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Transform B-spline Method
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We derive a new, efficient closed-form formula approximating the price of discrete lookback
options, whose underlying asset price is driven by an exponential semimartingale process in-
cluding (jump) diffusions, Lévy models, affine processes and other models. The derivation of
our pricing formula is based on inverting the Fourier transform using B-spline approximation
theory. We give an error bound for our formula and establish its fast rate of convergence to
the true price. Our method provides lookback option prices across the quantum of strike prices
with greater efficiency than for a single strike price under existing methods.

We provide an alternative proof to the Spitzer formula for the characteristic function of
the maximum of a discretely observed stochastic process, which yields a numerically efficient
algorithm based on convolutions. This is an important result which could have a wide range
of applications where the Spitzer formula is utilized.

We illustrate the numerical efficiency of our algorithm by applying it in pricing fixed and
floating discrete lookback options under Brownian motion, jump diffusion models, and the
variance gamma process.

Keywords: Lookback option pricing, Fourier transform, B-spline interpolation, Spitzer
formula, jump diffusion, variance gamma

1. Introduction

Lookback options are among the most popular path dependent exotic options traded over-the-
counter or embedded in structured notes or insurance contracts. The lookback option provides
a payoff at expiry that depends on the continuously or discretely monitored extremum of the
underlying asset over the lifetime of the contract. Discrete lookback options commonly arise in
life insurance applications, since they feature in variable annuity and equity indexed annuity
contracts, which are popular in North America. Lin and Tan (2003) note that these protection
features appeal to investors of savings products, but also are a source of significant volatility for
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insurance companies that underwrite the product. Wong and Lam (2009) consider the valuation
of dynamic fund protection in the context of equity indexed annuities. In particular, the valuation
of the embedded options have not always been carried out using market consistent principles.

The theory for pricing continuously monitored lookback options is well developed, and a variety
of methods exist under popular continuous-time asset price models. For example, Goldman et al.
(1979b), Goldman et al. (1979a), and Conze and Viswanathan (1991) obtain closed-form prices
under the Black-Scholes model assumptions. More recently, Boyle and Tian (1999) and Linetsky
(2004) consider pricing continuous lookback options under the Constant Elasticity of Variance
model of Beckers (1980). Kou and Wang (2004) and Cai and Kou (2011) consider pricing options
under the Laplace transform (LT), where asset prices follow the double exponential jump diffusion
model of Kou and Wang (2004) and the mixed exponential jump diffusion model. The latter was
first considered by Lipton (2002a), and more recently by Cai and Kou (2011).

In contrast to the continuous case, the development of the theory of pricing discrete lookback
options has been slower and relies largely on numerical methods. Heynen and Kat (1995) demon-
strate that approximating discrete lookback options in terms of their continuous counterparts
can lead to significant pricing errors, and Broadie et al. (1999) provide a detailed comparison of
pricing continuous and discrete lookback options. Pricing of discrete lookback options has devel-
oped in several stages. Initially, pricing methods were based around (i) binomial methods, see,
for example, Babbs (1992) and Hull and White (1993), (ii) partial differential equations (PDE),
as shown by Wilmott et al. (1993) and Forsyth et al. (1999), and (iii) numerical integration in
AitSahlia and Lai (1997) and Tse et al. (2001). Further extensions to the lattice based methods
are proposed by Broadie et al. (1999) and Foufas and Larson (2004) that suggest a finite element
based PDE methodology. However, with the exception of Tse et al. (2001), these methods focus
on the Brownian motion model and are not easily extended to other models of asset return.

The next major breakthrough in the pricing of discrete lookback options was made by Öhgren
(2001), who used the Spitzer identity to derive a recurrence formula for the evaluation of the
characteristic function of the discretely monitored maximum asset price. The latter recurrence
was used by Öhgren (2001) to price discrete lookback options at inception or at a monitoring
point. This is an important result that Petrella and Kou (2004) and Borovkov and Novikov (2002)
extend to a range of stochastic models, including the Black and Scholes (1973) model, and jump
diffusion models, such as Merton (1976) and Kou (2002). Furthermore, Petrella and Kou (2004)
extend the pricing method to value discrete lookback options at any point in time, not just at
inception or at a monitoring point. It should be noted that related fluctuation identities were
considered by Lipton (2002a) in the context of pricing path-dependent options. More recently,
Broadie and Yamamoto (2005) propose a new pricing framework that utilizes the Fast Gauss
Transform and demonstrate its use for pricing under the Merton (1976) jump diffusion model.
Yamamoto (2005) applies this framework to pricing under the double exponential jump diffusion
model of Kou and Wang (2004). Finally, two new pricing frameworks have been developed more
recently. First, Atkinson and Fusai (2007) develop a method based on solving a Wiener-Hopf
integral equation and show how this is closely related to the Spitzer formula. They provide a
semi-closed-form solution for the option price under the Black-Scholes setting, and Green et al.
(2010) propose that this methodology can be applied to other Lévy models. Second, Feng and
Linetsky (2009) propose an approach based on the Hilbert transform and demonstrate that it
provides efficient and accurate prices for a range of Lévy models, including the double exponential
jump diffusion process.

In this paper we propose a new Fourier transform B-spline (FTBS) based methodology for
pricing discrete lookback options under the class of general exponential semimartingale processes,
for which the log-return process exhibits independent increments. The FTBS method is based on
the development of a closed-form approximation to the pricing integral suggested by Lewis (2001)
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(see also Lewis (2000)), who applies the inverse Fourier transform to provide an option valuation
formula as a contour integral in the complex plane. It should be noted that a similar approach to
Lewis (2001) is described by Lipton (2002b) in the context of FX option pricing (see also Lipton
(2001)). The Lewis-Lipton approach generalizes the method of Carr and Madan (1999) since
their dampening factor corresponds to the path of the contour integral in the Fourier transform.
Generalizations of the Lewis-Lipton framework have recently been considered by Dufresne et al.
(2009) and by Eberlein et al. (2010). The latter authors have shown that the Lewis-Lipton option
pricing framework is valid for the more general class of exponential semimartingale models of
the underlying asset price dynamics. This class is rich and encompasses the majority of models
utilized in finance for pricing derivatives. Examples include (i) the general families of (jump)
diffusion processes such as the Black and Scholes (1973) model, the Merton (1976) model and
the mixed exponential model of Lipton (2002a), and (ii) pure jump Lévy processes such as the
CGMY processes of Carr et al. (2002), the generalized hyperbolic models (see Eberlein (2001)),
and the general class of linear combinations of gamma (LG) processes, recently introduced by
Kaishev (2013), which includes as special cases, the variance gamma (VG) process introduced by
Madan et al. (1998), and the bilateral gamma process considered by Küchler and Tappe (2008).
For properties of some of the particular examples of semimartingale models see Eberlein et al.
(2008).

The FTBS method uses B-spline approximation theory to provide an accurate closed-form
approximation to a Fourier transform representation of the discrete lookback option price. In
common with Petrella and Kou (2004) and Borovkov and Novikov (2002), our method is based
on the idea of applying the Spitzer formula to obtain the characteristic function of the discretely
observed maximum asset price. A key advantage of the FTBS method is that it enables the
valuation of discrete lookback options across a large number of strike prices in a single procedure
with greater efficiency than for a single strike price under the methods of either Petrella and Kou
(2004) or Borovkov and Novikov (2002). The FTBS method for pricing lookback options is an
extension of the framework described in Haslip and Kaishev (2013) for pricing European options.

Several key innovations are introduced in this paper. First, we apply the Fourier transform of
Lewis (2001) and Lipton (2002b) as extended by Eberlein et al. (2010) to obtain a semi-closed-
form pricing formula for discrete lookback options in terms of the characteristic function of the
maximum of the underlying log-return process (see Proposition 2), Second, we propose a new con-
volution algorithm (see Algorithm 1) for computing the characteristic function of the maximum,
which is based on the Spitzer-recurrence expansion formula (see Theorem 4.1). The latter first
appears in Wendel (1958) (see equation (1a) therein), but has since then remained unknown in
the quantitative finance literature. In Theorem 4.1, we provide a new, simple proof of this formula
(see Appendix B.1), and show that it gives rise to a new efficient, convolution based algorithm (see
Algorithm 1) for the computation of the characteristic function of the maximum. We then apply
it to evaluate the characteristic function of the maximum of the underlying log-return process
over a large number of monitoring points. This provides a significant efficiency improvement over
the Spitzer recurrence formula of Öhgren (2001). Third, we use B-spline interpolation theory to
develop a strike-separable pricing formula that enables valuation of lookback options across a large
number of strike prices in a single procedure with greater efficiency than for a single strike price
under the methods of either Petrella and Kou (2004) or Borovkov and Novikov (2002). Finally,
using residue calculus, we apply the FTBS method for efficient pricing of discrete lookback options
under the VG process.

It is worth noting that, in Haslip and Kaishev (2013), the FTBS method has been thoroughly
compared, based on the example of pricing European options, to the major existing option pric-
ing methods, among which, the fast Fourier transform of Carr and Madan (1999), the fractional
fast Fourier transform method of Chourdakis (2005), the Integration-Along-Cut method of Lev-
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endorskĭı and Xie (2012), the Cosine method of Fang and Oosterlee (2008), and the Convolution
method of Lord et al. (2008).

The paper is structured as follows. In Section 2, we first introduce the discrete lookback option,
and then the Lewis-Lipton Fourier transform framework as extended by Eberlein et al. (2010),
and use it to derive a discrete lookback option pricing formula (see Proposition 2.3). In Section 3
we develop our FTBS method for pricing discrete lookback options. In Section 3.2, we introduce
a B-spline interpolation method by means of which we obtain our main result, the closed-form,
Fourier transform B-spline discrete lookback option pricing formula given in Theorem 3.3. The
latter theorem involves the characteristic function of the discretely observed asset price maximum.
In order to efficiently evaluate this characteristic function, in Theorem 4.1 of Section 4.1, we derive
an explicit expansion representation for it, based on the Spitzer recurrence formula (23), given by
Öhgren (2001). We use the result of Theorem 4.1 which first appears in Wendel (1958) to develop
an efficient convolution based algorithm (see Algorithm 1) for the evaluation of the characteristic
function of the underlying log-return process. In Section 4.2, we provide a Fourier transform
representation of the coefficients in the Spitzer-recurrence expansion representation formula given
by Theorem 4.1. In Section 5 we illustrate how the FTBS method is applied to several popular
models for the underlying asset price movement. Section 6 summarizes the numerical results
and Section 7 provides conclusions and discussion. Proofs and auxiliary materials are given in
Appendices A-B.

2. Discrete Lookback Options

In this section, we describe our proposed framework for pricing discrete lookback options. The risk-
neutral dynamics of the asset price are modeled using an exponential semimartingale process given
by S(t) = S(0)eLt , where S(t) is the asset price at time t ≥ 0, and Lt is a semimartingale process
describing the log-return under probability measure Q. We refer the reader to, for example, Jacod
and Shiryaev (2003), for a primer on semimartingale processes. For brevity, we refer to discretely
monitored lookback options simply as lookback options throughout this paper.

2.1. Notation and Background
Let T denote the expiry time of the lookback option and [T0, T ] be the lookback period over
which the asset price is observed at q + 1 evenly spaced monitoring times, tj = T0 + T −T0

q j, for
j = 0, . . . , q. The asset price at time tj is denoted Sj = S(tj) = S(0)eLtj . Let j∗ be such that
tj∗ ≤ t < tj∗+1, where t is the current time (T0 ≤ t ≤ T ). We denote the maximum value of the
asset price realized from T0 to t over the discrete monitoring times, tj , j = 0, . . . , j∗, by

M = max
j = 0, . . . , j∗

S(tj). (1)

We denote by Xk = maxj=1,...,k Lj∗+j the observed future maximum log-return process over the
monitoring times tj∗+1, . . . , tj∗+k for k = 1, . . . , q − j∗. To simplify the notation, denote by m the
number of future monitoring time points, i.e. m = q−j∗. Several different types of lookback options
exist, and without loss of generality in this paper we consider (i) the fixed-strike lookback call
option, and (ii) the floating lookback put option. The pricing theory for the fixed-strike lookback
put option and the floating lookback call option are similar and require only minor modification
of the results presented in this paper.

For a contract at inception time T0 that expires at future time T , the payoffs of the fixed
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call with strike price K and floating put lookback options are (i) (maxi=0,...,q Si −K)+, and (ii)
maxi=0,...,q Si − ST , respectively. However, as highlighted by Petrella and Kou (2004), it is also
important to be able to price a lookback contract at some current time t, after the time of inception,
T0, i.e., when T0 < t < T . In this case, the payoff will be dependent on the observed maximum,
M since inception. The following proposition explains how to price lookback options at any point
in time by conditioning on the observed discrete extremum until the last monitoring point.

Proposition 2.1 Valuation of Lookback Options: The price at the current time t (T0 ≤ t ≤ T )
of a fixed lookback call option, FC(t, T ), and floating lookback put option, LP (t, T ), that expires
at future time T > 0 and were incepted at time T0 in the past are given by

FC(t, T ) =


S0e

−r(T −t)EQ

[(
eXm − K

S0

)+
]
, if M < K

S0e
−r(T −t)EQ

[(
eXm − M

S0

)+
]

+ (M −K)e−r(T −t), if M ≥ K
(2)

LP (t, T ) =


S0e

−r(T −t))EQ
[
eXm

]
− S0, if M ≤ S0

S0e
−r(T −t)

{
EQ

[
eXm

]
+ EQ

[(
M
S0
− eXm

)+
]}
− S0, if M > S0,

(3)

respectively, where M = max
j=0, ... ,j∗

S(tj) and r is the risk-free rate of interest.

Proof: The valuation formula for FC(t, T ) and LP (t, T ) are derived in two stages: (i) identifica-
tion of the payoff function by conditioning on the value of M relative to K and S0, respectively, and
(ii) application of the Fundamental Theorem of Asset Pricing in stage (i) to the payoff functions,
see, for example, Delbaen and Schachermayer (1994). Thus, details are omitted. �

Two useful and interesting simplifications to (2) and (3) occur in the case M ≥ K, which we
describe in the following lemma. Part (i) is provided in Petrella and Kou (2004), and part (ii) was
first obtained by Öhgren (2001).

Lemma 2.2 Put-call Parity and Closed-form Price for Fixed Lookback Call Option:
(i) If M ≥ K then FC(t, T ) = LP (t, T ) + S0 −Ke−r(T −t);
(ii) If M ≥ K and M ≤ S0 then FC(t, T ) = S0e

−r(T −t)
[
ϕXm(−i)− K

S0

]
, where ϕXm(z) =

EQ(eizXm) is the characteristic function of Xm.

Proof: (i) It is easy to see that if M ≥ K then maxi=0,...,q Si ≥ K.
Therefore, FC(t, T ) = e−r(T −t)EQ (maxi=0,...,q Si)−Ke−r(T −t) = LP (t, T ) + S0 −Ke−r(T −t).
(ii) This follows from (3) using (i) above and the condition M ≤ S0. �

2.2. The Fourier Transform
The FTBS method is built on the foundations of the Fourier transform method of option pricing.
In this section, we introduce the Fourier transform pricing method and apply it to calculate the
expectations in (2) and (3) of Proposition 2.1, and hence price lookback options. The Fourier
transform was introduced to financial mathematics by Lewis (2001) who demonstrated its use for
option pricing under a general exponential Lévy process. It should be noted that a similar approach
is described by Lipton (2002b) in the context of FX option pricing (see also Lipton (2001)).
This was later extended by Eberlein et al. (2010), to the more general setting of exponential
semimartingale models and discontinuous payoff functions, see also Dufresne et al. (2009).
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In order to evaluate the pricing formulae (2) and (3), we denote C(T,R) = EQ
[(
eXm −R

)+],
where R > 0 is the ratio of strike price or previous asset price maximum to the current asset price,
that is, R = K

S0
or R = M

S0
. The following proposition shows how to evaluate C(T,R) using the

Fourier transform.

Proposition 2.3 Fourier Pricing Formula : If MXm(v) = EQ
(
evXm

)
exists for all v ∈ (a, b),

with a < 1
2 and b > 1 then, using the Fourier transform, C(T,R) is given by

C(T,R) = ϕXm(−i)−
√
R

2π

∞∫
−∞

Re
[
ϕXm(−u− i

2)Riu
] du

u2 + 1
4
, (4)

where R > 0, and ϕXm is the characteristic function of the maximum log-return,
Xm = maxj=1,...,m Lj∗+j, over all monitoring points from current time t (T0 ≤ t ≤ T ) to time T .

Proof: The proof closely follows e.g. Example 5.1 of Eberlein et al. (2010) and therefore, is
omitted. �

Proposition 2.3 provides a semi-closed-form pricing formula that can be implemented indepen-
dently of the choice of asset model and forms the basis of our pricing framework.

3. The Fourier Transform B-spline Pricing Framework

The standard approach in option pricing for the evaluation of (4) is to apply efficient numerical
integration techniques, such as the Gauss-Kronrod quadrature method, to calculate the integral to
the desired level of accuracy. For the type of characteristic functions encountered in, for example,
pricing European options, this is a quick and efficient procedure. However, in the case of lookback
options, the characteristic function ϕXm of the asset log-return extremum is expensive to evaluate
when the number of monitoring points m is large, as we describe in Section 4. Therefore, the
standard application of quadrature methods results in slow calculation times since they require a
large number of evaluations of the integrand to achieve good accuracy. In this section, we provide a
full derivation of a general approach for evaluating the Fourier pricing formula (4) utilizing spline
approximation theory that we refer to as the FTBS method.

3.1. Simplifying the Pricing Formula
In this section, we present an alternative representation of the pricing formula in (4) that decom-
poses the integrand into the product of (i) a trigonometric function dependent on R, the ratio
of strike price or previous asset price maximum to the current asset price, and (ii) the real and
imaginary parts of the semimartingale process characteristic function multiplied by the Fourier
transform of the option payoff with strike 1, which is independent of the actual strike price.

Proposition 3.1 Strike-separable Pricing Formula : An alternative form of (4) for evaluating
C(T,R), for R > 0, is given by

C(T,R) = ϕXm(−i)−
√
R

π
I(R) (5)
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where

I(R) =
1∫

0

cos
(1−t

t logR
)
s1(t)dt+

1∫
0

sin
(1−t

t logR
)
s2(t)dt (6)

s1(t) =
Re
[
ϕXm(−1−t

t −
i
2)
]

1− 2t+ 5
4 t

2 and s2(t) = −
Im
[
ϕXm(−1−t

t −
i
2)
]

1− 2t+ 5
4 t

2 . (7)

Proof: The proof follows by (i) decomposing the integrand in (4) into its real and imaginary
parts, and (ii) changing variables u = 1−t

t to transform the limits of integration to the unit interval.
�

Remark 1 : We make two important observations about strike-separable pricing formula in (5).
First, integration is now performed over the unit interval. Specifically, we have applied the change
of variables u = 1−t

t which transforms the upper limit of integration from infinity to zero, and the
lower limits of integration from zero to one. Thus, integration is performed over the unit interval
[0, 1], which avoids making a truncation error at infinity. It should be noted that no truncation
occurs at zero in the transformed integral, since as we will see in Section 3.3, we evaluate exactly
the integrals in (6), by replacing functions s1(t) and s2(t) with their B-spline interpolants. This
means that it is no longer necessary to carefully identify a truncation point for each asset price
model by considering how quickly the characteristic function decays to zero.

Second, we have separated the integrand into the product of cos
(1−t

t logR
)

or sin
(1−t

t logR
)
,

which are dependent on R, and functions s1(t) and s2(t), which are independent of R. This is an
important feature of the FTBS method since it allows us to price lookback options at a range of
different values of R, and hence strike prices, in an extremely efficient manner.

Pricing is one key aspect of the field of derivatives, another equally important aspect is hedging,
which is crucial for effective risk management. We now consider the problem of computing the
Greeks and demonstrate how (5) is easily extended to calculate the option price sensitivities.
The following corollary provides option price sensitivities for the fixed lookback call option, and
we note that this is easily extended to the floating lookback put option via the put-call parity
relationship provided in Lemma 2.2.

Corollary 3.2 The Greeks: The sensitivities of the fixed lookback call option price, FC(T,K),
to movements in the asset price are provided by ∆FC(T,K) = ∂F C(T,K)

∂S0
and ΓFC(T,K) =

∂2F C(T,K)
∂S2

0
. They are computed as

∆FC(t, T ) = e−r(T −t)
[
ϕXm(−i) +

√
R

π

(
−1

2I(R) + ∆I(R)
)]

(8)

ΓFC(t, T ) = e−r(T −t)
√

R
S0π

[1
4I(R)− ΓI(R)

]
, (9)

where R = K
S0

if M < K, and R = M
S0

otherwise. Functions ∆I(R) and ΓI(R) are related to the
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derivatives of I(R), defined in (6). These are computed as

∆I(R) = RI ′(R) =
1∫

0

cos
(1−t

t logR
)

∆s1(t)dt+
1∫

0

sin
(1−t

t logR
)

∆s2(t)dt (10)

ΓI(R) = R2I ′′(R) + ∆I(R) =
1∫

0

cos
(1−t

t logR
)

Γs1(t)dt+
1∫

0

sin
(1−t

t logR
)

Γs2(t)dt, (11)

where

∆s1(t) = 1− t
t

s2(t), and ∆s2(t) = −1− t
t

s1(t), (12)

and

Γs1(t) = 1− t
t

∆s2(t) = −(1− t)2

t2
s1(t),

Γs2(t) = −1− t
t

∆s1(t) = −(1− t)2

t2
s2(t).

Proof: See Haslip and Kaishev (2013) for a very similar proof in the case of European options.
�

In the next section, we apply spline approximation theory to interpolate functions si(t), ∆si(t),
and Γsi(t), for i = 1, 2.

3.2. Optimal Spline Interpolation
The standard approach in option pricing for the evaluation of (5) is to apply efficient numerical
integration techniques, such as the Gauss-Kronrod quadrature method, to calculate the integral
I(R) to the desired level of accuracy. In this section, we introduce a general approach for evaluating
the strike-separable pricing formula that utilizes spline approximation theory.

A spline function, s(t) on [a, b] ∈ R, of order n, degree n − 1, is defined on the set of points
called knots, {ηi}2n+l

i=1 where η1 = · · · = ηn = a, ηi < ηi+1 for i = n + 1, . . . , n + l and ηn+l+1 =
· · · = η2n+l = b, and l is some positive integer, as

s(t) =
p∑

i=1
ciMi,n(t), (13)

where p = l + n, ci are certain real coefficients and Mi,n(t) are the B-splines, defined as the n-th
order divided differences of the function f(y) = n (max {(y − t), 0})n−1 = n(y − t)n−1

+ , that is,
Mi,n(t) = Mi,n(t; ηi, . . . , ηi+n) = [ηi, . . . , ηi+n]f(y).

We recall that the n-th order (n ≥ 0) divided difference of a function f(t) is defined recurrently
as

[ηi, . . . , ηi+n] f(t) = [ηi+1, . . . , ηi+n] f(t)− [ηi, . . . , ηi+n−1] f(t)
ηi+n − ηi

, (14)
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where [ηi] f(t) = f (ηi) and the points {ηj}i+n
j=i are pairwise distinct. In the case when one or more

points are repeated, as at the left and right end of the interval [a, b], a derivative based formula
provided in (A1) of Appendix A.1, which appears in Ignatov and Kaishev (1989), can be used to
calculate the divided difference.

For properties of splines and B-splines we refer to De Boor (2001). In order to prove our main
result given by Theorem 3.3, we will need the following expression of a divided difference of a
function f(t), in terms of a B-spline, known as the Peano formula

[ηi, . . . , ηi+n] f(x) =
∫

R
Mi,n(t; ηi, . . . , ηi+n)f

(n)(t)
n!

dt, (15)

where f (n) is the n-th derivative of f .
As a core step in developing the FTBS method we interpolate the functions s1(t) and s2(t)

from the pricing formula (5), by appropriate quadratic (n = 3) splines, s̃1(t) and s̃2(t), at some
a priori selected interpolation sites, τ = (τ1, . . . , τp), τ ∈ [a, b] ≡ [0, 1] with τ1 = 0 and τp = 1.
We note that based on our numerical experience, quadratic splines provided very good results,
their good approximation properties are also confirmed in the spline approximation literature
(see e.g. Marsden (1974)). We briefly introduce this step on the example of s̃1(t), baring in mind
that similar notation and reasoning applies for s̃2(t). We apply the optimal interpolation scheme
of Gaffney and Powell (1976) independently obtained also by Micchelli et al. (1976) in order to
determine the optimally located knots, {η̃1,i}n+l

i=n+1 of the spline interpolant s̃1(t). As noted by
De Boor (2001) the optimal knot set {η̃1,i}n+l

i=n+1 is well approximated by

η1,n+i = (τi+1 + . . .+ τi+n−1)
n− 1

, i = 1, . . . , l, (16)

We then substitute in the pricing formula (5), the optimal spline interpolants s̃1(t) and s̃2(t)
for s1(t) and s2(t) respectively, and apply the Peano representation (15) in order to express the
integrals of B-splines as divided differences of appropriate functions. Details of this step are easily
followed in the proof of Theorem 3.3. For further details of how this step is implemented, in
particular, the selection of interpolation sites we refer to Haslip and Kaishev (2013), where the
FTBS framework is successfully applied for pricing European options. We only note here that
selection of τ is robust with respect to the choice of the underlying semimartingale model. It is
essential to point out that the FTBS approach leads to an extremely efficient lookback option
pricing formula, given by Theorem 3.3. As shown in Proposition 3.4, the FTBS lookback option
price quickly convergence to the true price. It is also important to note that the FTBS method
allows the simultaneous evaluation of lookback options within a range of strike prices, not just for
one strike. See Section 6 for details of the implementation. In the sequel we set n = 3 and utilize
quadratic spline interpolation.

3.3. The Fourier Transform B-spline Pricing Formula
In this section, we utilize the optimal B-spline interpolation scheme presented above to develop
the main result of this paper, the FTBS pricing formula. We first return to the strike-separable
pricing formula (5) and define C̃(T,R) to be the approximation to (5) provided by replacing s1(t)
and s2(t) with their approximants s̃1(t) and s̃2(t) respectively. That is,

C(T,R) ≈ C̃(T,R) = ϕXm(−i) −
√
R

π
Ĩ(R), (17)
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where

Ĩ(R) =
1∫

0

cos
(1−t

t logR
)
s̃1(t)dt+

1∫
0

sin
(1−t

t logR
)
s̃2(t)dt.

To express (17) in a closed-form and eliminate integration, it suffices to (i) substitute s̃1(t) and
s̃2(t), which are splines of the form given by (13), (ii) take summation in front of integration, and
(iii) apply the Peano formula in (15) to each integral in the linear combination. The latter integrals
are of the form

∫
R Mi,n(t; ηi, . . . , ηi+n)ψ(t)dt, with ψ(t) = cos

(1−t
t logR

)
or ψ(t) = sin

(1−t
t logR

)
,

which are in the required form to apply the Peano representation, as described in Section 3.2.
Therefore, one needs to find the function ψ̃(t) whose n-th derivative coincides with ψ(t). Following
this approach, we give our main result stated by the following theorem.

Theorem 3.3 Fourier Transform B-spline Pricing Formula : Let {η1,i}6+l1
i=1 , {η2,j}6+l2

j=1 and
{c1,i}p1

i=1,{c2,j}p2
j=1 be the sets of knots and linear coefficients of the quadratic spline interpolants,

s̃1 and s̃2, respectively, where p1 = l1 + 3 and p2 = l2 + 3. Additionally, let R > 0. The pricing
formula C̃(T,R) is provided in closed-form as

C̃(T,R) = ϕXm(−i)−
√
R

π
Ĩ(R), (18)

where for R ̸= 1,

Ĩ(R) = 6
p1∑

i=1
c1,i[η1,i, η1,i+1, η1,i+2, η1,i+3]f1(t, logR)

+ 6
p2∑

i=1
c2,i[η2,i, η2,i+1, η2,i+2, η2,i+3]f2(t, logR), (19)

and f1 and f2 are calculated as

f1(t, x) = 1
12

[
t

[
−(x2 − 2t2) cos x(t− 1)

t
− 5xt sin x(t− 1)

t

]
+ xCi

(
x

t

) [
−6xt cosx+ (x2 − 6t2) sin x

]
− x Si

(
x

t

) [
6xt sin x+ (x2 − 6t2) cos x

]]

f2(t, x) = 1
12

[
t

[
−(x2 − 2t2) cos x(t− 1)

t
− 5xt sin x(t− 1)

t

]
+ xCi

(
x

t

) [
6xt sin x+ (x2 − 6t2) cos x

]
+ x Si

(
x

t

) [
−6xt cosx+ (x2 − 6t2) sin x

]]
.



November 12, 2013 22:22 Quantitative Finance lookback˙paper1˙QF

Lookback Option Pricing Using the Fourier Transform B-spline Method 11

For R = 1, Ĩ(R) simplifies to

Ĩ(R) =
p1∑

i=1
c1,i +

p2∑
i=1

c2,i. (20)

Note that Ci(x) and Si(x) are the trigonometric special functions defined as Ci(x) = −
∞∫
x

cos y
y dy

and Si(x) =
x∫
0

sin y
y dy, respectively.

Proof: We begin with the first integral in (17).

1∫
0

cos
(1− t

t
logR

)
s̃1(t)dt =

1∫
0

cos
(1− t

t
logR

) p1∑
i=1

c1,iMi,3(t)dt

=
p1∑

i=1
c1,i

1∫
0

cos
(1− t

t
logR

)
Mi,3(t)dt

=
p1∑

i=1
c1,i

3!
1∫

0

f
(3)
1 (1−t

t )
3!

Mi,3(t)dt

 = 6
p1∑

i=1
c1,i[η1,i, · · · , η1,i+n]f1,

where f1 is chosen to satisfy f (3)
1 (1−t

t ) = cos(1−t
t logR), and we have applied the Peano represen-

tation (15). We identify f1 by repeated integration of cos(1−t
t logR) with respect to t, e.g. using

symbolic integration in tools such as Mathematica. The proof for the second integral is similar
and is therefore omitted. �

The following proposition gives a bound for the absolute error of the FTBS lookback option
price approximation. It shows that the FTBS method provides a fast convergence to the true
price as the numbers, ν and l, of data sites, τ and knots, {η̃j,i}3+l

i=3+1 increase, while the mesh sizes
|η̃j | := maxi (η̃j,i − η̃j,i−1) go to zero.

Proposition 3.4 FTBS Lookback Option Price Error Bound: The absolute error of the FTBS
lookback option price, C̃(T,R) is bounded by

∣∣∣C(T,R)− C̃(T,R)
∣∣∣ ≤ √R

π

(
C1

∥∥∥s(3)
1 (t)

∥∥∥+ C2

∥∥∥s(3)
2 (t)

∥∥∥) , (21)

where Cj, j = 1, 2 are the constants obtained from the optimal spline interpolation, s̃j(t) of sj(t),
j = 1, 2, following Gaffney and Powell (1976), and where ∥f∥ = max{ |f(t)| : 0 ≤ t ≤ 1}. The
bound in (21) converges to zero as the mesh sizes |η̃j | := maxi (η̃j,i − η̃j,i−1) go to zero, at a rate
O
(
|η̃|3

)
, where η̃ = max (|η̃1|, |η̃2|), i.e.,∣∣∣C(T,R)− C̃(T,R)

∣∣∣ = O
(
|η̃|3

)
(22)

Proof: Provided in Appendix A.2. �
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Corollary 3.5 FTBS formulae for the Greeks:
Let {η1,i}6+l1

i=1 , {η2,j}6+l2
j=1 and {c1,i}p1

i=1, {c2,j}p2
j=1 be the sets of knots and linear coefficients of the

quadratic spline interpolants, s̃1(t) and s̃2(t), respectively, where p1 = l1 + 3 and p2 = l2 + 3.
Similarly, let the knots and linear coefficients of the quadratic spline interpolants ∆̃s1(t), ∆̃s2(t),

and Γ̃s1(t), Γ̃s2(t) be denoted by {η∗
1,i}

6+l∗
1

i=1 , {η∗
2,j}

6+l∗
2

j=1 and {c∗
1,i}

p∗
1

i=1, {c∗
2,j}

p∗
2

j=1, where p∗
1 = l∗1 + 3

and p∗
2 = l∗2 + 3 for ∗ ∈ {∆,Γ}.

The closed-form approximations for the Greeks are obtained by replacing functions I(R), ∆I(R),
and ΓI(R) in Corollary 3.2 by their approximants Ĩ(R), ∆̃I(R), and Γ̃I(R). Ĩ(R) is defined in
Theorem 3.3, and ∆̃I(R) and Γ̃I(R) are defined as

∆̃I(R) = 6
p∆

1∑
i=1

c∆
1,i[η∆

1,i, η
∆
1,i+1, η

∆
1,i+2, η

∆
1,i+3]f1(t, logR)

+ 6
p∆

2∑
i=1

c∆
2,i[η∆

2,i, η
∆
2,i+1, η

∆
2,i+2, η

∆
2,i+3]f2(t, logR)

Γ̃I(R) = 6
pΓ

1∑
i=1

cΓ
1,i[ηΓ

1,i, η
Γ
1,i+1, t

Γ
1,i+2, t

Γ
1,i+3]f1(t, logR)

+ 6
pΓ

2∑
i=1

cΓ
2,i[ηΓ

2,i, η
Γ
2,i+1, η

Γ
2,i+2, η

Γ
2,i+3]f2(t, logR),

for k ̸= 0. If k = 0, this simplifies to (20) in Theorem 3.3.

Proof: The proof follows the same logic as Theorem 3.3 and is therefore omitted. �

While the functions f1 and f2 in Theorem 3.3 may appear complicated, they can be evaluated
efficiently. Their trigonometric integrals can be calculated using the Fortran library of Vandeven-
der and Haskell (1982), which provides 17 significant figures of accuracy using series expansions
with pre-computed coefficients. Calculation of the divided difference is simple using the standard
recursive definition in (14) when the knots [ηi, ηi+1, ηi+2, ηi+3] are distinct. In the case of repeated
knots, as at the three leftmost and rightmost knots in the sets {η1,i}6+l1

i=1 and {η2,j}6+l2
j=1 , the divided

differences must be calculated using the derivative based definition in (A1) of Appendix A.1 (see
also Haslip and Kaishev (2013).

4. The Characteristic Function of the Asset Price Maximum

In order to evaluate the lookback option price using the FTBS pricing formula in (18), we must
first calculate the characteristic function of the asset price maximum. This can be achieved using
the celebrated Spitzer formula, as adapted by Öhgren (2001). The Spitzer formula provides a
recursive relationship between the characteristic function of the maximum of a process over m
monitoring points and the characteristic function(s) over the previous m− 1 monitoring points as

ϕX0(z) = 1, ϕXm(z) = 1
m

m−1∑
k=0

ϕXk
(z)am−k(z), for m = 1, 2, ... (23)



November 12, 2013 22:22 Quantitative Finance lookback˙paper1˙QF

Lookback Option Pricing Using the Fourier Transform B-spline Method 13

where am−k(z) = EQ
(
eizL+

j∗+m−k

)
, and j∗ is defined in (1). This recursive relationship allows us to

evaluate the characteristic function of the maximum Xm in terms of the log-return process Lj∗+j at
each observation point tj∗+j , j = 1, . . . ,m. The calculation of am−k(z), the characteristic function
of the greater of the log-return process at time tj∗+m−k and zero, is specific to the selected asset
model. For asset models in which European option prices are available in closed-form, am−k(z)
may be evaluated directly, as shown by Petrella and Kou (2004) and Borovkov and Novikov (2002),
and for others more advanced techniques may be required. We return to the problem of how to
calculate am−k(z), k = 0, . . . ,m− 1 in Section 4.2.

4.1. Spitzer-recurrence Expansion Formula
A key difficulty with the Spitzer-recurrence formula in (23) is that it is not computationally
efficient, since, as shown in the following theorem, it exhibits sub-exponential complexity. To
address this, based on the Spitzer recurrence formula (23), we derive an expansion formula for
ϕXm that is significantly more effective for large m and provides reduced calculation times.

Theorem 4.1 Spitzer-recurrence Expansion Formula : The characteristic function of the log-
return of the asset price maximum Xm is given by

ϕXm(z) = Coefftm

 m∑
j=0

1
j!

(
m∑

k=1

ak(z)
k

tk
)j
 , (24)

where Coefftm(.) is the coefficient in front of tm in (.), for m = 1, 2, . . . .

Proof: Provided in Appendix B.1. �

Remark 2 : Let us note that formula (24) can be obtained as a special case of the original
Spitzer formula (see Spitzer 1956). This has also been noted by Wendel (1958), see formula (1a)
therein, who has given an alternative proof. Here we give a significantly simpler proof of formula
(24) (see Appendix B.1), based on the Spitzer-recurrence formula (23), due to Öhgren (2001).
Formula (24) is much better suited to numerical implementation by following Algorithm 1 below.

Theorem 4.1 is an important result that enables the evaluation of ϕXm(z) with much greater
efficiency than is possible using the Spitzer recurrence formula (23). It is not difficult to see that
Coefftm

(∑m
j=0

1
j!
(∑m

k=1
ak

k t
k
)j) can be obtained by convoluting the vector (a1

1 , . . . ,
am

m ) with itself
j times for j = 0, 1, . . . ,m and summing across the anti-diagonal. In Algorithm 1, we describe
how to calculate ϕXm using this result. Table 1 provides a comparison of the numerical complexity
and shows that our method dominates the Spitzer formula for m ≥ 30 and therefore provides
greater efficiency in pricing discrete lookback options with a high number of monitoring points.
For example, at m = 200, the Spitzer formula (23) requires approximately 9.25 × 1015 terms to
calculate ϕXm compared to 1.33× 106 using formula (24).

Proposition 4.2 Complexity of Formulae (24) and (23): The following statements hold true: a)
the Spitzer-recurrence expansion formula (24) is of complexity O(m3), and b) the Spitzer formula
(23) is sub-exponential and requires computation of p(m) individual terms involving ak, where
p(m) is the partition function defined as the number of integer partitions of m.

Proof: Provided in Appendix B.2 and B.3. �

Remark 3 : Note that the overall computational efficiency of FTBS depends not only on the
asymptotic arithmetic complexity of Algorithm 1, but also on other characteristics of the method
and the computational process implementing it. A key advantage of our approach, is that due to
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Table 1. Number of Terms in Evaluating Spitzer Formula (24) and (23)
m Algorithm 1 Implementing (24) Spitzer Formula (23) Ratio
30 4525 5604 8.1E-01
50 20875 204226 1.0E-01
100 166750 190569292 8.8E-04
150 562625 40853235313 1.4E-05
200 1333500 3.973E+12 3.4E-07
300 4500250 9.25308E+15 4.9E-10
500 20833750 2.30017E+21 9.1E-15

the strike-separable feature of the pricing formula (17), we are able to price options across multiple
strikes in an extremely efficient manner. This is because the spline approximants, s̃1(t) and s̃2(t),
are independent of R and are computed only once with the first strike, and the divided differences
in (19) can be pre-computed (see Haslip and Kaishev (2013)). Hence the efficiency of the FTBS
method for pricing many options simultaneously across a quantum of strike prices is similar to
that of pricing a single option.

Algorithm 1 Computation of ϕXm(z) using the Spitzer-recurrence expansion formula (24)
Input: m ∈ N, z ∈ C
Output: ϕXm(z)

for i = 0, . . . ,m− 1 do
P (0, i)← ai(z)

i+1
end for
ϕ← P (0,m− 1)
for i = 1, . . . ,m− 1 do

for j = 0, . . . ,m− 1− i do
for k = 0, . . . , j do
P (i, j)← P (i, j) + P (i− 1, k) ∗ P (0, j − k)

end for
end for
ϕ← ϕ+ P (i,m−1−i)

(i+1)!
end for
return ϕ

4.2. Calculating ak(z)

We now consider the problem of calculating ak(z) = EQ
(
eizL+

j∗+k

)
, k = 1, . . . ,m, i.e. the charac-

teristic function of the greater of the log-return process at time tj∗+k and zero. For simple models
of asset log-return, such as Brownian motion, this can be evaluated directly by integrating the
probability distribution. For a general semimartingale process, the following theorem applies the
Fourier transform to provide a general methodology for calculating ak, k = 1, . . . ,m.

Proposition 4.3 Fourier Transform Representation of ak(z): If MLj∗+k
(v) = EQ

(
evLj∗+k

)
exists

for all v ∈ (a, b), where a < 0 and b > − Im z > 1
2 , then the characteristic function ak(z) is given



November 12, 2013 22:22 Quantitative Finance lookback˙paper1˙QF

Lookback Option Pricing Using the Fourier Transform B-spline Method 15

by

ak(z) = 1− i

2π

iα+∞∫
iα−∞

ϕLj∗+k
(−ξ) z

ξ(ξ + z)
dξ, (25)

where α ≥ Im z > 1
2 and k = 1, . . . ,m.

Proof: The proof is based on applying the Cauchy residue theorem and the technical details are
therefore omitted. �

To evaluate (25), note that it is possible to use either numerical methods, or analytic integration,
as illustrated in (26) and (27) of Section 5.1. For example, residue calculus can be used to evaluate
(25) in closed-form for some semimartingale processes, as illustrated in Section 5.2, Proposition
5.4 in the case of the VG process. In other cases, the FTBS method may be adapted to efficiently
calculate the integral in (25) and hence evaluate ak(z) at all required z.

5. Pricing Under Selected Semimartingale Models

In this section, the FTBS method is applied to the problem of pricing discrete lookback options for
some popular semimartingale processes. Before we proceed to consider the specifics of individual
asset models, we provide a recap of the main algorithm proposed in this paper.

Algorithm 2 FTBS Pricing Framework
For a general semimartingale process of the log-return, Lt, the following steps provide the price
of a discrete lookback option.

(i) Using Proposition 4.3, derive an analytic formula or an approximation to ak(z).
(ii) Apply the Spitzer-recurrence expansion formula in Theorem 4.1 to calculate the charac-

teristic function ϕXm(z) of the asset price maximum.
(iii) Fit optimal splines interpolants s̃1(t) and s̃2(t) to approximate s1(t) and s2(t) in (7).
(iv) Calculate C̃(T,R) by using Algorithm A1 of Appendix A.3 and use this in (2) or (3) to

price the fixed-strike call or floating put lookback option.

It should be noted that the spline approximants, s̃1(t) and s̃2(t), are independent of R, the
ratio of strike price or previous asset price maximum to the current asset price. Since the divided
differences can be calculated very quickly, the approximants’ independence to R implies that
the efficiency of the FTBS method for pricing many options simultaneously across a quantum of
values of R is similar to that of pricing a single lookback option. This is analogous to the use of
the FFT of Carr and Madan (1999) for evaluating the price of European options for a range of
strike prices. Further, we note that the divided differences can be pre-computed for a particular
asset price model, and recalled from memory as required. We refer to Haslip and Kaishev (2013)
for further details on the pre-computation of divided differences.
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5.1. Brownian Motion and the Merton Jump Diffusion Model
We illustrate Step 1 of the FTBS pricing framework under the Black-Scholes assumptions.

Proposition 5.1 Calculation of ak(z) for Brownian motion:
If Lt = σW (t) + µt ∼ N

(
µt, σ2t

)
, where W (t) is standard Brownian motion and µ = r − 1

2σ
2,

σ > 0 then

ak(z) = Φ
(
−µ
√
tj∗+k

σ

)
+ 1

2
eztj∗+k(iµ− 1

2 zσ2)erfc
(
− 1
√
tj∗+k

(
µ

σ
+ izσ

))
, (26)

where erfc(.) is the complex complimentary error function and k = 1, . . . ,m.

Proof: The proof is based on directly integrating with respect to the p.d.f. of the Normal
distribution. �

In the following proposition, we show how to apply this approach to the Merton jump diffusion
model, as described by Petrella and Kou (2004).

Proposition 5.2 Calculation of ak for the Merton Jump Diffusion Model:
If Lt = σW (t) + µt +

∑Nt
i=1 Yi, where µ = r − 1

2σ
2 − λζ, ζ = eµJ + 1

2 σ2
J − 1, Nt ∼ Po (λ), and

Yi ∼ N(µJ , σ
2
J) with σ, σJ , λ > 0 then

ak(z) =
∞∑

j=0

{
Φ
(
−µj

σj

)
+ 1

2
ez(iµj− 1

2 zσ2
j )erfc

(
− 1√

2

(
µj

σj
+ izσj

))}
e−λtk

(λtj∗+k)j

j!
, (27)

where µj = µtj∗+k + jµJ , σj =
√
jσ2

j + σ2tj∗+k, and erfc(.) is the complex complimentary error
function.

Proof: This follows by conditioning on the number of jumps occurring in [tj∗+1, tj∗+k] under the
Poisson distribution. The full derivation is provided in Petrella and Kou (2004). �

5.2. The Variance Gamma Process
The VG process can be interpreted as Brownian motion with time changed by an independent
Gamma Lévy process. The subordinated time process is often viewed as “business time”, reflecting
the random speedups and slowdowns in real-time economic and business activity. We refer the
reader to Madan et al. (1998) for a detailed introduction to the VG process, and Kaishev and
Dimitrova (2009) for a more recent account on the VG related literature. The risk-neutral dynamics
of the log-return process are given by Lt = rt+µγt+σW (γt)−ωt, whereW (t) is standard Brownian
motion, σ > 0, and γt ∼ Γ

(
t
ν , ν

)
with ν > 0. The compensator ω = − 1

ν ln
(
1− µν − 1

2σ
2ν
)

is
chosen to ensure that EQ(S(t)) = S(0)ert, and this imposes the requirement that (µ+ 1

2σ
2)ν < 1 on

the parameters of the VG process. To calculate ak(z), we first need to compute the characteristic
function ϕLt(z).

Proposition 5.3: Let Lt follow a VG process so that Lt = rt + µγt + σW (γt) − ωt, where
σ > 0, ν > 0, and (µ + 1

2σ
2)ν < 1, under the risk-neutral probability measure. The characteristic

function of Lt is given by

ϕLt(ξ) = eiξ(r−ω)t
(

1
1− iµνξ + 1

2σ
2νξ2

) t
ν

, ξ ∈ C. (28)
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Proof: The proof follows from a result by Madan et al. (1998) for the characteristic function
of the real-world log-return process, appropriately extending the domain of the characteristic
function to the complex plain. �

To calculate ak(z) for the VG process, we utilize Proposition 4.3 and apply residue calculus to
evaluate the contour integral.

Proposition 5.4: Let Lt follow a VG process, where r > ω or, equivalently, (µ+ 1
2σ

2)ν < 1−e−rν

is satisfied. If s = tj∗+k

ν for k = 1, . . . ,m is integer valued then

ak(z) = −2πi [R1(z) +R2(z)] , (29)

where

R1(z) = i

2π

(
1− iµνz + 1

2
σ2νz2

)−s

eiz(r−ω)sν (30)

R2(z) = iz

2π(s− 1)!

(
1
2σ

2ν
)−s

eiξ2s(r−w)ν
s−1∑
j1=0

(s+ j1 − 1)!
j1!

(ξ2 − xi3)−s−j1

s−1−j1∑
j2=0

(−1)s−1−j2

j2!
[is(r − w)v]j2

s−1−j1−j2∑
j3=0

ξ−1−j3
2 (ξ2 + z)j1+j2+j3−s, (31)

where ξ1 = −z and ξ2 = − i
σ2ν

(
µν +

√
µ2ν2 + 2σ2ν

)
. If s is not integer valued for some k, then

we have s = sI + w, where sI = ⌊s⌋ is the integer part of s and w = s − sI , 0 < w < 1.
Then, we estimate ak(z) for a given s as âk(z) = −2πi

[
R1(z) + R̂2(z)

]
, where R̂2(z) = (1 −

w)R2(z)|s=s̃I
+wR2(z)|s=s̃I +1.

Proof: The proof utilizes the Cauchy residue theorem to evaluate the integral along the straight
line ξ = αi as the sum of residues lying below this line and details are therefore omitted. �

To avoid computational difficulties with large numbers, we write (31) in terms of logarithms.
Additionally, in our implementation we identify a condition on the third summation index j3 to
avoid calculating terms that are smaller than a specified level to improve efficiency. We note that
the requirement for s ∈ Z, where Z is the set of integers, imposes the restriction that the number
of monitoring points, m, should not exceed the time period of the contract (measured in the time
units of the VG process calibration). For example, if the calibration is carried out in annual time
units, then we are limited to annual monitoring points. However, if half-yearly monitoring points
are required, this is achieved by calibrating the VG process to semi-annual time units.

6. Numerical Results

In this section, we demonstrate the FTBS method through several numerical examples. First,
using the Laplace transform (LT) based results of Petrella and Kou (2004) as reference prices, we
compute the prices and sensitivities of discrete floating lookback put options under the Brownian
motion and the Merton jump diffusion models of log-returns. Second, using the Dirichlet bridge
sampling method of Kaishev and Dimitrova (2009), we generate reference prices for discrete fixed
lookback call options under the VG process and compare them to the FTBS results. To quantify
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the level of uncertainty around the simulated option price, we repeat the simulation 20 times for
each maturity and strike price with ten million simulations at each pricing point. Our unbiased
estimator of the option price is the sample mean, and we calculate the standard error of the
simulated price to provide an estimate of the simulation error.

In our implementation, we fit optimal splines to both s1(t) and s2(t) in (7) using 200 data points
in [0, 1]. We allocate the data sites in uniform bands: 60% to [0, 0.2), 20% to [0.2, 0.6) and the
remainder to [0.6, 1] (see Haslip and Kaishev (2013) for a further details on this choice of data site
allocation). The numerical implementation is in C++, and all computations have been performed
using an Intel Core I7-3610QM processor. The complex-valued error function is calculated, as
in Petrella and Kou (2004), via the Faddeeva function using an algorithm by Poppe and Wijers
(1990), which ensures an accuracy of 13 digits in almost the entire complex plane.

In Table 2 and 3, we provide a comparison of the results under the FTBS method to the LT
method of Petrella and Kou (2004), under Brownian motion and the Merton jump diffusion process
respectively. We note that Petrella and Kou (2004) use an Intel Pentium 1.8Ghz processor and do
not report the software implementation. To illustrate the efficiency of the FTBS method, instead
of computing the price of two options for observed asset price maximum M = 110 and M = 120,
we price 41 options for M = 101 to M = 140 in steps of one. As described in Section 3.1, the strike-
separable pricing formula is extremely efficient for pricing lookback options at a range of different
strike prices or observed asset price maximum. Our calculations utilize pre-computation of the
required divided differences at the 41 specified asset price maximum levels, as described in Haslip
and Kaishev (2013). It should be noted that the divided difference calculation is independent
of the choice of the exponential semimartingale process. Therefore, for a fixed set of data sites
and corresponding optimal knots, we can pre-compute the divided differences for different values
of R and do not need to calculate this each time an option is priced for a different value of R.
Furthermore, in our implementation, we use same data sites and knots for the Greeks, and hence
the pre-computed divided differences are applied for both pricing and computing the option price
sensitivities.

The reported CPU time for the FTBS method is the time taken to calculate all 41 option prices
and sensitivities and is compared to the time taken for a single option price and sensitivities under
the LT method. We note that our reported CPU times exclude the time taken to pre-compute
the required divided differences, but this is a very quick process which took only 60ms in total
for the 41 individual options. The FTBS method provides results in very close agreement to the
LT method using 200 knots in the optimal interpolation scheme. The FTBS method is faster
than the LT method for all choices of the number of monitoring points m, and the CPU time of
the FTBS is faster by a factor of approximately 5 − 15 times. The substantial improvement in
efficiency for larger m can be explained by the use of the Spitzer-recurrence expansion formula
(24) in computing the characteristic function of the asset price maximum. For example, at m = 80,
for the Merton jump diffusion model, the FTBS method takes 256ms to price 41 options, whereas
the LT method takes 4, 070ms to compute two option prices.

In Table 4, we provide prices for the discrete fixed lookback call option under the VG process
for strike prices K = 105, K = 110, and K = 115 for contracts with annual monitoring points
and contract duration, T , ranging from 5 to 75 years. Again, the CPU times provided correspond
to the total time for computing the price of 40 individual options with strike prices ranging from
K = 101 to K = 140 in steps of one. The results show close agreement with the Monte Carlo
simulation, and differences are well within one standard deviation of the Monte Carlo results.

We note that options with strike price or previous asset price maximum less than or equal to
100 have been intentionally excluded from the numerical study. This is because the price of in-
the-money or at-the-money options can be determined exactly using the closed-form solution in
Lemma 2.2.
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Table 2. Pricing Results for Brownian Motion Discrete Floating Lookback Put
Option

M n Price Delta Gamma Time (ms)
FTBS LT FTBS LT FTBS LT FTBS LT

110 5 13.300 13.300 -0.3567 -0.3568 0.0288 0.0287 2 20
120 5 18.837 18.837 -0.5924 -0.5924 0.0244 0.0244 10
110 10 14.123 14.123 -0.3032 -0.3034 0.0310 0.0309 4 30
120 10 19.323 19.323 -0.5547 -0.5547 0.0260 0.0260 20
110 20 14.806 14.806 -0.2632 -0.2633 0.0320 0.0319 12 60
120 20 19.743 19.743 -0.5238 -0.5237 0.0272 0.0273 70
110 40 15.345 15.345 -0.2332 -0.2333 0.0324 0.0324 40 190
120 40 20.083 20.083 -0.4998 -0.4999 0.0281 0.0281 190
110 80 15.754 15.754 -0.2111 -0.2112 0.0327 0.0327 145 640
120 80 20.346 20.346 -0.4819 -0.4819 0.0287 0.0287 640
110 160 16.059 16.059 -0.1951 -0.1952 0.0329 0.0329 663 2,340
120 160 20.544 20.544 -0.4687 -0.4687 0.0291 0.0291 2,350

Brownian motion parameters: S0 = 100, σ = 0.3, r = 0.1, T = 0.5.
The times (FTBS) are for computing the prices and sensitivities of 41 options,
whereas (LT) are the times quoted by Petrella and Kou (2004) are for computing
the prices and sensitivities of a single option.

Table 3. Pricing Results for Merton Jump Diffusion Discrete Floating Lookback Put
Option

M n Price Delta Gamma Time (ms)
FTBS LT FTBS LT FTBS LT FTBS LT

110 5 12.684 12.683 -0.3919 -0.3919 0.0313 0.0312 10 80
120 5 18.528 18.528 -0.6320 -0.6320 0.0233 0.0233 90
110 10 13.312 13.311 -0.3488 -0.3488 0.0332 0.0331 18 180
120 10 18.886 18.886 -0.6031 -0.6031 0.0249 0.0249 170
110 20 13.812 13.812 -0.3163 -0.3163 0.0342 0.0341 41 350
120 20 19.180 19.180 -0.5805 -0.5805 0.0261 0.0261 350
110 40 14.193 14.193 -0.2925 -0.2924 0.0349 0.0348 98 810
120 40 19.408 19.408 -0.5634 -0.5634 0.0269 0.0269 820
110 80 14.476 14.476 -0.2752 -0.2752 0.0353 0.0353 256 2,000
120 80 19.579 19.580 -0.5508 -0.5508 0.0275 0.0275 2,070
110 160 14.682 14.681 -0.2629 -0.2629 0.0356 0.0356 887 5,550
120 160 19.705 19.706 -0.5417 -0.5417 0.0279 0.0279 5,690

Merton parameters: S0 = 100, σ = 0.21213, λ = 2.23881, µJ = −0.01, σJ =
0.14142, r = 0.1, T = 0.5.
The times (FTBS) are for computing the prices and sensitivities of 41 options,
whereas (LT) are the times quoted by Petrella and Kou (2004) are for computing
the prices and sensitivities of a single option.

7. Conclusion

In this paper, we have presented an entirely new approach to pricing discrete lookback options
that utilizes B-spline interpolation theory to provide an efficient closed-form solution. The FTBS
framework works across the family of exponential semimartingale processes and other models
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Table 4. Variance Gamma Option Pricing Results

T,m K MC MC FTBS Time (sec)
Price S.E. Price

5 105 39.079 0.003 39.080 0.03
110 36.110 0.003 36.110
115 33.303 0.003 33.303

10 105 64.127 0.008 64.126 0.20
110 61.626 0.009 61.626
115 59.203 0.007 59.205

20 105 94.634 0.014 94.639 1.16
110 93.134 0.015 93.096
115 91.635 0.014 91.580

50 105 125.940 0.635 125.797 15.44
110 125.520 0.354 125.484
115 125.350 0.653 125.173

75 105 132.082 2.822 131.086 56.83
110 132.791 4.286 131.006
115 131.611 2.754 130.925

S0 = 100, µ = −0.2859, σ = 0.1927, ν = 0.25, r = 0.0548.

whose characteristic function satisfies certain regularity constraints. Our novel use of the Peano
representation of a divided difference makes the FTBS method extremely efficient. It enables us to
evaluate the pricing integral in closed-form once the integrands have been replaced by the B-spline
approximants.

Numerical examples have demonstrated the accuracy and efficiency of the FTBS method. Our
method also has an important advantage over existing methods for pricing discrete lookback
options in that, once the B-spline interpolant has been fitted to the strike-separable function, we
are able to price lookback options at a range of different strike prices with virtually no additional
computational cost.

Finally, we have given an alternative derivation of the expansion representation of the Spitzer
formula due to Wendel (1958), which we call the Spitzer-recurrence expansion formula. This
provides a substantial efficiency gain over the Spitzer formula. This is one of the key reasons why
our numerical results for the FTBS method have shown such a significant improvement over the
Laplace Transform method of Petrella and Kou (2004) for large numbers of monitoring points
m. Algorithm 1 which implements the Spitzer-recurrence expansion formula is of fundamental
importance since it has many potential applications in wider fields in which the Spitzer formula
is employed.
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Appendix A: Fourier Transform B-spline Method

A.1. The Divided Difference at Repeated Knots (see Ignatov and Kaishev
(1989))

[η0, · · · , η0︸ ︷︷ ︸
v0

, · · · , ηm, · · · , ηm︸ ︷︷ ︸
vm

]f =
m∑

i=0

Dvi−1gi(ηi)
(vi − 1)!

, (A1)

where

gi(t) = f(t)∏l
j=0
j ̸=i

(t− ηj)vj
,

and Dvi−1gi(ti) is the (vi − 1)-th derivative of gi(t) evaluated at t = ηi.

A.2. Proof of Proposition 3.4 (FTBS Lookback Option Price Error
Bound)

From Theorem 1 (formula for the price C(T,R)) we have∣∣∣C(T,R)− C̃(T,R)
∣∣∣ =

=
∣∣∣∣∣−
√
R

π

(∫ 1

0
cos

(1− t
t

logR
)

(s1(t)− s̃1(t)) dt+
∫ 1

0
sin
(1− t

t
logR

)
(s2(t)− s̃2(t)) dt

)∣∣∣∣∣
≤
√
R

π

(∫ 1

0

∣∣∣∣cos
(1− t

t
logR

)
(s1(t)− s̃1(t))

∣∣∣∣ dt+
∫ 1

0

∣∣∣∣sin(1− t
t

logR
)

(s2(t)− s̃2(t))
∣∣∣∣ dt)

≤
√
R

π

(∫ 1

0
|s1(t)− s̃1(t)| dt+

∫ 1

0
|s2(t)− s̃2(t)| dt

)

≤
√
R

π

(
max
t∈[0,1]

|s1(t)− s̃1(t)|+ max
t∈[0,1]

|s2(t)− s̃2(t)|
)

≤
√
R

π

(∥∥∥s(3)
1 (t)

∥∥∥C1 +
∥∥∥s(3)

2 (t)
∥∥∥C2

)
which is the asserted bound. In the last inequality we have used the optimal spline interpolation
bounds max

t∈[0,1]
|(si(t)− s̃i(t))| = ∥si(t)− s̃i(t)∥ ≤ Ci

∥∥∥s(3)
i (t)

∥∥∥ , i = 1, 2 obtained by Gaffney and

Powell (1976). The rate O
(∣∣η̃|3 ) in (22) now follows applying to (21) a result by De Boor (2001)

(Theorem 22, page 154). This completes the proof of Proposition 3.4. �
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A.3. Algorithm for Calculating C̃(T, R)

Algorithm A1 Computation of Lookback option prices using the FTBS method (using identical
sets of knots for interpolation of functions s1(t) and s2(t))
Input:

• Number of data sites p.
• Array specifying data sites τ = {τ1, . . . , τp} with τ1 = 0, τp = 1, and τi ∈ (0, 1) for
j = 2, . . . , p − 1, allocated uniformly, according to the empirically justified rule: 60% in
[0, 0.2), 20% in [0.2, 0.6) and 20% in [0.6, 1).
• The constants r, q, T , R.

Output: C̃(T,R)

(i) Compute knots {ηi}p+3
i=1 , using the approximation in (16) for the interior knots. There-

fore, η1 = η2 = η3 = 0, η3+j = τi+j+τi+j

2 for j = 1, . . . , p−3, and ηp+1 = ηp+2 = ηp+3 = 1.
Note that in our computational implementation, the same knots will be utilized to in-
terpolate functions s1(t) and s2(t), that is we take p = p1 = p2 and ηi = η1,i = η2,i, for
i = 1, . . . , p+ 3.

(ii) Compute divided differences [ηi, ηi+1, ηi+2, ηi+3]f1(t, logR),
and [ηi, ηi+1, ηi+2, ηi+3]f2(t, logR), for i = 1, . . . , p.

(iii) Compute quadratic spline approximants, s̃1(t) and s̃2(t) to s1(t) and s2(t) using function
SPLINT of De Boor (2001). This routine will return the linear coefficients {c1,i}p

i=1 and
{c2,i}p

i=1 (see Section 3.2).
(iv) Compute option prices using Theorem 3.2. That is, first compute Ĩ(R), using formula

(19), and then C̃(T,R) using formula (18) (see Section 3.3).

Appendix B: Spitzer Formula

B.1. Proof of Theorem 4.1 (Spitzer-recurrence Expansion Formula)
We start with the Spitzer-recurrence formula (23). For brevity, we omit the dependence of ϕXm(z)
on the argument z and write ϕm instead of ϕXm . We have

ϕm = 1
m

m−1∑
k=0

ϕkam−k, m = 1, 2 . . . . (B1)

We can rewrite (B1) as

mϕm =
m∑

k=0
ϕkam−k − ϕma0, where a0 ≡ 1.

The latter equality can further be written as

(m+ 1)ϕm =
m∑

k=0
ϕkam−k. (B2)
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Let us now introduce the function

U(u) =
∞∑

m=0
umϕm, with U(0) ≡ 1. (B3)

Noting that U ′(u) = dU
du =

∑∞
m=0 mu

m−1ϕm, we have that

U + uU ′ =
∞∑

m=0
(m+ 1)umϕm. (B4)

Now, multiplying both sides of (B2) by um and summing over m from 0 to ∞, we have

∞∑
m=0

(m+ 1)umϕm =
∞∑

m=0
um

m∑
k=0

ϕkam−k =
∞∑

m=0

m∑
k=0

ϕku
kam−ku

m−k = UA (B5)

where A =
∑∞

j=0 aju
j , and a0 ≡ 1. It follows from (B4) and (B5) that U + uU ′ = UA, which can

be written as

U ′(u)
U(u)

= A(u)− 1
u

=⇒ d log(U) = A− 1
u

du =⇒
t∫

0

d log(U) = log(U(t)) =
t∫

0

A− 1
u

du

=⇒ U(t) = e

t∫
0

A(u)−1
u

du

. (B6)

Now, consider the integral

t∫
0

A(u)− 1
u

du =
t∫

0

∑∞
j=0 aju

j − 1
u

du =
t∫

0

∞∑
k=1

aku
k−1du

=
∞∑

k=1
ak

t∫
0

uk−1du =
∞∑

k=1
ak
tk

k
, (B7)

where in the last equality we have assumed that ak are bounded, that is, |ak|< B. Now, from
(B3), (B6), and (B7) we have

U(t) =
∞∑

m=0
tmϕm = exp

( ∞∑
k=1

ak

k
tk
)

=
∞∑

j=0

1
j!

( ∞∑
k=1

ak

k
tk
)j

.

Hence we can see that ϕm is given by the coefficient of the power tm for m = 1, 2 . . . in the above
expansion. This completes the proof of the theorem. �
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B.2. Proof of Proposition 4.2 (Efficiency of Spitzer-recurrence Expansion
Formula (24))

It is easy to see that the total number of loops in Algorithm 1 is given by

m+
m−1∑
i=1

m−1−i∑
j=0

j∑
k=0

1 = 1
6
m(m2 + 5),

and hence the algorithm has complexity O(m3) �.

B.3. Proof of Proposition 4.2 (Efficiency of Spitzer Formula (23))
First, we note that, if the Spitzer formula for ϕm is expanded computationally as a recursive
function, then there is a total ofm! terms to evaluate (to see this expand the formula for ϕ1, ϕ2, . . . ).
This basic implementation is shown in Algorithm B2 and is a standard way to proceed given its
definition.

Algorithm B2 Computation of ϕXm(z) using the Spitzer recurrence formula
Input: m ∈ N, z ∈ C
Output: ϕXm(z)

if m = 0 then
return 1

else
ϕ← 0
for k = 0, . . . ,m− 1 do
ϕ← ϕ+ ϕXk

(z) ∗ am−k(z)
end for
return ϕ

m
end if

However, Algorithm B2 would not be an efficient implementation, since the coefficients and
expressions in the expansion can be simplified and pre-computed in terms of ak(z). The following
lemma describes a more efficient computational implementation and shows that the number of
terms can be reduced to p(m), where p is the number of integral partitions of m.

Lemma B.1 General Form of Spitzer Recurrence Formula: When fully expanded, the recursive
form of the Spitzer formula (23) has the following general form

ϕXm(z) = 1
m

∑
(i1,...,im)∈Ω

C(i1, ..., im)ai1
1 (z)...aim

m (z), (B8)

where Ω =
{

(i1, ..., im) :
m∑

j=1
ijj = m and ij ∈ Z+, j = 1, ...,m

}
and C(i1, ..., im) are real valued

coefficients that must be determined using numerical methods. The cardinality of Ω is given by
p(m), the number of integer partitions of the number m.

Proof: We show this holds by induction. Define D = {m ∈ N : equation (B8) holds for all l ≤
m, l ∈ N}. First note that ϕ1 = ϕ0a1 = a1

1 and m = 1 ≡ 1 × 1. Hence, 1 ∈ D. Now assume
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m ∈ D, l ∈ N and observe that

ϕm+1 = 1
m+ 1

m∑
k=0

ϕkam+1−k = 1
m+ 1

(
m−1∑
k=0

ϕkam+1−k + ϕma1

)
.

We consider each product on the right hand side of the above. We have

ϕ0a
1
m+1 = a1

m+1 and (m+ 1)× 1 = m+ 1

ϕ1a
1
m = ϕ0a

1
1a

1
m = a1

1a
1
m and 1× 1 +m× 1 = m+ 1

· · ·

ϕka
1
m+1−k = 1

k

∑
(i1,...,ik)∈Ω

C(i1, ..., ik)ai1
1 (z)...aik

k (z)a1
m+1−k and

k∑
j=1

jij + (m+ 1− k)× 1 = m+ 1

· · ·

ϕm−1a
1
m+1−(m−1) = ϕm−1a

1
2 =

∑
(i1,...,im−1)∈Ω

C(i1, ..., im−1)ai1
1 (z)...aim−1

m−1(z)a1
2 and

m−1∑
j=1

jij + 2× 1 = m+ 1.

Hence, we have (m+ 1) ∈ D, and by induction D = N. Finally, by definition of integer partitions,
we see that Ω = p(m). Proposition 4.2 is a direct consequence of Lemma B.1. �


