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Asymptotics for panel quantile regression models

with individual effects ∗
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Abstract

This paper studies panel quantile regression models with individual fixed ef-

fects. We formally establish sufficient conditions for consistency and asymptotic

normality of the quantile regression estimator when the number of individuals,

n, and the number of time periods, T , jointly go to infinity. The estimator is

shown to be consistent under similar conditions to those found in the nonlinear

panel data literature. Nevertheless, due to the non-smoothness of the objective

function, we had to impose a more restrictive condition on T to prove asymp-

totic normality than that usually found in the literature. The finite sample

performance of the estimator is evaluated by Monte Carlo simulations.
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1 Introduction

Quantile regression (QR) for panel data has attracted considerable interest in both

the theoretical and applied literatures. It allows us to explore a range of conditional

quantiles, thereby exposing a variety of forms of conditional heterogeneity, and to

control for unobserved individual effects. Controlling for individual heterogeneity via

fixed effects, while exploring heterogeneous covariate effects within the QR framework,

offers a more flexible approach to the analysis of panel data than that afforded by the

classical Gaussian fixed and random effects estimation.

This paper focuses on the estimation of the common parameters in a QR model

with individual effects. We refer to the resulting estimator as the fixed effects quantile

regression (FE-QR) estimator. Unfortunately, the FE-QR estimator is subject to the

incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000, for a review)

and will be inconsistent if the number of individuals n goes to infinity while the number

of time periods T is fixed. It is important to note that, in contrast to mean regression,

to our knowledge, there is no general transformation that can suitably eliminate the

individual effects in the QR model. Therefore, given these difficulties, in the QR panel

data literature, it is usual to allow T to increase to infinity to achieve asymptotically

unbiased estimators. We follow this approach employing a large n, T asymptotics. In

the nonlinear and quantile regression literatures, the large panel data asymptotics is

used in an attempt to cope with the incidental parameters problem.

The incidental parameters problem has been extensively studied in the recent non-

linear panel data literature. Among them, Hahn and Newey (2004) studied the max-

imum likelihood estimation of a general nonlinear panel data model with individual

effects. They showed that the maximum likelihood estimator (MLE) has a limiting

normal distribution with a bias in the mean when n and T grow at the same rate, and

proposed several bias correction methods to the MLE. Note that since they assumed

that likelihood functions are smooth, while the objective function of QR is not, their

results are not directly applicable to the QR case.

Koenker (2004) introduced a novel approach for estimation of a QR model for

panel data. He argued that shrinking the individual parameters towards a common

value improves the performance of the common parameters’ estimates, and proposed

a penalized estimation method where the individual parameters are subject to the

ℓ1 penalty. He also studied the asymptotic properties of the (unpenalized) FE-QR

estimator, claiming its asymptotically normality when na/T → 0 for some a > 0.

We provide an alternative formal approach that offers a clearer understanding of the

asymptotic properties of the FE-QR estimator and the related regularity conditions to
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establish these properties.

The goal of this paper is to study the asymptotic properties of the FE-QR esti-

mator when n and T jointly go to infinity and formally establish sufficient conditions

for consistency and asymptotic normality of the estimator. We show that the FE-QR

estimator is consistent under similar conditions to those found in the nonlinear panel

data literature. We are required to impose a more restrictive condition on T (i.e.,

n2(log n)3/T → 0) to prove asymptotic normality of the estimator than that found in

the literature. This reflects the fact that the rate of remainder term of the Bahadur

representation of the FE-QR estimator is of order (T/ log n)−3/4. The slower conver-

gence rate of the remainder term is due to the non-smoothness of the scores. It is

important to note that the growth condition on T for establishing
√

nT -consistency

of the FE-QR estimator (or other fixed effects estimators in general) is determined so

that it “kills” the remainder term. Thus, the rate of the remainder term is essential

in the asymptotic analysis of the fixed effects estimation when n and T jointly go to

infinity. The theoretical contribution of this paper is the rigorous study of the rate of

the remainder term in the Bahadur representation of the FE-QR estimator, which we

believe is far from trivial.

From a technical point of view, the proof of asymptotic normality of the FE-QR

estimator is of independent interest. Because of the non-differentiability of the objec-

tive function, the stochastic expansion technique of Li, Lindsay, and Waterman (2003)

is no longer applicable to the asymptotic analysis of the FE-QR estimator. Instead,

we adapt the Pakes and Pollard (1989) approach for proving asymptotic normality

of the estimator. In addition, we make use of some inequalities from the empirical

process literature (such as Talagrand’s inequality) to establish the convergence rate

of the remainder term in the Bahadur representation of the FE-QR estimator. These

inequalities significantly simplify the proof. Our results are also extended to the case

where temporal dependence is allowed.

From an applied perspective, however, the required rate condition for asymptotic

normality might be seen as a negative result. The restrictive condition on T is not

found in most of the panel data applications of interest. However, the paper highlights

that special attention needs to be taken with respect to formal asymptotic study in

the QR panel data (see the discussion in Section 3.2). In addition, it shows that small

sample simulations are an important tool to study the estimator’s performance.

We carried out Monte Carlo simulations to study the finite sample performance of

the FE-QR estimator. The simulation study highlights some cases where the FE-QR

estimator has large bias in panels with large n/T . In addition, the results show that,

on the one hand, the estimated standard errors approximates the true ones very closely
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as the sample size increases, but on the other hand, the coverage probability of the

asymptotic Gaussian confidence interval may be inaccurate when n/T is large. This is

probably due to the fact that the variance of the FE-QR estimator decreases when nT

increases while the bias decreases when T increases but is independent of n, so that

the centering of the confidence interval will be severely distorted when n/T is large.

We now review the literature related to this paper. Lamarche (2010) studied

Koenker’s (2004) penalization method and discussed an optimal choice of the tuning

parameter. Canay (2008) proposes a two-step estimator of the common parameters.

The difference is that in his model, each individual effect is not allowed to change

across quantiles. Graham, Hahn, and Powell (2009) showed that when T = 2 and the

explanatory variables are independent of the error term, the FE-QR estimator does

not suffer from the incidental parameters problem. However, their argument does not

apply to the general case. Rosen (2009) addressed a set identification problem of the

common parameters when T is fixed. Chernozhukov, Fernandez-Val, and Newey (2009)

considered identification and estimation of the quantile structural function defined in

Imbens and Newey (2009) of a nonseparable panel model with discrete explanatory

variables. They studied bounds of the quantile structural function when T is fixed and

the asymptotic behavior of the bounds when T goes to infinity.

This paper is organized as follows. In Section 2, we introduce a QR model with

individual fixed effects and the FE-QR estimator we consider. In Section 3, we discuss

the asymptotic properties of the FE-QR estimator. Proofs of the theorems in Section

3 are given in Appendix. In Section 4, we report a simulation study for assessing

the finite sample performance of the FE-QR estimator. In Section 5 we extend the

asymptotic results of Section 3 to the dynamic case where we allow for dependence

across time. Finally, in Section 6 we present some discussion on the paper.

2 Quantile regression with individual effects

In this paper, we consider a QR model with individual effects

Qτ (yit|xit, αi0(τ)) = αi0(τ) + x′
itβ0(τ) (2.1)

where τ ∈ (0, 1) is a quantile index, yit is a dependent variable, xit is a p dimensional

vector of explanatory variables, αi0(τ) is the i-th individual effect, and Qτ (yit|xit, αi0(τ))

is the conditional τ -quantile of yit given (xit, αi0(τ)). In general, each αi0(τ) and β0(τ)

can depend on τ , but we assume τ to be fixed throughout the paper and suppress such

a dependence for notational simplicity, such that αi0(τ) = αi0 and β0(τ) = β0.
1 We

1In our model, the individual effects include the intercept term and the intercept term depends

on the quantile. Thus, the individual effects depend on the quantile. Koenker (2004) used a different
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make no parametric assumption on the relationship between αi0 and xit. Throughout

the paper, the number of individuals is denoted by n and the number of time periods

is denoted by T = Tn that depends on n. In what follows, we omit the subscript n of

Tn.

We consider the fixed effects estimation of β0, which is implemented by treating

each individual effect also as a parameter to be estimated. Throughout the paper,

as in Hahn and Newey (2004) and Fernandez-Val (2005), we treat αi0 as fixed by

conditioning on them.2 We consider the estimator (α̂, β̂) defined by

(α̂, β̂) := arg min
¸,˛

1

nT

n∑
i=1

T∑
t=1

ρτ (yit − αi − x′
itβ), (2.2)

where α := (α1, . . . , αn)′ and ρτ (u) := {τ − I(u ≤ 0)}u is the check function (Koenker

and Bassett, 1978). Note that α implicitly depends on n. We call β̂ the fixed effects

quantile regression (FE-QR) estimator of β0. The optimization for solving (2.2) can

be very large depending on n and T . However, as Koenker (2004) observed, in typical

applications, the design matrix is very sparse. Standard sparse matrix storage schemes

only require the space for the non-zero elements and their indexing locations. This

considerably reduces the computational effort and memory requirements.

It is important to note that in the QR model, there is no general transformation

that can suitably eliminate the individual effects. This intrinsic difficulty has been

recognized by Abrevaya and Dahl (2008), among others, and was clarified by Koenker

and Hallock (2000). They remarked that “Quantiles of convolutions of random vari-

ables are rather intractable objects, and preliminary differencing strategies familiar

from Gaussian models have sometimes unanticipated effects. (p.19)”

3 Asymptotic theory: static case

3.1 Main results

In this section, we investigate the asymptotic properties of the FE-QR estimator.

We first consider the consistency of (α̂, β̂). We say that α̂ is weakly consistent if α̂i

converges in probability to αi0 uniformly over 1 ≤ i ≤ n, that is, max1≤i≤n |α̂i−αi0|
p→

0. We introduce some regularity conditions that ensure the consistency of (α̂, β̂).

approach, where the individual specific intercepts are restricted to be the same across the quantiles.

This procedure can be implemented using weighted QR, as proposed initially by Koenker (1984). It is

important to note that both models are identical for our purposes of estimating a single fixed quantile.
2This treatment is similar to the interpretation of non-stochastic regressors.
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(A1) {(yit, xit), t ≥ 1} is independent and identically distributed (i.i.d.) for each fixed

i and independent across i.

(A2) supi≥1 E[∥xi1∥2s] < ∞ for some real s ≥ 1.

The distribution of (yit,xit) is allowed to depend on i. Put uit := yit − αi0 −x′
itβ0.

Condition (A1) implies that {(uit, xit), t ≥ 1} is i.i.d. for each fixed i and independent

across i. Let Fi(u|x) denote the conditional distribution function of uit given xit = x.

We assume that Fi(u|x) has density fi(u|x). Let fi(u) denote the marginal density of

uit.

(A3) For each δ > 0,

ϵδ := inf
i≥1

inf
|α|+∥˛∥1=δ

E

[∫ α+x′
i1˛

0

{Fi(s|xi1) − τ}ds

]
> 0, (3.1)

where ∥ · ∥1 stands for the ℓ1 norm.3

Condition (A1) is the same as Condition 1 (i) of Fernandez-Val (2005). Hahn

and Newey (2004) also assume temporal and cross sectional independence. In condi-

tion (A1) we exclude temporal dependence to focus on the simplest case first and to

highlight the difficulties arising from the FE-QR estimator. The present results are ex-

tended below (Section 5) to the dependent case under suitable mixing conditions as in

Hahn and Kuersteiner (2004).4 Condition (A2) corresponds to the moment condition

of Fernandez-Val (2005, p.12). Condition (A3) is an identification condition of (α0, β0)

and corresponds to Condition 3 of Hahn and Newey (2004). In fact, it is sufficient for

consistency of (α̂, β̂) that (3.1) is satisfied for any sufficiently small δ > 0. Recall that

Fi(0|xi1) = τ . Under suitable integrability conditions, the expectation in (3.1) can be

expanded as (α,β′)Ωi(α, β′)′ + o(δ2) for |α|+ ∥β∥1 = δ uniformly over i ≥ 1 as δ → 0,

where Ωi := E[fi(0|xi1)(1,x
′
i1)(1, x

′
i1)

′]. If the minimum eigenvalue of Ωi is bounded

away from zero uniformly over i ≥ 1, there exists a positive constant δ0 such that for

0 < δ ≤ δ0, (3.1) is satisfied. The following result states consistency. The proof is

given in the Appendix.

3There is no significant role in the ℓ1 norm, as any norm on a fixed dimensional Euclidean space

is equivalent. The ℓ1 norm is used just to avoid the notation like ∥(αi − αi0, β
′ − β′

0)
′∥.

4The independence assumption is used mainly to apply some standard stochastic inequalities; our

results are extended below to the dependent case by replacing these stochastic inequalities by those

that hold under suitable dependence conditions. We shall mention that the condition on T for the

mean-zero asymptotic normality, which is given in Theorem 3.2 below, is not weakened when the

observations are temporally dependent.
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Theorem 3.1. Assume that n/T s → 0 as n → ∞, where s is given in condition (A2).

Then, under conditions (A1)-(A3), (α̂, β̂) is weakly consistent.

Theorem 3.1 is not covered by Hahn and Newey (2004) and Fernandez-Val (2005)

because they assumed that the parameter spaces of αi0 and β0 are compact. In our

problem, due to the convexity of the objective function, we can remove the compactness

assumption of the parameter spaces. The condition on T in Theorem 3.1 is the same

as that in Theorems 1-2 of Fernandez-Val (2005). If supi≥1 ∥xi1∥ ≤ M (a.s.) for some

positive constant M , then the conclusion of the theorem holds when log n/T → 0 as

n → ∞. See Remark A.1 after the proof of Theorem 3.1 for details.

Next, we derive the limiting distribution of β̂. To this end, we consider another set

of conditions.

(B1) There exists a constant M such that supi≥1 ∥xi1∥ ≤ M (a.s.).

(B2) (a) For each i, fi(u|x) is continuously differentiable with respect to u for each x

and let f
(1)
i (u|x) := ∂fi(u|x)/∂u; (b) there exist constants Cf and Lf such that

fi(u|x) ≤ Cf and |f (1)
i (u|x)| ≤ Lf uniformly over (u,x) and i ≥ 1; (c) fi(0) is

bounded from below by some positive constant independent of i.

(B3) Put γi := E[fi(0|xi1)xi1]/fi(0) and Γn := n−1
∑n

i=1 E[fi(0|xi1)xi1(x
′
i1 − γ ′

i)].

(a) Γn is nonsingular for each n, and the limit Γ := limn→∞ Γn exists and is

nonsingular; (b) the limit V := limn→∞ n−1
∑n

i=1 E[(xi1 − γi)(xi1 − γi)
′] exists

and is nonsingular.

Condition (B1) is assumed in Koenker (2004). This condition is used to ensure

the “asymptotic” first order condition displayed in equation (A.7) in the proof of

Theorem 3.2. Condition (B2) imposes some restrictions on the conditional densities

and is standard in the QR literature (cf. Condition (ii) of Angrist, Chernozhukov, and

Fernandez-Val, 2006, Theorem 3). Condition (B3) is concerned with the asymptotic

covariance matrix of β̂. Condition (B3) (a) implies that the minimum eigenvalue of

Γn is bounded away from zero uniformly over n ≥ 1.

The term γi is the projection of xi1 onto the constant term 1 with respect to the

norm ∥V ∥2 = E[fi(0|xi1)V
2] as E[fi(0|xi1)(xi1−γi)] = 0, and has the same role as the

mean E[xi1] in the mean regression case.5 More formally, the term γi comes from the

fact that the lower p×(n+p) part of the inverse Hessian matrix of the expectation of the

QR objective function in (2.2) evaluated at the truth is given by Γ−1
n [−γ1 · · · −γn Ip].

We now state the main theorem of the paper. The proof is given in the Appendix.

5The norm ∥V ∥2 = E[fi(0|xi1)V 2] is a Fisher-like norm to the QR objective function, as

E[fi(0|xi1)V 2] = d2E[ρτ (ui1 − tV )]/dt2.
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Theorem 3.2. Assume conditions (A1), (A3) and (B1)-(B3). If log n/T → 0 as

n → ∞ but T grows at most polynomially in n, then β̂ admits the expansion

β̂ − β0 + op(∥β̂ − β0∥) = Γ−1
n

[
1

nT

n∑
i=1

T∑
t=1

{τ − I(uit ≤ 0)}(xit − γi)

]
+ Op{(T/ log n)−3/4}. (3.2)

If moreover n2(log n)3/T → 0, then we have

√
nT (β̂ − β0)

d→ N{0, τ(1 − τ)Γ−1V Γ−1}.

The restriction that T grows at most polynomially in n is only to simplify the expo-

sition, as it ensures log T = O(log n). We shall stress that the Bahadur representation

(3.2) is valid without the condition that n2(log n)3/T → 0. This condition is used only

to “kill” the remainder term (the second term on the right side of (3.2)). Some other

specific comments are listed in the next subsection.

We now turn to estimate the asymptotic covariance matrix. The estimation of

Γ and V depends on the conditional densities, and therefore, they are not directly

estimated by their sample analogues because the conditional densities are unknown.

We consider the kernel estimation of the matrices Γ and V . Let K : R → R denote a

kernel function (probability density function). Let {hn} denote a sequence of positive

numbers (bandwidths) such that hn → 0 as n → ∞. We use the notation Khn(u) =

h−1
n K(u/hn). Let ûit = yit − α̂i − x′

itβ̂, which can be viewed as an “estimator” of uit.

It is seen that Γ and V can be estimated by

Γ̂ :=
1

nT

n∑
i=1

T∑
t=1

Khn(ûit)xit(xit − γ̂i)
′, V̂ :=

1

nT

n∑
i=1

T∑
t=1

(xit − γ̂i)(xit − γ̂i)
′,

where

f̂i :=
1

T

T∑
t=1

Khn(ûit), γ̂i :=
1

f̂iT

T∑
t=1

Khn(ûit)xit.

To guarantee the consistency of Γ̂ and V̂ , we assume:

(C1) The kernel K is continuous, bounded and of bounded variation on R.

(C2) hn → 0 and log n/(Thn) → 0 as n → ∞.

Condition (C1) is an assumption we only make on the kernel. Most standard

kernels such as Gaussian and Epanechnikov kernels satisfy condition (C1). Although

the uniform kernel does not satisfy condition (C1) as it is not continuous, the continuity

of the kernel is used only to ensure that the class of functions {(u,x) 7→ K((u − α −
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x′β)/hn) : (α, β) ∈ Rp+1} is pointwise measurable, and it is verified that the uniform

kernel also ensures this property.6 Condition (C2) is a restriction on the bandwidth

hn. The bandwidth hn needs to be slightly slower than T−1.

Proposition 3.1. Assume conditions (A1), (A3), (B1)-(B3) and (C1)-(C2). If T

grows at most polynomially in n, we have Γ̂
p→ Γ and V̂

p→ V .

We shall mention that the consistency of Γ̂ and V̂ only requires the consistency

of (α̂, β̂), which is guaranteed by conditions (A1), (A3), (B1) and (C2) (observe that

condition (C2) implies that log n/T → 0). It is now straightforward to see that the

asymptotic covariance matrix of β̂, τ(1 − τ)Γ−1V Γ−1, is consistently estimated by

τ(1 − τ)Γ̂−1V̂ Γ̂−1.

3.2 Discussion on Theorem 3.2

In this subsection, we give some discussion on Theorem 3.2.

1. Relation to Hahn and Newey (2004): Equations (10) and (17) in Hahn and

Newey (2004) show that the MLE of the common parameters for smooth likelihood

functions admits the representation

θ̂ − θ0 =

(
1

n

n∑
i=1

Ii

)−1 (
1

nT

n∑
i=1

T∑
t=1

Uit

)
+

1

2T
θϵϵ(0) +

1

6T 3/2
θϵϵϵ(ϵ̃), (3.3)

where θ̂, θ0, Ii, Uit, θ
ϵϵ(·) and θϵϵϵ(·) are defined in Hahn and Newey (2004) and ϵ̃ is

in [0, T−1/2]. Under suitable regularity conditions, θϵϵ(0) is Op(1) and θϵϵϵ(ϵ) is Op(1)

uniformly over ϵ ∈ [0, T−1/2], which implies that the last two terms on the right side

of equation (3.3) are Op(T
−1) and Op(T

−3/2), respectively.7

The difference from their result is that the rate of the remainder term of the FE-

QR estimator (the second term on the right side of (3.2)) is roughly T−3/4, which is

significantly slower than T−1. Hahn and Newey (2004) assumed that the scores are

sufficiently smooth with respect to the parameters. On the other hand, the scores for

problem (2.2), which are formally defined in Appendix, are not differentiable (in fact

they consist of indicator functions). This means that, in contrast to estimators with

smooth objective functions that have been studied in the literature such as Li, Lindsay,

and Waterman (2003), Hahn and Newey (2004) and Fernandez-Val (2005), the Taylor-

series methods of asymptotic distribution theory do not apply to the FE-QR estimator,

6See Appendix B for the definition of the pointwise measurability.
7In fact, Hahn and Newey (2004) showed that θϵϵ(0) converges in probability to some constant

vector, which will contribute to the bias in the asymptotic distribution when n and T grow at the

same rate.
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which greatly complicates the analysis of its asymptotic distributional properties. The

difficulty is partly explained by the fact that, as Hahn and Newey (2004) observed, the

first order asymptotic behavior of the (smooth) MLE of the common parameters can

be affected by the second order behavior of the estimators of the individual param-

eters, while the second order behavior of QR estimators is non-standard and rather

complicated (Arcones, 1998; Knight, 1998). In particular, for cross-sectional models,

the second order of the QR estimator is n−3/4 and not n−1 when the sample size is

n. We shall mention that our proof strategy leads to the standard condition (i.e.,

n/T → 0) up to the log term for the mean-zero asymptotic normality when the scores

are smooth (see the remark after the proof of Theorem 3.2 for the technical reason

why the slower rate appears).

However, it should be pointed out that although the above rate of the remainder

term is the best one (up to the log term) that we could achieve, there might be a

room for improvement on the rate, which means that our condition for the asymp-

totic normality is only a sufficient one. It is an open question whether the mean-zero

asymptotic normality holds under the standard assumption that n/T → 0.

2. Relation to Koenker (2004): Koenker (2004) claimed asymptotic normality of

the FE-QR estimator under similar conditions to ours except that he assumed that

na/T → 0 for some a > 0. We believe that our proof of asymptotic normality offers a

clearer understanding of the asymptotic properties of the FE-QR estimator than that

in his Theorem 1. Actually, in his proof, a formal proof for
√

nT -consistency of β̂ is

not offered, and a justification for the second expression of Rmn in p.82 when n and m

(in his notation) jointly go to infinity is not presented.

3. Relation to He and Shao (2000): He and Shao (2000) studied a general M -

estimation with diverging number of parameters that allows for non-smooth objective

functions. It is interesting to note that their Corollary 3.2 shows that the smoothness

of scores is crucial for the growth condition of the number of parameters in asymptotic

distribution theory of M -estimators. However, it should be pointed out that our Theo-

rem 3.2 is not derived from their result because of the specific nature of the panel data

problem. The formal problem to apply their result is that the convergence rate of α̂i

is different from that of β̂. To avoid this, make a reparametrization θ = (n−1/2α′,β′)′

and put zit := (n1/2e′
i,x

′
it)

′, where ei is the i-th unit vector in Rn. Then, the cur-

rent problem is under the framework of He and Shao (2000) with xi = (yit,zit),m =

(n + p), p = (n + p), n = nT, θ = θ and ψ(xi, θ) = {τ − I(yit ≤ z′
itθ)}zit.

8 Although

conditions (C0)-(C3) may be achieved in this case, it is difficult to obtain a tight bound

8The left sides correspond to the notation of He and Shao (2000) and the right sides correspond

to our notation.
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of A(n,m) in conditions (C4) and (C5) of their paper. If we use the same reasoning as

in Lemma 2.1 of He and Shao (2000), A(n,m) is bounded by a constant times n3/2T 1/2

(in our notation), but if we use this bound, the condition on T implied by Theorem

2.2 of He and Shao (2000) will be such that n3(log n)2/T → 0.

4. On the proof of Theorem 3.2: The proof of Theorem 3.2 is of independent in-

terest. The proof proceeds as follows. It is based on the method of Pakes and Pollard

(1989), but requires some extra efforts. The first step is to obtain certain representa-

tions of α̂i−αi0 by expanding the first n elements of the scores. Plugging them into the

expansion of the last p elements of the scores, we obtain a representation of β̂−β0 (see

(A.5)). The remaining task is to evaluate the remainder terms in the representation

of β̂−β0, which corresponds to establishing the stochastic equicontinuity condition in

Pakes and Pollard (1989). However, since the number of parameters goes to infinity

as n → ∞, the “standard” empirical process argument such as that displayed in their

paper will not suffice to show this. In order to establish the convergence rate of the

remainder terms, we make use of some empirical process techniques such as celebrated

Talagrand’s (1996) inequality, which significantly simplify the proof.

4 Monte Carlo

We investigate the finite sample performance of the FE-QR estimator. Two simple

versions of model (2.1) are considered in the simulation study:

1. Location shift model: yit = ηi + xit + ϵit;

2. Location-scale shift model: yit = ηi + xit + (1 + γxit)ϵit,

where xit = 0.3ηi + zit, zit ∼ i.i.d. χ2
3, ηi ∼ i.i.d. U [0, 1] and ϵit ∼ i.i.d. F with

F = N(0, 1), χ2
3 or Cauchy. In the location shift model, αi0 = αi0(τ) = ηi + F−1(τ)

and β0(τ) = 1, while in the location-scale shift model, αi0 = αi0(τ) = ηi + F−1(τ)

and β0 = β0(τ) = 1 + γF−1(τ). We consider cases where n ∈ {25, 50, 100, 200},
T ∈ {5, 10, 50, 100} and τ ∈ {0.25, 0.50, 0.75}. For the location-scale shift model we

use γ ∈ {0.5, 1}.
Tables 1, 4 and 7 report the bias and the standard deviation of the FE-QR estima-

tor. Tables 2, 5 and 8 report the average of the estimated standard error (together with

its standard deviation) described in Proposition 3.1. Finally, the empirical coverage

probability of the asymptotic Gaussian confidence interval at the 95% nominal level

is constructed using this estimated standard error (tables 3, 6 and 9). The empirical

coverage probability is also computed. The number of Monte Carlo repetitions is 5000

in all cases.
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4.1 Bias

The performance of the FE-QR estimator is evaluated first by its bias. Tables 1, 4 and

7 report the results for the location shift and location-scale shift (γ = 0.5, 1) models,

respectively. For the median, the results are in line with those of Koenker (2004), where

in both models the FE-QR estimator has small bias and standard deviation in small

samples. However, there are noticeable differences for the first and third quartiles.

In the location shift model, the bias is small in every case and the standard errors

decrease monotonically as either n or T increases. In the location-scale shift model,

however, both bias and standard errors are large for small T . In particular, the bias

is considerable in the Cauchy and χ2
3 case (in the latter for the third quartile) and

T = 5, 10. Moreover, the bias is much larger for the γ = 1 case than for γ = 0.5.9

These results suggest that the FE-QR estimator performs well in small samples for

the location shift model but may have a large bias for the location-scale shift model

where the quantile of interest is evaluated at an associated low density (i.e., F = χ2
3

and τ = 0.75 case) when T is small. Overall, these simulations confirm that the bias

exists for small T and does not depend on n.

4.2 Inference

To study the inference procedure based on the FE-QR estimator, we first compute

the estimated standard error.10 The results are reported in tables 2, 5 and 8 for the

location shift and location-scale shift (γ = 0.5, 1) cases, respectively. We also report

the sample standard deviation of the estimator based on the Monte Carlo repetitions

By comparing table 2 with 1, 5 with 4 and 8 with 7, we may see that the estimated

standard error approximates very closely the truth. Second, we calculate the empirical

coverage probability of the asymptotic Gaussian confidence interval at the 95% nominal

level. In this case, the greater distortions appear in the location-scale shift case for

large n/T , and in particular for the χ2
3 case and τ = 0.75. The distortion is very severe

for T = 5, 10 and n = 200 for all distributions, despite the fact that the estimated

standard error approximate well the truth. This possibly reflects that the variance of

the FE-QR estimator decreases when nT increases while the bias decreases when T

increases but is independent of n, so that the centering of the confidence interval will

be severely distorted when n/T is large.

9Although not reported, we have also performed the same experiments for γ = 0.2. In this case

the bias is smaller than for γ = 0.5.
10For estimation of the asymptotic covariance matrix, we use the Gaussian kernel and the default

bandwidth option in the quantreg package in R.
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5 Extension: dynamic case

We now extend the asymptotic results in Section 3 to the dynamic case where we

allow for dependence across time while maintaining independence across individuals.

We make the following assumptions in this case.

(D1) {(yit,xit), t ≥ 1} is stationary and β-mixing for each fixed i, and independent

across i. Let βi(j) denote the β-mixing coefficients of {(yit, xit), t ≥ 1}. Then,

there exist constants a ∈ (0, 1) and B > 0 such that supi≥1 βi(j) ≤ Baj for all

j ≥ 1.

(D2) Let fi,j(u1, u1+j|x1, x1+j) denote the conditional density of (ui1, ui,1+j) given

(xi1, xi,1+j) = (x1,x1+j). There exists a constant C ′
f > 0 such that fi,j(u1, u1+j|x1, x1+j) ≤

C ′
f uniformly over (u1, u1+j, x1,x1+j) for all i ≥ 1 and j ≥ 1.

(D3) Let Ṽni denote the covariance matrix of the term T−1/2
∑T

t=1{τ−I(uit ≤ 0)}(xit−
γit). Then, the limit Ṽ := n−1

∑n
i=1 Ṽni exists and is nonsingular.

Condition (D1) is similar to Condition 1 of Hahn and Kuersteiner (2004). Condition

(D2) imposes new restrictions on the conditional densities. Note that in Condition (D3)

now Ṽni is now a long run covariance matrix.

The next theorem shows that similar asymptotic results to those in Section 3 are

obtained for the dependent case. The proof is given in the Appendix.

Theorem 5.1. Assume conditions (D1)-(D3), (A3) and (B1)-(B3). Then, (α̂, β̂) is

weakly consistent provided that (log n)2/T → 0. If (log n)2/T → 0 but T grows at most

polynomially in n, then β̂ admits the expansion (3.2). If moreover n2(log n)3/T → 0,

then we have
√

nT (β̂ − β0)
d→ N(0, Γ−1Ṽ Γ−1).

In proving Theorem 5.1, we need some extensions of empirical process inequalities to

β-mixing sequences, which we believe is a nontrivial task. We develop those extensions

in Appendix C, which are useful in other contexts such as asymptotic analysis of sieve

estimation for β-mixing sequences.

6 Discussion

In this paper, we have studied the asymptotic properties of the FE-QR estimator. The

results found in this paper show that the asymptotic theory for panel models with

non-differentiable objective functions, as in the QR case, should be analyzed carefully.

Usually the limiting distribution under the joint asymptotics coincides with that under
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the sequential asymptotics as long as n/T goes to zero, as is well recognized in the

literature. However, this paper draws a caution that such a result may not directly

apply to the QR case.

There remain several issues to be investigated.

It is an open question whether the convergence rate of the remainder term in (3.2)

can be improved to Op(T
−1). It should be pointed out that although the rate of the

remainder term derived in this paper is the best one that we could achieve at this point,

there might be a room for improvement on the rate, which means that our condition

for the asymptotic normality is only a sufficient one. However, although we could not

formally show in this paper, we conjecture that n/T → 0 is a sufficient condition to

asymptotic normality of QR panel data. Kato and Galvao (2010) used a smoothed

version of the FE-QR estimator to derive the asymptotic bias of the estimator when

n/T → ρ > 0. Thus, the smoothed estimator is unbiased for n/T → 0. However, it

is important to note that the derivation makes use of the smoothness of the objective

and the score functions, which is not applicable to this paper. The challenge in the

present context is that higher order expansions for the standard QR is a very difficult

subject.

Since there is a large literature on analytical bias correction for large panel data,

one could wonder about deriving the asymptotic bias in the present context of FE-QR

estimation. There are at least two important reasons to explain the degree of difficulty

in the FE-QR case. First, the rate Op{(T/ log n)−3/4} in the Bahadur representation

in Theorem 3.2 comes from the rate of the score terms, as defined in the proof of

Theorem 3.2. Unfortunately, a direct expansion of these terms with respect to (α̂, β̂)

and the simple evaluation of the mean and variance is not feasible.11 It is important

to note that for each i, the convergence rate of (α̂i, β̂) is dominated by α̂i, and thus is

at most T−1/2. However, because of the non-smoothness of the indicator function, the

evaluation of these terms based on some moment inequalities for empirical processes

(such as Proposition B.1) leads to the rate Op{max1≤i≤n |α̂i − αi0|3/2}, which turns

out to be Op(T
−3/4) (log n term is ignored for simplicity). Thus, a more refined result

(such as a bias result) could be obtained if one could establish the probability limits of

these terms (scaled by a suitable term), which is thought to be a quite challenging task

and is not solved in this paper.12 Secondly, there is another difficulty to obtain a bias

result to the FE-QR estimator. This is related to indeterminateness of the higher order

11A way to deal with such terms is to consider them as empirical processes indexed by (α, β), and

establish the rates by using the preliminary rates of (α̂, β̂). This is what the present proof does.
12To obtain a bias result, establishing the exact probability limits of these terms would be essential,

because the corresponding terms in the standard smooth case contribute to the bias of the resulting

fixed effects estimator.
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behavior of quantile regression estimators. Consider, for illustrative purposes, a sample

τ -quantile of uniform random variables u1, . . . , un on [0, 1] where τ ∈ (0, 1) is fixed and

nτ is integer. Let u(1) < · · · < u(n) denote the order statistics of u1, . . . , un. Then, the

sample τ -quantile is usually given by u(nτ). However, if we view of the sample quantile

as a solution to the QR minimization problem, it can be any value in [u(nτ), u(nτ+1)], of

which the mean length is of order n−1. This means that the higher order behavior of

the sample τ -quantile at n−1 rate is not fully determined if we take the sample quantile

as a solution to the QR minimization problem. Since the asymptotic bias of the general

fixed effect estimator depends on the higher order behavior of the estimators of the

individual parameters at T−1 rate, this indeterminateness would be another challenge

to obtain a bias result to the FE-QR estimator.

A Proofs

A.1 Proof of Theorem 3.1

Put Mni(αi, β) := T−1
∑T

t=1 ρτ (yit−αi−x′
itβ) and ∆ni(αi,β) := Mni(αi, β)−Mni(αi0,β0).

For each δ > 0, define Bi(δ) := {(α, β) : |α − αi0| + ∥β − β0∥1 ≤ δ} and ∂Bi(δ) :=

{(α, β) : |α − αi0| + ∥β − β0∥1 = δ}.

Proof of Theorem 3.1. We divide the proof into two steps.

Step 1. We first prove β̂
p→ β0. Fix any δ > 0. For each (αi,β) /∈ Bi(δ), define

α̃i = riαi + (1 − ri)αi0, β̃i = riβ + (1 − ri)β0, where ri = δ/(|αi − αi0| + ∥β − β0∥1).

Note that ri ∈ (0, 1) and (α̃i, β̃i) ∈ ∂Bi(δ). Because of the convexity of the objective

function, we have

ri{Mni(αi,β) − Mni(αi0,β0)} ≥ Mni(α̃i, β̃) − Mni(αi0, β0)

= {E[∆ni(α̃i, β̃i)]} + {∆ni(α̃i, β̃i) − E[∆ni(α̃i, β̃i)]}. (A.1)

Use the identity of Knight (1998) to obtain

E[∆ni(αi,β)] = E

[∫ (αi−αi0)+x′
i1(˛−˛0)

0

{Fi(s|xi1) − τ}ds

]
.

From condition (A3), the first term on the right side of equation (A.1) is greater than

or equal to ϵδ for all 1 ≤ i ≤ n. Thus, by (A.1), we obtain the inclusion relation{
∥β̂ − β0∥1 > δ

}
⊂ {Mni(αi, β) ≤ Mni(αi0,β0), 1 ≤ ∃i ≤ n, ∃(αi, β) /∈ Bi(δ)}

⊂

{
max
1≤i≤n

sup
(αi,˛)∈Bi(δ)

|∆ni(αi, β) − E[∆ni(αi,β)]| ≥ ϵδ

}
.

15



The first inclusion follows from the following argument. Suppose that ∥β̂ − β0∥1 > δ.

Then, (α̂i, β̂) /∈ Bi(δ) for all 1 ≤ i ≤ n. If Mni(α̂i, β̂) > Mni(αi0,β0) for all 1 ≤ i ≤ n,

then
∑n

i=1 Mni(α̂i, β̂) >
∑n

i=1 Mni(αi0, β0), which however contradicts the definition of

(α̂, β̂). Thus, Mni(α̂i, β̂) ≤ Mni(αi0, β0) for some 1 ≤ i ≤ n, which leads to the first

inclusion.

Therefore, it suffices to show that for every ϵ > 0,

lim
n→∞

P

{
max
1≤i≤n

sup
(αi,˛)∈Bi(δ)

|∆ni(αi,β) − E[∆ni(αi,β)]| > ϵ

}
= 0. (A.2)

[Recall that T = Tn is indexed by n, and n → ∞ automatically means that T = Tn →
∞.]

Because of the union bound, it suffices to prove that for every ϵ > 0,

max
1≤i≤n

P

{
sup

(α,˛)∈Bi(δ)

|∆ni(α,β) − E[∆ni(α,β)]| > ϵ

}
= o(n−1). (A.3)

We follow the proof of Fernandez-Val (2005, Lemma 7) to show (A.3). Without loss

of generality, we may assume that αi0 = 0 and β0 = 0. Then, Bi(δ) is independent

of i and write Bi(δ) = B(δ) for simplicity. Put gα,˛(u, x) := ρτ (u − α − x′β) − ρτ (u).

Observe that |gα,˛(u,x) − gᾱ, ¯̨(u, x)| ≤ C(1 + ∥x∥1)(|α − ᾱ| + ∥β − β̄∥1) for some

universal constant C > 0. Put L(x) := C(1 + ∥x∥1) and κ := supi≥1 E[L(xi1)].

Since B(δ) is a compact subset of Rp+1, there exist K ℓ1-balls with centers (α(j),β(j)),

j = 1, . . . , K and radius ϵ/(7κ) such that the collection of these balls covers B(δ).

Note that K is independent of i and can be chosen such that K = K(ϵ) = O(ϵ−p−1)

as ϵ → 0. Now, for each (α, β) ∈ B(δ), there is a j ∈ {1, . . . , K} such that

|gα,˛(u, x)− gα(j),˛(j)(u, x)| ≤ L(x)ϵ/(7κ), which leads to |∆ni(α,β)−E[∆ni(α, β)]| ≤
|∆ni(α

(j),β(j))−E[∆ni(α
(j),β(j))]|+ {ϵ/(7κ)} · |T−1

∑T
t=1{L(xit)−E[L(xi1)]}|+ 2ϵ/7.

Therefore, we have

P

{
sup

(α,˛)∈B(δ)

|∆ni(α, β) − E[∆ni(α, β)]| > ϵ

}

≤
K∑

j=1

P
{
|∆ni(α

(j),β(j)) − E[∆ni(α
(j), β(j))]| >

ϵ

3

}
+ P

{
1

T

∣∣∣∣∣
T∑

t=1

{L(xit) − E[L(xi1)]}

∣∣∣∣∣ >
7κ

3

}
. (A.4)

Since supi≥1 E[L2s(xi1)] < ∞, application of the Marcinkiewicz-Zygmund inequality

(see Corollary 2 in Chow and Teicher, 1997, p. 387) implies that both terms on the

right side of (A.4) are O(T−s) uniformly over 1 ≤ i ≤ n. Because of the hypothesis on
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T , they are o(n−1), leading to (A.3).

Step 2. Next, we shall show that max1≤i≤n |α̂i − αi0|
p→ 0. Recall that α̂i =

arg minα Mni(α, β̂). Fix any δ > 0. For each αi ∈ R such that |αi − αi0| > δ, de-

fine α̃i = riαi + (1 − ri)αi0, where ri = δ/|αi − αi0|. Because of the convexity of the

objective function, we have

ri{Mni(αi, β̂) − Mni(αi0, β̂)} ≥ Mni(α̃i, β̂) − Mni(αi0, β̂)

= Mni(α̃i, β̂) − Mni(αi0,β0) − {Mni(αi0, β̂) − Mni(αi0, β0)}

= {∆ni(α̃i, β̂) − E[∆ni(α̃i, β)]|˛= ˆ̨} − {∆ni(α0i, β̂) − E[∆ni(α0i, β)]|˛= ˆ̨}

+ E[∆ni(α̃i,β0)] + {E[∆ni(α̃i,β)]|˛= ˆ̨ − E[∆ni(α̃i,β0)]} + E[∆ni(α0i,β)]|˛= ˆ̨.

It is seen from condition (A3) that the third term on the right side is greater than or

equal to ϵδ. Thus, we obtain the inclusion relation

{|α̂i − αi0| > δ, 1 ≤ ∃i ≤ n}

⊂ {Mni(αi, β̂) ≤ Mni(αi0, β̂), 1 ≤ ∃i ≤ n, ∃αi ∈ R s.t. |αi − αi0| > δ}

⊂

{
max
1≤i≤n

sup
|α−αi0|≤δ

|∆ni(α, β̂) − E[∆ni(α, β)]|˛= ˆ̨| ≥
ϵδ

4

}

∪

{
max
1≤i≤n

sup
|α−αi0|≤δ

||E[∆ni(α, β)]|˛= ˆ̨ − E[∆ni(α, β0)]| ≥
ϵδ

4

}
=: A1n ∪ A2n.

Since β̂ is consistent by Step 1, and especially β̂ = Op(1), by (A.2), it is shown that

P(A1n) → 0. Finally, since

|E[∆ni(α,β)] − E[∆ni(α,β0)]| ≤ 2E[∥xi1∥]∥β − β0∥,

and supi≥1 E[∥xi1∥] ≤ 1+supi≥1 E[∥xi1∥2s] < ∞, consistency of β̂ implies that P(A2n) →
0. Therefore, we complete the proof.

Remark A.1. If supi≥1 ∥xi1∥ ≤ M (a.s.) for some constant M , we may take L(x) ≡
C(1 + M) and the second term on the right side of (A.4) will vanish. In this case,

we can apply Hoeffding’s inequality to the first term on the right side of (A.4) and

the probability in (A.3) is bounded by D exp(−DT ) for some positive constant D that

depends on ϵ but not on i. Therefore, the conclusion of Theorem 3.1 holds when

log n/T → 0 as n → ∞ in this case.

17



A.2 Proof of Theorem 3.2

Define

H(1)
ni (αi,β) :=

1

T

T∑
t=1

{τ − I(yit ≤ αi + x′
itβ)},

H
(1)
ni (αi, β) := E[H(1)

ni (αi, β)] = E[{τ − Fi(αi − αi0 + x′
i1(β − β0)|xi1)}],

H(2)
n (α,β) :=

1

nT

n∑
i=1

T∑
t=1

{τ − I(yit ≤ αi + x′
itβ)}xit,

H(2)
n (α,β) := E[H(2)

n (α,β)] =
1

n

n∑
i=1

E[{τ − Fi(αi − αi0 + x′
i1(β − β0)|xi1)}xi1].

Note that H(1)
ni (αi,β) depends on n since T does. The (n + p) dimensional vector of

functions [H(1)
n1 (α1, β), . . . , H(1)

nn(αn,β), H(2)′
n (α,β)]′ are called the scores for problem

(2.2).

Before starting the proof, we introduce some notation used in empirical process

theory. Let F be a class of measurable functions on a measurable space (S,S). For a

process Z(f) defined on F , ∥Z(f)∥F := supf∈F |Z(f)|. For a probability measure Q on

(S,S) and ϵ > 0, let N(F , L2(Q), ϵ) denote the ϵ-covering number of F with respect to

the L2(Q) norm ∥ · ∥L2(Q). For the definition of a Vapnik-Červonenkis (VC) subgraph

class, we refer to van der Vaart and Wellner (1996), Section 2.6. For a, b ∈ R, we use

the notation a ∨ b := max{a, b}.

Proof of Theorem 3.2. Recall first that by Theorem 3.1, under the present conditions,

(α̂, β̂)) is weakly consistent. We divide the proof into several steps.

Step 1 (Asymptotic representation). We shall show that

β̂ − β0 + op(∥β̂ − β0∥) = Γ−1
n {−n−1

∑n
i=1H

(1)
ni (αi0, β0)γi + H(2)

n (α0,β0)}

− Γ−1
n [n−1

∑n
i=1γi{H(1)

ni (α̂i, β̂) − H
(1)
ni (α̂i, β̂) − H(1)

ni (αi0, β0)}]

+ Γ−1
n {H(2)

n (α̂, β̂) − H(2)
n (α̂, β̂) − H(2)

n (α0, β0)}

+ Op{T−1 ∨ max
1≤i≤n

|α̂i − αi0|2}. (A.5)

Because of the computational property of the QR estimator (see equation (3.10) of

Gutenbrunner and Jureckova, 1992), it is shown that max1≤i≤n |H(1)
ni (α̂i, β̂)| = Op(T

−1).

Thus, uniformly over 1 ≤ i ≤ n, we have

Op(T
−1) = H(1)

ni (αi0,β0) + H
(1)
ni (α̂i, β̂) + {H(1)

ni (α̂i, β̂) − H
(1)
ni (α̂i, β̂) − H(1)

ni (αi0, β0)}.

Expanding H
(1)
ni (α̂i, β̂) around (αi0, β0), we have

α̂i − αi0 = {fi(0)}−1H(1)
ni (αi0, β0) − γ ′

i(β̂ − β0)

+ {fi(0)}−1{H(1)
ni (α̂i, β̂) − H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)} + r̂ni, (A.6)
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where max1≤i≤n |r̂ni| = Op{T−1 ∨ max1≤i≤n |α̂i − αi0|2 ∨ ∥β̂ − β0∥2}.
Similarly, the computational property of the QR estimator implies that ∥H(2)

n (α̂, β̂)∥ =

Op{T−1 max1≤i≤n,1≤t≤T ∥xit∥} = Op(T
−1), from which we have

Op(T
−1) = H(2)

n (α0,β0)+H(2)
n (α̂, β̂)+{H(2)

n (α̂, β̂)−H(2)
n (α̂, β̂)−H(2)

n (α0, β0)}. (A.7)

Use Taylor’s theorem to obtain

H(2)
n (α̂, β̂) = − 1

n

n∑
i=1

E[fi(0|xi1)xi1](α̂i − αi0) −

{
1

n

n∑
i=1

E[fi(0|xi1)xi1x
′
i1]

}
(β̂ − β0)

+ op(∥β̂ − β0∥) + Op

{
max
1≤i≤n

|α̂i − αi0|2
}

. (A.8)

Plugging (A.6) into (A.8) leads to

H(2)
n (α̂, β̂) = − 1

n

n∑
i=1

H(1)
ni (αi0, β0)γi − Γn(β̂ − β0)

− 1

n

n∑
i=1

γi{H(1)
ni (α̂i, β̂) − H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}

+ op(∥β̂ − β0∥) + Op

{
T−1 ∨ max

1≤i≤n
|α̂i − αi0|2

}
. (A.9)

Combining (A.7) and (A.9) yields the desired representation. The remaining steps are

devoted to determining the order of the remainder terms in (A.5).

Step 2 (Rates of the remainder terms). Take δn → 0 such that max1≤i≤n |α̂i − αi0| ∨
∥β̂ − β0∥ = Op(δn). We shall show that

∥n−1
∑n

i=1γi{H(1)
ni (α̂i, β̂) − H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}∥ = Op(dn), (A.10)

∥H(2)
n (α̂, β̂) − H(2)

n (α̂, β̂) − H(2)
n (α0,β0)∥ = Op(dn). (A.11)

where dn := T−1| log δn| ∨ T−1/2δ
1/2
n | log δn|1/2.

We only prove (A.10) since the proof of (A.11) is analogous.13 Without loss of

generality, we may assume that αi0 = 0 and β0 = 0. Put gα,˛(u,x) := I(u ≤ α +

x′β) − I(u ≤ 0), Gδ := {gα,˛ : |α| ≤ δ, ∥β∥ ≤ δ} and ξit := (uit,xit). Since γi is

bounded over i, it suffices to show that

max
1≤i≤n

E

∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδn

 = O(dnT ). (A.12)

13Although the present proof requires xi1 to be bounded, it is possible to use Theorem 2.14.1 of

van der Vaart and Wellner (1996) to show (A.11), which only requires that supi≥1 E[∥xi1∥2] < ∞.

However, recall that condition (B1) is used to ensure (A.7).
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To this end, we apply Proposition B.1 to the class of functions G̃i,δn := {g −E[g(ξi1)] :

g ∈ Gδn}. Observe that G̃i,δn is pointwise measurable and each element of G̃i,δn is

bounded by 2. Because of Lemmas 2.6.15 and 2.6.18 of van der Vaart and Wellner

(1996), the class G∞ := {gα,˛ : α ∈ R, β ∈ Rp} is a VC subgraph class. Thus,

by Theorem 2.6.7 of van der Vaart and Wellner (1996), the fact that G̃i,δn ⊂ {g −
E[g(ξi1)] : g ∈ G∞}, and a simple estimate of covering numbers, there exist constants

A ≥ 3
√

e and v ≥ 1 independent of i and n such that N(G̃i,δn , L2(Q), 2ϵ) ≤ (A/ϵ)v for

every 0 < ϵ < 1 and every probability measure Q on Rp+1. Combining the fact that

E[gα,˛(ξi1)
2] = E[|Fi(α + x′

i1β|xi1) − Fi(0|xi1)|] ≤ Cf (|α| + M∥β∥), one can see that

G̃i,δn satisfies all the conditions of Proposition B.1 with U = 2 and σ2 = Cf (1 + M)δn,

and the constants A and v are independent of i and n. This implies that the left side

of (A.12) is O(dnT ).

Step 3 (Preliminary convergence rates). We shall show that

max
1≤i≤n

|α̂i − αi0| = Op{(T/ log n)−1/2}, ∥β̂ − β0∥ = op{(T/ log n)−1/2}.

We first show that max1≤i≤n |α̂i−αi0| = Op{(T/ log n)−1/2}. Because of consistency

of (α̂, β̂) and the result given in Step 2, the second and third terms on the right side

of (A.5) is op(T
−1/2), which implies that

∥β̂ − β0∥ = Op{max
1≤i≤n

|α̂i − αi0|2} + op(T
−1/2). (A.13)

Thus, by (A.6), max1≤i≤n |α̂i − αi0| is bounded by

const.×
{

max
1≤i≤n

|H(1)
ni (αi0,β0)| + max

1≤i≤n
|H(1)

ni (α̂i, β̂) − H
(1)
ni (α̂i, β̂) − H(1)

ni (αi0, β0)|
}

+op(T
−1/2),

with probability approaching one.

First, observe that for any K > 0,

P

{
max
1≤i≤n

|H(1)
ni (αi0,β0)| > (T/ log n)−1/2K

}
≤

n∑
i=1

P
{
|H(1)

ni (αi0,β0)| > (T/ log n)−1/2K
}

,

and the right side is bounded by 2n1−K2/2 by Hoeffding’s inequality. This implies that

max1≤i≤n |H(1)
ni (αi0,β0)| = Op{(T/ log n)−1/2}.

We next show that

max
1≤i≤n

|H(1)
ni (α̂i, β̂) − H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)| = op{(T/ log n)−1/2},

which leads to the first result. Without loss of generality, as before, we may assume

that αi0 = 0 and β0 = 0. Let Gδ and ξit be the same as those given in Step 2. Because
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of consistency of (α̂, β̂) and the union bound, it suffices to show that for every ϵ > 0,

there exists a sufficiently small δ > 0 such that

max
1≤i≤n

P

{∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδ

> (T log n)1/2ϵ

}
= o(n−1).

To this end, we make use of Bousquet’s version of Talagrand’s inequality (see Propo-

sition B.2 in Appendix B). Fix ϵ > 0. Put Zi := ∥
∑T

t=1{g(ξit) − E[g(ξi1)]}∥Gδ
. By

Proposition B.2, for all s > 0, with probability at least 1 − e−s2
, we have

Zi ≤ E[Zi] + s
√

2{TCf (1 + M)δ + 4E[Zi]} +
2s2

3
, (A.14)

where we have used the fact that each element in Gδ is bounded by 1 and E[g2(ξi1)] ≤
Cf (1 + M)δ for g ∈ Gδ. By Step 2, we have

max
1≤i≤n

E[Zi] ≤ const.×(log |δ| + T 1/2δ1/2| log δ|1/2),

where the constant is independent of δ and n. Take s =
√

2 log n. Then, it is seen that

there exist a positive constant δ and a positive integer n0 independent of i and n such

that the right side on (A.14) is smaller than (T log n)1/2ϵ for all n ≥ n0. This implies

that max1≤i≤n P{Zi > (T log n)1/2ϵ} ≤ n−2. Therefore, we have max1≤i≤n |α̂i − αi0| =

Op{(T/ log n)−1/2}.
For the second result, by the first result and (A.13), we have ∥β̂−β0∥ = op{(T/ log n)−1/2}.

Step 4 (Conclusion) By Step 3, we may take δn = (T/ log n)−1/2 in Step 2. Thus, by

Step 1, we have

β̂ − β0 + op(∥β̂ − β0∥) = Γ−1
n {−n−1

∑n
i=1H

(1)
ni (αi0,β0)γi + H(2)

n (α0, β0)}

+ Op{(T/ log n)−3/4}. (A.15)

The first term on the right side is Op{(nT )−1/2}. This shows that ∥β̂ − β0∥ =

Op{(nT )−1/2 ∨ (T/ log n)−3/4}. If n2(log n)3/T → 0, then ∥β̂ − β0∥ = Op{(nT )−1/2},
and by the Lyapunov central limit theorem, we have

√
nT (β̂ − β0)

d→ N{0, τ(1 −
τ)Γ−1V Γ−1}.

Remark A.2. The reason why the order of the remainder term in (A.15) is Op{(T/ log n)−3/4}
and not Op(T

−1) is that the exponent of δn inside the Op terms on the right side of

equations (A.10) and (A.11) is 1/2 and not 1. Recall the definition of gα,˛ given in

Step 2. Since gα,˛ is not differentiable with respect to (α, β), E[gα,˛(ξi1)
2] is bounded

by const.×(|α|+ ∥β∥) but not by const.×(|α|2 + ∥β∥2), which results in the exponent

1/2 of δn. Note that if gα,˛ were smooth in (α, β), we could use Taylor’s theorem to

bound E[gα,˛(ξi1)
2] by const.×(|α|2 + ∥β∥2). In that case, the exponent of δn would

be 1, leading to the Op(T
−1) rate of the remainder terms (we have ignored the log n

term).
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A.3 Proof of Proposition 3.1

The proof is basically similar to that of Kato and Galvao (2010, Theorem 3.2). How-

ever, as the present conditions are different from theirs, we give a proof of Proposition

3.1 for the sake of completeness.14 Recall that under the present conditions, (α̂, β̂) is

weakly consistent. It suffices to show that uniformly over 1 ≤ i ≤ n:

1

T

T∑
t=1

Khn(ûit) = fi(0) + op(1),

1

T

T∑
t=1

Khn(ûit)xit = E[fi(0|xi1)xi1] + op(1),

1

T

T∑
t=1

Khn(ûit)xitx
′
it = E[fi(0|xi1)xi1x

′
i1] + op(1).

We only prove the first assertion because the proofs of the latter two assertions are

analogous.

Without loss of generality, we may assume that αi0 = 0 and β0 = 0. Put

fi(α,β) :=
1

T

T∑
t=1

Khn(uit − α − x′
itβ).

We have to show that f̂i(α̂i, β̂) = fi(0)+op(1) uniformly over 1 ≤ i ≤ n. We first show

that uniformly over 1 ≤ i ≤ n,

f̂i(α̂i, β̂) = E[f̂i(α,β)]|α=α̂i,˛= ˆ̨ + op(1).

To this end, it suffices to show that

max
1≤i≤n

sup
(α,˛)∈Rp+1

|f̂i(α, β) − E[f̂i(α, β)]| = op(1). (A.16)

Define the class of functions Gni := {gα,˛,hn −E[gα,˛,hn(ui1,xi1)] : (α,β) ∈ Rp+1} where

gα,˛,h(u,x) := K((u − α − x′β)/h). Put Zni := ∥
∑T

t=1 g(uit,xit)∥Gi
. By condition

(C1), the class Gni is uniformly bounded by some constant U (say) independent of i

and n. By Bousquet’s inequality (Proposition B.2), for all s > 0, with probability at

least 1 − e−s2
,

Zni ≤ E[Zni] + s
√

2(TCfCKhn + 2UE[Zni]) +
s2U

3
,

where we have used the fact that E[gα,˛,h(ui1, xi1)
2] = hE[

∫
K(u)2fi(uh+α+x′

i1β|xi1)du] ≤
hCf

∫
K(u)2du = hCfCK with CK :=

∫
K(u)2du. To estimate E[Zni], we use Proposi-

tion B.1. The bounded variation of K on R guarantees that there exist positive con-

stants A ≥ 3
√

e and v ≥ 1 independent of i and n such that N(Gi, L2(Q), Uϵ) ≤ (A/ϵ)v

14In fact, the condition on the bandwidth hn is now weakened.
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for every 0 < ϵ < 1 and every probability measure Q on Rd+1 (cf. Nolan and Pollard,

1987, Lemma 22). Thus, by Proposition B.1, we have

E[Zni] ≤ const.×{log n + (Thn log n)1/2},

where the constant is independent of i and n. Take s =
√

2 log n. Then, for each

1 ≤ i ≤ n, with probability at least 1 − n−2, we have

Zni ≤ const.×{log n + (Thn log n)1/2},

where the constant is independent of i and n. By the union bound and the present

hypothesis that log n/(Thn) → 0, we obtain (A.16).

The next step is to show that uniformly over 1 ≤ i ≤ n,

E[f̂i(α,β)]|α=α̂i,˛= ˆ̨ = E[f̂i(0,0)] + op(1).

To see this, observe that

|E[f̂i(α, β)] − E[f̂i(0,0)]| =

∣∣∣∣E [∫
K(u){fi(uhn + α + x′

i1β|xi1) − fi(uhn|xi1)}du

]∣∣∣∣
≤ Lf (|α| + M∥β∥).

Because of the weak consistency of (α̂, β̂), we obtain the desired result.

The final step is to show that uniformly over 1 ≤ i ≤ n,

E[f̂i(0,0)] = fi(0) + o(1).

However, this can be derived from a standard calculation. The proof ends.

A.4 Proof of Theorem 5.1

The proof is basically a modification of the proofs of Theorems 3.1 and 3.2 to the case

where the data are dependent in the time dimension. To avoid duplication, we only

point out the required modifications.

For the weak consistency, the only point that we need to change is the proof of (A.3).

Instead of the Marcinkiewicz-Zygmund inequality, we now apply a Bernstein type

inequality for β-mixing sequences (see Corollary C.1 below), with using Lemma C.1 to

evaluate the variance term (see also the discussion following the lemma). Because of

the exponential β-mixing property (condition (D1)), and the uniform boundedness of

xit (condition (B2)), taking s = 2 log n and q = [
√

T ] in Corollary C.1, and using the

fact that (log n)/
√

T → 0, we have that for any fixed ϵ > 0, for large n,

max
1≤i≤n

P

{
sup

(α,˛)∈Bi(δ)

|∆ni(α, β) − E[∆ni(α, β)]| > ϵ

}
≤ const.×

(
n−2 +

√
TBa[

√
T ]

)
.
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Because (log n)/
√

T → 0, the right side is o(n−1), which leads to the weak consistency.

For the expansion (3.2), we need some efforts. We will follow the notation in the

proof of Theorem 3.2. First, the expansion (A.5) does not depend on the independence

assumption and is valid under the present conditions. Second, instead of (A.10) and

(A.11), we wish to prove for any c ∈ (0, 1), provided that | log δn| ≍ log n,

∥n−1
∑n

i=1γi{H(1)
ni (α̂i, β̂) − H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}∥

= Op{T−(1−c)(log n) ∨ T−1/2δ1/2
n (log n)1/2}, (A.17)

∥H(2)
n (α̂, β̂) − H(2)

n (α̂, β̂) − H(2)
n (α0,β0)∥

= Op{T−(1−c)(log n) ∨ T−1/2δ1/2
n (log n)1/2}. (A.18)

As before, we only provide a proof for (A.17). Pick any c ∈ (0, 1). As in the proof of

Theorem 3.2, it suffices to show that

max
1≤i≤n

E

∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδn

 = Op{T c(log n) ∨ T 1/2δ1/2
n (log n)1/2}, (A.19)

where gα,˛(u,x) := I(u ≤ α + x′β) − I(u ≤ 0), Gδ := {gα,˛ : |α| ≤ δ, ∥β∥ ≤ δ}
and ξit := (uit,xit). Fix any 1 ≤ i ≤ n. We apply Proposition C.1 to the class

of functions G̃i,δn := {g − E[g(ξi1)] : g ∈ Gδn}. It is standard to see that G̃i,δn is

uniformly bounded by U = 2 and there exist constants A ≥ 5e and v ≥ 1 independent

of i and n such that N(G̃i,δn , L1(Q), 2ϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1 and every

probability measure Q on Rp+1. Take q = [T c] and deduce from Lemma C.1 that

supg∈G̃i,δn
Var{

∑q
t=1 g(ξit)/

√
q} ≤ const.×δ

1/2
n where the constant is independent of i

and n (apply Lemma C.1 with δ = 1; see also the discussion following the lemma).

Since by condition (D1) max1≤i≤n Tβi([T
c]) = o(1), we obtain (A.19).

We continue to prove the expansion (3.2). The conclusion of Step 3 in the proof of

Theorem 3.2 follows from applying a Bernstein inequality and Talagrand’s inequality

for β-mixing sequences (Corollary C.1 and Proposition C.2) instead of Hoeffding’s

inequality and Talagrand’s inequality for i.i.d. random variables used in the previous

proof. Putting these together and taking c sufficiently small, we obtain the expansion

(3.2).

Finally, we prove the asymptotic normality. Assume that n2(log n)3/T → 0. Then,

we have the expansion

√
nT (β̂ − β0) = {Γ−1 + o(1)}

[
1

nT

n∑
i=1

T∑
t=1

{τ − I(uit ≤ 0)}(xit − γi)

]
+ op{(nT )−1/2}.

We wish to show a central limit theorem for the first term on the right side. Without

loss of generality, we may assume that xit is scalar. Put zni := T−1/2
∑T

t=1{τ − I(uit ≤
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0)}(xit − γi). Observe that zn1, . . . , znn are independent. Viewing that

1√
nT

n∑
i=1

T∑
t=1

{τ − I(uit ≤ 0)}(xit − γi) =
1√
n

n∑
i=1

zni,

we check the Lyapunov condition for the right sum. To this end, it suffices to show

that
∑n

i=1 E[|zni|3] = o(n3/2). By conditions (B1) and (B2), {τ − I(uit ≤ 0)}(xit − γi)

is uniformly bounded. By the exponential β-mixing property (condition (D1)) and

Theorem 3 of Yoshihara (1978), we now deduce that max1≤i≤n E[|zni|3] = O(1), which

leads to that
∑n

i=1 E[|zni|3] = O(n) = o(n3/2). This completes the proof.

B Inequalities from empirical process theory: i.i.d.

case

In this appendix, we introduce two inequalities from empirical process theory that were

used in the proof of Theorem 3.2. Let ξ1, . . . , ξT be i.i.d. random variables taking values

in a measurable space (S,S). The next proposition is a moment inequality for centered

empirical processes, which is due to Proposition 2.2 of Gine and Guillou (2001). To

avoid the measurability problem, we assume F to be a pointwise measurable class of

functions, i.e., each element of F is measurable and there exists a countable subset

G ⊂ F such that for each f ∈ F , there exists a sequence {gm} ⊂ G with gm(ξ) → f(ξ)

for all ξ ∈ S. This condition is discussed in Section 2.3 of van der Vaart and Wellner

(1996).

Proposition B.1. Let F be a uniformly bounded, pointwise measurable class of func-

tions on (S,S) uniformly bounded by some constant U such that for some constants

A ≥ 3
√

e and v ≥ 1, N(F , L2(Q), Uϵ) ≤ (A/ϵ)v for every 0 < ϵ < 1 and every prob-

ability measure Q on (S,S). Moreover, suppose that E[f(ξ1)] = 0 for all f ∈ F . Let

σ2 ≥ supf∈F E[f 2(ξ1)] be such that 0 < σ ≤ U . Then, for all T ≥ 1,

E

[∥∥∥∥∥
T∑

t=1

f(ξt)

∥∥∥∥∥
F

]
≤ C

[
vU log

AU

σ
+
√

v
√

Tσ

√
log

AU

σ

]
,

where C is a universal constant.

The next proposition is a Bernstein type inequality for centered empirical processes,

which originates from Talagrand (1996). The current form of the inequality is due to

Bousquet (2002).15

15Talagrand’s (1996) Theorem 1.4 assumes F to be a countable class. Clearly, this condition can

be weakened to the case where F is pointwise measurable.
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Proposition B.2. Let F be a pointwise measurable class functions on S uniformly

bounded by some constant U . Moreover, suppose that E[f(ξ1)] = 0 for all f ∈ F . Let

σ2 be a positive constant such that σ2 ≥ supf∈F [f 2(ξ1)]. Put Z := ∥
∑T

t=1 f(ξt)∥F .

Then, for all s > 0, we have

P

{
Z ≥ E[Z] + s

√
2(Tσ2 + 2UE[Z]) +

s2U

3

}
≤ e−s2

.

C Some stochastic inequalities for β-mixing sequences

In this section, we introduce some stochastic inequalities for β-mixing sequences that

we used in the proof of Theorem 5.1. Let {ξt, t ≥ 1} be a stationary process taking

values in a measurable space (S,S). We assume that S is a Polish space and S is

its Borel σ-field. For a function f on S and a positive integer q, define σ2
q (f) :=

Var{f(ξ1)} + 2
∑q−1

j=1(1 − j/q) Cov{f(ξ1), f(ξ1+j)}, which is the variance of the sum∑q
t=1 f(ξt)/

√
q. Let β(j) denote the β-mixing coefficients of {ξt}. The next proposition

is an extension of Proposition B.1 to β-mixing sequences.

Proposition C.1. Let F be a pointwise measurable class of functions on S such that

(i) for any f ∈ F , E[f(ξt)] = 0; (ii) for any f ∈ F , supx∈S |f(x)| ≤ U ; (iii) there

exist constants A ≥ 5e and v ≥ 1 such that N(F , L1(Q), Uϵ) ≤ (A/ϵ)v for every

0 < ϵ < 1 and every probability measure Q on S. For any integer q ∈ [1, T/2], let

σ2
q ≥ supf∈F σ2

q (f) be such that 0 < σ2
q ≤ 2qU2. Then, we have

E

[∥∥∥∥∥
T∑

t=1

f(ξt)

∥∥∥∥∥
F

]
≤ C

[
qvU log

√
qA′U

σq

+
√

v
√

Tσq

√
log

√
qA′U

σq

]
+2UTβ(q), (C.1)

where C is a universal constant and A′ :=
√

2A.

Proof. The proof is based on Proposition 2 of Doukhan, Massart, and Rio (1995),

which is deduced from Berbee’s (1979) coupling lemma, and the proof of Proposition

2.1 in Gine and Guillou (2001). Use Proposition 2 of Doukhan, Massart, and Rio

(1995) to construct a sequence {ξ̃t}t≥1 such that (a) Ξ̃k := (ξ̃1+(k−1)q, . . . , ξ̃kq) has the

same distribution as Ξk := (ξ1+(k−1)q, . . . , ξkq); (b) P(Ξk ̸= Ξ̃k) ≤ β(q); (c) {Ξ̃2k, k ≥ 1}
are independent and so are {Ξ̃2k−1, k ≥ 1}. Put r := [T/(2q)]. With a slight abuse of

notation, for a function f on S, we write f(Ξk) =
∑

t∈Tk
f(ξt), where Tk := {1 + (k −
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1)q, . . . , kq}. Then, we have

E

[∥∥∥∥∥
T∑

t=1

f(ξt)

∥∥∥∥∥
F

]
≤ E

[∥∥∥∥∥
T∑

t=1

f(ξ̃t)

∥∥∥∥∥
F

]
+ 2UE

[
T∑

t=1

I(ξt ̸= ξ̃t)

]

≤ E

[∥∥∥∥∥
T∑

t=1

f(ξ̃t)

∥∥∥∥∥
F

]
+ 2UTβ(q)

≤ 2E

[∥∥∥∥∥
r∑

k=1

f(Ξ̃2k)

∥∥∥∥∥
F

]
+ (T − 2qr)U + 2UTβ(q), (C.2)

where the second inequality is due to the fact that {Ξ̃2k−1, 1 ≤ k ≤ r} has the same

distribution as {Ξ̃2k, 1 ≤ k ≤ r}. Let ϵ1, . . . , ϵr be i.i.d. random variables with P(ϵk =

±1) = 1/2 independent of {Ξ̃2k, 1 ≤ k ≤ r}. Recall that Ξ̃2k, 1 ≤ k ≤ r are i.i.d. By

Lemma 2.3.1 of van der Vaart and Wellner (1996), we have

E

[∥∥∥∥∥
r∑

k=1

f(Ξ̃2k)

∥∥∥∥∥
F

]
≤ 2E

[∥∥∥∥∥
r∑

k=1

ϵkf(Ξ̃2k)

∥∥∥∥∥
F

]

= 2qUE

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)

∥∥∥∥∥
H

]
, (C.3)

where H := {φ(ξ1, . . . , ξq) =
∑q

t=1 f(ξt)/(qU) : f ∈ F}. We shall bound the right side

of (C.3). Without loss of generality, we may assume that 0 ∈ H. By Hoeffding’s in-

equality, given Ξ̃2k, 1 ≤ k ≤ r, the process φ 7→
∑r

k=1 ϵkφ(Ξ̃2k)/
√

r is sub-Gaussian for

the L2(Q̃r) norm, where Q̃r is the empirical distribution on Sq that assigns probability

1/r to each even block Ξ̃2k, 1 ≤ k ≤ r. Thus, by Corollary 2.2.8 of van der Vaart and

Wellner (1996), we have

Eϵ

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)/
√

r

∥∥∥∥∥
H

]
≤ C

∫ ∥
Pr

k=1 φ2(Ξ̃2k)/r∥1/2
H

0

√
log N(H, L2(Q̃r), τ)dτ,

where Eϵ stands for the expectation with respect to ϵk’s and C is a universal constant.

Let P̃qr denote the empirical distribution on S that assigns probability 1/(qr) to each

ξ̃t, t ∈ ∪r
k=1T2k. Since for φi(ξ1, . . . , ξq) =

∑q
t=1 fi(ξt)/(qU), fi ∈ F , i = 1, 2,

1

r

r∑
k=1

{φ1(Ξ̃2k) − φ2(Ξ̃2k)}2 =
1

q2rU2

r∑
k=1

{f1(Ξ̃2k) − f2(Ξ̃2k)}2

≤ 2

qrU

r∑
k=1

|f1(Ξ̃2k) − f2(Ξ̃2k)|

≤ 2

U
∥f1 − f2∥L1(P̃qr),
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we have N(H, L2(Q̃r), τ) ≤ N(F , L1(P̃qr), Uτ 2/2) ≤ (2A/τ 2)v. Thus,

Eϵ

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)/
√

r

∥∥∥∥∥
H

]
≤ C

√
2v

∫ ∥
Pr

k=1 φ2(Ξ̃2k)/r∥1/2
H

0

√
log(

√
2A/τ)dτ

= 2C
√

Av

∫ ∞

√
2A/∥

Pr
k=1 φ2(Ξ̃2k)/r∥1/2

H

√
log τ

τ 2
dτ.

Integration by parts gives∫ ∞

a

√
log τ

τ 2
dτ =

[
−
√

log τ

τ

]∞

a

+
1

2

∫ ∞

a

1

τ 2
√

log τ
dτ

≤
√

log a

a
+

1

2

∫ ∞

a

√
log τ

τ 2
dτ, a ≥ e,

from which we have ∫ ∞

a

√
log τ

τ 2
dτ ≤ 2

√
log a

a
, a ≥ e.

Therefore, we have

E

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)/
√

r

∥∥∥∥∥
H

]
≤ 2C

√
vE

∥∥∥∥∥
r∑

k=1

φ2(Ξ̃2k)/r

∥∥∥∥∥
1/2

H

√
log

2A

∥
∑r

k=1 φ2(Ξ̃2k)/r∥H


≤ 2C

√
v

√√√√E

[∥∥∥∥∥
r∑

k=1

φ2(Ξ̃2k)/r

∥∥∥∥∥
H

]
log

2A

E[∥
∑r

k=1 φ2(Ξ̃2k)/r∥H]
,

where the second inequality is due to Hölder’s inequality, the concavity of the map

x 7→ x log(a/x) and Jensen’s inequality.

Now, by Corollary 3.4 of Talagrand (1994),

E

[∥∥∥∥∥
r∑

k=1

φ2(Ξ̃2k)

∥∥∥∥∥
H

]
≤

rσ2
q

qU2
+ 8E

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)

∥∥∥∥∥
H

]
,

and the right side is bounded by 10r because σ2
q ≤ 2qU2. Since the map x 7→ x log(a/x)

is non-decreasing for 0 ≤ x ≤ a/e and A ≥ 5e, we have

E

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)/
√

r

∥∥∥∥∥
H

]

≤ 2C
√

v

√√√√(
σ2

q

qU2
+

8

r
E

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)

∥∥∥∥∥
H

])
log

2qAU2

σ2
q

.

Put

Z := E

[∥∥∥∥∥
r∑

k=1

ϵkφ(Ξ̃2k)

∥∥∥∥∥
H

]
.
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Then, Z satisfies

Z2 ≤ C
vrσ2

q

qU2
log

√
qA′U

σq

+ 8CvZ log

√
qA′U

σq

,

where C is another universal constant and A′ :=
√

2A. This gives

Z ≤ 4Cv log

√
qA′U

σq

+

√
16C2v2

(
log

√
qA′U

σq

)2

+ C
vrσ2

q

qU2
log

√
qA′U

σq

≤ 8Cv log

√
qA′U

σq

+
√

C

√
v
√

rσq√
qU

√
log

√
qA′U

σq

≤ C ′

[
v log

√
qA′U

σq

+

√
v
√

rσq√
qU

√
log

√
qA′U

σq

]
, (C.4)

where the second inequality is due to
√

a + b ≤
√

a+
√

b for a, b > 0, and C ′ is another

universal constant. Combining (C.2)-(C.4) yields the desired inequality. Note that

(T−2qr)U is absorbed into CqvU log(
√

qA′U/σq) since T−2qr ≤ 2q and
√

qA′U/σq > e

under our assumption.

Proposition C.2 and Corollary C.1 are due to Kato and Galvao (2010).

Proposition C.2 (Talagrand’s inequality for β-mixing sequences). Suppose that the

conditions of Proposition C.1 are satisfied. Assume that

Tσ2
q ≥ q2vU2 log

√
qA′U

σq

,

where A′ :=
√

2A. Then, for all s > 0, we have

P

{∥∥∥∥∥
T∑

t=1

f(ξt)

∥∥∥∥∥
F

≥ C
√

v
√

Tσq

√
log

√
qA′U

σq

+ Cσq

√
sT + sqCU

}
≤ 2e−s + 2rβ(q),

where r := [T/(2q)] and C is a universal constant.

Corollary C.1 (Bernstein’s inequality for β-mixing sequences). Let f be a function

on S such that supx∈S |f(x)| ≤ U and E[f(ξ1)] = 0. Pick any q ∈ [1, T/2]. Then, for

all s > 0, we have

P

{∣∣∣∣∣
T∑

t=1

f(ξt)

∣∣∣∣∣ ≥ C{
√

(s ∨ 1)Tσq(f) + sqU}

}
≤ 2e−s + 2rβ(q),

where r := [T/(2q)] and C is a universal constant.

In applying those inequalities, the evaluation of the variance term σ2
q (f) is essential.

For β-mixing processes, Yoshihara’s (1976) Lemma 1 is particularly useful for that

purpose. Since it is repeatedly used in the proofs of the theorems above, we describe

a special case of that lemma.

29



Lemma C.1 (Yoshihara (1976)). Let j be a fixed positive integer. Let f and g be

functions on S such that E[f(ξ1)] = E[g(ξ1+j)] = 0, and for some positive constants δ

and M ,

E[|f(ξ1)|1+δ]E[|g(ξ1+j)|1+δ] ≤ M, E[|f(ξ1)g(ξ1+j)|1+δ] ≤ M. (C.5)

Then, we have

|Cov(f(ξ1), g(ξ1+j))| ≤ 4M1/(1+δ)β(j)δ/(1+δ).

A direct consequence of Lemma C.1 is that if there exist positive constants δ and

M such that (C.5) hods for for any positive integer j and
∑∞

j=1 β(j)1/(1+δ) < ∞, then

the infinite sum
∑∞

j=1 Cov{f(ξ1), g(ξ1+j)} is absolutely convergent, and in particular,

for any positive integer q,

Var

{
q∑

t=1

f(ξt)/
√

q

}
≤ 4M1/(1+δ)

{
1 + 2

∞∑
j=1

β(j)δ/(1+δ)

}
.

If β(j) decays exponentially fast as j → ∞, i.e., for some constants a ∈ (0, 1) and

B > 0, β(j) ≤ Baj, then
∑∞

j=1 β(j)δ/(1+δ) < ∞ for any δ > 0.
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