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Abstract

A well known result is that many of the tests used in econometrics such as the Rao
score (RS) test, may not be robust to misspecified alternatives, that is, when the
alternative model does not correspond to the underlying data generating process.
Under this scenario, these tests spuriously reject the null hypothesis too often. We
generalize this result to GMM based tests. We also extend the method proposed
in Bera and Yoon (Econometric Theory 9, 1993) for constructing RS tests that are
robust to local misspecification to GMM based tests. Finally, a further general-
ization for general estimating and testing functions is developed. This framework
encompasses both the Bera-Yoon likelihood based results as well as its use in the
GMM environment.
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1 Introduction

The standard Rao’s score (RS) test based on the maximum-likelihood (ML) framework

has been extensively used to derive tests for misspecification, especially when the es-

timation of a restricted model is computationally convenient. Nevertheless, Davidson

and MacKinnon (1987) and Saikkonen (1989) showed that the RS test is adversely af-

fected when the alternative hypothesis is incorrectly specified, that is, when the true

model does not correspond to the alternative postulated by the researcher. Bera and

Yoon (1993) proposed a modified RS test (BY test henceforth) that, albeit still based

on a fully restricted ML estimator, is immune to local misspecification. This principle

has been successfully implemented in many econometric ‘model search’ problems, see

for example, Anselin, Bera, Florax and Yoon (1996), Godfrey and Veall (2000), Bera,

Sosa-Escudero and Yoon (2001) and Baltagi and Li (2001).

An obviously restrictive feature of likelihood based procedures is that they require

complete specification of the underlying probabilistic structure of the model, and that

limits the scope of the BY procedure. This paper derives a BY adjusted type test in the

generalized method of moments (GMM) framework, that requires specification of some

moment conditions only. The proposed test can be viewed as a BY type modification

of the Newey and West (1987) formulation of the RS test under GMM setup. A further

generalization provides robust BY tests in a general estimating and testing functions

setup. Bera and Yoon (1993) showed that for local misspecification, their adjusted

test is asymptotically equivalent to Neyman’s (1959) C(α) test, and therefore, the BY

procedure shares its optimality properties. We can expect the tests suggested in this

paper to possess certain optimality properties.
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2 Rao’s Score Test and Local Misspecification

Let us denote the log-likelihood of n i.i.d. random variables z1, z2, . . . , zn by `n(θ), and

consider the following partition of the parameter space θ = (θ′1, θ
′
2, θ
′
3)′. θ1, θ2 and θ3

are, respectively, vectors in open subsets of <p1 , <p2 and <p3 , thus the dimension of θ

is p1 + p2 + p3 = p. Let dj,n(θ) denote the score vectors n−1∂`n(θ)/∂θj , j = 1, 2, 3. The

information matrix J(θ) is given by

J(θ) = −E
[

1
n

∂2ln(θ)
∂θ∂θ′

]
=

 J11(θ) J12(θ) J13(θ)
J12(θ) J22(θ) J23(θ)
J13(θ) J23(θ) J33(θ)

 .
Consider the problem of testing H2

0 : θ2 = θ20 when H3
0 : θ3 = θ30 holds. Let

θ̂ = (θ̂′1, θ
′
20, θ

′
30)′, where θ̂1 is the MLE of θ1 under the joint nullH23

0 : θ2 = θ20, θ3 = θ30.

A standard result is that under the local alternative H2
A : θ2 = θ20+δ2/

√
n, 0 < δ2 <∞,

and H3
0 ,

RS2·1(θ̂) = n d2,n(θ̂)′J−1
2·1 (θ̂)d2,n(θ̂) d−→ χ2

p2(λ2·1),

with J2·1(θ) = J22(θ) − J21(θ)J−1
11 (θ)J12(θ), and the non-centrality parameter λ2·1 =

δ′2J2·1(θ0)δ2, where θ0 = (θ′10, θ
′
20, θ

′
30)′, θ10 being the true value of θ1. Therefore, under

H2
0 , RS2·1(θ̂) has, asymptotically, a central chi-squared distribution and hence asymp-

totically correct size.

Davidson and MacKinnon (1987) and Saikkonen (1989) showed that when the al-

ternative hypothesis is locally misspecified, that is, when H3
A : θ3 = θ30 + δ3/

√
n holds,

RS2·1(θ̂) no longer has a central asymptotic distribution, in fact, they showed that

RS2·1(θ̂) d−→ χ2
p2(λ2/3·1),

with λ2/3·1 = δ′3J32·1(θ0)J−1
2·1 (θ0)J23·1(θ0)δ3 and J23·1(θ) = J23(θ)−J21(θ)J−1

11 (θ)J13(θ) =

J ′32·1(θ). In particular, when J23·1(θ0), that measures the partial covariance between
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d2,n(θ̂) and d3,n(θ̂) after controlling for the linear effect of d1,n(θ̂), is a null matrix,

then λ2/3·1 = 0, i.e., the local misspecification of θ3 has no asymptotic effect on the

performance of RS2·1(θ̂).

Bera and Yoon (1993) proposed a locally size-robust version of RS2·1(θ̂), given by

RS∗2·1(θ̂) = n d∗2·1,n(θ̂)′
[
J2·1(θ̂)− J23·1(θ̂)J−1

2·1 (θ̂)J32·1(θ̂)
]−1

d∗2·1,n(θ̂),

where d∗2·1,n(θ) ≡ d2,n(θ)− J23·1(θ)J−1
3·1 (θ)d3,n(θ), and showed that when H2

0 is true and

H3
0 or H3

A holds, RS∗2·1(θ̂) d−→ χ2
p2(0), so the test is robust to local misspecification

since it preserves the central χ2 asymptotic distribution even under local departures of

θ3 away from θ30.

3 GMM-Based Robust Tests

An obvious restrictive feature of likelihood based procedures is that they require full

specification of the underlying probabilistic model, which limits the scope of the BY

procedure. In this section we derive BY type adjustments to GMM based RS tests,

requiring moment conditions only.

We will assume that there is a vector of m functions g(Z, θ) satisfying the following

moment conditions:

E [g(Z, θ)] = 0 if and only if θ = θ0,

where θ and θ0 are vectors in open subsets of <p, and for identification purposes we

require m ≥ p. The sample analog of the left-hand side of the equation above is

gn(θ) =
1
n

n∑
i=1

g(zi, θ),

and let Ωn(θ) be a m × m positive definite symmetric matrix. We consider the con-

tinuous updating estimator (CUE) version of GMM. See Hansen, Heaton and Yaron

4



(1996). Our (unrestricted) GMM estimator of θ0 will be argmaxθQn(θ), with Qn(θ) =

−1
2gn(θ)′Ω−1

n (θ)gn(θ), which can be viewed as a counterpart of the log-likelihood func-

tion `n(θ). Let Ω(θ) = E[g(Z, θ)g(Z, θ)′]. For asymptotic efficiency we will assume

Ωn(θ)
p−→ Ω(θ) (see Hansen, 1982, and Newey and McFadden, 1994).

Let ∇θg(z, θ) = ∂g(z, θ)/∂θ′ be the m × p Jacobian matrix of g(z, θ), G(θ) =

E[∇θg(Z, θ)] and Gn(θ) = 1
n

∑n
i=1∇θg(zi, θ). Define the counterpart of the score

(pseudo-score) as qn(θ) = −Gn(θ)Ω−1
n (θ)gn(θ), and qj,n(θ) the pj × 1 subvector, j =

1, 2, 3. Also, let B(θ) = G(θ)′Ω−1(θ)G(θ) and Bn(θ) = Gn(θ)′Ω−1
n (θ)Gn(θ). We parti-

tion B(θ) and Bn(θ) the same way we partitioned the information matrix J(θ) for the

three parameter vectors, θ1, θ2 and θ3. The GMM estimator for θ under the joint null

H23
0 is given by θ̂g = argmaxθ Qn(θ) subject to θ2 = θ20, θ3 = θ30.

The equivalent of the score test for H2
0 in the GMM framework is given by

LM2·1(θ̂g) = n q2,n(θ̂g)′ B−1
2·1,n(θ̂g) q2,n(θ̂g),

whereB2·1(θ) = B22(θ)−B21(θ)B11(θ)−1B12(θ), and underH3
0 andH2

A,
√
n q2,n(θ̂g) d−→

N (B2·1(θ0)δ2, B2·1(θ0)), and therefore,

LM2·1(θ̂g) d−→ χ2
p2(λg2·1),

with λg2·1 = δ′2B2·1(θ0)δ2.

As expected, the presence of local misspecification in θ3 adversely affects LM2·1(θ̂g).

The argument follows Saikkonen (1989) closely. Under the regularity conditions in

Newey and MacFaden (1994), Gn(θ̂g)
p−→ G(θ0) and Ωn(θ̂g)

p−→ Ω(θ0)(see Newey and

MacFadden, 1994, Theorem 3.2), and then, by Slutsky’s theorem, Gn(θ̂g)′Ω−1
n (θ̂g)

√
n gn(θ̂g) d−→

G(θ0)′Ω−1(θ0)
√
n gn(θ̂g). Consider the Taylor expansions of q1,n(θ̂g) and q2,n(θ̂g) evalu-

ated at θ∗ = (θ′10, θ
′
20+δ′2/

√
n, θ′30+δ′3/

√
n)′, and note thatG(θ∗)Ω−1(θ∗) = G(θ0)Ω−1(θ0)+
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op(1). Then,

√
n q1,n(θ̂g) =

√
n q1,n(θ∗)−G1(θ0)′Ω−1(θ0)G1(θ0)

√
n
(
θ̂g1 − θ10

)
+G1(θ0)′Ω−1(θ0)G2(θ0) δ2 +G1(θ0)′Ω−1(θ0)G3(θ0) δ3 + op(1),

and

√
n q2,n(θ̂g) =

√
n q2,n(θ∗)−G2(θ0)′Ω−1(θ0)G1(θ0)

√
n
(
θ̂g1 − θ10

)
+G2(θ0)′Ω−1(θ0)G2(θ0) δ2 +G2(θ0)′Ω−1(θ0)G3(θ0) δ3 + op(1).

By the first order conditions of GMM,
√
n q1,n(θ̂g) = 0. Rearranging terms and

using the definition of B, we have

√
n q2,n(θ̂g) =

(
−G′2Ω−1 +B21B

−1
11 G

′
1Ω−1

)√
n gn(θ∗)

+
(
B22 −B21B

−1
11 B12

)
δ2 +

(
B23 −B21B

−1
11 B13

)
δ3 + op(1),

where the matrices G and Ω are evaluated at θ0, but the latter is excluded for notational

convenience. Finally, note that G′2Ω−1√ngn(θ∗)
p−→ 0 and G′1Ω−1√ngn(θ∗)

p−→ 0.

Thus,
√
n q2,n(θ̂g) d−→ N (B2·1δ2 +B23·1δ3, B2·1), where B23·1 = B23 − B21B

−1
11 B13.

Therefore, the asymptotic non-central χ2 distribution of LM2·1(θ̂g) under H2
A : θ2 =

θ20 + δ2/
√
n and H3

A : θ3 = θ30 + δ3/
√
n is a direct consequence of the non-zero mean

of the asymptotic normal distribution. We summarize this result as follows.

Theorem 1 Under H2
0 , but when H3

A holds,
√
nq2,n(θ̂g) d−→ N (B23·1(θ0)δ3, B2·1(θ0))

and LM2·1(θ̂g) d−→ χ2
p2(λg2/3·1), with λg2/3·1 = δ′3B32·1(θ0)B−1

2·1(θ0)B23·1(θ0)δ3, where

B23·1(θ0) = B32·1(θ0)′.

This result can be seen as an extension of Davidson and MacKinnon (1987) and

Saikkonen (1989) to the GMM framework and it has the same implications, as in the
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MLE case, that the test LM2·1(θ̂g) will over reject H2
0 and not provide any information

regarding the source(s) of departure from the tested model.

The procedure for constructing a GMM based locally size-robust test is as follows.

Using Theorem 1 under H2
0 and H3

A,

√
n q2,n(θ̂g)−B23·1(θ0)δ3

d−→ N (0, B2·1(θ0)) .

The asymptotic distribution of the GMM score corresponding to θ3 can be shown

to be
√
n q3,n(θ̂g) d−→ N (B3·1(θ0)δ3, B3·1(θ0)) ,

where B3·1(θ) = B33(θ)−B31(θ)B−1
11 (θ)B13(θ). Therefore,

√
n B3·1(θ0)−1q3,n(θ̂g) d−→ N

(
δ3, B

−1
3·1(θ0)

)
.

Consequently, we have the asymptotic distribution of the effective GMM score, under

H2
0 and irrespective of H3

0 or H3
A, as

√
n
[
q2,n(θ̂g)−B23·1,n(θ̂g)B−1

3·1,n(θ̂g)q3,n(θ̂g)
]

d−→ N
[
0, B2·1(θ0)−B23·1(θ0)B−1

3·1(θ0)B32·1(θ0)
]
.

Since it has mean zero, an asymptotically robust BY type test LM∗2·1(θ̂g) for the

GMM framework can be constructed as follows:

Theorem 2 Under H2
0 , irrespective of whether H3

0 or H3
A holds, LM∗2·1(θ̂g) = n q∗2,n(θ̂g)′[

B2·1,n(θ̂g)−B23·1,n(θ)B−1
3·1,n(θ̂g)B32·1,n(θ̂g)

]−1
q∗2,n(θ̂g)

d→ χ2
p2(0), where q∗2,n(θ) ≡

q2,n(θ)−B23·1(θ)B−1
3·1(θ) q3,n(θ) is the adjusted pseudo-score for θ2.

Note that under H2
A and H3

0 , LM∗2·1(θ̂g)
d→ χ2

p2(λg∗2·1), where λg∗2·1 = δ′2 (B2·1(θ0)

−B23·1(θ0)B−1
3·1(θ0)B32·1(θ0)

)
δ2. It follows that λg2·1 − λ

g∗
2·1 ≥ 0, hence when there is no
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local misspecification, the asymptotic power of LM∗2·1(θ̂g) is less (or equal) than that

of LM2·1(θ̂g). This magnitude can be seen as the cost of insuring against possible local

misspecification, that is, the loss of power incurred by robustifying the test unnecessarily.

4 Generalization to Estimating and Testing Functions

The test statistics presented above can be extended to a more general framework. Let

w(Z, θ) be an r-dimensional vector of functions, and let wn = n−1∑n
i=1w(zi, θ). w(Z, θ)

can be viewed as a general inference function and it will be used both for estimation

and testing under the framework of Newey (1985).

Let Γn be an γ × r matrix with γ ≥ p1, and Γn = Γ + op(1). Assume that the

following estimating equations for θ1 hold:

ΓE [w(Z, (θ1, θ20, θ30))] = 0 only if θ1 = θ10.

Let Πn be an π × r matrix, and Πn = Π + op(1). Assume that a specification test can

be based on the testing equations

ΠE [w(Z, (θ1, θ20, θ30))] = 0 only if θ2 = θ20 and θ3 = θ30.

Let K = E [∂w(Z, θ0)/∂θ1], V = E [w(Z, θ0) w(Z, θ0)′], D = E [w(Z, θ0) d23(Z, θ0)′],

and P = I − K(ΓK)−1Γ. Assume that V and ΓK are non-singular and that the

regularity conditions in Newey (1985) hold. Then under H23
A : θ2 = θ20 + δ2/

√
n, θ3 =

θ30 + δ3/
√
n,
√
n Πnwn

d−→ N (ΠPDδ23,ΠPV P ′Π′), hence

n w′nΠ′n(ΠPV P ′Π′)−1Πnwn
d−→ χ2

π(λπ),

with δ23 = [δ′2, δ
′
3]′ and λπ = (ΠPDδ23)′(ΠPV P ′Π′)−1(ΠPDδ23). In terms of estima-

tion, the ML approach is a special case with scores as estimating functions, and the RS
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tests correspond to the case where the scores are used as test functions (see Bera and

Bilias, 2001). GMM-based estimators and tests can also be constructed using the same

setup with pseudo-scores in the place of scores.

In order to derive locally size-robust tests for H2
0 in the presence of local misspeci-

fication of θ3, let ΠPDδ23 ≡ ∆δ23 ≡ ∆2δ2 + ∆3δ3. The BY approach can be re-stated

as finding ∆̂3 = ∆3 + op(1) and δ̂3 = δ3 +Op(1/
√
n), such that

√
n Πnwn − ∆̂3δ̂3

d−→

N (β(δ2),Σ), where β(.) depends on δ2 but not on δ3, and Σ denotes the asymptotic

variance of
√
n Πnwn − ∆̂3δ̂3. The following result offers a general device to construct

locally size-robust asymptotic tests.

Theorem 3 Assume that two different specification test statistics for H23
0 are available

(say, test statistics A and B), satisfying the assumptions of Newey (1985). For each

test, let ∆A
2 ,∆

A
3 ,∆

B
2 ,∆

B
3 be defined as above, and let ∆̂ denote their consistent estima-

tors. Define m2(3)·1,n = ΠA,nwA,n − ∆̂A
3 (∆̂B

3 )MΠB,nwB,n, where the superscript M de-

notes the Moore-Penrose generalized inverse of a (not necessarily square) matrix. Then,

under H2
A and when H3

0 or H3
A holds,

√
n m2(3)·1,n

d−→ N
[(

∆A
2 −∆A

3 (∆B
3 )M∆B

2

)
δ2,Σ2(3)·1

]
,

where Σ2(3)·1 denotes the asymptotic variance of
√
n m2(3)·1,n. Moreover,

n m′2(3)·1,n Σ̂−1
2(3)·1 m2(3)·1,n

d−→ χ2
ma

(λ2(3)·1),

where λ2(3)·1 = δ′2

(
∆A

2 −∆A
3 (∆B

3 )M∆B
2

)′
Σ−1

2(3)·1

(
∆A

2 −∆A
3 (∆B

3 )M∆B
2

)
δ2 and Σ̂2(3)·1 is

a consistent estimator of Σ2(3)·1.

Proof : The result follows from Newey’s (1985) result and the fact that m2(3)·1,n is a

linear combination of two asymptotically normal statistics.

This result provides a very general framework for testing under locally misspecified
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alternatives, which encompasses the RS and GMM based test derived previously. For

example the robust version of the RS test can be derived in this general framework by

considering as ‘test A’ the RS test for H2
0 , and wA,n(θ) = [d1,n(θ), d2,n(θ)],ΠA = [0, I],

ΓA = [I, 0], ∆A
2 = J2·1(θ0), ∆A

3 = J23·1(θ0), and as ‘test B’ the RS test for H3
0 , and

wB,n(θ) = [d1,n(θ), d3,n(θ)],ΠB = [0, I], ΓB = [I, 0], ∆B
3 = J3·1(θ0), ∆B

2 = J32·1(θ0).

Then, n m′2(3)·1,n Σ̂−1
2(3)·1m2(3)·1,n = RS∗2·1(θ̂), where m2(3)·1,n and Σ̂2(3)·1 are defined

as in Theorem 3 and RS∗2·1(θ̂) is the adjusted RS statistic defined in Section 2. The

modified version of the LM statistic in the GMM framework can be obtained similarly.

5 Conclusions

This paper provides a generalization of the Bera-Yoon principle to GMM based tests and

to general estimating and testing functions. The simplicity of this extension and poten-

tially vast usefulness of the aforementioned principle suggest that further developments

would be desirable.

For instance, the idea can be extended to non-parametric scores as developed in

González-Rivera and Ullah (2001). Another extension would be to consider White

(1982)-type distributional misspecification into the likelihood based BY adjusted RS

tests, as in Bera, Bilias and Yoon (2007). Under certain conditions choosing a convenient

distributional form, although not necessarily the ‘true’ one, is a valid alternative to

the GMM-based testing framework developed here. Finally, it would be interesting to

extend the principle to handle ‘moment function misspecification’ as discussed in Hall

(2005, ch.4).

Although we mentioned some applications of the BY principle, its generalization to

the GMM framework opens up many potential applications. For instance, additional
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features of the econometric model can be incorporated to the Saavedra (2003) testing

framework for spatial dependence based on the method of moments. Anselin, Bera,

Florax and Yoon (1996) used the BY principle to identify the exact source of spatial

dependence (through the error term of the lag of the dependent variable) in spatial

regression models. Such spatial models are increasingly being estimated by method of

moments. It would be interesting to explore the proposed GMM strategy of this paper

in this context. Additionally, our approach can be used to develop specification tests in

any set-up where GMM estimators are preferred to MLE, for example, in the context of

dynamic panel data models (Arellano and Bond, 1991) and selection models (Heckman,

1976).
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