2n+3), 

where n= number of active nodes. The approximate cost ratios of 

Newton Raphson: DR per iteration are: 

f or n= 10: 

f or n= 20: 

Cr = 4.54 

Cr = 4.63 



90 

Fi gure 2 

(2) Cable Network 

For a single layer spatial network, square in plan, of the 

type shown in figure 3, B= and m=2 (n + B) . Approximate cost ratiol, 

of NR : DR per iteration are: 

for B= 10: Cr = 68 

for B= 20: Cr = 343 

Fi gure 3 

In general, to achieve sufficient accuracy, Newton Raphson 

analyses of cable systems have been reported to require from 3 to 17 

iterations depending on the degree of non-linearity [7,10,11,121. For 

plane systems involving no slackening of cables the lower figure is more 
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realistic, whilst the upper figure is more appropriate for form-- 

finding of networks or the analysis of systems involving slack 

cables or other combined geometric and material non-linearities. 

The network system considered in the text of Chapter 2 required 

300 iterations by dynamic relaxation for convergence of the form-- 

finding, and a similar figure would be appropriate for a purely 

static analysis using fictitious mass components. For a similar 

efficiency a Newton Raphson analysis would need to converge at the 

second iteration. Dynamic relaxation thus shows to good advantage 

for the analysis of such a structure. For plane cable systems, 

however, Newton Raphson analysis has proved generally more efficient. 

The crude comparison given above has assumed a Modified Newton- 

Raphson iteration with infrequent resetting of the stiffness matrix. 

For highly non-linear problems, however., a full Newton-Raphson 

procedure, or alternatively an incremental method with equilibrium 

iterations or load extrapolation (Appendix A, p. 307), may be necessary; 

both cases requiring the stiffness to be reset at every stage. In 

such cases the dynamic relaxation process (assessed above on the basis 

of a test case with gross deformation) would show to even greater 

advantage. Haug (13), for example, quotes between 15 and 33 cycles of 

Newton-Raphson iteration for the form-finding of networks with 

inaccurate specifications of geometry at the start of the process. 

And for the cases quoted, to avoid singularity of the overall system 

equations, the use of conditional deflection controls or gradually 

relaxed fictitious stiffnesses were necessary (see also Appendix B, 

334) . 
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CHAPTER 3 

APPLICATIONS OF DYNAMIC RELAXATION TO THE FORM-FINDING 
AND ANALYSIS OF CABLE, MEMBRANE AND PNEUMATIC STRUCTURES 

SUMMARY 

Design applications of dynamic relaxation are 

considered for the determination of various pretension 

geometries of uniform mesh or geodesic cable networks, 

minimum surface stressed membranes and pneumatic structures. 

For cable networks with complex curvature and boundaries the 

determination of stress trajectories due to uniform normal 

pressure on a minimum surface membrane can facilitate the 

choice of efficient cable trajectories. The pretension 

analyses can incorporate the derivation of tension cable 

boundaries or momentless compression contours. 

The analysis of tension structures under static 

loading, and techniques to improve efficiency are considered. 

The method is shown to be useful when dealing with slackening 

of cables and buckling of membrane cladding. 

The chapter is based on a paper given at the 2nd. Int. 

Conference on Space Structures (Guildford, Sept. 1975). The 

text has, however, been edited for continuity with chapter 2 and 

an error concerning buckling analysis, which occurred in the 

original paper, has been corrected. 
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DYNAMIC REIAXATION 

The method of Dynamic Relaxation was conceived by DayL1J 

and developed by Otter[2]. In his original paper Day presented 

the application of dynamic relaxation (DR) to solutions based 

on both stiffness matrix and finite difference procedures. 

The majority of subsequent papers[2 - 9] have applied or examined 

the method in the latter form. For the case of linear finite 

difference problems it has been shown that the convergence rate 

of successive over-relaxation may be about twice that of DR [8,9], 

though this should be considered relative to the simplicity of 

DR, particularly when dealing with complex problems or boundary 

conditions. For problems involving geometrical and material 

non-linearity theoretical comparisons have not been made, though 

Brew and Brotton L10] suggest that compared with over-relaxation 

methods DR gives greater control over the path to solution and 

hence on stability of the iteration. It is this advantage 

which makes the method particularly appropriate for both the 

design and analysis of tension structures [11 - 13] - The 

procedure also has a rapid initial convergence rate which can 

be of special value in form-finding applications. 

The main advantages of DR stem from the fact that 

equilibrium and compatibility conditions can be separated. Thus 

in differential form one high order equation is replaced by two 
0 

lower-order equations. And in finite element form only the 

'natural' stiffnesses of elements are required (chapter 2), as 

opposed to transformed stiffnesses assembled into an overall 

matrix. This results in a saving in storage and, for non-linear 
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tension network and membrane problems, a probable reduction 

in computing compared with procedures based on iterative 

solution of an overall, yet changing, stiffness matrix. 

Also, because of the degrees of mechanical freedom which may 

occur in tension structures, it is possible that iterative 

displacement solutions whether based on an overall stiffness 

matrix or nodal relaxation may become singular or unstable. 

Whilst this situation will not occur provided the tension or 

geometric stiffness is accounted for (in addition to the elastic 

stiffness) and the surface structure remains in tension, it may 

do so if buckling of membrane cladding or slackening of cables is 

allowed for and occurs. Alternatively, to avoid this si. tuation, 

conditional controls may have to be incorporated in the analysis. 

In contrast!, because of the separation of equilibrium and 

I. compatibility, DR copes naturally with zero stiffness situations. 

The dynamic relaxation procedure based on a finite element 
4 

structural idealization was set out in chapter 2 in a form most 

suitable for the forTir--finding and subsequent gross deformation 

analysis of cable structures. A summary of the recurrence 

equations is given below for completeness of the present account 

which is concerned with more varied applications. 

The velocity of any node, i, at the mid-point of a 

time step (t-. ot + ýt) is given by: 

vxz vxý, I-K. At/2 + Rx-ý. At I1 (1) II+K. 

At/2 Mý + K. At/2 
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where Rx. ý ,V4 are respectively the residual force and velocity ýx L 

at node i in the x direction 

K is the viscous damping per unit mass (a constant for the 

complete structure) 

is the concentrated mass at node i (in form-finding or 

static load applications this may be replaced by a 

fictitious mass component M,, ý, different from 

the y and z components, to speed convergence). 

The x co-ordinate of node i at the end of the time interval is: 

d+AC cät. 6 e/z 

41 

Similarly the new y and z co-ordinates may be determined. 

These calculations are carried out (simultaneously)for each node 

of the structure to give the complete displaced form at time 

t+ '-, t, and hence also the extension e 
t; *6t: 

, from the initial 

state and the force, T, in each of the structural links 

(cable segments and/or sides of membrane elements. ) 

The current force in any cable is: 

0 TT +(EA). e (3a) 

L. 

And the side forces in a triangular membrane element are: 

T T, 0e, ýt6t 

T T2, +kee. L 
(3b) 

T3 T3 e3 

where link forces T0 are due to prestress and 
EKejis the 3x3 

natural stiffness matrix relating side tensions to side extensions. 
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Since an overall stiffness matri, x is not formed it 

is unnecessary to transform relations 3a and 3b to a common, global 

co-or inate system. The use of natural stiffnesses for both 

cable and membrane elements, in addition to reducing core storage, 

eliminates more simply the possibility of accumulated errors due 

to gross changes in position. 0 

Having obtained the current link tensions, and overall 

geometry, the residual nodal forces can be set: 

bt6t: - L-+At: 

= (x? t - xz) Tr. X-C xt 
L rn 

where P,,. ý is the applied load in direction x at node i, and the 

su=ation is taken for all links m connecting i to adjacent 

nodes k; all terms in the square brackets being current 

values at time t+At. Residual forces in the y and z directions 

are similarly derived. Whence the cycle of computations is 

repeated. 

FACTORS AFFECTING THE RATE OF CONVERGENCE 

Damping 

For static load analyses, to obtain bounds to the true 

equilibrium state a slightly sub-critical damping factor is 

desirable. If the lowest frequency f of the structure has been 

approximately determined from a short undamped trial run, the 

critical damping factor per unit mass is given by: 

411. f 
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Rushton [5] determines the critical damping automatically 

by following the curve of total kinetic energy for the initally 

undamped system to its first true maximum (1/4 fundamental period). 

For properly triangulated or plate structures with distributed 

loading the technique has proved useful, but for cable networks, 

with many degrees of mechanical freedom, subject to non-uniform 

or concentrated loading it has been found difficult to locate 

this maximum. 

Time Interval 

When the time interval exceeds a certain critical value, 

instability of the calculations will occur. It may be shown 

[13 or chapter 2] that bounds to the critical time interval can 

be derived by considering only the node(s) of the structure at 

which the direct stiffness/mass ratio is highest. The limits 

are given by: 0 

Em <1 A tcrýt < sm s 
where S is the greatest direct stiffness of the node relative 

to adjacent nodes (considered fixed). 

This simple expression eliminates the need for trial 

runs or the determination of eigen-values and has been found to 0 

be equally valid for situations, such as the determination of 

geodesic or minimum surface geometry, where the elastic stiffness 

is zero, and S depends solely on the specified constant 

pre-tension or stress and relative node positions. 
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Fictitious Masses 

Computing time can usually be considerably reduced by 

the use of fictitious masses [6,7,10] to ensure that the 

stiffness/mass ratios, and thus the critical time intervals, 

are in the same range for all nodes in each co-ordinate direction. 

This is particularly appropriate for cable networks and membranes 

in which the stiffness in the plane of the surface is very much 

greater than the normal stiffness. Thus in shallow areas 0 

(approximately parallel to the global x-y plane) fictitious 

mass components Mx and My should be much greater than Mz. And 
C) 

in general, the masses may be proportioned according to the 

direct stiffnesses in each co-ordinate direction; though a 

potentially more efficient procedure for such structures is to 

vary the co-ordinate system so that the z axis is always normal 

to the surface. For other types of cable structure, such as cable 

girders, the use of fictitious masses may be of little value. This 

problem is considered in a later section. 

FORM-FINDING APPLICATIONS 

For simplicity in illustrating the principles involved, 

the network and membrane structures considered in this section are 

all based on the same four point support system with either tension 

or compression momentless boundaries. The dimensions and properties, 

and example calculations for time interval, fictitious masses and 

damping constant are given in appendix 3.1. 
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Geodesic Networks 

The initial geometry of geodesic networks is such that 

each cable takes a path of minimum length over the network 

surface and has a uniform tension throughout its length. The 

geometry of a network with fixed boundary nodes can be determined 

from the analysis simply by holding the tension constant. Thus 

in equation (3) T= To at all stages, with the EA values set to 

zero. At the start of the analysis it is necessary merely to 

specify correct topological connections for the links of the 

structure; the geometry, apart from specified support points, 

can be arbitrary. 

For geodesic networks in which the surface cables are 

jointed to edge cables the geometry is determined in the same way, 

but for edge cables the tension in only one link of each cable 

is held constantq whilst the other edge links are assumed to 

start from a slack state for which their lengths and EA values 

must be specified. 

Because motion of the edge nodes is elastically controlled, 

the critical time interval may be much smaller than for the 

geodesic surface nodes. In contrast to analytical applications 

however, both fictitious EA values and nodal masses may be chosen 

in order to optimise the calculations. For the example structure 

in figs. 2a and b in which the edge cables intersect each global 

co-ordinate axis at about 45 0. to increase the time interval the 

edge masses may be increased until their period of vibration is 

the same as that for the surface nodes. Beyond this there is 

no advantage to be gained unless a variable co-ordinate system is 
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used such that each edge cable is aligned with a co-ordinate 

a: ds. If however the EA values of the edge links are reduced, 

the time interval can be further increased to correspond with 

the critical value for surface nodes without appreciably 

increasing the period of vibration of edge cables; the main 

determinant of this being the specified tension in the control 

link. Starting from the very inaccurate geometry shown in 

figs. la and b, convergence to an accuracy of 0.01% of the grid 0 

spacing was obtained in less than 40 iterations. The geometry 

shown is for a surface to edge tension ratio of 1: 20. 

Uniform mesh Networks 

In contrast to geodesic networks in which cable inter- 

sections may be jointed only after pretensioning, the uniform mesh 

is pre-jointed so that, apart from cable segments adjacent to 

boundaries, the length between surface segments is constant in 

the slack state. For the example structure the initial tensions 

in such segments and two segments of each edge cable were set 

to zero, and deformations were controlled by specifying their EA 

values. For other segments the procedure was reversed; the 

tensions adjacent to boundaries being held constant. The 

resulting geometry is shown by the dashed line in figs. 2a and b. 

The uniform mesh is shallower in central areas; and whereas 

the tensions throughout the geodesic net were held constant, resulting 

in approximately uniform curvatures and consequently greater 

stability under live loading, the ratio of max. to min. tensions in 

the uniform mesh was 1.43. For real structures with a much 
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finer mesh and complex boundaries this ratio and the non- 

uniformity of curvatures may be much greater, and ideally the 

tensions in some inner segments of the mesh should be held 

constant. Physically this corresponds to the use of 

turnbuckles in the real structure since the initial slack 

length of single segments cannot be adjusted with sufficient 

accuracy. 

momentless Compression Boundaries 

Irrespective of starting geometry, if the force in 

edge cable segments is specified as a constant compression the 

system must always become unstable. Momentless contours can 

however be determined by the simple device of reversing all 

surface cable force components when applying equation (4) to 

the edge nodes, and calculating the edge contour as a tension 

boundary. 

Starting from the initial geometry in figs. la and b, 

the resulting geometry for a surface to edge force ratio of -1: 5 

is shown in figs. 3a and b. To obtain syumetry the force in 

both end segments of each boundary was held constant; with only 

the centre segments j-,, m being elastically controlled. If the 

surface system had been entirely geodesic the structure would 

I nave become unstable. By assigning some elastic stiffnesses 

(EA; >> 0) to the surface segments a--*h however, a stable system 

can be determined with the remaining tensions held constant. 

p 

The surface is thus part geodesic and part elastically controlled. 
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Fig. 3a 

3b) 
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For the same surface: edge force ratio, the geometry 

can be adjusted by altering the EA values of the segments a--ph 

and j --o m. For complex structures it is particularly useful to 

adjust the boundary values since this can enable additional 

control on the variation of curvatures and hence of the moments 

induced in the boundaries by live loading. 

ýk 

Similar design techniques can be used for the structure 

in fig. 4 which shows one unit of an articulating buoyant pipeline 

system [14; The 12m dia. central pipe is given stability and 

resistance to bending by spiral cable bracing bearing on compression 

hoops connected to the pipe core by radial ties. Circular hoops 

(fig. 4a) would be appropriate for the conditions of neutral pipe 

bouyancy and live loading which may be of the same magnitude 

laterally and vertically. But to transmit positive buoyancy to 

the end chambers and provide sufficient lateral resistance, a 

more efficient hoop shape is shown in fig. 4b. 

A more complex study for a bridging structure employing 

a spiral bracing network supported by momentless bearing contours is 

illustrated in fig. 5. 
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Minimum Surface Membranes 

For a triangular element (fig. 6) subject to uniform I 
tensile membrane stress, a, the edge forces are given by: 

T, cr 

T2, a t. A 

TS 0 

where t. A is the volume of the element and [G] i's the 3x3 

matrix relating strains c., c3ý y,,, to the side extensions. 

Substituting for [G] (from equations ga &b in chapter 2) gives: C> 

2 tan uý 

4 

21 

Fi gure 6 

(5) 

3 

It may be noted that edge forces given by equation (5) are not 

always tensile. Thus uniform stress membranes cannot be 

accurately simulated by line elements. 
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For the determination of minimum surface membranes the 

elastic stiffness [ke]in equation (3b) is set to zero and, as 

with geodesic networks, the motion of surface nodes is controlled 

by the geometric stiffness. For the example structure, 

starting with the coarse and irregular subdivision shown in 

figs. 7a and b, convergence to the cable edge membrane geometry 

(figs. 8a and b) was obtained in less than 50 iterations. 

Pneumatic Structures 

The geometry of uniformly stressed pneumatic structures 

can be derived by including in equation (4) for the membrane 

analysis, normal nodal forces proportional to the current area 

of elements as they change in shape throughout the analysis. 

The resolved load components can be expressed in terms of side 

vectors used in Eq. (4) without determining element areas, and 

little additional programming is required. For a right-handed 

global co-ordinate system and element nodes numbered anti-clockwise, 

the normal vector is out of plane and the resolved components 

at each node due to the internal pressure, p, are: 

PZ YZI' Z37- - Y3: L* Z2-1 

p 
p6 Z2. ) - X32 - Z3Z' X2, j 

Pz j ýXZI* YJL - X3V Y2-1 

where x,., ý x,. - x, etc. 

Figures 9 and 10 show the geometries of membranes, with a 

uniform tension of 2.5 kN/m, subject to normal pressure of 4 kPa 

and 10 kPa respectively. In both cases the minimum surface membrane 

(fig. 8) was used as the starting geometry. For the lower pressure 



ill 

"r-4 

FZ4 



112 

the geometry shown is converged, though the convergence rate was 

only 1/3 of that for the unloaded membrane. For the higher 

pressure,, fig. 10 represents the geometry after 50 iterations. 

At 60 iterations the nodes marked * were almost coincident. 

When the nodes cross they are immediately restored to correct 

topological positions, and continue to meet and part as the 

analysis progresses. The system is neither convergent nor 

completely unstable; the other nodes undergoing comparatively 

small changes in position. Solutions for finer sub-divisions, 

though not suffering from the same quasi-instability, converge 

very slowly. The results, after 400 iterations, for a sub- 

division using four times the number of elements are shown in 

figs. llc & d. The apparently grossly distorted elements near 

the boundaries are lying in almost vertical planes, and if the 

pressure is increased by 20% the system diverges because the 

membrane tension is too low. Results for the 4 kPa pressure on 

the finer mesh are shown in figs. lla and b. 

Principal Stress Trajectories 

The determination of minimum surface geometry is useful 

in the initial stages of design of cable networks with complex 

curvature and boundary conditions. The ideal membrane may be 

subsequently approximated by a distorted uniform mesh network. 

But the shallow curvature and light tensioning which can occur in 

areas of such networks increases the hazard of vibration, and the 

remedies of incorporating turnbuckles in the network surface or 

increasing the overall tensions increase the complexity of 

construction or the size and cost of boundary cables, tension 

anchorages and foundations. 



-I 

(j 

N 
S. 

8 
Q- 

0 

0 

113 

\ 

\ 
\ 

\ 
\ 
\ 

(r. a 

\ 
\ 
\ 

� 

N 
N 



114 
I 

The alternative to a uniform mesh is a geodesic network 

in which cables follow approximately the trajectories of principal 

radii of curvature between boundaries. For simple structures, 

such as the one previously considered, the required boundary 

connections for the surface cables will be evident. For complex 

structures however this may not be so, and for such cases a 

simple initial design procedure is to determine the minimum surface 

and, having assigned elastic stiffness to the elements, to 

subsequently determine the principal stress trajectories due to 

light uniform loading. The best arrangement for the geodesic 

network system, determined entirely by the various end connection 

points, can then be found by following the stress trajectories - 

between the boundaries. A fairly coarse element idealization can 

be used, and because loading is uniformly applied the trajectories 

can be adequately predicted with comparatively few iterations. 

The directions of principal stress developed in the minimum surface 

membrane due to a uniform normal pressure of 4 kPa are shown in 

fig. 12a. Bearing in mind the simplicity and number of elements the 

results are good; probably because of low stress gradients. 

ANALYSIS OF TENSION STRUCTURES 

This section considers briefly aspects of dynamic relaxation 

which are particularly relevant to the analysis of tension systems. 

Membrane Buckling and Slackening of Cables 

The convergence of DR, when dealing with non-linearities 

such as buckling might be questioned in view of the oscillating 

path to solution with sub-critical damping. 
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To account for buckling of membranes or clad networks 

the stresses must be checked at certain stages: 

ax 
CT 

[G] 

T 1-. 3 

where 
ýej is the vector of side extensions and [Djand [G]are 

respectively the stress and strain matrices related to the 

element x, y axes. 

The directions and values of the principal stresses are 

then determined and, if buckling has occurred, the ýDj matrix is L 

altered by setting to zero poisson's ratio and the elastic moduli 

corresponding to the direction(s) of principal compressive stress 

which exceed the limiting value. The matrix is then transformed 

to relate to the element axes (fig. 13) and the stiffness 

is reset: 

[Grl ED'][ Gj t -A 

K principal axes 

c 
element axes 

Figure 13 
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The relation between principal strains and the strains related 

to orthotropic or convenient axes of an element is: 

CA Cos G Sin a SinE) CosO 

E: Sin (D C0 sl- a -SinO Cos(D 

YX -2SinE) CosO 2SinE) Cose 
7. 

- 

2. 
y Cos E) - Si n0 

or 
fExyj 

=[C][ E_xtf] 

By equality of virtual work: 

fE: 
xj 

iT i 
crxg 

ý=(E 

x> 

�r ý 
Jxyl 

... 
iE: 

xe 
i «, 1 

D"] = 
jExyý r LDp ][ 

F-J 

Hence [D'j = 
[C]TEDpj[C] 

where 
[D, Jis 

the stress matrix related to the principal axes 

and accounts for the changes in elastic constants due to buckling. 

The prestress may be included as initial side extensions; 

thus in Eq. (3b) extensions e may be measured from the slack state 

and pretensions To deleted. A similar procedure can be used 

to account for slackening of cable links (in contrast to that 

outlined in chapter 2), but for common links account must be 

taken of the fact that the slack lengths of the cable and 0 

adjacent membrane elements are different. Extensions from 

the slack state must also be calculated by means of a square 

root operation rather than the expression in appendix 2.2. 
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The membrane previously analysed for a distributed load 

of 4 kPa was re-analysed with the load increased to 10 kPa with the 

limiting buckling stress assumed to be zero. The results, in 

figure 12b, show principal stresses which are tensile; elements in 

the central zone having buckled. 

For the increased loading three analyses were carried 

out, each with a time interval of 99% of the critical value: 

a) with damping K= 90% K 
cri t 

b) K= 45 %K 
crit 

c) K= 45% K 
cri t *' 

but surface mass components mx and my 
doubled so that motion normal to the surface was 

underdamped but motion in the surface plane was less 

responsive. 

Traces of the vertical (z) deflection of node 3 are shown for the 

three cases in figure 14. In case (a) the analysis converged to a 

unique solution in which, allowing for the antisymmetrical idealization, 

I 
stresses and deflections in corresponding areas of the structure were 

consistent. The final solution contained no elements in which both 

principal stresses were zero and, because of the high damping, at no 

stage during the path to this solution did double buckling occur. 

In case (b) the stress changes were greater, and double buckling 

occurred alternately in elements marked *. Although the analysis 

closely approached the previous solution, complete convergence was 

not obtained. Deflections and stresses tended either to oscillate 

with small amplitudes about this solution or nodes of the membrane 

became unsymmetrically displaced from their correct positions and not 

in stable equilibrium. The maximum discrepancy in displacement 

occurred at node3 as shown in figure 14. For case (c) , since the 
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damping was proportional to mass components, the relative motions, 

tangential to the surface, of adjacent groups of nodes in the 

central zone of the membrane were damped to the same degree as for 

case (a) . Stress changes were thus less severe than in case (b) 

and, although the vertical motion of nodes was underdamped, the 

analysis eventually converged to the correct solution. For higher 

loads, which entail double buckling in several elements to achieve 

static equilibrium, all of the analyses failed to converge even when 

damping was further increased and the time interval reduced. This is 

probably due to an inadequate representation of stress because of the 

use of simple elements and a coarse idealization of the structure. 

An examination of the problems of numerical stability and 

accuracy of analyses involving intermittent dynamic buckling with light 

damping is contained in Appendix 3.2. 
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Force Transfer Procedure for Stiff Members 

A characteristic of tension structures is their low 

stiffness. Some elements may, however, be short and very stiff; 

for example, spreaders in double layer systems. For structures 

of this type, the time interval and efficiency of DR may be 

restricted by these elements and, beyond a certain point, no 

advantage can be gained by the use of fictitious masses. 

k 150 

ob 

IZZOOON 

x 

Figure 15 

For the cable girder in fig. 15 the direct stiffness of 

the nodes (relative to adjacent nodes considered fixed) may be 

much greater in the vertical direction than horizontally. 

Increasing the fictitious masses Mz will have no effect on 

convergence since both the critical time interval and the period 

of vibration are approximately proportional to FM,. The problem 

can be avoided by considering the motion of the upper and lower 

nodes in the direction of the strut axis simultaneously, and 

treating the relative motion as an additional variable. But the 

transformations involved add to the complexity and time of solution. 

d= ri - -ld -- rý 11 -1 - ti . 4. d r. j- 
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A simple alternative procedure is to use fictitious 

reduced axial stiffnesses S% for the struts. If the system is 

then analysed, a first estimate of the out of balance forces 

in struts is: el(S - S') where e is the extension and S is 

the real stiffness of a strut. 

The system may then be re-analysed with applied constant 

correcting forces in the struts given by: 

(S -s\ /S. 

The second estimate for out of balance forces is: (e 
ý. 

(S -S) -CO 

and the correcting loads are: 

C 
2. =CI+ (e:, (S S) -C, ) S' S. 

Generally, for the nth correction analysis: 

S' +C SN 
s 

j-he correction forces are stationary when: I 

and the true member forces are: 

e(S -S 

e. S %+C=e. S 

It would evidently be inefficient to reach convergence 

of the DR analysis at each stage before applying correction forces. 

Yet the force transfer process must converge from one side. It 

is therefore necessary that damping should be over-critical if 

corrections are applied gradually during a single DR analysis. 
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The cable girder in fig. 15 was analysed by this process 

assuming that the spreaders had infinite stiffness. From a 

short trial run, without force transfer but using fictitious 

stiffnesses for spreaders, the critical damping was found to 

be 0.03. The structure was then analysed, using the force 

transfer process, with damping of 0.04, and subsequently with 

damping of 0.02. The vertical deflection/time curves 

for the two cases are shown in fig. 16. 

0-01 1 

0 
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0 

Fi gure 16 

- o. o2-z76 m. 

The method is not ideal since the solution is unbounded. 

It can however enable an efficient DR analysis of certain structures 

which would otherwise require a very small time interval, and it 

is not restricted to particular geometrical configurations (e. g. 

vertical struts). The exampl_e chosen!, with struts of infinite 

stiffness, could only have been analysed in this way since for an 

ordinary DR analysis the critical time interval would have been zero. 
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CONCLUSIONS 

The particular advantage of dynamic relaxation when 

applied to tension structures is its ability to cope with the 

degrees of mechanical freedom in these structures, both during 

the design determination of pretension geometry and momentless 

boundary structures, and during the analysis of the structures 

under live loading when, apart from inherent geometrical 

non-linearity, additional degrees of mechanical freedom may 

be induced by buckling of cladding or cables. 

A further advantage of DR is that it can, with lighter 

damping and real masses, be used to obtain a good indication of 

dominant frequencies of free vibration. This also is especially 

relevant to the design of tension structures. 
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APPENDIX 3.1 

ANALYTICAL MODEL PROPERTIES 

H-P Model Structure dimensions: 

Across High and Low point diagonals: 1.2m 

Difference in height between High and Low points: 0.9m 

. 
'. Length of each edge cable segment = 0-38m 

EA values of edge cables initially assumed = 2.5 MN 

All edge node masses initially assumed = 0.2 Kg 

All surface node masses initially assumed = 0.02 Kg 

Geodesic Analysis: 

Constant tension in surface cables = 500 N 

Constant tension in one end segment of each edge cable = 10,000 N 

With assumed properties, the critical time interval is governed 

by motion of the edge nodes; surface node stiffness being very low. 

Direct stiffness of an edge node relative to adjacent nodes is 

highest along the cable axis: S=2x2.5 x 10 
6 
--, 'L 13 x 10 N/m 

0.38 

2M .40.00017 sec. 06 

S 3xlO 

A short trial run gave frequencies of: 

Edge nodes: i-- 150 Hz 

Surface nodes-;!, -= 30 Hz '. Increase edge masses to 1.0 Kg. 
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The surface grid spacing is initially 0.2m, but assuming a 

maximum reduction to O. lm for the central areas of the geodesic net: 

Geometric direct stiffness in the z direction: 

S-z P. 4x 500 2x 10 N/m 
AZ 0.1 

At N 
, kb for surface node > FýLm, ý =. 04,441- 0.0014 sec. 

S S_ S 2xlO 

Critical damping factor per unit mass, K: L"'-411. f = 0.53/At 

Geometric stiffness in xy plane-: Ox Sý/2 

'.. Mx=m=0.01 Kg for surface nodes 

To obtain same At... ý for edge nodes, required axial stiffness 

2.0 1x 10 6N 

(0.0014)7- 

,., Fictitious EA values for edge cables=ý2' 0.2 MN 
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APPENDIX 3.2 

ACCURACY AND STABILITY OF CENTRAL DIFFERENCE ANALYSIS 

INVOLVING RECURRENT DYNAMIC BUCKLING 

When carrying out a dynamic analysis with light damping 

for structures which are subject to on-off slackening of cables or 

bucklino, of membrane elements, the use of a time interval which is 0 

small compared with the critical value may be necessary in order 

to avoid various forms of numerical instability. Alternatively it 

may be necessary to check stresses or tensions, and if necessary 

modi. fy the elastic constants., at each time increment or at very 

frequent intervals. Structural shape and size, type of loading, 

and the degree of triangulation are all factors affecting numerical 

stability. Thus for each type of structure in which dynamic 

buckling is to be investigated it may be necessary to carry out 

short trial runs to determine an acceptable time increment and the 

frequency of checks on material properties. 

BASIS FOR ANALYTICAL TESTS 

To illustrate the types of instability which may occur 

during dynamic buckling of even the simplest structures, one cable 

and one membrane structure, each with only four elements and one 

active node, were investigated with a range of values for time 

interval (At), damping factor (K)) and number of time intervals 

between buckling checks and modification of material properties 

(NB I) . 
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All real systems will involve some, usually light, 

structural damping and, when a load is suddenly applied and then 

eit er released or held constant, vibrations of the system should 

gradually decay to a unique static solution. The trace of this 

behaviour, involving alternate buckling of different elements, 

thus provides a check on the stability of an analysis for dynamic 

buckling, and this is the basis for the following numerical tests. 

Consideration is also given to the hypothetical case of zero 

damping, with vibrations of the cable structure being traced for 

large numbers of iterations at different time intervals below the 

elastic critical interval. A similar test is also carried out on 

a third trial structure, with several active nodes, employing both 

cable and membrane elements. This structure, though more complex, 

remains properly triangulated when buckling occurs and it is shown 

that the dynamic analysis is thus more stable for time intervals 

approaching the critical value. 

CABLE STRUCTURE 

The four element cable structure shown in figure 17 is 

square in plan with node 1 equidistant from the fixed high and low 

points (2,4 and 3,5). The pretension and EA values of the cables 

were taken as 50N and 50kN respectively, and node I was assigned 
I 

mass components of 1.0 kg in the x and y directions and 0.05 kg in 

the z direction. The reason for the assumption of differing mass 

components, which would not of course correspond with a real physical 

situation, is discussed later. It does not, however, alter the 

concepts to be illustrated. 
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+ 

Figure 17 

Critical Time Interval: 

Based on the assumption that all cables are taut (eleastic) , 

the stiffness in the x or y directions = 2EA Cos 8= 10OCos 2. e= 500kN/m 
L 0.2 

Stiffness in the z direction = 4EA Sin 21 8= 10 kN/m 
L 

Critical time interval for lateral motion 

300000 
(with adjacent nodes fixed) 4M '==0.0028sec. 

S 

Critical time interval for vertical motion = 0.0045sec. 
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A trial analysis without damping, using a time interval 

of 0.0005 sec. and checking for buckling at every iteration (NBI=I) , 
indicated a natural frequency of 83.5 Hz based on tension peaks; 

the analysis being initiated with small lateral and vertical 

displacements of node 1, sufficient to cause alternate slackening of 

each of the cable links. For the study of dynamic buckling tension 

variations are of particular interest and thus the critical damping 

factor per unit mass was estimated using this frequency: 

k 
crit 2' 47Tf = 1050 

Test Cases: 

(a) Initial Displacement: 

series of analyses of the structure was carried out using 

time intervals ranging linearly from 0.00025--*0.003 sec., and 

damping factors ranging exponentially from 5%--P, 80% of the critical 

value. For each combination the number of time intervals between 

buckling checks and modification of properties was varied from I to 

16. At the start of every analysis node I was displaced 5mm in each 

co-ordinate direction and then suddenly released. Table I shows the 

results obtained for the entire series. The figures in the table, 

e. g: 1312 in row 1 and column 1, denote the number of iterations to 

reach convergence to within 0.1% of the 50N static tensions. In all 

cases, when using a sufficiently small time interval with frequent 

alteration of material properties (either zero modulus or the real 

modulus), convergence is obtained. With higher time intervals and/or 

values of NBI, however, various forms of instability can occur. The 

notation in the table is as follows: 
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Q/S Quasi-instability. The amplitude of variations in tensions 

and deflections decays in theearly stages but subsequently 

approaches a constant value with no further decay. Thereafter 

the trace continues, with periodic oscillation about an 

incorrect mean position, never attaining convergence. 

R Random behaviour possibly leading eventually to periodic 

oscillation (Q/S) . 

DIV The solution diverges with deflections and tensions becoming 

infinite (or numerically ill-conditioned) 

C Chance convergence at values of At or NBI which are above 

those at which quasi-instability first occurred. 

Convergence without buckling after the first change in 

properties. 

The last row in the table corresponds to a time interval which exceeds 

the critical value based on taut cables and thus in no case is 

convergence obtained. 

For the purpose of illustrating typical behaviour patterns, 

full traces of the variations of tension in cable(D are plotted in 

figure 18 for the analyses marked * in the table. Also plotted for 

comparison is the case of zero damping with Zýt = 0.0005 which is shown 

to diverge. For each of the analyses plotted, the number of time 

intervals between buckling checks (NBI) was 4. With At = 0.0005 sec. 

and k= 10% kcrit, convergence was obtained at 456 iterations though, 

as can be seen from the figure, a reasonably stable system was obtained 

after 300 iterations. Prior to this 78 changes in material properties 

had taken place (approx. 20 in each cable) . With the time interval 
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increased to 0.001 sec or damping reduced to 5% kcrib the trace does 

not converge. Similarly with higher values of NBI the solution becomes 

unstable or diverges. It can be seen from table 1 that when damping 

is below 50% kcrit convergence with At approaching the critical value 

cannot be obtained even when changing material properties at every 

iteration. & 
the other hand, with 80% damping convergence is obtained 

using t= 98% At 
cri t and checking for buckling at every four iterations. 

In this case however,, a total of only 12 changes in EA values occurred. 

Zero Damping; long term trace: 

Figure 19 shows the maximum tension variations in cable G 

with the system entirely undamped, following release of initial 

displacements, for the three cases: At = 0.00025,0.0005, and 0.001 sec, 

with NBI =1 in each case. The curves represent only the locus of 

peak tensions. Zero tensions (slackening) occurred at the intervals 

marked on the time axis. 

For the lowest time interval the locus of peak tensions is 

fairly smooth. The curve shown, involving a total of approximately 

600 property changes in the system, is terminated at 3500 iterations. 

At this point the tension in cable @ was 1200N. After a further 7000 

iterations the tension is also approximately 1200N, and between 3500 

and 10500 iterations the maximum and minimum peak tensions which 

occurred were 150ON and 1050N respectively. With the time interval 

increased to 0.0005 sec. the peak tensions vary over a wider range. 

The tension at the end point of the curve shown, corresponding to 

1750 iterations, is T(4) = 2200N. At 3500 iterations cable 4 is 

subject to the same tension, but between these limits the maximum and 

minimum peak tensions were 270ON and 170ON respectively. Moreover, 

f or At = 0.0005 sec. , whi Is t the average peak tension up to 0.7 sec. of 



/ 

0 
-0 

0 
0 
6 

4' 

I 

I 
/ 

'-4 

0\ 
o 
o __________ I, / / 

/ 

( 
) \ 

/ 
/ 

// 
/ 
( 

/ 
/ 

/ 
/ 

/ 
\ 

\ 

() I 

\ 

/ 

( 

/ 
/ 

/ 
/ 

( 

135 

(A 
14) 

00 

lý 

N 

%0 

C-) 

CJ) 

Sz 

'9 » 

t 

N) 

o 

U) 

Q) 
E-q 

N 

*N (ft), L UO TsuaL 



136 

the trace was approximately 1400N, the average between 0.9 and 

1.8 sec. was slightly in excess of 2200N. In contrast, for 

At = 0.00025 sec. , the average peak tension was approximately 130ON 

throughcut the entire trace up to 2.7 sec. Subsequent checks C) 

using much smaller time intervals showed that the latter value was 

realistic. Thus it appears that in this particular example the 

maximum time interval that can be used if stress variations are to 

be followed in the presence of dynamic buckling is less than 1/10 

of the elastic critical value. 

(c) Applied Loads: 

To examine the effect of suddenly applied loads, as 

opposed to initial displacements, the cable system was subsequently 

analysed for the same range of time intervals and values of NBI, 

but with a reduced range of damping factors from 10-+40% kcrit- 

The loads applied at node 1 were: 

Px = 50ON; Py= 5N; Pz = 50N 

The prestress and EA values were the same as for case (a), but 

under these applied loads the system, when convergent, requires the 

cable tensions to take the following static values: 0 

T(l) = 19.6N; T(2) = 502.5N; T(4) = 14.6N; T(4) =0 

Thus it should converge to a buckled state. 

Table 2 shows the results for the series of analyses. The 

convergence pattern is similar to table 1 with permissible values of 

At and NBI increasing with the magnitude of damping. 



137 

cn 
ý c \. o u 
- 

r-4 
rl_ 

CN 00 
00 Lr) 00 \C 01, 

C%4 C14 C4 CN 
I, - Lr) CY) 

C%4 C) -It 0 C4 cn C-. 4 :r -T cn C%4 C14 C14 CN c"ll 
Cx Cx 

C114 00 %ýc 00 -T C: ) C) ON 00 r-4 m 
r-4 cyl Oll CIA CN CY) 

C)e 

00 CIA 
C'4 cx 

1-1 C" CO "m ', o m m 1 
0 Lr) Ln C. ) 

I CY) P-4 r--4 Ce (Do Ce C), 

-- 

C'4 

1 

110 -IT 
CN Lr) 04 C14 _zr C4 cn 

r-4 110 -IT 

CN 00 C4 M M > 
r-4 Ln C) Ln -I- 

cn 1-4 1-4 Cr (::: e 

- 

ý. o coo cn > 
Lr) u u 

cx 

> 
co cq 

CY cx cx 

-r4 

u 00 cn cn 
ý4 -ýr T---f C) u 

\Z Ce) Cr Ce cx 9: ) I 

0 00 co C4 CN 0 cn cn m > 
C14 C14 C OIN 1.0 C-4 0 u 

I \ýo (n r--4 r--4 r-4 P--ý Ce Ce (Do 

00 \10 C14 110 -T 00 cn M m > 
r-4 C4 C) Lr) 0 co 

CN r-4 CX ce 

Lr) Lt') Lr) Lf) Lr) Lr) 
cq Lr) rl- C4 Lf) rl- CN Lr) rl- 

z C) C) 0 r-4 r--4 r--4 MA C4 CN Cn 

-Li C 0 C) C) 0 C) C) 0 C 
< 0 C C C C) C 0 

Cý Cý 

cj 

0 

0 

4J 

cl) 

N 



138 

MEMBRANE STRUCTURE 

The membrane structure, the material of which was 

assumed isotropic when unbuckled, had the same overall geometry 

as the cable structure in figure 17 except that four triangular 

elements were used, as shown by the full and dashed lines. The 

analyses were carried out in the manner described in Chapter 3, 

with the stress matrix [D] being re-set every NBI time intervals 

to account for buckling in either of the current principal stress 

directions. To account for distortion of the elements, matrices 

[G] were also re-set at the same time stages. This was, in fact, 

a secondary effect which had little influence on numerical stability, 

and normally matrices [G] would either remain unchanged or be re-set 

at very infrequent intervals. 

For the single triangular element in figure 20, the in 

plane direct stiffness of node 1 in the x direction is: 

S E. t b 
7. (1-v) +a2. 

x 2ab (1-7) 

12 

where v= Poisson's ratio 

For a=b=0.2 and v=0.3: 

S=0.00371 E N/m 
x 

(D 

Figure 20 
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Since four similar triangles meet at node 1 in the membrane 

structure then, neglecting second order terms due to the small 

element inclinations, the lateral direct stiffness is 0.014841EN/m. 

Equating this to the lateral stiffness of the cable structure: 

E 500000 3.37 x 10 7 N/m L 
0.01484 

With the above structural properties, the membrane 

structure was analysed for the same series (a) tests as the cable 

structure, but with a reduced range of damping factors. The results 

are shown in table 3. In this structure, provided buckling is 

checked at every interval, convergence is more readily achieved 

with higher time intervals although the number of property changes, 

accounting for buckling in either of the variable principal 

directions of each element, considerably exceeded the number of 

chano, es with equivalent parameters for the cable analyses. In 

contrast to the cable system, the amount of damping for the range 

considered had relatively little effect on the magnitude of the 

time interval at which instability first occurred. For a value 

of NBI = 4, for example, the maximum stable time interval was 

0.001sec. for each value of damping in the range 10-*40% k 
crit . 

(When, however, the damping was increased to 80% the system was 

found to converge with At = 0.0025 sec. ). The generally greater 

stability of the membrane system may be due to more effective 

structural triangulation. 
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MASS COMPONENTS 

For the previous examples, the mass components were 

assigned values such that the frequencies of vibration in each 

co-ordinate direction, and consequently the critical damping, 

would be of the same order of magnitude. In a real dynamic 

analysis, however, lateral masses, and the corresponding 

proportional damping, could not be artificially increased in 

order to reduce the critical damping and frequency of lateral 

motion which governs the rate and number of property changes. 

the actual nodal mass had been equal to the smaller vertical 

component, and the same damping factor was applied to each 

if 

component of motion, the critical time interval and the degree of 

lateral damping would have been very much less. 

Real damping in clad tension structures may be due to 

a number of factors 

(1) Air damping (usually very light but perhaps 

significant for wide-span surface structures 
/6 ) 

(2) Friction effects at joints and in steel cables or 

ropes. 

(3) Strain-rate dependent aamping in cables and 

cladding due to creep and visco-elastic effects. 

Factors (1) and (3) are considered in Chapter 6 which concerns the 

decay of vibrations in a pneumatic dome subject to a suddenly applied 

dynamic load, the structural material being idealized as a "standard 

anelastic model if 15 
. The numerical procedure, described in Chapter 5, 
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accounts automatically for close-coupled (material) damping 

dependent on relative velocities of adjacent nodes, and far-coupled 

(air) damping dependent on absolute nodal velocities normal to 

the surface. If visco-elastic sandwich or membrane cladding is 

chosen to provide high damping of unwanted vibrations, the damping 

of motions tangential to the surface of a structure should be very 

much greater than damping normal to the surface. The possible 

problems of numerical instability in transient dynamic analyses 

involving intermittent buckling of elements might thus be alleviated 

in real physical situations. 

COMPOSITE CABLE AND MEMBRANE STRUCTURE 

The two previous examples, particularly the cable structure, 

were severe tests of numerical stability since buckling of the 

elements, particularly in combination, created unrestrained degrees 

of mechanical freedom. In more complex arrangements involving a 

combination of cladding and cable elements, the structure (even though 

buckling of several components may occur at any stage) has a greater 

chance of being properly triangulated throughout a dynanic trace. 

Also, with a greater number of nodes, the higher frequency comp'onents 

might not be induced by most loading conditions. 

The structure shown in figure 20 has 12 cable elements 

and 14 membrane elements. Nodes 1--3,4 are active and nodes 5->12 are 

fixed support points. Although again a simple structure, it 

illustrates the greater numerical stability which results from 

composite action. 
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Under the condition of no applied loads, the pretension 

in all cables was 50N, and the stress in membrane elements was zero. 

The active nodes were assigned mass components of 1. Okg for each 

co-ordinate direction, and the values of EA for the cables and Et/(l-ý7) 

for the membrane were the same as those used in the previous examples; 

giving a critical time interval, assuming elastic behaviour, of 0.00168 sec. 

Loads of + 50N and -50N were suddenly applied at nodes 1 and 3 

respectively and the behaviour of the structure, with no damping, was 

10 
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traced for time intervals ranging from O. Oool to 0.0016 sec., with 

buckling checks at each time step. Figure 21 shows the variation 

with time of the tension in cable link (D for three of the cases 

considered. The differences between the traces for At = 0.0001 

and At = 0.0004 sec. were insignificant up to approximately 0.11 sec. 

Thereafter the maximum recorded difference occurred at point x 

(0-13 sec. ), by which time 226 membrane property changes and 48 cable 

property changes had taken place. Results of similar accuracy were 

obtained for time intervals up to 50% of the critical value. In view 

of the fact that no damping was applied, and the loads were sufficient 

to cause buckling in both the cables and the membrane, the system has 

far greater numerical stability than the previous examples. 

A review and comparison of the central difference method and 

other explicit and implicit methods for non-linear dynamic analysis is 

given in appendix C (pp 344-370). 
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(15) Lazan, B. J., if Damping of Materials and Members in Structural 
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(16) Jensen, J. J., "Dynamics of tension roof structures", Int. Conf. 

on Tension Roof structures, London 1974. 

(see also review and references in Chapter 1) 
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CHAPTER 4 

ry/l 

zGRAJý-FTNDING OF MINIMUM SURFACE MýMBRANES. 

SUMMARY 

The application of Dynamic Relaxation to the form- 

finding of minimum surface membranes with tensile or compressive 

fun-: ýcular boundaries is illustrated; particular attention 

being given to sensitive problems involving neutral equilibrium 

or quasi-instability. For simplicity in examining concepts, 

a series of plane membranes and subsequently spatially curved 

uniform stress membrane and pneumatic structures are considered; 

most of which are generated from the same initial topology. 

The chapter was presented as a paper at the IASS 

Congress on Structures for Space Enclosure at Montreal in July 1976. 
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THE BASIS OF DYNAMIC RELAXATION 

The physical basis of DR is essentially the step by 

step solution, for small time increments, of Newton's second 

law of motion for each node of a structure with an imposed 

viscous damping; the motion of the structure being traced 

from a specified initial (or unloaded) condition to its 

position ot static equilibrium. The equation governing this 

motion at any node in each co-ordinate direction is thus: 

Residual Force = Nodal mass x Acceleration 

where the residual force is the sum of the resolved components 

of member forces, applied load and damping force. Equations 

of this type, expressed in interlacing finite difference form, 

are followed simultaneously for all nodes; displacements 

and member forces being determined at the end of each time 

interval and velocities at mid-intervals until steady equilibrium 

of the entire structure is obtained. Typical traces for 

deflection components are shown in figure 1. The rate of 

convergence is governed by the choice of time step and damping 

factor. Ideally deflection components should be nearly 

critically damped, and in order to achieve this, fictitious 

masses which vary from node to node and each co-ordinate direction 

may be used. For tension structures the selection of these 

factors is considered in ref. 3 together with a more detailed 

account of computational procedures. 
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14 

time 

Fi gure 1 

APPLICATION TO FORM FINDING 

The basic topology of a structure or family of 

structures to be investigated may be idealized as a series of 

nodes interconnected by links. For open panel space or net 

structures the links are bar or cable elements and for membrane 

surface structures the links form edges of panels. In this 

chapter triangular elements with straight edges are used in order 

to reduce core store to a minimum and eliminate complex 

transformation in the iterative analysis. The use of such 

elements is also appropriate when dealing with a uniform state of 

stress. 

At any stage of the analysis the tensions acting along 

triangular element edges are given by: 

ýTý 
= 
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whe re [Tol is the vector of side tensions statically equivalent 

to the specified prestress in the element. 

[el is the vector of current side extensions. 

[ko-j is the current natural 3x3 elastic stiffness of 

the element. 

In form7finding applications geometry may either be controlled 

elastically, with ýToý 
zero and Ek e] non-zero, or by holding the 

prestress at a specified value with LO] set to zero; the latter 

control being used for the generation of minimum surface membranes. 

The tension in a cable link is given at any stage by: 

T=T0+S. e where To is the pretension, S the stiffness (=EA/L ) 

and e the current extension. Again, the development of the 

geometry is controlled either elastically (S ý 0) or by specified 

constant tensions (S = 0) . In form7finding by elastic control it 

is not necessary that the real stiffness be used, and in fact the 

use of fictitious EA values greatly extends the possible family of 

structures which may be generated from the same initial topology. 

The determination of uniformly stressed membranes with boundaries 

which are either tension cable or funicular compression curves 

presents no problems of compatibility irrespective of the type of 

control used for the edge links. In order to derive compression 

boundaries, edge links are given either negative stiffness or 

negative T0 values and residual forces at edge nodes are reversed 

at each stage in the analysis; such boundaries are thus effectively 

determined as tension funiculars to the reflected image of the 

membrane surface. 
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PLANE UNIFORM STRESS MEMBRANES 

The examples considered in this section may all be verified 

analytically but, though trivial, they illustrate the stability of 

the numerical analysis in dealing with problems of neutral 

equilibrium with non-unique solutions. 

If the element shown in figure 2 is subject to a uniform 

stress, a, the forces at the apex nodes required to equilibrate the 

stress on side i are uteý/2 where t is the membrane thickness. The 

resultant of the membrane stress at any node j acting perpendicular 

to the opposite side is thus Q. ej (where Q= at/2). Alternatively, 

and more conveniently for programming purposes, the equivalent 

tension along any side j is given by T: = Q-6j/tanoý; . 

C2, 

-týV2, 

Fi gure 

N 
/ 
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Considering a plane subdivision of such elements (fig. 3a) 

the closed polygon of external edges of a connected group 

represents a reciprocal diagram of forces [1] for the equilibrium 

of the interior node I; the node, if static, being in equilibrium 

whatever its position within the polygon. If one of the edges 

(length b) belongs to a boundary structure not in equilibrium 

with the membrane and the motion of this boundary causes collapse 

and inversion of the adjacent triangle (fig. 3b) the node I is 

1=pdiately subject to an out of balance force (2Qb') which restores 

the correct topology of the subdivision. Depending on the fineness 

of the subdivision and the magnitude of the viscous damping of node 

I. other nodes (J, K, L etc. ) may also become disturbed; the 

process propogating throughout the surface subdivision if damping is 
0 

light by successive collapse and expansion of the triangular 

elements until static equilibrium of the entire membrane and boundary 

4Q 
-q rl 

11 i 43 Ilp (I - 

Figure 3b 

Figure 3a 



152 

Figure 4 shows the initial subdivision of a perforated 

plane membrane with internal and external cable boundaries. For 

specified cable forces or stiffnesses and membrane tension, the 

radii of curvature of the edge cables and inner cable loop have a 

particular solution but the loop may take any position within the 

membrane. The state of the membrane at 20 and 160 iterations is 

shown in Figs. 5a and 5b respectively; the latter being fully 

converged; (the limits used for all examples are: tensions accurate 

to '-0.001% of true values; deflections*±0.001% of average link 

length) . The following parameters were used in the analysis, and 

unless otherwise stated have been used for all subsequent structures 

considered: 
Uniform membrane tension 2500 N/m 

Edge node masses M=0.2 kg for motion in each 
Surface node masses 0.02 kg1co-ordinate direction 

Time interval At = 0.0008 sec 

Viscous damping at any node i=M K'/At 
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5a 

5b 
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Boundaries were elastically controlled with assumed EA values of 

100 kN for all cables, and the overall damping factor, K' , was 0.12. 

It can be seen that collapse of most of the triangles has taken 

place, with only three nodes (marked *) remaining undisturbed; the 

converged solution is, however, symmetric about the y axis. For 

lower damping factors this may not be so: figure 6 shows the result 

using a damping factor of 0.10. Prior states of this structure, 

showing gross disturbance of the geometry are shown in appendix 4.1 

Although the iteration process is simultaneous and should, 

if calculations are precise, lead to symmetric solutions, computer 

round-off errors are sufficient to induce lack of symmetry. This 
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happens when a triangular element is just at the stage of inverting; 

the expression used for the side lengths (T: = Q-eý/tanc>ýý ) being ill- 

conditioned when one of the apex angles is very small. In rare 

cases t is could lead to divergence of the analysis and to avoid this 

a conditioning process is used. A satisfactory procedure is to 

a just the side lengths of any triangle containing a very small apex 

angle accotding to: 

Lj- + 0.00001 x (ASL - Lj 

where ASL is the average side length. 

The membrane results discussed above give identical edge 

geometry and cable tensions, and all cable nodes lie precisely on 

circular arcs with a m4ximum variation in link tensions along any 

side of 11%. If instead of controlling boundaries elastically, 

the external cable tensions are held constant throughout, the 

solutions obtained are similar except that the cable links become 

identical in length. It is not possible to use specified constant 

tensions to control the internal cable since, unless at least two 

of the cable nodes are rigidly or elastically constrained, the loop 

would either contract to a point or expand to the outer boundaries. 

The membrane shown in figure 7 has a funicular compression 

boundary, derived in the manner previously outlined using EA values 

of -75 M, a damping factor of 0.2, and starting from the same initial 

geometry (fig-4). Both boundaries are 'free' and in neutral 

equilibrium in the sense that no point was fixed with respect to any 

datum. Convergence was more rapid than the cable edged membrane 

since there was no disturbance of surface nodes between the boundaries. 
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As in the case of the tension loop, the compression outer boundary 

can only be controlled by initially specified link compressions if 

some parts of the boundary are elastically controlled. 

Figure 
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NON-CIRCULAR BOUNDARIES 

Figure 8 represents a uniformly stressed membrane in 

equilibrium with tension boundary links AB, BC, CD, etc. 

A' 

The resultant (P) of the nodal forces acting at B due to the membrane 

stress (a) acts perpendicular to the chord AC and is equal to at6/2. 

Constructing perpendiculars A'O and C'O such that they bisect and are 

bisected by AB and BC respectively, it can be seen that A'C'O is a 

reciprocal diagram for the equilibrium of boundary forces T, and Tj 

with the stress resultant P. Hence: 

acrt; TZ, = bat 
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Further, if a series of boundary links is consideredp all nodes B. 

C, D etc. must lie on the same circular arc of radius R and centre 

For boundaries with a specified uniform tension or compression 

the length of all edge links AB, BC etc. must become identical for 

equilibrium; whilst for elastically controlled boundaries forces 

will vary slightly in accord with the above relations. 

Fi gure 9 

If traction forces Q are applied such that there is a 

force gradient in edge links, the radius of curvature may vary along 

the boundary. Figure 9 shows the result using a specified force 
I 
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gradient of 500 N in each edge link but otherwise controlling the 

boundary elastically with EA values of -50kN. The solution shown 

has one fixed boundary point, though it is possible to derive a 

considerable variety of non-circular furnicular support curves 

(fig. 10); including 'free' boundaries and combinations of tensile 

and compressive sections containing points of contraflexure at 

which concentrated traction forces are applied. In practical 

applications, for which spatial membranes would be required, 

distributed traction forces may be applied to the boundary by shear 

walls. 

Figure 10 
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MINIMUM SURFACE SPATIAL MEMBRANES 

The concepts outlined in the previous sections apply in 

a similar manner to doubly curved uniformly stressed membranes; 

the imposition of uniform stress giving rise to minimum surface 

solutions. Provided that curvature exists throughout the membrane 

the solution for a given subdivision and boundary conditions will 

either be damped to a unique result or oscillate with small 

deviations about a unique equilibrium position, but without decay 

due to viscous damping. The latter occurs when the required position 

of one or more nodes leads to a continuous process of inversion and 

restoration of particular elements. This situation, which has been 

termed quasi-instability, indicates that a local change in topology 

is required, but the overall solution is not invalidated. 

The form of minimum surface membranes is dependent, for a 

given topology, solely on the boundaries and positions of support 

points, and an infinite family of surfaces can be generated from the 

same topology. Support nodes may either be fixed at their initial 

positions or be given specified displacements from these positions. 

Alternatively the magnitLýdes and directions of reactions may be 

specified. All nodes of the structure, including support nodes, 

are treated analytically as active nodes, and in order to provide 

restraints in one or more co-ordinate directions the corresponding 

mass components are assigned very large values. This is convenient 

when using interactive graphics to investigate a variety of support 

conditions; the fixing and releasing of supports being controlled by 

the assigned masses and loads applied to reposition them. The rate 

at which the structure changes may similarly be controlled by varying 
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the viscous damping and mass components, together with the elastic 

stiffnesses of edge links; and during this process the curvature of 

funicular boundaries may be adjusted by altering specified tensions 

or compressions in control links and any traction forces which may 

be applied. The use of such interactive controls is considered in 

Chapter 7 (ref. 4). 

Using the previous initial subdivision, but with the length 

of all cable links made identical as shown in figure 11, a vertical 

load of 2300 N was applied to the inner cable at node P. The 

reaction in the horizontal plane at each of the edge nodes marked L 

and H was specified as 7000 N and the inclination between adjacent 

0 
reactions was held constant at 60 The mass components (0.2kg) in 

each co-ordinate direction were the same for all cable nodes except 

that the nodes marked L were assigned vertical mass components of 

10 
10 kg to prevent only the motion in that direction. 

The state of the structure after 120 iterations is shown 

I 
in figures 12a and 12b. The membrane Ls almost stable, but the 

nodes marked A are oscillating with small amplitudes which are not 

decaying since the edge lines through these two points in fact contain 

collapsed triangular elements; this situation being expected 

because of the choice of initial topology. After a few more 

iterations the membrane elements adjacent to the inner cable links 

marked B invert and thereafter continue to oscillate in a state of 

quasi-instability. The system is neither unstable nor, in spite of 

the viscous damping, does it ever become completely stable without 

the necessary modifications to the topology. The effect of the 

oscillating nodes on the overall geometry is however extremely small: 
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4 

the situation after a further 1800 iterations is shown in figure 

12c; similar conditions having been observed at intermediate 

stages. Anti-symmetric oscillation is apparent at B but not 

at A. The reason is that in the former case the motion of a 

surface node with a mass of only 0.02 kg is causing inversion, 

whilst in the latter case it is the motion of a less responsive 

edge node which is not stable. The quasi-instability which occurs 

in this structure can be eliminated either by refining the 

subdivision or by amending the topology. If for example the 

diagonals in the unstable areas are reversed, then with no increase 

in the number of nodes completely stable equilibrium is achieved. 
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And it will usually be the case that only such minor and self- 

evident amendments are required. 

If the central load is increased to 2500 N the size of 

the loop is too small to sustain it. Figures 13a and 13b show 

the load accelerating prior to collapse in figure 13c. Collapse 

can be prevented by reducing the load or increasing the membrane 

tension. Alternatively the size of the inner tension loop can be 

increased by reducing the EA value of the links. The height of the 

loaded node is obviously a critical feature in such a membrane, and 

it may be advantageous to reduce its rate of deflection by increasing 

the nodal mass component, so that at all stages of its motion other 

nodes of the structure adapt relatively quickly to new equilibrium 

positions. It is of interest in relation to the possible use of 

interactive form-finding that even starting from the collapsed 

state, the correct topology and subsequent static equilibrium could 

be restored by taking the actions described. 

In the case of the star shaped membrane example, with the 

topology used, quasi-instability will occur at A and B irrespective 

of the magnitude of the central load. For other membrape forms, 

particularly pneumatic structures, this condition appears only at 

a certain value of loading beyond which collapse will occur 
[3,, 4]. 

An analysis for a membrane with compression boundaries and 

two loads applied to an inner tension loop was based on the topology 

shown, for half of the doubly symmetric structure, by the complete 

links in figure 14. Curvature varying from a minimum at x=O to a 
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maximum at y=O was imposed on the outer boundary be means of equal 

traction forces, of 250N in each link; with average compressions 

being controlled elastically (EA = 50 kN) . All nodes on the 

boundary were free to deflect with the exception of nodes R and R' 

- at which vertical displacements were prevented. The results for 

two equal loads of 900 N applied at Q and Q' are shown in figures 

15a and 15b. When the loads were 4-ncreased to 1000 N quasi- 

instability occurred at nodes C and C' ; and at 1150 N collapse 

occurred as shown in figure 15c. It is apparent that in this case, 

quasi-instability provided a forewarning of impending collapse. 

Fi gure 14 



166 

M 
tf) 
r-I IQ 



167 

u 

:3 



168 

PNEUMATIC STRUCTURES 

Pressurised membranes may be derived by including in the 

analysis normal nodal forces proportional to the current areas of 

elements as they change in shape throughout the analysis. The 

structure shown in figures 16 was derived from the previous topology 

but with the central cut-out closed as shown by the dashed elements 

in figure 14. The membrane tensions of the outer and inner areas 

were 2500 N/m and 800 N/m respectively. And to enable this stress 

transition the inner cable was retained but the size of the loop was 

expanded by reducing to 2.5kN the EA values of the links. The 

outer boundaries were subject to traction forces and controlled 

elastically as in the previous membrane. The results shown are for 

an internal pressure of 1.6 kPa. The outer membrane is tending 

towards a cylindrical form in the central part whilst the inner 

membrane is tending to spherical with greater curvature. 

CONCLUSION 

Emphasis has been placed on the problem of instability 

which is an important physical limitation of uniform stress membranes. 

It has been shown that, even with a very coarse subdivision, results 

which are useful for preliminary stability investigations may be 

obtained. Whilst the practical application of such membranes is 

restricted, they provide a design guide for variable stress membranes 

and geodesic and uniform mesh cable networks [2]; each of which may 

in fact subsequently be analysed by similar procedures using a finer 

subdivision. 
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Quasi-instability, of the type which occurred in the star 

membrane, that is independent of the magnitude of loading, is a 

consequence of the idealization into plane triangular elements. 

This might be avoided by the use of more complex curved elements; 

computing time would however be considerably increased by the 

accompanying transformations. To avoid this a process is required 

by which topology can be amended during, rather than subsequent to 

the analysis. Options available are: firstly automatic refinement 

of the mesh in areas where elements collapse; secondly to increase 

the mass at nodes which cause collapse so that, although complete 

convergence may not be obtained, variations are insignificant. The 

latter approach was demonstrated at the edges of the star membrane. 

Re-ordering of the topology, without mesh refinement, provides a 

third option (illustrated in appendix 4.1). In practice a 

combination of all these options would seem the ideal. 
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APPENDIX 4.1 

DISTURBANCE OF PLANE MEMBRANE NODES 

Figure 17b shows the initiation, after 20 iterations from 

the state in fig. 17a, of disturbances in the plane membrane caused 

by the movement of edge cables collapsing triangular elements 

(refer to fig. 3b in text). At 80 iterations, ill-conditioning of 

the expression for membrane link forces, due to the nodes of a 

triangle becoming co-linear, causes considerable displacement of 

one of the nodes as shown in fig. 17c. The triangle conditioning 0 

process given in the text, together with adequate damping, inhibits 

the occurence of such violent movements which could otherwise lead 

to complete divergence. In this particular case, although not 

conditioned, the correct topology was subsequently restored and 

convergence was obtained (fig. 6 of the text). 

ALTERATION OF TOPOLOGY 

A normal load applied at point x of the planemembrane, 

with the topology shown by full lines in figure 17a, produces local 

quasi-instability as shown in figure 18a at triangles marked *. As 

in the case of the star membrane these local oscillations have an 

insignificant effect on the geometry of the structure and are due 

solely to the choice of topology. With the same number of nodes 

but some of the diagonals rearranged, as shown by the dashed lines in 

figure 17a, convergence without local oscillation is obtained (fig. 19). 
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Figure 1 7c 

Figure 1 7a Figure 1 7b 
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Fi gure 1 8b 

Fi gure 1 8a 
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CH, 4PTER 

EXPLICIT DYNAMIC ANALYSIS OF TENSION STRUCTURES 

SUMMARY 

This chapter was presented as a paper at the International 

Conference on Wide Span Surface Structures (Stuttgartf April 1976). 

It outlines the analytical basis for the following chapters 

and 7), also given as papers at the same conference. Although 

some aspects have previously been covered, the theory and 

computational procedure are generalized to include visco-elastic 

material behaviour in structures subject to buckling under 

dynamic loading. In pneumatic structures and space or network 

structures with reinforced plastic cladding such behaviour may 

provide important damping to the system. 
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STRUCTURAL AND TEMPORAL IDEALIZATION 

The structure,, whether continuous membrane or discrete 

cable system, is idealized into a set of nodes interconnected by 

straight links forming the edges of constant strain triangular 

elements and/or discrete constant strain cable lengths. 

At'each stage of an explicit dynamic analysis in which 

the simultaneous motions of the nodes, governed by Newton's second 

law, are traced step by step for small time increments At, 

displacement components and hence the elastic strains in all 

links may be determined purely in terms of the previous displace- 

ments, the residual nodal forces predicted from these displacements 

and, if the structural material is visco-elastic, the creep 

strains which have previously taken place. After the new 

displaced form has been determined, link forces and their 

resolved contributions to the next residual forces are calculated 

using the separate natural stiffness of elements. Provided 

computational procedures are properly organized, considerable 

savings in storage can thus be made compared with implicit schemes 

which require the transformation and assembly of element 

stiffnesses into an overall stiffness matrix. Accumulated 

geometrical errors which might otherwise occur when tracing, for 

many time steps, the transient response of highly non-linear 

structures are also more simply eliminated. 

Oden [11 emphasises the importance in non-linear wave 

phenomena of the high frequency response, especially in the region Cý 

of propogated discontinuities, and suggests that even when using 

an unconditionally stable implicit scheme the time step required 
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to retain higher frequencies is usually of the same order as that 

required for numerical stability of explicit schemes. Also, in 

addition to the formation of an overall stiffness matrix, consist&, nt 

mass matrices involving a full inverse are advantageous in implicit 

schemes [1,2]-. Krieg [3,4] has shown that for linear elasto- 

dynamic problems involving a square two-dimensional mesh the use of 

a diagonal mass matrix with an explicit central difference time- 

integration scheme provides the most practical means of computing a 

transient response, and further suggests that for equal work it 

produces a better overall frequency response in comparison with the 

best available implicit methods. The scheme outlined in the 

present paper is similar to the central difference scheme used by 

Krieg, save that an overall stiffness matrix is not operated on and 

for convenience an interlacing velocity formulation is used: 

DYNAMIC I TERA TION SCHEME 

Newton's equation governing the motion of any node, i, in 

global co-ordinate direction x at time t is: 

t7 .c 
Rý: 

t = (1) 

where R and V represent residual force and acceleration respectively; 

and for dynamic analyses the lumped nodal mass, m, will be a constant 

for each direction. 
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Velocity components atany instant may be expressed as a 

sine function: 

a. Sin(q + wt) +C 

where amplitude a, frequency w, phase q, and datum C, are all 

variables (fig. 1) and subscripts i, x have been omitted for convenience. 

Figure 1 

Considering a small interval of time, At, and assuming that w is 

constant during this interval., the acceleration at mid-interval 

(time t) is: 

.t- 

v W(V v 
2Sin(wLt/2) 

(2) 

Unless the variation of w for each degree of freedom can be traced 

during the analysis or the entire system vibrates with the same 

frequency, the procedure is simplified by imposing the condition 
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I 

that w At/2 must be small. Equation 

(v 
t-*Aýql 

-v 

At 
(3) 

Substituting in equation (1) gives the recurrence equation for 

velocities: 

ý +, Wt t t-btA7 
At. R+ 4-x Vý, x 
in. Lx 

(2) then approximates to: 

(4) 

t 
where the current residual force, Rý., can be expressed in terms of 

tC 
Vý_, and applied load P, 

_,, 
and the current elastic strains and 

position vectors of the structural elements connected to node i. 

For small At: 

I: + 
At. v (5) 

whence the new link extensions and residual forces at t+At may 

be determined. The process then continues with iteration between 

equations (4) and (5). 

The interlacing scheme outlined, with velocities traced 

for times At/2,3At/2 and displacements and forces for times 

09 Atq 2At ...... is equivalent to the central difference or 
ý+&t; t 1: -, 6t It .. C 

lumped impulse procedure: (6 = 26 -6+ ýý t6 ). 

LINK AND NODAL FORCES 

The tension in a cable or bar element at time t is: 

T+K. 6 e (6a) 

where T A. is the initial tension (for elastic bar elements the 
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pretension) and Kt and 6e t are respectively the current stiffness 

and elastic extension from the initial (or pretension) state. 

For a 'constant strain' triangular element the orthogonal 

strains may be expressed in terms of current side extensions 

(f ig. 2): 

6e, or 
ýE [GJ ý8eý 

E96e. 

5e 

whence the side tensions at time t are given by: 

T GTJ 

T 

T3 

Tt 
G', ][DJ[GJ[6ej 

or 
[Tjý= [Tý+[Kjtý6eýt 

where 
ý(Yj" is the initial stress vector, 

FD] is the elasticity 

matrix whichin general depends on current stress level, and 
[K] 

(6b ) 

is the current 'natural' 3x3 stiffness matrix [5]. For convenience, 

in equation (6b) and subsequently, 
[Gý]denotes the transpose of 

[G] 

multiplied by the volume of, the element. 

3 

Fi gure 2 

) -I womb. x 
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For the special case of uniform prestress, a., the initial tension 

vector for membrane element links is given by: 

t ana 

.z1, tana, 

za 
tana, 

where h is the membrane thickness. 

Having obtained current membrane and/or cable tensions 

the contribution to the residual nodal forces by any link k 

joining nodes i and j is given by: 

t 
R, 

Lx = Rix (8) 

where Xj L-C denotes (Xjx- XýX), the difference between nodal 

co-ordinates of the link in the x direction. 

Additional contributions to the residual forces are 

due to: 

a) concentrated applied static and dynamic loads, t, 
which Pix 

include alqo distributed gravitational loads lumped at 

the nodes. 

distributed static and dynamic pressure loads t 
mal I p, nor 

to the membrane elements which are the outward resultants 

of applied internal and external pressures; accounting 

also for perturbations in these pressures due to the 

kinetic energy of the mass of air moved by any membrane 

a 

t 
element (dp,, ) and (for pneumatic structures) due to changes 
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in the internal volume caused by deformation of the 

whole structure at constant internal air mass and 

temperature (dp 

These perturbations are approximately: 

dp 
;L 

(Vn 
02 Lrl (9a) 

t 
Pneumatic pressure. d(vol) (9b) 

(vol + d(vol)) 

where A is the area of an element, V. is the average normal 

velocity, and d(vol) is the change in volume from the state at 

which the pneumatic pressure and volume (vol) were previously 

set. The resolved forces (in x, y, z directions) at each node 

of a membrane element due to the resultant pressure are then 

given by: 

-x 319 * x2 
(X2,1 X 

3iz 
6 

(9c) 

with P and Pt. 
. given by cyclic permutation of subscripts x, y, z. 

In the above equation, using a right-handed global co-ordinate 

system and element nodes numbered 1,2,3 anticlockwise, the 

normal vector is out of the plane (Appendix 5.1). 

INCREMENTAL PROCEDURE ALLOWING FOR CREEP AND BUCKLING 

It is assumed in the following that material properties are 

visco-elastic and can be represented by a series of Kelvin (Voigt) 

elements coupled with an elastic response 
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Eý 

CY = F-c 

Fa gure 

Considering uni-axial creep stress-strain relations 

characterized by a single Kelvin model (fig. 3), the 'creep rate' 

may be written as: 

cc = a. cr - b. E: c (10a) 

For several Kelvin elements placed in series to represent more 

accurately the material properties: 

a,,. cy br# Ec 

rz 1, rl in 

(10b) 

where cy is the current stress level and cc is the accumulated 

creep strain. 

The complexity of the model chosen will depend on the 

type of loading: for short-term dynamic loading a single element 

model may suffice, particularly if the main concern is a 

qualitative study of the vibration damping effect of visco-elastic 

membrane cladding; for long-term quasi-static creep investigations 

of pre-stressed structural membranes, for which wrinkling effects 

near boundaries are of interest, a more complex model will be 

necessary. In the present paper interest is centred on 

suddenly applied dynamic loading and only a single model is 
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considered. The procedure outlined however applies equally 

well to series models for long-term creep. Additionally, 

changes in the visco-elastic constants dependent on stress 

level may be conveniently accounted for. 

In interlacing finite difference form equation (10a) can 

be written: 

ta LL-/-x t-- rl Ltt: -+, aLtlj, t7- ruM7/-ý- 
E a. cy -b 

(E: + E: 

nAt 2 

hence E: a. n. At, cyt + (1 - b. n. At / 2) cý a cy + b. E: (12a) 
. r- rl (I+b. n. At/2) (1 + b. n. At/2 

This expression determines the level of creep strain E. appropriate 

to the mid-point of time intervals n. At, where n is an integer 

and At is the (smaller or equal) time interval used for the 

dynamic iteration scheme. These creep strains are then assumed 

to be lumped increments operative from the start of each interval 

nAt as 'initial' strains held constant to the end of the interval. 

For membrane elements the vector of creep strains is given by: 

t+ ýtruýVIL 

xc c3 

E9c 

= ýcrj t7 (12b) 

where, assuming that the material is isotropic and that creep 

is associated only with the deviatoric stress components, the 

poisson ratio is 1 and matrix [ý] is: 2 

1-o 
- 10 

003 
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For short term dynamic loading, the effects of creep 

and buckling may be coupled by the computational process 

outlined on page 18; . The procedures shown relate to membrane 

elements, with bar elements being treated analogously. 

The vector ýe 
referred to in stage III(a) is the 

vector of total side extensions from the stress state ýGj input 

at stage I; whereas ýSej 
, used in stage II for calculating link 

tensions from time knAt to (k+l)nAt, is the vector of extensions 

updated from time knAt. Accumulated errors due to roundoff 

and the difference approximations introduced in equations (12) 

may thus be 'reduced. If, however, the material constants are to 

vary as a continuous function of stress level, as opposed to 

on-off non-linearity due to buckling, the scheme must be modified 

so that stresses are checked on an incremental basis. The factor, 

n, governing the period at which creep strains are evaluated, may 

at the initial application of dynamic loads be conveniently set 

to a small value and subsequently increased (exponentially) as the 

analysis proceeds, on the assumption that errors introduced by 

the difference approximation for creep reduce as the amplitude 

of vibration decays with damping. 

For long-term quasi-static creep analyses the dynamic 

iteration process at stage II must be made to approximately converge 

to a static equilibrium value by the use of fictitious viscous 

damping proportional to nodal velocities. This procedure is outlined 

in a subsequent section. For such long-term analyses the time 

interval associated with increments of creep strain will not then 
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For each element input and visco-elastic and 
elastic constants appropriate to the initial stress level 
(Creep strains [ý, Jto be measured from this datum) 

Set initial force vector [Tjý= [GT][0-1 

and natural stiffness [K] = [Gr][D][G] 

K-- I 

Ii I Iterate simultaneously for n time intervals At 

using recurrence equations 4 and 5 and the expression 
for current link forces: ýTj = [Tjý + (K] [6 ej 

t -- h.. ri.. 6 

III I For each element: 

(a) Check stresses relative to chosen local axes 
[crf= [(Tjý + [D][G](ejý: -11 .t 

- 
EDJ[Ejý 2ý- 

Determine principal stresses ((Fpl and inclination 

to x. y axes. 

(c) If either principal stress < limiting buckling stress 
IN 

set to zero and modify principal stress vector [G-p 

(d) Set modified elasticity matrix [Dýj relative to 

principal axes (with elastic constants accounting 

for buckling), and transform to x, y axes: 
[D] 

= [Cr][D' C] P 

(e) Set modified stresses 
[C"r] [Cýj 

t+ rl, 6t 
Set new creep strains: 

(E: 
Cj . a. DIPý'7ý ý [ccl'; -, 

Set new Initial force vectors: 
[Tl= EGT j [GTJEDýYE: 

c 
Le 

C 

T- '[ý ] [G 
(h) Set new natural stiffnesses[K] 

[G] 
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be equal to nAt but to a much greater time period since At, 

governed by stability criteria, is usually very small unless 

greatly increased by the device of high fictitious nodal masses. 

Non-linear visco-elastic materials in which properties depend 

continuously on stress level may be dealt with by returning at 

intervals to stage I. 

CALIBRATION OF VISCO-ELASTIC CONSTANTS 

For short term dynamic loading, interest is centred on 

the immediate elastic response and primary creep. For plastic 

coated voiles dynamically loaded this creep is high compared with 

the secondary quasi-static creep rate. If a strip of such 

material is subject to a suddenly applied constant load and 

dynamic deflections are recorded in a way which does not induce 

external friction to the system, a plot of strain vs. time is 

obtained which is typified by fig. 4. 

Yýsco- etasýýc rmaýerbal 

oe 
\\/ 

seconaar-ý creep Pýase 

Pmmaxý I 
Creep Ep 

IIm 
rn eý Laýe , 

response 

týý 

Figure 4 
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Restricting equation (12a) to the region termed primary creep 

stage, during which deflections are damped by the viscous 

property of the material, at the end of this stage: 

L- C. - M-Z vL 
rl E: r =a= E: 

hence since a is then constant: b= aa t7 

Ep 

Also the immediate elastic modulus is of the order, but greater 

than, cr 

S 
With these relations as guides, the material constants a, b and E 

may be determined by curve fitting a simple analysis to the 

experimental data. 

I Since in general the material 'constants' depend on stress 

level, calibration should be carried out as a perturbation from 

the expected initial stress. For the cladding of networks this 

may be zero, and for pneumatic structures it will be an approximately 

known value dependent on internal pressure. 

The visco-elastic model and computational procedures 

outlined are highly simplified and require cross-calibration of 

the sort indicated to be effective. They do however allow at 

least a qualitative assessment of the effect of visco-elastic 

material damping on the vibratory behaviour of membranes and 

networks. The latter may more usefully be clad with sandwich 

panels. If 'constant moment' triangular elements (analogous 

to the membrane elements) are used the natural stiffness is 
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again 3x3 in terms of average side rotations. These rotations 

can be expressed in terms of normal nodal displacements of 

an element and the adjacent group of elements; the associated 

nodal forces being shears. Such sandwich elements can thus 

be incorporated into the basic iterative scheme with little 

modification or increase in storage requirements. An outline 

of the procedure is given in appendix 5 . 2. 

DYNAMIC, STATIC AND FORM-FINDING ANALYSES 

The critical time interval for numerical stability of 

the computations is given approximately by: 

<t 4m 
WLM &-ýý ýs 

F-ýS- (13) 

where m/s is the lowest ratio of mass to direct stiffness 

(relative to adjacent nodes) at any node of the structure 
[7]. 

In practice the lower value gives the closest estimate, and 

for surface or network structures the critical motion is 

tangential to the surface; stiffnesses normal to the surface 

being very much lower. Depending on the accuracy required of 

an analysis for dynamic stresses, the fineness of the structural 

idealization, and the importance of the highest frequency responses, 

the time interval chosen for such analyses may need to be much 

lower than that given by (13). The dominant frequencies of 

normal deflections however may be predicted accurately when 

using a value close to the critical time interval. 
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The numerical procedure may be used for static load 

analyses by imposing, in addition to any real damping, 

fictitious viscous damping proportional to nodal velocity 

components. The procedure is equivalent to Dynamic Relaxation 

[8,, 9] used in a separated finite element form. 

The r ecurrence equation (4) for velocities may then be written 

as: 

t+ t 
A. At. R. 

4IX 
Mi4 

where A=(1 
-) ji "l + kAtT2 

B. V 

B (1 - kAt/2 
"l + kAt/2 

(14) 

and k is the fictitious viscous nodal damping per unit mass. 

The vibratory behaviour of the nodes may in this way be rapidly 

damped to positions of static equilibrium. Ideally the motions 

of the structure should be just less than critically damped in 

order to obtain bounds to the true solution. The critical 

damping is given by k= 411 f, where f is the frequency of 

vibration which may be obtained from a short trial run or 

adjusted during the analysis. Evidently, from (13) and (14) 

fictitious nodal masses m., 
-, 

which differ for each co-ordinate 

direction should also be used in order to optimise the convergence 

of the analysis. These matters are examined in relation to 

tension structures in ref. [10]. 

The procedure for static analysis can be extended to 

cope with the form-finding of uniform or variable stress membrane 
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and pneumatic structures, and isostatic, unifornr-mesh or 

geodesic networks; the boundaries of which may be tension or 

compression funiculars with variable spatial curvature F10,11,12]. 

Control of the form may be effected dynamically, primarily by 

specifying in equations (6) the pre-stress or elastic stiffnesses 

of any element; and by the adjustment of link lengths and 

tractions, and reaction forces and positions. 

Of major interest in the design of tension surface 

structures is the range of frequencies of free vibration to be 

expected throughout the structure under various conditions of 

static load and mass distribution. If the static analysis 

procedure is used with sub-critical damping and with real nodal 

mass components normal to the surface, these frequencies may be 

obtained as a useful by-product. It will often be the case 

that the frequencies of network surface structures involving 

degrees of mechanical freedom are very low, far-coupled and 

grouped within a narrow range such that beating phenomena may be 

observed. The use of structural cladding to triangulate the 

network across unbuckled diagonals may enable frequencies to be 

increased and the range dispersed. If the cladding is visco-elastic 

it may also have an important effect on the damping of unwanted 

vibrations. The main advantage of the type of analysis outlined in 

the paper is the consideration within a unified procedure of such 

design aspects from the stage of form-finding to final analysis and 

the ability to cope naturally with the occurrence of mechanisms 

and zero stiffness situations. It is appropriate that such 

structures should be treated as 'in motion', under all conditions, 

whether the loading is 'static' or dynamic. 
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APPENDIX 5.1 

NORMAL PRESSURE VECTOR 

For the triangular element in figure 5, the vector of 

side 
09V,,.,, is: 

vit = 

1 

XL- xf 
Y2-- Yl 

CzI 

X 2.1 

Yti 

I- 
zu 

The vector z' normal to the plane of the element is given by the 

13 
vector cross product of two sides , thus: 

vzý = V, x V, 3 = det 111 

x 2.4 
Yll Z L) 

X 31 y 31 Zli 

.Zx 31 
Z+ 

(X 
2.1' 

y31 - x3 
1* 

y2-1) 

As a vector y2-, -Z 31 - y31 -Z LI 'A 

z14. x31 - z31 ' xt, 

X2. ý-Y3& - X31. Ytll c1 

Similarly for V, 3 

(15) 
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(A L+ B4 + Cý 
VL 

= 2A where A is the area of the triangle. 

The normal direction cosines are thus: 

X 
'e, 

2A (16) 

For a distributed load p per unit area acting normal 

to the element, the equivalent load at each node is pA/3. 

Hence, using the direction cosines, the resolved components at 

each node are: 

Px 
_p 

A PV pB PZ. PC 
66 -9, 

For right-handed global co-ordinate system, the normal vector 

is out of the plane as shown in the figure. Thus internal 

pressure is +ve if the element is viewed externally. 

From a programing point of view it is convenient to 

number the links of the structure and assign vector directions 

to these links by specifying the node numbers at end I and end 2 

respectively. The sides of each triangle, in anticlockwise 

order, are then defined by the appropriate link numbers (which 

may also coincide with cable or bar elements). Noting that the 

signs of A, B and C are unaltered if the vectors of sides 1 and 3 

are both reversed, the nodal force components may be set from the 

vector data of side links 1 and 3, irrespective of the vector 

directions, provided the sign of p is changed if end I of @ 

coincides with end 2 of 9 or vice versa. 
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APPENDXX 5.2 

CONSTANT MOMENT HOMOGENEOUS OR SANDWICH PLATE ELEMENT 

The purpose of the procedure outlined below is to suggest a 

method for the incorporation of panel cladding elements in which bending 

moments normal to the plane may be significant. The final derivation 

should allow such elements in the dynamic relaxation process without 

increasing the degrees of freedom to include rotations. Thus 

translational displacements remain the only ones to be considered. This 

is made possible because of the separation of equilibrium and compatibility 

in the DR iterative process. Curvatures and hence moments acting across 

element sides at any stage are determined from the normal nodal displace- 

ments of adjacent elements, and the moments are then transformed to 

equivalent nodal shear forces. The procedure might be simply extended 

to the case of sandwich construction with thin external elastic panels 

enclosing a shear medium. The formulation suggested, however, has not 

been checked by analytical trials. 

on, 
Fi gure 6 

Consider a triangular bending element with mid-side nodes 

(fig. 6). The element displacements to be initially considered are the 

normal rotations at these points, and these are to be regarded as average 
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side rotations (0,1) . Thus top, bottom and intermediate planes of 

the triangle have sides which remain straight lines after deformation. 

Under these conditions, in order that the displacement parameters 

should be independent, a uniform normal rotation of one side should 

produce no rotation at the mid-points of the other two sides (fig. 7). 
I 

Thus the average normal rotations of these sides are zero. 

21 

)- x 

3 

middle surface 

unstrained 

Figure 7 Plan View 

Section XX may be viewed in two ways (figs. 8a, b): 

ri 

rl 

Oni 

in 

Figure 8a 

Figure 8b 
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In either case the normal nn remains normal to the middle surface, and 

if the curvature in 8b is constant the strain in direction 

at any depth z from the neutral surface, is identical for the two cases 

and e 
tit The derivation of moment stiffness relations can be 

based on either case, but the first (8a) is appropriate for present 

purposes and may also be extended to sandwich elements. The second 

case is considered by Morleyl+ who assumes a quadratic normal 

displacement function to derive a 6x6 stiffness matrix for a constant 

moment element with mid-side moments and apex shear forces as the 

generalized element forces. The object of the present derivation is 

to derive 3x3 relative stiffness relations with only apex shears as the 

forces. In contrast to Morley's formulation, however, the Kirchoff 

plate conditions are satisfied only approximately. 

Direct Strains in the Element 

Consider two adjacent, initially co-planar, elements which 

have been deformed in a manner compatible with figure 8a: 

j el emen t1 

I 

rl 

\' 
\/ 

Fi gure 9 

element 2 

If the deformation angle between the two elements is: 

9= o( + 
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Then, assuming the direct strain normal to the boundary is 

continuous across the boundary, the strain 6 at any depth z 

is given by: 

0-z 

(q, + q2) 

where %and q, are the distances from the junction to the 

undistorted normals nn. 

Hence, if A, and A,. are the areas of the two triangular elements 

and Z is the length of the junction: 

C (D. Z. Z (D. 
(A, 

(18) 

At any stage in an iterative analysis the deformation 

angles (0) between adjacent elements can be set for each link 

using the normal vectors of the elements which are obtained 

from the current nodal co-ordinates (see Appendix 5-1). 

Referring to figure 10, the angle 0 between the two elements 

is given by the scalar product of the normal vectors v, and v.: 

Cos 0 Vi IVI 
zi . 

ý'L 

where Z, = 2A, and Z2 = 2A2 

Thus: Cos 0=X, ý. Xj .X ex, 
+X 

7-'j I-X Zk V I- 
+X 

XýM I'ýZ. ý Z 2, 

where the direction cosines (X) have already been set to deal 

with distributed pressure loading (appendix 5.1) and will 

subsequently be needed to resolve the nodal shears into 

cartesian global components. 
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If the elements of the structure are not initially co-planar 

the difference between the current and initial discontinuity 

angles must be computed. Thus equation (18) becomes: 

E=Z. P. (0 - 0. ) = Z. P. 60 (20) 

Referring again to figure 9, the riormal rotation of 

the side for element 1 is: 

Cc q, E: q,. p. 58 = A, p 68 = A, pl 66 
zT 

The vector or normal side rotations for any element is thus: 

0 ýOni =A Pi 00 ýý(D, LR] ý8Gý 

1, 
ant '0p, % 01 802 

00 

and the vector or direct strains at depth z normal to the 

element sides (figure Ila) is: 

fE1= 
Ei = PC 60, ) =zZ, 00 

CZ P'. 80 A0Z2.0 

F- 3 p3 » 
80 Lo 0 9, 

ant z [Tjfený 

Gn2. 

G 
n3 

(22) 
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-t 

Ficrure lla Figure llb 

The reciprocal diagram for these strains (constant throughout the 

plane at depth z) is shown in figure Ilb, and the orthogonal 

strains may be expressed as: 

trr-.., 1= Ex '= [G'] [T] f(DrLj 

E: 5>E: 1. (23) 

where the terms in the matrix [G']are given by the equations: 

x-61 Y X-S 
b, cl acE; Iab, E: Iabc 

b,. C, E;, a,. c 2. E: 1. abE:, at bC 

b3 cj E: 3 aj C3 63 a3 b3 63 a. b3C3 

and a. = Cos Sin b Sin COS c. = Sin ý'. Cos k. =-Cos (ýSin -11 
4ý A. 

The stresses in the plane are: 

[a�, ] = Jx = 
-& d�. 0-Ex= ED] E z 

[D 

cr9 d� d�. 09 (24) 

T 
-yt -00 

d33 y Xd 

where d, ý*are orthotropic elastic constants. 
i 
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equivalent nodal shears exerted by the element on the nodes 

are given by: 

Slh =ML Cos (D 
3' 

m3 Cos 02- -mI 

+ st m (Z + Z, Mý(Z, + ZL 
- 

IL 
.11 

ý3) 

2A 

[ 

2k, kL 2 2, I. Z 

where S, acts into the plane of the element. 

Similarly for S 2- and S3' Hence the vector of nodal shears is: 

S, [H][Mj 
= 

[H][KJ[Gnj 

S., 

S3 

where the terms in matrix 
[H] 

are given by: 

h=-9, -1 2A ;h (Z" + 9, z- £»)/4A2� ýi x ii ýii it 

Finally, substituting from equation (21) for ýGrtý: 

[Hj[Kj[R][60j 
= 

[QI[601 (27) 

Provided gross straining of the middle surface due to in plane 

forces does not occur, the matrix 
EQJ 

need be computed and 

stored once only for each element at the start of a DR analysis. 

If gross straining does occur 
EQ] may be re-computed at 

infrequent intervals. 
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For a virtual deformation t(D, *Iof 
the plate element, 

inducing corresponding virtual strains [E:,,, ý= z. EdJETjý0, *j in 

a plane at depth z from the middle surface, the internal 

virtual work is given by the product of real stresses and 

virtual strains integrated throughout the volume of the 

element: 

VW=A. ý(Dn#f[T] [d] [D] [G] [TJ [Gr, 1 
z7dz (25) 

- VI- 

The external virtual work is: E) 
* ý 
rLI 

[Mý 

where 
ýM. ý is the vector of (total) moments acting across the 

element sides. 

Equating the internal and external work, the relative stiffness 

relations are thus: 

[At3 [T] [Gýj[DJ[G\J[Tj] [Onj= [K][(Dn] (26) 
12 

The moments 
ýMý 

are moments exerted on the element, 

+ve if they act in a sense causing tensile strains on the lower 

surface, 

z 

I 

Figure 12 

3 

Referring to figure 12, taking moments about side(D : the 
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Relations (27) should, in principle, enable a DR analysis 

to be carried out using only translational displacements and lumped 

masses at the nodes of the structure (as opposed to deflections and 

rotations, and consistent mass matrices). The saving in computing 

time and storage should thus be considerable. Similar concepts 

might be applied in the case of "constant moment" beam elements. 

The derivation given might also be modified to account for- sandwich 

cladding. In this case the virtual work expression (25) would have 

to account instead for discrete external panels and, if significant, 

the virtual work done by shearing of the fill material. 

REFERENCE 

(14) L. S. D. Morley, 'The constant-moment plate-bending element', 
Journal of Strain Analysis, Vol. 6, no. 1,1971. 
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CHAPTER 6 

AN INTIFSTIGATION OF VIBRATION DECAY IN A MODEL PNEUMATIC DOME 

SUMMARY 

The chapter forms an experimental correlation with 

the previous one (referenced [1] in the present text). it 

considers the suitability of a simple Kelvin model for visco- 

elastic dynamic behaviour by comparing the observed decay of 

deflections in a pneumatic dome subject to a suddenly applied 

load with those calculated using a central difference numerical 

integration scheme. 
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MODEL DOME CONSTRUCTION AND TESTING 

The model dome, a general view of which is shown in 

figure 1, had a base diameter of 4.74m and a crown height of 

approximately 0.9m when prestressed by internal pressure. 

The dome was assembled from twenty segments closed at the crown 

by a circular capping of 0.58m diameter. The membrane 

material was P. V. C. coated terylene voile approximatey 0.2mm 

thick, and the segments were cut so that the weave was aligned 

with the weaker weft direction parallel with hoop contours. 

The cutting template for the segments was shaped to give as 

closely as possible a spherical diameter of 7. Om for zero 

membrane stress; the segments being lap jointed with Bostik 

adhesive over a former of the correct curvature. The dome was 

sealed to the support base by double sided tape which enabled 

initial adjustment, and the base was bevelled so that this joint 

was subject to shear rather than peeling (fig. 2). 

The dome was prestressed by an internal pressure of 

150 Pa. inducing an average membrane tension in the region of 

260 N/m. After creep deformations had approached a terminal 

value under the prestress condition, a central 0.58m diameter 

ring load of 1000 N was suddenly applied to the dome by cutting 

a supporting cable which had previously been adjusted so that 

the ring was just touching the dome. Dynamic deflections were 

then traced by means of a 16mm cine camera (at 64 frames per 

second) sighted on to a fixed marker and a vertical scale attached 

to the loading platten (fig. lb). 
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CALIBRATION OF MATERIAL CONSTANTS 

The membrane material was such that the stiffness and 

strength in the warp direction of the weave was considerably 

greater than that in the weft direction and the shearing stiffness 

was negligible. The dynamic moduli and visco-elastic constants 

for each direction were calibrated by applying a sudden load to 

two identical strips cut from the material. The strips were 

suspended (figure 3) with a dead load of 25 N applied to induce 

membrane tension of approximately half the sum of the average 

tensions in the dome structure under prestress and loaded steady 

state conditions. 

eflection transducer 
o U. V. recorder 

Fi gure 
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Deflections under the load could be recorded by means 

of a frictionless transducer coupled to an ultra violet recorder. 

The strips were allowed to creep for two hours under the dead 

loading and an additional load of 8N was then applied but 

relaxed by tensioning a fine central wire so that the deflection 

returned to the dead load value. The full load was then sudden17 

applied by cutting the wire in such a way that no lateral 

disturbance was caused and the transducer core was at all times 

freely suspended in the coil housing. 

The results for weft and warp directions are shown in 

figures 4 and 5 respectively. Because of the comparatively 

small creep in the warp direction, material constants (determined 

by trial analyses using the procedure outlined [1]) can be found 

which closely simulate the test results. In the weft direction, 

however, the three constants have been chosen to comply with the 

first peak deflection, the rate of decay, and the 'quasi-static' 

terminal deflection. In the intermediate stages the results are 

as good as can be expected bearing in mind the crudeness of the 

single Kelvin model for creep. Although the creep after one second 

continued at a fairly high rate, if allowance had been i4ade for 

this the error in intermediate deflection values would have been 

even greater, and without the use of a more sophisticated creep 

model it was thought that the trace shown was the best that could 

be obtained. 

For each calibration test the analysis was carried out 

using three different structural idealizations: 
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as a single bar element with a time interval 

of 10% of the critical time interval. 

as six bar elements with intermediate nodal 

masses of 2% of the end load mass and At = 0.5 Atcrtt 

(iii) as eighteen triangular membrane elements with 

intermediate nodal masses of 1% of the end load 

mass and At = 0.5 Atcrýb 

In each case creep strains were incremented at every time interval 

(n =1 in Eq. (11) of [1]) 
, and for case (ii) a second analysis was 

run using n=5. The results were all found to plot on practically 

the same theoretical curves shown in figures 4 and 5. Using a 

single bar element with a time interval of 40% Atcrýt however, the 

error becomes signigicant. For illustrative purposes, hand 

calculations for the first two peaks of this case are given in 

Appendix 6.1 and the full trace for the weft direction is compared 

with figure 4. 

The calibration tests described are of limited validity 

since, because of the mechanics of the weave, material properties 

in either direction will depend on the stress level in the other 

direction. A more realistic calibration might have been obtained 

by testing pressurized cylinders of the material but it would have 

been more difficult to obtain a trace of dynamic deflections 

without lateral disturbance and consequent friction in the 

transducer. The drawbacks of the strip test are to some extent 

aleviated by the fact that it was a short term test and the dynamic 

load was only 32% of the steady static load. 
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ANALYSIS OF THE DOME 

The shape of the dome in the prestress condition was 

first determined with a segment of the structure (figure 6) 

idealized into orthotropic membrane elements possessing the 

calibrated visco-elastic constants, and using fictitious nodal 

damping (as outlined in [11) so that convergence from the 

unstressed state to the stressed equilibrium condition was 

overdamped. The assumptions were thus made that the full 

pressure was rapidly applied to the membrane and that the 

ratios of modulus and 'visco-elastic constants in the warp 

direction to their values in the weft direction for long-term 

creep were the same as the ratios for short-term creep. The 

magnitudes of creep are of course not the same, but it is the 

ratios of material constants and rate of pressurization which, 

together with the specified unstressed geometry, are the main 

determinants of prestressed shape and subsequent behaviour 

under loading. The assumption of constant ratios of the 

material properties and rapid stressing is somewhat vague but 

unfortunately the rate of pressurization was not accurately 

recorded, and the use of thin strips of material for calibration 

would have been very inadequate for the determination of long 

term material constants. 
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Fi gure 6 

Because of the very low shear stiffness and the symmetry 

of loading the structure was subsequently idealized into orthogonal 

strips of material aligned with the warp and weft directions (as 

shown by the thick lines in figure 6), resulting in a reduction in 

computation time of about 50%. The strips were assigned EA values 

and initial tensions based on effective widths and the structure 

was re-analysed to obtain a stable and compatible prestress shape. 

The analysis for the 1000 N dynamic load was then carried out 

assuming nodal masses varying linearly from 0.008 kg at node 1 to 0 

0.044 kg at node 10 apart from node 3 with a mass of 2.484 kg 

corresponding to the proportional segment load of 25 N reduced by 

the sum of the masses at nodes 1 to 5. The time interval used 

was 60% of the critical time interval based on these masses. The 

numerical stability of the entire system is highly dependent on 

the frequency at which pressure changes are calculated. The 

pressure P at any stage i of the analysis, assuming isothermal 
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contraction (or approximately also for adiabatic) , is given 

by: 

p 
41 

+dV) 

where dV q . x. (6 -6 
ý-I 

ýLLL nn X--1,3 

and f6,1 
, 

[q. 1 are respectively the deflection and unit pressure 

(or resolved area) vectors at node n; the latter being given by 

equation (9c) in [1] with pý set to unity. 

Depending on the relative 'stiffness' of the air and membrane the 

pressure changes may need to be calculated at closer intervals 

than creep increments or buckling checks. For the test model 

subject to a heavy dynamic load this was so, and the most 

efficient computational procedure was to reset the unit pressure 

vectors at the same stages (every 20 time intervals) as creep 

increments and buckling checks but, using these vectors, to 

determine pressure at every time increment using current nodal 

velocity components for the deflection increments (6 = V. At). 

The results of the analysis, compared with the experimental 

trace, are shown in figure 7, the maximum dynamic deflections in 

figure 8; and the membrane tensions and internal pressures for the 

three conditions: prestress, maximum dynamic and final steady state, 

are given in the top, middle and bottom segments respectively of 

f igure 9. 

In order to assess the likely maximum error in the 

assumption made regarding the ratios of long term to short term 

material constants and the rate of prestressing of the structure, 

a subsidiary form-finding analysis was carried out using long term 

"effective" moduli corresponding to the assumption of a very slow 
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rate of pressurization; in this case, the visco-elastic constants 
being set at zero. A dynamic load analysis was subsequently 

carried out based on this initial form and it was found that the 

peak and terminal deflections reduced by approximately 11%, and 

the average period by 3.7%. 

CONCLUSIONS AND FUTURE WORK 

Bearing in mind the limitations of the calibration test 

and the use of a single Kelvin model the results obtained are 

quite good, with frequencies, the rate of decay and the terminal 

deflection well simulated by the analysis. Although in the 

early and intermediate stages there is a considerable discrepancy 

in the degree of damping, this should be viewed in relation to 

the fact that maximum dynamic stresses were thirteen times the 

maximum prestress values with a corresponding increase in internal 

pressure of 735%; yet the creep and vibration decay behaviour 

were calibrated from an initial stress value mid-way between the 

prestress and terminal averages in the test structure with a 

dynamic load of only 32% of the dead load. For more realistic 

loading the visco-elasic model chosen should provide a good 

indication of damping and enable a simple numerical procedure to 

be used which is capable of handling quite large structural 

systems. 

Calibration results for the weft direction visco-elastic 

constants are least satisfactory, and for materials exhibiting 

even greater rates of creep it may be necessary to use a series 

model to represent the behaviour. This does not appreciably 

increase computational effort, though curve fitting the calibration 
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tests is more difficult. In the warp direction, which shows 

comparatively little creep, the results are excellent and one may 

speculate that the analysis could be used to model the dynamic 

behaviour of structures employing materials exhibiting little creep 

but significant vibration damping such as 'Kevlar' 29 or 49. When 

creep is insigificant the ratio a/b tends to zero; by increasing 

the Young's Modulus, however, the effective elastic strain becomes 

less than the total strain and constants may be chosen to adequately 

model the rate of vibration decay. Cable networks employing such 

materials, and a cable reinforced pneumatic dome with a geodesic 

membrane cutting pattern are subsequently to be investigated. For 

the latter the membrane will be unreinforced P. V. C. and a series 

model will be used to simulate creep, with more careful attention 

paid to the rate of pressurization. 

REFERENCE: 

(1) Chapter 
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APPENDIX 6.1 

CALIBRATION ANALYSIS FOR SINGLE VISCO-ELASTIC ELEMENT 

Total area of strips =2x 28 x 0.02 = 11.2min 

Length = 900mm 

Dead load = 25 N 

Suddenly applied load W= 8N 

Elastic & Visco-elastic constants: 

E= 420 N/mm ) 
(Trial values) Nb=7 sec 

b. E: p/cr 

where cr = increase in stress due to W= 8/11.2 = 0.7143 N/mm 

and E: p= Total strain (measured from cal. test) - Elastic strain 

= 0.0039 - 0.7143/420 = 0.0022 

hence a=0.021 mm /(N. sec) 

Elastic stiffness S= EA/L = 420 x 11.2/900 = 5.2267 N/mm 

Nodal Mass M= 33/9.81 kN 

Critical time interval = 
-zm 0.05 Sec. 

(for one end fixed) S 

Use At = 0.02 Sec. 

From equation (12a) in Chapter 5, the projected creep 

relation with n=1 is: 
t+ C-/-L t t: - "-ý t/2- 

a. Zýt. a bAt/2-) . E: c 
(1+bAt/2-) (1 + bAt/2-) 

and corresponding to the flow chart in Chapter 5 at stage IIIa: 

Cr SW-x 
TC 

Hence x L. er ý+Ae/2. gives: 
L L-/ 2, 

= 0.1649x t+0.7043x t6 t/z, 
mm (1) 

Xý* C 
The new residual force RW-p where p' 

t 
corresponds to stages 
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g and h in the f low chart. Hence: 

R=8-5.2267 (x - XC t+ lný t7/7- )N (2) 

From equation (4) in Chapter 5, the mid-interval nodal 

velocity is then: 

v 
4'4 t/2- 

Vt+ At. RC . 10 
m 

and hence the new deflection is: 

xX+ Atv 

= 
At/L 

+ 5.9455R mm/sec (3) 

(4) 

At the start of the analysis the velocity at At/7, is 

given by: 

6 t/ýL 
l. At. W = 23q8l8 mm/sec 
Tm 

and x is assumed zero. 

The iterative analysis thus proceeds using equations 

2 --g,, 3 and back to 4f or the next cycle. The calibration 

analysis for this case (At = 0.4At,, ýt ) is set out in table 1 

up to the first maximum and minimum deflections. The complete 

trace for one second duration is shown in figure 10 compared 

with the calibration test and the trace computed using a single 

element but At = 0.1 Atc 
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ME x x R v 

0 0 0 (W=8) 23.7818 

0.02 0.4756 0.0784 5.9238 59.0018 

0.04 1.6557 0.3282 1.0616 65.3137 

0.06 2.9619 0.7194 -3.7208 43.1918 

0.08 3.8258 1.1374 -6.0512 7.2148 

0.10 3.9701 1.4556 -5.1424 -23.3590 

0.12 3.5029 1.6027 -1.9319 -34.8452 

0.14 2.8060 1.5913 1.6514 -25.0266 

0.16 2.3055 1.5009 3.7946 - 2.4659 

0.18 2.2561 1.4290 3.6768 19.3944 

Tabl e1 
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CHAPTER 7 

INTERACT= GRAPHICAL DES167V OF TENSION SURFACE STRUCTURES 

SUMMARY 

The chapter describes the Interactive use and 

control of Dynamic Relaxation for the form-finding of uniform 

or variable stress membranes and geodesic cable networks. 

The boundaries to the suzface structures may be derived as 

tensile or compressive funicular curves, and may in addition have 

traction forces applied by boundary shear walls or network walls 

which considerably increase the variety of possible forms. 

Initial convergence of the technique is rapid and 

provided sub-critical damping is used, damped oscillation 

about the equilibrium position provides an early signal for 

necessary design modifications such as the alteration or- 

reaction forces or positions, control tensions or compressions, 

membrane stresses and boundary traction forces. 

The paper represents a fairly direct extension of 

procedures given in chapter 4. In contrast, however, to 

previous examples of form-finding, the present applications 

indicate clearly the instructive benefits to be gained from 

interactive design. 
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BASIS FOR INTERACTIVE FORM-FINDING BY DYNAMIC RELAXATION 

The numerical procedure is a special application of 

the general method set out in chapter 5 [ref-11 DR being 

discussed in the final section of that chapter. Nodal 

displacements at any time (t) may be expressed (using equations 

13 of [1]) in terms of previous displacements and nodal 

forces (at t-At). New nodal forces may then be expressed in 

terms of these displacements, and hence the iteration proceeds. 

The force exerted on any node by an adjoining cable 

link, in the direction of the link may be expressed as: 

F=K,, (L - Lý) + To Qo (1) 

where L" is the current link length and L02 Kcp.! p T,,, and Q,, are 

respectively the specified slack length, elastic stiffness, 

pre-tension and traction force along the link; Lt and the 

resolved components or' Ft being determined from current nodal 

displacements. In order to derive compression funicular 

boundaries, edge links are given either negative K,, or negative 

T,, values and residual forces at edge nodes are reversed at 

each stage in the analysis. 

For a triangular membrane element subject to a specified 

uniform tensile stress resultant, a,, h, the force at node 

directed perpendicular to the opposite side, i, is given by: 

tt 
aohLý (2) 

(an alternative expression in terms of edge tensions is given 

by eq. (7) of [11). 
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The acceleration of any node is inversely proportional 

to the mass, and the applied viscous damping is taken as 

proportional to the mass. Thus during the form7finding process 

the rate of change in the various parts of a structure can be 

controlled by the mass components. Also the entire assembly 

of nodes is treated as 'active' with support points being 

fixed or released by the use or not of very large masses. 

The main controls on fornr-finding are however the adjustment 

of membrane tensions (a. in 2), and the parameters L. I K,,, T,, 

and Q,, in equation (1). These may all be adjusted dynamically 

so that the process of form-finding is one of continuous change 

without the necessity to return to some initial state. 

The application of the method to various types of 

tension surface structures is illustrated in the following 

sections; the forms considered all being based on the 

topology shown in f igure 1. Although, in fact, all of the 

structures have three or six axes of sy=etry, in order to show 

more clearly certain types of instability or quasi-instability 

which may occur, but be dispelled, during interactive 

form-finding of such structures, the analyses were based on 

the assumption of symmetry about XX only; symmetry being 

imposed by the use of large mass components in the y direction. 

For the sake of simplicity a very coarse subdivision has been 

used and specific data for the structures considered has been 

put in appendix 7-1. 
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8c 

/ 

Fi gure 1 

UNIFORM STRESS MEMBRANES 

For the generation of the structure shown in figures 

2a &b nodes A and C were fixed and an upward load was applied 

at J. The initially plane membrane was subdivided into 

triangular elements, shown by the full lines in fig. 1, with 

a specified uniform stress. The membrane was supported by 

links EJ and GJ and bounded internally by cable loops, and 

externally by compression funiculars; the boundaries being 

controlled elastically with +K,, and -KO values respectively, and 

To values set to zero in both cases. Uniform traction forces 

were applied along the outer boundary links (as indicated by the 

arrows in fig. 2a), together with downward loads which varied 

linearly from zero at the low points (A, C) to a maximum at the 

high points 

IT 
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A 
Figure 2b 

Figure 2a 
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Whilst the overall form is obtained quite rapidly, 
the system never fully converges due to the successive collapse 

and expansion of the triangles marked * at the low points 

which cause slight oscillating lack of symmetry. The effect 

on other nodes of the membrane is very small and this state is 

termed quasi-instability. It may be dispelled by increasing 

considerably the mass of the node which is causing intermittent 

inversion of an element[2j. Alternatively, as in this case, 

it may indicate that the system is physically only just stable. 

For the structure shown, complete convergence may be obtained 

by taking any of the following actions. 

a) increasing traction forces to decrease the discontinuity 

of boundary slopes at the low points 

b) increasing IK,, Ivalues of the boundar7 links 

C) reducing the central upward load 

d) increasing the downward loads on the boundary nodes or 

altering the distribution 

The effect of (d), when the total boundary load is increased by 

407., is to increase the edge curvature and the height of the 

high points (B, D) thus making the membrane more cylindrical 

near the low points. The system then becomes stable and 

symmetrical as shown by the plan view of fig. 4 (left-hand lobe) - 

With these increased boundary loads, if the central 

load is increased by 20% the effect is shown in the elevation of 

f ig. 3. Quasi-instability then develops due to inversion of the 
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inner triangles marked *; the effect on the variation in 

height at J being ý0-1%- If the load is further increased, 

collapse will occur with contraction of the inner loops and 

upward acceleration of the load at J; and to restore stability, 

without reduction of the load, the K, values of the inner loops 

may be reduced thus increasing their size (alternatively the 

membrane stress may be increased). 

It is of value, in considering membrane reinforcement 

or the design of equivalent cable networks, to examine principal 

stress trajectories due to the application of a small uniform 

pressure normal to the surface. Figure 4 shows, in the 

right-hand half lobe, the principal tensile trajectories 

obtained by assigning elastic stiffness to the membrane elements 

and analysing the structure for normal pressure by the method in 

ref . 
LIJ. Whilst the approximate trajectories would in this case 

be known intuitively, for more complex support systems they might 

not. Considering the coarseness of the subdivision and the type 

of elements used, the results are surprisingly good and can be 

obtained with very short computer runs. One aspect in favour 

of using 'constant strain' elements for such a loading condition 

is that stress gradients throughout the minimum surface membrane 

are very small. 

CABLE NETWORKS 

The ideal network, at least for the condition of uniform 

pressure loading, is the lisostatic' network in which cables follow 

principal stress (and radii) trajectories over the surface with 
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spacing inversely proportional to the intensity of stress in 

a substitute membrane surface. For practical reasons nets 

are usually either of uniform mesh or geodesic construction, 

but the pattern of principal stresses may provide a guide for 

efficient cable arrangements. 

Geodesic networks, in which the cables follow paths 

of minimum distance over the surface, may be derived by setting, 

f or each cable link, the value of K, to zero and thus holding 

the tensions of cables constant at a specified value of T. 

throughout their lengths. Figures 5a and b show a geodesic 

network, derived in this way, with the same boundary and loading 
I 

parameters used to derive the membrane in fig. 3. but with the 

ratio of cable tension/spacing approximately equivalent to the 

membrane tension. 

With nearly optimum parameters of mass components,, 

damping constant and time step convergence of deflections to an 

accuracy within 0.001% (passing through the first maxima and 

minima) was obtained after 150 iterations. If the fictitious 

nodal masses used at surface node points are reduced, numerical 

instability occurs at the most closely spaced of these nodes 

as shown in fig. 6 (for a structure with lower applied boundary 

loads). The type of instability developed is interesting in 

that it does not greatly affect other nodes or the overall 

form. This is because for geodesics with imposed constant 

tensions (and for uniform stress membranes) the stiffness is 

'geometric' and reduces with increasing deflection in contrast 

to elastically controlled structures for which the numerica 

analysis becomes entirely unstable with an over-critical time interval. 



For uniform mesh networks the form is controlled 

elastically using real stiffnesses and Lo values, but in 

some links it may be appropriate to specify T. values to 

obtain a more even distribution of tensions and curvatures. 

Physically this corresponds to the use of turnbuckles during 

erection. 

Fi gure 6 

VARIABLE STRESS MEMBRANES 

The curvatures, and thus the resistance to dynamic 

deformations, in uniform stress minimum surface membranes are 

restricted by stability criteria or the permissible size of 

support loops. If membrane elements within the surface are 

coupled with cable links along their edges, which may physically 

correspond with reinforcement, variable stress membranes may be 

234 

derived which permit an increased variety of forms L3]. 
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It is often permissible to couple uniform stress 

membrane elements with cable links for which T,, values are 

specified (and KO set to zero). In some cases however this 

may create an unstable system, or one which is difficult to 

control numerically. For this reason it is preferable to 

specify the K,, and L. values of cable links, and adjust them 

during the numerical process to obtain the form required. 0 

The links should preferably be initially overstiff and 

subsequently relaxed to a viable solution, otherwise the 

system may suffer at an early stage the physical instability 

effects which occur in uniform stress membranes. Even if the 

system does collapse however, it may still be restored by 

adjusting the control parameters; though this will entail 

increased computing time. 

Figures 7 show the development of snap through buckling 

when the plane membrane of figure 1 was subject to an increasing 

load at the centre applied through four struts. The early stages 

of deformation are shown in the elevation 7a. The membrane was 

fixed at supports ABC and D and bounded internally and externally 

by edge cables. Radial cables joining AE, BF, CG, DH provided 
I 

reinforcement to the membrane to permit an increased central 

height compared with that of a uniform stress membrane by 

effectively increasing the radial tension component. The 

membrane was otherwise uniformly stressed. The radial cables 

were elastically controlled; though a valid solution could have 

been obtained by specifying uniform tensions. 
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Figuze 7b 

Figure 7a 

P 
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Figure 7d 

Fi gure 7c 
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In figure 7b the load P has been doubled and instability 

is occuring because the stiffness of the inner loop cable is 

too low and the load P was not constrained to deflect purely 

along the vertical centre line. After the struts have snapped 

through, if the load is held constant, the system becomes stable 

and symmetrical. Finally, with further increase of the load 

(figs. 7c and d) quasi-instability occurs at the centre nodes 

marked This is a result of the topology chosen and the type 

of elements used, but can be eliminated by increasing the mass 

at these nodes resulting in a topological reduction. Alternatively, 

the element subdivision in this area may be refined. The inversion 

of the systeM at stage 7b could have been prevented by assigning 

large horizontal mass components to the loaded node; either 

initially, or as soon as lack of symmetry became apparent. 

The use of closed zones delineated by cable contours 

permits variation of the membrane stress a 03, trom zone to zone,, 

in addition to the variation in effective membrane tensions due 

to the cable reinforcement [3]. The pneumatic structure shown 

in figures 8a and b, generated from the complete topology in 

fig. 1, possesses five stress zones. The specified membrane 

stress resultants were varied linearly from S, to a minimum 

SI/3, and the elastic stiffnesses of cable hoops between 

zones were all set to K. = +11S. The base boundary was 

determined as a compression funicular controlled elastically 

with negative Ko values. Only the vertical fictitious mass 

components of this boundary were set at very large quantities, 

thus the boundary was free to expand or contract laterally. 
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Figure 8b 

SI 

Figure 8a 

S, S2- Si S., S5 S+ Sj Si- 51 
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The shape of the membrane may be controlled by varying K. values 

of the hoops and the membrane stresses. 

The structure illustrated in fig. 8 is rotationally 

symmetric but asymmetrical shapes (fig. 9) may also be derived. 

And by assigning to all other links K. values which may be 

varied during form-finding, an infinite degree of control on 

the shape is obtained since all nodes of the structure are then 

elastically triangulated. 0 

Fi gure 9 

CONCLUSION 

The main advantage of dynamic relaxation as an 

interactive form-finding techniqueis that it simulates a viable 

physical process, and the dynamic trace of deformed states aids 

investigation of tension systems in much the same way as model 

studies. Whilst the techniques described cannot replace model 

studies from the point of view of appreciation of design aestheticq 
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they may complement the physical understanding and extend the 

range of investigation. The simulation, for example, of 

structures with combinations of tensile and compressive 

funicular boundaries, perhaps with traction forces, might 

be experimentally difficult, particularly if a family of such 

forms is to be investigated. The process also has a rapid 

initial convergence so that an early signal for necessary design 

changes is obtained, enabling trial investigations to be carried 

out economically. Furthermore, a very important design aspect 

of tension structures is their dynamic behaviour. Dynamic 

relaxation allows this to be considered at the formative design 

stage, provided of course that light damping and realistic 

values of stiffness and mass are substituted in place of the 

fictitious values used to accelerate the form-finding process. 

Another advantage of the step-by-step trace of behaviour is the 

ability to cope with zero stiffness situations in highly non-linear 

situations involving instability or collapse, and more particularly 

the ability to restore stable topology even after the onset of 

collapse. The text illustrates, for certain examples, how 

interactive control enables understanding of physical behaviour 

so that necessary design changes can be made to achieve convergence. 

The instructive stages of failure for some additional examples 

are shown in appendix 7.2. 

Although the number of iterations required for convergence 

is large when compared with matrix iteration techniques, the 

operations are extremely simple. In terms of equivalent CDC 

processor time, the 150 iterations for convergence of the geodesic 

net, with 320 degrees of freedom, requires 4 seconds. Membranes 
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or pneumatics with the same number of nodes require approximately 

double the time per iteration. Convergence times for tension 

surface structures are however greatly dependent on how closely 

the boundary and other controls require the surface to approach 

a state w ich is physically inadmissible. When investigating 

structures near this state, convergence is usually slow. 
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APPENDIX 7.1 

STRUCTURE PROPERTIES 

The parameters used for the examples in the text are 

given below. The structures are referred to by figure numbers. 

2. Central load 2 kN 

Boundary load 1.3 kN per lobe 

Boundary traction 2.5 kN/m 

Membrane tension 2.5 kN/m 

Central loop cable links K,, = 
50 

kN/m 3 

Boundary cable links K. 
100 kN/m 3 

Same as 2 but 

Boundary load 1.8 kN per lobe 

Same as 4 but 

Central load 2.4 kN 

5. Geodesic Net: same as 3 but 

all surface cable tensions 600 N 

7. Membrane tension 2.5 kN/m 

Radial cable links K,, = 
25 

kN/m 
3 

Central loop cable links K,, = 
100 kN/m 

3 

Boundary cable links _ 
250 kN/m 

3 

Central load: Stage (a) 3kN; (b) 6kN; (c) 9kN 

Pneumatic pressure 3 kPa 

Membrane Tension S, =3 kN/m 

Hoop cable links KO = 
100 

kN/m, except centre hoop K,,, = 
200 kN/m 

33 

Boundary cable links K,, -250 kN/m 3 
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APPENDIX 7.2 

The plane membrane of fig. I (text), fixed at points 

ABC and D, and with cables connecting the inner loop points 

EFG and H to J, was subject to a normal load at J. The 

outer boundaries were assigned -ve K. values (compression contours) 

and the specified membrane stresses were varied linearly from a 

maximum S, in the outer zone to a minimum S+ in the centre; 

the stress differences being resisted (as in the pneumatic 

structure) by elastically controlled tension cable hoops T, , TI, T3 

(fig. 10a). Due to the low stress in zone 4 collapse started 

to occur with the inner loop gathering to the centre (fig. 10b). 

The stress gradients were then decreased and convergence was 

obtained with the tension-hoops forming circular arcs lying in 

horizontal planes as shown in figure 10c; the surface being 

anticlastic. 

With the problem reversed so that S, > S3; > S, > S, 

necessitating compression hoops C,,, Ct., Cj for equilibrium, 

form-finding commences in a satisfactory way (figs. lla & b) but 

subsequently becomes unstable (fig. 11c) with the compression 

hoops eventually displacing alternately above and below the 

horizontal plane containing supports. With elastically controlled 

tension radials (AE, BF etc. ) employed in an attempt to restrain 

the displacements of the compression hoops, divergence occurs as 

shown in figure Ild. The failure states indicate that in order 

to stabilize the system it is necessary to impose the condition 

that all vertical ordinates in any hoop must be identical. And 

that to achieve convergence to a system with synclastic curvature 
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Figure 10c 

Figure 10b 

Fi gure 1 Oa 
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Figure lld 

Figure llc 

Fi gure 11 b 

0 
51 st. s3 -S -r 

Figure lla 
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(as required by the stress gradients) the bearing hoops should 

preferably be controlled by specifying, and adjusting interactively, 

their magnitudes of compression as opposed to elastic control. 

The necessity for interactive form-finding of the 

type proposed is also emphasised by the following example 

(fig. 12a). This was an attempt to obtain a variable stress 

pneumatic dome (of the type considered in the text - fig. 8) 

with a very steep gradient at the base. Thus the elastic 

stiffnesses of the tension hoops were reduced to enable 

expansion of the dome. Because the system was allowed to 

expand too far however, the lowest and most highly stressed 

zone of triangular membrane elements became vertical and 

consequently the lowest tension hoop could no longer sustýin 

the specified stress difference between the adjacent zones. 

Figure 12a shows the state of the structure just after this had 

occurred; and in order to restore a viable structure the stresses 

must be equalized at this stage and large horizontal mass 

components must be assigned to the base boundary nodes if and 

until the diameter of the lowest tension hoop exceeds that of the 

boundary. When this occurs the base boundary becomes tensile and 

the sign of the elastic stiffness must accordingly be changed. 

The base node mass components may then be reduced again to 

allow continued motion to a final equilibrium position. 

If the above actions are not taken, the system rapidly 

proceeds from stage 12a to 12b. Stages beyond 12a are no longer 

instructive and ultimately complete divergence occurs. The 

value of dynamic relaxation form--finding is that it gives an 
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Figure 12b 

Figure 12a 
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indication, at the right stage, of the physical reasons for 

impending failure. In contrast, matrix methods based on 
I 

Newton-Raphson iteration would merely indicate numerical 

divergence irrespective of whether they produce graphical 

output. It is the dynamic trace of physical behaviour and 

interactive control which enables the proper control conditions 

to be realised and applied. 
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CHAPTER 8 

OPTIMIZATION OF SPACE TRUSS FORM 

SUMMARY 

The dynamic relaxation process is extended to cater for 

the optimization of the form of space trusses subject to a single 

loading condition. Using a modular 'ground structure' with 

generally defined external boundaries containing all possible 

alternative structures which comply with the modular grid, member 

sizes are continuously modified during the process until the structure 

obtained complies with criteria for a least-weight optimum. Physically, 

the process of adaptation is such that, as loads are taken up and 

transmitted to supports, members which do most work are increased 

in size and those that do least are decreased; respectively increasing 

or reducing their subsequent capacity to do work. In the limit, 

the majority of members have reduced to zero area and may be 

deleted whilst the remainder, forming the optimum, are stable in 

size and configuration. 

procedure suitable for the form-finding and member sizing 

of space structure building systems is then outlined which takes 

into account variable loading and general deflection constraints. 

This entails an interactive design mode in which at any stage a 

preferred structural policy is indicated, but allows the Architect 

or Engineer freedom of functional design. 

The paper was presented as a lecture at the IASS Congress 

on Structures for Space Enclosure, Montreal, July r976, and examples 

subsequently incorporated in a paper at the Conference on Slender 

Structures. London, Sept. 1977 (reference 20). 
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APPROACHES TO STRUCTURAL OPTIMIZATION 

The classical approach to the optimization of structural 

form developed by Maxwell' (1854) and Michel 12 (1904) is based on 

a direct physical approach. Precise results may be obtained 

3-7 but, up to the present, only for relatively few cases 

Solutions for these "Michell" structures are dependent on the 

initial specification of appropriate principal strain fields, 

and do not account for constructional or architectural constraints 

such as the use of modular member sizes, standardized joints and 

the possible intrusion of functional space into the domain of the 

structure. 

The more recently developed mathematical-programming 

techniques for structural optimization, 7-16 developed originally 

for tactical decision making, permit a variety of practical to 

constraints. These abstract mathematical techniques have been 

applied to two broad categories of structural optimization: 

(a) the ideal form7-finding of truss, space and shell structures,, 

and (b) the optimal sizing of members in statically indeterminate 

structures with a specified layout but subject to a variety of 

loading cases with constraints on deflections, stresses and minimum 

member sizes. Either of these classes of application may require 

large amounts of computing time and core store for relatively simple 

structural systems. In 1966, for example, Richards and Chan5 

reported on the shape optimization by Linear-programming of a 

space-truss generated from a 'ground-structure' with only 59 degrees 

of freedom, subject to 360 inequality constraints, which required one 

of the largest computers then available 7. For reasons of economy, 

in dealing with stress constrained problems in class (b), some 

researchers'6-20 have concentrated on the study of "fully-stressed 
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design" techniques. In general, these consist of the iterative 

factoring of member sizes with subsequent re-analysis leading to 

a design in which each member is subject to its limiting stress 

under at least one of the specified load conditions. This is 

possible provided the number of load conditions is greater than 

or equal to the ratio of members to degrees of freedom'9. Although 

the analytical statement of the goal of minimum weight is absent 

from the procedure, it has been found that structural proportions 

are obtained which, if not optimum, are very close to the ideal' 8-20. 

Furthermore, mathematical-programming techniques also suffer from 

a similar uncertainty since, although leading to an optimum, there 

may be no assurance that this is a global rather than local 

optimum 
16-20 Analogous procedures, also restricted to structures 

with a fixed geometry, termed "opt imali ty-criterion-based" design), 

have permitted an extension of the re-analysis methods to cope with 

2 1-23 
multiple design constraints on deflectionsas well as stresses 

The techniques of linear-programming were introduced 

in 1964 to the problem of form7-finding by Dorn, Gomory and Greenberg 10 
1 

7 
and in parallel work by Hemp . They approached the topological 

and geometrical design of structures by arranging a rectangular 

gridwork of possible node points to cover the design space, and 

allowing for the interconnection of all nodes with truss elements 

to form a "ground Structure" of possible members. Neglecting 

buckling effects and the possibility of prestressing and assuming 

all members have the same elastic modulus then, for a single load 

case, the optimum structure is fully stressed and must be statically 

determinate, otherwise, except in special circumstances, the strains 



253 

-throughout the structure could not be compatible. Hence, 

treating the member forces as the design variables (> number of 

joint equilibrium equations), the techniques of linear programming 

were used to select from the complete set of admissible (statically 

determinate) structures that which had the least weight; termed 

the "basic optimal structure", and containing as many bars as 

degrees of freedom (= number of independent equilibrium equations). 

The zero force members and unnecessary joints were then deleted 

to yield the final "reduced optimal structure" consistent with 

sta 1. ity. 

For multiple load conditions a minimum weight structure 

17 may be statically indeterminate and is not necessarily fully stressed 

Thus component weights may not in general be taken as proportional 

to member forces and a non-linear programming algorithm is required 

for optimization. Dobbs and Felton" tackled this problem using 

iterative displacement analysis of an initially complete ground 

truss structure with member areas modified through the use of a 

steepest descent-alternate mode algorithm. After a series of design 

cycles (each cycle consisting of a complete steepest descent and 

side-step move, controlled for each member by the greatest stress 

induced by any loading condition), bars which were found to have 

areas approaching zero were deleted in order to avoid the occurrence 

of ill-conditioning or violation of the constraint of non-negative 

member areas; such members not subsequently being permitted to 

re-enter the design process. Whilst there is no rigorous 

guarantee that some of the deleted members might not in fact be 

components of a global optimum, results obtained by the process 
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have been good. The deletion of members in this manner has 

not been applicable to cases in which buckling is accounted for 

since, when the area of a compression member is reduced to a 

small value, the buckling stress becomes critical and the area 

must then be increased. 

Majid and Elliott'2 extended the non-linear approach 

to include deflection constraints and utilized theorems of 

structural variation in a direct, rather than iterative, 

re-analysis procedure. In doing so, because of the potentially 

large number of member force coefficient vectors and consequent 

core store requirements,, it was found advantageous to examine a 

number of candidate reduced ground structures rather than a single 

fully connected structure. A possible advantage of their approach 

is that the influence, throughout the structure, of changes in 

any particular member are predicted and convergence to the optimum 

solution may thus be more stable. 

All of the foregoing mathematical-programming design 

techniques are complex and rather abstract in formulation, and 

entail products of computing time and core store very much greater 

than the standard methods of structural analysis. The possibility 

of ill-conditioning may be a problem in matrix methods of 

re-analysis in which member properties are changing and in certain 

cases reducing to zero stiffness. And, for the formative design 

of complete space-sl'-ructures (assuming the availability of very 

large computers), this difficulty is likely to increase with the 

size of stiffness matrix. The optimization method proposed in 

subsequent sections also utilizes the concept of a changing ground 
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structure but is based on a "Dynamic Relaxation" procedure in 

24-26 
which equilibrium and compatibility considerations are separated 

The method allows a very considerable reduction in core store 

requirements and, since at any stage the deflections and rates of 

deflection of nodes are controlled by dynamic equations of motion, 

the possibility of ill-conditioning may be precluded by suitable 

control of the fictitious nodal mass components which govern 

accelerations. 

It was previously noted that2 in contrast to mathematical- 

programming techniques, the design of Michell structures is 
0 

accomplished by a direct physical approach. In a restricted sense, 

the same is true of the dynamic relaxation procedure which entails 

a gradual reduction in stiffness of members which do least work 

with a corresponding increase in those that do most work as the 

complete ground structure takes up and transmits the loads to 

specified supports; convergence of the dynamic analysis to a 

static solution being achieved by the use of high fictitious 

viscous damping. Since justification of optimality of the process 

may be regarded as a corollary of the Michell proof with directional 

constraints, for the sake of completeness the Maxwell-Michell theory 

is restated below. 

THEORY OF MICHELL STRUCTURES 

Consider a pin-jointed framework contained within domain 

of space D. If the structure is in equilibrium with specified 

applied loads and reactions Xj, Yj, Zj at nodes j with co-ordinates 

xý, yý, zj then, considering a uniform virtual dilation strain, 6, 



of space D,, by the principle of virtual work: 

ýF, 
-LýE: -ýF,, -L, -E: = 

ý[Xpxj. 
F- + Yj. yj. E: + Zj. zj. E: 

] 

cLU, tensiori CLLL C-OMPM5510n 
Membcrs P members cý, 

where F,, F,:, denote absolute values of tensile or compressive 

force respectively, and corresponding member lengths are 

denoted by Lp., L i., 

The term on the right-hand side is independent of the choice of 

origin and is constant provided the structure has no redundant 

reactions or that statically admissible reactions are specified. 

Thus for all such frameworks in D: 

Fp. Lp -ýF,. L. =C (2) 

If the greatest allowable tensile stress is P and the 0 

256 

greatest compressive stress Q, the volume of material in a given 

fully stressed frame is: 

V =LF + (3) 

For that framework in which V is least: 

2PQ. V + (P-Q). C is also least 

n 

]+ (P-Q)[ýLýFp -ýLt. Fý] Thus 2PQ Lp, Ip +ýLý, 1ý, 
pQ 

(P+Q) LýF, + L. F, is least 
1ý 

1ý 

or L. jFjis least (4) 

Consider now a general type of imposed deformation such 

that the limits of strain in space D are -c, and the virtual strain 
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of a typical member of a trial framework, A, within D, is e. 

The virtual work done by the specified applied loads (constant 

for any such framework) is given by: 

6W=e. L. F 
4 

where -E:, < e<, E: and F may be of different sign to e. 

Hence: 

5W= 
&L. 

F 

Thus for frame A: 

ýJej- 
L. IF I ýL. I Fj 

LA' JFAJý 6W 
6 

(5) 

If, however, a particular framework, M, can be found such that 

for any member e= -E and the signs of F and e correspond then: 

LM. I Fm I= 6W (6) 

E: 

hence LM. jFmj is a minimum and consequently the volume of frame 

M is also minimum. 

In order that a virtual deformation of the domain of 

space D occupied by frame M can exist such that the virtual strains 

are +c and -c along the tension and compression members respectively, 

and that nowhere within D is the strain greater, the members of the 

frame must coincide with,, the mutually orthogonal principal trajectories 

of a virtual strain field compatible. in sign with the member forces. 

A well known example of such a framework is the "Michell cantilever" 

formed from two sets of equiangular spirals (fig-1). Since the 

domain of space of the strain field can extend to infinity the 

structural form represents an absolute optimum. 
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Fi gure 1 

OPTIMUM MODULAR SPACE TRUSSES 

Michell forms represent both an aesthetic ideal and a 

standard with which a prospective space or plane truss design may 

be compared. Unfortunately, however, they suffer from two main 

practical drawbacks: 

(i) that it is necessary to specify a priori a feasible 

virtual strain field which, particularly for thre'e 

dimensional space structures, limits the range of 

application, and 

(ii) that member lengths, areas and jointing are non- 

standardised. 

The first of these drawbacks might be partially countered by 

analysing, initially, a continuous elastic medium in a restricted 

domain of space enclosing the loading and support-s. The principal 

stress trajectories so obtained then indicate the required orientation 

of potential members in the space truss. The second drawback, 

however, still applies. 
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A more general, modularly constrained, approach to 

the ideal form-finding of space structures subject to a single 

average design loading might be expressed as: Determine the 

most economical structure using a building system consisting of 

a particular type of space node connector allowing for the 

junction of many potential members, and sets of discrete member 

sizes which comply in length with the space filling capabilities 

allowed by the nodes. Functional demands must limit the domain 

of space which may be occupied by a potential structure, and 

internal regions may also be precluded. 

Neglecting for the present the restriction of discrete 

member areas, the necessary and sufficient conditions for a 

least weight solution to this constrained problem are: 

(1) The stresses in all the members due to the applied 

loading are either P (tension) or Q (compression). 

(2) The framework must permit a virtual displacement of all 

its possible nodes which produces a strain of +c in its 

tension members, a strain of -c in its compression 

members, and no strain outside these limits in any 

segment along which a potential member could lie. 

OPTIMIZATION BY DYNAMIC RELAXATION 

Selection of a least-weight structural form from a large 

set of possibilites may be achieved without the use of mathematical 

programming to minimize a weight function if the analysis procedure 

leads to a direct physical solution which complies with the foregoing 

conditions. 
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Consider a completely connected ground structure (fig-3) 

in which member areas may change continuously such that at each 

stage in the growth of a structure, as loads (W) are taken up 

and transmitted to supports(S), the areas are adjusted by a 

function which tends to make them proportional to the current 

ratio of their own strain magnitude, I e. 1 
, to that in a particular 

member, IF-, I, which is known to participate in the optimum 

solution (fig. 2). If lelexceeds IF-, Ithe member area, AC, is 

increased and conversely ifje, 
-j<jF-, 

j the area is reduced. Thus, 

since the work done by any member is E. L. A.. e.. de, 
f 

members 

which do most work increase or retain their stiffness(EAc/L) 

and those that do least are made less stiff. 

T-ýrne 

Figure 2 



261 

Figure 3 

If the fully connected topology of the ground structure 

is retained at all stages, a converged solution to the above 

procedure is impossible to obtain since this would implyle,: 1 =I F-c-I 

in all members; yet node displacements, and hence all strains, 

are uniquely determined by any reduced combination of bars which 

make the frame simply stiff. Strains cannot therefore be of 

equal magnitude and compatible if the modulus E is the same for 

all members. Alternatively, if the weakest members are 

successively deleted from the ground structure, there may be no 

guarantee that a converged solution complies with condition (2). 

This problem can be avoided by retaining the complete topology and 

recording stiffness modifications until, after a sufficient number 

of iterations, a state is reached in which the component areas 

of a reduced set of bars forming a determinate solution are constant 

or slightly increasing, and all other members of the ground structure 
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have areas-which tend to zero and are decreasing. Provided the 

analysis yields monotonic convergence then, by condition (2) 

and ultimately excluding bars of very low stiffness, the solution 

gives an optimum structural form. 

Since the reduced optimum structure is determinate 

the actual stresses can be adjusted to any required values 

consistent with security. In particular, member areas may be 

amended to give tensile stresses =P and compressive stresses = Q<P 0 

The form-finding analysis yields, in effect, a virtual strain 

field which gives the optimum layout. The constant, E, is a 

fictitious elastic modulus which must be sufficiently high to 

preclude gross deformation of the ground structure geometry and, 

to obtain actual deflections, the reduced optimum structure must 

be re-analysed using the real values of member areas and elastic 

modulus. In a later section it is shown, however, that fornr-finding 

and analysis may coincide, with the real areas and elastic modulii 

being dynamically adjusted to achieve a secure stress state and 

acceptable deflections during the form-finding process. 

To enable a solution by Dynamic Relaxation, three 

stabilizing conditions should be observed: 

(a) Convergence to the static solution should be heavily 

damped (fig. 2). 

(b) The changes in stiffness should lag behind the 

corresponding rates of change in strain. 

The (fictitious) mass component at each node in each 

co-ordinate direction should, at all stages, be made 

proportional to the corresponding direct stiffness component. 
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Since a constant time interval, At, is used throughout 

the explicit "dynamic" analysis, condition (c) is necessary in 

order that all nodes should have the same relative response 

and the same critical time interval governing numerical stability: 

The critical time interval for motion in the x direction at any 

node i is given by 24 
: 

At (7) 

Mý., is the mass component, and S, ý, is the direct stiffness 

component given by: 

. ýx 

(LA) 

m 

RX) 2 
sLLm 

cL(L b ars m cLt ý 

where, for bar m, (EA/L)rn and 

(8) 

(DX/L), are respectively the axial 

stiffness and x direction cosine. 

Hence, if the critical time interval is to remain identical for 

each deflection component throughout the ground structure and 

the time interval used in the analysis is to be 90% of Atrkt, 

the required mass components at any stage are given by the relation: 

7At ý2. * y- (9) 

Similarly for the y and z mass components and all other nodes. 

The external subscripts denote that the mass components for 

stage c+I may be set using the stiffness values at stage c. 

This simplifies computation and is satisfactory provided 

At :ý 
AtcrLý 

- 
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To comply with condition (b) member areas may be 

adjusted according to the relation: 

er (10) 

For members which participate in the optimum solution the 

cross sectional areas thus become approximately converged when 

le, l--> jcj= Constant. For bars which remain unstrained the 

areas reduce exponentially from stage to stage, whilst other bars 

which are strained, but do not belong to the final optimum, 

reduce at a slower rate. 

TEST CASES 

The application of the form-finding process is illustrated 

in the following simple examples which are all plane trusses subject 

to a single load cantilevered from two hinge supports. 

1. Five Bay Sparse Ground Structure 

The ground structure, loading and supports are shown 

in figure 4. The EA values of members were all set to 1500 N, 

and the grid points were spaced at lm centres. The time 

interval used in all analyses was 0.01 sec, and nodal mass 

components were adjusted according to eq. (9) to give ýt = 0.9 AtcLý- 

Initially, an undamped trial run without modifying 

member areas gave a fundamental frequency of 0.28, which yields 

an estimate for the critical damping per unit mass of: 

Of a4 
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A forur-finding analysis was subsequently carried out 

using a damping factor of 8 and modifying member areas, 

according to eq. (10), after every 10 time increments. The 

tensile strain in the member marked 'C' was used as the 

control value, E. ; the area of this member being held constant 

throughout. After fifteen stages of modification (equivalent 

to 21 sec C. D. C. processing time) the pattern of most efficient 

members had become clear: the EA values of members indicated 

by a full line were all stable or increasing and lay in the 

range 1000--->4500 N; EA values of the dashed members were in the 

range 3004 800 N and decreasing; and all other members had 

values less than 300 N (half of which were less than 10 N). 

After ninety stages the full members all had EA values greater 

than 1490 N, and the remainder were less than 8N (with 70% less 

than 0.01 N). At a later stage the analysis became unstable, 

possibly due to the fact that damping at each node was dynamically 

adjusted to be proportional to the mass components. The statically 

determinate optimum structure had, however, become apparent well 

before this stage was reached. 

With the same number of time intervals (10) between each 

modification stage the analysis was convergent with damping actors 

down to 4. Below this value the analysis diverged. When, 

howeverg the number of time intervals per stage was increased to 

25, the analysis was stable with a damping factor of 1.5. At the 

other extreme, with only two time intervals between modifications, 

the analysis quickly diverged even with damping as high as 

K= 15. A more efficient procedure would probably be to use a 
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large number of time intervals between modifications in the early 

stages, with comparatively few at later stages. Although the 

damping factor should be in the region of the critical value, 

provided it is sufficiently high to ensure stability, the 

actual value does not appear to have a significant effect on 

convergence rate. Convergence of the test structure, using 

10 time intervals per stage, was almost identical for all damping 

factors ranging from 5 to 15. 

Five Bay Extended Ground Structure 

The more extensively coupled ground structure shown in 

figure 5 was analysed using again a time interval of 0.01 sec 

and initial EA values of 1500 N. A preliminary undamped and 

unmodified analysis gave an estimate for the critical damping 

factor of 13. 

Using a damping factor of 10 and modifying areas at 

every 10 time intervals, the state of the structure after 50 

stages of modification is shown by the full, dashed and dotted 

lines in the figure, which correspond respectively to EA values 

>3000 N, >1000 N, and >300 N. For the remaining 115 members 

of the ground structure the EA values were less than 200 N) 81 

of which were less than 0.5 N. After 100 stages the EA values 

of the full-line members, forming the optimum structure, were 

in the range 15000--), 30000 N, with all others less than 2000 N. 

The maximum values subsequently increased to 60000 N and 

thereafter the analysis became ill-conditioned. 

It is of interest to note that the optimum structure 
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became clearly defined even though the control link, with EA 

held constant at 1500 N, did not in fact belong to the solution. 

It was thought that the rate of convergence might be improved 

by using the average of the strain magnitudes in all members 

as the control strain. It was found, however, that the 

analysis quickly diverged. 
0 

The structure obtained is a global optimum for the 
I 

ground structure used. It provides a useful test of the 

forirr-finding procedure partly because the control link is 

eventually excluded, and also because it yields a weight 

reduction of less than 5% compared with the previously generated 

structure and several other possible structures which might 

perhaps have been obtained as local optima. 

Seven Bay Extended Ground Structure 

The ground structure shown in figure 6, with two 

additional bays, was analysed using the same time interval, 

damping factor and number of time intervals between modifications 

as for the previous structure. The optimum structure obtained 

is shown by the full-line members. 

After 70 modification stages the EA values of members 

were: 

a) for the full-line members: > 400 N and stable or increasing 

b) for other members: ý 400 N and decreasing 

At 100 stages the corresponding values were: 

a) > 400 N and stable or increasing 

b) < 300 N and decreasing 
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and at 130 stages: 

a) > 400 N and stable or increasing 

b) < 200 N and decreasing. 

The only exceptions to this classification were the members shown 

dotted which, whilst not complying with categories (a), had EA 

values which were slowly increasing. The reason for this is 

that there are several statically determinate structures of 

equal optimum weight. For example, excluding the dotted members 

a, b and c, the full-line structure shownhas a sum of products 

of member forces and lengths of 34.67 Nm. If members a and c, and 

the full members d and e are excluded, but members b are inserted, 

the resulting structure has the same value of : ýIFI. L. Several 

other determinate combinations of equal weight are possible. 

Convergence of the analysis was comparatively slow 

because, in addition to the several optima of equal weight, 

numerous other possible structures have weights of less than 2Z 

in excess of the optimum, and consequently their component members 

have areas which decrease slowly. The time required for 70 

stages, at which the optimum could be obtained, was equivalent to 

6 secs C. D. C. processing time. By examining trends, however, 

a good indication could be obtained before this stage. It should 

also be pointed out that the foregoing studies represent merely a 

preliminary investigation of the method, and no attempt has been 

made to increase computational efficiency or to examine more 

rapid modifying procedures than that given by equation (10). 

If one imposes the restriction that members may only 

cross at the grid node points, a structure which is close to the 
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optimum, with ýIFI. L- = 35.3 N. m., is shown in figure (7). 

From an engineering point of view this is a simpler and more 

practical structure, but to incorporate automatic checks for 

this condition would complicate considerably the form7finding 

process. For the main application envisaged, however, which 

concerns three dimensional space structures, this problem would 

not arise. 

A POLICY FOR INTERACTIVE FORM-FINDING AND ANALYSIS 

For complex three dimensional space structures with 

various internal regions subject to adaptable functional use, 

and such that the structural system forms an entire building 

(see for example Gabrie, 27 and Pearce 29, to which figures 8-11 

relate), the required design procedures represent in many 

respects the antithesis of conventional building design. 

Although termed a "structuralist" approach to Architecture, 
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Figure 11 26 Way Space Node Connector used for 

the design in figure 

The modular grid is based on a set of 

interlacing cubes; the most dense 

arrangement of members being obtained 

with fully connected nodes at each 

corner and centroid. In practical 

applications the nodes would be 

comparatively sparsely connected, but 

the system allows considerable freedom of 
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provided the panel or "boxed-shell" system for the design of 
functional spaces is based on the same modular grid as a space 

structure imagined to fill the entire domain enveloping the 

functional design and potential support points, considerable 

freedom of spatial planning and design is allowed. The potential 

structure may be partially incorporated within the functional 

spaces or entirely precluded from these and perhaps other regions 
I 

required for early expansion or adaptation. The abstract 

specification for the structural design, as opposed to subsequent 

analytical performance checks, is thus merely a permissible external 

domain, feasible support points, and partially or fully precluded 

internal regions. The loading may only be estimated as a 

maximum bound to internal loads allowing for functional 

adaptation, together with a set of maximum external load 

variations. Limits would be placed on maximum deflections 

(both in a general sense and at particular points), permissible 

stresses, and maximum and minimum member sizes of a discrete set. 

The application, in an automatic mode, of the fornT-finding 

procedure previously given, would be wholly inappropriate for the 

problem set. To allow for functional adaptation and bridgingy 

action in the event of local catastrophe, the structural system 

should'be highly redundant, yet the previous procedure, excluding 

the possible contribution of panel elements, yields a statically 

determinate form with member areas subsequently sized to comply 

with the stress limits. One feature of the process, however, 

is the gradual approach to the optimum, with sectional areas 

of the least effective members being most rapidly reduced 
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whilst the remainder are amended more gradually. Throughout 

the intermediate stages a graded preference of members, in 

hyperstatic layouts, is indicated. This suggests a policy for 

interactive design. 

If the'fornr--finding process is terminated at a 

statically indeterminate stage it is preferable that the continuous 

sizing of member areas should, at each stage, account for the 

differing stress limits for tensile and compressive members in 

order that areas nay tend to bear correct ratios complying with 

real strains. It is also preferable that some control may be 

exerted, in a general sense, on the magnitude of deflections. 

Referring to the Michell proof, if in addition to the 

genera virtual deformation with strain limits of 
+ca 

uniform 

virtual dilation is superposed, equation (5) becomes: 

Sw = e. LF +C (11) 

where, from equations (1) and (2), C is identical for all of 

the candidate structures. The limits of virtual strain may 

thus alternatively be +F- + and -c-where F-+ý C. Consequently, 

as a corollary to the optimal condition (2) (P-2-59), the virtual 

strain system may be regarded as identical with the actual 

strains (P/E and Q/E) when a minimum weight design is achieved. 

The elastic modulus, E, is in this case the real value, and 

the relation for modifying member areas (Eq. 10) becomes: 

(A)c, 1+K. Jec. j 

21 IECI 
(12) 

where, if the control member is a tensile bar, k=I for 

tension members, but for compression members K= Q/P. 
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. The above modified criteria give an optimum solution 

only at convergence of the fornr-finding process, yet the design 

will be fixed before this determinate stage is reached. The 

salient factor, however, is that the process now tends at each 

stage towards this solution with approximately correct ratios 

of member areas and, though terminated to give a hyperstatic 

form, should yield an efficient structure. In keeping with 

this practical approximation, and to increase computational 

efficiency, it is appropriate to delete bars during the 

process when it becomes clear that they are of low structural 

efficiency. Architecturally, the decision on which bars to 

delete will depend also on considerations of symmetry and 

possible amendments to the functional design. The forur--finding 

process should thus ideally be used in an interactive mode to 

indicate a preferred structural policy which may only be partially 

followed, and the course of which might be constantly amended 

by ideas concerning the functional design. 

Use of the real elastic modulus enables an estimate 

and control of service deflections to be obtained during forur- 

finding. If deflections are tending, in a general sense, to 

be too high, the loads may be proportionally increased until the 

sum of products of these increased fictitious loads and the 

required deflections is equal to the sum of products of the real 

loads and deflections caused by the fictitious loads. The 

modified areas will then tend to the required deflection constrained 

design values. If particular deflections are to be constrained 

additional fictitious loads may be applied at the relevant points2 

but this device may then yield only a qualitative guide. 
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At an advanced stage in the process, potential members 

might be classified in three groups: 

a) Bars which evidently play an important role and have 

areas (and forces)'which are stable, increasing or 

decreasing slowly. 

b) Bars which have currently significant, but reducing, 

forces. 

C) Bars which have almost zero forces (or which have already 

been deleted) . 

At this stage all of bars (c) might be deleted, with the areas of 

bars (a) subsequently held constant. Bars of type (b), which 

form a large group, must then be selected for deletion or inclusion 

in the final design. Assuming a wide choice remains after a 

partial selection on the basis of functional design, a final choice 

might be made by considering the effects of external load 

variations. By noting which of the variable members increase in 

area as each load is applied, an indication may be obtained of 

which members should preferably be retained. 

CONCLUSION 

It is evident from the foregoing discussion that coincidence 

of form7-finding and preliminary analysis, accounting for deflections 

and variations in loading, might only be achieved when the dynamic 

relaxation process is used in a fully interactive mode. The main 
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purpose of the process is to enable selection of an efficient 

structural form from a large set of possibilities within an 

amorphous boundary, and the distribution of member areas 

obtained provides only a crude estimate of design values. 

To account for more precise deflection constraints and loading 

conditions, final sizing of members might be achieved using a 

fully stressed design or analogous optimality criteria approach; 

with subsequent detailed analyses being required to check 

stability, dynamic response and the effects of local failures. 

And these detailed analyses would be required for each functional 

s tate. 

The problem of form-finding of large space structures 

which allow for adaptable internal use and possible structural 

modification and extension does not lend itself to precise 

mathematical optimization. Specific loading cases cannot be 

defined and, at best, only maximum general bounds can be 

specified. The proposed procedure may, however, enable an 

efficient and rational approach to the design of such structures 

whilst allowing architectural freedom. 

An extended investigation of form-finding and member 

sizing of modular space systems subject to variable loading is being 

carried out by Topping (197). Solutions will be compared with those 

obtained by fully stressed design methods and linear and non-linear 

programming. 



281 

REFERENCES 

(1) Maxwell, J. C., 'Scientific Papers', Vol. 2, p. 175,1869. 
(2) Michell, A. G. M., 'The limits of economy of material in framed 

structures', Phil. Mag. Series 6,8,589-597,1904. 

(3) Hemp, W., 'Theory of structural design', Report 214, AGARD, 
Oct. 1958. 

(4) Cox, H., 'The design of structures of least weight', Pergamon, 
Oxford, 1965. 

(5) Richards, D. M., Chan, H. S. Y., 'Developments in the theory of 
Michell optimum structures', AGARD report 543, April 1966. 

(6) Parkes, E. W., 'Braced frameworks', Commonwealth and Int. Library, 
1965. 

(7) Hemp, W. S., 'Studies in the theory of Michell structures'# Int. 
Congress of Applied Mechanics, Munich, 1964. 

(8) Livesley, R. H., 'The automatic design of structural frames', 
Quart. J. Mech. Appl. Math., 9, Part 3,1956. 

(9) Schmit, L, 'Structural design by systematic synthesis', Proc. of 
ASCE 2nd Conf. on Electronic Computation, Pittsburgh, Pa., 1960 

(10) Dorn, W. S., Gomory, R. E., Greenberg, H. J., 'Automatic design of 
optimal structures', J. de Mechanique, Vol. 3 N. I., Mars 1964. 

(11) Dobbs, M. W., Felton, L. P., "Optimization of truss geometry", 
Proc. ASCE, J. Struct. Div., ST 10, Oct. 1969. 

(12) Majid,. K. I., Elliott, D. W. C., "Topological design of pin-jointed 
structures by non-linear programming", Proc. I. C. E., V. 55 
pp. 129-149, March 1973. 

(13) Porter-Goff, R. F. D., 'Decision theory and the shape of structurest, 
J. R. Aeronaut. Soc., 70(Mar. ) 448-452,1966. 

(14) Palmer, A. C., 'Optimum structure design by- dynamic programming', 
J. Struct. Div. ASCE., ST8 (Aug) 1887-1906,1968. 

(15) Templeman, A. B., 'Structural design for minimum cost using the 
method of geometric programming', Paper No. 7295, Proc. I. C. E., 
1970. 

(16) Gallagher, R. H., Zienkiewicz O. C. (editors), 'Optimum structural 
design - theory and applications', J. Wiley, London, 1973. 

(17) Schmidt, L. C., 'Fully stressed design of elastic redundant 
trusses under alternative loading systems', Australian J. of 
Appl. Sc., 9,337-348,1958. 

(18) Melosh., R. J., 'Structural analysis, frailty evaluation and desi-gn 
Vol. 1. safer theoretical basis', AFFDL TR 70-15, Vol. 1, 
July, 1970. 

(19) Patnaik, S., Dayaratnam, P., 'Behaviour and design of pin-connected 
structures', Int. J. Num. Methods Engrg., 2,577-595,1970. 

(20) Razani, R., 'The behaviour of the fully-stressed design of 
structures and its relationship to a minimum weight design', 
AIAA J., e, Dec. 2262-2268,1965. 



282 

(21) Barnett, R. L., Herrmann, P. C., "High perforance structures", 
NASA CR-1038, May 1968. 

(22) Prager, W. 'Conditions for structural optimality', Computers 
and Structures, Vol. 2, pp 833-340,1972 

(23) Gellatly, R. A., Berke, L., 'Optimality-criterion-based 
Algorithms', Int. symposium on Optimization of Structural 
Design, Swansea, Jan. 1972 (see ref. 16). 

(24) Barnes, M. R., 'Dynamic relaxation analysis of cable networks', 
Int. Conf. on Tension Structures, London, April 1974. [Chapter 2] 

(25) Barnes, M. R., 'Applications of dynamic relaxation to the 
topological design and analysis of cable, membrane and 
pneumatic structures', 2nd Int. Conf. on Space Structures, 
Surrey, Sept. 1975. FChapter 3-] 

(26) Barnes, M. R. 'Interactive graphical design of tension surface 
structures', Int. Symposium on Wide-Span Surface Structures, 
Stuttgart, April, 19/6. [Chapter 7. ] 

(27) Gabriel, J. F., 'Living in a space frame', 2nd Int. Conf. on 
Space Structures, Surrey, Sept. 1975. 

(28) Pearce, P., 'A minimum inventory/maximum diversity building 
system', 2nd Int. Conf. on Space Structures, Surrey, 
Sept. 1975. 



283 

CHAPTER 9 

CONCLUSIONS 

A summary is given of the main advantages of dynamic relaxation 

for the design of tension structures, based principally on the 

concluding remarks of the papers forming this thesis. PartLcular 

emphasis is placed on the value of the method as a basis for interactive 

design, and lines of current research are indicated. 
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The conceptual design of tension surface structures is 

frequently based on physical modelling techniques using shear free 

fabric membranes. This allows a close collaboration between 

Architects and Engineers at the formative design stage, since 

alteration of support points and surface and edge curvatures can 

be carried out with the model providing a visual and tactile means 

for communicating ideas between the different members of the design 

team. Following photogrammetric measurements of fabric models, 

numerical analyses are normally carried out in three distinct stages 

using separate suites of programs for form-finding (and the determination 

of cutting and jointing patterns), static analysis, and dynamic 

analysis. The first of these has traditionally been the most difficult 

owing to gross changes in shape from the approximate measurements, the 

need to incorporate practical constraints on tensions and mesh lengths, 

and the occurrence of zero stiffness situations during the form-finding 

analysis (Appendix B). 

major advantage of the dynamic relaxation/central difference 

integration process is that it provides a unified method for all stages 

of design and analysis. Coupled with the small computer storage 

requirements this makes the process ideal as a computational basis for 

interactive design, enabling both rapid initial checks and accurate 

final analyses. Trial forms might be searched with alterations being 

made to boundary conditions, tension distributions and surface 

curvatures, and the same program used to check the effects of various 

static and dynamic loadings; forms being subsequently amended if 

necessary. Whilst at the present time available interactive facilities 
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would limit the process to comparatively small structures, the 

projected development of such facilities makes likely their greater 

use for complex design problems. This does not imply the demise of 

approximate physical modelling techniques, but rather that the two 

may be run in parallel. The physical model enables an ae, sthetic 

appreciation of the design and provides a means of specifiying a 

topology from which analysis may commence. The dynamic relaxation 

process, however, because it copes naturally with the occurrence of 

zero stiffness situations, is not subject to the possibility of ill- 

conditioning and thus requires less accurate model measurements than 0 

might otherwise be the case. The dynamic trace itself is also of 

value in providing a visual understanding of behaviour. Thus the 

examination of trends in the development of stresses and deformations 

can provide an early signal for necessary design changes without the 

need to obtain fully converged solutions. Furthermore the analytical 

process enables investigation of designs which may be difficult to 

model or check with alternative analyses, such as the support of 

networks on momentless compression arches, or the simulation of 

neutrally stable states such as impending collapse of membrane surfaces 

due to inadequate prestress or distribution of support loads into the 

membrane (chapters 4 and 7). 

The explicit nature of the DR analysis, with equilibrium and 

compatibility conditions effectively separated, yields a number of 

advantages, compared with implicit matrix methods, in addition to 

those referred to above concerning storage and solution stability. In 

form-finding of network or funicular mesh systems, alteration of the 
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topology, with the introduction or deletion of nodes and links, is 

often necessary in the vicinity of boundaries as edge curves are 

amended during the form-finding process. Similarly, refinement of 

the mesh in these areas may be necessary to obtain sufficiently 

accurate results. The explicit formulation of the DR process makes 

this possible, and thus allows less accurate initial geometric and 

topological data from physical models. Alternatively it enables a 

true search of possible forms and topologies which is not permitted 

by other methods without re-setting the analytical problem (Appendix 

B). In relation to such alterations of topology the "kinetic" damping 

process referred to in Appendices D and D. 1 is valuable since it 

enables sudden localized changes to be made during the analysis 

without propogating radical disturbances through the system as a 

whole. The process provides an automatic means of optimizing the DR 

analysis when used with mass components adjusted to give identical 

critical time intervals for each degree of freedom. In certain 

situations, with complex support conditions to networks or funicular 

grids in which additional links may be inserted to give local triangulation, 

it is possible that non-unique solutions may be obtained with compression 

in some links due to incorrect initial assumptions concerning unstressed 

lengths (Appendix D. 1). Dynamic relaxation yields such solutions 

without the occurrence of singularity in the system of equations and 

modifications, if required, can also be made without fully re-setting 

the analysis. 

For static analyses of path dependent problems involving both 

material and geometric non-linearities incremental loading techniques 

are necessary for all types of analysis (Appendix A) . With suitably 
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high damping, however, a DR analysis might permit much larger load 

increments since the process itself ensures gradual transmission of 

the loads to the structure. In cases where the only source of 

material non-linearity is cable slackening or membrane buckling, it 

is certainly possible to apply the full load from the start provided 

that elastic properties are checked and re-set at sufficiently frequent 

intervals (chapter 3). For dynamic analyses the explicit formulation 

is again of value for dealing with on/off buckling (Appendix 3.2) and 

the effects of visco-elastic material damping and pneumatic stiffening 

and damping (Chapters 5 and 6). In each of these cases the use of 

implicit dynamic analyses would be considerably less efficient; and 

it is possible that the advantage which such methods have for problems 

with smaller non-linearities, namely the use of a larger time interval 

and the filtering out of hi, gh frequency response components, would be 

negated if, in applying explicit central difference integration, 

fictitious mass components were used for non-dominant degrees of 

freedom (appendix C). 

The majority of applications of DR in this thesis have concerned 

structural mechanisms for which the pretension (and dead load) forces 

are in funicular equilibrium. The pretensioning in effect imposes a 

dominant internal force distribution to ensure stability under live 

load variations and the resulting forms express a natural aesthetic 

and reflect clearly their structural function. For triangulated space 

structures, however, the determination of shape and the satis action o 

engineering design requirements are not so closely coupled; their forms 

not being dependent on initially imposed force distributions. Computer 

aided design of such systems has therefore traditionally relied on 

mathematical programming techniques for minimizing weight (or cost) by 
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adjusting member areas for a given geometry. Alternatively, if the 

geometry and topology are allowed to vary, the use of such automatic 

techniques may place severe constraints on freedom of architectural 

design and, for multiple loading and deflection constraints, may result 

in irregular structures. In contrast, the approach using dynamic 

relaxation outlined in chapter 8 yields a structural policy with a graded 

preference of members for a dominant design loading and variations 

from this load. The preferred policy may change continuously with 

alterations in functional design, space constraints and support conditions, 

and this allows potentially much greater freedom for architectural 

design of modular systems when used in an interactive mode. 

The contrast made above, between fully automatic minimization 

methods and a method which allows functional and intuitive design 

decisions to be made, investigated and changed during the process, has 

a parallel also in the opposing approaches to the design of tension 

structures. On the one hand the Architect may specify a preferred 

structural shape following the completion of model studies, and the 

structural analyst may then use an optimization method (appendix B, P. 337) 

to fit that shape whilst attempting to comply with bounds on constructional 

and equilibrium constraints. Thereafter the design is checked by a series 

of separate analyses and the process repeated if necessary. Interactive 

methods, however, allow a direct approach to shape fitting complying with 

engineering needs which may change as the design progresses (P. 343) or, 

alternatively, a continuous search for the design yielding analytical 

checks and conceptual ideas to the designer. Whilst this is not 

necessarily dependent on a specific type of analysis, dynamic relaxation 

does provide a physically ideal and economic basis for such a process. 
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APPENDIX A 

REVIEW OF AlETHODS FOR THE STATIC ANALYSIS OF TENSION STRUCTURES 

The principal methods for discrete non-linear analysis 

of tension structures are reviewed in the following classifications: 

A. IMPLICIT ANALYSES 

(1) Iterative Methods: Newton-Raphson (Tangent 

stiffness); Modified Newton-Raphson; Secant 

stiffness; Accelerated constant stiffness iteration 

Incremental methods: Euler; Mid-point slope; 

Extrapolation; Self-correcting methods 

B. EXPLICIT ANALYSES 

(1) Minimization methods: Steepest descent; Relaxed 

steepest descent; Conjugate gradient method; 

Scaled conjugate gradients 

Relaxation methods: Point-Jacobi; Gauss-Seidel; 

SOR; DR - (see also Appendix D) 
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Continuum Analysis of Tension Systems 

The development of methods of analysis for tension 

structures began in about 1960 (11), 165 ). Much of the early 

work was based on approximating cable structures as continuous 

membranes without shear rigidity. Schleyer (166) derived non- 

linear integro-differential equations for the static analysis 

of nets whose sets of cables projected as straight lines on a 

plane, and for analysis of counterstressed double layer systems 

up-der two dimensional loading assuming the spreaders formed a 

continuous inextensible diaphragm. In both cases the equations 

were transformed into finite difference equations for iterative 

solution. Mollmann (123) further developed the continuous 

approach, and also derived Levy type analytical solutions for 

hypar networks which provided simple approximate formula for 

special cases of static loading (125). The shear-free membrane 

approach has also been applied to form-finding (86,123), 

linearized free vibration analysis (125,168), and non-linear 

dynamic analysis (160). 

The main advantage of analytical solutions lies in 

providing simple approximate analyses for preliminary design. 

Analyses of tension structures as discrete systems have, however, 

generally been preferred since they are more suited to automatic 

computation for all types of nets and boundary conditions with 

non-linear effects fully accounted for. For this reason, only 

the commonly used discrete methods are considered in the following 

review. 



291 

Discrete Analysis 

The majority of published methods for the discrete non- 

linear static analysis of tension structures can be classified 

into three principal groups: 

(1) Iterative methods 

(2) Incremental methods 

Hinimization methods 

The first two groups have been most widely applied as implicit 

methods using matrix formulations for the overall stiffness (or 

tangent stiffness) of the structure. Minimization methods, 

however, are usually formulated as direct or explicit methods in 

which corrected displacements are computed using the previous 

displacement vector and the gradient of this vector. Since the 

gradient vector is derived by means other than inversion or 

reduction of an overall stiffness matrix, the storage requirements 

are considerably less than for the implicit methods. The classical 

point methods of iteration form a further class of explicit methods 

but have rarely been applied to tension systems; possibly because 

they may be less stable than implicit iterative methods when large 

deformations are involved. 

For the analysis of tension systems involving, or assumed 

to involve, only geometric non-inearity, any of the methods listed 

will yield a unique solution provided that all members remain in 

tension (39,123). The first two methods additionally require 

either that the stiffness matrix does not become singular or 

that proper controls are applied to limit the deflections in any 
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increment or iterative step (78). For systems involving both 

geometric and material non-linearities, however, the problem 

becomes path dependent and an incremental method, or a 

combination of incremental and iterative or minimization methods, 

must be applied to ensure convergence to a unique solution (29). 

The following text reviews the available methods after 

a simplified consideration of the tangent stiffness properties 

for individual elements. This is given only for cable links 0 

but the concepts apply equally to membrane elements; the purpose 

being to illustrate the component parts of the large displacement 

tangent stiffness and the difference between small strain and 

large strain formulations. The review given here is restricted 

mainly to published analyses for tension systems, although 

parallel developments have taken place in the more general field 

of non-linear finite element analysis, of which some of the more 

important review contributions are noted in Appendix E. 

Element Tangent Stiffness Relations 

Consider the two bar symmetrical system shown in figure 1: 

po 

po 

Figure I 
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In the initial state the tension in the members is T due to 

the action of loads Pa, and for equilibrium: 

p 2T 
or p0= 2T Cos c,, - xL 

An additional load P causes a deflection 6 and an 

increase in tension AT = 6-Coso. /-. EA/L,,, where L. is the slack 

length of the links. Assuming small strain linear elastic 

behaviour with 6 negligible compared with X, then for equilibrium: 

p0+p2T +ýiT) 
=2T+ 

EA. 6 Cos c, ý xL[L,, 

Subtracting (1) from (2): 

P=2.6 
EA Cos 2 [ 

LO 

The term in square brackets is the direct vertical component of 

linear elastic stiffness for each member. 

If changes in the geometry of the system and large strains 

are accounted for, the equilibrium condition is: 

po +p2T+ : ýT 
where e= link extension (K -+S )= (I 

+e) 

Expanding, and subtracting (1) gives: 

P(L + e) = 2T. 6 - P*. e + 2EA. 6 Cos o,,. (X +6) 
LO 

Substituting P0e= 2T 8Cos 2x and neglecting te=s in 62: 

P(L + e) = 26 (, _Cos2ýx) + 
EA. 

Xcosx IT 
L,, -I 
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Neglecting now the term P. e. the stiffness relations are obtained 

as: 

[ýA Cos 2 
C>ý-+ T (I-Cos2ce, ) 

P=2.6 
Lo LI (4) 

The vertical stiffness component is here composed of two parts: 

2 the elastic stiffness, and the "geometric" stiffness T(I-Cos V-)/L, 

where L is the member length in the initial prestress condition 

or, when considering incremental loading and tangent stiffnesses, 0 

the length in the previous displaced state; Cosv-also being 

referred to this state. 

If the term PO. e is also considered negligible (or 

alternatively e in equation (3) is neglected), the "small strain" 

stiffness relations become: 

p 
EA 

Cos +1 L,, L 

It can be seen from the above formulations that when P 

is small compared with PO, for example when using an incremental 

solution method or Newton-Raphson iteration (21), equation (4) 

caters for the development of large strains and displacements 

more effectively than (5). 

Generalizing equation (4) to three dimensions, the stiffness 

relations for an individual member take the form: 

j (EK6] + 
[Kc 
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where 
tPI is a vector of six nodal forces and [61 the 

corresponding vector of translational displacements in the 

x, y and z directions at both end nodes. The elastic and 

geometric stiffnesses take the form: 

Ke] = k\E -k 
\ [KJ 

.r 
\ kQ c- 

-kýE k\ 
L- F- 

-i 
-\% 
L 

kG- k ". i 

where 
[k' EA ým cn- an d [k ] 

Lo 
ým m' mn 

L 
-em (1-m2) -mn 

(6 a) 
er, Mn rl'- (6b) 4n -mn 

(I _n2- 

ý, m and n being the direction cosines of the member w. r. t. the 

x, y and z global axes. 

The small strain/large displacement stiffness relations 

(analogous to (5)) are identical except that k'G- takes the form: 

[kGr 

010 

001 

(7) 

Su= tion Form of Equilibrium Equations 

notation: 
6 -displacement in x. 4L 

direction 

i, j-subscripts for 3 co-od. 
axe s 

ý 
-sum for all members M 

M joining a to adjacent 
nodes b 

i 

P, -t P/ 
ap 
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In the initial state of the prestressed assembly, 

the condition of equilibrium at any joint, a, in the xz 

direction is: 

(T. DX-A. ), PA.. 

rn 

where T,, L, are the tension and length of member m joining 

node a to adjacent node b in the prestressed state, and DXý, = 

the difference in co-ordinates in the x., direction. I 

Under additional loading, Pý, the equilibrium condition 

becomes: 

T +AT) (DXý + D&ý 0 
= PA .. + P-ý = PrIt (9) 

m 
(L +e) 

)IM 

whereD6, ýtrL =(6. ýa - 6. ýb) 

z :L (L + e), (DX. ý + D6, ý m 
Expanding this, subtracting )M 

Z. 
1,3 

Lm DX, and neglecting second order terms: 
4. M 

e. (D6ý. ýXjrn (10a) 
L 

AT 
r, 

(EA) m 
D6ý *DX. 

rn 
(10b) 

L 

The new direction cosine term in equation (9) can be 

approximated in the following way: 

DX4- + Dgý- = DWL + Dgý', /L 11 
-ri- 

( 21ý 
+ 

Dýý Dýý. L ) 
L+e- m 1+ e/L rn L L. LLm 
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Substituting in (9), subtracting (8), and neglecting second 

order terms: 

LT. DXý +T D6,, '- DXý. e P. 
LLLLA, 

Substitutincy for ýT and ýL from equations (10): 0 

EA DX-k ý(D& DXj) 
+ 

D6ý - DXý (D6j DXj P. 
L. LLLLL 

Jý 

m 

In matrix form, for all joints and all directions: 

IKoIý 61 = (12) 

where 
[K,, ] is the overall stiffness matrix and terms T, DX and L 

in [K,, ]are referred to the prestress state. 

Or for incremental loading: 

[KTJ ýZý61 
= 

[APJ (13) 

where 
[Krj is the tangent stiffness and T, DX and L terms in LK-r] 

are referred to the previous displaced state. 

The equilibrium conditions given in equation 

corresponding with the stiffness relations given in (6a and b), 

were first derived by Siev (169). Turner et. al. (181) previously 

used a geometrically non-linear formulation for truss and 

triangular plane stress elements with geometric stiffness analogous 

to equation 



298 

IMPLICIT ANALYSES 

iterative Methods of Analysis 

The most widely used and stable iterative analysis for 

geometrically non-linear problems is the Newton-Raphson method, 

which has been applied to form-finding and static analysis of 

tension structures by Siev (169), Argyris (6), Knudson (95), 

Haug (78,79) and many other researchers (see notes in Appendix E). 

In the initial step of the process the full load is applied and 

displacements ý61 are calculated using equation (12). The out- 

of-balance or "residual" nodal forces in this displaced state 

are determined from equation (9) as: 

R. = Prý (T+, LT)(DX, ý + D6ý)J, 
4- 

(L+e 
(14) 

Tangent stiffness relations are then reset using the displacements 

and tensions calculated in the initial step; and deflection 

increments resulting from the application of the residuals as 

load 4ncrements are determined using equation (13): 

[KT] ýA6 j=tRý (15) 

new 
ý 61 = 

ý61 
+T A61 (16) 

The process is repeated using (14)-*(16) until convergence is 

obtained. Diagramatically the procedure is illustrated in 

figures 3a and 3b respectively for a "stiffening" and "softening" 
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single degree of freedom system; the former being most 

representative of tension structures. Because of the poor 

conditioning of such structures, referred to in Chapter 1, 

a Gaussian elimination procedure should preferably be used 

in solving equations (15). 0 

Figure 3a Fi gure 3b 

A drawback of the Newton-Raphson method is that the 

tangent stiffness matrix has to be reset and solved at each 

stage. For this reason, when dealing with structures which 

are not highly non-linear a "Modified Newton-Raphson" method, 

in which the stiffness is held constant throughout, is 

generally more efficient (64,170). The degree of non-linearity 

of tension structural mechanisms is such that they will often 

fall outside the scope of this method; though Mollmann (124), 

Krishna (105) and others (21,65) have applied it with some 
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success by making adjustments either to the form of the initial 

geometric stiffness or to the residual load vector. And for 

triangulated systems it will usually be the method of choice. 

The process takes the same form as the Newton-Raphson method 

except that the initial stiffness is inverted and held constant 

throughout. Thus equation (15) becomes: 

I A61 = (I 7a) 

Or, in total displacement form: 

ý6 1= [xo ] -1 
,IP+RI (I 7b) 

The process (17a) for stiffening and softening, systems is 

represented in figures 4a and 4b respectively. An alternative 

to using the initial value of the stiffness matrix throughout 

the process is to re-set it intervals with a number of constant 

stiffness iterations within each interval. 

It can be seen from figure 4b that for a geometrically 

softening system, such as an arch structure, the process should 

Figure 4a Figure 4b 
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always converge. And though convergence is less rapid than. 

for the standard Newton-Raphson method, computationally the 

process may be more efficient provided the system is not grossly 

non-linear. For a stiffening system, however, if the initial 

out-of-balance is too large the analysis may diverge as shown 

in fiaure 5. 0 

pa gure -: ) 

Mollmann and Mortensen (124) found that for prestressed 

networks the method converged for small applied loads but 

diverged when the loads were larger; and the latter generally 

occurred for loads below the normal design levels. To overcome 

this problem they suggested that, instead of using the 

pretension T" to set the geometric stiffness (equation 6b or 11), 

the stiffness could be artificially increased by using a value 

of T= To + AT', where AT' is the estimated change in tension 

under the loading considered. In conjunction with an amended 
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expression for the residual forces, this was found to give 

convergence in the majority of cases for network problems. 

In total displacement form, the Modified Newton-Raphson 

process is illustrated in figure 6, where R' stands for the 

absolute value of the residual force at the ith iteration. 

Fi gure 6 

CO 

It can be seen that the value of R in successive iterations 

oscillates about the correct value. Krishna (105) found that 

very much more rapid convergence could be obtained by using the 

iteration formula: 

-4 P+ (R' 

The expression for modified residuals used by Mollmann and 

Mortensen was similar to the above except that only the third 

order components of the residuals were halved. 



303 

Another form of total displacement iterative procedure, 

applied to cable and truss structures by Baron and Venkatesan 

(21), is the Secant stiffness method (figure 7) in which the 

geometric stiffness is re-set in each iteration. Provided 

cable properties do not alter, the elastic component of the 

total stiffness is held constant, otherwise the process will 

diverge. 

Fi guze 

Whilst convergence is slower and computationally less efficient 

than for the Newton-Raphson process, the method has the advantage 

that, provided convergence is in fact obtained and the system is 

such that a unique solution exists, slackening of cable elements 0 

may be accounted for. It has been suggested by several authors 

that this may be accomplished by setting to zero in equation 

(11) the EA and T values of any cables that become slack when 

re-setting the overall stiffness. In fact, however,, this does 
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not account for the proportion of work done by such cables before 

slackening occurs. The change in tension from the prestress 

state To is: 

LýT =s (EA +T0) where s= strain 

But if (To + LT)<O the strain magnitude based on nodal displacements 

is greater than T/(EA + TO). To allow for slackening of cables 

in the iterative procedure it is thus necessary to use "equivalent" 

EA values which satisfy both equilibrium of forces and 

compatibility of deformations: 

EA = -T 0 (I+I/S) (19) 

where S is the compressive (-ve) strain based on nodal displacements. 

An efficient means of dealing with practical problems 

in which slackening may occur in only a few of the cable elements 

is probably to combine the Secant and Modified Newton-Raphson 

methods. Thus stiffness matrices are re-set, using equivalent EA 

values given by (19), only when slack cables are encountered, 

and otherwise the iteration proceeds according to equation (18) 

or the alternative used by Mollmann and Mortensen (124). This 

approach is the basis of the method referenced in appendix 2.3 

of Chapter 2 which was compared in computational efficiency with 

Dynamic Relaxation. 

Nayak and Zienkiewicz (134) proposed a technqiue, termed 

the "alpha-constant stiffness method", by which the Modified 

Newton-Raphson iteration could be accelerated or "over-relaxed": 
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Let ýý61 be the vector of displacement increments at the i. th 

iteration calculated by equation (17b), and assume that an 

improved value is given by: 

cc (20) 

where ýcc I is an unknown diagonal matrix of coefficients. 

A measure of the degree of non-linearity at any stage is 

, given by the difference between the initial and tangent :1 

stiffnesses: 

[K 
T. 

] 

Defining [dj' 
as the correct change in displacements corresponding 

to residuals 
ýRJ'4-1 then approximately: 

EK 
T. 

j [RIi-I 

Premultiplying by [K,, ]-( 
and using (17b) and (20): 

[cc E Y\, el 
[K, j R] 

Assuming [cc (21) 

then: AU (22) 

representing approximately where 
[Aul EKj EKJE cc 10 

the influence on displacements of the non-linear residual force 

contribution EK,,, ] ýA6ý14- . 

From (22) the k th diagonal term of Ec,: ]4' is thus given by: 
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cc Au +I 

with the restriction that when 6A -0.0 0C 

In-reference (134) a computational procedure based on 

the above accelerating process was outlined for softening 

. 
structures and was found to result in considerably increased 

effeciency. This and similar accelerating procedures (29) have 

not to the author's knowledge been applied to tension structures 

and, comparing figures 4a and 4b, it seems probable that the 

approximation made in (21) could not be applied to stiffening 

systems. A possible revision to the process for such systems 

may be to use the approximation: Ecc but it 

would seem safer not. to use over-relaxing factors in maýrix 

iteration analyses of tension structures. 

Summarizing, the general recurrence equation for all 

matrix iteration schemes may be expressed in the form: 

lccjýLK"j ((Pj-EýJ'4 EK5 J(61 (23) 

where 
EK$] is the secant stiffness, and the term in brackets 

represents the residual force. When [=]'= [I]: 

a) 
[K]" 

= 
[K-rj gives the Newton-Raphson method 

b) [K]`ý 
gives Modified Newton-Raphson 

c) 
[KI'4 EKS]"'gives the Secant stiffness method. 
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Incremental Solution Methods 

For structures which are subject to both material and 

a, eometric non-inearity the solution is path-dependent and an 

analysis with loads applied in small increments must be used; 

[KTI in equation (13) being a function of the current configuration 

and possibly also the entire strain history. 

Incremental methods can be divided into two groups: 

(1) Purely incremental with equilibrium conditions generally 

not satisfied exactly and the solution tending to drift 

from the true deformation path (figure 8). 

Incremental with equilibrium corrections within each load 

increment, or as following corrections, termed "self- 

correcting" methods. 

>ri um pa th 

; ol uti on 

s 

F-I gure 

The simplest purely incremental method is the Euler method 

(852181) which, although widely used, tends to drift rapidly from 

the true solution. Improved results, at the expense of additional 
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computations, can be obtained by taking [KT] near the mid-point 

of each increment, corresponding to a second order Runge-Kutta 

procedure (85,7,72). Bergan and Soreide (29) suggest a 

method for automatic computation of the size of load increment 

which uses large increments in linear regions but smaller 

increments with increasing non-linearity. This is achieved by 

fitting a parabola through the current and previous displacement 

values with slope equal to the current slope. The curve is 

then extrapolated and the load step determined by assigning 

a maximum truncation error between displacements given by a 

constant slope and those given by the extrapolated curve for 

the same load level; a maximum bound to the size of step being 

fixed for parts of the curve which are almost linear. 

The simplest self-correcting method is to add the 

current force residuals to the next load increment (29,54,150). 

This corresponds to one cycle of Newton-Raphson iteration 

followed by a simple Euler increment in which the same gradient 

is used as for the iteration. Improved accuracy is obtained by 

carrying out several iterations for each level of loading (72,89,91). 

The tangent stiffness may either be held constant during iterations 

within each load step or may be re-set at each iteration; the 

latter corresponding with the Newton-Raphson procedure. A flow 

chart for a program (55) which encompases the primary incremental 

and iterative methods is shown in figure 9. The four alternative 

solution procedures shown are: 
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(1) Incremental 

(2) Incremental & correction for out-of-balance loads 

from previous increment 

Newton-Raphson iteration 

Modified Newton-Raphson 

In addition, (2) may be combined with (3) or (4) for several 

equilibrium iterations within each load increment. The choice 

of solution method will depend on the type of problem: For 

structures subject to large geometric and material non-linearities, 

such as flexible two-way networks with non-linear cable properties, 

(2) with (4) may be essential. Whereas if only material non- 

linearities without discontinuities are involved then (2) alone 

may be adequate. The preferred solution method will also depend 

on the level of loading and the idealization of material 

properties. An iteration method might be applied to account for 

a significant proportion of the total load up to which the 

structural elements behave elastically, and an incremental method 

applied for the remaining inelastic region. 
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Apply new load 

Increment ýAPJ 

1) 

Form Tangent Stiffness 

Ma tri x [K-r] 

I,; -, 

Reduce equations: 
[Kr Iý A61 = ýAP+R I 

1)11)3 

Solve Equations. 

Update total deflections: 
(6ý 

= ý61 + ýaj 

Update total stresses 

1,3, ir 

Calculate out-of-balance 

forces [Rj 

Fi gure 9 

Accelerated converaence of Incremental solution methods 0 

may be obtained by basing the value of tangent stiffness in any 

step not on the slope at the beginning of the increment but on 

its estimated value at the mid-point of the increment. This may 

be achieved either by extrapolation of previously calculated 

deflections when re-setting the stiffness (176), or by iteration 

in each step to use an averaged value of tangent stiffness (7). 

Johnson and Brotton (92) and Millar et. al. (121), using 

an incremental method for the analysis of space frames, estimated 
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initial deflection values for the fourth and all subsequent 

increments by extrapolating the three previous converged 

displacement vectors, and then iterated within each step using 

the constant tangent stiffness so calculated. Greenberg (72), 

for inelastic analysis of cable structures upto failure, used 

a scheme which averaged the main diagonal stiffness coefficients) 

kýZ, to correct the deflections at each cycle. The process is 

summarized in the following sequence: 

Form [Kr] based on current conditions and save 

kýý terms. 

2. Apply load increment AP and solve for linearized 

deflections and tensions. 

Compute modulus of elasticity for individual members 

based on stresses from 2. 

4. Form k,. ý coefficients based on new geometry and 

moduli. 

5. Revise deflections: kýý + k, ý x 
2k\. 

'U 

6. Determine unbalanced loads using revised geometry and 

return to 1. 

7. Repeat 1-6 until unbalance is negligible 

Add another increment of load if member strains are 

all less than ultimate and return to 1. 

Repeat 1-8 until ultimate load is reached. 
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In step 3, the moduli were calculated assuming a continuous 

exponential function to represent the inelastic portion of the 

stress/strain curve for steel cables. The function used 

conformed to manufacturers specifications and it was found that 

for typical cable networks the ultimate load could be 50% higher 

than that calculated assuming constant elastic moduli. Jonatowski 

(91) used a similar function for the entire stress/strain curve 

and applied standard Newton-Raphson iteration to achieve 

equilibrium in each load increment. 

EXPLICIT ANALYSES 

Minimization methods 

With minimization methods the physical problem is stated 

as that of finding a stationary value of the total potential 

energy function: 

V (24) 

where U is the strain energy U(6), and V is the potential energy, 

(61'r-ýPj, 
with the applied loads (Pj assumed independent of 

displacements [6ý. 

Direct minimization techniques, such as random search, 

make use of the objective function., W only. They have been 

applied with varying success to non-linear structural problems 

15,116), though they are not generally competitive with the 
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gradient methods of minimization: 0 

necessary condition for a minimum of W is that 

W 3w 3w 
77,36 

z Mr, 

A solution is possible by searching along a set direction in 

n-dimensional space until the minimum in that particular 

direction is found; by changing direction and continuing the 0 

process, provided the energy surface is convex, the global 

minimum may eventually be located. The procedure is therefore 

iterative using the general equation: 

L61 
k-t I= 

ý6] kS It 
. 
(v Ik (25) 

where fVj it is the gradient vector and Sk is a scalar "step-length" 

representing an incremental distance in that direction. Since 

the analysis procedure is explicit, it has the major advantage 

that an overall matrix system of equations does not have to be 

set and solved, and thus storage requirements for computations 

are considerably reduced. 

Various first or second order gradient methods are 

available for determining the direction of search, ýVj, and the 

minimum along a particular direction is located at each stage 

of iteration by representing the objective function as a polynomial 

and determining S to minimize the function. The simplest first 

order gradient method is the method of steepest descent, but the 
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orthogonality property of the search directions may result in 

severe convergence difficulties. These may be partially 0 

overcome by using relaxed steepest descent or conjugate gradient 

minimization. Second order optimization techniques utilize the 

second derivative of the objective function. The most widely 

used of these is the Newton-Raphson procedure which is essentially 

a deflected gradient technique in which the step in each new 

direction is determined by using the minimum of the approximating 

quadratic. The application of this process to tension structures 

subject to distributed cable loads is described by Burley and 

Harvey (45). Other than this application, however, nearly all 

minimization analyses of tension structures have been based on 

first order gradient methods. These have been principally 

developed and applied by H. A. Buchholdt, and the following account 

is based on his work (references 37-43). 

Method of Steepest Descent 

The derivative of the total potential with respect to a 

displacement, 6., at any node, a. in the i direction, is equal to 
. 4. 

the unbalanced force in that direction which, from equation (14), 

is given by: 

g, = Dw P (T" +AT) (DXý +D6 (26) 
T6i L+em 

m 

where, as before, the su=ation applies to all links m joining 

node a to adjacent nodes b, and: 

DX, ým ý Xýa - xib ; D6ým = 6ýa - 6ýb 
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The complete set of unbalanced forces [gj has for the displacement 

vector 
ýfl the direction of greatest decrease in the total 

potential, and in the steepest descent method the gradient vector 

[vj is taken equal to this residual force vector or to the normalized 

vector (37). 

The total potential can be expressed as a fourth order 

polynomial in the step-length S: 

W=cIs++Cts3+C3SL+ Ci's + C5 (27) 

Por a minimum: 9W = 4CIS 
3+ 

3CLS" + 2C 3S+ Cl. =0 (28) 
9s 

The smallest positive root of this equation gives the required 

minimum of the total potential along the vector ývj at any stage. 

The strain energy in any link, m, may be expressed as: 

I 
u (To + EA. e) de To e+ EA. e. (29) 

rn 
de,,, = 

rtl rri rn m-Im 
fL 

<> 
2LOm 

Neglecting second order terms, from Appendix 2.2 of Chapter 2: 

e rn 
2DXi + D6ý, ). N. ý 

2L M 

(30) 

and, from equation (24), at iteration (k + 1) the difference in 

end displacements, D6. , of a link, m. is given by: 
-tM 

D6 D6, 
k+SV. k 

't rn 4LM 



316 

Substituting (31) in (30) gives e. in the form: 

em (a, + a, S + a, S (32) 
Lm 

where L is the current link length. m C-) 

From equations (24)and (29) the total potential energy at 

iteration (k+l) is: 

wu- tp 
(T" 

.e+ EA. e2, ', ) - 
[P. 17 ý61,, r' [S. 

vý 
It 

(33) 
rn rn 

rrt i 
2Lorn 

Substituting for e. from (32) and equating coefficients of S, 

S 2. 
etc. in (33) and (27) gives C, -+ C5, from which Sk may be 

obtained by solving equation (28). The next improved displacement 

vector 
[6ýkt( 

is then given by equation (25), and the procedure 

is repeated until the out-of-balance forces are negligible. 

Conceptually, the magnitude of any step-length is 

determined by the point at which the steepest descent vector 

grazes a contour of the energy surface, and each subsequent step 

is orthogonal to the previous one. A sufficient condition for 

convergence is that the energy surface is convex throughout; 

containing no saddle points or local minima. Buchholdt et. al. 

(39) show that, for tension structures, this condition is 

satisfied provided all elements remain in tension. The condition, 

however, is not a necessary one and it is possible for some 

members to go temporarily into compression during the descent 

process. In form-finding applications this could perhaps lead to 

convergence difficulties. 
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Relaxed Steepest Descent 

The steepest descent path is not a continuous orthogonal 

trajectory to the energy surface contours but, as explained 

above, takes a zig-zag convergence path. In many cases this leads 

to slow convergence and an improvement is possible by reducing 

the calculated step-length to ýS. It has been found that a value 

of X between 0.3 and 0.9 can reduce the number of iterations to 

between 5% and 25% of those required using the full step-length 

(39). 

Method of Conjugate Gradients 

In the method of conjugate gradients the step-length is 

calculated as previously but the descent vector tvj in 

equation (25) is given by (38): 

VI 

r 
where lig1j" = ýgj 

. 
[gl 

I I- 
. 

[VI 

119 h-11-1- 
(34) 

The first descent vector (or first few) is taken in the direction 

of steepest descent. Thereafterg the previous descent vector is 

given some weighting in choosing the current vector, which is 

dependent on the squared ratio of the euclidean norms of the 

residual forces. Graphically, for a structure with only two 

degrees of freedom 6, and 
67, the procedure is illustrated in 

figure 10 (from ref. 41). 
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SI 
Fi gure 1 

Scaling and Transformation of Energy Surface 

ýL 

The convergence rate of the conjugate gradient method, 

whilst considerably better than that of steepest descent, depends 

on the ratio of the highest to lowest eigenvalues, or condition 

number, of the associated stiffness matrix. For a two degree of 

freedom system (fig. 10), the condition number is proportional to 

the squares of the axes forming the elliptic contours of the 

energy surface. For a large condition number the ellipses are 

very narrow and convergence is slow. The condition number is a 

measure of the ill-conditioning of the system of equations, and 

in cable structures, particularly structural mechanisms with 

fairly stiff boundaries, this can be a common problem. due to 

large variations in the stiffness coefficients. 
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In Dynamic Relaxation, ill-conditioning is partially 

remedied by choosing fictitious masses proportional to 

corresponding direct stiffness coefficients so that the critical 

time interval for the numerical integraltion process is 

optimum at each node (see text and Appendix D for further 

discussion of conditioning). In the conjugate gradient method 

the ill-conditioning can be analogously remedied by transforming 

the contour lines to widen the total potential energy valleys 

This is achieved by replacing the actual displacement 

vector ý8ý with a scaled vector ýu3 such that: 

(6 1= [H ]ýu 1 (35) 

where 
EH] is square and referred to as a "scaling" matrix. 

The total potential energy can be expressed in matrix form 

(not required computational ly) as: 

T 
21 2 

[61 

Substituting for ý61 from (35): 

21 
fuý -r[eT] Jul 

- 
ýPrý[Hjfuj 

and the transformed gradient vector is: 

g 
'A 

ýW [K'r PTý'rE H (36) 
3u 

where K', [H [K 
T] 

[H I, 

Equilibrium is achieved when jig'IJ =0 and the real displacements 

are then given by equation (35). 
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The eicenvalues of [K' ] would be approximately equal, 07 

with ideal conditioning of equations (36), if [H] could be chosen 

to make 
[KT] symmetric with all elements on the leading diagonal 

approximately unity and off diagonal terms tending to zero. In 

practice this is not possible but considerable benefit can be 
I 

I- gained if a diagonal matrix LH ]is chosen such that: 

h= ___ 

Buchholdt et. al. (41) applied the above method to cable 

systems with comparatively stiff boundary structures and found 

it to converge more quickly, using less storage, than the 

Newton-Raphson method. It was also compared with scaled and 

relaxed methods of steepest descent and the conjugate gradient. 

method without conditioning and in all cases was found to be 

considerably more efficient. 

Explicit Relaxation Methods 

The three basic explicit iterative methods are Point-Jacobi, 

Gauss-Seidel, and Successive Over-Relaxation (182,114). For 

descriptive convenience the recursion equations appropriate to each 

method are most simply expressed in matrix notation though, as in 

the previous section, all of the methods can be applied as direct 

iterative solutions of un-coupled or semi-coupled equations, and 

thus applied conveniently to non-linear analyses. 



321 

The aim of the methods is to solve a set of linearized 

or incrementally linearized equations of the form: 

I 
-rl 

[61= [PI 
(37) 

The stiffness matrix [K 
T] may be expressed in the form: 

FK, ] 
= 

[L 
+D+ U] L 

where 
ýDj is the main diagonal of EKTJ 

2 and [L ] and [Ujare 

respectively the remaining lower and upper triangular portions 

ol 
[KT]. Unifying the diagonal coefficients of (37). 

LD KT] [D 

or EK\-I where [K' ]= [L 
+I+U T 

11 

In the Point-Jacobi method the iteration is begun by 

assuming the unknown vector 
ý61 to be equal to the diagonal of 

KýJ. This vector is then used to compute a new estimate of T 

ý6ý 
using the recurrence equation: 

or 

+ Ul [6 

(P'l - 
EKT] ý6 1 

where ýA6ý is the correction vector and IRAý is the residual 

(38) 

vector. 
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In the Gauss-Seidel method the most recently computed 

components of [6 1 it+) 
are utilized in computing subsequent 

components of this vector. The recurrence equation can be 

written in the form: 

61 ý-+l = [I+L\]-I. ([P\j - Eu\][61k) 
1 all = [, +\] or L Rýj (39) 

Accelerating factors, ý, can be used in either the 

simultaneous (Point-Jacobi) or successive (Gauss-Seidel) 

relaxation methods. Thus in the former case one obtains the 

Extrapolated Gauss method: 

IA6 ý ý*"'l 
=ý[ R'l 

0' 
(40) 

and when the Gauss-Seidel iteration is accelerated one obtains 

the method of Successive Over-Relaxation: 

IA61 ý--H 
=ý 

[I +Wf - 

This latter method, with 1<ý<2, has the fastest rate of 

convergence (appendix D) . 

Any of the above iterative methods can be performed either 

in a semi-uncoupled form with main diagonal submatrix operations 

node by node, or in a form in which each degree of freedom is 

treated as uncoupled; both schemes reducing considerably the 

required storage compared with overall matrix formulations, and 

being computationally most suitable for non-linear problems. 
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The Successive Over-Relaxation (SOR) method, for example can 

be expressed in the following semi-uncoupled form: 

At node i (with n degrees of freedom) the relaxation equation 

is: 

Ek'ý' 
A. (42) 

where 
ý6, j is the vector of n displacement components at node 

and 
[kc I and 

ýRc'j 
are respectively the nxn tangent stiffness 'k Al I 

submatrix and the nxI residual load vector, each calculated 

using current co-ordinates of i and adjacent nodes j (with 

some of the latter cor-ordinates being current to iteration k+I). 

In this form the over-relaxation process is successive node to 

node, but simultaneous for the component deflections at each 

node. An alternative fully uncoupled form may be expressed as: 

(43) 

C, 
where I/k, ýýj is a diagonal matrix consisting only of the n 

reciprocals of the current direct tangent stiffness components. 

The procedure in (43) avoids the need for inverting an 

nxn submatrix at each node and stage, and may also be 

computationally advantageous for'cable or membrane structures in 

which it is possible that 
[k, 

may become singular at some stage r- I 

of this process. Convergence difficulties, however, might arise 

and it seems probable that the relaxation factor ý would have to 

be reduced. It is not. possible for the components kL,, to 
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become negative, though due to a combination of cable slackening 

and co-planar elements they may become zero, giving rise to 

infinite deflection increments. To avoid this, conditional 

deflection controls are necessary or, alternatively., small 

additional fictitious stiffnesses might be used which are 

gradually relaxed to zero at later stages of an analysis when 

the structure is near a unique equilibrium state. 

The above processes have not to the author's knowledg& 

been used for the analysis of tension structures, though a 

similar technique, termed Non-linear Over-relaxation, has been 

used by Perrone and Kao (148) for solving non-linear problems 

involving large deflections of thin-walled tubes and spherical 

cap membranes. 

Dynamic Relaxation may also be regarded as an uncoupled 

simultaneous iterative procedure for which the recurrence 

relation for any component deflection takes the'form: 

6=6 CC(6 6 K-1 )+y. R 0- 

where the factors cc and y are chosen to optimize the convergence. 

It has the major advantage that in highly non-linear problems the 

occurrence of transient zero stiffness situations is not 

accompanied by infinite deflection increments. A comparison of 

the convergence rate of DR with those of the basic iterative 

procedures is given in appendix D. 
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Any of the iterative methods may also be stated in the 

form of a minimization problem: 

61= 61 so Vý 

Apart from DR. however, the step-length S may be unbounded. 

A comparative study of dynamic relaxation with the majority 

of the methods reviewed in the present appendix, applied to 

prestressed structural mechanisms, is being carried out by Papadrakakis 

(196). 
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APPENDIX B 

, 41Z '71"VIEW OF ilvIETHODS FOR FORM-FINDING OF NETS AND MEMBRANES 

The following review is concerned mainly with methods 

for the form-finding of surface networks. The majority of the 

non-linear analyses considered are, however, equally applicaLle 

to general prestressed cable and membrane systems. As in the 

previous appendix, the review is restricted to systems 

idealized into discrete elements and, since many of the 

procedures considered in appendix A may be used for form-finding 

when based on data provided by accurate physical models, 

emphasis is placed in the present appendix on those techniques 

which do not necessarily require such close initial estimates 

Of geometrg and tensions. 
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LINEAR SOLUTIONS 

Orthogonal Nets 

The first analytical treatments of the problem of 

form-finding of cable networks were published by Bandel (11), Siev 

and Eidelman (170), and Dean and Ugarte (63). The analysis of 

Siev and Eidelman assumed the network to be orthogonal in plan, 

with known horizontal mesh spacing and boundary co-ordinates, and 

the heights of all interior nodes were obtained by solving one 

system of linear equations. For such networks the horizontal 

component of tension, T,, is constant along all links of any cable, 

and the equation of equilibrium at any node, i, connected by links, 

m, to adjacent nodes j is: 

Z 
Th p 

Z-4' (1) 

where P-,. 4- 
is the self-weight load, Zi, Zj denote vertical ordinates, 

and Z. is the horizontal spacing between i and 

In matrix notation the complete set of equilibrium equations is: 

[HJ[Zý 
= 

[P' I 
7- 

(2) 

where [H] is square and 
I P'j denotes that the known boundary 

z 

components (HZb/ý) have been transferred to the R. H. S. to modify 

the load vector. 

For a network in which the cables project orthogonally 

onto a plane, xky\, inclined to the horizontal, the self-weight 

loads are resolved into components parallel and perpendicular to 
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X\y\ and equations of equilibrium perpendicular to this plane 

are set, as before, but with the horizontal force components H mofified 

. along each cable by the summed self-weight traction loads. For 

networks with edge cables, both the boundary and surface 

co-ordinates must be determined by a non-linear analysis with 

iteration between the network and edge curve analyses; the latter 

involving two degrees of freedom at each node on the assumption 

that the horizontal spacing between the cables of each set is 

specif ied. This procedure was given by the author in reference (12) 

and was found to converge rapidly. 

Dean and Ugarte (63) obtained closed form trigonometric 

series solutions for initially flat, doubly, triply or quadruply 

threaded nets, with a regular projected pattern, subject to single 

point loads or to uniform loading. Buchanan and Akin (36) later 

extended this approach to the form-finding of networks with elevated 

and spatially curved boundaries. The analysis, termed the 

reflection method, consisted of defining the spatial boundary to 

lie inside a larger initially plane ne t. By applying the trigonometric 

series solution for single loads to all boundary points, together 

with the series solution for uniform loading which accounted for 

self weight, the deflections of the boundary points were made to 

correspond with the specified elevations. The procedure has the 

advantage, compared with Siev's method, that the set of simultaneous 

equations to be solved is equal in number only to the number of 

boundary nodes rather than the number of interior nodes. It is not, 

I 
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however, as general; being restricted to netwo'rks with regular 

projected mesh spacing. For curved boundaries it is necessary to 

interpolate between mesh points for the required boundary elevations 

and thus the order of the system of equations may be doubled. The 

method is also restricted to cases where all boundary positions are 

specified and, even with an iterative formulation, would be 

difficult to apply to nets with cable boundaries. 

General Nets 

A development of the procedure given by Siev and Eidelman, 

accounting for three degrees of freedom at each node and termed 

the Linear Force-densities method, was proposed by Linkwitz and 

Schek (110) to enable a rapid search of feasible forms for general 

networks: 

For a system wi'th M members (or branches) and N nodes, of which N 

are variable with co-ordinates denoted X, Xz, 3, 
X3 and N are fixed 

with co-ordinates X,, IXf2. )Xf3 , the vectors of co-ordinate 

differences for the complete set of branches may be expressed in 

matrix form as: 

I dXýj = [C] ýx 
,I+ 

[cf3fxfd (3) 

where ECJ and [Cýj are submatrices, relating respectively to the 

variable and fixed nodes, of the partitioned branch/node matrix 

CCj] in which the components are defined bY: 
11 
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c(i, j) +1 when i= node I 
of branch 

-1 when i= node 2 

0 elsewhere 

If the member forces are denoted by the vector (Tý and 

the lengths by [Z I, or an MxM diagonal matrix [Lj, the tension 

coefficients, or "force-densities", of the members are: 

ýqj = 
[L jlýT I 

The set of 3N equilibrium equations is thus: 

'7- 

T[D< 
q Px C (4 a) 

or 
LC T [Q]fdXýj ýPt-t] 1.3 (4b) 

where 
[DXýj 

and 
[Q] 

are diagonal matrices corresponding with the 

vectors 
ýdXj 

and ýqj. 

Substituting (3) in (4b) : 

LH][Xýj 
= 

ýPxý, ý 
- 

[Hf JýXfj Pýxý, j 

7, 

where [H [C fEQ J[C and LH, ] = EC ] [Q][Cf 

Provided all q>O then 
[H] is positive definite and a variety 

of possible nets may be investigated simultaneously for different 

values of 
[Xý, j by solving the linear equations (5) with simultaneous 

reduction of multiple R. H. S. vectors for each set of values [qj: 

H][X, X, 
_, 

X3 



331 

where 
[Vý is a set of 3J vectors of order N, where J is the number 

of different boundary arrangements to be investigated simultaneously. 

The above linear method permits an economic search of 

feasible forms and has been found to yield nets which are reasonably 

regular when all force-densities are identical (74). This 

procedure, however, gives only an approximate design guide since 

the nets so obtained are not constructionally practicable. The 

same drawback applies to all other linear form-finding methods, and 

to obtain either uniform mesh or geodesic networks a non-linear 

analysis must be used. The linear methods nevertheless enable 

preliminary investigation and can yield initial data for precise 

form-finding. In the case of the force-densities method the 

analysis may also be extended to account for non-linear constraints 

on member lengths and/or tensions. For continuity this is outlined 

at the start of the following section, though chronologically it is 

one of the more recent form-finding methods. 

NON-LI17EAR FORM-FINDING 

Constrained Force Densitites Method 

The method starts from the linear solution using estimated 

force-densities I qOj . Additional constraints on member lengths 

and/or tensions are then introduced which take the general form: 
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91 (X, Y,, Z, q) =0 

g2. (X, Y, Z, q) =0 

9t (X, Y, Z, q) =0 

Since from (5) the co-ordinates are functions of the force- 

densities, the b constraints may be rewritten as dependent on 

force-densities alone: 

g* (q) I= 

These constraint equations are non-linear and must be solved 

iteratively: 

q'I = tq"ý + ý, Lql subject to f g* (q I)ý= 

Alternatively, linearizing the solution steps: 

3g*(q 00 

g* (q" +L 3q 

or 
[G jl[Aq 

r 

where 
[G JT is atxM matrix 

Since, for many applications, the number of conditions, t, 

is less than M, equations (6) have (M-t) linearly independent 

solutions. A single solution is sought by minimization; for 

example, using the least squares principle: 

7 
Aq ý-ý Aqj -+min 



333 

Alternatively, Schek (162) suggests the use of a damped system 

instead of equations (6): 

T 
(Aqý 

= 
[A][r 

where 
[A] is a diagonal matrix of damping factors, a. 

associated minimum principle is: 

+ 

where 
EW ]is 

a diagonal weighting matrix. 

(7) 

The 

The Lagrange factors, f, are obtained by solution of the 

txt system: 

[S]ff] = ýrj where [Sj= [G]IEG] in case (6), or 
[S [G ]T EG ]+ [W JI I R'-] in case (7); [Rj being a diagonal matrix 

corresponding with I rj. 

Hence: ffj= [Sjj frý and ýAqj 
= 

[G][f] 

For the next iteration qO is set to q0+ Aq and the procedure 

repeated from (6) or (7) until t g*(q") 
I=0 within given tolerances. 

Schek gives expressions for the components ýg*/9q of [G j 

(in terms of [c 1, ED] 
and 

[DXij) for the three cases: 

(1) specified member lengths under loading 

(2) specified slack lengths 

(3) specified member tensions 

Thus enabling form-finding of grid-shells, uniform mesh nets or 

geodesic nets when, respectively, the lengths or tensions of the 

members are held constant. 
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Newton-Raphson Iteration 

The most frequently used implicit form-finding methods 

have been based on Newton-Raphson (N-R) iterationwith 

incremental loading or imposed displacement stages when required 

deformations from the initially specified state are large (3,8, 

78,95) . 

Haug (78) estimates initial shapes from sketches. and 

the net shapes and distribution of forces are then refined by 

appropriate operations involving prestressing and length changes 

after each solution of the overall system of equations. For 

strongly non-linear cases the basic N-R process may diverge, or 

converge only slowly, and in such cases the loads are applied in 

steps and approximate equilibrium after each increment obtained 

with a few N-R iterations; a larger number of iterations being 

used in the final step to achieve the required accuracy. To avoid 

ill-conditioning during the analysis a maximum allowable value for 

the displacement increment at any node may be specified. If this 

is exceeded, the computed increments are all scaled down 

proportionally until the maximum increment is equal to the maximum 

allowable value. 

Whereas for typical non-linear static load analyses of 

networks Newton-Raphson iteration can be expected to give results of 

sufficient accuracy after about 10 iterations, in form-finding 

applications the rate of convergence is considerably slower. Haug 

quotes figures of 15 cycles of iteration for network systems with 

a fairly accurate initial estimate of geometry, but upto 33 cycles 
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for funicular nets (grid-shells) because of their greater degree 0 

of kinematic freedom and deformation from the initial state. For 

a similar reason the analysis of a retractable net required 30 

cycles of iteration for each stage of retraction (78). The same 

procedure was applied by Haug and Powell (79) to the analysis and 

form7finding of membrane structures using linear displacement warped 

quadrilateral elements with an isoparametric formulation. With 

buckling (or wrinkling) ignored the static load analyses converged 

in a minimum of 5 cycles; the figure being lower than that for 

networks because of the effective triangulation of the structure. 

For form-finding of uniform stress membranes, however, an accuracy 

of 1% was obtained only after 30 cycles and, whilst this figure 

is sufficient for preliminary design, a greater degree of accuracy 

would be required for the purpose of defining cutting patterns. 

Estimates of initial geometry based on architectural 

sketches entail very large out-of-balance forces with compression 

induced in many of the elements. As a consequence many iterations 

are required for convergence and there is possibly the danger of 

obtaining a non-unique solution. The same problems May also occur 

when initial data is based on measurements of small scale physical 

models. To avoid these difficulties Angelopoulos (3) and Argyris 

et. al. (8) suggested the use of a computer "model" with flexible 

linear elastic elements to simulate the physical modelling process. 

Starting with an initially flat uniform mesh net an approximate 

equilibrium configuration is obtained by deflecting the support nodes 

to their final positions in stages. The tangent stiffness for any 

increment is set from the geometry and tensions obtained from the 

previous stage, with slack (or compressed) cables encountered during 
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the process being ignored and later restored if strains revert 

to tensile . In the final stages N-R iteration is used to obtain 

a solution in accurate equilibrium. The resulting cable forces 

are for the most part too large with an irregular distribution, 

and to obtain forces which more closely correspond with required 

values it is necessary to transform the slack lengths according 

to the following relation: 

LO + ýL' 
I+T: v 

/TAT 
(8) 

where T. is the desired prestress, L, \ and LL \ refer to the 

model lengths and increments, and the elastic properties (EA) in 

the "model" and actual structures are assumed the same. 

Following the above transformation, the structure is no 

longer in equilibrium and thus the iterative solution procedure 

must be repeated. This yields a structure in which the tensions 

and surface curvatures are close to the design values, but because 

of the transformation in (8) the equivalent slack mesh is no 

longer uniform. Thus a final stage is required in which, by use 

of spline interpolation and mesh generation procedures developed 

by Knudson and Nagy (98), a uniform mesh network is generated on 

the surface. Using the previously determined prestress distribution 

this net is then analysed by N-R iteration to obtain an equilibrium 

s tate . 

For the design of the Munich stadium Argyris and Scharpf 

(6) used cubic interpolation functions to smoothe data from a 



physical'model and generated on this smoothed surface an equal 

mesh net. N-R iteration was then used to obtain the equilibrium 

configuration and, to ensure approximately correct prestress 

levels, the tension in one end link of each cable was held constant 

during the process. To accelerate convergence it was found 

advantageous to use fictitious (reduced) EA values for the edge 

cables with the slack lengths of edge links adjusted at the end 

of each iteration to yield equivalently correct EA values. At the 

same time the connection points of the network to the edge cables 

could also be adjusted to comply best with a uniform mesh 

projection. 

Optimization Techniques 

As indicated by the foregoing discussion, shape finding 

methods must produce a qualitative prestress distribution as well 

as the geometry, and in this case the design problem may be more 

effectively posed as one of optimization. For a restricted class 

of networks (orthogonal), knudson and Scordelis (97) outline a 

least squares approach which seeks to achieve a desired surface 

geometry whilst at the same time satisfying the requirements of 

maximum and minimum cable forces in the network under various live 

loading conditions: 

For a shallow network with orthogonal projected cable 
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lines, the equations of vertical equilibrium (1) can either be 
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expressed as the linear system (2) with known tension coefficients 

but unknown vertical ordinates: 

ýH]ýZj 

or, if the vertical ordinates and projected cable spacings are 

specified, as an overdetermined set of equations for the 

horizontal tension components: 

[B]ýTh 
(9) 

Since in (9) there are more equations than unknowns, in 

general there will be no unique solution which satisfies all the 

equations. It is, however, possible to determine a vector ( Thý., using 

the least squares technique, which makes the sum of the squares of 

the residual vector: 

[B]ýThý Pz Z 

a minimum with respect to the horizontal tension components: 

(1ý. R) 
(Tý) 

This minimization results in the set of equations: 

r. 7 

B][Týj = 
[B ]f (10) 

Equations (10) are symmetric positive definite and may be 

solved for the unknowns Th I- It may be found, however, that the 

solution'. referred to as the natural least squares solution, yields 
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some values of Th which are less than zero. In this case the 

most negative value(s) can be specified as positive. The system 

of equations (10) may then be reduced by transferring the 

specified products to the R. H. S. and re-solving for the reduced 

set of unknowns [T, \I. The specification of horizontal tension 

components need not, however, be restricted to only a few cables. 

Since cables running in one direction do not mutually intersect, 

it is possible to independently specify all tension components in 

either the hanging or prestressing set of cables. In particular, 

the approximate cable forces required to sustain an assumed worst 

loading case can be found subject to constraints either on the 

maximum tensions in one set of cables or minimum tensions in the 

other set. 

The least squares procedure only yields the set of 

horizontal cable forces which approximately Produces the set of 

specified interior nodal elevations; vertical equilibrium not 

being satisfied except in a qualitative overall sense. It is 

thus necessary to carry out a separate analysis to determine the 

true equilibrium configuration after the horizontal tension 

components have been found. If these forces have been obtained for 

the prestress state using only self weight components in the loading 

vector, the equilibrium configuration can be found by solving the 

linear equations (2). If, however, the approximate cable forces 

have been obtained for an assumed worst loading condition, the 

prestress configuration must be determined by releasing the loads in 
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excess of dead weight and applying a Newton-Raphson iterative 

analysis. In this case, unless deflections are small, the 

proposed surface shape will be complied with qualitatively only 

in the loaded state. 

The least squares procedure has been extended by 

Ohyama and Kawamata (139) and by Namita and Nakanishi (133) to 

include nets for which the plan projection is not necessarily 

orthogonal and in which load components in each co-ordinate 

direction are accounted for; the necessary system of equations 

being 3n in number, where n is the number of surface nodes. The 

general formulation is simplified by Ohyama and Kawamata to the 

case of orthogonal nets in which the horizontal components of 

load are sustained purely by independent variations in horizontal 

components of tension along each set of cables, and the objective 

quantity of the minimization is confined to the vertical 

components of unbalanced loads. Thus the variables determined in 

the first (least squares) stage are still the horizontal tension 

components at one end of each cable. In reference (133), however, 

the full set of equations is used, with the minimization expressed 

as: 

B [Bc, ][Tý EB,, 
O] 

(11) 

where 
[Bco] denotes the complete direction cosine matrix, and ýPll 

is the vector of nodal loads (modified to account for boundary 

conditions) in all co-ordinate directions. 
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Values of Jý=tTjso obtained are then used as initial tensions 

for a finite deformation (N-R) elastic analysis which yields an 

equilibrium state with some changes of tensions T"'=ýTj and joint fý 

co-o rdinate s ýB, ]= [B 
cI]. The finite deformation analysis is then 

repeate with initial tensions set to [TI I and the shape restored 

as given by [Bcj. The process is repeated untilfT n -PT, _, 
l and 

FB ý-Bc' 
n]. 

If, at this stage, any tensions are found to be negative 

they are re-set as positive and the finite deformation analysis is 

repeated, again with the initial shape restored to [B.. ]. 

None of the above least squares. procedures ensures that 

a resulting equilibrating surface is the closest approximation 

which may be obtained to an originally proposed one (based usually 

on model measurements), because the optimization is made not for 

the surface shape with the given external loads but for the load 

distribution under the assumed surface shape. Nevertheless, a 

solution obtained in such a way does reflect the mechanical 

characteristics inherent in a proposed surface. The drawback of 

the methods is that the prestress distribution obtained can be 

rather random with large variations in tension components, and the 

slack lengths of the mesh will not be regular. The application of 

the methods is also restricted to structures with specified 

boundaries. Edge cables would for example couple the tension 

components of the network, and approximating the vertical 

equilibrium of the surface in addition to satisfying boundary 

equilibrium would be difficult, 

A constrained and weighted optimization analysis has 

been proposed by Nakanishi and Namita (132) which seeks an overall 

compromise between a prescribed shape and force distribution and 
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the shape and forces which satisfy statical equilibrium. The 

objective function to be minimized takes the form: 

R X-XS + 
JJ[W9Jýq-qsJJJ3- 

(12) 

where 
ýXý is a vector of all nodal co-ordinates in the 

equilibrium state, jXsj is the proposed shape, [qj and ýq, ý 

are the equilibrating and proposed tension coefficients, and 0 
Lw,, ] and [W, j are respectively diagonal weighting matrices for 

the shape and force distributions. 

The equilibrium co-ordinates are given by equation (5): 

[HI(Xi 
x 1,2,3 4. 

Pxi 

and, since 
[H ]depends solely on the tension coefficients, q, 

equation (12) has only the vector ýq] as independent variables. 

Thus, the optimization problem is to calculate ýqý which 

minimizes the objective function R subject to the constraint 

that all q>O. 

The method has the advantage that section properties 

of the members need not be given in advance, and members may be 

designed with suitable safety factors after the shape finding. 

In practical computations, however, q. values are given by the 

prescribed tensions, T., divided by lengths, L5. corresponding 

with the proposed shape. When equilibrium is finally achieved 

the actual tensions are given by TS. L/Ls, where L are the final 

member lengths. In the above form, the optimization process does 

not therefore yield solutions which can correspond either with 
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geodesic or uniform mesh networks. To achieve this it would be 

necessary to apply additional constraints on tension coefficients. 

Direct Shape Fitting 

With least squares or alternative optimization proceduresy 

large amounts of computing time and storage are required and there is 

insufficient scope for engineering intuition during these automatic 

processes. An alternative approach using dynamic relaxation may enable 

an equivalent fitting of model shapes which does not suffer these 

drawbacks: 

With all nodes of the model accurately measured and a crude 

estimate made of the tension or strain distributions, a D. R. (or N-R) 

analysis can be carried out to obtain the redistributed equilibrium 

geometry and tensions. If the cable links (or membrane elements) are 0 

very flexible the resulting tension distributions may be smoothe but the 

shape will not comply well with the specified one. If, however, the 

links are very stiff, movements from the intended shape will 'only entail 

essential rigid modes but the tension distribution will be very irregular 

(as with least squares). A compromise in stiffnesses might be used or, 

if the shape must be fitted as accurately as possible, the process could 

be repeated iteratively using stiff links and returning at each stage 

to the specified initial geometry with starting tensions adjusted 

according to experience gained from previous stages. In essence this 

process corresponds with the method of Namita and Nakanishi (133) but 

may allow more realistic engineering control. Ideally, specified link 

stiffnesses (EA/L) should be fairly uniform for better numerical 

conditioning (see appendix D), and the process should benefit from the 

use of interactive facilities with continuous adjustments. 
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APPENDIX C 

NON-LINEAR DYNAMIC ANALYSES 

Although tension structures have always been recognised 

as particularly sensitive to dynamic loading, in contrast to 

methods for non-linear static analysis, where publications 

parallel and in many cases precede developments in more general 

finite element applications, there is a comparative dearth of 

published work concerning dynamic analyses for tension systems. 

For this reason the following review, though centzed on tension 

structures, refers also to non-lineaz finite element formulations 

, 
applied to the dynamic behaviour of other types of stzucture. 
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Dynamic analyses applicable to tension structures may be 

conveniently reviewed under the following classifications: 

1. Modal Superposition Methods 

Implicit Numerical Integration: 

a) Finite differences in space and time 
b) Finite difference temporal and finite 

element spatial idelaizations 

c) Finite elements in space and time 

Explicit Integration Methods (with the same 

subdivisions as in 2. ) 

The suitability of each class of method depends on the 

degree of geometric and material non-linearity involved in the 

structural response and on the frequency of the fluctuating load 

component and its magnitude in comparison with the mean load 

component. Thus., for example, modal superposition methods may be 

most efficient when the frequency spectrum of the fluctuating 

component of load tends to excite only the lower natural modes of 

the structure and the mean load component is comparatively high or 

the degree of structural non-linearity is small. Implicit step-by- 

step integration methods may, however, be more efficient when the 

structural non-linearity is significant but mass, damping and 

stiffness coefficient matrices are symmetric. And explicit 

integration methods may be necessary when non-linearities, 

particularly on/off non-linearities such as cable or membrane 

slackening, are severe,, when the applied loading tends to excite 

the higher natural modes; and when the structure interacts strongly 

with the surrounding environment such as, for example, in pneumatic 
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structures in which internal pressure variationsý visco-elastic 

and pneumatic damping, and added mass effects of the surrounding 

air may be significant. 

MODAL SUPERPOSITION ANALYSES 

Although oscillations of cable networks and shear free 

membranes are non-linear, as a first approximation it is often 

assumed that oscillations due to buffeting wind loads are linear 

about the quasi-static equilibrium configuration defined by the 

mean component of wind loading, and that wind-structure interaction 

is not significant (96,90,123,178). 

With the above assumptions, Knudson (96), has outlined 

and compared both deterministic and non-deterministic analyses for 

wind induced vibrations of typical cable networks. In both 

approaches the wind velocity, V, is divided into a mean component, 

V, and a randomly fluctuating component v. The total pressure at 

any instant of time is given by: 

P(X, Y, Z, t) WC (X, Y, z) )z3t 
V(X, Y, z) + -V(X, y 

where p is the air mass density and CP is the normal wind pressure 

coefficient. 

The mean pressure component is: 

P(X, Y, Z) = !, PC p 
(X, Y, Z)V 

2(XýYJZ) 
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which may be added to dead and live loads to form a quasi-static 

load vector R with the equilibrium position found by non-linear 

iteration. 

The fluctuating component is then given by: 

=I P(t) = P(X, Y, Z, t) Ipc (x, y2z)[2-v(x2y2z)-v(x2yjz, t ) 

+V 2(Xly2Z3, t )) (1) 

And. assuming linear oscillations take place about the equilibrium 

position, the differential equation of motion is: 

[Mjtýj 

where [M], EC j and 
[ K] are respe ctively the mass, damping and 

stiffness matrices (w. r. t. the mean displaced position). 

For free, undamped, vibrations: 
[MJý61 + 

[KI[61 

I 

and substituting [6 [OýSin-wt gives: EKJ[01 = W2[m]ýOj (3) 

where, for any natural frequency W. 
-, 

ý0,, j is the associated mode 

shape eigenvector. The use of a diagonal, as opposed to consistent, 

mass matrix simplifies this eigenvalue analysis. 

By the mode superposition technique, the displacement 

vector ý61 in equation (2) is expressed as a linear combination of 

the modes of vibration: 

ý61 
= 

[ý][Aj 
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where 
[ýj is a square matrix formed as an array of successive 

mode shape vectors and [Al represents the vector of modal 

amplitudes. Equation (2) thus becomes: 

[M]ýý][Aj + [Kj[ý]ýA3 
= ýP(t)ý 

Premultiplying by the transpose of an arbitrary modal vector 

0 
rtIr and using the orthogonality properties: 

Onj 
'r [, 

Mj[Orj = 
ýOt, ý 'r [Cj[ 

OM] =ý or, 
] T" [ KJ[OM3 =0 for mjn 

results in a single uncoupled equation of motion for the nth mode 

of the system: 

M 
ri 

At, + Cn * An + KrL. An PrL (t) (5) 

where Mn [On IE M] ýOrtj Cr, f OrjT[ C] ý Or, I= 26, Wri Mn; 

(0, K] [Orjj 
= W, ' M, ' P'r,, (t) Orij 

7 (P (t) 
rl r, r, 

I 

(4) 

and E:,,, and W, are the nth modal damping ratio and natural frequency. 

The inclusion of ECJ in the orthogonality relations assumes that 

coupling produced by damping is negligible. This is so if Rayleigh 

damping is assumed: 

a, (6) 

Though more complex forms of (6), which satisfy the orthogonality 

relations, can be formed by adding product terms: 

a3 [KJ[M ]-I[ K] or a,, _[M][K 
If [M] 
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When [C] does not satisfy the orthogonality conditions the modal 

superposition method may sometimes be used by neglecting, in the 
T' 

product 
[V][Cj[ý] 

, the off-diagonal terms [1991. 

Equations (5) can be solved exactly using the Duhamel 

integral or, alternatively, by numerical integration; and because 

the periods of vibration for each natural mode are known it is 

possible to choose a time step for each integration which ensures 

the required accuracy. The most time consuming part of the 

analysis is the solution of the ei4crenvalue problem; but if the 

higher modes are known not to participate significantly in the 

response it may be sufficiently accurate to include only the lowest 

eigenvalues and vectors (53). For tension surface structures, 

however, mode shapes are complicated and it is necessary to include 

many modes to determine the response (96); in particular, all of 

the dominant modes normal to the surface which, because of the 

lightweight of such structures, are highly dependent on any temporary 

loads. Condensation of the degrees of freedom of a system before 

evaluation of eigenvectors is appropriate and Franchi and Scirocco 

(67) use this procedure for the analysis of plane cable trusses. 

For the deterministic analysis of wind response the loading 

may be based on Taylor's hypothesis that the velocity fluctuations 

recorded at a point travel unchanged in the direction of the mean wind 

at mean velocity (96). To represent the wind therefore, a wind 

record is assumed to be incident upon the structure as a plane wave 

and is moved across the structure as a series of strips with the 

different velocities indicated by the wind record. An improved 

represention of the wind is obtained by dividing the structure into 
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several strips parallel to the mean wind direction, with each 

strip having its own wind record assumed to obey the Taylor 

hypothesis (99). A single record represents only one out of an 

ensemble of records, and thus deterministic response should be 

regarded mainly as a qualitative description of the expected 

peak response. An alternative approach to the problem of wind 

response is a non-deterministic analysis in which the wind is 

characterized spatially in terms of its velocity spectrum, and 

by use of the techniques of random vibrations the expected peak 

response is obtained (96). For such an analysis, however, 

v 
2. (x, y, z, t) in equation (1) is ignored in order to make the 

forcing function linear. 

The modal superposition method assumes that the behaviour 

of the structure is linear with the mass, damping and stiffness 

matrices constant. Provided displacements are not very large, the 

errors introduced by this assumption may be less significant than 

those due to uncertainty concerning wind loading and damping effects. 

Modjahedi and Shore (122) investigated the non-linear steady state 

response of cable networks by means of a fourth order perturbation 

method and found that tensions and deflections differed considerably 

from those predicted by linearized modal superposition analysis. 

The systems investigated, however, were very flexible and the forcing 

function was simple harmonic with large amplitude. 

If it is assumed that mode shapes during non-linear 

displacements are described adequately by the eigenvectors 
(01ý 
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equation 5 may still be used if the stiffness (and mass) matrices 

are amended to account for deformations at adequate stages during 

the numerical integration. This process can be economic provided 

the response behaviour can be represented using a reduced number of 

eigenvectors (53). But because of their lightweight and flexibility 

tension structures can interact comparatively strongly with their 

surrounding environments which introduces a further source of non- 

linearity. Thus, for example, the forcing function P(t) may itself 

be dependent on modally coupled accelerations, velocities and 

displacements due to added mass effects, pneumatic damping and 

internal air pressure stiffening (89,90,195). This, together with 

the non-constant tangent stiffness of the system due to geometric and 

material non-linearities, makes necessary the use of direct numerical 

integration of the complete system of equations, either in coupled 

form by implicit matrix methods or by de-coupled, but simultaneous, 

explicit integration. 

IMPLICIT NUMERICAL INTEGRATION METHODS 

General dynamic response analyses for non-linear systems, 

using step-by-step numerical integration procedures, may be carried 

out by dividing the time history into a sequence of finite time 

increments and computing response at the end of any increment in 

terms of the initial conditions and the loading during the increment. 

Differences in the methods available depend on the assumptions made 

concerning the variations of displacements, velocities and 
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accelerations during the increments; and the methods may be 

appraised on the bases of stability, amplitude decay or 

attenuation, phase shift and economy of the integration procedure. 

The methods which have been most widely reported are the Hubolt 

(84), Newmark ý(135), Central difference (184) and Wilson 8(186) 

methods; of which the first three are probably the most well 

established. These methods are outlined in the following sections 

and comparisons of accuracy, together with variants of the methods, 

are subsequently discussed. 

Hubolt Integration Method 

In the Hubolt scheme (184), expressions for velocities and 

accelerations are derived by fitting a cubic through the current 

and three previous displaced states. Thus if At denotes the time 

step and subscript i refers to increment number: 

-166 -1ý - 2ý, ý-, 
1) (7a) ýtl I+ 

tJ 

ýý-Z+l ý==, ý (2ýjj - 
*jý + 4ý., ý-jj (7b) At 

Substituting in the equations of motion at time (ti + At): 

[M] ý6'*. 
tj 

ý+= [F(t; 

4EI ýk, I Al 
gives the following recurrence equations for displacements: 

Fm] , At [C +ý t2EK]) (5[M] + 3At [C]) [6ýj -(4[M] + 3At[Cj)ýSj-j 
L 62 

Atl[F(t. )ý 
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where [M], [C] and [K] 
are the current mass, damping and tangent 

stiffness matrices at time t,,,,, 

To start the Hubolt time stepping process, at t=0: 

ýý, j 
6At (2[6j 3ý6, j 6ý6-, ý [6, j) 

and 2 

Non-Linear Effects 

- 2ý6. ý (6-j ) 

Since the tangent stiffness itself depends on ý6Z-,, j 
, for 

precise results, iteration by Newton-Raphson (89) or Modified 

Newton-Raphson (53) techniques is required within each time step; 

though since the time interval is small the latter procedure should 

normally be adequate with the stiffness being evaluated at the 

beginning of the interval (t. ), or at less frequent intervals than A, 

every time step when non-linearities are not large (120). An 

alternative, suggested by Stricklin (175), is to expand the R. H. S 

of (8) in a first order Taylor series about the previous time 

increment. Thus if ýF(t, 6)j denotes all the non-linear terms in 

as well as the forcing function vector then: 

tj 
ýF(t, 6)ý + At ýF(t, 

hence, using a first order backward difference expression to 

approximate the derivative: 

+ 
[Ki, ] 2 ýF fF 
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Use of (10) corresponds to linear extrapolation of the loads at 

the two previous increments. The advantage of the method is that 

no iteration is required for the non-linear solution, though 

smaller time steps are required compared with the methods using 

equilibrium iterations. 

Newmark ý Method 

In the Newmark family of step-by-step methods two free 

parameters, y and ý, are introduced to indicate the effect of the 

acceleration at the end of a time interval on the relations for 

velocity and displacements during that interval: 

yAt 
164" 

t2 ýAt2 6-1 

If '/>! spurious damping is introduced proportional to (Y-1) 
, and with 122 

y<1 2 negative damping is introduced which involves self excited 

vibrations arising solely from the numerical procedure. Thus Y is 

nearly always chosen as 12, though an exception is a procedure 

described by Nagarajan and Popov (131) in which Y=0.5 +6 and 

This scheme preserves unconditional stability (for 

linear systems) and the effect of Y)'! is to suppress undesirable 

higher mode contributions when time steps are large. The advantage 

-1 of this is debatable (see later section), particularly in view of 

the fact that more widely verified techniques, such as the Hubolt 

method, have the same effect. 
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The most common forms of the Newmark ý method, with 

are: 

ý= Y+ which corresponds to a uniform acceleration equal 

to the mean of the initial and final values. For 

linear systems this is unconditionally stable (i. e. 

numerical instability does not occur with large 

time steps) 

6 which corresponds to a linear variation of 

acceleration in the time step. 

I 
---, . 10 ý=8 which corresponds to a step function representing 

the acceleration, with a constant value equal to 

the initial acceleration in the first half of the 

time step, and a constant value equal to the final 

for the second half. 

The latter two methods are only conditionally stable, though the 

linear acceleration method has the advantage of generally greatest 

accuracy. 

Substituting equations (11) in (7), evaluated at three 

successive times t, t. and t gives the following recurrence 4--tIl 4 t-I I 

relations: 

At EC]+ý, Lt2EKj)t6_ttj (2 EM]_A t2 (1-2 ý) EK 

2 
([Mj_AtEC]+ýAt2 [KI +At2 

(ý ýF 

-T- 

ý(1-2F(t + (F(t1 )) (12) 
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Here again [ M], [Cj and 
[Kj 

are current to time t.,,, l , and iterative 

or extrapolation methods are needed to cope with non-linearities 

as outlined previously. 

Wilson-Fazhoomand e Method 

The linear acceleration method, corresponding to y=I 0 
ý= 1"/ ,6 in the Newmark method, was modified by Wilson (186) to generate 

an unconditionally stable step-by-step algorithm for linear systems. 

A linear variation of acceleration was assumed over an interval V= 2At, 

and the solution at a time t+ At was then obtained using kinematic 

relations originating from the linear acceleration assumption. The 

disadvantage of the method was that it possessed inherent damping 

considerably greater than that required to suppress the spurious 

hiýher mode frequencies of discreteized systems. Farhoomand (131) 

further extended the method by assuming 'T' = @At, where 6 must be chosen 

with regard to the stability and accuracy of the integration. It has 

been shown by Bathe and Wilson (23) that 8 must be greater than 1.37 

for unconditional stability of linear systems and that, although 

strong damping of the higher modes is retained, integration accuracy 

of the lower modes is much improved by an optimal choice of 8. 

The Wilson 8 method has been applied by Argyris et al. (9) to the 

analysis of tension systems and compared with their own method of 

Finite Element in Time, which is considered in a subsequent section. 

Central' Difference Method 

In the central difference method the expressions for 

velocities and accelerations at time t. are: 
1ý 
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I( ý6 
i+l 2, ýt 

, Lt 2 

6-d. 
- (1 3a) 11 
J) 

- 6Z_l ý) (13b) 

Substituting these expressions into the equation of dynamic 

equilibrium (8), but written for time ti., gives the recurrence 

relations: 

([MJ+2At[C])ý6, ý.,, 
ý = (2LMj-At2[Kj)ý6ij 

IMI) ý 6.. 
-, 2 

In this case, [M], [Cj and [Kj 
are current to time tj and thus no 

iteration within each time step is required to cope with non-linear 

effects. For this reason the method is termed "explicit". To 

achieve the same accuracy as the implicit methods, however, a 

smaller time step is required and for stability of the process the 

value of this is governed by the highest natural frequency of the 

system (107). 

Finite Elements in Time 

All of the previous methods make use of a finite difference 

temporal idealization, together with either a finite difference or 

finite element spatial idealisation in forming the coefficient 

matrices [M], [C], [K]; 
usually the latter. The concept of finite 

time elements was introduced by Fried (69) who assumed that 

displacements during any time step varied as a cubic function of 

the displacements and velocities at the beginning and end of the 

increment. For linear systems this enabled a number of time steps, 

n, to be interconnected within multiple steps resulting in a system 



358 

of 2n x Nd. linear equations for the displacements and velocities: 
ý-2 6.1,6. 

--* CL 
6. 

, where N is the total IL ttj tt( 

number of degrees of freedom. This enabled more accurate results 

but entailed very large computer storage requirements and was 

thus inefficient. Fried therefore recommended that a stepwise 

solution process should be used, which had the further advantage that 

non-linear problems could be analysed using iteration within each 

step. Argyris et al. (7,9) extended this concept by assuming the 

inertia forces, R [M to vary cubically within each time step 

as functions of their values and derivatives at the beginning and 

end of the increment. The necessary relations are: 

. 
(15a) 

12 

60 

(15b) 

where: -ýR -ý -[RRA61-ECIýtfl +ýF(t--ý, 5 41 

and R, 
(-tf 

Ec 6ý F 1 1ý 
"ý 

where Rs_ýj is the internal elastic restoring force at time tý, and 

[Rý-, J and 
[Ri-, 

-, 
j are preferably assembled elementwise to avoid 

storage of the global matrices [C] and [K]. In (16) [K] is the 

average stiffness for the increment K. + Kýtj /2. 1 
. 4. 

Equations (15) cannot be solved directly since they are 

dependent on the inertial force and its derivative at t, 
-.,, , 

Hence an iterative solultion for each time step is necessary: 
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starting from the state at tý it is assumed that [R., RA 

and 
ýR_, 

-, 
j as a first approximation. This enables 

ý6--tfý 
, and ý, L6J to be calculated from equations (15). 

Whence ýRý_, j (a second estimate) may be evaluated from (16), and 

R from (17) using ý6 M]-I [R-. 
tJ The procedure is 

repeated until the results converge, with the end values of one time 

increment becoming the initial values of the next. The mass matrix 

may be assumed constant during the complete time sequence, in 

which case after initial inversion no further matrix inversions 

are required in the iterative loops. Using the above procedure for 

the analysis of cable networks, Knudson (99) found that for 

stability the time step should be less than about half of the 

smallest period of the system. 

Loading and Coefficient Matrices 

With numerical integration of the complete system of non- 

linear equations the loading at any time must be defined explicitly. 

Non-deterministic loading may, however, be partly accounted for by 

generating a time series for a typical load model that corresponds 

with a specified power spectral density (44). Numerical integration 

then accounts for the structure response. The damping matrix 
[C] 

may be derived either as a linear combination of the stiffness and 

mass matrices (53) or, more conveniently in practice, from modal 

damping ratios (187). With implicit methods it is difficult to 

form damping matrices based on the fundamental properties of the 

structural material, and it is customary, therefore, to establish 

damping properties by comparison with damping observed in similar 

structures. Usually effective damping ratios are measured in several 

modes of vibration and assumed similar to the system being analysed. 
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If both the mass amd damping matrices are diagonal (as opposed to 

consistent) then the central difference method (Eq. 14) and the 

method of finite elements in time (Eq. 15) can be handled as direct 
I 

explicit methods without the need to form or store any of the 

coeffecient matrices. This does not in fact preclude the use of 

internal damping due to visco-elastic effects since strain rates 

may be approximated either by an Euler (117) or central difference 

formulation (17). These and other direct methods are reviewed in 

the following section. 

EXPLICIT DIRECT INTEGRATION 

Central Difference Method 

The most convenient direct form of the central difference 

method is identical to the interlacing D. R. procedure outlined in 

the main text, with nodal forces compounded using natural stiffness 

of the structural elements in separated form. The use of such a 

scheme, with velocities calculated at the mid-points of time 

intervals, also readily permits the inclusion of real material 

damping due to visco-elastic behaviour as outlined in Chapter 5 

Similar schemes, though without damping and the use of 

natural stiffnesses, have been given by Witmer et al. (188) and 

Pian et al. (149) for the analysis of circular rings and beams 

using a finite difference spatial idealization, by Oden et al. (138) 

and Benzley and Key (28) for the analysis of non-linear membranes 

idealised respectively into constant strain and cubic curvilinear 
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isoparametric elements, and by Krieg and Key (103) for the 

investigation of transient shell response. Belytschko et al. 

(26,27) use a fully direct central difference integration scheme 

for the analysis of a very large soil/structure interaction 

problem with explosive loading, idealized as a mesh of plane finite 

elements. They incorporate Coulomb friction effects for sliding 

interfaces and artificial viscous damping to reduce spurious 

oscillations of high frequency components. The latter damping is 

expressed as a proportion of critical for the highest modes and 

introduced through element stress rates. The convected co-ordinate 

system which they use for generating element stiffnesses (for beam, 

triangular and rectangular elements) permits gross deformations though, 

in contrast to the use of natural stiffnesses (17), is restricted 

to the case of small strains. 

Higher Order Methods 

The central difference method corresponds to a lumped 

impulse procedure (30), with constant acceleration during a time 

step equal to the initial value. Chaudhury, Brotton and Merchant 

(52) use an interlacing version of the Newmark linear acceleration 

method 

With linear accelerations assumed in the interval t- ý't/2 to 

t+ A2 /2 velocities are calculated at these mid-intervals and 

displacements and accelerations at the end t, t+ At .... The 

scheme is then approximated to give an explicit method: 
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1. Calculate 

2. Evaluate member forces and residuals ýRj at t+At 

using the approximation: 

+ 
I 

t=t+At 

3. Calculate 

- I- 

from j 

{LE = I with approximation: 

4. Calculate ý6 ýt+dt =+ 

aýfl 2 

t2 

24 

The difference between the above scheme and the velocity formulated 

central difference process is essentially step (4). It may be 

noted that the approximation in (3) affects only the damping force 

and that the approximation in (2) is not cumulative since ý6ýý, 
4t 

is recalculated at step (4). The method was applied in reference 

(52) to non-linear dynamic analysis and, with high viscous damping, C1 

to obtain the static solution of a portal frame problem. It was 

compared with the Newmark implicit integration method and considered 

to be more efficient. 

Harztman and Hutchinson (77) investigating the transient 

analysis of plane structures subject to material and geometric 

non-linearity used the following 3rd order algorithm: 
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At 5 [61t 
If Tf 

(lumped masses and therefore no 
mass matrix inversion) 

+8 

=++ 

6L 

=- 

Hence incremental and total strains 

-Iý, Iý -7-z, ýj 
- 

Hence incremental and total stresses 

Hence internal forces 

For calculating element stiffnesses and hence nodal forces they 

used a convected co-ordinate system which allowed for the 

development of fairly large plastic strains; the elastic and plastic 

strain increments being updated in parallel and assumed to be additive. 

Fu (70) developed a self starting explicit integration method 

with a 4th order (global) truncation error. The method was applied 

to obtain both transient and damped static solutions for a 

pressurized cylindrical shell. Numerous other integration methods 

exist, such as the Runge-kutta methods and the Adams, Milne and 

Moulton predictor-corrector methods (85). All of these fourth or 

fifth order methods however, whilst more accurate than the 2nd order 

central difference procedure, require a smaller time step for 

stability and involve more complex computations. 

Eu-Ze. r Me thods 

Because of its simplicity when applied to direct integration 

of structural problems, particularly when dealing with creep and 

plasticity effects, a number of researchers have preferred a first 
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order Euler extrapolation technique. Koenig and Davids (100,101) 

describe such a process for the transient analysis of internally 

damped, shear corrected, beams and plates; and also derive non- 

linear static solutions using viscous damping. Malone and Connors 

(117) generalized this procedure, for the anlaysis of finite 

element plane stress/plane strain problems, to account for creep 

and plasticity effects. With equations of dynamic equilibrium in 

the form: 

= 
{F} 

- {F 

internal forces, F., I, are computed using characteristic matrices 

for each element which give strains and strain rates in terms of 

nodal displacements and velocities, and nodal forces in terms of 

generalized stress quantities derived from elastic strain components. 

The computation procedure takes the following form: 

Initialization: Form characteristic element matrices 

Kinematics: Compute element strains and strain rates14 

Material: Compute element stresses using appropriate 
Loop on 

constitutive relation Elements Loop on 
Time 

Equilibrium: Form internal force vectors and system 

internal force vector 

Integration: Form accelerations and extrapolate to 

velocities and displacements at next 

time increment 
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The above technique was applied to the transient response of an 

earth dam subject to ground accelerations, with damping accounted 

for by means of a three element visco-elastic model. A model was 

also given for Coulomb damping 

more accurate iterative Euler scheme (predictor-corrector) 

was used by Myklestad and Lawrence (130) for transient beam response 

calculations: Accelerations at a time t were assumed constant and 

integrated over the time interval to obtain a first estimate of 

displacements and velocities at time t+ At. The moments and 

shears calculated from these displacements then gave a first estimate 

of accelerations at time t+ At, and an improved estimate of 

displacements was obtained using the average of accelerations at t 

and t+-, ý t. Iteration was continued until no significant change in 

results was observed and the resulting quantities were then used as 

initial values for integration over the next time step. 

Of the available explicit methods the central difference 

process has been most widely applied and lies, in terms of accuracy 

and complexity, between the simple Euler method and the higher order 

of predictor-corrector methods. It has also been shown by Krieg (102) 

to have the highest stable time step. 

COMPARATIVE STUDIES OF INTEGRATION METHODS 

For the transient analysis of simple cable structures subject 

to gross deformation, Argyris et al. (9) have compared the Wilson 
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method with their method of finite time elements with cubic 

acceleration formulated as both a direct and a matrix method. 

fourth order Runge-Kutta explicit integration scheme was used as 

the basis for comparison; the latter method, with a very small 

time interval, being assumed exact. The methods were tested for 

plane network strucutres in which cables could slacken and compared 

with the same network with compression allowed in the links so that 

no buckling occurred. With buckling, smaller time intervals were 

necessary and the Wilson 8 method (unconditionally stable for 

linear problems) became unstable with a sufficiently high time 

interval. At the same interval the direct integration method and 

the matrix method were stable; the former being considerably more 

accurate than the latter. Without buckling, however, the Wilson 

method was stable for time steps of 3x the maximum value at which 

the direct integration method became unstable. There was, in this 

case considerable period elongation such that after only 41 periods 2 

of vibration the system was exactly opposite in phase to the exact 

solution. 

Other than the above study, which demonstrates the limitations, 

when applied to non-linear problems, of methods traditionally 

assumed unconditionally stable, there have been no reported stability 

and accuracy comparisons of different integration schemes applied to 

tension structures. A large number of comparisons have, however, 

been carried out for other non-linear systems idealized into finite 

elements; particularly in relation to dynamic buckling of a spherical 

shell cap subject to geometric and/or material non-linearity (24,175, 

131,120). Stricklin et al. (175) examined the Hubolt and Newmark 
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mean acceleration methods (both unconditionally stable for linear 

problems), and found that with sufficiently high time intervals 

both methods became unstable; though the Hubolt method was stable 

for time intervals 3x the maximum stable values for the Newmark 

method. The Hubolt method, however, exhibited considerable 

amplitude decay and the instability was caused largely by the load 

extrapolation technique used. Bathe et al. (24) examining the same 

problem with the Wilson 6 and Newmark methods found that both 

approaches required equilibrium iterations at each time step to avoid 

large errors or instability. McNamara and Marcal (120) used the 

Hubolt scheme cast in incremental form with following load correction 

terms to account for the lack of balance at the beginning of a time 

s tep. Controls were introduced to avoid the generation of the 

stiffness matrix at every time step and thus uncouple the physical 

modelling from the smaller time step required for numerical accuracy. 

They found that this scheme, with reassembly every five time steps 

and load corrections at every step, was stable for time intervals 

6x the critical value for central difference integration, and that, 

for the same accuracy, the scheme allowed time steps an order of 

magnitude greater than the Hubolt scheme with load extrapolation and 

a total displacement finite element formulation. 

Computational Efficiency 

Concerning the efficiency and accuracy of the various 

integration schemes, opinions differ; particularly on the question 

of the relative merits of implicit and explicit methods. Wu and 

Witmer (191) investigating the response of impulsively loaded beams 
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undergoing elastic-plastic material behaviour compared the 

central difference explicit method with the Hubolt and Newmark 

mean acceleration implicit methods. Reliable results by the 

central difference method were obtained using a time interval 99% 

of the critical value, and results of similar accuracy were 

obtained by the Newmark and Hubolt methods with time intervals 

respectively two and four times this vAlue. With higher time 

intervals the results using implicit methods degraded badly. They 

concluded that, despite its contamination by artificial viscosity, 

the Hubolt method was probably most efficient. For a similar problem, 

however, Weeks (184), using large but stable and identical time steps 

for all three methods, considered that the Hubolt method was too 

damped to be of any value. Results obtained by the central difference 

and Newmark methods were both acceptable, though the former exhibited 

artificial attenuation and the laaer some phase shift. With large 

time steps all of the methods were found to be unstable when using 

load extrapolation, and although the implicit methods became stable CD 

if equilibrium iterations were applied they were computationally more 

efficient with smaller time steps and extrapolation. Weeks concluded 

that the central difference method was most efficient for such 

problems. Park (147) also compared the Hubolt and Newmark mean 

acceleration methods for non-linear problems and found that whilst the 

former was unconditionally stable, the latter was not. In order to 

counteract the artificial viscosity 'in the Hubolt method he introduced 

a modification which induced negative damping. The generality of this 

process is, however, questionable. 
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For the analysis of flexible membrane structures, Oden et al. 

(138) suggest that the advantage of unconditional stability in some 

implicit methods is overshadowed by the need to solve a complete 

set of simultaneous equations at each step, and that the time step 

required for accurate modelling is usually as small as that required 

for numerical stability of explicit schemes. Krieg and Key (103) 

compare the accuracy of explicit central difference integration with 

a family of implicit schemes for modelling the frequency response of 

membrane and bending deformations. For equal computational work the 

central difference process with lumped masses is shown to be more 

efficient than the best available implicit scheme. Johnson and Grief 

(93) consider a wider class of problems and conclude that the central 

difference process is most efficient when the response varies rapidly, 

whereas the Hubolt method is more efficient for slowly varying 

response. For tension structures involving gross deformation, and 

where the state may change significantly from one time step to another 

due to cable slackening or membrane buckling, it thus appears that 

explicit methods are likely to be most efficient. 

Artificial Viscosity and Structural Idealization 

The maximum time step in conditionally stable methods is 

governed by the highest frequency of the system, which in turn may be 

dependent on the use of a fine mesh idealization in localized areas, 

yet the overall dynamic response may be governed largely by the lower 

dominant modes of the system. Unconditionally stable implicit 

methods generally allow higher time intervals but in doing so may 

filter out the high frequency responses. Associated with this 

filtering out effect is an artificial damping of the system which 
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results in amplitude decay and period elongation. This occurs for 

example in the Hubolt and Wilson E) methods. In the Newmark method 

with ý= 1/4 period elongation occurs but without amplitude decay. 

The high frequency responses in the latter case are not filtered 

out and large errors may occur in their associated periods. 

Bathe and Wilson (23) and Nagarajan and Popov (131) suggest 

that the filtering out of the high frequency response from a 

solution may be beneficial since it allows one to obtain, with a 

relatively large time step, a total system solution in which the 

low mode response is accurately observed. In this case numerical 

integration methods for non-linear systems are quite equivalent to a 

mode superposition analysis (for linearized systems) in which only 

the lowest modes of the system are considered. 

In view of the above considerations it would seem appropriate 

to use fictitious masses in explicit integration methods such that 

higher time intervals may be used whilst retaining true mass components 

associated with the more flexible degrees of freedom of the system. 

Thus the dominant frequencies should be preserved and, in effect, the 

procedure should have an effect equivalent to the methods of 

reduction for modal superposition analyses. For tension surface 

structures such as spatially curved networks or membranes this would 

entail the use of a variable co-ordinate system with one axis always 

normal to the surface. Mass components associated with the normal 

direction would then take their true values, with the other 

components being chosen to satisfy stability for a time step governed 

by the highest frequency normal to the surface. 
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APPENDIX D 

'COLEVIEW 
OF DYNAMIC RELAXATION AS AN ITERATIVE METHOD AND THE CHOICE 

OF OPTIMUM ITERATION PARAASTERS 

The development of DR is reviewed and compared 

analytically with other iterative methods. Techniques for 

selecting the optimum mass and damping coefficients are discussed, 

and the continuous alteration of these parameters in highly non- 

linear problems is considered. 
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The concept of Dynamic Relaxation as an explicit 

solution technique for the static behaviour of structures 

originated from an analogy drawn by A. S. Day with tidal flow 

computations he had previously carried out with J. R. H. Otter (140). 

Equations of fluid motion and continuity were replaced 'respectively 

by equations of damped structural motion and the constitutive 

equations of elasticity in separated form; the latter being 

permitted by the use of a central difference formulation. The 

non-linear static solution of structural problems was then 

regarded as the limiting equilibrium condition of heavily damped 

structural vibrations. Newmark (135) had previously commented 

on the possibility of obtaining static solutions in this way, 

but his suggested use of an implicit integration scheme put the 

technique at a disadvantage compared with the standard matrix 

methods for non-linear structural analysis and DR in explicit 

form (114). In the earliest applications of DR (141,60), stress 

increments were determined from velocities and it was possible 

for small round-off errors to accumulate. Subsequently the 

method was amended so that stresses were calculated at each 

stage from the total displacements, thus precluding these errors 

(143). 

The most common form of DR, using both a spatial and 

temporal finite difference idealization, has been applied to a 

variety of linear elastic problems including, at an early stage, 

pressure vessels (141), cylindrical arch dams (143), thin plates 
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(61,156), thin shells (49) and orthotropic sandwich plates (22). 

Non-linear material effects were first included by Holland (83) 

who examined local stresses in prestressed concrete end blocks 

up to cracking of the concrete. Large deflection behaviour of 

plates under in-plane transverse loads has been examined by 

Rushton (157,158) using both stress function and displacement 

solutions, again cast in finite difference form. 

Finite element spatial idealizations of DR have been 

- less widely used, though Day included an illustration for linear 

plane frames in his original paper (60). Lynch, Kelsey and Saxe 

(1 14) applied DR to two dimensional finite element analyses 

using constant strain triangular elements and an overall stiffness 

matrix formulation. Brew and Brotton (34) used the method for 

the analysis of plane frames subject to large deflections, elastic 

instability and plasticity. Their formulation employed separated 

equations of equilibrium and compatibility (or motion) and did 

not require the formation of an overall stiffness matrix. 

The first application to tension structures with 

geometrically non-linear behaviour was published by Day and 

Bunce (62). They described the analysis of an initially plane, 

I 
unstressed, rectangular cable net subject to a central point 

load, and emphasised particularly the advantages of the method 

in dealing with zero stiffness situations which in implicit 

analyses would lead to a singular stiffness matrix. The 

application of DR to form-finding and the analysis of spatial 

networks and membranes was reported on by the author (13). And 

subsequent papers on the subject form the main chapters of this 

thesis. 
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Assessment of DR as an Iterative Method 

Theoretical assessments of DR as a simultaneous method, 

the choice of optimum iteration parameters relating to time 

interval, mass components and damping factor, and comparisons of 

convergence rate with previously developed standard iterative 

methods, ' have been given by a number of authors. For the most 

part these assessments have been restricted to finite difference 

spatial idealizations of linear elastic structures with 

particular types of mesh and governing equdtions. 

Otter, Cassell and Hobbs (143), using a finite 

difference idealization, considered the progress of the 

calculations as a wave which must outrun the wave corresponding 

to the physical problem and used an expression for the critical 

time step given by Forsythe and Wasow (66). If C denotes the 

faster velocity of either the pressure, or shear wave, which 

depends on the elastic constants and mass density of the 

structural material, the critical time step is given by: 

At< 

where ýx, .# Axm are respective mesh lengths in co-ordinate 

directions I .. m. 
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In the same paper, assuming an exponential function 

for the damped wave equations, the following expression for 

the optimum convergence rate of DR was 0 obtained: 

N 
2-Kcr/2 
2 +K' 

,, r 
/2 

where X is the ratio of successive error vectors and Ký,,., ls as 

defined in the text of this thesis, with the subscript cr 

denoting critical damping in the fundamental mode; the latter 

being derived by trial runs. 

Dynamic Relaxation was shown to be equivalent to the Frankel 

or second order Richardson iteration (68), and a comparison 

of the above convergence rate with those for the three basic 

iterative methods, namely the Jacobi, Gauss-Seidel and 

Successive Over-Relaxation iterative methods, was also given 

for the particular case of the two-dimensional Laplace equation 

in finite difference form. It was concluded that SOR has a 

faster convergence rate for linear problems of this type, but 

that DR had alternative advantages in its capacity to deal with 

complex problems through the simplification of boundary 

conditions resulting from the use of separated equations. In 

the discussion of the paper (143) Welch and Postlthwaite 

suggested the use of fictitious densities or mass components 

such that the time interval was the same proportion of the 

critical value for each degree of freedom; this having the 

effect of better conditioning the system of equations. This 

was later investigated by Rushton (157) and Cassell (50) and 

has subsequently been used in the majority of applications. 
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Further comparisons of DR with the basic iterative 

methods using finite difference formulations have been given 

by Wood (143 , 189), Otter (142) and Casselý et al (49,51). 

Cassell (50) also gives a comparison of DR with the Frankel 

iteration scheme to obtain optimum parameters. A similar 

comparison, in finite element form, is given in a subsequent 

section. Hodgkins shows that DR is similar to the Chebyshev 0 

semi-iterative method provided that mass components are 

adjusted so that they are proportional to the direct stiffness 

components. The Chebyshey iteration incorporates a variable 

"damping" which starts at zero and is increased progressively 

to a steady value in order to optimize convergence, and 

Hodgkins suggests that the rate of convergence of DR might 

analogously be increased by using non-linear damping or 

internal damping. (The latter aspect is considered in Chapter 

though there it is the real material damping) . Hussey (143) 

and Wood (190) also compare DR with a degenerate Chebyshey iteration, 

and the latter shows that DR has a faster rate of convergence by 

a factor of 4--2--' for well triangulated structures. This 

comparison assumed the use of fictitious mass components equal 

to the corresponding row sum of moduli of elements of the 

stiffness matrix, and damping and time interval optimized as 

in the Frankel iteration scheme in terms of the maximum and 

minimum eigenvalues (see following section). 
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The determinations of critical time steps have in 

general been based on similar considerations to those 

originally given by Otter, including cases where stability 

is governed by flexural waves (157). Essentially, the time 

step is dependent on both the highest and lowest eigenvalues 

of the system, but in cases where these values differ 

considerably, which is normally so with finite difference 

formulations, this reduces to the physical heuristic of the 

progress of calculations outrunning the physical wave, for 

which simple expressions are available. 

The determination of the critical damping factor is 

a more difficult task since it entails the prior determination 

of the lowest natural frequency of the system. For structures 

which are not grossly non-linear a standard eigenvalue analysis 

may be carried out and, since only the lowest frequency is 

required, this may be achieved with reasonable economy (30). 

Most investigators, however, - have based the estimate of Kcrit 

on inspection of the deflection output obtained from an undamped 

or lightly damped trial run. Rushton (156) suggests tracing 0a 

the total kinetic energy of the system which has the advantage 

I of the that the first peak may be obtained in approximately 4 

fundamental period, as opposed to I the period required for 2 

deflections. In either case, however, the traces obtained may 

be somewhat irregular and require several periodS to enable a 

reasonable estimate of the lowest frequency component. An 

alternative to this simple inspection process is to decompose 

the traces at one or more nodes by fourier. analysis (114). 



378 

This was shown in Appendix 2.1 to provide an accurate value and 

does not require much computation. Furthermore it gives an 

estimate for other dominant frequencies which, particularly for 

tension systems and lightweight dynamically responsive structures 

in general is necessary design information. 0 

Comparisons Of DR with other iterative methods using a 

finite element spatial idealization have been given by Lynch, 

Kelsey and Saxe (1 14) and Brew and Brotton (34). In both cases a 

more general assessment than other finite difference comparisons 

is given since the problem is posed in matrix form as the solution 

to a set of linear equations, with the iteration scheme analysed 

by considering displacement error vectors. For linear systems it 

was concluded by both groups that SOR had a convergence rate 

twice that of DR. The theoretical assessment was not extended to 

non-linear systems though on the basis of numerical comparisons 

for such problems Brew and Brotton suggest that DR is more stable 

with greater control on the path to solution. They also 

investigated DR used in successive form, as opposed to the standard 

simultaneous form, and found the method to be as fast as SOR; 

though the advantage of greater stability of the process would 

presumably not then apply (35). 

DR solutions for linear plane frames were also compared 

by Brew and Brotton with a direct stiffness solution and the latter 

was found to be two or three times more efficient; though strict 

comparison was not viable since the stiffness program was developed 

to a more sophisticated level. For non-linear frames a matrix 

iteration scheme with incremental loading (121), again more highly 

developed than the DR program., was found to be more efficient for 
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small non-linearities but less efficient when the non-linearities 

became more pronounced. Mass components in the DR process were 

taken as proportional to the corresponding leading diagonal of 

the stiffness matrix, and for non-linear sway frames without 

cross-bracing the conditioning of the system of equations was 

further improved by the use of "block operations". For such 

frames the overall lateral stiffness is low, but for a chosen 

value of time step, fictitious masses in the sway direction would 

be governed by axial stiffness of the cross beams. Since this 

is high the mass components for lateral movement of the columns 

would also be high and thus the fundamental period and the 

necessary time for convergence to a solution would be increased. 

This problem was avoided by changing the variables such that the Z: ) 

column sways were combined into one degree of freedom, and 

relative motions were accounted for as separate degrees of 

freedom with differing fictitious masses associated with them. 

Mathematically this corresponds to changing the co-ordinates of 

the system to something more nearly approaching normal co-ordinates. 

A similar problem which occurs in some double layer tension 

systems with stiff spreaders or short ties was indicated in 

Chapter 3 and solved using fictitious stiffnesses and a force 

transfer process. Whilst this provided a general approach 

independent of member orientation it suffered from the need for 

the calculations to be critically damped. 

Lynch et. al. gave a very comprehensive comparison of DR 

in finite element matrix form with the basic iterative methods. 
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A comparison of the standard explicit central difference form of 

DR with an implicit form was also given and the latter was shown 

to be less efficient. The explicit form was then applied to a 

series of plane stress problems with cut-outs using simple 

triangular finite elements. A major feature of their investigation, 

referred to in a subsequent section, was the use of an on-going 

alteration of the iteration parameters. 

Both of the investigations of DR in finite element form 

referred to above obtained optimum iteration parameters (relating 

to time interval and damping factor) each of which were functions 

of the maximum and minimum eigenvalues, implying the need for 

prior or on-going determination of these values for efficient 

convergence. The simpler criterion for the time interval derived 

in Chapter 2 (14) by considering relative nodal velocities in the 

limiting condition is, however, direct and has been found to be 

accurate. In the following two sections this approach is 

correlated with the optimum parameters for the Frankel iteration, 

and a direct, or non-matrix, derivation of convergence rate. 

Choice of optimum Iteration Parameters by comparison with the 

Frankel Iteration 

From Chapter (2) Equetion (3a), adjusted to account for 

fictitious masses at each node in each co-ordinate direction: 

t tc, t: 1 t: -ßi7/2. 
vR+B. Vxi 

whe re A At B1 -K x4. 

Mxi(I+K'/2-) 
.1+ 

iý/2, 
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Multiplying by Lt gives a recurrence equation for displacement 

increments: 

A6 
tt At Rb + (I-K' /2-) t 

L6 t M(I+K77)' (I +K' / 7-) .I t-4ý 
(1) 

where suffixes xi have been omitted for convenience. 

Equation (1) has been defined as dynamic iteration by Otter et al. 
(143). It was first proposed as a recursion formula by Frankel 

(68) with the optimum form of the iteration given by 

rL 
ý-b 

n-I a+ ýa + ýb 

Comparing (1) and (2) gives: 0 

4 (3) and K' 41 a-b-% (4) 
a+b a+b 

where a and b are respectively the numerical values of the smallest 

and largest eigenvalues of the stiffness matrix of the structure being 

considered. 

An upper bound for b may be determined by Gershgorin's 

theorem (50) provided the stiffness rratrix is symmetric with a 

dominant leading diagonal: 

b<b(j. = max 4'. EI Sij 
jz j, n 

where Sij are all the elements in row i of the stiffness matrix, 

and the largest n=erical s= (for any i) is taken. 

If all other masses, M,,,, are adjusted so that: 

Mh Mi M 
I skjl b Gý E (sl 
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and the structure is such that a+ b<b( with a<<b, which will T 

often be the case, then (3) gives 

At 
(5) 

This may be compared with the criteria derived directly in 

Chapter (2): 

IM Fýs-m (6) 

Here, however, S is the direct stiffness (or leading diagonal 

component) relative only to adjacent nodes., and when all mass/ 

direct stiffness ratios are adjusted to be identical the lower 

bound, ý2M/S, is the appropriate criterion. The drawback of 

(5) is that a lower bound to ýt,, jt is not available, though 

for the majority of structures with dominant diagonal stiffness 

components the value of ýt given by (5) will lie between the 

limits of (6). For cable network and shallow membrane structures, 

however, this will usually not be so. Davidson (50" ), describing 

shell buckling analysis by DR, gives an "initial disturbance" 

process for calculating 
JM/S This, however, fails 

when mass components are optimized. 

An alternative expression for the critical time interval 

is: 

At 
I 

Tr f 
rnax 
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where f 
Max 

is the maximum frequency of vibration. 

From (4) if a<<b: K--"4A[(a/b) 

which, if all mass components are made proportional to the 

corresponding direct stiffness components, may be expressed as: 

K4f 
f 

Max 

47Tfmýxt 
*'ýtcrLt (7) 

This agrees with the optimum value of K' based on the dynamic 

heuristic of critically damping the fundamental mode. Rushton 

(156) shows that when this is so all other modes are adequately 

damped in converging to a solution. 

Convergence Rate 

The optimum assymptotic convergence rate of the DR 

iterative procedure may be examined in the following way, which 

corresponds with the direct derivation of the time interval 

criteria given in Chapter 2, without recourse to matrix 

eigenvalue analysis. 

If the mass/stiffness ratios of all nodes of the structure 

in each co-ordinate direction are made identical, then the 

expression for relative velocities of adjacent nodes i and in 

successive time intervals, as given by equation (16) in Chapter 

(2), may be multiplied by ýt to give corresponding relative 

deflection increments: 
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A6 
C+Idt 

- (B' A6t+6t7 I t: 1 ý1+6c Xýk X-cit +B A6;, 
ýk_ =-Axio 't (Sxý 

. 2A6 
xik 

it +. a L- 
vx, 

ý where 
-4 It x1t) 

+ zo t: 
B Xk + (B' +1) A At. s xi 

(B' + 

A At 
, and since all 

'x4 
are identical, the 2m , X4. mxý' 

optimum value of At is Ar2M77/S7xý Equation (8) thus reduces to: 

C. + zat t- 
A6 

-iix +B 
M)czk 

t+ 41C A6 (B +1) (9) 
X0. 

The assymptotic convergence rate, ý, of the iteration is 

defined as the ratio of successive errors in deflections: 

t: +at t, +4t t7 1. Icýt 
x=ý : CZ - 6mi 

- 
E: ci =E xý 6 t. 6 tr+aL- 

xt XLZ ; ci 

or 

where ', j- ., 
is the true deflection. 

The first term on the L. H. S. of equation (9) may be 

written: 

+ t7t6c! - 

a x - 

(10) 

Since we are dealing with relative deflection changes in succesive 

time steps (the signs of which reverse in accordance with the 

for all nodes i 

derivation of the stability criteria in Chapter (2)) we may, for 
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the purpose of examining the eventual convergence rate, associate 
6 with the true relative deflection, 

Sx 

. ýt, =- 6xt, ), which gives: 

A5 
ý-t2.4Lýt 

A, lt y- (6xi 
- -ý x- -)-(5 76 t+eNtr t-6-8 

t. c Dividing the numerator and denominator by x 

and using equation (10) gives: 

cl+2zt" 
A-6 x ('. tL 

17t at; 
Xýk 

Similarly, the second term on the L. H. S. of equation (9) may be 

written as: -B A2. The equationthus becomes: 

X4 _ X2 (Bý +I) + Bý =0 

The least positive root of this gives 
IT Thus the optimum 

convergence rate of the dynamic relaxation iteration is: 

=I -K 
/272 

1+K' /L) 

This derivation assumes that the process has been optimized using 

fictitious masses and a critical time interval. Taking also the 

optimum value of K' given by equation (7): 

4f 
f 

MO-X N-7 

where N is the conditioning number of the stiffness matrix 

(ýblý/a ), we obtain: 
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opt. -I ýl +2 N -+I 

Lynch et. al. examined the convergence of dynamic 

relaxation in a mathematically more rigorous way by transforming 

the iterative process into a standard matrix eigenvalue problem 

for error vectors. In principle this type of convergence analysis 

takes the following form: 

From Appendix (A), any of the iterative procedures may be expressed 

in the form: 

ý6ý k-ti 
= 

ý6jk [K] [61k) 

Ik"I 
= 

16 JL (13) 

Subtracting the true solution from equation (13) gives the relationship 

between successive error vectors: 

= [M][ (14) 

whe re 
( 

E: I 
it 

= 
tflk 

- 
ý61 

and 
ý61 is the true solution vector. 

Considering an error vector of such form that it is changed in 

magnitude only, by a factor X, during each iterative step: 

[61=x (6 1' 

Thus from equations (14) and (15): 

[X[, ] - 
Imi]feý = 

Then for convergence the modulus of all the eigenvalues of 
[M] 

from (16) should be less than I and the iterative procedure is 
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optimized by choosing the accelerating parameters incorporated 

in [M] such that IX, I=IýI. The expressions for these 

accelerating factors and the convergence rates are then obtained 

in terms of the maximum and minimum eigenvalues of [K 

The direct convergence analysis given previously 

contrasts with the above error vector approach in that it must 

be assumed a priori that fictitious mass components have been 

optimized and thus that all nodes are equally responsive with 

relative displacements out of phase; this same assumption having 

been made to obtain directly the stability criterion governing 

the choice of masses. The results given by Lynch are summarised 

in the following table: 

Simultaneous Methods Successive Methods 

Point Jacobi Gauss-Seidel 

N-I 
=(N _ N+I ýT+ , 

D. R. S. O. R. 

771 A7N+ TI) 

From this comparison, given for linear structures with tri-diagonal 
0 

stiffness matrices, it car. be seen that the reduction in the 

error vector accomplished in one cycle of the Successive Over- 

Relaxation method takes two cycles in the Dynamic Relaxation method. 
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The same relationship exists between Gauss-Seidel and Point Jacobi, 

though DR is faster than either of these methods. Lynch also 

obtained results for the optimum parameters of DR which agreed 

with those given in equations (3) and (4). Similar comparisons 

of DR with other iterative methods, as referred to previously, 

have been given by Otter, Wood and Cassell for finite difference 

formulations. 

The foregoing sections on optimum parameters and 

convergence rate demonstrate that the dynamic heuristic for the 

iteration procedure is soundly based for all cases where N>>l . 

This will nearly always be the case though exceptions may occur 

when using approximate analyses in which only the dominant 

deflection components are considered. Summarising, for complete 

analysis of practical structures with a<<b, DR is optimized 

when fictitious mass components are chosen such that M,,. ý = At 2. Sý,, ý /2 

for all x and i. and the damping factor is: 

Automatic Adjustment of Mass and Damping Parameters 

In the majority of applications of DR fictitious masses 

have been adjusted at the start of the analysis and held constant 

throughout. Whilst for most structures this is satisfactory, in 

highly non-linear problems with large changes in geometry or 

member stiffnesses it may be advantageous to alter the mass 

components as the analysis progresses. An example of this, in which 
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it is essential to do so, is given in Chapter 8 where the DR 

optimization process entails changing member areas. Continuous 

mass adjustment could also be of value in speeding the 

convergence of form7finding of tension or grid-shell structures. 

Whilst adjustment of masses according to equation (6) for a 

given time interval entails little additional programming, 

estimating the lowest frequency or eigenvalue is more involved. 

Instead of seeking such an estimate, the parameters Aý' and BI mi gh t 0 

be sought directly using the dynamic relaxation process itself to 

provide updated values as the analysis progresses. Referring to 

equation (12): 

and ultimately, after a sufficient number of iterations, this 

convergence rate may be expressed in terms of the incremental 

deflection vectors as: 

x=- ý6 ý"w 
- 

[A61,7 1,7 - [6 
(17) 

Thus, assuming an on-going alteration of Bý an averaged estimate 

of this parameter (which is common for the entire structure) may 

be obtainable using the expression: 

A6ýj+l (18) 

Estimating a value for X2 based on an average for the preceding 

(m+1) time steps (where m>1) should avoid the possibility of an 
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ill-conditioned estimate which might occur if only two successive . 
time steps were used. 

are then given by: 

N 
Axý = At 

2Mx. ý 

Lynch et. al. ( 114) suggested the use of an on-going 

(19) 

alteration of the iteration parameters (equivalent to- A-N,., N) 
. and B 

based either on equation (17) or iterative determination of the 

minimum eigenvalue, and investigated the efficiency of the latter 

method on the basis of convergence rate with checks made at 

intervals during the analysis. Starting with a rough estimate 
I 

for the damping, when a check on the curvatures of the deflection 

vector norms for each co-ordinate direction indicated that the 

process was overdamped, a change in parameters was made. 

Similarly, changes were made every time an alteration in the sign 

of a displacement norm indicated underdamped behaviour. Their 

analyses were for linear structures only, and conclusions were 

uncertain to the extent that large adjustments could take the 

parameters beyond their optimum values and give inferior 

convergence to that of analyses using constant parameters in the 

correct region. Also, no comparison was given on the basis of 

computational effort. The process did, however, allow automatic 

adjustment of the damping and generally improve the convergence 

rate in cases where a poor first estimate of the minimum eigenvalue 

Updated values for the nodal parameters 

(or damping) had been made. 



391 

For non-linear structures, with large changes in 

geometric or elastic stiffnesses, similar techniques could prove 

even more valuable but must be taken a stage further with 

simultaneous alteration of both the parameters B\ (and Axý ) and 

the fictitious masses. The latter evidently directly affect 

the lowest natural frequency (or critical damping) and hence B 

in addition to the changes in this parameter necessitated by a 

poor initial estimate and alteration of the overall stiffness 

to deformation in the fundamental mode shape. Both parameters 

are also coupled in calculating the values of A, \. ý from equation 

(19). 

In any of the methods considered for automatically 

determining B% it is necessary to have some starting estimate 

of the fundamental frequency. Although the use of trial runs 

may at first appear analytically crude, it should be borne in 

mind that it is usual to carry out preliminary analyses during 

the course of the design of a structure which may be based on 

a fairly coarse element idealization. The fundamental frequency 

can thus be obtained at these stages and should not be altered 

significantly by the use of a fine idealization. Furthermore, 

knowledge of the fundamental frequency may be of value at 

early stages of design, and the progress in successive stages 

from a coarse to a fine idealization is useful for obtaining 

information concerning convergence and accuracy of the spatial 

idealization. In practise, therefore, estimating the critical 

damping of a structure involves computations which have other 

uses. 
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The additional computations involved in estimating 

the fundamental frequency may alternatively be eliminated for 

purely static analyses if use is made of a technique suggested 

by Cundall (56). He uses step function damping in which no 

viscous damping is applied but the kinetic energy of the 

system is followed. When a maximum in the total K. E. for the 

structure is reached all velocities are set to zero and the 

system restarted from this displaced state. For a linear 

system oscillating in only one mode this state of stress would 

be the desired solution. In practise, however, this process 

must be continued through several further peaks until the K. E. 

from all modes has been eliminated. The process is apparently 

i very rapid: Cundall. quotes only 2 period required for sufficiently 

accurate results to some problems; evidently implying that 

velocities are zeroed at every local peak of the K. E. It also 

has the advantage that no trial runs are necessary to obtain 

critical damping. This is achieved automatically. The use of 

"kinetic damping" in forur-finding applications has been investigated 

by Wakefield (198) who found that very large initial out-of-balance 

forces could be accommodated without the need for reduced stiffnesses 

which otherwise are required when using viscous damping. The two 

approaches are compared in the following sub-appendix which illustrates 

the form-finding of a funicular lattice shell carried out by the 

author for a design by Frei Otto. 



393 

APPENDIX D. I. 

FORM-FINDING OF A LATTICE SHELL DOME 

The following example is given for two reasons: firstly 

it is the only example of its type in the text and shows that 

for hanging network mechanisms form-finding computations by DR 

may be much lengthier than for Prestzessed systems of equivalent 

size; secondly it demonstxates the potential value of kinetic 

damping in dealing with large initital out-of-balance forces or 

changes in topology. The description is taken from reference 

(710). 

The lattice shell dome was treated as a pin-jointed 

mec anism and a solution was obtained to the inverse problem of 

finding a tension funicular system with dead weight loads reversed 

in sign. The dome was supported internally on six branched 'tree' 

columns and externally on an elevated, lobed, boundary ring 

(sectional elevation - figure 8). The proposed structure is 

approximately 70m in diameter with a tubular steel hexagonal mesh 

in which the majority of members are 1.5m long. For preliminary 

form-finding a hanging chain model was constructed by Frei Otto 

at the Atelier Warmbronn, Stuttgart, and from photographs of the 

model the required mass components for the DR analysis were 

estimated, The structure was six fold rotationally symmetric and 

thus only a 1/12 segment with about 400 degrees of freedom was 

analysed. Plan and elevation of the initial geometrical data are 
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shown in figures la and b. Symmetry of the analysis was imposed 

by reflecting the co-ordinates of nodes adjacent to the 300 line 

at each stage, and by assigning very large y direction mass 

components at nodes lying along the x axis. 

Viscous Damping Solution 

The thicker lines in fig. 1 represent links (mainly 

connecting to specified boundary points) in which, to comply with 

the initially flat surface grid, the extensions from required 

lengths and the resulting out of balance forces, if based on 

correct EA values, are very large. To cope with this situation 

the areas of these members were reduced to 0.1% of their true 

values, and the analysis carried out in three stages: 

(1) 0.1% EA in grossly extended links, with very light 

damping. Run for 1000 integration steps, after 

which a very approximate shape was obtained (see 

figure 2) with surface links becoming significantly - 

strained. 

(2) 3500 time steps with greater damping (but still 

expected to be sub-critical) and the EA values of 

boundary links increased from 0.1% so that they 

approached their true value asymptotically. The 

output from this gave an estimate of the critical 

damping and the final form. 

2000 steps with true EA values and nearly critical 

damping. 
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The converged form of the structure after stage 3 is shown 
in figure 3. The solution is non-unique because the specified 
length for member AB is such that it is in compression, and point 
A may thus have an alternative position in the symmetry plan xz. 
Following further studies of the physical model the length of 
this and other members was altered and the topology of the tree 

support and the surface network above it rearranged. 

Data for the new topology was based as far as possible on 

the previous converged f orm, as shown in f igure 4, and the EA values 

of all members were reduced to between 0.1 and 10% of correct values 

in order to accommodate the large initial out-of-balance forces. In 

spite of this, very considerable disturbance of the network occurred. 

The situation after 1000 steps is shown in figure 5, and after 2000 

steps (figure 6) the configuration is stable but the splay geometry 

at the tree support has become inverted with compression in the 

spacing links. This problem could have been avoided by restricting 

forces in the links to tension only, but in doing this numerous 

full mechanisms occur during the analysis and the time step has to be 

considerably reduced. In the final phase of the analysis the geometry 

at the tree spacing links was corrected and the problem was run 

through 5000 time steps with the slack lengths (LO) of members 

adjusted at regular intervals so that the stressed lengths were equal 

to the specified values. The geometry obtained was accurate to 0-05mm 

and the residual forces to within 0.1% of the dead weight load at any 

node. *The final form of the structural segment is shown in figure 7, 

and a sectional elevation of the complete structure in figure 8. 
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It was evident during the analysis described that, because 

of the sensitivity of the structure to mechanical deformations and 
the very large initial out-of-balance forces, the form-finding 

process was considerably less efficient than for anticlastic 

tensioned networks of similar size. In consequence various means 

of increasing the efficiency of the DR analysis for this class of 

problem were subsequently investigated. These included the use of 
both close and far-coupled damping, updating the tensions in boundary 

links less frequently, the use of reduced EA values and effective 

slack lengths throughout the process, and a procedure termed 

"kinetic damping". The latter was found to be the most efficient 

method and this is examined in the following section. 

Kinetic Damping 

The analysis of the structure, irrespective of the 

magnitude of errors in the initial out-of-balance forces, was based 

throughout on true EA values and zero viscous damping; displacements 

of the system being controlled by re-setting velocity components to 

zero each time a peak in the total kinetic energy was attained. 

With mass components approximately 50% greater than the 

critical values initial forms were obtained in about 2/3 of the 

computing time previously required with viscous damping to obtain 

the same state. This is mainly due to the fact that in the viscous 

damping process it is difficult to estimate the damping (because 

the system is an unconfined mechanism in early stages) and the rate 

at which EA values should be increased to ensure stability with 

efficiency. The main value of the kinetic damping process is that 
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computations can proceed automatically without intermediate 

examination of convergence trends. 

In operation, the major part of the net remains undisturbed 

whilst the large out-of-balance forces in boundary links or in areas 

adjacent to topology changes are dispersed with usually only about 

three iterations between velocity resets. After this stage large 

mechanical deformations in the surface net take place in a single 

reset stage involving many time increments. Thereafter the net 

jumps in fairly large deformation steps to its final position. 

Starting from the initially flat system shown in figure 1, the 

state of the structure after 112 velocity resets (350 time intervals) 

is shown in figure 9. At the next reset stage, but following a 

further 1800 time steps, the surface net has displaced to the 

position shown in fig. 10. Subsequent convergence to an accuracy 

equivalent to stage 3 of the viscous process was obtained after 118 

resets involving a total of 4500 time steps. The effects of the 

sudden changes in topology, which, with viscous damping and reduced 

EA values propogated the disturbances shown in fig. 5, were 

confined to the immediate locality of the changes; though final 

convergence was no more rapid. 



404 

APPENDIX E 

313LIOGRAPHY CONCERNING THE DESIGN AND ANALYSIS OF TENSION 
STRUCTURES 

The references, with short notes, contained in this 

appendix relate to Chapter 7 and appendices A-*D. 
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Abu-Sitta, S. H. ) Elashkar, I. D. I 
"The dynamic response of tension roofs to turbulent wind", Int. Conf. on Tension Structures, London 1974.1 

(Aero-elastic model tests Of drum tension roof. First symmetric mode strongly dependent on wall openings. Analysis accounts for both 
stiffening effect of enclosed air and reduction of frequency due to 
attached air inertia. Gives added ma, ss expression in terms of 
porosity of structure. ) 

2. Alwar, R. S. , Rao, N. R. "Large elastic deformations of clamped skewed 
plates by dynamic relaxation" 9 Computers and S tructs. V. 4,381-398 
1974.10 

(Non linear behaviour of isotropic plates. Finite difference 
idealization with parameters chosen as in Rushton - refs 15'6-16'3. ) 

Angelopoulos , T. , 
"Zur f ormf indung 

, statik und dynamik von vorgespannten 
netzwerk-konstruktionen"p Dr. Ing. dissertation, University of 
Struttgart, 1977. 

(General review and development of matrix methods of analysis of cable 
net structures at I. S. D., Stuttgart. Emphasis on Newton-Raphson 
formfinding from initially flat nets) 

4. Argyris , J. H. , Kelsey, S. , Kamel, W. H. , 
"Matrix methods of structural 

analysis: A precis of recent developments", Proc. 14th Meeting 
Structures and Materials Panel, AGARD, 1963 

(Finite element matrix analysis with material non-linearities using 
initial strains process and constant stiffness matrix) 

Argyris, J. H. , Kelsey, S. K ame 1 W. H. "Matrix methods of structural $9L 
analysis", AGARDOGRAPH No. 72, Pergamon Press, N. Y., 1964. 

(Generalized finite element analyses for large displacement - small 
strain problems using initial stress matrices) 

Argyris, J. H. , Scharpf, D. W. "Berechnung vorgespannter netzwerke", 
Bayr. Akad. der Wiss. , Sonderdruck 4 der Sitzungsber, 1970. OR 
"Large deflection analysis of prestressed networks", J. Struct. Div., 

ASCE, 98,1972. 

(Formfinding of Munich athletics stadium: Approximate mathematical 
specification of surface from architectural data. Projection of 

uniform me-sh on surface and iterative analysis by Newton-Raphson 

method) 

7. Argyris, J. H. . Chan, A. S. L. , 
"Applications of finite elements in space 

and time". Ingenieur-Archiv 41,1972. 

(General finite-element formulation for geometrically and materially 

non-linear static and dynamic analyses- static analysis by 

incremental procedure with iteration in each step to use av, ýraged 

value of tangent stiffness. Dynamic analysis by numerical integration 

with cubic variation of accelerations. Displacements and velocities 

at end of an interval derived in terms of the inverse of the mass 

matrix and the inertial forces and their derivatives at beginning 

and end. Iteration used in each time step to obtain solution without 

solving large set of equations) 
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Argyris, J. H., Angelopoulos, T., Bichat, B., "A general method for the shape finding of lightweight tension -structures", Int. Conf. on Tension Structures, London, 1974. 
(Four stage formfinding process for uniform mesh cable networks: (]) very flexible flat net distorted incrementally to conform 
with specified support points (2) transformation to desired prestress distribution and re-analysis (3) Automatic equal mesh net generated 
on resulting surface (4) re-analysis using previous prestress to 
obtain final network) 

Argyris, J. H., Dunne, P. C., Angelopoulos, T., "Dynamic analysis of 
tension roof structures". Int. Conf. on Tension Structures, London, 
April 1974. 

(Finite elements in space and time method used in a direct iterative 
form for very large systems. Calculations performed element-wise 
without formation of overall stiffness matrix using iteration in 
each time step. Comparison with Wilson G method for cable s', -zuctures) 

10. Asplund, S. O. , 
"Force-method analysis of orthogonal cable nets", Int. 

Symp. on Wide Span Surface Structures, Stuttgart, 1976. 

(Solves cable net by force method with horizontal cable tension 
increments, assumed constant along cables, as redundants. Numerical 
examples indicate sharp covergence. Applicable to shallow nets as 
approximate solution) , 

Bandel, H. K., "Das orthoganale seilnetz, hyperbolisch-parabolischer 
form unter vertikalen lastzustanden und temperatur-anderung", Der 
Bauingenieur, 394, Oct. 1959. 

(First published paper on the analysis of cable networks. Approximate 
solution for orthogonal networks subject to vertical loads) 

12. Barnes, M. R., "Prestressed cable networks", M. Sc. thesis, University of 
Manchester, 1966. 

(Approximate force-method of analysis for networks accounting for 

vertical displacements only but including both horizontal and vertical 
forces. Newton type solution with horizontal components at one end 

of each cable as unknown. Sharp convergence cf Asplund ref. 10 

13. Barnes, M. R., "Pretensioned cable networksiv$ CONRAD, V. 3, n. 1, April 1971. 

(Compares dynamic relaxation analysis and formfinding with results Of 

model studies) 

14. Barnes, M. R., "Dynamic relaxation analysis of 
, 

tension networks", Int. 

Conf. on Tension Structures, London,. April 1974. 

(See Chapter 2) 

15. Barnes, M. R., "Applications of dynamic relaxation to the design and 

analysis of cable, membrane and pneumatic structures", 2nd Int. Conf. 

on Space Structures, Guildford, September, r975. 

(Chapter 3) 

16. Barnes, M. R., "Formfinding of minimum surface membranes ff I World Congress 

on Structures for Space Enclosure, Montreal, July 1976. 

(Chapter 4) 
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17. Barnes, M. R. , 
"Explicit dynamic analysis and model correlation of tension structures", Int. Symp. on Wide Span Surface Structures, Stuttgart, April 1976. 

(Chapter 5) 

18. Barnes., M. R.., "An investigation of vibration decay in a model pneumatic dome", Int. Symp. on Wide Span Surface Structures) Stuttgart, April 1976. 

(Chapter 6) 

19. Barnes., M. R. , 
"Interactive graphical design of tension surface structures" Int. Symp. on Wide Span Surface Structures, Stuttgart, April 1976. 

(Chapter 7) 

20. Barnes, M. R., Topping, B. H. V.., Wakefield, D. S., it Aspects of form-finding 

using dynamic relaxation", Int. Conf. on Slender Structures, London, 
September 1977. 

(Comparison of optimisation procedure given in Chapter 8 with 
solutions by Linear Programming and full Y-s tressed design techniques. 
Application of DR to form-finding of lattice or grid-shells. 
Comparison of viscous and kinetic damping procedures. ) 

21. Baron, F., Venketesan, M. S., "Nonlinear analysis of cable and truss 
structures", J. Struct. Div., ASCE, V. 97, n. ST2,, 1971. 

(Newton-Raphson, modified Newton-Raphson and Secant stiffness 
analyses. Derivation of tangent stiffness matrices from first 

principles) 

22. Basu, A. K., Dawson, J. M., "Orthotropic sandwich plates", Int. J. Me'ch. 
Sci., 10,1968. 

(D. R. finite difference linear analysis) 

23. Bathe, K. J., Wilson, E. L., "Stability and accuracy analysis of direct 
integration methods", Int. J. Earthquake Eng. and Struct. Dynamics, 
V. 1,1973. 

(Examines amplitude decay and period elongation for differing time 

steps in the Hubol t, Wilson e and Newmark ý numerical integration 

methods applied to linear systems) 

24. Bathe, K. J., Ramm, E., Wilson, E. L., "Finite element formulations for 

large deformation dynamic anlysis", Int. J. Num. Meth. in Eng., V-9, 

1975. 

(Examines Wilson and Newmark methods based on incremental and total 

displacement formulations. Both methods found to require equilibrium 
iterations in each time step) 

25. Bege-r, G., Machat, E., "Results of wind tunnel tests on some pn 
, 
eumatic 

structures", IASS Colloquium on Pneumatic structures, Stuttgart, 1967. 

(Influence of deformations on pressure coefficients) 
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26. Belytschko, T. , Hsieh, B. J. ) 
"Non-linear transient finite element analysis with convected co-ordinates". Int. J. for Num. Meth. in Eng., V. 7,1973. 

(Convecte, 
,d 

co-ordinate procedure for large displacements, small 
strains and orthotropic plane problems with either constant strain triangular elements or cubic displacement beams. Uncoupled dynamic 
equations solved directly by explicit integration using Newmarks 
method with ý=0 (C. D. )) 

27. Belytschko, T., Chiapetta, R. L., Bartel, H. D. ) "Efficient large scale 
non-linear transient analysis by finite elements", Int. J. for Num. 
Meth. in Eng., V-10,579ý 1976. 

(Convected co-ordinate direct integration scheme extended to include 
rectangular elements, sliding-debonding interfaces and artifical 
damping. Comparison of comuptational requirements with explicit and 
implicit methods using stiffness matrices. Application to large 
soil-structure interaction problem with explosive loading) 

28. Benzley, S. E., Key, S. W., "Dynamic response of membranes with finite 
elements", J. -Eng. Mech. Div., ASCE, June 1976. 

(Use curvilinear cubic isoparametric elements to idealise the 
membrane, accounting for large deformations and strains. Numerical 
time integration by velocity formulated central difference scheme) 

29. Bergan, P. G., Soreide, T., "A comparative study of different numerical 
solution techniques as applied to a non-linear structural problem", 
Comp. Meth. in Appl. Mech. and Eng., V. 2,1973. 

(Classifies major numerical solution techniques in three groups: 
(1) Minimisation - unconstrained minimisation, 7st and 2nd order 
gradient methods (2) Iterative methods 7 secaý, 2t or functional 
iteration, Newton-Raphson, Modified N-R, weighted N-R (3) Incremental- 

Euler and incremental with equilibrium iterations. Example examined 
in paper is simple trussIspring problem - shows three possible 

equilibrium positions. Different solutions obtained by different 

rr&-- th o ds . Concludes need for incremental combined with direct or 

minimization methods to follow true path) 

30. Biggs, J. M. , 
"Introduction to Structural Dynamics", McGraw-Hill, 1964. 

(Illustrative examples on the application of numerical methods) 

31. Bird, W. W. . 
"The development of pneumatic structures, pastý present and 

future". Proc. IASS Int. Colloquium, on Pneumatic Structures, Stuttgart, 

1967. 

(Design review) 

32. Bogner, F. K., Mallett, R. H. Minich, M. D., Schmit, L. A., "Development 

and evaluation of energy search methods of non-linear structural 

analysis". AFFDL-TR-65-113,1965. 

(Direct minimisation of potential energy without explicitly '. 'forming 

stiffness matrix equations. Large displacement behaviour followed 

. 
into past-buckling. Applied to shells) 
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Braga, F. , Care , A. ) 
"Study on cable networks subject to loads however distributed", Int- COnf - on Tension Structures, London, April,, 1974. * 

(Uses general F. E. non-linear analysis treating distributed loads 
as effective nodal loads and accounting for non-linearity of displacements in any cable segment with intermediate nodes with the additional degrees of freedom el imina ted before assembly of overall matrix. Solution by N-R or incremental loading. Comparison 
with lumped load idealization shows small difference (1-37. ) in 
deflections) 

Brew, J. S. 
, 

Brotton, D. M. , 
"Non-linear structural analysis by dynamic 

relaxation", Int. J. Num. Meth. in Engng., V. 3,463-483) 1971. 

(DR finite element solution of framed structures accounting for 
instability, member bowing and plasticity effects with stiffness 
matrices in unassembled form. Use of block operations for sway 
1ý-rames. Comparison with finite deflection matrix iteration method 
(ref. /7. / ) shows DR advantageous for highly non-linear problems. 
Theoretical analysis for optimum convergence and iteration parameters 
given for linear problems on the basis of an eigenvalue analysis for 
error vectors) 

Brew, J. S. , 
"The application of dynamic relaxation to the solution of 

non-linear structural plane frames", M. Sc. Thesis, U. M. I. S. T., 
Manchester, 1968. 

(As ref. 3-+ but applies DR in both simultaneous and successive 
forms. Considers SOR to be a special case of the latter with similar 
convergence rate) 

Buchanan, G. R. , Akin, J. E. , 
"The deflection analysis of structural nets 

using the reflection -method", Int. Conf. on Space Structures, 
Guildford, 1966. 

(Analysis for formfinding of regular 2-3-or 4 way nets with cables in 

vertical planes. Boundaries defined as lying inside larger initially 

plane net, deformed to required elevations using closed form trigono- 

metric analysis of Dean and Ugarte) 

Buchholdt, H. A. , 
"A non-linear deformation theory applied to two 

dimensional pretensioned cable assemblies", Proc. ICE., V. 42, Jan-1969. 

(Outlines steepest descent method for minimization of the total 

potential energy. Classification of cable systems as structural 

mechanisms) 

Buchholdt, H. A. , 
"Pretensioned cable girders" , Proc. IcE. , V. 45, 

March, 1970. 
adl (Conjugate gradient method for minimizing T. P. E. Comparison of 10 

deformation characteristics of braced cable girders with varying 

degrees of mechanical freedom) I 

Buchholdt, H. A. , Davies , M. , Hussey, M. J. L. , 
"The analysis of cable 

nets", J. Inst. of Mathematics and its Applicacions, V. 4,1968. 

(Show that total potential energy of a pin-jointed assemblage is a 

convex function of the joint displacements for all configurations 

in which members are in tension and that the equilibrium state is 

therefore stable and unique. outline methods of steepest descent 

and relaxed steepest descent for minimizing T. P. E. of cable structures. 

Th-e-1-4-t _te, _r_Irs__* own to converge most rapidly) 
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40. Buchholdt, H. A., McMillan, B. R. ) "Iterative methods for the solution of pretensioned cable structures and pin-jointed assemblies having significant geometrical displacements", IASS Symp. on Tension Structures and Space Frames, Tokyo and Kyoto, 1971. 
(Solutions of cable systems by minimizing T. P I E. using various gradient methods of optimization. Six different methods are compared: steepest descent, relaxed steepest descent, Runge- Kutta, Newton-Raphson, Conjugate gradients, and the Fletcher- Powell method. Conjugate gradient method found to be most efficient for cable nets and N-R method for cable beams, with the latter found to diverge in certain cases. For all methods the step length was determined by expressing T. P. E. as 4th order polynomial) 

41. Buchholdt, H. A. . Das . N. K. , AI-Hilli, A. J. 3 
"A gradient method for 

the analysis of cable structures with flexible boundaries", Int. 
Conf. on Tension Structures, London, April 1974. 

(Analysis of cable and boundary structures by scaled conjugate 
gradient method using weighting functions inversely proportional 
to leading diagonal stiffnesses. Comparison with -scaled and 
relaxed methods of steepest descent) 

42. Buchholdt, H. A., Dixon, R., "The design and analysis of the cable 
roof for Odsal Sports Centre", 2nd Int. Conf. on Space Structures, 
Guildford, 1975. 

(Natural frequencies determined from linearized eigenvalue analysis. 
Comparison with frequency spectrum of wind energy) 

43. Buchholdt, H. A., "The behaviour of saddle shaped nets with flexible 
boundaries". Int. Symp. on Wide Span Surface Structures2 Stuttgart, 
1976. 

(Numerical investigation into the behaviour oZ circular saddle 
shaped cable net roofs considering variations in cable EA and 
pretension values, curvature of roof and stiffness of ring beam. 
Concludes that for lightness and economy, circular saddle shaped 
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power spectral density. Numerical integration then accounts for 

structure response allowing for hydrodynamic drag and relative 
waterlstructure motion in hydrodynamic force equation) 

45. Burley, E., Harvey, R. C., "Behaviour of tension structures subjected 
to uniformly distributed cable loading", Int. Conf. on Tension 
Structures, London, April 1974.1 

(Derives expressions for total potential energy with distributed 

loads accounted for. Applies 2nd order Newton Raphson gradient 

method. Gives general description of minimization processes) 

46. Bychawski, Z. , 
"Large deflections of non-linear visco-elastic 

rotational membranes", IASS Symp. on Tension Structures and Space 

Frames, Tokyo and Kyoto, 1971. 
mrief visco-elastic 



411 

4/. --L; able-suspended roof construction - State of the are, 'j. Struct. Div. Proc. A. S. C. E., June 1971. 
(Review paper) 

48. "Computation and Analytical Methods Discussion", Int. Symp. on Wide Span Surface Structures, V. 31 Stuttgart, 1976. 

(Concerning generally Poor convergence or divergence of solution methods for membranes. Possibility of non-unique solutions for 
membranes subject to buckling) 

49. Cassell, A. C., Kinsey,, P. J., Sefton, D. J. 30 
"Cylindrical shell analys]-s by dynamic relaxation", Proc. ICE., V. 39, Jan. 1968. 

(Interlacing grid finite-difference solution using full shell 
equations. Stability criteria for 1-3 dimensional problems. 
Damping from trial run) 

50. Cassell, A. C., "Shells of revolution under arbitrary loading and the 
use Of fictitious densities in dynamic relaxation", Proc. ICE., 
V. 45,19 70. 

(Uses fictitious densities at each node adjusted to give At =I 
everywhere. Trial runs with trace of kinetic energy to obtain 
critical damping. Comparison of DR with Frankel iteration to 
derive optimum values of At and K in terms of max. and min. eigen- 
values) 

Discussion of ref. 6o 
, Proc. ICE, V. 47, Nov., 1970. 

(Davidson, J. H: Initial disturbance process for calculating critical 
time interval. Describes shell buckling analysis by DR) 

51. Cassell, A. C., Hobbs, R. E., "Dynamic relaxation", Symp. on High Speed 
Computing of Elastic Structures, Liege, 1970 (Proc. Ed: B. Fraeijis 
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is shown to be most efficient) 



419 
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material behaviour coupled with large displacements. Langrangian 

formulation for element functions and therefore restricted to small 

strains) 
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static non-linear analyses, and linearized dynamic analyses. In 
each case methods are outlined for both general nets and approximate 
orthogonal nets. Proof given to show uniqueness of solutioný for 
cable nets in which all links of one set of cables remain intension)' 

I 124. Mollmann, H. , Mortensen, P. L. , 
"The analysis of prestressed suspended 

cable nets", Int. Conf. on Space Structures, Guildford, 1966. 

(Modified Newton Raphson solution (constant stiffness) with KG set 
assuming small strains but assumed final values of T used for T16 
terms. 5 iterations for convergence - Secant type solution i. e. 
total displacements used: [K]. [61= (P-Cj) 

125. Mollmann, H. . 
"Analytical solutions for a cable net over a rectangular 

plan", IASS Symp. on Tension Structures and Space Frames, Tokyo and 
Kyoto... 1971. 

(Linearized analytical solution derived for rectangular hyperbolic 

parabaloid cable nets. Expressions are derived for small vibration 

normal modes and frequencies. The normal wdes are then used to 

derive Levy type series solutions for various cases of static 
loading) 
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126. Mollmann, H. , 
"Analysis of prestressed cable systems supported by 

elastic boundary structures", Int. Conf. on Tension Structures 
London, April 1974. P 

(Considers 2 methods for analysis of cable nets supported by 
elastic flexural boundaries. -(]) Displacement analysis of coaq)lete 
structure 30F net, 60F boundaries. (2) Mixed method with horizontal components of cable tensions as extra unknowns but only 
vertical displacements of net. Both solved by N-R iteration. (2) 
has fewer unknowns but applies only to shallow orthogonal nets - Similar to Karrholm and Samuelsson) 

127. Moriya, K., Uemura, M., "An analysis of the tension field after 
wrinkling in flat membrane structures", IASS Symp. on Tension 
Structures and Space Frames, Tokyo and Kyoto, 1971. 

(F. E. analysis using triangular elements. Newton Raphson iteration. 
Young's modulus in compression direction gradually reduced) 

128. Murray, D. W. , Wi son, E. L. , 
"Finite element large deflection analysis 

of plates", Proc. ASCE. J. 9 Eng. Mech. 'Div. 
, n. EMI, Feb. 1969. 

(Investigate large deflections of plates using inczeake-ntal & Mod. 
N-R for equilibrium in each increment. Noted that use Of KG not 
essential, but speeds convergence. - Cf Mollmann for networks - 
KG essential) 

129. Murray, T. M. , Willems, N. , 
"Analysis of inelastic suspension structures, ' 

J. Struct. Div., ASCE, V. 97, n. ST2, Dec. 1971. 

(Non-linear material properties - cf: Greenberg) 

130. Myklestad, N. O. , Lawrence, K. L. , 
"Transient beam response calculations 

using Euler's method". Tech. Note, J. AIAA, V. 5, n. 2,1967. 

(Writes equations of motion for each mass#inertia point in terms of 
shears and moments to left and right of node. Moments and shears in 
turn expressed in terms of relative rotations and translations, 
allowing large (ji. 7placements. Uses modified Euler integration with 
uncoupled (or direct) explicit integration. Iteration in each time 

step to use average accelerations) 

131. Nagarajan, S., Popov, E. P., "Non-linear dynamic analysis of axisymmetric 
shells". Int. J. for Num. Meth. in Engng., V-99 1975. 

(Visco-plastic pseudo loads obtained by decomposition of stress 
increments into instantanecus elastic and delayed visco-plastic 
components. Linearized incremental equations of motion solved by 

Newmark numerical integration with equilibrium corrections at each 

timie step. Geometric and material non-linearity) 
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132, Nakanishi, H, Namita Y. j 
"Shape determination of cable Structures by means of the methods for optimization problems".. Into Symp. on Wide Span Surface Structures) Stuttgart, 1976. 

(Optimization procedure for obtaining the equilibrium state of cable structures subject to both configuration and menber force constraints., with tension coefficients as independent variables. Maximum 
neighbourhood method applied to determine correction vectors, and 
optimum step length determined by approximating the objective function locally as a parabolic curve) 

133. Namita, Y. , Nakanishi, H. jo 
"A method of computation for determining 

the shape of cable structures", Int. Conf. on Tension Structures, 
London, 1974. 

(Two stage least squares approach incorporating modification of 
member lengths in the secondary stage iterative equilibrium analysis 
to achieve more even force distribution in the network) 

134. Nayak, G. C. , Zienkiewicz, O. C. , 
"Note on the 'alpha'-constant method 

for the analysis of non-linear problems" Int. J. for Num. Meth. in 
Engng., V. 4,1972. 

(Uses modified N-R scheme to calculate AýSj' = [K, ]_lfRji_l then 
corrects using A61' = whereae-i is a correction dependent on 
the current tangent stiffness matrix (uninverted). After initial 
inversion of Ko only simple matrix manipulation is required at each 
stage, For path dependent non-linear problems an incremental process 
is adopted in which improved ce- values calculated from previous 
increment are used to start the iteration) 

135. Newmark, N. M. 31 
"A method of computation for structural dynamics", J. 

Eng. Mech. Div. , ASCE, V. 85, n. EM3,1959. 

(Expresses velocity and displacement at the end of a time increment 
in terms of acceleration, velocity and displacement at beginning 
and acceleration at end of the increment. Two common forms: 
conditionally stable linear acceleration method; and unconditionally 
stable constant average acceleration method (implicit)) 

136. Oden, J. T. , 
"Numerical formulation of non-linear elasticity problems", 

J. Struct. Div., ASCE., V. 93, n. ST3, June 1967. 

(Develops non-linear stiffness relations for geometrically and 
materially non-linear problems. Equations solved by incremental 

N-R method. Large strains and displacements) 

137. Oden, J. T. , Kubitza, W. K. ," Numerical analysis of non-linear pneumatic 

structures", Proc. Int. Colloquium. on Pneumatic Structures, IASSj 

Stuttgart, 1967. 

(Reviews application of F. E. method to analysis of non-linear 
behaviour in elastic, elasto-plastic and v. '2scoelastic pneurnatic 

structures. Formulations for natural and synthetic rubbers; plastics 

and reinforced fabrics. Uses Voigt type element for viscoelastic 
formulation. Comme-nts that procedure provides rational n7eans for 

dealing with material damping. Elasto-plastic behaviour analysed 

through incre-rn-ental process with step repeated if element found to 

_go plastic during increment. Accuracy improved by choosing increments 

so that one element at most yields during increment) 
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138. Oden, J. T. . Key, J. E. , Fost, R. B. 9 
"A note on the analysis of non- linear dynamics of elastic membranes by the finite element method", Computers and Structures, V. 4,1974. 

\- 

(Thin isotropic sheets of hyperelastic material idealized with 
constant strain triangular elements and lumped mass matrix. Examines wave phenomena in flat membrane using velocity formulated 
central difference scheme which is traced for a large number of time 
intervals) 

39. Ohyama, H. Kawamata, S., "A problem of surface design for prestressed 
cable nets". IASS Symp. on Tension Structures and Space Frames, 
Tokyo and Kyoto, 1971. 

(Two phase method of shape determination: (1) stress distribution 
for assumed surface shape and loading is approximated by least- 
squares (2) with stress distribution obtained., tension coefficients 
are fixed in all links and exact equilibrium determined by system 
of linear equations) 

140. Otter, J. R. H.. Day, A. S., "Tidal computations", The Engineer, Jan. 1960. 

(Finite difference solution for tidal flow equations in one and two 
dimensions) 

141. Otter, J. R. H. . 
"Computations for prestressed concrete reactor pressure 

vessels using dynamic relaxation", Nuclear Struct. Engng., 1, 
61-75$ 1965. 

(Analysis of axi-symmetric thick-walled pressure vessel using DR 
I infinite difference and incremental form) 

142. Otter, J. R. H., "Dynamic relaxation compared with other iterative 
finite difference methods".. Nuclear Eng. and Design, 3,1966. 

(Compares DR with classical explicit point methods of iterative 

analysis and outlines advantages of DR) 

143. Otter, J. R. H.,, Cassell, A. C., Hobbs, R. E. "Dy-namic Re axation 
Proc. ICE., 35,633-656, Dec. , 1966. 

(Finite difference formulation for arch dams. DR shown to be 

equivalent to Frankel iteration and compared with Jacobi, Gauss- 

Seidel and SOR iteration methods for Laplace equation in two 

dimensions. Optimum convergence rate derived using exponential 

function for damped wave equations. SOR more rapid convergence 

but value of separated equations and simple boundary conditions 

in DR) 

Discussion to "Dynamic Relaxation", Proc. ICE, 723-750,1967. 

(Welch,, A. K... Postlethwa-ite, R. W: use of fictitious densities 

Wood, W. L., Hussey, M. J. L: further comparison of DR with other 

iterative methods) 
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144. Otto. F. , 
"The Hanging Roof" (in German), Ullstein Verlag., Berlin, 1954. 

(Original work on the concepts of -tension structures) 

145. Otto, F, Trostel, R., "Tensile Structures Vol,. I", MIT Press, 
Cambrid, ge, Mass., 1967. 

(Structural and architectural concepts of pneumatic and membrane 
structures) 

146. Otto, F. , Schleyer, F. K. . 
"Tensile Structures Vol. II" I MIT Press, 

Cambridge, Mass., 1969. 

(Structural and architectural concepts of cable structures) 

147. Park, K. C. , 
"An improved s tif f ly s tab le me thod for dire ct 

integration of non-linear structural dynamic equations", 
Transactions ASýE, June 1975. 

(Investigates Newmark and Hubolt integration schemes for non-linear 
problems with gradual changes in material properties. Hubolt 
scheme found unconditionally stable but not Newmark. Introduces 
negative damping in Hubolt method to counteract artificial 
viscosi ty) 

148. Perrone, N., Kao, R., "A general non-linear relaxation iteration 
technique for solving non-linear problems in mechanics", J. Appl. 
Mech. , 38, Ser. E. n. 2. June 1971. 

(Successive Over Relaxation method used for solving large 
deflection problems) 

149. Pian, T. H. H., Balmer, H. A., Bucciarelli, L. L., '; Dynamic buckling of 
a circular ring constrained in a rigid circular surface", Int. 
Conf. on Dynamic Stability of Structures, Illinois, Ed: G. 
Herrmann, 1965. 

(Elastic-plastic dynamic response of plane structure subject to 
dynamic snap-through buckling. Central difference numerical 
integration with finite differencelconstant moment element 
idealization) 

150. Poskitt, T. J. , 
"Numerical solution of non-linear structures", J. 

Struct. Div., ASCE, ST4, Aug. 1967. 

- (Uses incremental method to obtain approximate equilibrium then 

N-R iteration for final equilibrium. First- stage - incremental - 
also accounts for cable slackening) 

151. Purdy, D. M. , Przemieniecki, I. S-. "Influence of higher order terms in 

the large deflection analysis of frameworks", Proc. ASCE Conf. on 
Optimization and Non-linear problems, April 1968. 

(Extend initial stress (geometric) matrix formulation to include 
I 

previously neglected terms coupling quadratic and linear terms 
in strain-displacement expressions) 
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152. Rabinovitz, I. M., "Instantaneously rigid systems, their character- istics and the basis of their calculation", "Hangedacher", 
Weisbaden, Bauverlag, 1966. 

(Shows that for prestressed systems straining must take place for 
finite deformations even though systems may be classified as 
structural mechanisms) 

153. Reltmeier, G. F. , Punnett, M. B. , 
"Design developments in large span 

cabled structures", Int. Symp. on Pneumatic Structures, Delft, 
1972. 

(Design of tri-grid cable domes - membrane damping) 

154. Rudolf, F. , 
"A contribution to the design of air-supported structures 

Proc. IASS Colloquium on Pneumatic Structures, Stuttgart., 1967. 
(Discusses design aspects - loads, pressure changes etc. . Gives 
approximate formula for stresses and deformations of cylindrical 
and spherical membranes under pneumatic, snow and wind loads. 
Membrane treated as inextensible but mchanically deforma-ble) 

155. Ruhle., H. "Development of design and construction in pneumatic 
structures"., IASS Colloquium on Pneumatic Structures, Stuttgart2 
1967. 

(Discusses inter-relation of form and loading. Static and dynamic 
pressure) 

156. Rushton, K. R. , 
"Dynamic relaxation solutions of elastic plate problems", 

J. Strain Analysis, V. 3, n. ], 1968. 

(Automatic determination of critical damping by checking number of 
iterations to first max. of kinetic energy. Analysis then 
repeated with damping and traced for two periods. Time interval 
by trial - reset to 0.8 previous value if instability occurs) 

157. Rushton, K. R. , 
"Large deflection analysis of variable thickness 

plates", Int. J. Mech. Sci. , 10,1968. 

(Non-linear finite difference solution by PR. Fictitious masses 
for in plane degrees of freedom) 

158. Rushton, K. R. "DR solution for the large deflection of plates with 
specified boundary stresses", J. Strain Anal., V. 4. n. 2,1969. 

(As above. Separated equations allow simple boundary conditions) 

159. Saafan, A. S. . 
"Theoretical analysis of suspension roofs", J. Struct. 

Div., ASCE, V. 96, n. ST2. Feb., 1970. 

(N-R solution allowing for material non-linearity. ll-*-17 cycles 
for simple nets with non-linear properties. Solutions obtaina-ble 
when not path dependent) 

160. Sangster, K. G., Batchelor, B., "Non-linear dynamic analysis of 3-D 

cable networks", Proc-. Int. Conf. on Comp. Meth. in Non-l'inear 
Mech., Austin, Texas, Sept. 1974. 

(Method for determining the geometrically non-linear vibration 
frequencies of networks using shear free membrane theory. 

Solution by harmonic functions with frequency dependent on 

amplitudes) 
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161. Sayar, K. F. j 
"On the statics of a tension roof structure". Int. Conf. on Tension Structures, London, 1974. 

(Application of shear free membrane theory to geodesic net) 
162. Schek, H. J. . 

"The force density method for form-finding and computation of general networks", Comp. Meth. in Appl. Mech. 
and Eng. , 3,1974. 

(Linear and non-linear force densities analysis for nets. Linear 
provides rapid search of approximate forms. Ncn-linear solution 
using least squares or damped least squares minimization for 
precise form-finding with constraints on member lengths or forces) 

163. Schek., H. J. , Grundig, L. , Steidler., F., "Mathematische methoden I der netzberechnung und begrundung des kraftdichtenansatzes",, Int. 
Symp. on Wide Span Surface Structures, Stuttgart, 1976. 

(Use of conjugate gradient method of minimization for non-linear force densities analysis with constraints on lengths and forces) 

164. Schlaich, J., "Lecture on cable structures". Int. Symp. on Wide 
Span Surface Structures., V. 3, Stuttgart, 1976. 

(General discussion of design factors affecting the cost of cable 
structures) 

165. Schleyer, F. K. , 
"Ueber die berechnung von seilnetzen" dissertation 

University of Berlin, 1960. 

(First treatment of cable structures as continuous systems) 

166. Schleyer, F. K. , 
"Die berechnung von seilnetzen", IASS Colloquium 

on Hanging Roofs, Paris, 1962. 

(Finite difference solution for cable nets and trusses treated as 
continuous systems) 

167. Shore, S... Bathish, G. N. , 
"Membrane analysis of cable roofs", Int. 

Conf. on Space Structures, Guildford, 1966. 

(Approximate analytic solution as continuous system) 

168. Shore, S., Chaudhari, B., "Free vibrations of cable networks utilizing 
analogous membrane", Proc. Int. Assoc. for Bridge and Struct. Eng. , 
9th Congress, Amsterdam, 1972. 

(Free vibrations of rectangular network treated as shear free 
membrane) 

169. Siev, A. I 
"A general analysis of prestressed nets", Publs. Int. 

Assoc. Bridge Struct., p. 283-292 , 1963. 

(First general analysis catering for large strains and displacer.,? ents- 
with equilibrium equations set in summation form. Modified N-R 

and N-R + incremental solutions for buckling analysis) 
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170. Siev, A. , Eidelman, J. , 
"Stress analysis of prestressed suspended roofs", J. Struct. Div., ASCE, ST4, Aug. 1964. 

(Approximate analysis for orthogonal nets with vertical displacements as unknowns. Uses modified N-R scheme to account for non-linearity. Solutions converge only for light loads) 

171. Siev, A., "Experimental study of flutter in suspended roofs". IASS Bulletin n. 23, Sept. 1965. 

(Examines the occurrence of flutter in a model hypar membrane at 
critical wind speeds. Air voluirke changes in closed structure inhibit flutter in fundamental mode) 

172. Sof ronie, R. A. . 
"The response to wind of tens ion roof structure s" Int. Conf. on Tension Structures, London 1974. 

(Analytical classification of tension structures as large 
displacem, ýent low frequency oscillators) 

173. Sofronie., R. A. , 
"Aeroelastic analysis of wide-span surface structures"I 

Int. ' Symp. on Wide Span Surface Structures, Stuttgart, 1976. 

(Considers flutter in a rectangular open sided cable girder 
structure treated in similar manner to rigid wing with only bending 
and torsional degrees of freedom) 

174. Stricklin, J. A. , 
"Geometrically non-linear static and dynaic 

analysis of shells of revolution". Proc. IUTAM High Speed Computing 
of Elastic Struct., Liege, 1970. 

(Modified N-R and incremental solution procedures for static analysis 
with first order Taylor expansion used to extrapolate out-of- 
balance residual forces. Brief review of implicit integration 
schemes for dynamic analysis) 

175. Stricklin, J. A. . Martinez, J. E. , Tillerson, J. R. , Hong, J. H. y Haisler, W. E. . 
"Non-linear dynamic analysis of shells of revolution 

by the matrix displacement method", AIAA Journal, V. 9, n. 4, April 
1971. 

(Geornestric non-linearity. various integration schemes examined 
with Hubolt's method found most suitable) 

176. Stricklin, J. A. . Haisler, W. E. , 
"Formulations and solution procedures 

for non-linear structural analysis", Computers and structures, 
V. 7,1977. 

(Review paper for F. E. non-linear rae-thods Statics and Dynamics) 

177. Te zcan .S-S-j Mahap a tra, B. C. , Mathew, C. I. , 
"Tangent s ti ff ne ss 

matrices for finite elements", Publs. IABSE, v. 30/1, Aug. 1970. 

(Small strains, large displacements. Newton Raphson iteration) 

178. Tezcan, S. S., Cherry, S., Mahapatra, B. C., "Dynamic analysis , of 
cable structures", Proc. IASS Symp. on Tension Structures and 
Space Frames, Tokyo and Kyoto, 1971. 

(Equilibrium under static loads determined by N-R iteration using 
small strain tangent stiffness. Eigenvalue solution of linearized 

system for natural periods and mode shapes. Modal superposition 
technique and response spectrum analysis used for determining 
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179. Thornton., C. H., Birnstiel, C., "Three dimensional suspension structures",, J. Struct. Div., ASCE, v. 93, n. ST2, April, 1967. 
(Newton Raphson iteration, increme-ntal loading) 

180. Tsuboi, Y., Kawaguchi, M., "Design problems of suspension structure". IASS bulletin nos. 27,28,1966. 

(Design of Tokyo Olympic swimming pool roof. Consideration of wind tunnel tests., proof tests on built structure, damping and stiffening effects, and construction problems) 

181. Turner, M. J. , Dill, E. H. , Martin, H. C. , Melosh, R. J. . 
"Larae 

deflection analysis of complex structures subject to heaOting 
and external loads". J. Aero. Space Sci., v. 27, Feb. 1 960. 

(Tangent stiffness approach for small strains only. Initial 
stress (or geometric) stiffness matrices developed to account for effects of initial stress in truss and plane-stress 
assemblies) 

182. Varga, R. S. , 
"Matrix Iterative Analysis", Prentice-Hall, 1962. 

(Basic iterative methods) 

183. Vishwanath, T., Glockner, P. G., "Arbitrarily large deformations of 
flat circular membranes under external loads and inflation 
pressure", Int. Symp. on Pneumatic Structures, Delft, 1972. 

(Non-Linear continuum equations written I 
for case of isotropic elastic membranes. 
finite difference form and solved by N-R 
for changes in internal pressure, volume 
Axisymmetric loading) 

terms of displacements 
Equations expressed in 

iteration. Accounts 
and temperature. 

184. Weeks, G. . 
"Temporal operators for non-linear structural dynamics 

problems", J. Eng. Mech. Div. , ASCE, Oct. 1972. 

(Compares Hubolt, Newmark and central difference numerical 
integration schemes for dynamic analyses with damping. Considers 
store, execution time., attenuation and viscosity for each axe-thod 
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185. White, K., Happold, E., Dickson, M., "Notes on the theoretical costs 
of cable structures", Int. Conf. on Tension Structures, London, 
1974. 

(Costs of open, closed and dead weight cable systems compared 
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186. Wilson, E. L., "A computer program for the dynamic stress analysis of 
underground structures", Report SEL 68-1, University of California, 
Berkeley, 1968. 

(Linear acceleration Newmark integration scheme modified, to 
generate an unconditionally stable step-by-step algorithm for 
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matrices". Int. J. Num. Meth. in Engng., v. 4, n. 1, Jan. 1972. 

(Derivation of damping matrix from modal damping ratios) 

188. Witmer, E. A., Balmer, H. A., Leech, J. W., Pian, T. H. H., "Large 
dynamic deformations of beams, rings, plates and shells". 
AIAA Journal, v. 1, n. 8,1963. 

189. 

190. 

191. 

(Finite difference analysis of axisymmetric shells subject to 
impulsive loading. Account taken of elastic-plastic or 
elastic-strain hardening behaviour, strain-rate, and large 
deflections. Numerical integration by explicit central 
di ffe ren ce) I 

Wood. W. L. . "Comparison of dynamic relaxation with three other 
iterative methods", The Engineer, Nov. , 1967. 

(Unified comparison of DR with Jacobi, Gauss-Seidel and SOR 
iterative methods given on the basis of time dependent 
equations decaying to steady state solutions with appropriate 
choice of iteration parameters) 

Wood, W. L... "Note on dynamic relaxation", Int. J. for Nua: L. Meth. 
in Engng., V. 3,1971. 

(Mass components equal to corresponding row sum of moduli of 
elements in the stiffness matrix, and damping and time interval 
optimized as in the Frankel iteration scheme. DR then shown to 
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Wu, R. W. H., Witmer, E. A., "Non-linear transient response of 
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(Compares unconditionally stable Newmark and Hubolt integration 

methods with explicit central difference solution. Efficiency 

of lumped mass idealization. Artifical damping in stable methods. 
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linear extrapolation of generalized forces) 
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Structures and Space Frames, Tokyo and Kyoto, 1971. 

(Membrane theory of shells applied to governing equations assuming 
inextensional deformations of mmbrane. Subdivides surface into 

unwrinkled regions and wrinkled regions in which tensile stresses 
exist only in the meridional directions. Imposes continuity 
conditions at junction to obtain solution) 
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stiffening effect of internal air pressure due to deformation 
of roof in fundamental mode and damping effect of exponential 
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