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Abstract

The aim of the paper is to lay the theoretical foundations for the construction of a flexible
tool that can be used by pensioners to find optimal investment and consumption choices in the
distribution phase of a defined contribution pension scheme. The investment/consumption plan
is adopted until the time of compulsory annuitization, taking into account the possibility of
earlier death. The effect of the bequest motive and the desire to buy a higher annuity than the
one purchasable at retirement are included in the objective function. The mathematical tools
provided by dynamic programming techniques are applied to find closed form solutions: numer-
ical examples are also presented. In the model, the trade-off between the different desires of the
individual regarding consumption and final annuity can be dealt with by choosing appropriate
weights for these factors in the setting of the problem. Conclusions are twofold. Firstly, we find
that there is a natural time-varying target for the size of the fund, which acts as a sort of safety
level for the needs of the pensioner. Secondly, the personal preferences of the pensioner can be
translated into optimal choices, which in turn affect the distribution of the consumption path
and of the final annuity.
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1 INTRODUCTION

The main difference between defined benefit (DB) and defined contribution (DC) pension schemes
is the way in which the financial risk is treated.
In DB plans, the financial risk is borne by the sponsors of the scheme, who do not know in advance
what contribution rate will be needed to finance the benefits promised. In practice, this risk is usu-
ally borne by the employer: employees pay a fixed part of the total contribution and the employer
pays the remaining, and obviously aleatory, part of the adjusted contribution rate.
In DC plans, the financial risk is borne by the member: contributions are fixed in advance and
the benefits provided by the scheme depend on the investment performance experienced during the
active membership and on the price of the annuity at retirement, in the case that the benefits are
given in the form of an annuity. Therefore, the financial risk can be split into two parts: investment
risk, during the accumulation phase, and annuity risk, focused at retirement. In order to limit the
annuity risk — which is the risk that high annuity prices (driven by low bond yields) at retirement
can lead to a lower than expected pension income — in many schemes the member has the possibil-
ity of deferring the annuitization of the accumulated fund. This possibility consists of leaving the
fund invested in financial assets as in the accumulation phase, and allows for periodic withdrawals
by the pensioner, until annuitization occurs (if ever).

The current actuarial literature about the financial risk in defined benefit and defined contribution
pension schemes is quite rich. Papers dealing with the typical risks in DB schemes — eg sol-
vency risk and contribution rate stability risk — are, among others, Boulier, Trussant and Florens
(1995), Boulier, Michel and Wisnia (1996), Cairns (2000), Haberman and Sung (1994), Owadally
and Haberman (2004). The financial risk in DC schemes in the accumulation phase is considered,
among others, by Blake, Cairns and Dowd (2001), Booth and Yakoubov (2000), Boulier, Huang and
Taillard (2001), Haberman and Vigna (2002), Khorasanee (1998) and Knox (1993). Arts and Vigna
(2003) and Chiarolla, Longo and Stabile (2004) analyze both the accumulation and the distribution
phase of a defined contribution pension scheme. The financial risk in the distribution phase of
defined contribution pension schemes has been dealt with in many recent papers, including: Al-
brecht and Maurer (2002), Blake, Cairns and Dowd (2003), Gerrard, Haberman and Vigna (2004a),
Gerrard, Haberman, Højgaard and Vigna (2004b), Kapur and Orszag (1999), Khorasanee (1996),
Milevsky (2001), Milevsky and Young (2002).

The focus of this paper is on the management of risks in the de-cumulation phase of a defined con-
tribution pension scheme, and the assumption made is that the retiree takes the option of deferring
the annuitization, meanwhile consuming some income withdrawn from the fund and investing the
remaining fund. Such a pensioner has three principal degrees of freedom:

1 he/she can decide what investment strategy to adopt in investing the fund at his/her disposal;

2 he/she can decide how much of the fund to withdraw at any time between retirement and
ultimate annuitization (if any);

3 he/she can decide when to annuitize (if ever).

The three choices described may be affected (in the timing, or amounts, or both) by restrictions
imposed by law or by the scheme’s rules. For example, in the UK, where the option is called the
“income drawdown option”, the amount withdrawn must be between 35% and 100% of the annuity
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which would have been purchasable immediately on retirement, and annuitization of the fund must
take place not later than the age of 75. On the other hand, there are no limitations on the asset
allocation of the fund. In the following, we will sometimes refer to the phase after retirement as the
“drawdown phase” in the case that the pensioner takes the option of deferring the annuitization of
the fund.

The first two choices represent a classical inter-temporal decision making problem, which can be
dealt with using optimal control techniques in the typical Merton (1971) framework, whereas the
third choice can be tackled by defining an optimal stopping time problem.

In this paper, we apply the mathematical techniques provided by the theory of dynamic program-
ming with the aim of outlining a decision tool that, applied properly, could help members of DC
schemes (or DC schemes’ advisors) in making their decisions regarding the first two of the three
choices outlined above. The third choice — when to annuitize, analyzed with different approaches,
for example, by Blake et al. (2003), Stabile (2003), Milevsky, Moore and Young (2004) and Milevsky
and Young (2004) — is the subject of ongoing research.

We consider the more general case where the member can decide about both investment allocation
and consumption. The particular case where the income withdrawn is fixed over time is also ana-
lyzed in Appendix A. In both cases, we allow for mortality in the model, therefore the possibility
of bequeathing wealth in the case of death before annuitization becomes relevant for the invest-
ment/consumption choices, which are consequently affected by the importance given to the bequest
motive.

Our paper differs from most of the others in that the consumption path is considered as a control
variable available to the pensioner in the post retirement phase, whereas in most of the mentioned
works the amount withdrawn consists of the exact amount that a level annuity bought at retirement
would provide. The effect of choosing different (optimal) consumption paths is also analyzed, in a
realistic setting. Milevsky and Young (2004) also find the optimal consumption over time, solving a
similar investment/consumption problem, and find also the optimal time of annuitization. However,
they do not include the bequest motive in their model, use a different utility function (namely, the
power utility function), and do not follow a target-based approach to the decision-making problem
of the pensioner.

The remainder of the paper is organized as follows. In section 2 the investment/consumption
problem is presented and solved. In section 3 the notion of “natural target” is introduced and the
solution derived in section 2 is analyzed with this particular choice for the target pursued by the
pensioner. Some comments on the problem with constraints are also made. Numerical examples
are shown in section 4. Section 5 concludes.

2 THE INVESTMENT/CONSUMPTION CHOICE PROBLEM
FACED BY THE RETIREE

The retiree member of a defined contribution pension scheme acquires control of a fund which may
be either used to purchase an annuity or invested in the financial market. All through the paper,
the financial market will be described by the typical Black and Scholes framework: there is a risky
asset and a riskless asset. The riskless asset has a constant force of interest, denoted by r. The price
of the risky asset is assumed to follow a geometric Brownian motion model, i.e. evolves according
to the following stochastic differential equation:

dQ(t) = λQ(t) dt + σQ(t) dW (t) (2.1)

Version: November 9, 2005 Page 3



where W (t) is a standard Brownian motion.

The pensioner withdraws from the fund an instantaneous amount of income b(t) and invests a
proportion of the portfolio in the risky asset equal to y(t) at any time t. The stochastic differential
equation that describes the evolution of the fund X(t) is:

dX(t) = [X(t)(y(t)(λ− r) + r)− b(t)]dt + X(t)y(t)σdW (t) (2.2)

We assume here that the reasons that push the retiree to choose the option of deferring annuitization
are both the hope of being able to purchase in the future an annuity higher than the pension income
provided by immediate annuitization at retirement and the ability to bequeath wealth in the case
of death before annuitization.

It seems reasonable to assume that the individual has a certain target in mind, which is pursued
during the drawdown phase. In particular, we shall assume that the pensioner has two different
kinds of targets: a target for the size of the fund and a desired level of income to be consumed.
Deviations from the targets will result in a loss for him/her. Therefore, the loss experienced by the
pensioner consists of a number of parts:

• a disutility continuously experienced when the income drawn down from the fund is below the
ideal level of income; a similar disutility is experienced also if the income consumed is above
the level which is considered necessary to the pensioner, in that consuming excessively may
result in a high chance of failure in achieving the final target at the time of annuitization, and,
even worse, may lead to a higher probability of eventual ruin;

• a disutility arising whenever the level of the fund is below or above the target level at that
time; imposing a penalty for deviations above the target fund can be explained by noting that
allowing the fund to exceed the target level implies that the pensioner has exposed him/herself
to unnecessary risk in the past;

• a terminal disutility engendered at the time T of annuitization by any discrepancy between
the level of the annuity actually purchased and the ideal level set by the investor;

• a positive utility experienced in the event of death before annuitization, due to the investor’s
ability to fulfil the motive of bequeathing the assets in the fund to a nominated individual.

We denote by b0 the target level of income periodically withdrawn from the fund during the draw-
down phase, by b1 the target level of income from the annuity purchased at age T , and by F (t)
the running target for the level of the fund at age t. Typically, there is a relationship between the
income levels b1 and b0, namely that the desired level b1 after annuitization is likely to be greater
than or equal to the target level of consumption b0 during the drawdown phase (considering the
fact that there may be restrictions during the de-cumulation phase and also the fact that medical
expenses tend to increase at older ages). We can assume, without loss of generality, that

b1 = ηb0.

The continuously experienced disutility can be written in terms of a loss function depending on the
time, t, and the level of the fund, x:

L(t, x) = e−ρt[u(F (t)− x)2 + v(b0 − b(t))2], (2.3)
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where u and v are non-negative constants, interpretable as weights given to the desire of monitoring
the growth of the fund and the daily consumption respectively, and ρ is the usual subjective inter-
temporal discount factor.

The case where the income withdrawn over time is fixed at b0 and the running loss consists only in
the first term of (2.3) is developed in Appendix A.

As observed in Gerrard et al. (2004a), the use of a quadratic loss function is not new in the context
of pension funds. Some examples are Boulier et al. (1995), Boulier et al. (1996), Cairns (2000).
From a theoretical point of view, the quadratic loss function penalizes any deviations above the
target (as well as deviations below the target), and this can be considered as a drawback to the
model. However, the choice of trying to achieve a target and no more than this has the effect of
a natural limitation on the overall level of risk for the portfolio: once the target is reached, there
is no reason for further exposure to risk and therefore any surplus becomes undesirable. The idea
that people act by following subjective targets is accepted in the decision theory literature. For
example, Kahneman and Tversky (1979) support the use of targets in the cost function, and, more
recently, Bordley and Li Calzi (2000) investigate and support the target-based approach to decision
making under uncertainty. Another example of the use of targets in an insurance context is provided
by Browne (1995), who derives optimal investment policies by minimizing the probability that the
wealth hits a certain bottom level (ruin) before hitting a certain upper level (target).

In addition, as will be shown later in section 3, with a proper and not unreasonable choice of
the target, the fund never exceeds the target and the optimal running consumption never exceeds
the targeted consumption. Hence, the choice of a quadratic loss function can be justified and it
does have the advantage of leading to closed-form solutions.

The chosen disutility function, quadratic in the fund and in the consumption, is not new also in the
literature of stochastic optimal control problems. In fact, it is a particular case of (stochastic) linear
quadratic optimal control problems – problems with applications mainly in the engineering context
– where the cost functional is quadratic in both the state variable and the control (see, for instance,
Yong and Zhou (1999) for a detailed description of linear quadratic optimal control problems, with
examples of applications).

The terminal cost which comes into operation in the event of survival to age T takes the form

K(x) = we−ρT (b1 − kx)2, (2.4)

and the utility of bequeathing assets of x on death at age t is

M(t, x) = e−ρtnx. (2.5)

The positive constant k may be seen as the amount of annuity provided by the insurance company
at age T for 1 unit of capital, w and n are non-negative constants, interpretable as weights given to
the achievement of the final annuity level of b1 and to the importance given to the ability to leave a
bequest. In particular, the constant n is associated with the size of the fund at the time of death.

The term u(F (t)−x)2 in the loss function may be interpreted as having two main aims: on the one
hand it can help with reaching the final annuity target, on the other hand it serves as an incentive
for the maintenance of a certain minimum level of fund for a bequest, in the case of earlier death.
Therefore, it can be argued that it is redundant as the same goals are pursued by the final loss
in terms of the deviations from the desired annuity (function K(x)) and by the utility at death in
terms of the bequest (function M(t, x)). However, we think that the constant monitoring of the
fund size over time has an importance by itself, in that pensioners can check the performance of the
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fund against pre-determined targets, given that insurance companies would normally supply regular
reports on the value of the fund. Furthermore, the importance of interim targets may be reduced
by choosing a low value of u.

On the other hand, it will be shown (see section 3.1) that the utility attached to the ability to
bequeath turns out to be redundant: the term M(t, x) can be incorporated in the interim targets.

We notice that the utility associated with the bequest is linear in the wealth, whereas the other
kinds of loss are quadratic. One reason for this choice is that while it is natural for the pensioner to
pursue targets for the level of consumption and the size of the fund, and the choice of a quadratic
loss function is intended to penalize any deviation from the targets (see discussion above), there
seems to be no natural target for the size of bequest to be left to heirs, and in case of death
before annuitization, the higher the fund the better. The analysis has been carried out also with a
quadratic term nx2 instead of the linear one nx: in this case, solutions can be found in closed form
too.

The total expected loss from age t onwards is

Ht,x(y(·), b(·)) = IE

[∫ T∧TD

t
L(s,X(s)) ds + K(X(T ))1TD>T −M(TD, X(TD))1TD<T |X(t) = x

]

(2.6)

where TD is the random time of death.

The objective is to minimize over possible investment and consumption choices the expected dis-
counted future loss from retirement until time T ∧ TD, find the optimal value function:

V (t, x) = min
y(·),b(·)

Ht,x(y(·), b(·)) (2.7)

and the optimal couple (y∗(·), b∗(·)) that satisfies V (t, x) = Ht,x(y∗(·), b∗(·)).

2.1 SOLUTION OF THE PROBLEM

Minimizing equation (2.7) is a stochastic optimal control problem. In solving the problem, we follow
the method used in Gerrard et al. (2004b), so the reader should refer to this and references therein
for a detailed explanation of the derivation of the HJB equation. For a more general derivation of a
Bellman system of differential equations in a problem when benefits are triggered by any transition
between different states in a finite Markov chain, applied to an insurance policy, see Steffensen
(2004).

The optimal value function V (t, x) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = min
y,b

{
e−ρt

[
u(F (t)− x)2 + v(b0 − b)2

]
+ Vx [−(b− rx) + (λ− r)xy]

+ Vt + 1
2σ2x2y2Vxx − δ(t)V − δ(t)e−ρtnx

}
(2.8)

with the boundary condition

V (T, x) = K(x) = we−ρT (b1 − kx)2, (2.9)

where Vt, Vx and Vxx represent ∂V
∂t , ∂V

∂x and ∂2V
∂t2

respectively, and δ(t) is the force of mortality of
the individual at age t.
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Minimizing over y and b we find that the optimal proportion of wealth to invest in the risky asset
and the optimal income to draw down from the fund are given by the following optimal control
functions:

y∗(t, x) = −(λ− r)
σ2x

Vx

Vxx
(2.10)

b∗(t, x) = b0 +
1
2v

eρtVx. (2.11)

Substituting these values into the HJB equation we obtain

β2V 2
x

2Vxx
+

eρt

4v
V 2

x + (b0 − rx)Vx − Vt + δ(t)V = e−ρt
[
u(F (t)− x)2 − δ(t)nx

]
,

where β = (λ− r)/σ, the Sharpe ratio of the risky asset.

As in previous work, we seek a solution of the form

V (t, x) = e−ρt(A(t)x2 + B(t)x + C(t)). (2.12)

This formulation works as long as A(t), B(t) and C(t) satisfy the following system of differential
equations





A′(t) =
1
v
A(t)2 + (ρ− 2r + β2 + δ(t))A(t)− u,

B′(t) =
(

ρ + β2 − r + δ(t) +
A(t)

v

)
B(t) + 2A(t)b0 + 2uF (t) + nδ(t)

C ′(t) =
β2B(t)2

4A(t)
+

B(t)2

4v
+ b0B(t) + (ρ + δ(t))C(t)− uF (t)2

(2.13)

with boundary conditions given by

A(T ) = wk2, B(T ) = −2wkb1, C(T ) = wb2
1. (2.14)

Note that one requirement for the proposed solution to be optimal is that Vxx > 0, or in other
words that A(t) > 0 for all t ≤ T . The differential equation for A(t) is of Riccati type and can
be easily solved if one particular solution is known. The difficulty in finding an analytical solution
comes from the presence of the time dependent term δ(t) in the coefficient of A(t). Therefore, we
will consider different cases for the specification of δ(t).

The difficulty of the task (solving a Riccati differential equation) arises when finding the solution
in the linear stochastic regulator problem (see also Øksendal (1998)). This is due to the quadratic
term in the control variable (here, the consumption).

2.2 ON THE SOLUTION OF THE DIFFERENTIAL EQUATION FOR A(t):
CONSTANT MORTALITY

In the special case where δ(t) = δ for all t, we are able to find closed form solutions. In this case
we have to solve the following problem:

{
A′(t) = 1

vA(t)2 + φA(t)− u
A(T ) = wk2,

(2.15)

with φ = ρ− 2r + β2 + δ.
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The solution is:

A(t) =
f1(wk2 − f2)eR(T−t) − f2(wk2 − f1)

(wk2 − f2)eR(T−t) − (wk2 − f1)
,

using the notation:

R =
√

φ2 + 4
u

v
, f1 =

v

2
(R− φ), f2 = −v

2
(R + φ)

We observe that

1. f1 ≥ 0 > f2;

2. limt→−∞A(t) = f1;

3. A′(t) is positive if A(t) > f1, negative if f2 < A(t) < f1. If A(t0) > f1 then A(t) > f1 for
all t, and in particular A(T ) > f1. Conversely, if A(t0) < f1 then A(t) < f1 for all t, and in
particular A(T ) < f1.

4. We can restate the same remarks from a different viewpoint. If A(T ) > f1 then it must have
been the case that A(t0) > f1 and A increases over the range (t0, T ). If, on the other hand,
f2 < A(T ) < f1 then it must be the case that A(t0) < f1 and A is a decreasing function over
the range (t0, T ), so it must everywhere be greater than A(T ), which is equal to wk2, and
therefore strictly positive.

As a consequence, A(t) > 0 for all t0 ≤ t ≤ T .

2.3 ON THE SOLUTION OF THE DIFFERENTIAL EQUATION FOR A(t):
AGE DEPENDENT MORTALITY

In the more realistic case of non-constant mortality, the problem to solve is:
{

A′(t) = 1
vA(t)2 + φ(t)A(t)− u

A(T ) = wk2,
(2.16)

where φ(t) = ρ− 2r + β2 + δ(t).

Equation (2.16) is a Riccati differential equation, meaning that it may not be possible to write down
a solution in explicit form for an arbitrarily chosen force of mortality δ(t). Some common forms for
δ(t) are δ(t) = φ + ψt (linear), δ(t) = φeωt (Gompertz) and δ(t) = ζ + φeωt (Makeham). In all of
these cases the solution A(t) exists, but can be written as a non-linear combination of Whittaker
functions (which are combinations of Kummer functions), therefore it cannot be easily treated in
the numerical applications.

However, it is possible to investigate the most important property of A(t) — whether it is positive
— without solving explicitly. In fact, it is possible to prove the following fact:

Proposition 1 If the force of mortality is bounded over the range t0 < t < T then A(t) > 0 for all
t0 < t < T .

Version: November 9, 2005 Page 8



The proof is in Appendix B.

Remark. The force of mortality may be assumed to be a non-decreasing function of time over the
range t0 < t < T (this is true given that we are considering post retirement ages, eg t0 = 60 and
T = 75; it would not be necessarily true for other ranges of age, like the range 15-35 for the male
population), and therefore may be assumed to be bounded above and below.

Furthermore, it is also possible to approximate rather well the solution in the applications. In fact,
we prove the following lemma (the proof, which is needed in the proof of the proposition, is also in
Appendix B):

Lemma 2 Suppose that A0(t) solves (2.16) in the case where φ(t) = φ0, a constant, and that A(t)
is a solution to (2.16) in the general case. If φ(t) ≥ φ0 for all t0 ≤ t ≤ T , then A(t) ≤ A0(t) for all
t0 ≤ t ≤ T . Conversely, if φ(t) ≤ φ0 for all t0 ≤ t ≤ T , then A(t) ≥ A0(t) for all t0 ≤ t ≤ T .

Therefore, if the real force of mortality δ(t) is bounded between a lower constant force of mortality
δL and a higher constant force of mortality δU , the behaviour of the true A(t) will be bounded
between the corresponding AL(t) and AU (t), solutions of the differential equation with δL and δU

respectively, and can be well approximated by these boundaries if these are close enough.

In the numerical applications of the model (presented in section 5), the plot of the functions AL(t)
and AU (t), corresponding respectively to δL = δt0 and δU = δT (with t0 age at retirement eg 60 and
T age of compulsory annuitization, eg T = 75), shows that these functions are very close to each
other, as are the corresponding optimal controls. An example is given by Table 1, which reports the
values of these functions, and Figure 1, which illustrates the corresponding optimal consumption
and investment choices and the resulting optimal growth of the fund, in one particular scenario of
market returns. The forces of mortality at age 60 and at age 75 are calculated according to the
Italian projected mortality table RG48 (males) data.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AL(t) 11.2 11 10.9 10.7 10.5 10.3 10 9.8 9.5 9.2 8.8 8.4 8 7.6 7.1 6.5
AU (t) 9.6 9.5 9.5 9.3 9.2 9.1 8.9 8.8 8.6 8.4 8.1 7.9 7.6 7.3 6.9 6.5

Table 1. Values of the functions AL(t) and AU (t).
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Figure 1: Comparison between optimal controls and growth of the fund with two different constant forces of
mortality (at age 60 and at age 75).

In the graphs reporting the optimal controls and the evolution of the fund under optimal control, the two
curves corresponding to the different forces of mortality cannot be clearly distinguished, because they are
almost coincident. This underlines the negligible effect of the precise value of the force of mortality in the
practical applications considered here.

3 THE “NATURAL” TARGET FUNCTION

We now introduce a new function, which will turn out to be useful throughout the paper:

G(t) = − B(t)
2A(t)

.

The optimal controls can be expressed in function of A(t) and G(t):

b∗(t, x) = b0 − A(t)
v

(
G(t)− x

)
, y∗(t, x) =

λ− r

σ2

G(t)− x

x
. (3.1)
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Here we consider the properties of the optimally controlled process on the assumption that there is no
restriction on the possible values taken by the controls b∗ and y∗. The effect of imposing restrictions on the
controls will be considered in a later section.

Let us denote by X∗(t) the process of the fund under optimal control. Then

dX∗(t) =
[
−b0 +

(
A(t)

v
+ β2

) (
G(t)−X∗(t)

)
+ rX∗(t)

]
dt + β

(
G(t)−X∗(t)

)
dW (t),

As it appears that a pivotal quantity is the shortfall G(t)−X∗(t), we shall denote this process by S(t). We
observe that

dS(t) =
[
G′(t) + b0 − rG(t)−

(
A(t)

v
+ β2 − r

)
S(t)

]
dt− βS(t) dW (t).

Although we have no explicit solution for A(t), we can nevertheless write

G′(t) = −B′(t)
2A(t)

+
B(t)A′(t)
2A(t)2

=
(

r +
u

A(t)

)
G(t)− b0 − 2uF (t) + nδ(t)

2A(t)
. (3.2)

Substituting this back in, we obtain

dS(t) =
(

r − β2 − A(t)
v

)
S(t) dt− βS(t) dW (t) +

2u
(
G(t)− F (t)

)− nδ(t)
2A(t)

dt. (3.3)

The stochastic differential equation (3.3) satisfied by S(t) suggests a natural form for the target function
F (t): if it is the case that

G(t)− F (t) =
n

2u
δ(t) (3.4)

then the logarithm of S(t) is a Wiener process with a time-dependent drift, and therefore S(t) will always
remain non-negative, under the assumption that S(t0) > 0. In other words, if X(t0) < G(t0), then X(t) will
always remain below the function G(t).

This property was also observed for the model discussed in Gerrard et al. (2004a), in a problem where
consumption was fixed. In that case, it was discovered that there was a natural explanation for the target
F (t) which arose out of the equations, namely that it consisted of precisely the amount of money required
to fund consumption at the fixed level until the time of compulsory annuitization and then to achieve the
final target pursued. Here we find a similar explanation, which includes also the bequest motive. In fact, it
is easy to prove that the functions F (t) and G(t) which satisfy (3.2) and (3.4) are

G(t) =
b0

r
(1− e−r(T−t)) +

b1

k
e−r(T−t), F (t) =

b0

r
(1− e−r(T−t)) +

b1

k
e−r(T−t) − n

2u
δ(t) (3.5)

Even when F and G do not satisfy (3.4), it is still possible to obtain a solution to (3.2), at least in the form

G(t) =
b1

k
exp

(
−r(T − t)− u

∫ T

t

ds

A(s)

)
+

∫ T

t

(
b0 +

2uF (z) + nδ(z)
2A(z)

)
exp

(
−r(z − t)− u

∫ z

t

ds

A(s)

)
dz.

(3.6)

The interpretation for the choice of the natural target F (t) is the following. If a sum G(t) were invested at
time t in the risk-free asset, then the interest payments would cover consumption at rate b0 until the age
of compulsory annuitization, and thereafter would permit the purchase of an annuity paying the required
amount b1 per unit time. Therefore, the level G(t) can be considered to be a sort of “safety level” for the
personal needs of the pensioner (see Gerrard et al. (2004a)), and would in effect coincide with his/her target,
should he/she have no bequest motive (i.e. n = 0). If the pensioner has a bequest motive, his/her target
would be chosen accordingly to the importance given to it, and we may think of the quantity n

2uδ(t) as the
part of the overall target pursued by the pensioner that allows for the bequest desire. In fact, it will be shown
in the next section that, in the case of the natural target, the problem to be solved is equivalent to one in
which the interim target is equal to the safety level G(t) and there is no bequest motive.
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3.1 INTERACTION BETWEEN THE BEQUEST MOTIVE AND THE IN-
TERIM TARGET

This section arises from the observation that, surprisingly, when the natural target is chosen, the optimal
controls do not depend on the weight given to the bequest motive, as we can see by observing that neither
A(t) nor G(t) depend on the value of n (see 2.13, 3.1 and 3.5), while they do depend on the force of mortality.
It seems that if the pensioner does take into account the bequest motive and the subjective probability of
death when selecting the target pursued (by appropriate choice of F (t)), his/her optimal behaviour is then
the same as if the bequest motive were absent.

This is indeed a special case of a more general fact that can be shown concerning the interaction between
the choice of the interim target and the bequest motive. It can be shown that the utility attached to the
bequest motive M(t, x) (equation 2.5), from a purely mathematical point of view, is not actually needed in
the formulation of the problem, in that the importance given to the bequest motive can be included in the
interim targets. In fact, consider an individual with a certain target function F (t) and a certain bequest
motive given by M(t, x). We can replace the interim target F with a new one, that includes the bequest
motive:

F̃ (t) = F (t) +
nδ(t)
2u

(3.7)

If we replace (3.7) in (2.8), the Hamilton-Jacobi-Bellman equation becomes:

0 = min
y,b

{
e−ρt

[
u
(
F̃ (t)− x

)2 + v
(
b0 − b

)2 +
n2δ2(t)

4u
− nδ(t)F̃ (t)

]
+

+Vx [−(b− rx) + (λ− r)xy] + Vt + 1
2σ2x2y2Vxx − δ(t)V

}
(3.8)

In other words, the term M(t, x) = −nxδ(t)e−ρt has been replaced by the term e−ρt[n2δ2(t)
4u − nδ(t)F̃ (t)],

that does not contain x, y or b and therefore does not affect the optimal controls. It is clear that the two
formulations of the problem (3.8) and (2.8) are equivalent, in that they give the same optimal control rules:
in the new formulation the weight given to the bequest motive n still enters the optimal controls through
the target itself F̃ . We can think of the F̃ target as a target adjusted to include the bequest, and we can
refer to it as a “bequest-target”, to distinguish it from the original one and the natural one. We notice that
the bequest-target increases as n increases and when δ(t) increases. This is reasonable: an individual who
attaches high importance to the ability to leave a bequest and has a high subjective probability of imminent
death will be likely to set a high interim target.

When the natural target is chosen, the bequest-target is:

F̃ (t) = F (t) +
nδ(t)
2u

= G(t)

Thus, in this case the bequest-target coincides with the safety level. More importantly, we note that, since
F̃ is the only way by which the weight n can affect the optimal controls, in this case the optimal controls are
not affected by n, observing that the safety level G does not include n.

We notice that the absence of an effect of the bequest motive on optimal choices only occurs in the presence
of the natural target: we can think of it as having been offset by the interim target. Should the pensioner
choose a target other than the natural one, the optimal control would depend on n via G(t) (see 3.6) or, in
the new formulation, via F̃ (see 3.7- 3.8). We shall ignore this case in the rest of the paper and defer the
analysis of other choices of the target to future research.

Although we have just proved that the explicit presence of a bequest motive in the form of equation 2.5
is not necessary, because the importance given to the bequest can be encompassed in the interim target, we
nevertheless leave the formulation of the initial problem unchanged, so as to isolate the effect of the different
components on the pensioner’s behaviour.
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3.2 SOME FEATURES OF THE OPTIMAL CONTROLS WHEN NATURAL
TARGETS ARE CHOSEN

The optimal control policies at time t, with a fund of X∗(t), are the following:

b∗(t,X∗(t)) = b0 − A(t)
v

(
G(t)−X∗(t)

)
, y∗(t, X∗(t)) =

λ− r

σ2

G(t)−X∗(t)
X∗(t)

When the natural targets are chosen, the shortfall of the fund from G(t) is always strictly positive. Therefore,
the optimal consumption never exceeds the level b0, and the amount invested in the risky asset is always
positive. This property can be of considerable importance, given the fact that consumption can be limited by
regulation (in UK the amount withdrawn must lie between 35% and 100% of the amount of annuity provided
by the fund at retirement), and short selling is likely to be forbidden, and given also the fact that adding
constraints to the optimization problem would considerably increase the difficulty of finding and treating the
solution (see below). Examples of works where an optimization problem with constraints has been solved are
Di Giacinto and Gozzi (2004), in the context of a defined contribution pension scheme, and Browne (1995),
who minimizes the probability of ruin when borrowing is not allowed.

We notice that the optimal amount invested in the risky asset y∗(t)X∗(t) is proportional to the shortfall S(t),
which is the difference between the safety level and the fund level. This result is similar to a result found
by Browne (1997): solving two “survival problems” (maximizing the probability of reaching a “safe region”
before occurrence of ruin and minimizing the discounted penalty paid upon going bankrupt) he finds that in
both problems the optimal policy implies investing in the risky asset a proportion of the (positive) difference
between the amount needed for being in the safe region and the fund level.

The function A(t) depends on the value of the parameters v, u and w, but it can be seen from the form of the
controls that what counts most is the ratio A(t)

v . From a detailed study of the solution A(t) of the Riccati
differential equation in the case of constant mortality, we see that:

lim
v→+∞

A(t)
v

= 0, (3.9)

a result that can be naturally extended to the general case. This feature is also intuitive: when the impor-
tance attached to the monitoring of the consumption is high, the optimal consumption tends to coincide with
the desired level b0.

From numerical examples which will be shown later, we also see that this ratio depends heavily on the
ratio u

v , rather than on the individual values of the parameters. Mathematically, this could be explained by
observing that for points in time sufficiently far from time T (i.e. for T − t sufficiently large), we have:

A(t)
v

∼ 1
2
(R− φ)

recalling that R =
√

φ2 + 4u
v and that φ does not depend on the parameters v, u and w. When time T

approaches, the ratio w
v becomes more important (since A(T )

v = w
v k2). In the numerical applications, we have

observed that the most significant factor driving the controls is the ratio u
v , that gives an indication of the

relative importance attached to the monitoring of the fund and of the running consumption.

3.3 IMPOSING RESTRICTION ON THE CONTROLS

Governments (or regulators) may introduce regulations in order to restrict the freedom of the investor with
regard to either the income they draw down or the proportion of the fund which may be invested in risky
assets. In order to increase the generality of the treatment, however, we will consider only the natural
restrictions which follow from the situation being modelled. These are

1. b ≥ 0. Although it is not impossible to imagine negative consumption — rather than withdrawing
money from the fund for day-to-day expenses, the investor pays additional sums into the fund — the
protected status of pension funds is likely to rule this out as a possibility.
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2. y ≤ 1. Again, in normal circumstances an investor may well have the option of borrowing at a fixed
rate of interest in order to invest in the risky asset, but in the particular context of a pension fund it
is unlikely that this will be permitted.

3. x ≥ 0. If the assets of the fund drop to zero, the rules of the fund will presumably require that the
investor stops trading.

If the evolution of the fund is governed by the optimal controls derived with natural targets, then

b∗(t, X∗(t)) < 0 ⇐⇒ S(t) >
vb0

A(t)
,

y∗(t, X∗(t)) > 1 ⇐⇒ S(t) >
G(t)

1 + λ−r
σ2

,

X∗(t) < 0 ⇐⇒ S(t) > G(t).

It is clear that X∗(t) < 0 can only occur if y∗(t,X∗(t)) > 1, so the second restriction will take effect more
frequently than the third. No such relationship can be proved for the first two restrictions, or for the first and
the third restrictions, however: which one takes effect first depends on the relative values of the weighting
parameters u, v and w. Namely, the critical level at which consumption becomes negative does depend on
the choice of the parameters v, u and w, whereas the critical levels for ruin and borrowing money from the
bank do not. This means that, by choosing appropriate values of the parameters, negative consumption
can in practice be avoided (it would be sufficient, for example, to choose values of the parameters for which
ruin occurs before negative consumption). In fact, increasing the value of v will result in a higher level
for the barrier for negative consumption (recalling the limit 3.9). Unfortunately, there are no values of the
parameters which would help in avoiding ruin or borrowing money from the bank.

The graphs in Appendix C (Figure 7) show how the change in the ratio v
u can affect the level of the barrier

for negative consumption. In particular, it can be seen that with a high enough v
u (eg 160) the barrier for

negative consumption is higher than the barrier for ruin, that is, ruin occurs before negative consumption.

3.3.1 THE CASE b∗ < 0

If S(t) > vb0
A(t) , the optimal choice of b is negative. If restriction 1 is in force, it would be natural to suggest

that we choose zero consumption in such cases. It should be noted that such a strategy does not lead to the
optimal control of the process subject to restriction 1, but the difference may be small.

If we are constrained to choose b = 0, the control problem becomes one of choosing y. This is related to the
situation considered in Appendix A, where the income rate is required to take a fixed value b0. The remarks
made in the following section apply to this case, by taking b0 = 0.

3.3.2 THE CASE y∗ > 1

If S(t) > G(t)

1+ λ−r

σ2
, the optimal choice of y is greater than 1. If restriction 2 is in force, so that no bank

borrowing is permitted, then the simplest suggestion is that we should take y∗ = 1 in these cases. If we adopt
this strategy then the form of the HJB equation is substantially altered, being now

0 = − 1
4v

eρtV 2
x + ue−ρt

(
F (t)− x

)2 + (λx− b0)Vx + Vt + 1
2σ2x2Vxx − δtv − δtnxe−ρt.

It is possible to find a solution to this equation, again of the form V (t, x) = e−ρt
(
A(t)x2 + B(t)x + C(t)

)
,

but it is different from the solution which applies in the region y∗ < 1.
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3.3.3 THE CASE WHERE BOTH b∗ < 0 AND y∗ > 1

When X(t) is sufficiently low, both b∗ and y∗ fall outside the range permitted by the restrictions. Again a
first approximation to the optimal strategy is to set b = 0, y = 1 in such cases. This implies that the entire
fund is invested in the risky asset but that no income is drawn down. The fund, therefore, is a constant
multiple of the price of the risky asset. As a geometric Brownian motion with positive drift, it is unable to
become negative.

As a consequence, ruin is impossible when the restrictions are applied as long as Xt is such that b∗ < 0 and
y∗ > 1.

4 NUMERICAL EXAMPLES

The model outlined in the previous sections has been tested in simulated scenarios for market returns. In
particular, the path of the risky asset has been simulated for 1000 scenarios via Monte Carlo simulations,
and for each scenario the optimal policies (ie the optimal consumption and the optimal asset allocation) have
been applied. The motivation for testing the model in simulated scenarios is to obtain extra information
about many relevant issues when the optimal choices derived above are applied. These issues include the
undesirable events listed above (ruin, negative consumption and borrowing money from the bank), together
with some information about the final outcome of the option of deferring annuitization, in terms of the size
of the final annuity that can be bought at time T . So we are interested in investigating the following key
features:

1. risk of outliving the assets before time T , called the ruin probability, and average time of ruin, when
ruin occurs;

2. behaviour of the optimal consumption and the optimal investment allocation over time;

3. probability of negative consumption, average age at the time of negative consumption and average time
spent consuming negative amounts;

4. probability of borrowing money from the bank for investing in the risky asset, average age at the time
of borrowing money and average time spent borrowing money;

5. distribution of the final annuity that can be bought at time T ;

6. probability that there is some time before T when the pensioner is able to buy a better annuity than
the one that he/she could have bought at retirement, and comparison with the targeted annuity;

7. effect on the optimal controls and on the final annuity of the choice of the relative importance given
to the running consumption and to the achievement of the target.

4.1 ASSUMPTIONS AND METHODOLOGY

In the simulations, we have chosen the natural target specification. The assumptions made on the parameters
are the following:

• retirement is at age t0 = 60 and age of compulsory annuitization is T = 75;

• the fund at retirement is X(t0) = 100;

• the amount of consumption targeted during the drawdown phase, b0, is the level annuity that can
be bought at age 60 with a fund of 100, adopting the Italian projected mortality table RG48 males,
assuming the same interest rate as used for the riskless asset and a loading factor of 5%; thus, b0 = 6.63;

• the target for the final annuity is b1 = 1.5b0 = 9.95 and b1 = 2b0 = 13.26, in order to test different risk
attitudes (the higher the target, the lower the risk aversion);

• parameters for the asset returns are: r = 4%, λ = 10%, σ = 20%; the Sharpe ratio of the risky asset is
therefore 0.3; the inter-temporal discount factor is given by ρ = 4%;
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• the boundaries chosen for the force of mortality are δL = δ(60) = 0.004625 and δU = δ(75) = 0.026254
(derived from the survival probabilities at ages 60 and 75 of the RG48 males, assuming a constant
force of mortality over the year of age);

• the price of the final annuity at age 75 is k−1 = a75(1 + L) where L is the loading factor adopted by
the company, chosen to be equal to 5%; the annuity at age 75 has been calculated with the table RG48
males;

• the ratio v
u has been chosen to be equal to 10, 50, 100 and 500, the ratio w

v equal to 1 and 100, with
a fixed u = 1; the weight given to the bequest motive (although it does not influence the optimal
controls) has been chosen to be equal to n = 10.

Regarding the choice of the value of the parameters, we refer the reader to section 4.5, where some indications
are given.

The discretization of the process over the 15 years of the de-cumulation phase has been done on a weekly
basis; for each combination of b1, δτ=L,U , v

u and w
v , 1000 simulations have been run, using the same 1000

streams of pseudo-random numbers for each combination (in order to allow consistent comparisons between
different combination of parameters). In each scenario we have simulated the Brownian motion and hence the
behaviour of the optimal controls, as well as the evolution of the fund under optimal control. The distribution
over the 1000 simulations of y∗(t) and b∗(t), for t = 0, 1, ..., 779 (780 being the number of weeks in 15 years)
has been analyzed through some relevant statistics, such as minimum, maximum, mean, standard deviation
and some percentiles (5th, 25th, 50th, 75th and 95th). The distribution over the 1000 simulations of the final
annuity purchasable at time T with the resulting fund has been examined using the same statistical analysis,
and the characteristics listed above have been investigated by checking the path of y∗(t), b∗(t) and X∗(t)
over time.

4.2 SIMULATION RESULTS: OPTIMAL CONTROLS

We have found that the choice of the ratio w
v does not significantly affect results, therefore we only show

results for the case of w
v = 1. Similarly, we present results only for the higher force of mortality δU = δ(75),

the corresponding results for the lower force of mortality δL = δ(60) being almost identical (see, for instance,
Figure 1).

On the other hand, the dependence on the ratio v
u is quite strong, both for the optimal controls and for the

distribution of the final annuity.

The graphs in Figure 2 show the median of the optimal investment in the risky asset y∗(t) and the mean of
the optimal consumption b∗(t) over time, with the four choices of v

u and with the two different targets b1.
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Figure 2. Median of the distribution of the optimal investment y∗(t) and mean of the distribution of the
optimal consumption b∗(t) over time, when v

u changes.
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Increasing the weight given to the running consumption (ie the value of v) results in increasing the optimal
consumption b∗(t): when v

u = 500 the individual consumes very close to the ideal level b0 (plotted in the
graph to allow comparisons). This results also in riskier investment strategies, as the level of the (median of)
y∗(t) is higher when v

u increases. However, with low values of v
u , the optimal policy would imply consuming

small amounts of money at the beginning of the plan, or even consuming negatively (it turns out that this
would happen only for a relatively short period of time after retirement, see later tables).

When increasing the final target from b1 = 1.5b0 to b1 = 2b0, the optimal investment allocation becomes
riskier and the optimal consumption decreases. This behavior of the optimal controls is intuitive, in that the
final target has increased whilst everything else has remained unchanged.

The choice of the weights is relevant to the optimal consumption. The graphs in Figure 3 show min, max
and some percentiles of the optimal consumption over time with v

u = 10 and 100, with the two different final
targets.
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b1=1.5b0, v/u=100
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Figure 3. Percentiles of the distribution of the optimal consumption over time with v
u = 10, 100.

With v
u = 10, the initial level of optimal consumption is very close to 0 for b1 = 1.5b0 and negative for

b1 = 2b0; furthermore the optimal consumption in 5% of the cases is negative for at least one and a half
years when b1 = 1.5b0 and for at least four years when b1 = 2b0. With v

u = 100, the optimal consumption in
the simulations run is never negative for b1 = 1.5b0, and is negative in less than 1% of the cases for b1 = 2b0

(noting that in the last graph also the first percentile of the distribution of the consumption has been plotted).

We notice that the situation of negative consumption may be undesirable to many pensioners, as well as the
absence of consumption stability, that makes it difficult to plan for the future. The main reason for this
pattern is the incentive to postpone consumption, due to the relatively high weight attached to the final
annuity in comparison with the interim consumption, together with the fact that the desired annuity b1 is
larger than the targeted consumption b0. However, if the pensioner wishes to avoid negative consumption
and needs a more stable consumption path, he/she will choose parameters so as to guarantee it (see section
4.5).
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4.3 SIMULATION RESULTS: PROBABILITY OF RUIN, NEGATIVE CON-
SUMPTION, BORROWING MONEY FROM THE BANK AND ABILITY
TO PURCHASE A BETTER ANNUITY THAN THE INITIAL ONE

Table 2 reports the frequency over the 1000 simulations of the undesirable events: ruin, negative consump-
tion, borrowing money from the bank. It reports also the average age when the undesirable event occurs
for the first time and the average number of weeks in which the undesirable event occurs (given that it has
occurred). The mean and standard deviation of the final annuity are also reported. The ability to purchase
a better annuity than the one that was possible to buy at retirement (ie b0) has been also tested. Given that
the fund cannot attain the amount needed to buy an annuity of b1, the aim is to investigate how close to
the target b1 one can get. In particular, the growth of the fund has been monitored at any time between
retirement and time T , to see if and when the fund allows the purchase of a certain level of annuity between
b0 and b1. The four levels b0.5 = b0 + 0.5(b1 − b0), b0.75 = b0 + 0.75(b1 − b0), b0.9 = b0 + 0.9(b1 − b0) and
b0.95 = b0 + 0.95(b1 − b0) have been tested. The price of the annuity used at any time has been chosen
according to the age of the individual at that time, using the mortality table RG48 (males), assuming that
the insurance company reviews the annuity price once a year, during the week of the pensioner’s birthday.
The same interest rate and loading factor adopted for the price of the annuity at age 60 and 75 have been
applied.

b1 = 1.5b0 = 9.95 b1 = 2b0 = 13.26
v
u = 10 v

u = 50 v
u = 100 v

u = 500 v
u = 10 v

u = 50 v
u = 100 v

u = 500
Ruin probability 0 0 0,2% 1,1% 0 0,1% 0,8% 2,8%
Mean age of ruin - - 70 72 - 72 69 69
Prob. (neg.cons.) 56,2% 0,2% 0 0 100% 9,7% 1,8% 0
Mean age of neg. cons. 60 63 - - 60 62 64 -
Mean no. wks of neg. cons. 21 17 - - 83 41 22 -
Prob. (y∗(t) > 1) 0 3,1% 7,6% 15,7% 3,5% 21% 28% 37,8%
Mean age of (y∗(t) > 1) - 65 65 66 61 62 62 63
Mean no.wks (y∗(t) > 1) - 56 71 108 16 54 88 134
Mean of final annuity 9,92 9,63 9,42 9,08 13,22 12,71 12,36 11,78
Standard deviation of final annuity 0,04 0,49 0,81 1,32 0,07 0,84 1,38 2,25
Prob(afford annuity of b0.5) 100% 99,1% 96,7% 90,9% 100% 99,2% 97,1% 92,6%
Prob(afford annuity of b0.75) 100% 92,7% 84,8% 71,8% 100% 94,3% 87% 75,9%
Prob(afford annuity of b0.9) 99,6% 73,2% 54,8% 37,7% 99,8% 76,9% 60,4% 43,1%
Prob(afford annuity of b0.95) 98,8% 48,9% 31,5% 17,7% 98,9% 54% 36,6% 21,4%
Mean age when afford ann.of b0.5 65 67 68 69 66 68 69 69
Mean age when afford ann.of b0.75 70 72 72 73 71 73 73 73
Mean age when afford ann.of b0.9 73 74 74 75 74 75 75 75
Mean age when afford ann.of b0.95 75 75 75 75 75 75 75 75

Table 2. Results of the simulations (without imposing restrictions).

The frequency of ruin is very low, ranging from 0 to around 1%, and reaching almost 3% only with a high
target and a high value of v

u (namely, 500, where consumption is very close to b0). On average, ruin occurs
about 10 years after retirement (when it occurs).

With a low value of v
u (ie 10) and a high target (b1 = 2b0), the optimal consumption is negative immediately

after retirement, and on average remains negative for a year and a half; with a a low target (b1 = 1.5b0) the
consumption becomes negative soon after retirement in more than 50% of the cases, and remains negative
on average for 5 months. After that initial period, the consumption turns positive and starts approaching
the desired level b0. On the other hand, the affordability of levels of annuity very close to the (unreachable)
target before time T are almost guaranteed: the frequency of achievement of an annuity paying bα for the
rest of the life, with both values of the final target b1, is about 99–100% for all values of α chosen: 0.5, 0.75,
0.9 and 0.95. It is clear that the initial sacrifice in terms of reduced consumption is compensated by a very
high chance of getting as close as one wants to the desired target later on. This feature seems important, as
there may be the opportunity for the pensioner to renounce a few years of consumption at the beginning of
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the de-cumulation phase in order to be able to achieve the desired annuity almost with certainty.

With high enough v
u (ie 100), the optimal consumption almost always remains positive. However, the fre-

quency of being able to afford an annuity paying bα before T is no longer close to 100% (apart from α = 0.5)
and sharply decreases when α increases, reducing to 55–60% for α = 0.9 and dropping to values as low as
about 30–35% with α = 0.95.

With v
u = 500, the probability of reaching the level b0.95 before time T goes down to about 20% with both

targets. The price that one has to pay for a stable consumption path very close to the desired level b0 is
a lower chance of being able to approach the final annuity target during the drawdown phase, or (which is
equivalent) accepting a lower level of lifetime annuity at the time of annuitization. Interestingly, we notice
that the chances of getting very close to the target (α = 0.9 and 0.95) are slightly higher with b1 = 2b0 than
with b1 = 1.5b0: this seems to suggest that the higher the target, the higher the reward in terms of chances
of approaching it. The same feature is observed in Gerrard et al. (2004a).

The mean of the final annuity decreases and the standard deviation increases when v
u increases, which is

intuitive. Furthermore, the restriction on the investment allocation is violated more often when v
u is raised,

with increases in both the probability of borrowing money from the bank to invest in the risky asset and in
the number of weeks during which this happens.

4.4 SIMULATION RESULTS: DENSITY FUNCTION AND EMPIRICAL DIS-
TRIBUTION OF THE FINAL ANNUITY

The density function of the final annuity kX(T ) that can be bought at the time of compulsory annuitization
can be exactly calculated. In Figure 4 the density function is plotted together with the histogram of the
empirical distribution of the final annuity from the 1000 simulations, for the two targets and for v

u = 10, 100
and 500.

We note that the distribution depends heavily on the choice of the Sharpe ratio, λ−r
σ , of the risky asset

(for a detailed explanation of the dependence of results on the Sharpe ratio, and for a sensitivity analysis,
see Gerrard et al. (2004a)). The results here reported are relative to a Sharpe ratio of 0.3; if this value were
increased (reduced), the distribution would in consequence become more (less) concentrated to the left of the
target b1.
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Figure 4. Density function and empirical distribution of the final annuity.

The graphs confirm the results found in Table 2: the higher is the weight given to the running consumption
(value of v

u ), the more spread out is the distribution of the final annuity.
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4.5 SUGGESTIONS FOR IMPLEMENTATION OF THE MODEL

This section deals with the difficult but relevant problem of implementing the model in practice. This issue
has been tackled by Young (2004): she provides the reader with simple rules for choosing the target rate of
consumption by controlling the probability of lifetime ruin. The way that the consumption rate is chosen
depends on the maximum tolerable probability of ruin over a specified horizon and other similar issues. In our
model, easy rules cannot be provided, simply because we do not have closed formulae for the key measures
that are of interest to a pensioner. However, what is available to the decision maker is the probability
distribution of the relevant outcomes, derived by the application of the model for specific choices of the
parameters. We may imagine that the financial advisors can provide the retirees with tables like Table 2.
Based on the quantitative information provided, retirees can understand the likely consequences of their
choice and can be helped to make their choices about the setting of the model parameters. For instance, let
us consider three different examples, and let us imagine that the table provided by the advisor is Table 2.

1. The pensioner is not solely dependent on the income from the fund, wishes to attain a high target
eventually, and is not worried by the possibility of low consumption in the intervening period. This
pensioner might be willing to choose the profile v

u = 10, b1 = 2b0, that gives a very high probability of
getting close to the desired high annuity.

2. The pensioner needs a regular income for his/her daily needs and has no other sources of income than
the one given by the fund. This pensioner will probably select the profile v

u = 500 and b1 = 1.5b0, that
gives a consumption path very close to b0 at all ages.

3. The pensioner has no liquidity problem and has a strong bequest motive. This pensioner will probably
choose a very high value for b1 and the profile v

u = 10, so as to keep a high value of the fund for the
whole distribution phase. Alternatively, he/she may select a specification other than the natural one
for the interim targets, so as to be able to choose a high value of n with some effect on the optimal
rules.

In other words, we acknowledge that the choice of the different parameters of the model is not easy a priori,
but can be driven by the knowledge of the distribution of the outcomes obtained when implementing the
model for specific profiles.

4.6 IMPOSING RESTRICTIONS ON THE OPTIMAL CHOICES: SUB-OPTIMAL
POLICIES

As mentioned in section 3, the problem with constrained controls has not been solved, due to the difficulty of
the task. However, it is possible to act in such a way as to avoid unacceptable situations. In fact, the pensioner
can set the consumption equal to 0 whenever the optimal policy would imply negative consumption, and can
invest the whole portfolio in the risky asset whenever the optimal policy would imply borrowing money from
the bank in order to invest in the risky asset. Furthermore, the process should be stopped if and when the
fund hits the barrier 0, ie when ruin occurs. The choices just described would not be optimal in the classic
sense, in that they would not be the exact solution to the optimal control problem with constraints. However,
the difference from the true optimal solution is likely to be small; equally importantly, these restrictions are
quite easy to implement.

We have implemented these sub-optimal policies with constraints in a small number of cases, and investigated
the difference from the results of the unrestricted problem. The scenarios chosen are those where imposing
such restrictions is likely to have a significant effect on the investment/consumption choices. Therefore, we
have selected b1 = 2b0, v

u = 10 (which is the case where negative consumption is most likely to appear),
b1 = 2b0, v

u = 100 (which is the case where borrowing money from the bank is most likely to appear) and
b1 = 2b0, v

u = 500 (which is the case where ruin is most likely to appear). Table 3 reports the results. For
consistent comparisons, the stream of pseudo-random numbers generated is the same as the one used in the
previous case.
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b1 = 2b0 = 13.26
v
u = 10 v

u = 100 v
u = 500

Ruin probability 0 0 0,4%
Mean age of ruin - - 73
Prob. (neg.cons.) 0 0 0
Prob. (y∗(t) > 1) 0 0 0
Mean of final annuity 13,19 12,24 11,32
Standard deviation of final annuity 0,29 1,62 2,88
Prob(afford annuity of b0.5) 99,9% 95,5% 87,4%
Prob(afford annuity of b0.75) 99,8% 85,6% 72,1%
Prob(afford annuity of b0.9) 98,9% 59,7% 42,2%
Prob(afford annuity of b0.95) 97,4% 36,5% 21%
Mean age when afford annuity of b0.5 67 69 69
Mean age when afford annuity of b0.75 71 73 73
Mean age when afford annuity of b0.9 74 75 75
Mean age when afford annuity of b0.95 75 75 75

Table 3. Results of the simulations (imposing restrictions).

Imposing restrictions on the controls does not seem to have a significant effect on the results. Clearly, there
are no unreasonable situations any longer (negative consumption and borrowing money from the bank). The
frequency of ruin decreases in comparison with the unrestricted case, probably because the high values of
y∗(t) are truncated to 1. The mean and standard deviation of the final annuity are similar to the case without
restrictions (slightly worse, with the former decreasing and the latter increasing). The chances of getting
close to the desired annuity level slightly decrease in all cases (but only by 1—2 percentage points, apart
from one case, where it decreases by 5%).

The distribution of the final annuity over the 1000 simulations is plotted in the graphs of Figure 5. The
histograms are very similar to the corresponding histograms of the unrestricted case, and could not be
distinguished if they were to be plotted on the same graph.
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b1=2b0=13.26,v/u=500
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Figure 5. Distribution of the final annuity when imposing restrictions on the controls via sub-optimal policies.

It may be of interest to observe the behaviour of the sub-optimal controls when the restrictions are applied.
The graphs in Figure 6 report the percentiles of the consumption and of the investment allocation in the
cases analyzed. For notational convenience, in the graphs we will indicate as y∗(t) its truncated value.
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Consumption with restrictions, v/u=500
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y*(t) with restrictions, v/u=500
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Figure 6. Sub-optimal controls when the restrictions are applied.

As expected, the paths of the percentiles of the controls are very stable over time and are more stable
than the corresponding percentiles of the unrestricted case. For example, from an inspection of the case
v
u = 100, we can see that in the unrestricted case the curve of the minimum consumption becomes negative
many times between ages 62 and 72 (see Figure 3), whereas it lies strictly above 0 at all ages in the restricted
case. This apparent contradiction can be explained by a thorough investigation of the single trajectories in
the scenarios where the optimal consumption becomes negative: in the unrestricted case the negative con-
sumption at certain points in time is due to very low values of the fund at that time, while in the restricted
case the fund takes higher values, due to the fact that the investment allocation is restricted, and this leads
to positive consumption. A further comparison of the single trajectories of the fund in the unrestricted and
restricted case (in the same scenarios for market returns) seems to show that the path of the fund is more
stable when restrictions are applied, and this, again, is to be explained by the fact that the amount invested
in the risky asset cannot exceed the whole portfolio.

5 CONCLUSIONS

In this work, we present an analysis which can lead to a flexible tool that could help the member of a defined
contribution pension scheme in making his/her decisions in the post retirement phase before annuitization.
In particular, he/she can set a desired level of annuity to be bought when ultimate annuitization occurs, and
invest and consume in the meantime, according to this target. Mortality has been included in the model,
in that the pensioner runs the optimization problem until annuitization or death, whichever occurs first.
Furthermore, the individual can give due importance to the ability to leave a bequest in the case of death
before annuitization. The problem has been tackled and solved with the techniques of stochastic optimal
control theory, in a typical Black and Scholes financial market, with a riskless and a risky asset. We have
solved the problem also in the case that consumption is fixed, and the only choice available to the individual
is the investment allocation. The solution is found with a particular definition for the target function, which
is called the “natural target”, in that it acts as a sort of safety level for the needs of the pensioner and takes
into account his/her bequest motive and his/her (subjective) force of mortality. With a constant force of
mortality, the optimal controls are given in closed form; with a more realistic age-dependent force of mortality,
we show that the solution exists and can be well approximated by solving the problem with a constant lower
level and a constant higher level for the force of mortality. An unexpected result is that by choosing the
natural target, that is linked to the bequest motive, the individual acts optimally as though his/her bequest
motive was null. This can be explained by showing that, in general, the bequest motive can be incorporated
into the interim target.

In the model presented, the optimal running consumption turns out to be bounded above at a certain level
set by the pensioner (which may be useful, in case there are some restrictions on the amount withdrawn
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periodically from the fund). Similarly, the annuity target chosen can never be reached, but the density
function of the final annuity that can be purchased shows that it can be approached very closely.

A sensitivity analysis with respect to the level of the final annuity target and the relative importance given
to the level of running consumption and the achievement of the final target has been carried out, by running
Monte Carlo simulations for the risky asset. The simulations allow the investigation of relevant issues like the
probability of ruin, the occurrence of undesirable or unrealistic events, the probability of being able to buy a
better annuity than the one purchasable at retirement and the distribution of the final annuity that can be
bought at the time of compulsory annuitization. By undesirable events we mean negative or too low optimal
consumption and optimal investment allocation that implies borrowing money from the bank in order to
invest in the risky asset.

We find that the key characteristics strongly depend on the relative weights given to the level of running
consumption during the drawdown phase and to the achievement of the natural target. It can be seen that,
by giving high enough importance to the running consumption level, the optimal consumption lies very close
to the upper level throughout the drawdown phase. The price that the member has to pay is a less close
approach to the natural interim and final targets, and a less favourable distribution of the final annuity. On
the other hand, if more importance is attached to the achievement of the natural target, the fund approaches
the interim and final targets very closely (a result confirmed by the density function of the final annuity),
but the optimal consumption is very likely to be negative at the beginning of the drawdown phase and for a
short period of time (up to 1–2 years) thereafter, approaching the desired level only later on. Therefore, the
main conclusion seems to be that the trade-off between the realization of the different desires of the pensioner
regarding consumption and final annuity target can be easily dealt with by choosing appropriate weights for
these factors in the initial setting of the optimization problem.

The problem has been solved without restrictions on the optimal investment and consumption choices, due to
the difficulty inherent in solving the optimal control problem with constraints. However, we have implemented
sub-optimal policies by restricting the controls to reasonable boundaries in the simulations and we have
compared the results between the unrestricted and the restricted cases. As expected, the controls applied
and the evolution of the fund turn out to be more stable in the restricted case. In addition, the probability
of ruin decreases when applying restrictions and the distribution of the final annuity seems to be very similar
to the one obtained in the unrestricted case.

In further research, it would be of interest to solve the problem with constraints numerically, and make the
comparison with the restricted sub-optimal policies applied in this work. Another interesting task would be
to investigate the optimal time of annuitization between retirement and the compulsory annuitization age;
this is an optimal stopping problem and is the subject of ongoing research.

APPENDIX A

Here we consider the investment allocation problem in the case that consumption is fixed over time, and equal
to b0 per unit time. Gerrard et al. (2004a) consider the same problem in the absence of mortality and the
bequest motive. Not surprisingly, this situation turns out to be a natural extension of that above-mentioned
work. By letting the weight v given to monitoring of the consumption tend to +∞, we see that it is also a
special case of the problem presented in the previous sections.

The growth of the fund is governed by the stochastic differential equation:

dX(t) = [X(t)(y(t)(λ− r) + r)− b0]dt + X(t)y(t)σdW (t)

The running loss function monitors the growth of the fund only:

L(t, x) = e−ρt[u(F (t)− x)2]

The terminal cost in the case of survival at age T is:

K(x) = we−ρT (b1 − kx)2,
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and the utility of bequeathing assets of x on death at age t is:

M(t, x) = e−ρtnx.

The aim is to find the optimal investment allocation in order to minimize expected future losses, i.e. find the
optimal value function V (t, x):

V (t, x) = min
y(·)

Ht,x(y(·))

with

Ht,x(y(·)) = IE

[∫ T∧TD

t

L
(
s, X(s)

)
ds + K

(
X(T )

)
1TD>T −M

(
TD, X(TD)

)
1TD<T |X(t) = x

]

and find the optimal control y∗(t) such that:

V (t, x) = Ht,x(y∗(t)).

The HJB equation is now:

0 = min
y

{
e−ρtu

(
F (t)− x

)2 + Vx [−(b0 − rx) + (λ− r)xy] + Vt + 1
2σ2x2y2Vxx − δ(t)V − δ(t)e−ρtnx

}

with the same boundary condition as in the problem (2.9).

By trying a value function of the same form as before (see 2.12), we obtain the following system of differential
equations for A(t), B(t) and C(t):





A′(t) = (ρ− 2r + β2 + δ(t))A(t)− u,
B′(t) =

(
ρ + β2 − r + δ(t)

)
B(t) + 2A(t)b0 + 2uF (t) + nδ(t)

C ′(t) = (ρ + δ(t))C(t) +
β2B(t)2

4A(t)
+ b0B(t)− uF (t)2

with the same boundary conditions as in (2.14).

Remark. We notice that the system above is a particular case of the previous system of differential equations
(2.13), when the weight v goes to infinity. Furthermore, it is an extension of the system of differential equations
solved in the mentioned work (Gerrard et al. (2004a)), by adding the terms involving the force of mortality
and the importance given to the bequest motive. We also notice that the difficulty inherent in solving the
differential equation for A(t) has disappeared, in that we have now a linear differential equation and not a
Riccati one.

We proceed to solve it in the same way as before, by introducing the function G(t) and the shortfall S(t).
The evolution of the shortfall is now:

dS(t) = (r − β2)S(t) dt− βS(t) dW (t) +
2u

(
G(t)− F (t)

)− nδ(t)
2A(t)

dt

If the natural targets are chosen, i.e. if equation (3.4) holds, then the shortfall is always positive and we end
up with the same solution as before for the functions G(t) and F (t) (i.e. equations (3.5)), which is not so
surprising, since the parameter v was not involved in those expressions. What is probably more interesting
to notice is the fact that also the optimal control y∗(t), which takes the same form as before, is also the same
control substantially, when the natural targets are chosen:

y∗(t, X∗(t)) =
λ− r

σ2

(
G(t)−X∗(t)

X∗(t)

)

Obviously, the difference will be given by the path of the optimal fund X∗(t), which follows a different SDE,
in which consumption is fixed.

Again, the optimal amount invested in the risky asset is a proportion of the shortfall S(t).
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APPENDIX B

Before proving Proposition 1, we need to prove the Lemma 2:

Proof of Lemma 2. If there is any t such that A(t) = A0(t) then A′(t)−A′0(t) = (φ(t)− φ0)A0(t), and we
know that A0(t) > 0. If φ(t) − φ0 is always positive, then the only such occurrences involve A crossing A0

from below, whereas if φ(t) − φ0 is negative, then A crosses A0 from above. In both cases, therefore, there
can never be more than one such crossing. But such a crossing occurs at t = T , and so that is the only one.

Proof of Proposition 1. Let φU = maxt0≤t≤T φ(t), φL = mint0≤t≤T φ(t), and let AU (t), AL(t) be respec-
tively the solutions to (2.16) in the case where φ ≡ φU and the case where φ ≡ φL. Since φ is constant in both
cases we may deduce that AL(t), AU (t) > 0 for all t. As a result of the Lemma, A(t) remains sandwiched
between the two solutions AL(t) and AU (t), and therefore is bounded away from 0.

APPENDIX C
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Figure 7. Barriers for the shortfall S(t) for ruin, negative consumption and borrowing money from the bank,
with different values of the ratio v

u . The path of S(t) in one particular scenario of market returns is also
reported.
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