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Excess of Loss Reinsurance Under 
Joint Survival Optimality

by

Vladimir K. Kaishev* and Dimitrina S. Dimitrova
 Cass Business School, City University, London

Abstract
Explicit expressions for the probability of joint survival up to time x  of the cedent and the
reinsurer,  under  an  excess  of  loss  reinsurance  contract  with  a  limiting  and  a  retention
level  are  obtained,  under  the  reasonably  general  assumptions  of  any  non-decreasing
premium  income  function,  Poisson  claim  arrivals  and  continuous  claim  amounts,  mod-
elled by any joint distribution. By stating appropriate optimality problems, we show that
these  results  can  be  used  to  set  the  limiting  and  the  retention  levels  in  an  optimal  way
with  respect  to  the  probability  of  joint  survival.  Alternatively,  for  fixed  retention  and
limiting levels, the results yield an optimal split of the total premium income between the
two parties in the excess of loss contract. This methodology is illustrated numerically on
several examples of  independent and dependent claim severities. The latter are modelled
by a copula function. The effect  of varying its dependence parameter and the marginals,
on  the  solutions  of  the  optimality  problems  and  the  joint  survival  probability,  has  also
been explored. 
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1. Introduction

Several approaches to optimal reinsurance have been attempted in the actuarial literature,
based on risk theory, economic game theory and stochastic dynamic control. Examples of
research in each of these directions are the papers by Dickson and Waters (1996, 1997),
Centeno (1991, 1997),  Andersen (2000),  Krvavych (2001),  by Aase (2002),  Suijs, Borm
and De Waegenaere (1998), and by Schmidli (2001, 2002), Hipp and Vogt (2001), Taksar
and Markussen (2003). A common feature of most of the quoted works is that optimality
is  considered  with  respect  to  the  interest  of  solely  the  direct  insurer,  minimizing  his
(approximated)  ruin  probability,  under  the  classical  assumptions  of  linearity  of  the  pre-
mium income function and independent, identically distributed claim severities.

Recently, a different reinsurance optimality model, which takes into account the interests
of  both  the  cedent  and the  reinsurer,  has  been considered by Ignatov,  Kaishev and Kra-
chunov (2004).  As a joint  optimality criterion  they introduce  the direct  insurer's  and the
reinsurer's  probability  of  joint  survival  up  to  a  finite  time  horizon.  Under  this  model,  a
volume  of  risks  is  insured  by  a  direct  insurer,  who  is  entitled  to  receiving  certain  pre-
mium  income  in  return  for  the  obligation  to  cover  individual  claims.  The  latter  are
assumed to have any discrete joint distribution and Poisson arrivals. It is further assumed
that  the  cedent  is  seeking to  share  claims and premium income with a reinsurer  under a
simple  excess  of  loss  contract  with  a  retention  level  M ,  taking  integer  values.  In  their
paper, Ignatov, Kaishev and Krachunov (2004) have derived expressions for the probabil-
ity of joint survival of the cedent and the reinsurer and have demonstrated its applicability
in the context of optimal reinsurance. 

Catastrophic  events  in  recent  years  have  caused  insurance  and  reinsurance  losses  of
increasing  frequency  and  severity.  As  a  result,  some  reinsurance  companies  have  been
downgraded with respect to their credit rating while others, such as the 6-th largest rein-
surer worldwide Gerling Global Re, even became insolvent and went out of business. The
latter developments have motivated even stronger the proposed idea of considering reinsur-
ance  not  solely  from the  point  of  view of  the  direct  insurer,  but  taking  into  account  the
contradicting interests of the two parties, by jointly measuring the risk they share.

Our  aim  in  this  paper  is  to  generalize  the  joint  survival  optimality  reinsurance  model,
introduced by Ignatov, Kaishev and Krachunov (2004). We extend it here by considering
an  excess  of  loss  (XL)  contract  in  which  the  reinsurer  covers  each  individual  claim  in
excess of a retention level M , but up to a limiting level L  and individual claim severities
are not  discrete  but  are  modelled by continuous (dependent)  random variables,  with any
joint  distribution.  Under  these  reasonably  general  assumptions  we  give  closed  form
expressions  for  the  probability  of  joint  survival  of  the  cedent  and  the  reinsurer  up  to  a
fixed  future  moment in  time.  Based on these  expressions,  we state  two optimality  prob-
lems, according to which optimal values of M  and L  or alternatively, an optimal split of
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the total premium income, maximizing the probability of joint survival, can be obtained.
These problems have been solved numerically, due to the infeasibility of their analytical
solution.  The  derived  joint  survival  probability  formulae,  conveniently  allow  the  use  of
copula functions in modelling the dependency between claim severities.  We have shown
how varying the  degree  of  dependence  through the  copula  parameter(s)  affects  the opti-
mal  choice  of  the  retention  and  the  limiting  levels,  the  optimal  sharing  of  the  premium
income and also the probability of joint survival. 

The  results  presented  in  this  paper  comprise  an  extension  of  the  model  considered  by
Ignatov, Kaishev and Krachunov (2004), to the practically more important case of continu-
ous,  dependent  claim  severities.  In  addition,  the  more  general  XL  contract  considered
here  gives  a  refined  control  over  the  optimal  structure  of  this  risk  sharing  arrangement.
For further details on XL contracts with one or more layers, see e.g. Bugmann (1997).

The  paper  is  organized  as  follows.  In  Section  2  we  introduce  the  XL  contract  and  the
related joint survival probability model, considered further. Our main results are stated in
Section 3 and illustrated numerically in Section 4, where we have introduced the copula
approach  to  modelling  dependence  of  consecutive  claim  severities  under  reinsurance.
The  final  Section  5  provides  some concluding remarks  and  indicates  questions  for  fur-
ther research.

2. The XL contract.

We  will  consider  an  insurance  portfolio,  generating  claims  with  inter-occurrence  times
t1, t2, ... ., assumed identically, exponentially distributed r.v.s with parameter l . Denote
by T1 = t1 ,  T2 = t1 + t2 ,  ...  the  sequence  of  random variables  representing  the  consecu-
tive moments of occurrence of the claims. Let Nt = # 8i : Ti § t< , where #  is the number of
elements of the set 8.< .  The claim severities are modeled by the non-negative continuous
r.v.s. W1, W2, ..., Wk, ... , with joint density function yHw1, ..., wkL . It will be convenient
to  introduce  the  random  variables  Y1 = W1 ,  Y2 = W1 + W2, ...  representing  the  partial
sums of consecutive claim severities.

The  r.v.s  W1, W2, ... ,  are  assumed  to  be  independent  of  Nt .  Then,  the  risk  (surplus)
process Rt , at time t, is given by Rt = hHtL - YNt , where hHtL  is a nonnegative, non-decreas-
ing,  real  function,  defined  on  + ,  representing  the  aggregated  premium  income  up  to
time t , to be received for carrying the risk associated with the entire portfolio. The func-
tion  hHtL  may  be  continuous  or  not.  If  hHtL  is  discontinuous  we  will  assume  that
h-1HyL = inf  8z : hHzL ¥ y< .  Clearly,  hHtL  represents  a  rather  general  class  of  functions  and
the  classical  case,  hHtL = u + c t ,  with  initial  reserve u  and premium rate  c ,  is   of  course
included.  We will  assume that  the premium has been determined in  such a way that  the
premium  income  defined  by  the  function  hHtL  adequately  corresponds  to  the  aggregate
claim amount,  generated by the portfolio  up to time t .  For the purpose,  the various pre-
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mium rating principles (see e.g., Gerber, 1979 and Wang, 1995) or other practical rating
techniques can be used.

Without reinsurance, explicit formulae for the probability of non-ruin (survival) PHT > xL
of  the  direct  insurer,  in  a  finite  time  interval  @0, xD, x > 0,  with  the  time  T  of  ruin,
defined as 

(1)T := inf  8t : t > 0, Rt < 0< ,

were derived by Ignatov and Kaishev (2004) and by Kaishev and Dimitrova (2003).

Here,  we will  be  concerned  with the  case  when the direct  insurer  wishes to reinsure  his
portfolio  of  risks by concluding an XL contract  with a  retention  level  M  and a limiting
level L , M ¥ 0, L ¥ M . In other words, the cedent reinsures the part of each claim which
hits the layer m = L - M , i.e., each individual claim Wi  is shared between the two parties
so  that  Wi = Wi

c + Wi
r  i = 1, 2, ...  where  Wi

c  and  Wi
r  denote  the  parts  covered  respec-

tively by the cedent and the reinsurer. Clearly, we can write 

Wi
c = minHWi, M L + maxH0, Wi - LL

and 

Wi
r = minHL - M , maxH0, Wi - M LL . 

Denote by Y1
c = W1

c ,  Y2
c = W1

c + W2
c, ...  and by Y1

r = W1
r ,  Y2

r = W1
r + W2

r, ...  the consecu-
tive partial sums of claims to the cedent and to the reinsurer, respectively. Under our XL
reinsurance model, the total premium income hHtL  is also divided between the two parties
so that  hHtL = hcHtL + hrHtL ,  where  hcHtL ,  hrHtL  are  the  premium incomes of  the  cedent  and
the  reinsurer,  assumed  also  non-negative,  non-decreasing  functions  on  + .  As  a  result,
the  risk process,  Rt ,  can  be represented  as a  superposition of  two risk processes,  that  of
the cedent

(2)Rt
c = hcHtL - YNt

c

and of the reinsurer

(3)Rt
r = hrHtL - YNt

r

i.e., Rt = Rt
c + Rt

r .

There are two alternative optimization problems which may be stated in connection with
such an XL contract. The first is, given M  and m  are fixed, how should then the premium
income  hHtL  be  divided  between  the  two  parties,  so  as  to  optimize  a  certain  criterion
measuring their joint risk or performance. And alternatively, if the total premium income
hHtL  is  divided  in  an  agreed  way  between  the  cedent  and  the  reinsurer,  i.e.,  hcHtL  and
hrHtL = hHtL - hcHtL  are  fixed,  how should the parameters M  and L  of  the XL contract  be
optimally set so as to minimize (maximize) the chosen joint risk or performance criterion.
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3. The probability of joint survival optimality.

In  this  section  we  will  introduce  some risk  measures,  assuming both  the  cedent  and the
reinsurer jointly survive up to time x .

Define the moments, Tc  and Tr ,  of  ruin of correspondingly the cedent  and the reinsurer
as in (1), replacing Rt  with Rt

c  and Rt
r  respectively.  Clearly, the two events HTc > xL  and

HTr > xL ,  of  survival  of  the  cedent  and  the  reinsurer  are  dependent  since  the  two  risk
processes  Rt

c  and  Rt
r  are  dependent  through  the  common  claim  arrivals  and  the  claim

severities Wi , i = 1, 2, ...  as seen from (2) and (3). Hence, as has been proposed in Igna-
tov, Kaishev and Krachunov (2004),  it  is  meaningful  to consider the probability  of joint
survival,  PHTc > x, Tr > xL ,  as  a  measure  of  the  risk  the  two  parties  share  and  jointly
carry.  The  two optimization  problems we have  stated  can  now be  formulated  more pre-
cisely as follows. 

Problem 1. For fixed hHtL , hcHtL , hrHtL  such that hHtL = hcHtL + hrHtL , find

max
L, M

 PHTc > x, Tr > xL  .

Problem 2. For fixed M , L and hHtL , find

max
hcHtL,

hHtL=hcHtL+hrHtL

 PHTc > x, Tr > xL  .

Problems  1  and  2  may  be  given  the  following  interpretation.  In  Problem  1,  the  ceding
company may wish to retain a certain fixed part, hcHtL , of the premium income, hHtL , and
then to find values for M  and L , defining the corresponding optimal portion of the risk it
would need to accept, so as to have maximum chances of joint with the reinsurer survival,
up to  a  finite  time x .  Alternatively,  the  values  M  and L  may be fixed,  according to  the
ceding company's risk aversion and/or according to decisions, driven by negotiations with
the reinsurer or other market conditions, after which the optimal split of hHtL , between the
two parties would need to be defined,  solving Problem 2.  To explore Problems 1 and 2,
next we will derive closed form expressions for the probability PHTc > x, Tr > xL .
Theorem 1. The probability of joint survival of the cedent and the reinsurer up to a finite
time x  under an XL contract with a retention level M  and a limiting level L is

(4)

PHTc > x, Tr > xL =

‰-l x
i

k
jjjjj1 + „

k=1

¶

lk ‡
0

hHxL
‡

0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ... „ w2 „ w1

y

{

zzzzzzzz

where

nè j = minHzè j, xL , zè j = maxHhc
-1Hy j

cL, hr
-1Hy j

rLL , y j
c = ⁄i=1

j wi
c , y j

r = ⁄i=1
j wi

r , j = 1, ..., k ,

wi
c = minHwi, M L + maxH0, wi - LL , wi

r = minHL - M , maxH0, wi - M LL , and
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AkHx ; nè1, ..., nèkL ,  k = 1, 2, ...  are  the  classical  Appell  polynomials  AkHxL  of  degree  k ,
defined by

A0 HxL = 1, Ak
'  HxL = Ak-1 HxL, Ak  HnèkL = 0.

Remark 1. Appell polynomials were introduced by P.E. Appell (1880) and up to a normal-
ization,  contain  many  classical  sequences  of  polynomials,  among  which  the  Bernoulli,
Hermite  and  Laguerre  polynomials.  The  sequence  of  Appell  polynomials
8AkHxL : k = 0, 1, ...<  are alternatively defined by a generating function 

 f HyL ‰x y = ⁄k=0
¶ AkHxL Hyk ê k !L ,

where  f HyL = ⁄k=0
¶ AkH0L Hyk ê k !L ,  H f H0L ∫ 0L .  and  the  values   AkH0L ,  k = 0, 1, ...

uniquely determine 8AkHxL : k = 0, 1, ...< .

Clearly,  Theorem  1  establishes  a  promising  link  of  the  survival  probability
PHTc > x, Tr > xL  to  the  wide  and  important  class  of  Appell  polynomials.  This  link,
worth further exploration, may give new insights into the properties of formula (4), and
in  particular  may  lead  to  a  substantial  improvement  of  its  numerical  efficiency.  For  a
more detailed account on Appell polynomials we refer to Kaz'min (2002).

Proof of Theorem 1. The event of joint survival 8Tc > x, Tr > x<  can be expressed as

 PHTc > x, Tr > xL = ⁄k=0
¶ PHNx = kL PHTc > x, Tr > x » Nx = kL

(5)
8Tc > x, Tr > x< = › j=1

¶ @8Hhc
-1HY j

cL < T jL ‹ Hhr
-1HY j

rL < T jL< ‹ 8x < T j<D
= › j=1

¶ @8maxHhc
-1HY j

cL, hr
-1HY j

rLL < T j< ‹ 8x < T j<D
   

Noting that W = ‹k=0
¶ 8Nx = k< , applying the partition theorem we have

 PHTc > x, Tr > xL = ⁄k=0
¶ PHNx = kL PHTc > x, Tr > x » Nx = kL

(6) = ‚
k=0

¶ Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PHTc > x, Tr > x » 8Tk § x< › 8Tk+1 > x<L

In (6), we have used the fact that the event 8Nx = k< ª 8Tk § x< › 8Tk+1 > x< .

If we now express 8Tc > x, Tr > x<  in (6) using its representation given by (5) we obtain

PHTc > x, Tr > xL = ‚
k=0

¶ Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x 

PH› j=1
¶ @8maxHhc

-1HY j
cL, hr

-1HY j
rLL < T j< ‹ 8x < T j<D » 8Tk § x< › 8Tk+1 > x<L

(7)
= ‚

k=0

¶ Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x 

PHH› j=1
¶ @8maxHhc

-1HY j
cL, hr

-1HY j
rLL < T j< ‹ 8x < T j<DL › 8Tk § x< › 8Tk+1 > x< »

8Tk § x< › 8Tk+1 > x<L
where  in  the  last  equality  we  have  used  that  PHA » BL = PHA › B » BL .  Applying  some
algebraic manipulations on the event in (7) it can be shown that
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(8)
H› j=1

¶ @8maxHhc
-1HY j

cL, hr
-1HY j

rLL < T j< ‹ 8x < T j<DL › 8Tk § x< › 8Tk+1 > x<
= H› j=1

k 8maxHhc
-1HY j

cL, hr
-1HY j

rLL < T j<L › 8Tk § x< › 8Tk+1 > x<
Substituting (8) back in (7) leads to

PHTc > x, Tr > xL
= ‚

k=0

¶ Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PH› j=1

k @8maxHhc
-1HY j

cL, hr
-1HY j

rLL < T j< › 8Tk § x< › 8Tk+1 > x<D »
8Tk § x< › 8Tk+1 > x<L

(9)= ‚
k=0

¶ Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PH› j=1

k 8maxHhc
-1HY j

cL, hr
-1HY j

rLL < T j< » 8Tk § x< › 8Tk+1 > x<L
It is known that (see Karlin and Taylor, 1981)

(10)PHT1 § t1, ..., Tk § tk » 8Tk § x< › 8Tk+1 > x<L = PHTè 1 § t1, ..., Tè k § tkL
where  Tè 1 § ... § Tè k  are  the  order  statistics  of  k  independent,  uniformly  distributed
random variables in the interval H0, xL .  From the independence of the two sequences of
random  variables  Y j

c ,  Y j
r ,  j = 1, 2, ...  and  Tk ,  k = 1, 2, ...  and  applying  (10)  we  can

rewrite (9) as

(11)PHTc > x, Tr > xL = ‚
k=0

¶ Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PH› j=1

k maxHhc
-1HY j

cL, hr
-1HY j

rLL < Tè jL
The random variables T

è
1 § ... § T

è
k  have a joint density (see Karlin and Taylor, 1981)

fTè 1,...,T
è

k
Ht1, ..., tkL = 9 k!ÅÅÅÅÅÅxk

0
 

if 0 § t1 § ... § tk § x
otherwise

hence, introducing the notation

k ª J 0 § w1, ..., 0 § wk

w1 + ... + wk § hHxL N ,

we can express the probability on the right-hand side of (11) as

(12)

PH› j=1
k maxHhc

-1HY j
cL, hr

-1HY j
rLL < Tè jL

= ‡ ∫ ‡
k

yHw1, ..., wkL ‡ ∫ ‡
min@maxHhc

-1Hy1
cL,hr

-1Hy1
r LL,xD<t1<x

...
min@maxHhc

-1Hyk
cL,hr

-1Hyk
r LL,xD<tk<x

t1§...§tk

 k!ÅÅÅÅÅÅxk  „ tk  ∫ „ t1 „ wk  ∫ „ w1

where min@maxHhc
-1Hy j

cL, hr
-1Hy j

rLL, xD , j = 1, 2, ..., k  appear as lower limits of integration
since  maxHhc

-1Hy j
cL, hr

-1Hy j
rLL  can  in  general  exceed  x  for  some  value

y j = y j
c + y j

r = w1
c + ... + w j

c + w1
r + ... + w j

r = w1 + ... + w j ,  j = 1, 2, ..., k .  In  this  case
min@maxHhc

-1Hy j
cL, hr

-1Hy j
rLL, xD = x , i.e., the integral in (11) vanishes as is necessary, since

such trajectories t # y j  cause ruin of at least one of the parties and therefore should not

7 V. Kaishev and D. Dimitrova



contribute  to  the  probability  of  their  joint  survival.  To  simplify  notation,  we  let
nè j = min@zè j, xD , zè j = maxHhc

-1Hy j
cL, hr

-1Hy j
rLL , j = 1, 2, ..., k  and use (12) to rewrite (11) as

 PHTc > x, Tr > xL

= e-l x „
k=0

¶

 Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk!  ‡ ∫ ‡

k

 yHw1, ..., wkL ‡ ∫ ‡
nè1<t1<x

....
nèk<tk<x
t1§...§tk

 k!ÅÅÅÅÅÅxk  „ tk  ∫ „ t1 „ wk  ∫ „ w1

= e-l x „
k=0

¶

 

Hl xLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅk! ‡ ∫ ‡

k

 yHw1, ..., wkL k!ÅÅÅÅÅÅxk ‡
nè1

x
 ‡

max@nè2, t1D

x
 ∫ ‡

max@nèk , tk-1D

x
 „ tk  ∫ „ t2 „ t1 „ wk  ∫ „ w1

(13)= e-l x „
k=0

¶

 lk  ‡ ∫ ‡
k

 yHw1, ..., wkL AkHx ; nè1, ..., nèkL „ wk  ∫ „ w1

where we have set

  AkHx ; nè1, ..., nèkL = ‡
nè1

x

‡
max@nè2, t1D

x
∫ ‡

max@nèk , tk-1D

x
„ tk  ∫ „ t2 „ t1 .

It  can  be  seen directly  that  AkHx ; nè1, ..., nèkL  is  a  polynomial  of  degree k  with  a  coeffi-
cient at the highest degree 1 ê k ! . Moreover, applying similar reasoning as in Theorem 1
of Ignatov and Kaishev (2004) it can be shown that AkHx ; nè1, ..., nèkL , k = 1, 2, ...  are the
classical Appell polynomials. 

The asserted joint survival probability formula now follows, appropriately rewriting the
multiple integral in (13).Ñ

An alternative formula for PHTc > x, Tr > xL  is provided by the following

Theorem 2. The probability of joint survival is

(14)
PHTc > x, Tr > xL = ‰-l x

i
k
jjjjj‚

k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

BlHzè1, ..., zèl-1, xL yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1
y
{
zzzzz

where

BlHzè1, ..., zèl-1, xL = ‚
j=0

l-1 H-lL j b jHzè1, ..., zè jL J‚m=0

l- j-1 Hx lLm
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅm! N ,  with  B0H ÿ L ª 0,  B1H ÿ L = 1,

l  is such that zè1 § ... § zèl-1 § x < zèl ,

b j Hzè1, ..., zè jL = ‚
i=1

j
 H-1L j+i zè j

j-i+1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH j-i+1L!  bi-1 Hzè1, ..., zèi-1L  , with b0 ª 1,
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 zè j  and yHw1, ..., wkL  are defined as in Theorem 1. 

Proof of Theorem 2. The probability  of  survival  of  the cedent  without reinsurance (see
Kaishev and Dimitrova, 2003) is given by

(15)

PHT > xL = ‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

PHT > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ... - wk-1Lä

yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1

where

(16)
PHT > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ... - wk-1L
= ‰-l x BkHz1, ..., zk-1, xL

and z j = h-1Hw1 + ... + w jL , provided that h-1Hw1 + ... + wk-1L § x < h-1Hw1 + ... + wkL .
By analogy with the reasoning in deriving (15) we can write

(17)

PHTc > x, Tr > xL = ‚
k=1

¶

‡
0

hHxL
‡

0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2

‡
hHxL-w1-...-wk-1

¶

PHTc > x, Tr > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ... - wk-1L
yHw1, ..., wkL „ wk  „ wk-1 ... „ w2 „ w1

Following  equality  (10)  of  Ignatov,  Kaishev  and  Krachunov  (2004),  it  is  possible  to
show that 

(18)
PHTc > x, Tr > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ... - wk-1L
= PH› j=1

k-1 8maxHhc
-1Hy j

cL, hr
-1Hy j

rLL § T j< › 8Tk > x<L
From (16) and (18) it can be concluded that

(19)PH› j=1
k-1 8maxHhc

-1Hy j
cL, hr

-1Hy j
rLL § T j< › 8Tk > x<L = ‰-l x BkHzè1, ..., zèk-1, xL

where zè j = maxHhc
-1Hy j

cL, hr
-1Hy j

rLL ,  j = 1, ..., k .  It  is not difficult to see that there should
exist  an  index  1 § l § k ,  such  that  zè1 § ... § zèl-1 § x < zèl  and  since  we  consider  the
events  of  ruin  of  the  cedent  and  the  reinsurer  up  to  time x  only,  hence  we  can  rewrite
(19) as

(20)PH› j=1
k-1 8zè j § T j< › 8Tk > x<L = ‰-l x BlHzè1, ..., zèl-1, xL

Formula (14) now follows from (18), (20) and (17) which completes the proof of Theo-
rem 2.Ñ

The use of formulae (4) and (14) to compute PHTc > x, Tr > xL  is discussed in Section 4
where the case of independent and dependent claim severities are thoroughly explored.
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4. Computational considerations and results.

In this section we demonstrate that using the results of Theorem 1 and 2, one can success-
fully find solutions to Problems 1 and 2, stated in Section 3, and optimally determine the
parameters of  an XL contract.  A quick analysis of  formulae (4) and (14) reveals  that  an
attempt  to  use  them  in  solving  the  optimization   Problems  1  and  2  analytically  is  con-
fronted with considerable difficulties. For example formula (4) requires the maximization
of  a  complex  functional  with  respect  to  the  function  hcHtL ,  with  the  constraint
hHtL = hcHtL + hrHtL , and under the additional assumption of invertibility of hcHtL  and hrHtL .
This is a task which is hardly feasible, at least under the rather general definitions of hHtL ,
hcHtL  and hrHtL  assumed here. For this reason, in what follows we will use (4) and (14) to
solve Problems 1 and 2 numerically.

Formulae  (4)  and  (14)  have  been  implemented  in  Mathematica  in  the  case  of  any  joint
distribution  of  the  original  claims  and  linear  premium  income  function  hHtL = u + c t ,
where u  is the total initial reserve and c  is the total premium rate. Thus, Problems 1 and 2
have  been  solved  with  different  joint  distributions  for  the  claim  amounts  and  different
choices for the rest of the model parameters. In the independent case, results for Exponen-
tial,  Pareto  and Weibull  claim amount  distributions  are  presented  and the  effect  of  their
varying  tail  behavior  on  the  probability  of  joint  survival  is  assessed.  In  order  to  model
dependence between claim severities, copula functions have been successfully used. The
copula  approach  has  allowed us  to  study how the  assumption of  dependence  affects  the
solutions  to  Problems  1  and  2  and  the  probability  of  joint  survival.  For  the  purpose,  a
combination of Rotated Clayton copula with Weibull marginals has been implemented.

In  general,  our  experience  has  shown  that  expression  (4)  is  computationally  more  effi-
cient than (14) since it converges faster with respect to k , i.e., a small number of terms is
required in the summation in order to reach a desired accuracy of the result. The multiple
integration  is  less  computationally  involved  and hence  faster,  since all  limits  of  integra-
tion in (4) are finite whereas in (14) the inner most integral is infinite. However, it should
be noted that the derived expressions for PHTc > x, Tr > xL  are rather general and that in
each particular case, when the input parameters are fixed, both formulae could be simpli-
fied and of course, depending on the software used for the implementation, the computa-
tional efficiency may turn to be in favour of (14).

4.1 Independent claim severities.

Here,  we  have  assumed  that  claim  amounts  are  independent  and  have  three  alternative
distributions:  lighter  tailed  Exponential  and  heavier  tailed  Pareto  and  Weibull  distribu-
tions. The optimization Problems 1 and 2 have been solved in each of these cases and the
effect  of  the  different  tail  behaviour  of  the  claim  distributions  on  the  optimal  solutions
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have  been studied.  Sensitivity  results  with respect  to  the  choice  of  other  model parame-
ters are also presented. 

The solution of the optimization Problem 2 in the case of exponentially distributed claim
severities  with  parameter  a = 1,  Poisson  intensity  l = 1,  finite  time  interval  x = 2  and
hHtL = u + c t ,  with total initial reserve u = 0  and premium rate c = 1.55,  is illustrated in
Fig  1.  For  fixed  combinations  of  values  of  the  levels  M  and  L,  an  optimal  reinsurance
premium  rate,  cr ,  is  found,  which  maximizes  PHTc > x, Tr > xL ,  given  that
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t .  This  is  achieved  by  varying  the  proportion,
hrHtL = cr t ,  of  the  premium  income,  given  to  the  reinsurer  from  1%  to  99%,  i.e.,  cr  is
varied from 0.1 to 1.5  with a step 0.1. In the left panel of Fig. 1 we present results for the
case of an XL contract without a limiting level, i.e. L = ¶ , while the right panel refers to
a retention level M  and a limiting level L = M + 0.5. In both cases, the optimal premium
rate  cr  decreases  when  the  retention  level  M  increases.  This  complies  well  with  the
market  principle  that  a  smaller  reinsurance  premium  should  be  charged  for  a  smaller
proportion  of  the  risk,  taken  by  the  reinsurer.  Comparing  the  two  cases  L = ¶  and
L = M + 0.5, it can be seen that, in the latter case, the optimal solutions for cr  are shifted
to  the  left,  since  there  is  a  fixed  non-zero  layer  m = L - M = 0.5,  covered  by  the  rein-
surer. 

From both panels of Fig. 1 it  can also be seen that each curve has a single global maxi-
mum of the joint survival probability. This suggests that the optimization Problem 2 has a
unique solution, at least for the classical linear hHtL .  The proof of this interesting conjec-
ture is hindered by the complexity of formulae (4) and (14) and in particular of the defini-
tions of nè j , zè j , wi

c , wi
r , and is a subject of current investigation.

0.2 0.4 0.6 0.8 1 1.2 1.4
cr
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PHTc>x,Tr>xL L=∞

1.5
1.25
0.75
0.5
0.25
0.05
M

0.2 0.4 0.6 0.8 1 1.2 1.4
cr

0.15

0.2

0.25

0.3

0.35

0.4

0.45

PHTc>x,Tr>xL L=M+0.5

1.5
1.25
0.75
0.5
0.25
0.05
M

Fig. 1. Solutions to the optimality Problem 2: independent claim severities, ExpH1L  distrib-
uted, l = 1, x = 2, hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t .

Problem 2 has also been solved for different choices of the total initial reserve u  and the
initial  reserves  of  the  cedent,  uc  and  the  reinsurer,  ur .  The  impact  of  different  initial
reserves on PHTc > x, Tr > xL  and hence on the optimal value of cr  is illustrated in the left
panel  of  Fig 2,  for  fixed levels  M = 0.5,  L = ¶  and parameters  as in Fig 1,  i.e.,  Exp(1)
distributed claim severities, l = 1  and x = 2. For this set of parameters, an optimal value,
cr ,  is  found,  which  maximizes  PHTc > x, Tr > xL ,  given  that  hHtL = u + c t ,
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hcHtL = uc + H1.55 - crL t ,  hrHtL = ur + cr t ,  with  u = uc + ur  and
c = cc + cr = H1.55 - crL + cr . Five curves are given in the left panel of Fig 2 which corre-
spond  to  five  different  choices  of  the  pair  of  values  uc ,  ur ,  for  which  the  total  reserve
u = uc + ur  is  correspondingly  equal  to  0.0, 1.0, 0.5, 1.0, 1.0.  There  are  two  effects
which can be observed. First, with the increase of the total reserve u , given uc = ur , (see
curves  corresponding  to  Huc, urL = 8H0, 0L, H0.25, 0.25L, H0.5, 0.5L<),  the  probability  of
joint survival  increases as can be expected. The second effect  is that,  for fixed value of
the total reserve u = 1, the optimal reinsurance premium cr  is lower if uc < ur ,  increases
when  uc = ur ,  and  goes  further  up  if  uc > ur .  Hence,  the  conclusion  is  that,  if  a  direct
insurance company wants to pay less in reinsurance premium and at the same time wants
to  maximize  its  and  the  reinsurer's  chances  of  survival,  the  company  should  seek  for  a
reinsurer with initial reserves higher than its own reserves, which is a practically meaning-
ful business strategy. In the alternative case, uc > ur , the optimal reinsurance premium is
much higher, since given the direct insurance company wants a maximum probability of
joint survival, it has to pay much more in order to compensate the lower level of reserves
kept by the reinsurer. But this clearly is not in favour of the direct insurer and is not what
reinsurance is about. 

In the right panel of Fig 2, we illustrate the impact of the time horizon x  on the probabil-
ity  of  joint  survival  and cr .  As can be seen,  PHTc > x, Tr > xL  decreases  for  longer  time
horizons, which is natural to expect. On the other hand, increasing x  from 0.5  to 3  results
in higher reinsurance premium, whereas further increase of x  does not affect cr . This can
be  explained  with  the  higher  possibility  of  arrival  of  large  claims  to  the  reinsurer  as  x
initially goes up. 

0.2 0.4 0.6 0.8 1 1.2 1.4
cr

0.2

0.3

0.4

0.5

0.6

PHTc>x,Tr>xL

0.25, 0.75
0.75, 0.25
0.50, 0.50
0.25, 0.25
0 , 0
uc , ur

0.2 0.4 0.6 0.8 1 1.2 1.4
cr

0.1
0.2

0.3
0.4
0.5

0.6
0.7

PHTc>x,Tr>xL

4
3
2
1
0.5
x

Fig. 2. Solutions to the optimality Problem 2: independent claim severities, ExpH1L  distrib-
uted,  l = 1,  x = 2,  c = 1.55,  L = ¶ ,  M = 0.5;  Left  panel:  u ¥ 0,  Right  panel:
u = uc = ur = 0, x = 0.5, 1, 2, 3, 4.

The solution of  the optimization Problem 1 has been performed in the case of exponen-
tially  and  Pareto  distributed  claim  severities,  both  with  unit  mean,  l = 1,  x = 2  and
hHtL = 1.55 t . Thus, in Fig. 3 two 3D plots are given, which illustrate the behaviour of the
probability  of  joint  survival  as  a  function  of  M  and  m = L - M  when  the  premium
income is equally shared, i.e. hcHtL = hrHtL  for any t ¥ 0. The left panel of Fig. 3 refers to
the  case  of  exponentially  distributed  claim  amounts,  Wi ,  i = 1, 2, ...  with  mean  and
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variance EHW L = V HW L = 1, whereas the plot in the right panel is for Pareto claims with
EHW L = 1  and  V HW L = 3.  As  seen  from  both  panels  of  Fig.  3,  PHTc > x, Tr > xL  has  a
single global maximum with respect to M  and m .  As with Problem 2, the existence of a
unique  solution  of  Problem  1  can  be  conjectured,  but  the  proof  is  related  with  similar
difficulties.

Solutions of Problem 1 for different choices of cr , i.e., for different proportions in which
the total  premium income is  shared,  are  summarized in  Table  1.  As can be seen,  giving
higher  proportion  of  hHtL  to  the  reinsurer  causes  the  optimal  retention  level,  M ,  to  drop
and the optimal limiting level,  m ,  to increase. The latter  is not surprising as the cedent's
retained  risk  should  decrease  when  the  premium  income,  passed  on  to  the  reinsurer,
increases.

Table 1. Optimal values of M  and m ,  maximizing PHTc > x, Tr > xL  in the case of inde-
pendent  claim  severities,  ExpH1L  distributed,  with  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t .

maxM,m P HTc > x, Tr > xL cr = 0.25 cr = 0.50 cr = 0.775 cr = 1.00 cr = 1.25
M 0.4 0.3 0.3 0.2 0.001
m 0.1 0.3 0.7 1.2 > 1.5

As can also be seen from Fig. 3, although the implemented Exponential and Pareto distri-
butions have different variance and imply lighter and heavier tails of the claim severities,
the two surfaces are very similar and the optimal values of M  and m ,  which  maximize
PHTc > x, Tr > xL  in  each case,  are  very close.  This  is  explained  by the  similarity  in  the
shape of the Exponential and Pareto densities, as can be seen from the left panel of Fig. 4,
since all other model parameters are the same. We have also implemented Weibull distrib-
uted claims, which does not affect the form of the surface as well. It is interesting to note
that the probability of joint survival is higher for Pareto distributed claim amounts, com-
pared with the exponential case, given that other model parameters coincide. The probabil-
ity PHTc > x, Tr > xL  is even higher if the claim size follows Weibull distribution with the
same mean, EHW L = 1, and V HW L = 2.2. An illustration of the latter phenomenon is given
in the right panel of Fig. 4. It can be explained by the fact that the time interval, @0, 2D , is
relatively short and PHTc > x, Tr > xL  is affected most significantly by the distribution of
the smaller but  more probable claims rather  than by the less probable  extreme claims in
the  tail.  This  is  in  compliance  with  the  order  of  the  probabilities  0.955,  0.940,  0.917,
computed  as  PHW § hH2LL = PHW § 3.1L  correspondingly  for  exponentially,  Pareto  and
Weibull distributed claims. The shape of the three densities, given in the left panel of Fig.
4, are also in support of this explanation. Our experience shows that for higher x  the tail
behaviour is of more importance for PHTc > x, Tr > xL  and the order may reverse.
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Fig. 3. Solutions to the optimality Problem 1: independent claim severities, l = 1, x = 2,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t ,  cr = 0.775.  Left  panel  -  exponentially  distributed,
EHW L = V HW L = 1; Right panel - Pareto distributed, EHW L = 1, V HW L = 3.
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Fig.  4.  Left  panel  -  assumed  probability  density  functions  for  the  claim  amounts  Wi ,
i = 1, 2, ...;  Right  panel  -  PHTc > x, Tr > xL  as  a  function  of  the  layer  m ,  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t , cr = 0.775.

The  general  conclusion  based  on  these  examples  is  that  PHTc > x, Tr > xL  is  a  relevant
reinsurance  risk  optimization  criterion,  which  complies  with  some basic  principles  driv-
ing reinsurance risk assessment and pricing decisions.

4.2 Dependent claim severities.

In  what  follows,  we  provide  some  very  interesting  results  for  the  probability  of  joint
non-ruin and the solutions of Problems 1 and 2, assuming dependence between the claim
severities  W1, W2, ...  .  We show how this  dependence  could  be  modelled,  using copula
functions. The effect  on PHTc > x, Tr > xL  of the degree of dependence, modelled by the
underlying copula parameter, and of the choice of the marginals, is also studied.

A difficulty, related to the copula approach is that, in general, a large number of consecu-
tive  claims  may  arrive  at  the  insurance  company  and  modelling  their  joint  distribution
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will  require  highly  multivariate  copulas.  The  curse  of  dimensionality  is  overcome  here
due to the fast convergence of formula (4), for which only the first few terms in the sum-
mation with respect to k  are needed, in order to compute PHTc > x, Tr > xL  with a reason-
able accuracy. This allows us to use up to a five-variate copula in the numerical examples
presented here.

Let  H  denote  the  k -dimensional  distribution  function  of  the  random vector  of  consecu-
tive claim amounts HW1, ..., WkL  with continuous marginals F1, ..., Fk . Then, one can use
the  well-known  Sklar's  theorem  to  represent  H  through  a  k -dimensional  copula
CHu1, ..., ukL ,  0 § u j § 1,  which  depends  on  a  set  of  parameters  q ,  as
HHw1, ..., wkL = CHF1Hw1L, ..., FkHwkLL .  By  changing  the  values  of  q  within  a  specified
range,  one  can  control  the  degree  of  dependence,  in  general,  from  extreme  negative,
through  independence,  to  extreme  positive  dependence.  To  measure  the  dependence  in
the tails of the distributions of two consecutive claims W1  and W2 , one can use the upper
and lower tail dependence coefficients, defined as

lL = limuØ0+ CHu, uL êu

lU = limuØ1- H1 - 2 u + CHu, uLL ê H1 - uL
where  lL œ H0, 1D ,  lU œ H0, 1D .  The  copula  C  has  no  upper  (lower)  tail  dependence  iff
lU = 0  (lL = 0).  For  example,  in  our  context,  lU > 0  would  mean  that  extremely  large
insurance losses are  likely to occur  jointly.  For further  properties  of  copulas and related
dependence  measures  we  refer  to  Joe  (1997).  An  extensive  account  on  some  actuarial
applications of copulas can be found in Frees and Valdez (1998).

It  should  be  noted  that  dependence  between  the  components  of  the  random  vector
HW1, ..., WkL  implies  dependence  between  the  components  of  the  random  vector
HW1

c, ..., Wk
cL  and  also  between  the  components  of  HW1

r, ..., Wk
rL ,  since  Wi = Wi

c + Wi
r .

So,  the  two  risk  processes,  Rt
c  and  Rt

r ,  which  implicitly  define  PHTc > x, Tr > xL ,  also
incorporate  dependent  claims,  namely  HW1

c, ..., Wk
cL  and  HW1

r, ..., Wk
rL .  However,  since

formulae  (4)  and  (14)  involve  the  joint  density  function  yHw1, ..., wkL  of  the  random
vector HW1, ..., WkL , in order to compute PHTc > x, Tr > xL  under dependence, we express
this density through the copula function as

(21)

yHw1, ..., wkL =
∑k CHF1Hw1L, ..., FkHwkLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑w1 ... ∑wk

=
∑k CHu1, ..., ukLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑u1 ... ∑uk
‰
i=1

k ∑ FiHwiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑wi

= cHF1Hw1L, ..., FkHwkLL ‰
i=1

k

fWiHwiL

where cHu1, ..., ukL  is  the  density  of  the  copula  C  and fWiHwiL ,  i = 1, ..., k  are  the  mar-
ginal  density  functions.  As  can  be  seen  from  (21),  the  copula  approach  to  modelling
dependence between claim amounts is very convenient since it separates the dependence
structure,  incorporated into the copula, from the marginals. Thus, one can independently
choose the copula and its parameter(s), and the marginals, and study separately the effect
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of these two choices on PHTc > x, Tr > xL  and on the solutions of the optimality Problems
1  and  2.  For  the  purpose,  we  have  chosen  C  to  be  the  k -dimensional  Rotated  Clayton
copula, CRCl , and F1, ..., Fk  to be identical WeibullHa, bL  marginals.

Clayton  and  Rotated  Clayton  copulas  are  suitable  for  modelling  dependence  between
claim  severities.  To  see  this,  let  us  first  introduce  the  Clayton  copula,  which  is  an
Archimedean copula, with generator fHtL = t-q - 1, q > 0, defined as

CClHu1, ..., uk; qL = H⁄i=1
k ui

-q - k + 1L-1êq ,

where 0 § ui § 1, i = 1, ..., k  and q œ H0, ¶L  is a parameter. Its density is given by

cClHu1, ..., uk; qL = qk GH1êq+kLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅGH1êqL H¤i=1
k ui

-q-1L H⁄i=1
k ui

-q - k + 1L-1êq-k .

As  q Ø 0,  the  Clayton  copula  converges  to  the  product  copula  with  density
cHu1, ..., ukL = 1,  which,  as  seen  from  (21),  corresponds  to  independent  claim  amounts.
The  degree  of  dependence  increases  as  q  increases.  Further  properties  of  the  Clayton
copula and its application in finance can be found in Cherubini et al. (2004).

In the general insurance context, it is of interest to consider the case in which the occur-
rence  of  large  claims  is  highly  correlated  with  the  emergence  of  further  large  claims.
Hence, it is meaningful to use a copula with upper tail dependence. However, the Clayton
copula has lower tail  dependence with coefficient  lL = 2-1êq ,  which makes it  convenient
for modeling dependence in the left  tails of the marginal distributions, i.e.  between very
small claims. A typical example would be the joint occurrence of a large number of small
motor insurance claims caused by a common (catastrophic) event, e.g. hail or bad driving
conditions. 

Based on the Clayton copula, one can model upper tail dependence using the multivariate
Rotated Clayton copula, defined as

(22)CRClHu1, ..., uk; qL = ⁄i=1
k ui - k + 1 + H⁄i=1

k H1 - uiL-q - k + 1L-1êq ,
with  density  cRClHu1, ..., uk; qL = cClH1 - u1, ..., 1 - uk; qL  and  q œ H0, ¶L .  The  value
q = 0   corresponds  to  independence  as  for  CCl .  A  two  dimensional  version  of  (22)  has
been considered by Patton (2004). The Rotated Clayton copula has upper tail dependence
with  coefficient  lU = 2-1êq  and  is  suitable  for  modeling  dependence  between  extreme
insurance  losses.  The  dependence  structure,  defined  by  a  Rotated  Clayton  copula  with
parameter q = 5, is illustrated in the left panel of Fig. 5 through a random sample of 500
simulated  pairs  Hu1, u2L .  In  the  right  panel,  we  give  the  corresponding  simulated  claim
amounts  with  joint  distribution function  HHw1, w2L = CRClHF1Hw1L, F2Hw2L; qL  and identi-
cal  WeibullH1, 1L  marginals.  The presence  of  positive  dependence,  determined by q = 5,
and of upper tail dependence, lU = 2-1ê5 , are clearly visible.
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Fig.  5.  A  random  sample  of  500  simulations  from  a  bivariate  Rotated  Clayton  copula,
with dependence parameter q = 5, marginals F ª WeibullH1, 1L ª ExpH1L .
With  the  increase  of  q ,  the  solution  of  the  optimality  Problem  2  does  not  change,  as
illustrated  in  the  left  panel  of  Fig.  6  for  fixed  Weibull  marginals  with  unit  mean  and
variance. It can also be seen that, for any cr , PHTc > x, Tr > xL  goes up as q  deviates from
zero. This may seem unexpected but it should be mentioned that, as q  increases, not only
the tail  dependence increases but so does the dependence throughout the whole range of
claim amounts. As a result of this, jointly small claims occur with higher probability and
through  the  risk  processes,  Rt

c  and  Rt
r ,  affect  more  significantly  PHTc > x, Tr > xL  than

the occurrence of jointly large claims.
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Fig.  6.  Solutions  to  the  optimality  Problem  2:  dependent  claim  severities,
CRClHFHw1L, ..., FHwkL; qL  distributed,  marginals  F ª WeibullHa, bL ,  l = 1,  x = 1,
hHtL = hcHtL + hrHtL = H1.55 - crL t + cr t , M = 0.25, L = M + 0.5.

The solution of the optimality Problem 2 for Weibull marginals with mean 1 and increas-
ing variance is given in the right panel of Fig. 6. As can be seen, the optimal value for cr

slightly decreases as the variance increases. This is meaningful, since the variance of the
cedent's claims increases with the variance of the original claims more significantly than
that  of  the  reinsurer  and  hence,  the  reinsurance  premium  should  decrease.  The  latter
effect  is  due  to  the  fact  that  the  reinsurer's  liability  is  limited within  the  layer  m .  It  can
also be seen from the right panel of Fig. 6 that PHTc > x, Tr > xL  increases as the variance
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increases  which  is  a  phenomenon,  similar  to  the  one  illustrated  in  Fig.  4  and  can  be
explained applying similar reasoning.

5. Conclusions and comments.

In this paper, we have demonstrated that the optimal retention and limiting levels and the
optimal sharing of the premium income, obtained by maximizing the probability of joint
survival of the cedent and the reinsurer in an excess of loss contract, assuming continuous
claim severities, are sensible. It will be instructive to test this joint optimality criterion on
real claim data. 

An  interesting  finding  is  the  presence  of  unique  solutions  to  Problems  1  and  2  in  the
examples of Section 4.1. Proofs of such conjectures are a subject of ongoing research. 

We have also demonstrated that formulae (4) and (14), through their reasonable general-
ity, conveniently allow to implement copulas in modelling dependence between consecu-
tive claim severities. These are only first steps in this important new direction of research
and a variety of open problems arrises.  For example, it  is interesting to explore how the
solutions  of  Problems  1  and  2,  and  also  PHTc > x, Tr > xL ,  will  be  affected  by  different
dependence  structures.  In  particular,  will  the  upper  and  lower  Fréchet  bounds  lead  to
upper and lower bounds for PHTc > x, Tr > xL?
Finally,  viewing  PHTc > x, Tr > xL  as  a  risk  measure,  one  could  define  a  performance
measure based on the expected profits, at the end of the time horizon x , of the insurer and
the  reinsurer  and  consider  an  optimality  criterion  which  combines  these  measures  and
could  be  used  to  optimally  set  the  parameters  of  a  reinsurance  contract.  The  latter  is  a
subject of future investigation.
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