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Abstract

Language universals have long been attributed to an innate Universal Grammar. An alterna-
tive explanation states that linguistic universals emerged independently in every language
in response to shared cognitive or perceptual biases. A computational model has recently
shown how this could be the case, focusing on the paradigmatic example of the universal
properties of colour naming patterns, and producing results in quantitative agreement with
the experimental data. Here we investigate the role of an individual perceptual bias in the
framework of the model. We study how, and to what extent, the structure of the bias influ-
ences the corresponding linguistic universal patterns. We show that the cultural history of a
group of speakers introduces population-specific constraints that act against the pressure
for uniformity arising from the individual bias, and we clarify the interplay between these
two forces.

Introduction
Language universals and colour naming

Different languages share a collection of structural properties, which are accordingly said to be
universal[1]. The origin and nature of this universality have been debated for decades in a dis-
pute that is still far from being settled [2, 3]. The classical view assumes that language learning
requires innate language-specific knowledge [4, 5]. Every individual is endowed with a set of
grammatical principles, defining a Universal Grammar, that are consequently found to be
shared across all human languages. This view has however been questioned in various ways
(see, for example, [6]), and different computational approaches have shown that the hypothesis
of a language-specific genetic endowment would result in a series of paradoxes [7], while cul-
tural transmission introduces informational bottlenecks that favour the emergence of regulari-
ties [8, 9]. A systematic analysis has also shed new light on the very concept of universality
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[10]. Language universals must be intended in a statistical sense, rather than as necessary fea-
tures of all human languages [6, 10].

All of these more recent accounts, although heterogenous in other respects, agree that the
observed cross-linguistic regularities emerged independently in every language in response to
universal communicative, cognitive, or perceptual biases that are not specific to language [11].
However, several issues remain open. Evans and Levinson [10] have recently listed some of the
more urgent questions, among which are: What are the biases responsible for a given observed
regularity? How do they generate a structure? What is the relation between the strength of a
bias and the amount of cross-linguistic variability or universality? To this list we would add a
question which is to us as urgent as the others: what is the origin of cross-linguistic variability
[12]? In other words, how effective is the specific history of a language in shaping specific, non
universal properties?

Answering these questions is hard, but focusing on simple aspects of language has provided
important insights. This is why colour categorisation has captured a great deal of attention
over the last few decades. As observed in the World Color Survey (WCS) [13, 14], different
groups of individuals develop different colour naming patterns, but some universal properties
can be identified by a statistical analysis over a large number of populations [15]. Furthermore,
it appears that basic colour names enter a language in a relatively fixed order [13]. In general,
the universality of colour naming is fully recognised as a genuine linguistic universal [11, 16-
21], and has been the focus of many research efforts. In particular, several computational mod-
els have contributed to shedding light on the different theoretical hypotheses put forward in
this context [22-33]. Even though most of these efforts have been devoted to modelling the
emergence of shared colour categorisation patterns in a single population of individuals, more
recent contributions have also addressed the issue of universality [24, 30, 31, 34].

The Category Game model

Here, we focus on the Category Game model [27], describing how a group of agents manages
to establish a shared set of linguistic categories when faced with a continuous aspect of the en-
vironment, such as the hue channel of the colour spectrum. According to the standard ap-
proach of language games [35, 36], a population of agents can establish a shared category
system through pairwise linguistic interactions alone. In every conversation one of the two
agents tries to direct the attention of the other towards a specific object out of those that consti-
tute the scene they are both facing. Depending on the success (or failure) of this operation both
agents modify their internal state eventually leading to a global consensus. The model can be
informed with a human psychophysiological parameter, namely the Just Noticeable Difference
(JND), defining the minimum distance at which two stimuli from the same scene can be dis-
criminated as a function of their wavelength [37, 38]. If the individuals are endowed with the
human JND function, the statistical properties of the emerging categorisation pattern turn out
to quantitatively match those observed in the World Color Survey data [30], and the empirical-
ly observed colour hierarchy is reproduced [31].

The agreement between the outcome of the model and experimental data corroborates the
hypothesis according to which weak perceptual or cognitive biases can be responsible for the
emergence of linguistic properties shared across independent languages [6, 10, 11]. However,
in the model the bias does not constrain the structure of the shared categorisation pattern in a
deterministic way. In fact, two forces shape the naming structure of a single population. Cultur-
al history defines arbitrary consensus patterns that, once they have emerged, remain as frozen
accidents and affect the further evolution of the language [39, 40], while the perceptual bias
tends to prefer some patterns over others. At the level of a single population it is not possible to
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predict which force will prevail and to what extent. Statistically, however, it is possible to recov-
er the signature of the bias.

Here, we investigate the role of the individual bias. We clarify, in the framework of the
model, what a “weak” bias is, how it works, and how it affects the cultural history of a linguistic
pattern. To do so we exploit the flexibility offered by numerical simulations in two ways. First,
we manipulate the nature of the bias, considering artificial JND functions, and comparing the
impact they have on the emerging categorisation patters. We find that the human JND belongs
to a class of special functions that allow for a good agreement with the experimental data, and
that this agreement is by no means assured by any arbitrary JND. Then, we analyse in detail
what “weak” bias means by looking at the variability of the observed patterns. In particular, we
study the cross-linguistic fluctuations of the categories which allow us to estimate the relative
strength of cultural and cognitive or perceptual pressures in the framework of the model. We
show that single languages can be driven far from universality by their own historical evolution,
even though the vast majority of languages share, to some extent, universal properties. The pe-
culiar nature of such fluctuations (characterised by fat tails, i.e., over-populated extreme
events) suggests a relevant role for history-dependent correlations [40], which—in a sense—
should be considered as a kind of cultural pressure.

Related work

The role of weak biases has been investigated also in relation to their impact on cultural trans-
mission [41]. In particular, Kirby et al. [8] have investigated how a biological bias can translate
into universal linguistic properties in the context of the Iterated Learning framework [42], as-
suming that learners apply the principles of Bayesian inference [43]. The central result is that
cultural transmission can magnify weak biases into strong universals, while strong biases could
be shielded by transmission bottleneck, i.e., the limited amount of linguistic examples from
which each speaker must learn the language. In the same framework, [9] showed that linguistic
structure can emerge when language learners use learning algorithms only slightly biased to-
wards structured languages. As we mentioned above, and will see in the remainder of the
paper, our work nicely complements these results by showing that the history of each language
can introduce non-biological constraints as further biases shaping the language itself. While
the Iterated Learning approach sheds light on the interplay between biology and cultural trans-
mission in a formal way, we tackle, from a different perspective, the relationship between biolo-
gy and cultural evolution.

Another interesting result concerns a numerical experiment by Regier et al [44]. Here the
hypothesis that colour naming represents optimal partitions of the colour space [45] is tested
through the definition of a measure of “well-formedness” of the linguistic categories for colour.
Optimal partitions of colour space are those that maximise this well-formedness, and the au-
thors find that artificially generated colour-naming schemes that maximise this quantity in the
full CIEL*a*b space resemble the colour naming scheme of some of the world’s languages, even
though “many languages” are not “very similar” to the hypothetically optimal model configura-
tions. A second result is that given the colour naming scheme of any language, distortions away
from that pattern often result in lower well-formedness. While this approach does not explain
the observed number of categories, which is a parameter to be fixed before performing the anal-
ysis, it provides an interesting perspective on colour categorisation patterns. In particular, as
the authors suggest, the fact that optimality does not account for all of the observed languages
could be the result of cultural forces pushing languages far from the optimal partition. From
this perspective, the Category Game helps to substantiate this argument by showing how cul-
ture and a universally shared parameter (here the candidate would be optimality) can interact.
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More recently, Xu et al. have shown that cultural transmission produces schemes of colour
categorisation similar to those observed in the WCS in a laboratory experiment in which chain
of individuals simulated the Iterated Learning scheme with a pre-determined number of terms
[34]. In particular, the authors borrow tools from information theory to show a significant
match between their experiments and the WCS data. Also in this case, we believe that the Cate-
gory Game represents a valuable complementary approach (i) offering a possible mechanism
determining the cultural evolution of the small number of colour names observed in all the lan-
guages of the WCS, and (ii) suggesting with quantitative evidence that the underlying perceptu-
al bias, magnified by cultural transmission in the Xu et al. experiment [34], could in fact be the
human JND function.

Finally, among the different computational models set forth to study colour categorisation
[22-33], it is important to mention the one introduced in [24], which replicates the frequency
of colour terms observed in the WCS by adopting an evolutionary perspective, along with a
Bayesian scheme of term acquisition, and dealing with a one-dimensional colour space relative
to hue dimension (as the Category Game does). In [24] the hue space is discrete, featuring 40
possible hue values, and the model assumes (i) that the universal foci are predefined and un-
evenly spaced in the colour space and (ii) that colour terms denote a contiguous range of col-
ours. In the Category Game, on the contrary, the hue space is continuous and the two
hypotheses above are not necessary. In particular, the existence of universal foci is a byproduct
of the fact that the individuals are endowed with the human JND function, while the fact that
colour names refer to contiguous frequencies is an emerging property of the dynamics [27].

Considered together, the two models of [24] and [27] indicate that at least some properties
of the WCS data can be accounted for by considering the hue channel alone. Specifically, this is
true for basic colour terms, while it might not be the case for the naming of composite or de-
rived colours [46]. Interestingly, the crucial role played by hue has recently found a biological
rationalisation in the neurological study of primate vision. According to Xiao et al., the fact
that the non-random properties of colour-naming patterns can be accounted for by the wave-
length JND, as shown by [30], implies a link between the universal constraints and the func-
tional characteristics of the retinogeniculate pathway [47]. And in fact, the study carried on by
the same authors establishes a direct link between a universal constraint on colour naming,
namely the fault line close to the “warm”-“cold” colour distinction, and the cone-specific infor-
mation that is represented in the primate early visual system, specifically the L- versus M-cone
contrast [47].

The Category Game has in fact been extended to more dimensions in order to describe the
evolution from a mostly brightness-based to a mostly hue-based colour term system compara-
ble to what happened during the Middle English period in response to the rise of dyeing and
textile manufacturing [48]. The 2D model is obviously more complex and requires further
specifications of the rules determining the individual categorisation process. The outcome is
richer than its one-dimensional counterpart, but the unavoidable consequence is that it is less
transparent to interpretation. Since our aim here is to clarify the issue of the interplay between
a cognitive or perceptual bias and the universality properties of the generated languages, and
that the latter happens to appear already in the 1D model, we stick to the simplest case (see
[49] for a deeper discussion on why choosing simplicity when confronted with such a choice).

Materials and Methods

The essential features of the Category Game model are:

1. It considers the categorisation of a continuum perceptual channel [27];
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2. It generates categorisation patterns whose statistical properties are in quantitative agree-
ment with the ones observed in the WCS data [30];

3. It reproduces the hierarchy of colour terms [31].

In this section we briefly recall the model definition and some previous results.

The model

The Category Game involves a population of N artificial agents. Starting from scratch and
without any pre-defined colour categories, the model dynamically leads, through a sequence of
pair-wise interactions (games), to the emergence of a highly shared set of linguistic categories
of the visible light spectrum. The parameters of the model are the population size N and the
JND function.

For the sake of simplicity and without loss of generality (see also [48]), colour perception is
reduced to a single analogical continuous perceptual channel, each light stimulus being a real
number in the interval [0, 1), which represents a rescaled wavelength. A categorisation pattern
is identified with a partition of the interval [0, 1) in sub-intervals, or perceptual categories. Indi-
viduals have dynamical inventories of form-meaning associations linking perceptual categories
with their linguistic counterparts, basic colour terms, and these inventories evolve through ele-
mentary language games. At each time step, two players (a speaker and a hearer) are randomly
selected from the population and a scene of M > 1 stimuli is presented. Two stimuli cannot ap-
pear at a distance smaller than JND(x) where x is the value of one of the two. This is the way in
which the JND is implemented in the model. On the basis of the presented stimuli, the speaker
discriminates the scene, refining if necessary its perceptual categorisation, and utters the colour
term associated with one of the stimuli. The hearer tries to guess the named stimulus, and
based on their success or failure, both individuals rearrange their form-meaning inventories.
New colour terms are invented every time a new category is created for the purpose of discrimi-
nation, and are spread through the population in successive games. A detailed description of
the model is presented in the Appendix.

The dynamics proceeds as follows [27]. At the beginning all individuals have only the per-
ceptual category [0, 1) with no associated name. During the first phase of the evolution, the
pressure for discrimination makes the number of perceptual categories increase, resulting in
widespread synonymy due to the many different words used by different agents for similar cat-
egories. This kind of synonymy reaches a peak and then dies out, in a similar way as in the
Naming Game [36, 50]. When on average only one word is shared by the whole population for
each perceptual category, a second phase of the evolution starts. During this phase, words ex-
pand their dominion across adjacent perceptual categories, merging several perceptual catego-
ries giving rise to a new type of categories, namely the “linguistic categories”. The structure of
the linguistic categories evolves through a domain growth process, known in statistical physics
as coarsening [51]. Their number is progressively reduced till the system undergoes a dynam-
ical arrest, featuring a slowing down of the domain growth, along much the same lines as the
physical processes by which supercooled liquids approach the glass transition [52].

In this long-living, almost stable, phase, usually after 10* games per player, the linguistic
categorisation patterns of the individuals overlap with each other to an extent ranging between
90% and 100%. The success rate and the similarity of category patterns across different agents
remain stable for a time of ~ 10° games per player, and this pattern is considered as the final
categorisation pattern generated by the model, to be compared with human colour categories
(see below). Note that, at the level of the Category Game, categories can be equivalently de-
scribed in terms of boundaries or prototypes. The shared pattern in the long stable phase
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between 10* and 10° games per player is the main subject of the experiment described in the
following section. As already observed in [27] the number of linguistic colour categories ob-
served in this phase is of the order of 15+10, as in natural languages, even though discrimina-
tion allows for the existence of hundreds of categories.

Comparison with real-world data

A large amount of data on colour categorisation was gathered in the World Color Survey [13,
15], in which individuals belonging to different cultures had to name a set of colours. In this
section, we review how the Category Game model has been used to reproduce some of the
most important features of the empirical data.

The fundamental source of experimental data on colour naming systems comes from the
World Colour Survey. P. Kay and B. Berlin [13] ran a first survey on 20 languages in 1969.
From 1976 to 1980, the enlarged World Color Survey was conducted by the same researchers
along with W. Merrifield [53] and the data have been publicly available since 2003 on the web-
site http://www.icsi.berkeley.edu/wcs. These data concern the basic colour categories in 110
languages without written forms and spoken in small-scale, non-industrialised societies. On
average, 24 native speakers of each language were interviewed. Each informant had to name
each of 330 colour chips produced by the Munsell Color Company that represent 40 gradations
of hue and maximal saturation, plus 10 neutral colour chips (black-gray-white) at 10 levels of
value. The chips were presented in a predefined, fixed random order, to the informant who had
to tag each of them with a “basic colour term” in her language (for more details see [13]).

After two decades of intense debate [19], Kay and Regier [15] performed a quantitative anal-
ysis proving that the colour naming systems obtained in different cultures and language are in
fact not random. Through a suitable transformation, they identified the most representative
chip for each colour name in each language and projected it into a suitable metric colour space
(namely, the CIEL*a*b* colour space). To investigate whether these points are more clustered
across languages than would be expected by chance, they defined a dispersion measure on this
set of languages Sy

D, = Z Zminc*el*distance(c, ), (1)

LI*eSy cel

where [ and I* are two different languages, ¢ and ¢* are two basic colour terms respectively
from these two languages, and distance(c, c*) is the distance between the points in colour space
in which the colours are represented. To give a meaning to the measured dispersion D, Kay
and Regier created “new” datasets S; (i = 1, 2, .., 1000) obtained through random rotations of
the original set Sy, and measured the dispersion of each new set Dg. The human dispersion ap-
pears to be distinct from the histogram of the “random” dispersions with a probability larger
than 99.9%. As shown in Fig. 3A of [15], the average dispersion of the random datasets, D, ,tras
is 1.14 times larger than the dispersion of human languages. Thus, human languages are more
clustered, i.e., less dispersed, than their random counterparts, confirming the existence of some
kind of universality.

Another important finding concerning the World Colour Survey is the existence of a hierar-
chy of basic colour names that were adopted by individual cultures in a relatively fixed order
[13]. Thus, basic colour terms can be organised into a hierarchy around the focal colours black,
white (where black and white usually map meaning close to the general panchromatic English
terms dark and light or dull and brilliant rather than equivalent to the specific achromatic
terms black and white), red, green, yellow, and blue always appearing in this order across cul-
tures in such a way that if a culture has, for example a word for red, it also has a name for black
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Fig 1. The human Just Noticeable Difference (JND) function describes the wavelength change in a monochromatic stimulus needed to elicit a
particular JND in the hue space. Both as a function of the wavelength of the incident light (measured in nanometers) and on the rescaled interval [0, 1). For
convenience we display also the spectrum of the visible light. For the purpose of the Category Game we rescale the monochromatic stimulus in visible
spectrum (measured in nanometers) in the range [0, 1) for the Topic x. In the same way the JND function (in nanometers in the left y-axis) is rescaled into a
JND(x) function (right y-axis).

doi:10.1371/journal.pone.0125019.g001

and white (but not vice-versa), if it has a name for green it also has a name for red (but not
vice-versa) etc.

The Numerical World Color Survey. The core of the analysis described above is the com-
parison of the clustering properties of a set of true human languages against the ones exhibited
by a certain number of randomised sets. In replicating the experiment it is therefore necessary
to obtain two sets of synthetic data, one of which must have some human ingredient in its gen-
eration. The idea put forth in [30] is to act on the JND function. Human beings are endowed
with a JND for the hue that is a function of the wavelength of the incident light (see Fig 1). This
is the only parameter of the model encoding the finite resolution power of perception, or equiv-
alently the human Just Noticeable Difference.

Starting from the human JND, different artificial sets can be created:

o “Human” categorisation patterns are obtained from populations whose individuals are en-
dowed with the rescaled human JND;
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@’PLOS ‘ ONE

Individual Biases, Cultural Evolution and Language Universals

o Neutral categorisation patterns are obtained from populations in which the individuals have
constant JND (JND = 0.0143), which is the average value of the human JND (as it is projected
on the [0, 1) interval).

In analogy to the WCS experiment, the randomness hypothesis in the NWCS for the neutral
test-cases is supported by symmetry arguments: in neutral simulations there is no breakdown
of translational symmetry in the colour space, which is the main bias in

the“human” simulations.

Thus, the difference between “human” and neutral data originates from the perceptual ar-
chitecture of the individuals of the corresponding populations. A collection of “human” indi-
viduals form a “human” population, and will produce a corresponding “human” categorisation
pattern. In a hierarchical fashion, finally, a collection of populations is called a world, which in
[30] is formed either by all “human” or by all non-“human” populations. For each world, the
value of the dispersion D, defined in Eq (1), is calculated, in order to quantify the amount of
dispersion of the languages (or categorisation patterns) belonging to it. In the actual WCS
there is of course only one human World (i.e., the collection of 110 experimental languages),
while in [30] several (i.e., 1500) worlds were generated to gather statistics both for the “human”
and non-“human” cases.

The main results of the NWCS is that the Category Game, informed with the human JDN
(x) curve, produces a class of “worlds” featuring a dispersion lower than and well distinct from
that of the class of “worlds” endowed with a non-human, i.e., uniform, JND(x). Moreover, the
ratio observed in the NWCS between the average dispersion of the “neutral worlds” and the av-
erage dispersion of the “human worlds” is D,.c,.srai/ Dhyman ~ 1.14, very similar to the one ob-
served between the randomised datasets and the original experimental dataset in the WCS.
Crucially, these findings are robust against changes in such parameters as the population size
N, the distribution of the stimuli, the number of objects in a scene M, and the time of measure-
ment (as long as measures are taken in the temporal region in which a categorisation pattern
exists) [30].

It is worth noting that often the outcome of a multi-agent model is employed to test the via-
bility of theoretical hypotheses at a more abstract level [49]. In this case, the results of the
NWCS compare with WCS data not only from a qualitative point of view, but also quantita-
tively. Moreover, the very design of the model suggests a possible mechanisms lying at the
roots of the observed universality, previously formulated on the basis of theoretical analysis
(see, for instance [6, 11]). Human beings share certain perceptual biases that, even though not
so strong as to deterministically affect the outcome of the categorisation process, are capable of
influencing category patterns. However, this influence can be made evident only through a sta-
tistical analysis performed over a large number of languages, since any two (or few) languages
could provide a misleading signal, either in the direction of strong universality or on the con-
trary of a total lack of shared features.

Reproducing the hierarchy of colour names. To address the problem of the origin of a hi-
erarchy of colours the Category Game has been generalised to allow for the emergence of a se-
ries of shared linguistic layers each of which could guarantee communicative success in
progressively more complex tasks [31]. In the generalised version a higher and more refined
linguistic layer is accessed by the agents only if in a game both the topic and the object have the
same name and thus, there is a ‘failure’ to differentiate between the two, possibly resulting in a
failure in communication, referred as “failure with name”. While the first layer of linguistic cat-
egories (Level 0, the one present also in the original Category Game) can be likened to the
emergence of primary colour names, the successive layers (Levels 1, 2, . . .) might be linked to
the emergence of complex colour names when the knowledge of the primary colour names is
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not enough to achieve a reasonable communicative success (one can think of a linguistic com-
munity comprising specialised individuals, for instance painters, textile and cosmetic manufac-
turers [54]). Even though a detailed discussion of this generalisation of the Category Game is
out of the scope of this paper (we refer for this to [31]), it is interesting to summarise the

main results.

A first observation concerns the frequency of access to higher levels of linguistic categorisa-
tion as a function of the local value of the JND. It turns out that the agents need to access the
higher level early in regions (in the hue space) corresponding to high values of the JND, while
they access it quite late in regions corresponding to low values of the JND. This indicates that
an agreement at Level 0 is reached faster in regions with high values of the JND resulting in
more cases of “failure with name” in these regions, thereby, forcing the agents to access Level 1.
Starting from this observation it is interesting to compute the time needed to get consensus in
different regions of the hue space corresponding to different values of the JND. It turns out
that the emergence of consensus occurs first in regions corresponding to high values of the
JND while it occurs last in regions corresponding to very low JND. Strikingly, if the regions are
arranged according to the time to reach a desired level of consensus, then they get organised
into a hierarchy with [red, (magenta)-red], [violet], [green/yellow], [blue], [orange] and [cyan]
(or [cyan] and [orange] as is usually observed for secondary basic colour names) appearing in
this order. The names on which faster agreement is reached turn out to be the basic colour
names that first emerge in a population, in excellent quantitative agreement with the empirical
observations of the World Colour Survey. While we will not use the generalised model in this
paper, this finding confirms the validity of the Category Game framework and and its ability to
compare to and reproduce the empirical data of the WCS.

Results

In this section we investigate the role of the perceptual bias. First, we check to what extent the
very good agreement between the outcome of the model and the WCS data can be related to
the specific structure of the human JND. We show that different instantiations of the JND bias
significantly alter the agreement between simulations and true data. This result rules out the
possible criticism that any kind of bias would lead to the same kind of universality in

the model.

Then, we compare the categorisations of different simulated populations, and we measure
the dispersion of their colour naming patterns in order to study the interplay between the bias
and the stochasticity introduced by the underlying cultural process. We show that the stochas-
tic cultural process can generate shared category patterns that affect the ensuing evolution, ef-
fectively competing with the cross-cultural ordering tendency of the bias. This explain why
different populations can present significantly different categorisation patterns even when all
individuals share the same JND function. We argue that our results allow us to better under-
stand what a “weak” bias is, and to what extent it may affect the emergence of the universal
properties of language.

Artificial JNDs

Only two JND functions have been tested in previous works, namely the human and the flat
uniform JNDs, in order to contrast the naturalistic case with an unbiased neutral one. Here, we
exploit the opportunity offered by numerical simulations to test different, artificial, JNDs. The
aim of this new experiment is to understand whether the agreement with data is related to the
specific shape of the human JND or rather if it can be achieved, in the framework of the model,
with any JND. Of course, any bijettive function defined in [0, 1) could play the role of a JND,
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Fig 2. Artificial JNDs. Each panel depicts one of the artificial JNDs used in the experiments (continuous lines). The empirical fit of the human JND (dashed
line, all panels) is obtained according to the expression JND(x) = ¢ + c,c0s(ax + C3) + C4(x — 0.5)2, where ¢, C», C3, C4 and a are fitting constants (case a). By
constant increases of the a parameter one finds increasingly irregular artificial JNDs (8, y and 0). The last two panels present a Gauss-like JND (¢), and a
reflection of the JND around the average value (with a further prescription avoiding negative values of the JND) ().

doi:10.1371/journal.pone.0125019.9002

and a systematic exploration is therefore unfeasible, nor would it be useful. Rather, we start
from the human JND, fit it empirically, and then modify the fitted function so as to progres-
sively diverge from the original one. In particular, we insert local extreme points (minima and
maxima) to increase the roughness of the JND. Furthermore, we consider also a Gauss-shaped
JND as well as an inverted human JND. Fig 2 sketches the adopted functions. The key quantity
studied here is, again, the dispersion D defined in Eq (1) among languages, which is the natural
measurement (complementary) of the degree of similarity, as already discussed in the literature
[15].

Fig 3 shows the outcome of the numerical experiments run with several artificial JNDs. It is
clear that the human JND, along with slight variations of it, performs well, while more irregular
functions (obtained according to the expression JND(x) = ¢; + ccos(ax + ¢3) + cu(x — 0.5)%
where ¢y, ¢,, ¢3, ¢4 and a are fitting constants) weaken the agreement with the empirical data
(Cases 3, y and 6 are obtained by constant increases of the a parameter). The Gaussian-like
function (case €) and the inverse JND (case (), perform worse than the human JND even
thought not dramatically badly. It is worth stressing that the relative error between the results
obtained with the simulated JND and the experimental one of [15] (e = |sim — exp|/exp) is plot-
ted in logarithmic scale (Fig 3, bottom) and that an error below e = 10% can very well be con-
sidered as noticeably small given the simplicity of the Category Game model.
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Fig 3. Numerical World Color Survey with artificial JNDs. Top: the dispersion of the JND case, as defined in Eq 1, normalised by the neutral one obtained
with a flat JND is plotted for populations of size N = 100. The horizontal line indicates the experimental value 1.14 obtained by the analysis of WCS data in
[15]. Bottom: the relative error e(%) between the average dispersions and the experimental result, e = |[sim — exp|/exp is plotted (in %). This measure
quantifies the distance of the dots from the horizontal line in the Top panel. Different JNDs are named after Fig 2. Vertical bars refer to the variation of values
in the late stage of the simulation, in the range 1.5 x 10° — 2 x 10° games per agent.

doi:10.1371/journal.pone.0125019.9003

Overall, smooth JNDs produce a weaker clustering of the colour naming patterns across dif-
ferent populations, and vice versa rough JNDs force a greater uniformity. The amount of uni-
versality observed in a set of languages depends therefore (also) on a specific property of the
individual bias. Speculatively, this result suggests that, had the human JND been less smooth,
we would have observed a greater regularity in colour naming patterns across different lan-
guages. It is also important to highlight that the human JND happens to produce a very good
agreement with experimental data, and this is not a trivial finding, since different JNDs can per-
form much worse. Said in other words, the model is in fact sensitive to the shape of the JND,
and the human JND happens to produce a small discrepancy between the simulations and the
WCS data, as shown in Fig 3.

Departures from universality

In the previous section we focused on the question: how sensitive is the result of our model to
the particular form of JND curve? It turned out that the form of the JND function matters, i.e.,
choices different from the “human” one do not agree, in statistical terms (clustering of lan-
guages), with the empirical WCS data. However we cannot underestimate the dynamical and
stochastic nature of our model: indeed, it does not simply optimise some sort of energy land-
scape associated to the external constraint (e.g. the JND curve). On the contrary, it goes
through a sequence of trials, errors, and successes that are not easily forgotten and affect the
subsequent evolution of the category system, as pointed out by a recent study based on time-
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dependent statistical correlation functions [40]. Such a history-dependent “cultural” process
leads to a final state not necessarily optimal with respect to the JND function: for this reason
we consider the JND to be a weak bias on category formation, as it is not sufficient to determine
the category pattern. Let us now address this problem in a quantitative way, focusing on the
structure of categories, as represented by their centroids.

Our first aim is to verify a correlation between the average pattern of categories and the
JND curve. We simulated 600 independent populations each with N = 200 agents. All the simu-
lations were stopped at 10° games per agent, when a quasi-stationary state with high communi-
cative success has been reached. For each population j € [1, 600], we identified the m;
categories shared by the N agents: their centroids are averaged across the agents, giving rise to
the population category pattern s; = {x, %), .0y x{;lj} where x] € (0, 1) is the average centroid of
the i-th category of the j-th population. Then we collected together in a single set s all the posi-
tions x} (with i € [1, m;] and j € [1, 600]) of centroids from all categories of all populations. Fi-
nally we divided the perceptual space, i.e. the segment [0, 1] into 50 bins and count how many
centroid’s positions fall in each bin, producing the category histogram. This histogram, nor-
malised in order to give total area 1, is shown in the main graph of Fig 4. We consider such a

3 T T | T I T T

-- 1/JND
— JND-biased centroid histogram -

— unbiased centroid histogram ]

<

e 0o 0 © 0 000 O O Qk\‘
Lo | typical pttern with 14 categories
0.2 04 0.6 0.8 1
X (centroid position)

Fig 4. Numerical World Color Survey with human and neutral JNDs: structure of categories. The two solid curves represent the histograms of position
of category-centroids obtained in simulations with the human (black curve) and neutral JND (blue curve). As a reference, the inverse of the human JND,
rescaled by a constant factor, is displayed (red dashed curve). In the central region strong correlation is seen between the centroid distribution from “human-
like” simulations and the inverse of the human JND, while the outcome of unbiased simulations is flat in the same region. Strong oscillations near the two
extrema (0 and 1) are appreciated in both models, typical of “hard boundaries”. The solid circles displayed at the bottom of the graph represent the “average
pattern” of the ~ 150 populations which display 14 categories at the end of “human-like” simulations.

doi:10.1371/journal.pone.0125019.9004
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histogram, also called distribution in the following, as a good estimate of the probability of find-
ing a category centroid in the Category Game informed with a given JND curve. The black
curve is the distribution of centroid positions in populations simulated with the human JND,
the blue one is obtained with a neutral (flat) JND. The red dashed curve is the inverse of the
human JND curve, rescaled by a constant factor (for the purpose of displaying it on the same
scale). We observe that—in the central region ~ [0.2, 0.8] of the light spectra—a correlation
exists between the probability of finding a centroid and the inverse of the JND curve. Centroids
are more easily found where the JND is smaller, i.e., where the perceptual resolution power of
agents is higher. Interestingly, large oscillations appear near the two extremes (0 and 1) in both
human and neutral simulations. Such oscillations signal the presence of hard boundaries: in-
deed no centroids can appear too close to 1 or 0 (precisely at distance smaller than the JND in
the extrema, which is ~ 0.02 for humans and ~ 0.01 in the neutral model) and therefore an al-
most periodic pattern is likely to appear near the boundaries. This effect resembles the oscilla-
tions of density for liquids of hard spheres near a wall [55]. It is expected that simulations with
periodic boundary conditions will not display those oscillations.

Our next step is estimating how large the influence is of the JND on the structure of catego-
ries. For this purpose, we restricted our focus to simulations with the human JND. We sampled
5000 different populations. Populations with the human JND tend to have a number of catego-
ries between 9 and 19: this number shows a roughly bell-shaped distribution, whose maximum
(~ 1300 populations out of the 5000 simulated) is at m = 14. We restricted further our analysis
considering only those populations with 1 = 14 categories, in order to single out the largest
available group of populations ending up with a given m. We computed the average, or “typi-
cal”, pattern of categories for this sub-group, s = {X,, X,, ..., X, }. The 14 average positions of
typical centroids are displayed at the bottom of Fig 4.

Having established the typical pattern, we went further, asking how far the pattern s; of the
j-th population is from the typical one 5. The simplest tool to this end is the Euclidean
(squared) distance d, = | 5, —5 |* = S (x? — 7,)7 of the j-th population from the typical
pattern. The ~ 1300 values of d; obtained are shown in the inset graph of Fig 5. While it is in-
tuitively clear that such a distance can take values distinctly larger than zero, a quantitative as-
sessment of this observation can be obtained by computing the distribution of the values of d;,
which we report in the main graph of Fig 5. The distribution appears quite broad: indeed its
tail at large values (i.e. d > 0.01) decays slower than an exponential. In particular, a possible
power-law decay P(d) ~ d  (with @ ~ 3) could approximate such a fat tail.

We stress that a power-law tail is a typical signal of fluctuations larger than normal. In the
absence of strong correlations, the random wandering of stochastic variables (such as the dis-
tance from the average that we are considering) is usually expected to have Gaussian or expo-
nential tails. A simple example is borrowed from the theory of fluctuations in equilibrium
statistical physics: a Brownian particle in a harmonic potential displays fluctuations of its dis-
tance x from the well’s center distributed as ~ e where ¢ is a constant depending on the
temperature and the curvature of the potential. Einstein’s celebrated fluctuation theory [56]
generalises this observation and predicts again an exponential distribution ~ ¢° with S the sys-
tem’s entropy, which is the quantity maximised at equilibrium (i.e. —S is the optimised cost).
Non-exponential distributions typically reveal that fluctuations do not come from a system
which tries to optimise a cost function.

Nevertheless, with our available statistics, the “fat” (power-law) nature of our tail cannot be
certified. More compelling is the comparison between the results from the Category Game and
those from a “Random model” where the 14 centroids are independently and uniformly dis-
tributed on the segment [0, 1]. On one hand the red dashed curve in Fig 5, coming from a
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Fig 5. Numerical World Color Survey with human JNDs: weakness of the bias. The histogram of the squared distance d = 3/, (x, — X,)’ between the
position of the j-th centroid and its average (“typical”) value. Black data represent the statistics of those populations displaying 14 linguistic categories at the
end of Category Game simulations with the human JND, which were roughly ~ 1300 of the total 5000 considered populations. The inset displays the actual
values of d for each population. Green and red data come from a “Random” model where each “language” is produced by a uniform random distribution of 14
category centroids. A random case with a very large number of languages (red curve) represents the “ideal” statistics of such a model. The distances d from
the average pattern (shown in the inset) appear to have a larger average d ,, than the Category Game model d ., (where by d we refer to the mean value of
the random and the CG cases, respectively), but since we are interested in the fluctuations we have rescaled the random model data, dividing them by
d,..e/d e in order to compare the histograms. A power law fit ~ x~2 is also shown as a guide for the eye.

doi:10.1371/journal.pone.0125019.g005

simulation of 10° random languages, illustrates the “ideal” distribution of such a model, which
has an exponential cut-off for large distances. On the other hand the green curve allows us to
evaluate also finite size effects, by taking into account only 1300 random languages: in such a
case the histogram is noisy but close to the ideal one and it is not as broad as the one related to
the Category Game.

In conclusion we find that in the Category Game—with a non-negligible probability—a
population may display a category pattern quite far from the typical one. Thus, “typical” does
not mean “certain”. The bias induced by the external constraint (the human JND) is not strong
enough to attract all patterns to a typical configuration, and the history-dependent dynamics
may lead a population into states only weakly affected by the JND. Repeating such an analysis
with different choices of m # 14 leads to similar results with compatible power-law exponents,
signalling the robustness of the result. It might be interesting to repeat the study of these fluctu-
ations of “distances” from the typical pattern with the actual data of the WCS. However the
number of available languages is too small, and restricting the analysis to a given number of
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colour terms would reduce the statistics even more. For these reasons we did not pursue
this idea.

Discussion

We have analysed the mechanism through which a weak cognitive or perceptual bias ends up
influencing the structure of a language, focusing on the prototypical case of colour categorisa-
tion and studying the Category Game model. Previous studies showed that in this framework
the presence of the JND bias triggers the emergence of universal colour naming patterns whose
statistical properties are in agreement with the ones observed in the WCS [30], and that the
model is able to reproduce the observed hierarchy of colour names [31]. Here we have seen
that:

1. The particular form assumed by the perceptual bias (i.e., the shape of the JND function)
does affect the properties of the universality patterns generated by the model. The fact that
the human JND is responsible for a quantitative agreement with the WCS data (see discus-
sion above and [30], [31]) is therefore genuinely significant.

2. A further source of biases arises from the dynamical evolution of the system. While the JND
is universal and would tend to result in highly similar category patterns in different lan-
guages, the specific evolution of each language acts in the opposite direction by introducing
frozen accidents and randomness in the process. Quantitatively, the distribution of the dis-
tances from the typical pattern of the various languages exhibits a fat tail, which indicates
the possibility of significant, culture-dependent, deviations. Our study of fluctuations sug-
gests that colour categorisation is not a simple optimisation process where some cost func-
tion is minimised.

These conclusions arise from a series of numerical experiments in which the agents were en-
dowed with artificially manipulated JNDs. In this respect, a remark is in order on the agree-
ment with the data obtained when the human JND is considered (at least as far as the test
introduced in [15] and the hierarchy of colour names are considered). Whether this is an (ex-
tremely) fortunate coincidence or has more profound reasons can not be “proved” in this con-
text. The task of simulations is that of testing theoretical hypotheses, showing whether they are
realistic, and checking for the implications [49].

What we have shown is that a perceptual bias can in fact induce universality, to be intended
in a statistical sense, and that the shape of this bias can influence the degree of universality (i.e.,
regularity across different languages). The quite large cross-linguistic variability of the colour
naming patterns emergent in population endowed with the human JND indicates that strong
deviations from the most common patterns are possible. The broadness of the fluctuations dis-
tribution suggests that its origin could be dynamical, i.e., related to a single population’s histo-
ry. This clarifies why universality has to be intended in a statistical sense, and that the history
of a language can reduce the tendency of a shared bias to enforce uniformity.

Appendix: The Category Game model

The game is played by a population of N individuals. Each individual is characterised by its par-
tition of the [0, 1) perceptual channel in non-overlapping contiguous segments henceforth
called (perceptual) categories. Each category has an associated inventory of words, that consti-
tutes its linguistic counterpart. Individuals are endowed with the capability of transmitting
words to each other and to interact non-linguistically through pointing at objects in

the environment.
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At each time step ¢ = 1, 2, .. two individuals are randomly extracted and interact, one playing
as speaker and the other one as hearer. They face a scene of M objects, i.e. M real numbers ran-
domly extracted from the interval [0, 1), with M > 2. One of the objects is the topic / that the
speaker will try to communicate to the hearer.

The interaction involves the following steps:

Discrimination

The speaker perceives the scene, i.e. assigns each object i € [0, 1) of the scene to one of its cate-
gories. The category associated with object i is the unique segment [/, r) of the individual per-
ceptual channel for which it holds [ < i < r. An object k is said to be discriminated by category
Cif k is the only object of the scene to be associated to C. In other words, if k is discriminated
by C, then given any object j in the sceneitholdsj € C & j=k.

There are two possibilities for the topic h:

Either £ is already discriminated by a category C;

or i and a non empty set O of different objects i fall in the same category C.

In the latter case the speaker refines the category partition of its perceptual channel to dis-
criminate the topic. Given the two objects a, b for which it holds a = max; ¢ o{i:i < h} and b=
min; ¢ ofi:i > h}, category Cis split in new categories by the introduction of new boundaries in
(a+h)/2 and (h+b)/2. [If h > i, Vi (h < i, Vi) then a (b) is not defined, and of course the corre-
sponding new boundary is not created.] Each new category inherits the linguistic inventory of
C, plus a brand new word.

Word transmission

After discrimination, the speaker transmits a word to the hearer in order to identify the topic.
If a previous successful communication event has occurred with the discriminating category
the speaker transmits the word that yielded that success;
else the speaker transmits the brand new word added to the discriminating category when it
was created.

Word reception

The hearer receives the transmitted word, and, looking at its repertoire, identifies the set of all
categories

1. whose inventories contain the transmitted word and

2. that are associated to at least one object in the scene.

Guessing and outcomes of the game

There are now several mutually exclusive possibilities for the hearer:

o a The set is empty;

o b The set contains only one category, corresponding to a single object in the scene;

o ¢ The set contains only one category, corresponding to more than one object in the scene;

o d The set contains more than one category.
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Then:

o if a The hearer cannot infer which is the topic, and communicates its perplexity to the speak-
er (we can image that individuals have a built in conventionalised way of doing that, for in-
stance pointing at the sky).

« if b There is only a candidate object for the hearer, who points at it;
o if c or d The hearer points randomly at one of its candidate objects.

At this point the speaker unveils the topic (pointing at it), and both individuals become
aware of the result of their interaction, that is

success if the object pointed by the hearer corresponds to the topic or

failure in all the other cases.

Updating

Independently of the outcome of the game, the hearer checks whether the topic is discriminat-
ed by one of its categories. If this is not the case, it discriminates the topic following the dis-
crimination procedure described above.

Then:

« in case of failure the hearer adds the transmitted word to the category discriminating the
topic;

« in case of success both agents delete all the words but the transmitted one from the inventory
of the category discriminating the topic.
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