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We measured blood oxygen level dependent (BOLD) responses to the onset of dynamic noise
stimulation in defined regions of the primary retinotopic projection (V1) in visual cortex. The
response waveforms showed a remarkable diversity across stimulus types, violating the basic
assumption of a unitary general linear model of a uniform BOLD response function convolved
with each stimulus sequence. We used independent component analysis (ICA) to analyze the
component mechanisms contributing to these responses. The underlying neural responses
for the components were estimated by nonlinear optimization through the Friston-Buxton
hemodynamic model of the BOLD response. Our analysis suggests that one of the identified
components reflected a sustained neural response to the stimulus and that another reflected
an extremely slow neural response. A third component exhibited nonlinear change-specific
transient responses. The first two components showed stable spatial structure in the V1

region of interest with respect to the eccentricity of the noise stimulus.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Functional magnetic-resonance imaging (fMRI) based on the
blood oxygenation-level dependent (BOLD) signal is a power-
ful technique for studying the neural response in the cortex.
Most previous work has been based on the assumption that
the BOLD signal is a unitary response to a single form of
stimulus S(t), usually in the form of a linear convolution of a
hemodynamic response function (HRF) with the temporal
waveform of the stimulus time sequence (Bandettini et al,,
1993; Friston et al., 1994; Boynton et al., 1996). In most cases, it
is assumed that the HRF incorporates both the cortical
response to the stimulus and the hemodynamic response of
the blood to the oxygen requirements of the cortical response.
However, the situation may be much more complicated, with

* Corresponding author. Fax: +1 415 345 8455.
E-mail address: cwt@ski.org (C.W. Tyler).
URL: http://www.ski.org/cwt (C.W. Tyler).

multiple components of neural response to the stimulus
weighted differentially across the cortex (Zacks et al., 2001,
d’Avossa et al,, 2003; Bellgowan et al., 2003; Calhoun et al.,
2004a; Fox et al.,, 2005), such that any one voxel contains
contributions from more than one neural time course. If these
time course variations are small relative to the BOLD temporal
resolution, they may be negligible for an overall analysis of
response strength, but the cited studies show non-negligible
variations that require a more detailed analysis. For this
reason, consistent with Friston et al. (1998, 2000), Buxton et al.
(2004) and others, we restrict the term HRF to the dynamics of
the blood response to the metabolic demands of the neural
processing and consider the neural response to the stimulus
as a separate process. This leads to the model of the BOLD
mechanisms shown in Fig. 1.

0006-8993/$ — see front matter © 2008 Elsevier B.V. All rights reserved.
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Fig. 1 — Model of the processes leading to the BOLD signal. Each stage represents an operator on the signals represented by the

arrows, and is subject to processing nonlinearities (see text).

Based on the multiplicity of neurons within a given voxel,
the BOLD response may consist of several components Nj(t)
having different temporal properties, with each component
weighted differently in each voxel. Moreover, each component
may be nonlinear in its intensity response relationships and
temporal integration properties (Birn, Saad and Bandettini,
2001; Bandettini and Ungerleider, 2001; see Boynton et al.,
1996). The energy required to generate both the intracellular
changes in potential and the axonal spikes make metabolic
demands M(t) on the cellular energy mechanisms that activate
the hemodynamic response of the blood H(t), both of which
are also nonlinear processes (Buxton et al., 1998; Zheng et al.,
2002) leading to the paramagnetic BOLD response Y(t). We
therefore need an account of such multiple nonlinearities of
the stimulus-evoked BOLD signal.

Below we introduce two major assumptions that constitute
the foundation of our analysis. Let the response Nj(t) of a
cortical neuron of a specific type (denoted by the subscript i) to
a visual stimulus S(t) be

Ni(t) = filS(t)] 1)

where each fi() is a filter function on the set of stimuli S(t).

Unlike the assumptions of the general linear model, or GLM
(Friston et al., 1995; Penny and Friston, 2003), in our treatment
the filter functions fi() are allowed to be nonlinear. We then
assume that the hemodynamic response is determined by the
average neural activity in a voxel; this activity is thus the
weighted sum of the response time courses for the neuron
types present in the voxel:

N(t) = aNi(t) )

where o; is the density of the ith type of neuron within the
voxel.

Let the nonlinear coupling from the neural activity to the
BOLD signal registered by fMRI be represented by the meta-
bolic function G().

BOLD(t) = G(N(t)) (3)

We assume that for small neural signals this metabolic
function G() combines the effects of the components linearly.
Thus

BOLD(t)~ 3" %G(Nj(t)) )

However, the linearity of Eq. 4 is intended to reflect
linearity with respect to amplitude and superposition, but
does not imply that the metabolic function G() is a linear
convolution of a response kernel with respect to time t,
because the filter functions f; in Eq. 1 may incorporate
nonlinear relationships. (This small signal linearization is
justified empirically in Appendix B.)

When a stimulus has spatial structure, neurons of similar
kind in different locations may be activated differently. In the
experiments to be described we presented various spatial
patterns of noise and blank regions, so a neuron could be in a
location where noise goes on and off or a location where no
noise ever appears. The neural responses for these two kinds
of stimulation should be treated as independent contributing
components. In one likely scenario, the slow potential in a
neuron in non-stimulated location can actually be inhibited by
the surrounding stimulated neurons, and its temporal profile
may be the inverse of the profile of the stimulated neurons. In
this case we may expect both positive and negative contribu-
tion factors () for the activity profiles to be reconstructed. In
most cases our analysis produced contributory factors that
had predominantly one polarity, although some cases of the
opposite polarity were also evident (as in Fig. 5 below).

Current models of the hemodynamics in human fMRI,
including the balloon model (Buxton et al., 1998) and multi-
compartment models (Zheng et al., 2002), describe purely local
hemodynamic response to neural activity, leaving possible
long-range interactions out of the picture. These models are
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not only local but unitary, generally making the assumption
that each local region of cortex has a uniform BOLD response
to whatever neural driving signal is activated by the visual
stimulation. Both the unitary assumption and the localization
assumption have been challenged. In particular, Thompson
et al. (2005) have identified two components with different
spatial ranges in the oxygen concentration signal recorded in
cat cortex, with the longer-range component corresponding to
the main activation signal recorded in human fMRI. Thus, the
two spatial ranges identified by Thompson et al. (2005) should
sum together because they both fall within the measurable
range of the models applicable to the spatial resolution of the
human case. The differential temporal properties, on the other
hand, should be resolvable in human fMRI.

However, studies of multiple different response waveforms
(Zacks et al., 2001; d’Avossa et al., 2003; Bellgowan et al., 2003;
Calhoun et al., 2004a; Fox et al., 2005) have typically identified
different cortical regions with differential response dynamics
to the same or different stimulus conditions. The issue of
multiple components within a given region of cortex is not
addressed in these studies. D’Avossa et al. (2003), for example,
explicitly assumed that each voxel could be categorized as
exhibiting one of a variety of response waveforms. Moreover,
they identified the components by means of Principal Compo-
nents Analysis, which incorporates the assumption that the
derived components are orthogonal (uncorrelated) functions,
which is implausible in the case of neural signals. On the other
hand, the classic sustained and transient types of neural signal
(Leventhal and Hirsch, 1978; Henry, Mustari and Bullier, 1983;
Mullikin, Jones and Palmer, 1984) are categorically distinct but
are not mathematically orthogonal. The appropriate method
for dissociating such signals is Independent Components
Analysis (ICA; Hyvirinen and Oja, 1997; McKeown et al., 1998;
Calhoun et al., 2001; Hyvirinen et al., 2002; Formisano et al.,
2004), which identifies parametric clusters of components
regardless of their degree of correlation. Although it cannot
identify multiple components within a single voxel, the
present application of ICA relies on the variation in the weights
of multiple components across a set of voxels, to identify the
relative contribution of the components to each voxel. We will
thus use ICA to identify the temporal components contributing
to cortical responses (see Experimental procedures).

One example of a long-range component that differs in
spatial and temporal characteristics from the activation
signals is demonstrated by the existence of negative BOLD
signals outside the activated cortical regions. For example,
Chen et al. (2005), measured impulse response functions for
stimulated and adjacent unstimulated cortical areas. They
found that the negative BOLD impulse response was triphasic
and substantially faster than the positive response, which had
a biphasic profile, and argued that these differences were
most likely attributable to different neural components
because there were different perceptual responses in the
stimulated and un-stimulated regions of the field after the
stimulus is turned off. Shmuel et al. (2002) emphasized the
similarity in shape between the positive and negative BOLD
(other than the difference in polarity). However, their claim
should be interpreted as a first-order approximation because
their own examples showed detailed shape differences that
were supported by statistical analyses. Moreover, the positive/

negative similarity was exaggerated by the use of long-
duration stimulus epochs, masking a significant difference
in the derivable impulse responses that would have been very
similar to that of Chen et al. (2005), as further validated by
Shmuel et al. (2006).

Shmuel et al. (2002) addressed the origin of negative BOLD
response by analysis of both the BOLD and cerebral blood flow
measured for identical conditions. Based on a well-validated
model of cortical energy consumption and blood supply (Hoge
et al,, 1999), they argued for a decrease in the local rate of
cortical oxygen consumption in non-activated areas com-
pared to the rest state, which indicates reduction of neural
activity. Thus, the positive and negative BOLD responses in
both studies most likely represent separate neural components
with different temporal characteristics rather than a unitary
response governed by a linear HRF that is blind to neural
variations (as implied by Shmuel et al., 2002). This analysis of
the negative BOLD components is one way to reveal the
influence of distinct neural components on the BOLD wave-
form, although the Chen et al. (2005) analysis to identify nega-
tive components per se.

1.1.  Independent components analysis

In the present study we will use the ICA approach to identify
multiple mechanisms contributing in the BOLD responses of
both polarities. ICA is a powerful technique that extracts the
statistically independent components from the signal dis-
tributions, which, as practitioners in many domains have
successfully demonstrated, can accurately represent the
effects of the actual contributing mechanisms (Hyvirinen
et al.,, 2002). The goal of the ICA decomposition is to rotate the
signal components so as to minimize the mutual information
between each pair of components, which is equivalent to
maximizing the deviation of each component from the
Gaussian distribution expected on the Central Limit Theorem.

In the fMRI domain, the application of ICA has usually been
focused on extracting large effects due to causes unrelated to
observer’s task, such as head movements, heartbeat, breathing,
instrument drift, drift due to general alertness levels, swallow-
ing, etc (e.g., McKeown et al., 1998; Thomas et al., 2002; Calhoun
et al,, 2002a,b; 2004a,b). This is a relatively straightforward
analysis based on the assumption that the analyzed signals are
statistically independent in time. This assumption cannot be
adapted to the analysis of the separate components of neural
activity, which is time-locked to the stimulus, because the
synchrony in time necessitates statistical dependencies. The
analysis of independent time-locked components can be
addressed by applying ICA to the spatial domain, assuming
that different neural mechanisms provide statistically inde-
pendent activations across the voxels and stimulus types. The
spatial domain approach was successfully applied in a recent
study by Bartels and Zeki (2004), who attempted to resolve
different visual areas in the cortex based on the differences of
their neural responses to complex visual stimuli (movies). Their
approach allowed them to identify different neural mechanisms
in the cortex, which in many instances closely corresponded to
visual areas established with localizer stimuli.

In the present study, we used spatial ICA to identify
separate neural response mechanisms within a single visual
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area, V1, and derive their individual impulse responses. To do
so, we first averaged across stimulus cycles to maximize the
contribution of the stimulus-related responses to the data. For
each subject, we then constructed a matrix with time points
on one dimension and voxels combined with stimulus
conditions along the other dimension. This matrix was
subjected to PCA to reduce the dimensionality of the data
sufficiently to permit the application of an ICA analysis to
separate the BOLD response corresponding to different neural
populations. (Without such dimensionality reduction, the
analysis is computationally intractable.) The underlying
neural signals were estimated for each independent compo-
nent by optimizing their waveforms through a contemporary
hemodynamic model (see Appendix A), based upon the
contributions of Friston et al. (2000) and Buxton and Frank
(1997), to obtain the best fit to the measured BOLD response.
This model is formally nonlinear in its temporal integration
properties, but behaves approximately linearly with respect to
amplitude and linear superposition (see Appendix B). The
need for such a nonlinear model was made evident by
inspection of the original time series data, which often
showed an increase in the BOLD signal after stimulus offset
without a corresponding decrease at stimulus onset. Such an
On/Off asymmetry cannot be captured by any linear model,
and raises the question of whether it is compatible with
current understanding of nonlinear hemodynamics or
requires a non-linearity in the neural processing.

Our analysis is explicitly based on the following assumptions:

1) The component signals are similar during each stimulus
presentation, varying only in their weight across stimulus
types and voxels.

2) The weights of the component responses are statistically
independent across the cortical space.

3) The hemodynamic model used to reconstruct the neu-
ral signals of the identified neural mechanism is approxi-
mately linear with respect to amplitude over the measured
range.

The first assumption allows us to average across stimulus
onset events to improve the signal/noise ratio. The second

a) b)

assumption states that there are neural responses with stable
temporal waveform whose strength varies independently
across voxels. (Response mechanisms that spatially co-vary
cannot be separated.) The third assumption was made to allow
for the analysis of multiple neural mechanisms from the BOLD
waveforms. It permits any form of nonlinearity of the trans-
form from the neural signal to the BOLD waveform as long as
its temporal response is amplitude-invariant over the range of
0-2%. Validation for this assumption is provided in Appendix B.

2. Results

The results consist of four types of analysis of the responses to
dynamic noise stimuli waveforms for the set of voxels
identified as V1 in each hemisphere, as specified in Experi-
mental procedures. The first type consisted of the derivation
of a set of independent components (ICs) in the time-locked
response that varied across voxels within retinotopic area V1
to account for the waveform variation across the voxels for
five spatially different stimulation patterns. The second type
consisted of an analysis of the consistency of the component
waveforms across observers and across cortical regions. The
third analysis consists of the projection of the temporal
components onto the spatial array of the V1 map to illustrate
the differential pattern of weightings between the stimulated
and unstimulated regions of cortex. The final analysis
employs the Friston-Buxton hemodynamic model to derive
estimates of the underlying neural signal waveforms giving
rise to each of the BOLD response components.

2.1. Independent components of the bold response in V1

Spatial ICA analyses were conducted in retinotopically-defined
V1 separately in the two hemispheres of three observers. The
analysis identified three ICs that were similar for all three
observers for the dynamic sensory stimulation (see Experimen-
tal procedures for details). The time courses for the same IC for
the left and right V1 from the same observer differed much less
than across the observers. We therefore combined the IC time
courses for the left and right V1 areas together in each observer,

c)
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Fig. 2 - The time courses for first three ICs for three different brains are shown for two periods each, scaled to their relative
weighting in the overall responses, with the mean peak amplitude of the first component scaled to 1. The orange vertical
overlays show time periods when the test was presented. The horizontal gray bar shows the estimated range of the BOLD signal
in the rest state. Signals in different colors for the three observers are overlaid in each panel.
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a) b)

c)

Fig. 3 - The stimuli were (a) central disk, (b) inner ring, (c) outer ring, (d) periphery, (e) pinwheel. The stimulus areas shown as
black were filled with a random noise pattern of radial checkerboard elements scaled with eccentricity.

as shown in Fig. 2. The waveforms are vertically positioned and
scaled to provide the best match of the shapes among observers
(scaled to those for observer ARW shown in blue).

To provide a common reference, we have depicted all
components as if the test stimulus onset predominantly
causes positive activation. In fact this choice is arbitrary and
facilitation with a negative magnitude is, indeed, most likely

a) b)

to represent an inhibition (as is addressed below). The
baseline shown in Fig. 2 by the gray stripe depicts the range
of the signal during the rest state. Despite the long off-period
of 30 s, the signal for the blank interval did not reach a
horizontal asymptote for two of the observers, indicating the
presence of very slow processes in the BOLD response in
these cases.

c)

Fig. 4 - The V1 analysis zones were designed as probes of the separate subregions of stimuli a-d (Fig. 3), together with a narrow
zone around the edge (dashed line) that was in common between them and the whole stimulus field. These regions were

the V1 projections labeled as (a) Center1, (b) Center2, (c) Periph1, (d) Periph2, () Whole Field, (f) Edge. Each area was projected to
its retinotopic representation in V1 to form the corresponding ROI. The dashed circle indicates the edge region common among

stimuli b and c (Fig. 3).
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Fig. 5 - Example of voxel-averaged data for five stimuli and six ROIs (blue dotted curves). Observer LLK, right hemisphere. The
data were fit by linear combinations of the time courses for the first three ICs as shown by green curves. Yellow coloration
indicates cases where the activation region was within the analysis region for the stimulus location.

The primary IC (Fig. 2a) rises with a time constant of several
seconds with an overshoot and a slow rebound that peaks
near stimulus offset, then falls with a similar rebound that is
less structured; this IC has a double-peaked appearance on the
positive deflection only. This positive/negative asymmetry
reflects nonlinear behavior of either the neural or hemody-
namic contributions to this component. The second IC has an
early negativity followed by a slow positive rebound, which
does not reach the asymptotic level even after 30 s of stimu-
lation. This result illustrates that the early negativity may be
isolated from the generic BOLD signal by means of the ICA
analysis. The decline of the second IC is also slow, and there is
no sign that it reached the rest state after 30 s of the blank
interval. The third IC we interpret as a combined response of
On and Off mechanisms responding to stimulus changes.
Their combined effect doubles the frequency of the BOLD
signal and contributes to the double-peaked appearance of the
mean BOLD response (as in Fig. 8 below). Itis worth mentioning
here that this component cannot be due to temporal jitter of
the first IC, because in this case it would be its first derivative
and the peaks at onset and offset would have opposite signs.

2.2.
regions

The structure of the response for different stimulus

In order to probe the spatial structure of the neural response in
visual cortex, we chose eccentricity-scaled stimuli that stimu-

lated defined regions of the retinotopic projection region, V1.
The stimulus areas shown by black in Fig. 3 were filled with a
random noise pattern of radial checkerboard elements (see
Experimental procedures for details). The retinotopic visual
areas, V1, V2, etc. were already established in previous studies
for each of the observers (Tyler et al., 2005; Schira et al., 2007).
The present study focused only on area V1. Each V1 region was
subdivided into at least three regions of interest (ROIs): the
central part of V1 (to be called ‘Center’), the V1 region where
activations from the central disk and peripheral field stimuli
overlapped (‘Edge’), and the remaining peripheral part of V1,
which was preferentially activated by the peripheral field
(‘Periphery’). In larger V1 maps, each of the Center and Peri-
phery ROIs were subdivided into two regions based on eccen-
tricity (see Fig. 4). Each area was projected to its retinotopic
representationin V1. Thus, for example, the small disk region in
Fig. 4a should be activated directly by the central disk stimulus
(Fig. 3a) and less strongly for the inner ring stimulus (Fig. 3b),
and to be subject to lateral inhibitory effects for the outer ring
and periphery stimuli (panels ¢ and d) in Fig. 3. Corresponding
effects would be expected for analysis zones b-d of Fig. 4, while
all stimuli might be expected to show similar waveforms in the
whole-field region (4e). Zone 4f is included to isolate any edge-
specific response component in the responses.

The responses for the stimuli of Fig. 3 for all the
retinotopic regions corresponding to the zones of Fig. 4 are
depicted for one subject in Fig. 5. The panels highlighted in
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Table 1 - Weights of the three ICs for each panel of
ROI

Stimulus configuration

Disk Inner ring Outer ring Periph Pinwheel

Centerl 0.55+0.06 0.04+0.04 0.02+£0.04 -0.10+£0.04 0.54+0.04
-0.30+£0.07 0.02+0.04 -0.01+0.06 0.14+£0.07 -0.19+0.09

0.11+0.04 0.02+0.06 0.45+0.12 -0.04+0.06 -0.42+0.07

Center2 0.83+0.08 0.60+0.07 0.06 £0.05 -0.06£0.04 0.73+0.09
-0.06 +£0.09 -0.23+£0.05 0.23+£0.07 0.21+£0.08 0.56£0.19

-0.04+0.18 0.10+£0.12 0.34+0.52 -0.17£0.10 -0.65+0.18

Edge 0.75+0.18 0.53+0.15 0.89+0.16 1.02+0.25 0.95+0.19
-0.23+0.53 -0.16£0.08 0.09+0.14 -0.02+£0.12 0.12+0.24

-0.06 £0.13 0.13+£0.15 0.63+0.20 -0.12+£0.13 -0.44+0.18

Periph1 -0.30+0.13 -0.12£0.05 1.06 £0.08 1.56+0.13 0.79+0.07
0.29+0.09 0.23+0.04 0.14+0.06 -0.12+£0.06 0.48+0.13

-0.20+0.06 0.22 +0.05 0.55+0.09 -0.20+0.07 -0.46+0.08

Periph2 -0.27 £0.03 -0.20+£0.03 0.02+0.04 0.83+£0.11 -0.13+0.06
0.37 +0.06 0.16 £0.03 0.30+0.04 0.02+0.03 0.53+0.07

-0.06 +£0.04 0.09 +0.04 0.39+0.06 -0.06 +£0.03 -0.20+0.05

V1 0.25+0.04 0.17+£0.03 0.41+0.04 0.72+0.06 0.56 +0.05
0.10+0.04 0.01+0.02 0.18+£0.03 0.04+0.03 0.41+0.07

-0.08 £0.06 0.12+0.04 0.44+0.05 -0.12+0.04 -0.43+£0.06

Each panel specifies the weights of three ICs for the corresponding case in the example data of Fig. 5, with standard errors of the mean weights,
given for all combinations of stimulation regions and ROI projection regions. The weights are scaled in percent BOLD units.

yellow in Fig. 5 are those in which the projection zone
contained dynamic stimulus activation, while those in the
other panels did not.

2.3.  Evidence that the ics are each consistent throughout V1

We expect that each region of V1 is populated by multiple
neuron types, and that ICA can successfully separate these
components. One concern is that the identified components
might not be representative for the whole of V1, but instead
may be aresult of averaging over response properties that vary
gradually across the cortex. Although such a spatial variation

is unlikely because ICA was applied to non-spatially-averaged
data, we nevertheless provide two tests that indicate that the
derived ICs are present in every location of V1. First, we
compute the average response to every stimulus for the five
eccentricity-defined ROIs and for V1 as a whole. These aggre-
gate responses are shown by the blue dotted curves in Fig. 5.
Next, we computed the best fit to these responses by linear
combinations of the three ICs identified by the ICA procedure,
as shown by green curves in Fig. 5. This fit accounts for 92% of
the variance in the original data. (In Experimental procedures
we mentioned that the first 4 PCs accounted for only about
60% of the data variance, but that number was computed for

BOLD response amplitude (%)

0 20 40 60 0 20 40

60 0 20 40 60

i(s)

Fig. 6 — Time courses for the first three independent components computed for the whole of V1 (thick blue line) and for five
eccentricity-specific ROIs (thin blue lines), with the mean peak amplitude of the first component scaled to 1. These independent
component time courses have similar shapes in the different locations of V1. Gray band indicates +20 of the initial points.

Observer ARW, right hemisphere.



BRAIN RESEARCH 1229 (2008) 72-89 79

individual voxels, which have higher noise variance than the
ROI- based averages of Fig. 5.)

Table 1 provides the weights for each of the three ICs in each
panel of Fig. 5, together with the standard error of the variation
over the voxels in each ROI. These weights show the high
consistency of the pattern of individual contributions where
the waveforms for each stimulus type are similar; differences
across stimulus types are considered in the Discussion.

For an additional test we conducted ICA separately in each of
the five eccentricity-specific ROIs employed in the previous
test. Despite the smaller data sets for each ROI and noisier
results, we found all three IC time courses among the four
dimensions included in the analysis, with the exception of only
one IC for one ROI where the IC was apparently excluded at the
PCA stage. An example of these replicable ICs is shown by the
thin lines in Fig. 6, overlaid with the IC waveforms computed for
the whole V1 depicted by thick lines. The shape similarity in the
responses across eccentricity indicates that there are indeed
three statistically independent processes contributing to the
BOLD response in visual area V1, and that these processes have
a stable temporal waveform across eccentricities.

2.4. Distribution of ics across V1

To understand the properties of the ICs that were found, note
how the independent components are distributed across the
cortex for central and peripheral stimuli. (The distribution of an
IC can be treated as the magnitude distribution of the IC time
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course across voxels.) The cortical layout of individual compo-
nent weights within the V1 ROIin one hemisphere is mapped in
the top row of Fig. 7 for the sample data of Fig. 5. These maps
suggest that all components are represented in both activation
conditions shown, but with different signs and to different
extents. Statistical tests for stability across hemispheres and
subjects, however, support definitive statements about IC-1
and IC-2 only. The Center Disk stimulus shows predominantly
positive activation for IC-1 and negative activation for IC-2 in
the foveal projection of V1, and the opposite pattern of activa-
tion in the peripheral projection of V1. The Periphery stimulus
shows the converse pattern of activation in both regions. IC-3
has a spatial pattern of activation that is mostly negative for the
foveal projection of V1 for the periphery stimulus but had
minimal activation for the Center Disk stimulus.

The net contribution of an IC for different combinations of
stimuli and ROIs was evaluated as its mean amplitude across
voxels for a given ROI and stimulus. Fig. 7 depicts the mean
and the standard error of these contributions estimated for six
V1 areas (two hemispheres in each of the three observers in
the main study). For this figure, we analyzed the responses for
three ROIs and two stimuli: Center Disk and Periphery, as
shown in Figs. 3a and b respectively. The Center ROI consisted
of voxels activated by the Central Disk stimulus (Fig. 3a) and
not activated by the Periphery stimulus (Fig. 3d), the Edge ROI
consisted of voxels stimulated by both the Central Disk and
the Periphery stimulus, and the Periphery ROI consisted of
voxels activated by the Periphery stimulus and not activated
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Fig. 7 - The bar graphs depict the average component magnitudes of first three ICs normalized to the total activity in V1 (three
panels) for three ROIs (Center, Edge, and Periphery—on the abscissa) and two stimuli (Center Disk and Periphery—blue and
brown bars). The data are averaged across six V1 areas. The error bars represent the standard errors and the asterisks indicate
statistically significant activations at p<0.001 (= p<0.05, corrected for multiple applications). Each pair of magnitude maps
above the bar graphs (right hemisphere, subject ARW) illustrate the spatial distributions for each of the 3 ICs for the Center Disk
(left) and Periphery (right) stimuli. The black contours show Center, Edge and Periphery ROIs in V1; the foveal representation is

at top-right.
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Fig. 8 - Best fits of the hemodynamic model to the mean BOLD response (left) and to the first IC (right), for observer ARW. CBF,
CBV and CMRO?2 are all fractional values, normalized to baseline. Smoothed data (dashed lines) and steady-state model
BOLD responses (solid black lines) are expressed in percent. Model BOLD responses are shifted to zero at the origin; data are
shifted to have the same mean as the model. In terms of the variables in Appendix A: CBV=v, CBF =f;,,, and CMRO2=f;,, E/E,.

by the Central Disk stimulus. The Edge ROI was analyzed to
explore whether some of the ICs are specific to edges.

IC-1 clearly follows the overall pattern of activation, being
of large positive value where the stimulus is present. In the
areas that are not activated this component has a smaller
negative magnitude, indicating the presence of a spreading
neural suppression. IC-2, which was very slow (see Fig. 2), was
positive in non-activated areas, and may thus be revealing an
early facilitation component in the neural suppression
process. IC-3 did not reach significance in terms of spatial
stability across subjects and hemispheres; however, lack of
spatial stability does not contradict the existence of IC-3 as a
significant contributor to the temporal response waveform.

2.5. Model fits assuming a neural response replicating the
stimulus: n(t)=s(t)

Fig. 8a shows the best fit of the Friston-Buxton model to the
grand mean BOLD response for all V1 voxels of observer ARW,
assuming that N;(t)=S(t). The model behavior is somewhat
reasonable, but major discrepancies remain. For the positive
deflection, the data are more double-peaked than the best-fit
model. For the negative deflection, the curvature of the model
function appears to have the wrong sign. These observations
apply to most if not all of the fitted results.

Fig. 8b shows the best fit of the model to IC-1 for observer
ARW, assuming that N;(t)=S(t). The quality of the fit is clearly

better than for the mean BOLD response: the unaccounted
variance for IC-1 is as small as 0.9%, whereas for the average
signalitis as high as 7.2%. The F-test for this difference is highly
significant [F(49, 49)=4.44; P<10~°]. This improvement is prima-
rily because IC-1 has a less pronounced dip at the positive de-
flection, and the negative deflection has less curvature overall.

We determined the distributions of parameters and errors
for the 50 trial fits to IC-1. Expressed as percent root-mean-
squared values, the errors were clustered around 0.1% for IC-1
in Fig. 8b, versus 0.2% for the mean response in Fig. 8a. All of
the parameters, with the exception of « and perhaps t,, had
unimodal distributions centered near the default values (see
Appendix A, Fig. 11); this unimodality is satisfying in light of
the multi-dimensional nature of the parameter space. The
finding that the values of r, and t_ are very different, as shown
in Table 2, suggests that the best-fit model of IC-1 is indeed
nonlinear, consistent with the response asymmetry between
On and Off blocks that is visible in Fig. 8b (i.e., the Off
waveform is not an inverted copy of the On waveform).

We found that the Friston-Buxton model was unable to
give a good fit to the mean BOLD responses in our data (see
Fig. 8a). The major discrepancy was the prominence of the
double peak on the positive deflection. It has previously been
noted that the balloon model can exhibit such a prominent
double peak, an inherently nonlinear property, when the input
scale parameter ¢ is large enough (Calvisi et al., 2004). Still, the
double peak in the mean data in Fig. 8a is not well fit by the

Table 2 - Default and fitted parameters of the hemodynamic model

o Eo Vo 70 I T TF T, T_ aq as
Default 0.38 0.40 0.02 2 0.5 1.54 2.46 10 10 5.73 1.15
Fit to BOLD 0.86 0.51 0.02 2.71 0.10 2.10 7.85 7.65 17.3 3.87 0.35
Fit to IC-1 0.70 0.40 0.02 3.63 0.16 2.07 5.17 5.56 12.8 4.35 0.95

Comparison of the default starting parameters and their final fitted values for the fit to the BOLD response and to the first independent

component (IC-1).
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Friston-Buxton model, even though the parameter ¢ was free
to vary during optimization. Obata et al. (2004) showed very
similar BOLD responses in the supplementary motor areas
(see their Fig. 4b), which they were able to fit with the balloon
model (see their Figs. 5b, c). We attribute this success to their
measurement and modeling of CBF, which continues to rise
for the entire duration of the On block and falls rapidly to
baseline during the Off block. In contrast, the Friston et al.
(2000) model of neurovascular coupling, computing CBF as a
function of neural input N(t), is a second-order linear equation
thatis incapable of producing the desired behavior if the input
function N(t) is assumed to be a square wave. Rather than
attempting to derive an alternative functional form for
neurovascular coupling, we took the approach of attributing
discrepancies between the waveform and the best-fit model
output to the input function Nj(t) and solved for Nj(t) using a
multi-start simulated annealing algorithm.

The Friston-Buxton hemodynamic model involves nomin-
ally 11 parameters (see Appendix A). When fitting these, some
authors (Mildner et al., 2001; Obata et al., 2004) have chosen to fix
the values of some parameters (e.g., «, Eo, Vo, 70, a1 and a,) on the
grounds that these parameters are known approximately from
experiments. Others (Friston et al., 2000) have chosen to search
on all parameters in light of experimental uncertainties and
model assumptions, e.g., the widely cited value « = 0.38 relates
four and CBV only in steady-state (Grubb, 1974) and cannot be
assumed to hold generally. In our searches, we allowed all the

model parameters to be free, with the exception of V,, which is
redundant with a; and a,. Accordingly, ¢ scales the input, while
a; and a, scale the output. If the model were perfectly linear
then ¢ too would be redundant, but in fact the degree of model
nonlinearity depends partly upon the input scale ¢ (Calvisi et al.,
2004). This approach of allowing the model maximum flexibility
to fit the mean response (Fig. 8a) and IC-1 (Fig. 8b) allows the
model to “hang itself” if no good fit were obtained. Simulations
in which some or all of these parameters were fixed provided
similar fits with slightly higher errors. We take the best-fit to IC-
1 (Fig. 8b) to be the most plausible determination of the
hemodynamic model parameters given the assumed input
Ny (t)=S(t).

2.6. Estimated neural response n(t)

Itis natural to relate the recorded BOLD response to the neural
response driving the metabolic demands on blood oxygena-
tion (Hyder et al., 2001; Logothetis, 2002; Kayser et al., 2004). In
our case, we are interested in the distinct neural responses
that could have been driving the three independent compo-
nents identified by the analysis. In order to estimate the
neural response waveform presumed to underlie each IC, we
optimized a neural response estimate in each case while
keeping the hemodynamic model parameters fixed. This is
effectively a deconvolution procedure, although the nonli-
nearity of the balloon model precluded the use of Fourier
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analysis or linear correlation. Instead we treated the 60 time
points of the function as unknown parameters and optimized
them, while keeping the model parameters fixed. Fig. 9 shows
the results of estimating the neural response Nj(t) presumed to
underlie each IC in observer ARW, assuming the parameters
for the best-fit model shown in Fig. 8b. The neural inputs to
the Friston-Buxton model were obtained by multiparameter
optimization with regularization to ensure smoothness, as
described in Experimental procedures. From these results, we
may infer the nature of the neural response underlying each IC
(red curves in Fig. 9). Although the hemodynamic model
parameters were fit to IC-1, the underlying neural component
N,(t) was also estimated. Fig. 9a shows that the global form
does not deviate from the assumed boxcar, but the fine details
were varied. The analysis of these inferred neural responses is
left to the Discussion. Here we note that the three neural
waveforms are very different in character and imply pre-
viously undiscovered nonlinearities in the population of
neural responses underlying the recorded BOLD responses.

3. Discussion

The goal of this study was to apply ICA to the component
space of fMRI responses from direct sensory stimulation, in
order to extract multiple components of the BOLD response
within a unitary cortical region, the primary visual projection
area V1. We first show by means of Principal Components
Analysis that the responses to the presence and absence of a
dynamic texture can be faithfully accounted for by a three-
dimensional signal space across the whole extent of retino-
topic V1. This behavior suggests that the measured response
properties are likely to result from a small number of
separate processes, each adding an extra dimension of
variation to the overall signal. However, knowledge of the
space of response variation does not uniquely identify the
underlying response waveforms. For this, we applied Inde-
pendent Components Analysis to determine the basis set that
generates this response space with the greatest indepen-
dence between the generating components. The most
prominent component is attributable to a sustained response
to the dynamic noise stimulation; the second component is
very slow sustained response (with an early negativity at the
onset), and the third component consists of transient
responses following both stimulus onset and offset. We
were unable to identify further components in a consistent
fashion. Importantly, we show that all three components
have stable temporal waveforms across the V1 region, though
their contribution varies with eccentricity.

Assuming that all response components are driven by
neural activity, we reconstructed such activity based on the
hemodynamic model of the BOLD response, suggesting the
action of three different neural populations with different
temporal responses to the stimulus. The time courses of these
neural response estimates are compatible with the slow-wave
time courses that underlie neural spike generation in monkey
cortex (Logothetis, 2002; Logothetis and Pfeuffer, 2004). The
neural response underlying IC-1 is close to the boxcar wave-
form of the stimulus S(t) with two notable differences: a
relative increase just around the time of stimulus offset that

provides the second peak on the positive deflection IC-1, and a
late positive bump near t=36 s to provide the curvature during
the OFF period. The simulation of Fig. 8 shows that neither of
these features is present in the best-fitting BOLD waveform of
the hemodynamic model, so it is reasonable to assume that
both features derive from the neural signal per se.

IC-2 is a slow sustained response with a notable negative
dip near t=5s, and a corresponding peak near t=36 s following
the stimulus offset. In fact, the negative dip has been a well-
known as feature of fMRI BOLD analysis for many years (Ernst
and Hennig, 1994; Hu et al., 1997; Yacoub et al., 1999; Duong et
al., 2000; Rother et al., 2002; Calhoun et al., 2004a,b), although
other groups have had difficulty identifying these features
directly in the BOLD waveforms at 3 T (Ugurbil et al., 1999).
The maps of Fig. 7 do not, however, support the idea that this
negativity corresponds to the early oxygen drain local to the
neural activation (Thompson et al.,, 2005), since IC-2 pre-
dominates in the unstimulated regions of the cortex, while
the early negativity should predominate in the stimulated
cortical regions.

The neural response underlying IC-3 has two distinct
bumps near t=0 and 30 s, suggesting a transient On/Off
response to the stimulus. Such nonlinear transient compo-
nents of the BOLD response are well-known for cognitive tasks
(Courtney et al., 1997; Postle, Zarahn and D’Esposito, 2000;
Konishi, Donaldson and Buckner, 2001; Posse et al., 2001;
Huettel, Guzeldere, McCarthy, 2001; Shulman et al., 2001;
Zacks et al., 2001; Calhoun et al., 2001, 2002a,b; d’Avossa,
Shulman and Corbetta, 2003; Krasnow et al., 2003; Calhoun et
al., 2004a; Cabeza et al., 2004; Chen and Desmond, 2005; Fox et
al., 2005; Meegan and Honsberger, 2005; Scheibe et al., 2006;
Vuilleumier et al., 2005) but we are not aware of reports of such
transient responses the offset of repeated or steady-state
stimulation. In either case, the rectifying nonlinearity of a
positive response to both stimulus onsets and offsets goes far
beyond any nonlinear properties of the hemodynamic models
per se, and implies the operation of a pronounced (rectifying)
nonlinearity in the underlying neural response to these
stimulation conditions. The reconstructions of Fig. 9c specify
the neural nonlinearity required to account for the rectifying
IC identified by the present analysis.

Fig. 7 shows that the activation for the rectifying transient
predominates in the unstimulated regions of the cortex in a
manner similar to that for the linear component identified in
unstimulated cortical regions by Chen et al. (2005). Their
analysis could not have isolated the nonlinear or rectified
aspect of this component, but we note that the Off-transient in
IC-3 has about twice the amplitude from baseline as the On-
component (Fig. 9), corresponding to the transient linear
component at stimulus offset in the analysis of Chen et al.
(2005). The lack of a linearity constraint in the ICA analysis
allows it to reveal the additional nonlinear component from
the unstimulated cortical regions.

The nonlinear deconvolution analysis provided by the
hemodynamic model fits of Fig. 9 provides a significant
capability for estimating the neural responses of subpopulations
operating within the same region of cortex (in this case, V1).
Each component response can be investigated for its behavior
with respect to stimulus variables. Figs. 5 and 7 indicate that
different components had different responsiveness to some of
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the stimulus conditions that we employed here. This is a proof
of principle that the Independent Components approach can be
used to track the behavior of neural subpopulations below the
spatial resolution of fMRI. The temporal analysis of Fig. 9 has a
resolution down to about 1 s, about 5 times faster than that of
the BOLD signal itself, even for the slow stimulus paradigm of
the present studies. The nonlinear deconvolution analysis can
therefore provide useful enhancement of the temporal resolu-
tion of the fMRI analysis, in addition to its ability to isolate
independent neural subpopulations.

3.1. Stimulus specificity

Having identified three component response shapes operating
across cortical area V1, we turn to the issue of the variation of
the averaged responses in different regions of V1 as expressed
by variations in the weightings of the three components in
relation to the region of stimulation. The predominant
response in the data set of Fig. 5 is an On response with an
initial overshoot in the stimulated regions, while there is only a
minimal response in the non-stimulated regions. However, the
narrow-barred Pinwheel stimulus (Fig. 3e) generates a much
more gradual approach to the asymptotic activation level,
implying that the early overshoot is a property of large-area
stimulation patterns (Figs. 3a-d) that is not activated by
narrow strips of pattern (Fig. 3e).

The average time course magnitudes for each of the three
ICs for each stimulus type for and each cortical ROI, as
provided in Table 1, show consistent differences across
stimulus types. Generally, the major contribution is from IC-
1, minor from IC-2 and non-significant from IC-3. The last
column of Table 1 (for the Pinwheel stimulus), however, shows
a consistent weighting of about -0.4 for IC-3 in every ROI,
implying a negative expression of the double- peaked wave-
form corresponding to a transient inhibition following both the
onset and offset of the Pinwheel stimulus. Such inhibition is
consistent with the idea that the activation in narrow bar
regions generates inhibition in the surrounding cortex, but
reveals that such inhibition is evoked in a transient form at
both the onset and offset of the stimulus.

The only other stimulus type that consistently expresses
IC-3 is the Outer Ring stimulus, where its expression has a
positive rather than negative weight in all ROIs (Table 1). This
specificity is more difficult to understand in the context of the
lack of an IC-3 for stimulation at any other eccentricity. It
cannot derive from a foveal specialization for lateral inhibi-
tion, since the Outer Ring has the same inner border as the
Peripheral stimulus. Inspection of the waveform reveals that
its main support derives from the post-stimulus negativity
that is unique to this stimulus, and therefore appears to
represent a regional specialization for this particular activa-
tion pattern within the general picture of cortical homogeneity
exhibited by all the other components.

In conclusion, the responses to activation of retinotopically
separated regions of V1 reveal a surprising diversity of
response waveforms, violating the linearity assumption of a
GLM with a homogenous HRF for this primary visual response
region. The application of stimulus-driven ICA to the wave-
forms of this family of BOLD responses shows that three
independent component waveforms can account for more

than 90% of the variance of the mean response waveforms in
the analyzed ROIs. Since these different waveforms are
derived from the same underlying cortical tissue for different
stimulus configurations, the most plausible interpretation for
the three components is that they represent three different
populations of neural response types. We therefore ran an
inverse optimization of the precise neural signal that would
have generated each BOLD response type, under plausible
constraints for the hemodynamic model of the BOLD response
properties. These neural response estimates had time courses
that were compatible with the slow-wave time courses that
underlie neural spike generation in monkey cortex (Logothe-
tis, 2002; Logothetis and Pfeuffer, 2004).

4. Experimental procedures

The T2* BOLD time sequences were obtained in a GE MRI Signa
3 T scanner at a flip angle of 70° with 10 inplanes at 3 mm
separation with 2.5 x 2.5 mm in-plane resolution and TR=1 s.
The inplane images were positioned in a coronal orientation
to cover the primary visual areas at the posterior pole
(specifically, V1). The stimuli were presented with the
binocular Avotec system (Avotec, Stuart, FL) with a stimulus
field of 24 x 18° at 800 x 600 resolution controlled by PowerMac
G5 computer with a 850 MHz processor.

Each observer viewed a battery of dynamic noise stimuli
(Fig. 3) in a block design in which each dynamic noise stimulus
alternated with blank intervals every 30 s. Each complete scan
consisted of 5 cycles, which took a total duration of 5 min. Scans
for all stimulus types were run in a single scanning session for
each observer. In order to probe the spatial structure of the
neural response in visual cortex, we chose eccentricity-scaled
stimuli that stimulated defined regions of the retinotopic pro-
jection region, V1. The dynamic stimulus areas shown as black
in Fig. 3 were filled with a random noise pattern of radial
checkerboard elements themselves scaled with eccentricity
and dynamically updated every 75 ms. The element size was
scaled to 6% of its eccentricity from the disk center.

The primary stimuli were a central noise disk (with radius
3.5°) and the complementary stimulus of noise in the whole
screen area outside the disk, as shown in Figs. 3a, b. Next, to
probe responses to fine spatial structure, the whole retino-
topic projection was stimulated with a radial pinwheel of thin
lines consisting of dynamic noise (Fig. 3e). Additionally, a
subset of observers was shown inner and outer ring stimuli to
focus the activation close to the border region of the disk
(Figs. 3b, c). For each observer, all stimuli were presented
within a single scanning session of 90 min duration.

In total, 5 observers were scanned (4 males and 1 female,
32-60 years old, all with normal or corrected to normal visual
acuity), some of them twice or thrice. An initial study, which
was performed with TR=3s, and 15-s alternation rate in three
observers, required 3 principal components to account for
approximately 80% of the variance in the data. However, the
results could not be interpreted unambiguously in the absence
of a secure baseline. We therefore designed the main experi-
ment with TR=1 s and 30-s alternation rate for a detailed
analysis of the data for 3 further observers (visual area V1in 6
hemispheres) with the experimental protocol described above.



84 BRAIN RESEARCH 1229 (2008) 72-89

Interpretation of the BOLD response profiles depends
critically on the position of the baseline that corresponds to
the response of the blank stimulus. Previous measurements
of the BOLD impulse response function suggest that its rise
time is about 5 s, recovering to baseline by about 15 s. For this
reason we chose the On/Off presentation time to be 30 s in
order to allow all transients to be finished and the BOLD
response to reach its rest state level within the 30-s blank half
of this cycle.

To minimize attentional modulation, an attentional task was
presented in the center of the stimulus. The element to fixate
consisted of a small square (2 x 2 pixels) surrounded by a frame 1
pixel wide. The colors of the central square and the frame were
continuously changed every 0.5 s, with the square and frame
always having different colors. The experimental task for the
viewer was to respond when he or she detected the specific
combination of a red square and a green frame. Because this
task was attentionally demanding and the fixation target was
small, it enforced stable fixation at the center of the display.

4.1. Independent components analysis

The analysis consists of the following steps. First, any linear
trend over the time series was removed because our interest
was in identifying different stimulus-related components. The
time series for voxels and stimulus types was averaged across
stimulus cycles, to maximize the signal/noise ratio. This step
diminished the noise to levels acceptable for retrieval of the
stimulus-locked components.

Second, PCA was applied to these cycles across voxels and
conditions. This is necessary step prior to ICA for two reasons.
Primarily, it makes the ICA procedure computationally
tractable, and it also tends to isolate the predominant signal
subspace. The use of PCA as a first step of ICA is widespread in
the literature (McKeown et al., 1998; Ikeda and Toyama, 2000;
Yanmei and Sahin, 2005; Rodionov et al., 2007). In fact, ICA
may be viewed as an oblique rotation of the principal compo-
nents from the PCA (Dien et al., 2007). Typically, four principal
components accounted for approximately 60% of variance
across individual voxels, while adding the fifth component
increased this value by less than 4%. The 60% of accounted
variance for individual voxel analysis should not be consid-
ered as a low value because most of the residual variance
beyond this level was due to high-frequency noise in the BOLD
signal, which we preferred not to filter out in order to preserve
the temporal integrity of the BOLD signal sampling. The less-
than-4% variance added by the fifth component implies that
the distribution of weights across the higher PCA components
mostly represent noise rather than signal. Reduction of the
signal dimensionality in this way reduces the number of local
minima in the independent component search and makes ICA
more robust. We found that increasing the number of prin-
cipal components above four did not lead to extraction of
reliable components in the ICA processing.

Third, ICA was applied using a public domain fastICA
function (Hyvirinen and Oja, 1997) for MATLAB™ (Mathworks,
Natick, MA), which represents a widely-accepted standard in
the ICA field. The concept underlying ICA is to find deviations
from an elliptical Gaussian distribution of scatter plots, often in
the form of spurs extending from the main distribution. The

a)

Component 2
Component 3

Component 1 Component 2
Fig. 10 - Scatter plots across voxels (for all conditions) of the
weights for the second vs. the first IC and the third IC vs the
second. Clustering along the coordinate axes suggests that
the data are likely to be produced by different mechanisms.
Observer ARW, right hemisphere.

presence of these spurs means that, for a particular stimulus,
the waveform in a typical voxel is dominated by only one of the
three component mechanisms rather than by their combina-
tion. Note that the dominant component can differ for different
stimulus types. When the principal components comprise the
basis, the waveforms in the response clusters of these spurs are
typically not orthogonal in the time domain; however, when IC
time courses are chosen for the basis (see Fig. 10), the clusters
appear to be extended along the axes. We found that symmetric
decorrelation and use of the tanh nonlinearity produced
consistently robust clusters identifying independent compo-
nents in the scatter plots of one component versus another,
whereas other options were not as successful. However, the
initial guess factor still left a minimal degree of ambiguity:
infrequently the ICA converged to local minima with no evident
structure in the scatter plots. To ensure that the global
minimum was found, we ran the ICA three or more times
with different initial guesses; if the first three disagreed, we ran
ten or more and took the most common minimum of the set.

Toillustrate the results of the fastICA routine, Fig. 10 provides
examples of the scatter plots of the IC weights in the component
coordinates for the responses in each voxel of V1 across all
stimulus types. Fig. 10a shows the weights for the second vs. the
first IC; Fig. 10b has the third vs. the first IC, with the first IC
coordinate as the abscissa in both panels. The clustering of the
points along the coordinate axes implies that FastICA algorithm
picked appropriate directions for the components.

4.2. Hemodynamic modeling

To assess the neural contribution to each ICA component, we
optimized their fits to the BOLD signal for each component
according to Egs. 1-4. To determine whether our measured
BOLD responses could be fit using a contemporary hemody-
namic model, we used the balloon model (Buxton et al., 1998)
together with a simple model of neurovascular coupling
(Friston et al., 2000), as described in Appendix A. Its key
features are a second-order linear relationship between neural
activity and blood flow, conservation of blood volume and
oxygen, an elastic venous compartment, and a dependence of
the BOLD response on changes in both deoxyhemoglobin and
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blood volume. An important issue in modeling the BOLD
response is the assumed relationship between the stimulus
waveform S(t) (boxcar) and the function N(t) that represents
neural activity driving the increased blood flow. Many fMRI
studies implicitly assume N(t)=S(t) for the purposes of BOLD
modeling. The function N(t) is discussed in Friston et al. (1998,
2000), where it was taken to be a series of Dirac delta functions
occurring with the presentation of words. For our visual
stimuli, presented in a block design, the presence of transient
On/Off responses and sensory adaptation (Hubel and Wiesel,
1968; Maunsell and Gibson, 1992; Kapadia et al., 1999;
Logothetis, 2002; Logothetis and Pfeuffer, 2004) imply that
N(t) is likely to differ in shape from S(t). We therefore interpret
N(t) as some measure of neural activity or its metabolic
demand that drives the CBF through a second-order differ-
ential equation (see Appendix A). The resulting hemodynamic
model used here has 10 free parameters. Before fitting the
model, the BOLD time series were smoothed with a 3-point
moving-window average, to remove fast fluctuations from
the BOLD signal that were unlikely to be meaningful. We fit
the 10 parameters using a multi-start simulated annealing
algorithm (Masters, 1995) that moves stochastically through
the parameter space to minimize the sum-squared error

60

SSE =" [B(t) ~ D(t)” 5)

t=1

where B(t) is the model BOLD response, and D(t) is the cycle-
and voxel-averaged BOLD time series.

This algorithm is reasonably robust to local minima (see
Appendix A), which are characteristic of fits to real data. The
stochastic nature of the search algorithm produced a dif-
ferent result each time, so the search for each dataset was

repeated 50 times with different initial guesses drawn from
a Gaussian distribution around a set of default parameters
obtained from the literature (see Table 2). The best overall
fits are reported here, but for a given data set all 50 fits were
qualitatively similar in their ability to fit the BOLD response.
There was a range of behaviors of their underlying variables,
however; a problem that was noted by Obata et al. (2004). In
particular, some fits involved CBF values greater than 2,
which is inconsistent with the other work in this area
(Buxton and Frank, 1997; Buxton et al., 1998; Buxton et al.,
2004; Obata et al., 2004). To bias our search toward fits that
were plausible in their CBF response, the value of SSE was
multiplied by the factor [max(fi,) — 1] if max(fi,)>2. This
yielded search results which fit B(t) similarly, and for which
CBF, CBV and CMRO?2 all exhibited plausible behavior.

Initial attempts to fit the model to the average BOLD
response were reasonable but inaccurate in several details (see
Fig. 8a). This deficiency could not be corrected by adjusting the
simulated annealing parameters. A key assumption of the
present analysis is that the hemodynamic response to a given
input N(t) is the same throughout the V1 retinotopic region, so
the different ICs are interpreted to reflect different neural
responses Nj(t). We therefore attempted to fit the hemodynamic
model to the first IC, on the grounds that the neural response N;
(t) underlying this component is expected to have the
sustained character of this IC and thus be a close approxima-
tion to S(t): Ny(t) = S(t). The resulting fits were still imperfect,
but were deemed preferable because they had smaller SSE
(see Fig. 8b). Assuming that the combined Friston-Buxton
model is correct, and that the best-fit model parameters to
IC-1 provide the best estimate of the hemodynamic
response, we ascribed the remaining differences to the neural
response, and solved for Nj(t) separately for each component.
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Fig. 11 - Error distributions for the eleven parameters of the fitted hemodynamic model specified in Table 2.
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To indicate the stability of the fits, the error distributions
for the fitted Balloon Model are shown in Fig. 11. The main
point to note is that the distributions are all unimodal within
experimental error, and most have no significant skew. The
coefficients of variation for these parameters are relatively
tight, spanning a range from about 0.01 to 0.3.

4.3. Estimating the neural response

In order to estimate the neural response waveform N(t)
presumed to underlie each IC, we fitted N(t) in each case
while keeping the hemodynamic model parameters fixed.
This is effectively a deconvolution procedure, although the
nonlinearity of the Balloon Model precluded the use of
Fourier analysis or linear correlation. Instead we treated
the 60 time points of the function N(t) as unknown
parameters and optimized them, while keeping the model
parameters fixed. To do this we adapted the same simulated
annealing algorithm to minimize the revised sum-squared
error function

SSE = f: B(t) - C(t)*+ 4 > [N(t) - N(t+ 1)
=1 30,60

where C(t) is any one of the independent components.

Because the BOLD response acts as a low-pass filter, initial
attempts with /.=0 gave solutions for N(t) that oscillated
wildly while still fitting the ICs reasonably well. The second
term was therefore included to bias the search toward
smoother solutions, with />0 playing the role of a spring
constant between neighboring points. This term acts to
correlate neighboring points in N(t) and effectively reduces
the number of independent degrees of freedom in the fit so
that the problem becomes well-posed. The value 1=1/2
assured that repeated runs of the fitting algorithm produced
nearly identical results for Y(t) and N(t); smaller values of / fit
B(t) equally well but produced quite variable N(t). The points
t=30, 60 s were excluded from this term because the boxcar S
(t) — our best initial guess of the neural response underlying
IC-1 - clearly violates smoothness at these points. The end
result is a plausible estimate of the neural response wave-
form N(t) underlying each IC.
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Appendix A. The hemodynamic model

The metabolic basis of the hemodynamic model employed
here is the steady-state relationship between oxygen extrac-
tion fraction E in the capillary bed and inward flow f;,, (Buxton
and Frank, 1997).

E=1—(1—Eo)'n

The variable E is a decreasing function of fi,, due to the
shorter time in contact with the capillaries. Modeling E this way
does not include a direct neural coupling that could reflect an
initial dip. Rather the changes in E are considered to be due
entirely to neural activity-induced changes in blood flow.

The balloon model (Buxton et al., 1998) relates fractional
blood volume V, inward blood flow F;,, and deoxyhemoglobin
Q in the venous compartment. Each variable is normalized to
its resting state value: Vo, Fo and Qo, to yield the dimensionless
variables: v, fi, and q. Conserving total blood volume and total
deoxyhemoglobin in the venous (balloon) compartment leads
to the following differential equations:

d
Togzzﬁn;fout

a_. £ . 4
70 dt —meo foutu

The time constant to=Vy/Fy has the interpretation of the mean
transit time across the balloon. In the simplest version of the
model, it sets the time scale for the rate of change of both v and g.

Outward flow is determined physically by the relative
pressures between the venous compartment and the down-
stream vein, but that introduces new variables that are not
directly accessible. The balloon model replaces this detail with
a simple algebraic relationship between fo,: and v. We
consider two variants of this relationship. The first variant is
valid at steady-state (Grubb et al., 1974):

fout - Ul/l

In this case, the expression for f,,,« may be inserted directly
into the expression for dg/dt. The second variant accounts for
the slow nature of the expansion and contraction of the
venous compartment (Buxton et al.,, 2004), i.e., a dynamic
relationship between flow and volume:

: dv
four = vl +Tva

and is termed delayed compliance. In this case, the two equa-
tions involving dv/dt and fo,: may be solved simultaneously to
modify the mass conservation equations. The result for dv/dt is:

dv
(TO + Tu)a :fin - Ul/l

The result for fo; is:

1
fout = <1 +‘LU> |:finfl+ul/7:|
7o 70

which can be substituted into the expression for dg/dt.
Following Buxton et al. (2004), we allow 7, to take on different
values during balloon expansion and contraction, and denote
these parameters 7, and t_, respectively.

The input to the balloon model is inward flow, not neural
activity. In order to related neural activity to the BOLD signal,
an additional model component is needed. Following Friston
et al. (2000), we model the relationship between neural activity
and inward flow by a second-order differential equation

P _ fu-l 1df,
d? = ‘L’f 75 W + bN(t)
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Fig. A1 - Empirical linearity test of the effect of increasing or decreasing the input signal by a factor of 2, and compensating the
hemodynamic model outputby the converse factor (smooth flanking curves). For perfect amplitude linearity, the flanking curves
should overlie the thick smooth curve exactly. Thus, IC-1 is linear within about 10%, and IC-2 and IC-3 are almost exactly linear.

The input N(t) is flow-inducing neuronal activity, but
beyond that its exact relationship to neural activity is not
specified in this model. Normally it is taken to be the stimulus
waveform, or a task vector of a more complicated design
matrix. In the present paper, we conceptualize this as spike
rate, for example. Given an input function N(t), the above
system of three coupled differential equations (for q, v, fin)
may be integrated numerically. For the first cycle of the
stimulus (1<t<60 s), the result depends upon the initial
conditions, which we chose to be q=v=fi,=1. Because a 30-s
OFF period is not quite sufficient for the model response to
return to baseline, we often integrated for several cycles and
kept the last one for comparison with data.

Following Obata et al. (2004), we model the BOLD time
series a linear function of q and v:

B = Volai(1 - q) — ay(1-v)]

(Earlier papers, beginning with Buxton et al., 1998, included
a nonlinear term q/v, which was subsequently corrected in
Obata et al., 2004.) The parameters a; and a, have been
estimated at 1.5 T (Buxton et al., 2004) and 3T (Obata et al,,
2004), but with residual uncertainties. We therefore treated a;
and a, as unknown parameters and included them in model
optimization, starting with initial estimates computed for 3 T.
Because the parameter V, multiplies amplitudes a; and a, in
the equation for B, it is redundant; we therefore fixed V; at its
default value of 0.02.

three components of Fig. 9 by factors of 0.5 and 2, and divided
the output proportionately. If linearity holds, the scaled
responses to halved and doubled inputs should match the
original estimate exactly. The degree of mismatch indicates
the extent to which the linearity assumption was violated.
We emphasize that this is a test of linearity with respect
to the scaling parameter, and is independent of the degree
of nonlinearity of the time courses of either the neural sig-
nals or the hemodynamic model outputs with respect to
their inputs.

Fig. Al shows the results of the linearity test for each
component of Fig. 9. The smooth and noisy magenta curves
show the original optimization to the mean data, while the red
curves show the results of the compensated scaling by factors
of 0.5 and 2. For the first IC (Fig. A1(a)), linearity is violated to a
small extent, between about 10 and 20% for the decrease and
increase, respectively. The combined reconstruction of the full
BOLD waveform should not be expected to be any more
accurate than the 10% value for the 0.5 scaling. The other two
waveforms (Fig. A1(b,c)), although strikingly nonlinear in their
time-courses, show almost perfect amplitude linearity with
respect to scaling by factors of 0.5 and 2 (since the compen-
sated waveforms are almost indistinguishable from the
unscaled original). We conclude that the computed wave-
forms for this example support the linearity assumption (Eq. 4)
required for the component analysis.
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