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Abstract

We present a framework to solve the open problem of formulating the inverse scattering
method (ISM) for an integrable PDE on a star-graph. The idea is to map the problem on
the graph to a matrix initial-boundary value (IBV) problem and then to extend the unified
method of Fokas to such a matrix IBV problem. The nonlinear Schrodinger equation is chosen
to illustrate the method. The framework unifies all previously known examples which are
recovered as particular cases. The case of general Robin conditions at the vertex is discussed:
the notion of linearizable initial-boundary conditions is introduced. For such conditions, the
method is shown to be as efficient as the ISM on the full-line.
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1 Introduction

For decades now, integrable partial differential equations (PDEs), and more generally integrable
systems, have fuelled research and important discoveries in Mathematics and Physics, and still do.
Comparatively more recently, graphs and dynamical systems on (quantum) graphs have emerged
as a successful framework to model a large variety of (complex) systems. It is therefore not
surprising to see a fast growing interest in developing a theory of integrable systems on graphs,
which would combine the power of integrable systems with the flexibility of graphs to model more
realistic situations. The review [I] for instance gives a flavour and references for this fast growing
area in the context of nonlinear Schrédinger (NLS) equations (not restricted to integrable cases).

Originally, integrable PDEs were treated as initial value problems for functions of one space
variable € R and one time variable ¢ > 0. The invention of the inverse scattering method (ISM)
[2] and its refinements [3, 4] through the systematic use of a Lax pair [5] represents a cornerstone
of modern integrable PDEs. The first departure from this setup to solve an initial-boundary
value (IBV) problem for an integrable PDE on the half-line [6l [7] or a finite interval [8] can be
viewed in retrospect as the beginning of the study of integrable PDEs on metric graphs. Indeed, a
half-line is nothing but a half-infinite edge attached to a vertex and a finite interval is a finite edge
connecting two vertices. The next big step in this natural evolution was the study of integrable
PDEs on the line with a defect/impurity at a fixed site (or possibly several such defects). The
vast literature on this problemEI [9, 10, 111 12 03] 14} [15] [16], 17, 18] shows both its interest and its
difficulty. To date however, despite some impressive results on the behaviour of certain solutions
[19, 20], the general problem of formulating an ISM for a problem with defects is still open.

It is the purpose of this paper to bring an answer to the more general question of formulating
the ISM on a star-graph i.e. a single vertex connected to a finite number IV of half-infinite edges.
The case N = 2 will then take care of the situation of a defect/impurity on the line. To be more
concrete, we choose to present the framework on the example of the cubic Nonlinear Schrédinger
(NLS) equation

i0rq + 02q — 29lq)*q =0 , g€R. (1.1)

This is motivated by the fact that it is one of the most famous and studied example of integrable
PDEs. It is also the model that has been most studied on various simple graphs, hence allowing
us to show how our method encompasses all known results. But it will be clear to the reader that
our framework applies equally well to any integrable PDE that admits a Lax pair formulation.

In the next section, we introduce the model to solve: NLS on a star-graph. In section [3] we
show how the problem can be mapped to an IBV problem of a certain matrix form. Section [4]
then goes on to exploit this mapping in combination with the unified method of Fokas [21] to
provide an ISM for NLS on a star-graph. In Section [, we show how previous studies fit within
our framework. Finally, in Section [6 we illustrate our approach in the general case of a star-graph
with the vertex boundary conditions classified in [22]. Based on this example, we introduce the
notion of linearizable initial-boundary conditions whereby one can reduce the problem on the
star-graph to a scalar linearizable IBV problem. Conclusions are gathered in the last section,
where future directions are also pointed out.

LGiven the large literature, we have tried to give a representative selection of papers related to classical systems
with defects. Most of the authors cited here have contributed many more papers on the subject.



2 The model to solve

When formulated on the real line, (L) is solved via the ISM for initial data q(z,0) = go(x)
typically of sufficiently fast decay (see e.g. [23] and references therein). Of course, other classes
of initial data have been considered over the years (see e.g. [24] and references therein). In this
paper, we want to focus on the framework and not on the technicalities related to functional
spaces. We assume for simplicity that all our data is of appropriate smoothness and decay for
our purposes.

We consider the NLS equation on a star-graph with N half-infinite edges. We introduce N
copies of (1)) for functions ¢%, a = 1,..., N. Each ¢“ lives on edge «, is a function of x > 0 and
t > 0 and is connected to the other edges via some boundary conditions at x = 0. The problem
therefore reads, for a =1,..., N,

i0hq™ + 02q" — 29lq*PPq* =0 , x,t>0, (2.1)
qa(:p’ 0) = qg(x) ’
qa(o’ t) = gg(t) ) 8ﬂcqa(0’ t) = gla(t) ’

where ¢ff, g and ¢¢ are the initial-boundary data. For each o = 1,..., N, (2] is the compati-
bility condition Oyip = O pu of [3]

{axu +iklos, ul =W , (2.4)

O™ + 2iklos, p] = P* pu*,

where

_ (1 0 o _ 0 q“(z,1)
03—<O _1> , W (:E’t)_(gqa(x,t) 0 ) , (2.5)
PY(z,t,k) = 2k W —id, W03 — i(W)? 03. (2.6)

At this stage, we have to make several important remarks to clarify the role of the following
section and to understand why the system of equations ([21)-(23]) is indeed relevant to decribe
NLS on a star-graph.

First notice that ([2.1)) is a particular case of the general (square) matrix NLS for a N x N
square matrix-valued function Q(x,t)

i0Q +0;Q —29QQ'Q =0, (2.7)
where @ is chosen to be the diagonal matrix with entries ¢!, ..., ¢"
q' (1)
Qz,t) = : (2.8)
" (x,1)

This simple observation is the basis of the mapping of (ZI)-(Z3]) to a diagonal matrix IBV
problem discussed in the next section. In particular, the model we consider is not

N
00" + 02" =29 | D _1d°P | ¢* =0, 2,t>0 , a=1,....N, (2.9)
B=1



which would be the vector NLS equation (or general Manakov model [25]) on the half-line. This
would correspond to choosing @) as a row matrix of the form

¢'(z,t) ... q"(z,t)
0 0
Qx, 1) = L . (2.10)
0 0

This model was studied in [26, 27] for integrable boundary conditions. There, the superscript «
refers to an internal degree of freedom (light polarization in the historical case N = 2) and there
is a global U(N) symmetry. In the present case, the superscript « has the meaning of a discrete
spatial coordinate (assuming some embedding of the graph into R? for instance) and the global
symmetry is only U(1)V.

Second, it is important to realize that the interactions between the edges are mediated through
the central vertex via the boundary conditions (Z3]). In our context, the presentation of the
problem (2.I))-(23)) in the standard form of an IBV problem could give the misleading impression
that one is in fact always dealing with N disconnected half-lines. This would defeat the purpose of
this paper which is to deal with equations on a star-graph. In sections B and [6] we show that our
formulation does indeed include important examples of genuine star-graphs where the half-lines
are connected nontrivially. Of course, if one was to give oneself the complete set of boundary
data g§, gf (either directly or through Dirichlet-to-Neumann maps), then one could simply apply
N times the unified transform of Fokas to solve the problem on each half-line independently. The
point is that in situations of interest for problems on a star-graph, only special combinations of
95, 97 are supposed to be given and hence one has to consider the problem as a whole and cannot
split it into N disconnected problems. This is reminiscent of the well-known case on the half-line
where, generically, one would present the problem as

i0iq + 02q — 29|q|*?q =0 , z,t>0, (2.11)
q(z,0) = qo(2), (2.12)
q(0,%) = go(t) , 0:q(0,t) = q1(t), (2.13)

but then, one would restrict their attention to the case of Robin boundary condition where only the
combination 7¢(0,t) 4+ 0,4(0, ) is supposed to be given. In other words, only g1 (t) 4+ ngo(t) = g(t)
forms the boundary data. The particular case g(t) = 0 is the well-known integrable Robin
boundary condition for scalar NLS on the half-line [29]. In the same spirit, we will see in the
examples of Sections [l and [6] that only certains combinations of g, g are supposed to be given.
Such examples will represent typical situations of a star-graph where the half-lines are connected
through the vertex.

3 Mapping the problem to a matrix IBV problem

The observation in the previous section that the set of equations (2.1]) is a particular case of a
general matrix NLS equation suggests that a natural way to deal with the problem on a star-graph
is to consider matrix-valued functions of a certain type. Indeed, defining

- Ty 0 . 0 Q(:E,t)
Y3 = < 0 —1y > ’ W($7t) - < g@(x,t) 0 ) ’ (31)
Pz, t,k) =2k W —i0,W X3 — iW? %3 (3.2)



with @ given by (2.8]), then the set of equations (ZTJ) is the compatibility condition of the following
auxiliary problem

{axuﬂ'k[ﬁs,u] =Wy, (3.3)

Opp + 2ik2 (X3, 1] = P,

where all the objects are now 2N x 2N matrices. So let us denote by M,, the algebra of p x p
matrices over C and {E;; }‘;D j—1 its canonical basis. When dealing with different values of p in a
single expression, it is understood that the basis matrices F;; have the appropriate size given by
the range of their indices. Given M € Moy, define

2 N 2
My= > Mygynir@e-nnEre @ Ei . Ma= Y Y My g1ynjre-1)nEre ® Eij .
k=1 i=1 k=1 1<i£ <N

(3.4)
We denote My = {My,M € Moy} and M, = {M,,M € Moy} the corresponding sets. A
matrix in M, looks like < %; %i
that 33, W and P in ([8.3]) are all My-valued functions. To implement our formalism, detailed in
the next section, the crucial fact is that the fundamental solutions of (3.3]), properly normalised,
will also lie in My for all values of x,t¢, k where they are defined. This fact, together with the
following simple lemma, will then ensure that all the objects appearing in the ISM of a system
on a star-graph will also lie in My. As a consequence, the original IBV problem (2.1])-(2.3)
representing NLS on a star-graph will be solvable by implementing a generalization of Fokas
method to the case of M -valued functions.

> where each M is an NV x N diagonal matrix. The point is

Lemma 3.1 Mgy and M, are vector subspaces of Moy and the direct sum decomposition Moy =
Mg M, holds. Moreover, My is a subalgebra of Moy which is isomorphic to the direct product

N
HM2 as algebras.

i=1

The last point is easily seen using the following isomorphism

N
0 : H./\/lg — Md
i=1 N , (3.5)
(MY, MY) = M=) M*® Eaq

a=1

where the algebra structure of Hf\;l My is defined by the pointwise operations.

In the case N = 1, the study of the analytic properties of the solutions to Eqs. (83]) treated
simultaneaously forms the basis of the unified method developed by Fokas for IBV problems [21].
We refer to the N = 1 case as the scalar case. For our purposes, the following theorem is a key
result of this paper. As explained above, it shows that analyzing the problem on a star-graph is
the same as analyzing a matrix IBV problem in M.

Theorem 3.2 Let (zg,tg) € RT x RY and let u be the fundamental solution of (3.3) normalised
by u(xo,to, k) = on. Then p(z,t, k) € My wherever it is defined.



Proof: Denote ¢(z,t, k) = kx + 2k*t. Eqs. (33 are equivalent to the equation
d <e’¢23,u e_i¢23) = €% (W pdx + P pdt) e 9%s | (3.6)

ensuring that the right-hand side is an exact 1-form. Fix (zo,tp) € RT x RT and define the
solution, for z > 0 and ¢ > 0,

(@t) .
pu(z, t, k) = po(k)+ / e W=t (W (y )\ u(y, 7, k)dy + Py, 7, k) u(y, 7, k)dr) e Wbk

(zo,to)
(3.7)
Using the linearity of the Volterra integral equation (317 and Lemma B to project it on M, and
M, we obtain that both pgy and p, satisfy (B3.7). To formulate the ISM, one uses fundamental
solutions of (3.3]) defined by po(k) = Tan. Therefore, for such a solution (ug(k)), = 0. By
uniqueness of the solution of ([B.7), we deduce that p, = 0 identically. Hence, any fundamental
solution of (B.3)) is an M g-valued function, which concludes the proof. Note that all the ingredients

of the ISM being derived from fundamental solutions by algebraic operations and M, being an
algebra, we deduce that ISM for the problem (2.1)-(2.3]) can be entirely formulated in My. =

Remark 1: The values of k € C for which a fundamental solution is defined or has given
analytic properties depend on (xg, tp). This is what we mean in the previous theorem by ”wherever
it is defined”. This will become clear below when we apply Fokas’s method in our context.

Remark 2: In practice, the theorem ensures that the fundamental solutions of Eqgs. (B.3)
and all the associated spectral functions {a(k),b(k)} and {A(k), B(k)} (in the notations of [21])
appearing in the ISM can be split into N 2 X 2 matrices whenever this is more convenient than
their form in Mg. One simply uses the inverse of the isomorphism 6.

4 Inverse scattering method on a star graph

Equipped with Theorem B.2] we formulate the ISM on a star graph by extending the unified
method of Fokas to matrices in M. For full details on the method in the scalar case, we refer
to the book [2I]. In particular, in the following, we will heavily rely on Chapter 16 of [2I]. The
approach is of analysis/synthesis nature. Under the assumption that Q(z,t) exists, the analysis
part allows one to introduce the relevant scattering data, the so-called global relation and to
formulate an appropriate Riemann-Hilbert problem which is at the basis of the inverse part of
the ISM for IBV problems. Equipped with all this, the synthesis part consists in formulating the
direct and inverse parts of the ISM, assuming that the global relation holds, and then check that
the obtained solution Q(x,t) indeed satisfies the PDE together with the initial and boundary
conditions. Here, we present directly the main results in M, and focus on the synthesis part.
We only give the key steps of the analysis part, pointing out the main differences with the scalar
case.

4.1 Spectral analysis

In Fokas’s method for an IBV problem, one needs to define three fundamental solutions y1;(x,t, k)
as in (3.7)), corresponding to the three points (zo,t9) = (0,7) for j = 1, (zo,%0) = (0,0) for j =2
and (zg,tg) = (00,t) for j = 3. Any pair of these solutions is related by a matrix independent of



x,t. So one defines the two scattering matrices S(k) and T'(k) for k € R by

ps(z,t, k) = po(x, t, k)e @RS g (k) gid@th)Es (4.1)
p1 (@, 6, k) = po(a, t, k)e @RS (k) (@ th)Ns

—~

Using the same symmetry of the potential W as in the scalar case and the fact that our matrices
lie in My, we can show that S and T have the general form

_( alk) b(k) ([ Ak Bk
S(’“>‘< o(k) <>) ’T“‘”“)‘(gﬁ A<k>>’ (43

where the scattering coefficients a(k), b(k), A(k), B(k) are N x N diagonal matrices. The entries of
the matrices a(k), b(k), A(k), B(k) extend to functions on the complex plane with certain analytic
properties (see Propositions 16.1 and 16.2 in [21]). An important role is played by the zeros of the

entries of a(k) and of the matrix d(k) = a(k) A(k) — gb(k) B(k). Following [21], we make some
assumptions on these zeros. This is where the present matrix case requires extra care compared
to the scalar case. Hence, we assume

(C1) For each o € {1,..., N}, an(k) has K simple zeros {x{ K% with K* = K¢+ K, arg K €

j=
(07%)7]‘:17---7}{?; arg’%?{ € (%777)7j:Kf{+17"'7Ka'

(C2) For eajc\h a € {1,...,N}, do(k) has A simple zeros {A;‘}é\zl with arg \Y € (3,7), j =
1,... A

(C3) None of the zeros of an(k) with argk € (5, m) coincides with a zero of dq (k).

J
and j, ¢. Similarly, one could have A} = )\f for some a # 3 and j,¢. Finally, one can also have

In general, one can have coinciding zeros for different a and B i.e. K¢ = /{5 for some a #

K§ = )\5 for some a # B and j,¢. Such instances correspond in general to the situation where
the different half-lines are non trivially connected.

Another important ingredient is the global relation. The same derivation as in [21] goes over
to our matrix case. From the integration of the exact form (B8] around the boundary of the
domain {0 < x < 00,0 < t < Tp}, one arrives at

Moy — T (k) S(k) — / @ TR S W (2 Ty ps(z, To, k) e 9@ T0REs o — (4.4)
0

for k € (D3 U D4, D1 U Dy). The block (12) of this relation yields the global relation
a(k)B(k) — b(k)A(k) = e***Toc(k) | ke Dy UD,, (4.5)

where c(k) = [;° ek Q(x,Tp) (u3(z, To, k)22 d is analytic for k € Dy U Dy and of order 1 as
k — o0. In the case Ty = oo, this boils down to

a(k)B(k) — b(k)A(k) =0 , ke Dy. (4.6)



4.2 Synthesis: direct and inverse transforms of ISM
4.2.1 Direct part

Consider the initial-boundary data qg, gg, g{, j=1,...,N from [2Z2)-23). Denote Qo(z) =
diag (¢3(x), ..., q) (x)) and Hy(t) = diag (g} (t),..., g7 (t)), £ =1,2. Also, let

(0 Q@) o 0 H _
Wo(x)—<g@0(x) 0 > s Gg( )_<gHg(t) 0 ) 5 6—1,2. (47)

Now, define p(z, k), ®(t, k) as the 2N x N matrix-valued functions satisfying
) Ix O -
Orp + 2ik 0 0 p=Whep , 0<z <00 , ke DiUDy,
oo In O . 9 = |5
0y ® + 4ik 0 0 d = (2]€G0 —iG1X3 — ZGozg) ®  O<t<oo , ke D1 UDsg, (48)

lim ¢(x, k) = 0 ,  lim ®(t, k) = 0 .

We now define the scattering coefficients by

(e ) =vo aa (55)) =e0n) as

We also assume that @y, Hy and H;p are such that: Qu(0) = Hy(0), Qo.(0) = H1(0) and
conditions (C'1) — (C3) hold as well as the global relation.

4.2.2 Inverse part

Given the scattering coefficients a(k), b(k), A(k), B(k) together with the zeros as in (C1) — (C3),
define the matrix J by J(k) = Jp, when argk = %’r, where

Iy 0 Iy —v(k) e~ 2@ k) >
Ji = ; ) Jy = = i (x ) 4.10
1 <rww@ﬂmw HN> 1 <gwm¥¢hw> Iy - gh)p ) 410
_ 1. —2i¢(x,t,k)
J3 = < ]Iév ’ (k)liv ) o =TI (4.11)

and

y(k) =bk)a t(k),k e R , T(k)=gB(k)a *(k)d '(k),k e R™UiR",  (4.12)
d(k) = a(k) A(k) — gb(k) B(k) ,k € R~ UiR™ . (4.13)

Then, define M (x,t, k) as the solution of the following 2N x 2N matrix Riemann-Hilbert problem
e M is meromorphic for k € C\ {R UiR};

o M_(x,t,k) = My (z,t,k)J(z,t,k), k € RUIR where M = M_ for k in the second or
fourth quadrant, M = M for k in the first or third quadrant and J is defined in terms of

a, bv AvB as in (m)_(M)7
. M(:E,t,k?):]IQN‘FO(%) , k — o0



e Dropping the z,t dependence for conciseness and denoting M (k) = ([M]1(k), [M]2(k)) the
splitting of M into the first and last N columns, the following residue conditions hold at
the possible zeros of a and d

Res[M]; = ¥ [My(k9) b1 (kS) Resa™, (4.14)
Rj Rj

Res[M]y = ¢ %0 M)y (R§) g~'b7 (k) Resa™, (4.15)
Rj Rj

ResiM), = ge” ) [M]o(X) BOS) ag ' (A9) Res !, (4.16)
Res[M]y = ge®@™) [M],(X3) B(XS) ag ' (AY) Resd ™, (4.17)
A? A?

where Resa™! is the diagonal matrix whose only nonzeros entries are for those 8’s such
K
J
that Kj 1s a zero of ag(k), in which case the element reads %, and similarly for Res al,
J ,Lg?

Resd ! and Resd*.
A? PN

J

The fundamental result of ISM for NLS on a star graph is then the following

Theorem 4.1 M (z,t,k) ezists and is unique. Moreover, if we set

Q(x,t) =2i klim (kM (z,t,k))12 , (4.18)
—00
then Q(x,t) solve the NLS equation on a star-graph with initial condition Q(x,0) = Qo(x) and
boundary conditions Q(0,t) = Ho(t), 0,Q(0,t) = Hy(t). The index 7127 in (LI8) means that we
take the block (12) in the natural decomposition of matrices in M.

Proof: Using the isomorphism 6, we can map the proof of this theorem to the proof of N copies
of the analogous theorem for the scalar case. Indeed, let (M?,... M) be the preimage of M by
0 then each M® is defined as the solution of the 2 x 2 Riemann-Hilbert problem analogous to the
one presented above but based on the scattering data aq(k), ba(k), Aa(k), Ba(k) corresponding
to ¢§ (x), h;‘(t), j =1,2. In this case, it is known that M then exists and is unique [28]. Now,
setting Q(x,t) = 2i klgglo(kM(x, t,k))12 is equivalent to setting ¢*(z,t) = 2i kli_)n(f)lo(kMa(x, t,k))12
for a = 1,...,N. In the last equation, the index 12 is simply the entry in position (12) in the
2 x 2 matrix kM®. Again, it is a consequence of the results in [28] that ¢ is then solution of NLS
on the half-line which satisfies the initial condition ¢*(z,0) = ¢§(z) and boundary conditions
q*(0,t) = h{(t), 0,¢“(0,t) = h{(t). This means that Q(z,t) satisfies NLS on a star-graph with
initial-boundary data Qq, Hg, H1. |

5 Comparison with previous results

Obivously, the scalar case N = 1 boils down to NLS on the half-line which has been the object
of numerous studies [29, 30} [7, 2I]. For N > 2, the apparent simplicity of the proof of the
main theorem of the previous section when one uses the map 6 is both beautiful and potentially
misleading. One may erroneously infer that we are simply dealing with N disconnected copies
of the half-line problem. It is the object of this section to show that this is not so and that our



approach actually unifies and encompasses all previous studies (known to the author) of the NLS
equation on more complicated supports than the full line. In the last subsection, we also show our
approach can tackle the most general problem arising from the study of self-adjoint extensions of
the Laplacian on a star-graph [22] and adapted to the present situation.

5.1 Case N = 2: problem on the line with a defect/impurity
5.1.1 Recovering the problem on the line

The simplest way to check that our formalism does describe connected half-lines is to show how it
reproduces the problem on the full lineﬁ. The latter can be seen as the problem on two half-lines
connected in such a way that there is no reflection and trivial transmission. In fact, the crux of
the matter can already been seen for the linear case i.e. when the coupling constant g = 0 in
NLS. The point is that the boundary conditions encoded in the functions Hy = diag(gg, g3) and
Hy = diag(gi, g?) must ”disappear” from the reconstruction formula for the function on the full
line and only the initial condition must play a role.

Linear case. It is very instructive to look at the details in the linear case for N = 2 first. From
the half-line problem

0,Q(,1) + 05Q(x,t) =0, Q(z,0) = Qolz) , Q0,¢) = Ho(t) , 8;Q(0,t) = Hi(t), (5.1)
we want to solve the full line problem
i0pu(z,t) + 0%u(z,t) =0 , wu(x,0) = up(x). (5.2)

This goes as follows. We use the two functions ¢;(z,t), j = 1,2 contained in Q(z,t) and defined
on each half-line to form u(z,t) = 0(x)qi(z,t) + 6(—x)g2(—x,t). The "transparent” boundary
conditions are obtained for gi(t) = g2(t) = go(t) and g¢i(t) = —g?(t) = g1(t) where g5 are the
boundary data in (Z3]). This corresponds to Hy(t) = go(t)Iy and Hi(t) = g1(t)os. To compare

(1) and (5.2) more efficiently, let us define

Qline(ﬂf,t) — 03 (9($)Q($,t) + 0(-%)0@(—1’,t>0) _ < U(f), t) 0 > 7 (53)

a:<(1) é) (5.4)

Obviously, one simply extracts the (11) entry of Q"™ to get u. So, for convenience, we perform
the analysis directly on Q'™¢. The prefactor o3 is purely conventional here but will turn out to
be useful when we go over to the nonlinear case. The usual Fourier transform method applied to
Q"¢ yields

where

. 1 . .
lee(x’t) — %/ lee(k},t) e—zkx dk, (55)

—00

where

@line(k’ t) _ / Qline(x7 t) eikx dx

—00

= o3 /000 (Q(az,t)eikx + UQ(az,t)ae_“m> dx
= o3 <@(k,t) +a@(—k,t)a) , (5.6)

*We are grateful to N. Crampé for this useful observation.




where @(k, t) is the (half) Fourier transform of Q(x,t). Now the unified method applied to the
problem (5.]) provides the solution for Q(x,t) by deriving the global relation

Q(k,t) = e *1Q(k,0) + e+t / t W T (GH\ (1) + kHo(1)) dr (5.7)
0

and then the inverse tranform
1 EaPN :
Q(z,t) = > / Q(k,t) e~ dk . (5.8)

The key is the global relation. Here, since Hy(t) = go(t)I2 and Hy(t) = g1(t)os, we find from
(7)) that
@(k7 t) + 0@(_k7 t)O' = e_ik2t (Q\(k‘iv 0) + @(_k7 0)) : (59)

Therefore, Hy and H; have been eliminated from the reconstruction formula and we find
. 1 [ . .
lene(x’t) _ %/ lee(k’,O) e—zkm—zk2t dk’, (510)
as we should, where @””e(kz, 0) is determined only from the initial condition Q“”e(az, 0).

NLS case. The nonlinear case is technically more difficult but the main steps follow the same
principle. We only present the key results here for conciseness. From the half-line problem,

i0,Q(x,t) + 07Q(x,1) = 29QQ° (, 1)
Q(‘Tvo) = QO('Z') ) Q(Ovt) = gO(t)I[2 s 896Q(07t) = gl(t)037 (511)

we want to solve the full line problem
i0u(z, t) + 02u(z, t) = 2glul?u(z,t) , wu(x,0) = up(x). (5.12)

We define Q'"¢ as in (53] and from it W'"e and P! as in [3)). As is well-known, the solution
for Q"¢ is obtained through the spectral analysis of the two fundamental solutions ulf:"e(:n, t, k)
of

am'uline + ’Lk’[zg, Mline] _ Wline Mline ’ £ 13
atuline 4 22‘]{:2[237 Nline] — Pline Mlin67 ( . )

normalised as ' L ' -
lim etket2ik tulime(x,t, k)e~ike=2ik"t — 1, keR. (5.14)

r—+o0

The first observation is that, if u'™¢(z,t, k) is a solution of (5.I3)), then so is ¥ p!™"¢(—z,t, —k) ¥
where ¥ = 1, ® . This is a consequence of the symmetr

Y Whne(—z )% = —Whre(z t). (5.15)
In particular, by uniqueness of normalized solutions, we obtain that

Ml—ine(x7t7k) = Elul-ii-ne(_x7a —]{7)2, (516)

line

3This is where the prefactor os in the definition of Q is important.
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and as a consequence,
le_ne(xy t, k) -3 ,ulf;"e(—x, t, —k) N e—ikm—2ik2t Sline(k) eikx+2ik2t 7 (517)

where S'"¢(k) is the scattering matrix of the problem on the line. For the problem on the
half-line, as we discussed in detail in Section M one must consider three fundamental solutions
pj(x,t, k) which allow one to define the initial and boundary scattering matrices S(k) and T'(k)
as in (A1) and [@2]). In particular, we know that S(k) = us3(0,0,k). The second observation is
that, for > 0, I3 pus(x,t, k) I3 and ,ulf;"e(a:,t, k) satisfy the same equations and have the same
normalization as x — oo. Hence, for z > 0,

ine 0
Iy pa(w, t k) I = pl{"*(z, 8, k), Iy = < 003 1 > - (5.18)

Taking ¢t = 0 and the limit as = tends to 0 of this relation and inserting in (5.17]), we find
I3S(k) I3 = 13 S(—k) I35 S""e (k) . (5.19)

This is the nonlinear analog of (5.6]) (at ¢ = 0) and plays the same crucial role. Indeed, in the
limit where the coupling ¢ tends to 0, one has

~

S(k’) N ( ]32 Q(]];;O) > , Sline(k,) N ( ]32 le;(;f,o) > , (5‘20)

and the block (12) of (519) yields exactly (5.6]). The final step consists in deriving the (nonlinear)
global relation and the symmetry of the boundary data encoded in T'(k). These two ingredients
put together are the nonlinear analogs of (B.7) and of the property Hi(t) + o Hi(t)o = 0 =
Hy(t) — o Ho(t) o of the boundary data which allowed us to eliminate it in the linear case. The
global relation reads

I, — T~ (k) S(k) — / e P@ERE Y (12 1) gz, t, k) e T O@ERT3 o — (5.21)
0

Finally, we note that both p1(0,¢, k) and p2(0,t, k) are solutions of
A+ 20k (83, p] = P(0,t, k) (5.22)

where
_ —igHy(t)Ho(t)  2kHo(t) + iH1(t)
P0,5,k) = ( 9K () — (H () igHo(t) Holt ) ’

contains the boundary data Hy(t) and H;(t). Therefore, it satisfies P(0,¢, k) = 33 X P(0,t,—k) ¥ X3
and this implies the same symmetry on u1(0,¢, k) and u2(0,¢, k). In turn, this implies the follow-
ing symmetry for the boundary scattering matrix 7'(k)

(5.23)

T(k) =3 ST (k)55 (5.24)

Although the details are much more technical than in the free and will be omitted here, the main
steps identified above allow one to eliminate the boundary data from the reconstruction formula
for Q' (x, t).
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5.1.2 NLS with a § potential/impurity

The ¢ potential is the most famous member of a family of singular point potentials (see e.g. [31])
and is characterized by one real parameter n. In our setting, it corresponds to boundary data Hy
and H; satisfying

cHyo=Hy , cHio+ Hy=nHy. (525)

Of course, the case n = 0 is known to correspond to the purely transmitting ¢ impurity i.e. the
system on the full line. We have discussed this case in detail in the previous subsection. To our
knowledge, the first analytical study of this problem was performed in [11] for the defocusing
NLS using a Rosales type expansion of the solution [32]. The latter can be seen to arise as the
Neumann series solution of the Gelfand-Levitan-Marchenko equations appearing in the inverse
part of the usual ISM method for NLS. The key idea was to formulate appropriate conditions on
the initial condition Qo (z) directly in Fourier space by imposing certain relations on the scattering
data appearing in the Rosales expansion. In turn, these relations were inspired by the situation
in the quantum case where the Reflection-Transmission algebras [33] play a role.

Then, in [19], important results were obtained for the focusing NLS with a repulsive (n > 0)
delta impurity. The initial condition corresponds to a single soliton localised on one half-line and
the main result concerns the long-time asymptotic behaviour of the solution. The study uses a
clever and intricate combination of functional analysis estimates method combined with methods
of integrable systems like the nonlinear steepest method [34]. It is shown that, for high enough
velocity, the soliton splits into a reflected and transmitted soliton plus radiation. It is our plan
to investigate the same problem (and similar ones studied by Holmer and collaborators later on)
using the method presented here and to compare the results of the two approaches in a future
paper.

Finally, in [20], the focusing NLS with ¢ impurity at small coupling is studied for a special
initial condition which has the property of being an even function. This allows to map the problem
to a scalar problem on the half-line with integrable Robin boundary conditions and use the full
power of integrable techniques. In our setting, this would mean that we choose Qq(x) such that

o Qo(z) 0 = Qo(z). (5.26)

We will show below that this a special case of the notion of linearizable initial-boundary conditions
that we introduce in the general N > 2 case.

5.1.3 NLS with a ”jump” defect

In the quest for defect/impurity boundary conditions that would preserve the integrability of the
model, a privileged class was obtained in [9]. The original approach was based on a lagrangian
formalism but a key observation was that the obtained defect conditions were frozen Bécklund
transformations at the defect location. Using this, in [13], the author obtained general results
on defect conditions and associated generating functionals for the conserved quantities for all
integrable PDEs in the AKNS scheme [4]. In particular, for NLS, the defect conditions read, in
our present notations,

{g%(t) +g1(t) = —ia(g3 (t) — g5(1)) — (g5(1) + g5(£)) (1),
(g5 (t) — 9o(t) = alg? (t) + g1 (1)) — i(gF (t) + g1 (1))Qt) +i(g5(t) — 9o(8)) (196 (O)* + lgg (1))
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where Q(t) = /B2 +2g|g2(t) — g} (t)]? and o, B € R are two defect parameters. These defect
conditions look very complicated and highly nonlinear. But their origin as Béacklund transfor-
mations of NLS ensure that specific solitonic solutions can be cosntructed explicitely. This was
done in [10] by direct ansatz on the one and two soliton solutions. Using these solutions with
t =0 and x = 0 as input for the initial and boundary data, our approach provides the scheme to
compute exactly the scattering data and implementing the inverse part of the method explicitely.
The final result will of course reproduce the original solutions for ¢ > 0.

5.2 Case N =3

In [35], an important generalization of the study in [19] to the case of focusing NLS on three
half-infinite edges connected to a single vertex by specific boundary conditions was performed
using the same tools and with essentially the same conclusions concerning the splitting of an
initial soliton profile localised on one of the edges. The boundary conditions used there are part
of a general family of boundary conditions that were classified in the context of quantum graphs,
for instance in [22]. We show in the next section how these boundary conditions are implemented
in our setup for general N > 2. Hence, the particular problem studied in [35] fits in the present
approach. As already mentioned, a quantitative comparison of their results with results that can
be obtained solely by using our approach is an important task that we will return to in the future.

6 N > 2 case with general Robin boundary conditions

In [22], a classification of boundary conditions giving to self-adjoint extensions of the Laplacian on
a metric graph was derived. In the case of the star-graph, these point potentials are well known
to induce reflection and transmission between the various edges of the graph. In our context, it
is natural to try to implement these point potentials as models of local scatterers for nonlinear
waves on a star-graph. The starting point is the linear limit of NLS (¢ = 0) which corresponds
precisely to the setting of the Laplace operator on a star-graph. Collecting the functions ¢%(x,t)
a =1,...,N in a column vector R(z,t), the family of boundary conditions obtained in [22] is
parametrized by U(N), the group of N x N unitary matrices, as follows

(U — TN)R(0,1) +i(U + Tn)9,R(0,t) =0 , U e U(N). (6.1)

In the case N = 1, with U = €% this is just sinar(0,t) + cosad,r(0,t) = 0 i.e. the Robin
boundary condition together with its two limits, the Dirichlet and Neumann boundary conditions.
We will then call the conditions (6.I]) general Robin boundary conditions.

To transfer this to the nonlinear case, we need to rewrite this condition equivalently in the
case where the functions ¢%, a« = 1,..., N are collected in a diagonal matrix Q(x,t). Of course,
in the linear limit, using R(z,t) or Q(x,t) is equivalent but in the nonlinear case, this changes
dramatically the form of the interaction term in NLS, and hence the nature of the system, as
pointed out in the introduction. To achieve this, we need the following simple lemma.

Lemma 6.1 Let M € My and let

01 0 ... 0
00 1 0

K= , KN =1y. (6.2)
0 0 1
10 0 0



Then, there exists a unique decomposition of M on powers of K as

M = Nlej K7, (6.3)
j=0
where M; is a diagonal matriz for each j =0,...,N — 1.
Proof: It suffices to note that
M; = diag(Mi j+1, M2 jt2,... . MNn_jN, MN_j+1.1,..., Mnj). (6.4)

[
Let us denote by Dy the space of N x N diagonal matrices over C. There is a natural isomorphism
between CV and Dy. Thanks to the previous lemma, we lift this isomophism to an isomorphism
between End(C) = My and End(Dy) by defining

Z: My — End(Dy)

M M (6:5)
where, for all N € Dy
MN=> M;K/NK, (6.6)
§=0

and the M;’s are the diagonal matrices appearing in the decomposition of M in powers of K. We
can now define the NLS equation on a star graph with general Robin boundary conditions as the
following problem

i0Q +0°Q —29QQ* =0 , 0<z<oo, 0<t<T,
Q(x,0) = Qo(z) , (U—Txn)Q(0,¢) +i(U + Tx)3,Q(0,¢) = 0.

This is a particular case of the general setup when Hy and H; are required to satisfy (U/—\]IN)H o(t)+
i(U + In)H:(t) = 0.

Linearizable initial-boundary conditions. We want to use the problem with general Robin
conditions to introduce and illustrate the notion of linearizable initial-boundary conditions. In
Fokas method, there exist the so-called linearizable boundary conditions which take their name
from the fact that they allow for a solution of the global relation by algebraic means only, hence
rendering the unified method for IBV problems just as powerful as the ISM for IV problems in
linearizing the problem in Fourier space. In practice, linearizable boundary conditions correspond
to integrable boundary conditions that could be found by other methods before the advent of the
unified method, like the Bécklund transformation method initiated by Habibullin [36]. For non-
linearizable boundary conditions, solving the global relation is much more involved and remains
essentially a nonlinear problem.

The way to idenfity linearizable boundary conditions is to exploit natural symmetries of the
global relation. The latter represents in Fourier space a strong relation between the initial-
boundary data and the integrable bulk dynamics. So far, symmetries of the global relation have
been used in such a way as to identify boundary conditions which would render the problem
amenable to solutions for arbitrary initial conditions of the same type as for the problem on the
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full line. Performing the same reasoning on a star-graph essentially leads to trivial linearizable
boundary conditions corresponding for instance to disconnected half-lines with Robin boundary
conditions. However, the example of [20] shows that such a restriction on the boundary conditions
can be relaxed by restricting one’s attention to initial data with a specific symmetry (an even
function in that case). Indeed, in general the boundary conditions of the § impurity are not
linearizable but when combined with an even initial condition, one can map the problem to a
linearizable one.

A posteriori, this is very natural from the point of view of the global relation: one can
trade off freedom on the initial data to gain more flexibility on boundary conditions leading to
IBV problems that can be solved as efficiently as IV problems. In the case of the § impurity,
the boundary conditions (5.25]) are invariant by the action of o and so is the bulk dynamics.
Therefore, it is natural to split the set of initial data into the two eigenspaces of o i.e. to consider
initial data satisfying

o Qo(x)o = £Qo(x). (6.9)

By choosing the initial data in the + subspace, [20] were able to reduce the problem to a scalar
linearizable one, with Robin boundary condition. Note that choosing to use the — subspace would
also lead to a scalar linearizable problem but with Dirichlet boundary condition.

We now illustrate this idea for the general Robin conditions above. In this general class, there
are distinct representatives that have the additional symmetry property that they are invariant
by the action of K. This is the case for instance for the generalisation of the § impurity conditions
which read

N-1
KHyK'=Hy , Y K/ H K7 =nH. (6.10)
§=0

More generally, the class of boundary conditions within the general Robin boundary conditions
that are such that U appearing in (6.8]) is a circulant matrix, i.e. commutes with K, allow us
to use this extra symmetry. In that case, it is natural to split the initial data space into the
eigenspaces of K. The latter is known to have N distinct eigenvalues w/,j=0,...,N — 1 where
w=eN is the N-th root of unity. Therefore, if the initial data satisfies the following symmetry
condition

KQoK ™' =w'Qo, (6.11)

for some p € {0,..., N — 1}, then the problem can be mapped to a scalar linearizable problem.
Note that (6.11]) is a natural generalization of (5.26]). We show how this works for the generalized
¢ boundary conditions. They are obtained by choosing U = Nim‘] — Iy where J is the N x N
matrix with 1 in every entry and « is a real number related to 1 and representing the coupling.
The matrix U is circulant and decomposes as

2
= —2
N + i«

, L #0, (6.12)

N—1
U= K ’ -
]Z_:O i 4o YT N¥ia

Therefore, for the problem with symmetry (6.11]), one obtains the following scalar linearizable
problem with Robin boundary condition

(2icc — 2(N — 1) + B,) q(0,) + (2 + B,) 9»q(0,1) =0, (6.13)
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where 8, = 2(N — 1) if p = 0 and —2 otherwise, in which case one actually obtains the Dirichlet
boundary condition. Here, the function ¢ represents any one of the entries of (). This generalizes
the setup of [20] and therefore all the methods used there apply here directly. In practice, it
means that one can simply study the problem on one of the half-lines of the star-graph and the
full solution on the complete graph can be reconstructed by applying the symmetry.

Conclusions

We introduced a general method that solves the problem of formulating an inverse scattering
method for integrable nonlinear equations on a star-graph. The key is to map the problem to
a matrix IBV problem that can be analysed by a suitable matrix generalization of the unified
transform developed by Fokas for scalar IBV problems. Although the method was presented for
NLS, it is clear that it allows to tackle any integrable nonlinear equations that can be analysed
by Fokas method, that is any nonlinear equation for which a Lax pair is known.

Our results provides a unifying framework in which one can analyse in great detail the long-
time asymptotic behaviour of solutions on a star-graph. This is due to the fact that the Riemann-
Hilbert approach and the associated nonlinear steepest descent method that are so powerful in
Fokas method, naturally extend to our framework. As mentioned before, the next natural step
is to implement this program in detail in order to compare with the results obtained in [19] and
[35] and to go beyond them hopefully.

In the discussion of the general Robin conditions on the star-graph with N edges, we identified
the new concept of linearizable initial-boundary conditions which appear as the natural generaliza-
tion of Fokas linearizable boundary conditions in the scalar case. The latter turn out to coincide
with what was called before ”integrable boundary” conditions in all known cases. Therefore, the
notion of linearizable initial-boundary conditions can be taken as the generalization of the notion
of integrable boundary conditions in the context of an integrable PDE on a star-graph. The key
feature is that one applies the constraints arising from integrability not only on the boundary
conditions but also on the space of initial conditions. The net result is that certain boundary
conditions which would have been declared ”"non integrable” in the usual approach, such as the §
impurity on the line, can in fact be studied via ISM just as effectively as the traditional integrable
boundary conditions provided one works with smaller functional spaces.

In the longer term, the present results open the way to a theory of inverse scattering on
arbitrary finite connected graphs. This is because any such graph can be viewed as a collection of
star-graphs connected together by finite edges. Therefore, to complete this program, one will have
to combine the present approach with the unified transform method applied to finite intervals
(see e.g. [37]).

Acknowledgments. We wish to thank N. Crampé for his usefuls comments on the draft of
this paper.
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