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Second Revision for Empirical Economics MS2012519-2

Robust Tests for Time-invariant Individual Heterogeneity vs.

Dynamic State Dependence

Abstract

We derive tests for persistent effects in a general linear dynamic panel data con-
text. Two sources of persistent behavior are considered: time-invariant unobserved
factors (captured by an individual random effect) and dynamic persistence or ‘state
dependence’ (captured by autoregressive behavior). We will use a maximum likelihood
framework to derive a family of tests that help researchers learn whether persistence
is due to individual heterogeneities, dynamic effect, or both. The proposed tests have
power only in the direction they are designed to perform, that is, they are locally ro-
bust to the presence of alternative sources of persistence, and consequently, are able
to identify which source of persistence is active. A Monte Carlo experiment is imple-
mented to explore the finite sample performance of the proposed procedures. The tests
are applied to a panel data series of real GDP growth for the period 1960-2005.

JEL Classification: C12, C23.
Keywords: Dynamic panel, local misspecification, random effects, testing.
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1 Introduction

One of the most important advantages of panel models is to distinguish among alterna-

tive sources of persistent behavior. After controlling for observed factors, two sources of

persistence are relevant. First, time-invariant unobserved factors that reflects individual

heterogeneity (captured by an individual fixed or random effects) induce persistence. A

second source is dynamic persistence through serial correlation, in the error term or as a

lagged dependent variable. Distinguishing among sources of persistence is a much rele-

vant issue for policy purposes at the microeconomic and macroeconomic level. Unobserved

heterogeneities call for interventions to remedy individual factors that keep individuals or

countries persistently in poverty, like improving education. Dynamic persistence, on the

other hand, may better be handled through helping households or countries to cope with

the persistent effects of negative shocks, like insurance programs. (See Lillard and Willis’,

1978, classic article on earnings persistence, and Sosa-Escudero, Marchionni and Arias,

2011, for a recent application in rural El Salvador.) However, as argued by Angrist and

Pischke (2009, p.245), models for each persistence source “are not nested, which means

that we cannot hope to estimate one and get the other as a special case if need be.”

The purpose of this paper is to derive tests for persistent effects in a general linear

dynamic panel data context. We derive a family of tests that help researchers learn whether

persistence is due to individual heterogeneities, dynamic effects, or both.

Baltagi and Li (1995) derive a test for serial correlation, when random effects are present

and controlled for in an error components model, based on a maximum-likelihood context.

Similarly Holtz-Eakin (1988) proposed a test for random individual effets, in a dynamic

panel structure estimated by GMM. These two proposals can be seen as ‘conditional’, in

the sense that they test for a particular source of persistence, controlling for (estimating)

the other one. Bera, Sosa Escudero and Yoon (2001) show that standard ‘unconditional’

tests for random effects (Breusch and Pagan, 1980) or serial correlation (Baltagi and Li,

1991), are of limited use for these purposes because each of them implicitly assumes that

the other source of persistence is absent. For example, the classical test by Breusch and

Pagan (1980) is shown to reject its null not only when random effects are present, but

also due to the presence positive serial correlation. A similar and symmetric concern
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affects the test by Baltagi and Li (1991), which confounds serial correlation with random

effects. Bera et al. (2001) circumvent this problem by deriving modified tests for each

source of persistence, that are insensitive to the local presence of the other one, i.e., a

test for random effects (serial correlation) that is insensitive to the local presence of serial

correlation (random effects). The local nature of the solution might seem restrictive, but

a comprehensive Monte Carlo experiment by these authors shows that the proposed tests

perform well, even in non-local contexts and small samples. A major advantage of this

strategy, as compared to a conditional approach as implicit in Baltagi and Li (1995) or

Holtz-Eakin (1988) is that tests can be based on simple pooled-OLS estimation of a model,

under the joint null of neither random effects nor serial correlation.

As stressed by Hendry and Mizon (1978) and Hendry (1995), serial correlation is only

a particular form of dynamic misspecification, which does not necessarily capture more

general dynamic persistence patterns. An autoregressive specification is thus preferred as

a more general model to analyze dynamic behavior. This is the underlying idea behind

the ‘general-to-specific’ approach advocated by Hendry (1995). Consequently, in our panel

data context, first order serial correlation is only one possible specification of a more general

dynamic panel model, where a ‘common factor’ restriction holds.

We construct tests for persistent effects in a general linear dynamic panel data context.

Unobserved individual heterogeneity is captured by random individual effects and dynamic

persistence is handled through the presence of a lagged dependent variable, closer to the

idea of ‘state dependence’ in the applied literature. Our testing strategy is based on pooled

OLS estimation of a model without persistence. Hence the proposed testing strategy can

help researchers decide whether a truly dynamic model is required, or whether simpler

random effects model would suffice to capture persistent behavior.

A Monte Carlo experiment is implemented to explore the finite sample performance

of our tests. They are shown to have power only in the direction they are designed to

perform, that is, they are robust to the presence of alternative sources of persistence, and

consequently, are able to identify which source of persistence is active. Moreover, the

tests have correct size and power for alterantive distributional assumptions in the error

components.

The paper is organized as follows. Section 2 presents the model and the assumptions.
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Section 3 derives the test statistics. Section 4 studies the small sample behavior of the

proposed tests. Section 5 contains an application of the proposed tests to the study of real

GDP per capita growth in a panel data of countries. Section 6 concludes.

2 Model and Assumptions

Consider a first order dynamic panel data model with random individual effects:

yit = γyi,t−1 + x′itβ + uit,

uit = µi + εit,

where i = 1, 2, . . . , N and t = 1, 2, . . . , T . In this model, yit is the dependent variable, xit

is a (k× 1) vector of exogenous variables, µi is the random effect component, and εit is the

general disturbance term. β is a (k × 1) vector of coefficients and γ is a scalar parameter.

In this context, dynamic effects or state dependence relates to the relevance of yi,t−1 as

a determinant of current values of the dependent variable. The time persistent presence

of the term µi induces an alternative source of persistence, usually referred as unobserved

time-invariante individual heterogeneity or random effects.

To derive the asymptotic properties of our tests, we impose the following regularity

assumptions. Define x̃i = (xi,1, ..., xi,T ) and ε̃i = (εi,1, ..., εi,T ) as random matrices of

dimension (k × T ) and (1× T ), respectively.

Assumptions. {(yi0, x̃i, µi, ε̃i) : i = 1, ..., N} are independent and identically distributed

random vectors that satisfy the following requirements: x̃i is independent of (µi, ε̃i); E(x̃ix̃
′
i)

is finite and nonsingular; yi0 is stochastic and independent of (x̃i, µi, ε̃i); µi and ε̃i are

unobservable and independent of each other with ε̃i ∼ N(0, σ2
εIT ) and µi ∼ N(0, ωσ2

ε).

Moreover, (β′, σ2
ε , γ, ω)

′ belongs to a compact subset of Rk × R>0 × [0, 1)× R≥0.

The asymptotic results will be derived assuming that N grows to infinity and T is fixed.

This serves for the most common case where the T dimension is short while the number

of individuals N is large. Given that T is fixed, our assumptions imposes mild conditions

on the time series properties of x̃i. More specifically, we are just requiring E(x̃ix̃
′
i) to be

finite and nonsingular, and among other properties, xit may have a unit root. In addition,

our assumptions allow us to include a constant term as a component of xit, and hence,
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the individual effect µi may be interpreted as deviation from a common mean. We remark

that such a constant term cannot be identified without the restriction E(µi) = 0.

The log-likelihood function for our model is given by

L(θ) = −NT

2
ln(σ2

ε)−
N

2
ln(1 + Tω)− u′u

2σ2
ε

+

(

ω

1 + Tω

)(

u′HNTu

2σ2
ε

)

, (1)

where θ = (β′, σ2
ε , γ, ω)

′, u = (u11, u12, . . . , uit, . . . , uN(T−1), uNT )
′, HNT = IN ⊗ eT e

′
T , eT

denotes a (T × 1) vector of ones, and ⊗ stands for the Kronecker product. Bhargava and

Sargan (1983, pp. 1641) and Hsiao (2003, ch. 4) present a derivation of this function. We

refer to these references for further details, in particular for consistency and asymptotic

normality of all the parameter estimates in θ, and remark that its functional form depends

on the normality of ε̃i and µi. In the next section, our proposed tests will be based on

the log-likelihood function (1), and therefore, this function will serve for our purposes of

establishing the sources of persistence.

3 Tests for Persistent Effects

In our model, a test for the presence of dynamic effects or state dependence corresponds to

evaluating Hγ
0 : γ = 0. A test for random effects or time-invariant individual heterogeneity

involves checking Hω
0 : ω = 0. And a joint test for the presence of both types of persistence

corresponds to evaluating Hγω
0 : (γ, ω) = (0, 0).

To derive Lagrange multiplier (LM) tests, we require the score functions and the Fisher

information matrix of the log-likelihood model (1). Denote da(θ) = ∂L(θ)/∂a as the score

function of L(θ) with respect to a, where a can be any sub-vector of (β′, σ2
ε , γ, ω)

′. De-

note the elements of the Fisher information matrix as Jab(θ) = −(NT )−1E[∂2L(θ)/∂a∂b′],

where a, b, c can be any sub-vectors of (β′, σ2
ε , γ, ω)

′. In addition, let define Ja,b(θ) =

Jaa(θ) − Jab(θ)J
−1
bb (θ)Jba(θ) and Jac,b(θ) = Jac(θ) − Jab(θ)J

−1
bb (θ)Jbc(θ) = J ′

ca,b(θ). Note

that these terms involve unknown expectations, thus in order to derive feasible tests, they

will be replaced by the corresponding sample analogues evaluated at the parameter values

estimated under the null hypothesis. Explicit formulas for da(θ) and Jab(θ) are provided in

Appendices A.1 and A.2, respectively, while details about the construction of the statistics

below are given in Appendix A.3. Assuming that N grows to infinity and T is fixed, here-
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after, we follow closely Bera and Yoon (1993, Sections 2 and 3) to derive the asymptotic

distributions of our tests.

A first approach consists in deriving marginal tests for Hγ
0 , H

ω
0 , and a joint test for

Hγω
0 . By ‘marginal’ we mean a test for dynamic effects (random effects) assuming no

random effects (dynamic effects). The proposed tests can be expressed as

LMa =
1

NT
da(θ̂)

′J−1
a,b (θ̂)da(θ̂), (2)

where a = γ, ω, and (γ, ω)′, respectively, b = (β′, σ2
ε)

′, and θ̂ = (β̂′, σ̂2
ε)

′ is the maximum

likelihood estimate of b under joint null of no persistence, Hγω
0 : (γ, ω) = (0, 0). The

formulas for the three LM statistics are

LMγ = (NT )
B2

C
, (3)

LMω = (NT )
A2

2(T − 1)
, and (4)

LMγω = (NT )
[B + (A/T )]2

C − 2(T − 1)/T 2
+ (NT )

A2

2(T − 1)
, (5)

where A = 1− (û′HNT û)/(û
′û), B = (y′−1û)/(û

′û), C = (ê′ê)/(û′û) + (T − 1)/T , û = Qy,

Q = INT −X(X ′X)−1X ′, X is a (NT ×k) matrix of regressors, and y is a (NT ×1) vector

of dependent variables. Moreover, ê = Qŷ−1, where ŷ−1 is a (TN×1) vector obtained from

the vectorization of the (T ×N) matrix [ŷ−1,it]t,i with ŷ−1,i1 = yi0 and ŷ−1,it = x′i,t−1β̂ for

t ≥ 2.1

Under the joint null hypothesis of no persistence, the marginal statistics, LMγ and

LMω, converge in distribution to χ2
1(0) while LMγω to χ2

2(0), where χ2
m(0) denotes a

central chi-square distribution with m degrees of freedom. These asymptotic results can

be derived from a well-known property of the LM statistics (see for example, Bera and

Yoon, 1993, pp. 651): under the null a = 0 and when the alternative is correctly specified,

the asymptotic distribution of LMa is χ2
dim(a)(0).

The fact that Jγω,b(θ0) = (T−1)/T 6= 0, where θ0 = (β′, σ2
ε , 0, 0)

′, implies that marginal

tests, though useful to determine the falseness of the joint null of no persistence, are

1The matrices X and y are ordered following the usual approach in the literature; see e.g., Bera et
al (2001) and the vector u defined in Section 2. The notation for the matrix [ŷ−1,it]t,i is as follows: the
(t× i)-th element of the matrix [ŷ−1,it]t,i is ŷ−1,it. Naturally, LMω is the classic Breusch-Pagan (1980) test
for random effects.
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of limited use for the goal of identifying the source of persistence once the joint null is

determined to be false. As established by Davidson and MacKinnon (1987) and Saikkonen

(1989), a marginal LM test for one parameter is affected by the other one being incorrectly

set to zero. More concretely, Saikkonen (1989)’s results imply that when the source of

persistence not tested for is locally misspecified, the marginal LM for the other source

will converge to a non-central asymptotic chi-square variable, hence leading to spurious

rejections due to the misspecified nuisance parameter and not to the falseness of the null

hypothesis.

The precedent argument can be formalized as follows. Consider a ∈ {γ, ω} and c ∈
{γ, ω}\{a}. Under Ha

0 : a = 0 but c = δc/
√
NT with δc 6= 0, the marginal statistic LMa

converges in distribution to χ2
1(λa(c)) with λa(c) = δ2cJ

2
ac,b(θ0)/Ja,b(θ0), where χ

2
1(λ) denotes

a chi-square distribution with one degree of freedom and non-centrality parameter λ; see

for example, Bera and Yoon (1993, eq. 2.2).

After applying this argument to our marginal tests, we obtain the following results.

Under Hγ
0 : γ = 0 but when ω = δω/

√
NT with δω > 0, LMγ converges in distribution

to χ2
1(λγ(ω)) where the non-centrality parameter λγ(ω) = [δω(T − 1)]2/[Jγ,b(θ0)T

2], where

Jγ,b(θ0) is defined in eq. (A.4) of Appendix A.3.1. This means that when testing for

state dependence, the presence of time-invariant individual heterogeneity makes the test

to wrongly reject the null because of misspecification of the alternative hypothesis. In a

similar vein, under Hω
0 : ω = 0 but when γ = δγ/

√
NT with δγ > 0, LMω converges in

distribution to χ2
1(λω(γ)) with λω(γ) = δ2γ2(T − 1)/T 2. Consequently, and in an analogous

way to the problem found by Bera et al. (2001), the classic test for random effects by

Breusch and Pagan (1980) will reject its null not only due to the presence of unobserved

heterogeneity but also due to the presence of state dependence.2

In words, when marginal tests reject, they suggest the presence of some persistence

without clear indication about which source (if not both) are relevant. Marginal tests do

2Although this paper considers N → ∞ and T fixed, we briefly discusses what happens when T also
grows to infinity. Observe first that λω(γ) → 0 as T → ∞, which implies that a local misspecification of

the form γ = δγ/
√
NT vanishes in large panels. Therefore, LMω converges in distribution to a central

chi-square with one degree of freedom and this marginal test can be used in the presence of local state
dependence. In contrast, since λγ(ω) does not necessarily converges to zero when T → ∞, LMγ is not
robust to a local misspecification in the variance of the random effect component. Whether or not λγ(ω)

converges to zero depends on the time series properties of xit, which are beyond the scope of this paper.
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not add much information besides the one already provided by the test for the joint null

of no persistence. Hereafter, to identify the source of departure away from the joint null

of no persistence, Hγω
0 , we will follow two strategies.

First, we construct conditional LM tests for Hγ
0 and Hω

0 , where ω and γ, respectively,

are estimated by maximum likelihood. By ‘conditional’ we mean a test for dynamic effects

(random effects) considering the presence of non-local random effects (dynamic effects).

The two conditional LM statistics are denoted by LMγ/ω and LMω/γ .

A conditional test for the presence of dynamic effects, Hγ
0 , requires the implementation

of a random effects GLS estimator for (β′, ω) under γ = 0. Denoting such an estimator by

(β̂′
γ , ω̂γ), the formula for LMγ/ω is

LMγ/ω = (NT )
B2

γ

Cγ − 2(T − 1)/T 2
, (6)

where

Bγ = (1 + T ω̂γ)
y′−1Rûγ

ûγ′HNT ûγ
,

Cγ =
1 + T ω̂γ

ûγ′HNT ûγ
{ŷγ′−1[R−RX(X ′RX)−1X ′R]ŷγ−1}+

T − 1

T

(

1 +
ω̂2
γ

1 + T ω̂γ

)

,

R = INT − ω̂γ

1 + T ω̂γ
HNT ,

ûγ = y−Xβ̂γ , and ŷγ−1 is a (TN ×1) vector obtained from the vectorization of the (T ×N)

matrix [ŷγ−1,it]t,i with ŷγ−1,i1 = yi0 and ŷγ−1,it = x′i,t−1β̂γ for t ≥ 2. Observe that [ŷγ−1,it]t,i is

defined in an analogous way to [ŷ−1,it]t,i. Under the null Hγ
0 , the asymptotic distribution

of LMγ/ω is χ2
1(0) regardless of the presence of random effects; see Appendix A.3.2. This

test is similar to that of Holtz-Eakin (1988).

A similar conditional test for Hω
0 involves a simple OLS estimator of (β′, γ). Denoting

such estimator by (β̂′
ω, γ̂ω), the corresponding LM statistic becomes

LMω/γ = (NT )
A2

ω

2(T − 1)−Dω
, (7)

where Aω = 1− (ûω′HTN ûω)(ûω′ûω),

Dω =

[

(T − 1) +
∑T

t=2(T − t)γ̂t−1
ω

T

]2
ûω′ûω

û′−1û−1
,
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ûω = y − y−1γ̂ω −Xβ̂ω, and û−1 = Qy−1. Under the null Hω
0 , the asymptotic distribution

of LMω/γ is χ2
1(0) regardless of the presence of state dependence; see Appendix A.3.3.

A second strategy avoids estimating the nuisance parameters (that is, still based on

the joint null of no persistence) and consists in adjusting the original LM statistic using

the robustification procedure of Bera and Yoon (1993, Section 3). This approach allows

the construction of a test for a particular source of persistence that does not require the

estimation of the parameters of the other one, provided that departures from zero in the

nuisance parameters are small. In particular, it is based on assuming local departures in the

nuisance parameter and the validity of the tests for non-local departures need to be studied

for each case. These tests are referred as robust tests. These tests are useful procedures

to evaluate specific departures from a joint null hypothesis. More specifically, for either

a = γ or a = ω, consider a test for Ha
0 : a = 0 that is robust to local misspecification

in the parameter c ∈ {γ, ω}\{a} with c = δc/
√
NT . Observe that only the parameters

b = (β′, σ2
ε)

′ are estimated. The modified Bera-Yoon statistic is given by

LM∗
a/c =

1

NT
da/c,b(θ̂)

′J−1
a/c,b(θ̂)da/c,b(θ̂), (8)

where da/c,b(θ) = da(θ)−Jac,b(θ)J
−1
c,b (θ)dc(θ) and J−1

a/c,b(θ) = Ja,b(θ)−Jac,b(θ)J
−1
c,b (θ)Jca,b(θ)

′.

The main result in Bera, Montes-Rojas, and Sosa-Escudero (2009) implies that the

modified locally robust Bera-Yoon statistics can be constructed in a simple way, once

marginal and joint tests have been derived. Specifically, we have that LM∗
γ/ω = LMγω −

LMω and LM∗
ω/γ = LMγω −LMγ ; Appendix A.3.1 also provides an alternative derivation

based on formula (8). As established in Bera and Yoon (1993, eq. 3.10), the robust tests

converge in distribution to χ2
1(0) under the corresponding null and in the presence of local

misspecification in the unconsidered parameter. That is, modified tests are locally robust

to unconsidered sources of persistence.

Naturally, when nuisance parameters are indeed zero, the marginal LM tests are locally

optimal implying a sort of ‘robustification cost.’ That is, a power loss for unnecessarily

estimating an additional nuisance parameter that was indeed zero (in the case of conditional

tests), or for robustifying a test statistic when the marginal one would have sufficed (in

the case of the Bera-Yoon tests). These ‘robustification’ costs can be quantified using

the results of Bera and Yoon (1993, Section 3). To do so, consider the local alternative
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Ha
1 : a = δa/

√
NT with c = 0, where a ∈ {γ, ω}, c ∈ {γ, ω}\{a}, and δa 6= 0. Under

this alternative, LMa and LM∗
a converge in distribution to non-central chi-squares χ2

1(λa)

and χ2
1(λ

∗
a/c), respectively, where the non-centrality parameters are λa = δ2aJa,b(θ0) and

λ∗
a/c = δ2a[Ja,b(θ0)− J2

ac,b(θ0)/Jc,b(θ0)]. The presence of a robustification is due to the fact

that λa ≥ λ∗
a/c.

The previous argument can be applied to our tests in a straightforward way. When

γ = δγ/
√
NT , δγ > 0, and ω = 0, LMγ and LM∗

γ/ω converge in distribution to χ2
1(λγ) and

χ2
1(λ

∗
γ/ω), respectively. Under ω = δω/

√
NT , δω > 0, and γ = 0, LMω and LM∗

ω/γ converge

in distribution to χ2
1(λω) and χ2

1(λ
∗
ω/γ), respectively. The non-centrality parameters are

given by

λγ = δ2γJγ,b(θ0),

λ∗
γ/ω = δ2γ

[

Jγ,b(θ0)−
2(T − 1)

T 2

]

,

λω = δ2ω
(T − 1)

2
, and

λ∗
ω/γ = δ2ω

[

(T − 1)

2
− (T − 1)2

Jγ,b(θ0)T 2

]

.

As can be noted, since λγ ≥ λ∗
γ/ω and λω ≥ λ∗

ω/γ , the asymptotic power of the robust statis-

tics is less (or equal) than that of the marginal statistics when there is no misspecification.

Due to the shape of the Fisher information matrix, particularly Jβσ2
ε
(θ0) = Jβω(θ0) = 0[k×1]

and Jγσ2
ε
(θ0) = 0, the statistics LMγ/ω and LMω/γ also converge in distribution to χ2

1(λ
∗
γ/ω)

and χ2
1(λ

∗
ω/γ), respectively. This result implies that both conditional and Bera-Yoon ro-

bust tests have the same asymptotic power. This is important in practice, since this result

implies that when local misspecifications are small, there are no power gains of estimating

nuisance parameters when the goal is to detect whether a particular source of persistence

is active.

The performance of the robust test in a non-local context, and the importance of the

robustification and conditioning costs in small samples is an empirical question that will

be studied through the extensive Monte Carlo experiment of the following section.
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4 Monte Carlo Experiments

The results of the previous section suggest three testing strategies to detect persistence and

to identify which source (unobserved heterogeneity, state dependence, or both) is active.

The first strategy is based on estimating the model under the joint null hypothesis of no

persistence effects. This leads to two marginal tests and a joint test. A second strategy

derives conditional tests, that is, tests for one source after having estimated the relevant

parameters that handle the other one. The final strategy, based on the Bera-Yoon (1993)

principle, produces robustified marginal tests, that are still based on the joint null, and

hence avoids estimating nuisance parameters.

There are several concerns that deserve to be explored empirically. First, as mentioned

before, the use of robustified or conditional tests may imply a power loss when marginal

tests would have sufficed, i.e., when the source not being considered is indeed inactive.

Second, modified tests are meant to be resistant to misspecified alternatives in a local sense

(that is, for small deviations from zero in the nuisance parameter), so its performance in

a non-local context is a matter of concern. Third, the likelihood framework involves a

strict normality assumption whose relevance must be assessed. Finally, and for all testing

procedures, the adequacy of asymptotic approximations for sample sizes similar to those

used in practice, is a much relevant issue. The purpose of this section is to study these

issues empirically, through a Monte Carlo experiment.

To facilitate comparison, we use a design similar to the one used in previous work on

the subject: Bera et al. (2001) and Baltagi, Chang, and Li (1992). We refer to these papers

for further details. We consider different values of (γ, ω) and (N,T ). The data generating

process (DGP) is:

yit = γyit−1 + α+ xitβ + uit,

uit = µi + εit,

where (α, β) = (5, 0.5), µi ∼ N(0, 20ω), and εit ∼ N(0, 20). The independent variable

xit is generated following Nerlove (1971), i.e., xit = 0.1t + 0.5xit−1 + wit, where wit is

uniformly distributed on the interval [−0.5, 0.5] and xi0 ∼ 5 + U(−5, 5). The initial value

yi0 is taken from the uniform distribution in [−1, 1]. The number of replications is 5000

and the nominal size is 5%.
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In order to study the empirical size, Table 1 reports rejection rates for alternative

sample sizes with N ∈ {50, 100} and T ∈ {2, 5, 10}, while the parameters are set at the

joint null Hγω
0 : γ = ω = 0. As can be noted, the empirical size is in general below 5%,

that is, they are undersized. In all cases, except for LMγ/ω, empirical size gets closer to

the nominal size as T increases. For LMγ/ω, however, a large T reduces the rejection rates.

In order to explore further the asymptotic and small sample properties of the test,

Table 2 reports simulations with N ∈ {10, 20, 50, 100, 200, 1000} and T = 5. The top rows

study the empirical size of the test under Hγω
0 . The results show that the empirical size

remains undersized for small and large N for most of the tests. However, the simulations

show that the tests have good size properties for small N .

Table 2 also studies the power properties of the tests for N ∈ {10, 20, 50, 100, 200, 1000}
and T = 5. Simulations for (γ = 0.1, ω = 0) show that tests for detecting dynamic

persistence, Hγ
0 : γ = 0, that is, LMγ , LMγ/ω and LM∗

γ/ω, are all consistent as N → ∞.

As expected the marginal test LMγ has the greatest power, followed by the robust LM∗
γ/ω,

and finally the conditional LMγ/ω.
3 In this case, a value of γ 6= 0 affects the marginal

test for unobserved heterogeneity, LMω, making it to wrongly reject its null hypothesis of

Hω
0 : ω = 0. However, the conditional test LMω/γ , which estimates γ, corrects the rejection

rates and makes them similar to the top rows. The Bera-Yoon robustification procedure

LM∗
ω/γ partially corrects the rejection rates, which achieve a value of 0.141 with the largest

N = 1000.

Simulations for (γ = 0, ω = 0.1) show that tests for detecting unobserved heterogeneity,

Hω
0 : ω = 0, that is, LMω, LMω/γ and LM∗

ω/γ , are also consistent as N → ∞. As in the

previous case, the greatest power is achieved by the marginal test, followed by the robust

and the conditional tests. Moreover, a value of ω 6= 0 affects the marginal test for dynamic

persistence, LMγ , making it to wrongly reject its null hypothesis of Hγ
0 : γ = 0. However,

the conditional test LMγ/ω, which estimates γ, reduces the rejection rates but make them

very undersized (empirical size goes to 0 as N → ∞). The Bera-Yoon robust test LM∗
γ/ω

fully corrects the rejection rates, with similar values to those achieved in the top rows.

Table 3 explores power for different values of ω and γ. We report the case (N,T ) =

3However, as noted by an anonymous referee power comparisons require size-correction. Given the
difficulty of doing these corrections in empirical work we do not pursue this strategy here and all power
comparisons are evaluated using the actual rejection rates.
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(50, 5). Results for alternative sizes only reinforce those of this case, and are omitted to

save space, and available from the authors by request. Consider first the case when the

only source of persistence is due to individual random effects, that is, ω is allowed to

vary while keeping γ = 0. First, and as predicted by the theory, the marginal LM test

(LMγ) is negatively affected by model misspecification (ω 6= 0), that is, it spuriously rejects

the null of no dynamic effects due to the relevance of random effects. Interestingly, the

conditional LM and the Bera-Yoon robust tests have decreasing size as ω increases. Power

is increasing for all tests specifically designed to react to random individual effects, i.e.,

LMω, LMω/γ , LM
∗
ω/γ , and for the joint tests LMγω. As expected the highest power is

achieved by the optimal marginal test (LMγ), followed by the Bera-Yoon robust test, and

then by the conditional LM test. A very important result is that the Bera-Yoon robustifed

procedure has a smaller cost (in terms of power) than that of the conditional LM test,

where the additional ω parameter is estimated by maximum likelihood. In addition, the

robustification cost is very small.

The case where only dynamic effects induce persistence shows comparable results. The

Breusch-Pagan marginal LM test, LMω, is negatively affected by the presence of dynamic

effects, whereas the conditional test, LMω/γ , has correct size. The Bera-Yoon test, LM∗
ω/γ ,

is affected by misspecification (γ 6= 0) but its rejection rates are much better than those of

the marginal LM test. This emphasizes the fact that Bera-Yoon robustification procedure

works when local departures from the joint null are considered. The highest power is

again that of the optimal marginal test, followed by the Bera-Yoon robust test, and then

by the conditional LM test. The comparison of the latter two show that the Bera-Yoon

robustification procedure has a smaller cost in terms of power than that of the conditional

LM test, where the additional parameter γ is estimated by maximum likelihood.

Finally, Table 4 evaluates the performance of the test statistics under non Gaussian

DGP’s. Specifically, both µ and ε follow either a t-Student with 4 degrees of freedom or

a χ2 with 1 degree of freedom. In this case, we repeat the same specification as in Table

3 for different values of ω and γ when (N,T ) = (50, 5). The table shows that our tests

(derived under normality) still have correct empirical size and excellent power even when

other DGP’s are used.
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5 Empirical Application: Income Growth

As an application of the proposed tests, we study the source of persistent behavior in

the series of real GDP per capita growth in a panel data set of countries. Understanding

the behavior of this series contributes to the long-standing debate about convergence rates.

Both sources of persistence, in the form of unobserved heterogeneity and state-dependence,

are recurrently cited in the empirical literature on economic growth. First, country-specific

unobserved effects can be interpreted as differences in the countries’ technology parameters

in Solow-Swan production function regressions that correspond to differences in country-

specific variables, e.g., institutions, natural resources, etc.4 This raises the suspicion that

underdevelopment is a state of equilibrium and that there are forces at work that tend

to restore the equilibrium every time there are small improvements in living conditions.

Second, dynamic persistence can be associated with the effect of past shocks or economic

decisions on the countries’ growth. For instance, Rosenstein-Rodan’s (1943) ‘big-push’

theory stated that countries needed a large inflow of capital to break the vicious cycle of

poverty. In this case, income shocks (natural disasters, wars) have enduring consequences

on the country’s income growth. Understanding the specific source of persistence (if any

or both) helps to understand differences between poor and rich countries and the nature

of economic development.

To explore these alternative persistence patterns, we consider the model

git = γgi,t−1 + β1 + β2t+ uit,

uit = µi + εit,

where i = 1, 2, . . . , N , t = 1, 2, . . . , T , git is real GDP per capita growth, µi is the country-

specific effect component, and εit is the general disturbance term. We consider models

4For instance, Graham and Temple (2006) find that multiple equilibria are associated to differences in
aggregate total factor productivity. It is also reasonable to assume that these country-specific effects are
themselves functions of the capital stock, as in Romer (1986) and Azariadis and Drazen (1990), or that they
depend on the initial conditions of the endogenous variables in the presence of historical self-reinforcement
(Mookherjee and Ray, 2001). The theory of different ‘convergence clubs’ (Baumol, 1986; DeLong, 1988;
and Quah, 1993,1996,1997) relates to the existence of an exclusionary mechanism that keeps members of
one group or club facing a lower level equilibrium from moving to another group or club with a higher level
equilibrium. Moreover, this gives the idea of a vicious circle of poverty as a ‘constellation of forces tending
to act and react upon one another in such a way as to keep a poor country in a state of poverty’ (Nurkse,
1953, pp. 4).
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with and without a time trend.

We use data on real GDP per capita growth, calculated as the difference of log real

GDP per capita, from the Penn World Tables (series rgdpl, PPP GDP per capita at 2005

constant prices). Our dataset is a balanced panel of 109 countries over the period 1960 to

2005, containing five year periods. Thus, we have T = 8 with growth periods 1960-1965,

1965-1970,. . . ,2000-2005; and N = 109.5 The average logarithmic growth rate is 0.092 with

a standard deviation of 0.178.

The tests developed in this paper appear in Table 5. The joint test, LMγω, indicates

strong persistence in the panel data in both models, with and without a time trend. Also

both marginal tests, LMγ and LMω, indicate that both sources of persistence are present.

Nevertheless, as discussed in the Sections 3 and 4, this conclusion can be misleading because

marginal tests are not useful to detect the source of persistence. Moreover, the parameter

estimates differ considerably depending on the estimated model. The parameter estimate

for γ assuming Hω
0 is γ̂ = 0.244 and γ̂ = 0.249 for the model with and without time trend,

respectively. The parameter estimate for ω assuming Hγ
0 is ω̂ = 0.149 and ω̂ = 0.148 for

the model with and without time trend, respectively. These figures suggest that models

with and without time trend mostly coincide. However, when estimating the full model

with maximum likelihood we obtain (γ̂ = 0.185, ω̂ = 0.055) for the model with time trend

and (γ̂ = 0.249, ω̂ = 0; the binding constraint ω = 0 is reached) for the model with no time

trend. These estimates indicate that only dynamic persistence is present but individual

heterogeneity is not and that testing for the presence of only one persistence is necessary

in order to avoid the unnecessary inclusion of country-specific heterogeneity.

The conditional tests, LMγ/ω and LMω/γ , indeed suggest that only dynamic persis-

5The countries included in the sample are Argentina, Australia, Austria, Burundi, Belgium, Benin,
Burkina Faso, Bangladesh, Bolivia, Brazil, Barbados, Botswana, Central African Republic, Canada, China,
Switzerland, Chile, Cote d‘Ivoire, Cameroon, Congo, Republic of, Colombia, Comoros, Cape Verde, Costa
Rica, Cyprus, Denmark, Dominican Republic, Algeria, Ecuador, Egypt, Spain, Ethiopia, Finland, Fiji,
France, Gabon, United Kingdom, Ghana, Guinea, Gambia, Guinea-Bissau, Equatorial Guinea, Greece,
Guatemala, Hong Kong, Honduras, Haiti, Indonesia, India, Ireland, Iran, Iceland, Israel, Italy, Jamaica,
Jordan, Japan, Kenya, Korea, Republic of, Sri Lanka, Lesotho, Luxembourg, Morocco, Madagascar, Mex-
ico, Mali, Mozambique, Mauritania, Mauritius, Malawi, Malaysia, Namibia, Niger, Nigeria, Nicaragua,
Netherlands, Norway, Nepal, New Zealand, Pakistan, Panama, Peru, Philippines, Papua New Guinea,
Puerto Rico, Portugal, Paraguay, Romania, Rwanda, Senegal, Singapore, El Salvador, Sweden, Seychelles,
Syria, Chad, Togo, Thailand, Trinidad and Tobago, Turkey, Taiwan, Tanzania, Uganda, Uruguay, United
States, Venezuela, South Africa, Congo, Dem. Rep., Zambia, Zimbabwe.
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tence is observed. In fact, the conditional test for unobserved time-invariant heterogeneity

with a time trend, LMω/γ accepts the null hypothesis Hω
0 at the 5% significance level. The

Bera-Yoon robust test LM∗
γ/ω indicates that the null hypothesis of absence of dynamic

persistence is rejected but also the test LM∗
ω/γ indicates rejection. In order to evaluate

the validity of the Bera-Yoon tests we consider that deviations from γ = 0, the nuisance

parameter for testing Hω
0 , are large in all considered models and therefore, it might not

be valid to take those γ values as local/small departures as analyzed in the Monte Carlo

simulations. Overall these results show that dynamic persistence appears to explain coun-

tries’ growth differences with an autoregressive parameter of 0.25, and that country-specific

heterogeneity does not explain growth persistence once dynamic persistence is taken into

account. Thus, countries’ growth performance is path-dependent and is not conditioned

by the countries’ specific characteristics.

6 Conclusion

This paper derives simple tests for persistent effects in a dynamic linear panel data model

with unobserved individual effects. It improves upon the previous literature by handling

state persistence through a truly dynamic model, instead of relegating it to first order

serial correlation in the error term, which is seen as just one particular restriction that

arises from imposing a common factor restriction on the general specification. This is in

line with the classical literature on dynamic econometrics, that strongly emphasizes general

dynamic structures. The classic test by Breusch-Pagan (1980) for random effect is found to

be negatively affected by dynamic misspecification, that is, when it rejects its null it is due

to unobserved heterogeneity and/or dynamic misspecification, along the results previously

found by Bera et al. (2001).

We suggest two alternatives to identify the sources of persistence. The first ‘condi-

tional’ strategy involves estimating the parameters handling the source of persistence not

tested for. The second ‘robust’ strategy is based on the Bera-Yoon (1993) principle. A

main advantage of the latter is that is does not require previous estimation of nuisance

parameters, and hence can be implemented after estimating a pooled panel model with no

persistence.
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A Monte Carlo study shows that the conditional and robust tests perform well in small

samples. Specifically, they do not suffer from the oversize of marginal tests, and also, they

have power only in the direction designed even in non-local contexts. When the alternative

hypothesis is correctly specified, the power loss with respect to the optimal marginal test is

very small, although it is not optimal. Furthermore, they still perform well in non-gaussian

contexts.

An important advantage of our tests is that they can be implemented after pooled OLS

estimation of a static model with no random or dynamic effects. This is relevant in practice,

in light of the well known concerns affecting instrumental variables /GMM strategies, aimed

at dealing with biases induced by the presence of lagged dependent variables in a linear

panel model (see Bond, 2002, for a useful review of advantages and disadvantages or linear

dynanic panel specifications). Our proposed tests have the ability of distinguishing which

source of persistence is active (random individual or dynamic effects) without requiring the

estimation of a dynamic structure, based on simple OLS estimation. Hence the results of

our tests should be useful to decide whether it is relevant to involve a truly dynamic model

(when persistences are due to dynamic misspecification) or whether a simpler, random

effects structure would suffice (when random effects are the sole source of persistence).

From a practical perspective, the results in this paper suggest to start with a joint test for

both sources of persistence, and then if the null hypothesis of no persistence is rejected,

conditional and robust tests should be used to evaluate which source of persistence is

present, while marginal tests can be misleading.
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A Appendix: Derivation of the Test Statistics

A.1 First and Second Derivatives of the Log-Likelihood Function

The below results are helpful to obtain the Fisher information matrix. The first partial

derivatives of the function L with respect to θ are:

∂L(θ)

∂β
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X ′u

σ2
ε

− ω

σ2
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From these expressions, the second derivatives can be written as
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A.2 Fisher Information Matrix

Define now J(θ) = −(NT )−1E[∂2L(θ)/∂θ∂θ′] as the Fisher information evaluated at the

true parameters θ = (β′, σ2
ε , γ, ω)

′. Using previous results, it is easy to show that

J(θ) =









Jββ Jβε Jβγ Jβω
J ′
βε Jεε Jεγ Jεω

J ′
βγ Jεγ Jγγ Jγω

J ′
βω Jεω Jγω Jωω









, (A.1)
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Jωω =
T
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,

where ũi = (ui1, . . . , uiT ) and ỹi,−1 = (yi0, yi1, . . . , yi(T−1)) are (1 × T ) vectors whose t-th

components are uit and yi,t−1, respectively. To derive above expressions, recall that the

expectation of the score is zero at the true parameters (see for example, Jεε and Jεγ), and

also that (yi0, x
′
i1, . . . , x

′
iT ) are identically distributed across i, so the expectations have

been written in terms of i = 1.
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A.3 Construction of Statistics

Before proceeding, the next expressions are helpful to construct the statistics. Under our

assumptions and when γ = 0, for any (β′, σ2
ε , ω) ∈ R

k × R>0 × R≥0, we have that

E(x̃1ỹ
′
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e′
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′
1,−1) = E(ỹe1ỹ
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ε ,

where ỹe1 = (y10, x
′
11β, . . . , x

′
1(T−1)β) is a (1 × T ) vector whose t-th component is the

conditional expectation E[y1(t−1)|yi0, x̃1] under γ = 0. In addition, the following results

hold:

1. When γ = 0, for any (β′, σ2
ε , ω) ∈ R
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. (A.2)

This expression is obtained by induction on T .

In the next subsections, we build the test statistics exploiting the formulas LMa and

LM∗
a/c detailed in Section 3.

A.3.1 Construction of LMγ, LMω, LM
∗
γ/ω, LM

∗
ω/γ, LMγω

These statistics can be computed by estimating just the restricted model, that is, by

estimating (β′, σ2
ε) under (γ, ω) = (0, 0). Denote such estimate by θ̂0 = (β̂′, σ̂2

ε , 0, 0)
′ and

recall that we have defined θ0 = (β′, σ2
ε , 0, 0)

′, as well as, b = (β′, σ2
ε)

′. From the general
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definition of Ja,b(θ) in Section 3, we can write

Jγ,b(θ0) = Jγγ(θ0)− Jγb(θ0)J
−1
bb (θ0)Jbγ(θ0),

Jω,b(θ0) = Jωω(θ0)− Jωb(θ0)J
−1
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−1
bb (θ0)Jb(γ,ω)′(θ0).

Note that Jγω,b(θ0) is different from J(γ,ω)′,b(θ0). After combining the above terms with

the expressions of eq. (A.1), we obtain
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′
1,−1)− E(ỹ1,−1x̃

′
1)[E(x̃1x̃

′
1)]

−1E(x̃1ỹ
′
1,−1)

}

,

Jω,b(θ0) =
T − 1

2
,

Jγω,b(θ0) =
T − 1

T
, and

J(γ,ω)′,b(θ0) =

(

Jγ,b(θ0) Jγω,b(θ0)
Jγω,b(θ0) Jω,b(θ0)

)

. (A.3)

From our assumptions and since (γ, ω) = (0, 0), it can be shown that

Jγ,b(θ0) =
1

Tσ2
ε

{

E(ỹe1ỹ
e′
1 )− E(ỹe1x̃

′
1)[E(x̃1x̃

′
1)]

−1E(x̃1ỹ
e′
1 )
}

+
T − 1

T
, (A.4)

where ỹei = (yi0, x
′
i1β, . . . , x

′
i(T−1)β) is a (1× T ) vector whose t-th component is the condi-

tional expectation E[yi(t−1)|yi0, x̃i] under γ = 0.

In order to build feasible test statistics, which can be computed from a random sample,

we replace the unknown expectation of expression (A.3) with the corresponding sample

analogues; for example, E(x̃1x̃
′
1) is replaced by (1/N)

∑N
i=1 x̃ix̃

′
i. After doing so,

Ĵγ,b(θ̂0) =
ŷ′−1Qŷ−1

(NT )σ̂2
ε

+
T − 1

T
=

ê′ê

û′û
+

T − 1

T
,

where second equality follows from the fact that Q is idempotent. Trivially, we have that

Ĵω,b(θ̂0) = (T − 1)/2 and Ĵγω,b(θ̂0) = (T − 1)/T . Then, it is straightforward to construct

Ĵ(γ,ω)′,b(θ̂0).

After plugging-in the above terms in eq. (2), the marginal and joint test statistics
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become

LMγ = dγ(θ̂0)
′J−1

γ,b (θ̂0)dγ(θ̂0)/(NT ) = (NT )
B2

C
,

LMω = dω(θ̂0)
′J−1

ω,b(θ̂0)dω(θ̂0)/(NT ) = (NT )
A2

2(T − 1)
, and

LMγω = d(γ,ω)′(θ̂0)
′J−1

(γ,ω)′,b(θ̂0)d(γ,ω)′(θ̂0)/(NT ) = (NT )

{

[B + (A/T )]2

C − 2(T − 1)/T 2
+

A2

2(T − 1)

}

.

Note that the scores dγ(θ̂0), dω(θ̂0), and d(γ,ω)′(θ̂0) can be obtained from Appendix A.1

Proceeding in a similar manner, we build the robust statistics. After plugging in the

formulas of Ĵγ,b(θ̂0), Ĵω,b(θ̂0), Ĵγω,b(θ̂0), and Ĵ(γ,ω)′,b(θ̂0) in eq. (8), we obtain that

LM∗
γ/ω = (NT )

[B + (A/T )]2

C − 2(T − 1)/T 2
and

LM∗
ω/γ = (NT )

[A/2 + (T − 1)B/(TC)]2

(T − 1)/2− (T − 1)2/(T 2C)
.

Alternatively, and as it was stated in Section 3, LM∗
γ/ω and LM∗

ω/γ can be obtained from

Bera et al (2009)’s results. Observe that the above expressions are to equal LMγω − LMω

and LMγω − LMγ .

A.3.2 Construction of LMγ/ω

From eq. (2), the formula for LMγ/ω becomes

LMγ/ω =
1

NT
dγ(θ̂γ)

′J−1
γ,bγ

(θ̂γ)dγ(θ̂γ), (A.5)

where bγ = (β′, σ2
ε , ω)

′ and θ̂γ = (β̂′
γ , σ̂

2
ε,γ , 0, ω̂γ)

′ denotes the maximum likelihood estimator

of (β′, σ2
ε , γ, ω)

′ under the restriction γ = 0. Under the null γ = 0, LMγ/ω converges in

distribution to χ2
1(0); see for example, Bera and Yoon (1993, pp. 651).

The score dγ(θ̂γ) can be easily obtained from Appendix A.1. To construct Jγ,bγ (θ̂γ),
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note first that

Jγγ(θγ) =
1

Tσ2
ε

[

E(ỹ1,−1ỹ
′
1,−1)−

ω

(1 + Tω)
E(ỹ1,−1eT e

′
T ỹ

′
1,−1)

]

,

Jbγγ(θγ) =







1
Tσ2

ε

[

E(x̃1ỹ
′
1,−1)− ω

(1+Tω)E(x̃1eT e
′
T ỹ

′
1,−1)

]

0[1×1]
T−1

T (1+Tω)






, and

Jbγbγ (θγ) =









1
Tσ2

ε

[

E(x̃1x̃
′
1)− ω

(1+Tω)E(x̃1eT e
′
T x̃

′
1)
]

0[k×1] 0[k×1]

0[1×k]
1

2(σ2
ε)

2
1

2σ2
ε(1+Tω)

0[1×k]
1

2σ2
ε(1+Tω)

T
2(1+Tω)2









,

where θγ = (β′, σ2
ε , 0, ω)

′; see expression (A.1).

Since Jγ,bγ (θ̂γ) = Jγγ(θ̂γ)− Jγbγ (θ̂γ)J
−1
bγbγ

(θ̂γ)Jbγγ(θ̂γ), we obtain Jγ,bγ (θ̂γ) by using ele-

mentary algebra and noting Jγbγ (θγ) = J ′
bγγ

(θγ). Finally, after replacing the expectations

by the sample analogues, we obtain the desired result:

LMγ/ω = (NT )
B2

γ

Cγ − 2(T − 1)/T 2
.

A.3.3 Construction of LMω/γ

Again, from eq. (2), the formula for LMω/γ becomes

LMω/γ =
1

NT
dω(θ̂ω)

′J−1
ω,bω

(θ̂ω)dω(θ̂ω), (A.6)

where bω = (β′, σ2
ε , γ)

′ and θ̂ω = (β̂′
ω, σ̂

2
ε,ω, γ̂ω, 0)

′ denotes the maximum likelihood estimator

of (β′, σ2
ε , γ, ω) under the restriction ω = 0. Under the null ω = 0, LMω/γ converges in

distribution to χ2
1(0). To construct Jω,bω(θ̂ω), observe that

Jωω(θω) =
T

2
,

Jbωω(θω) =







0[k×1]
1

2σ2
ε

1
T

[

(T − 1) +
∑T

t=2(T − t)γt−1
]






, and

Jbωbω(θω) =







1
Tσ2

ε
E(x̃1x̃

′
1) 0[k×1]

1
Tσ2

ε
E(x̃1ỹ

′
1,−1)

0[1×k]
1

2σ4
ε

0[1×1]
1

Tσ2
ε
E(ỹ1,−1x̃

′
1) 0[1×1]

1
Tσ2

ε
E(ỹ1,−1ỹ

′
1,−1)






.
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Finally, following similar arguments to that of the previous subsection, we obtain the

formula of eq. (7).
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Tables

Table 1: Empirical size

N T LMγ LMγ/ω LM∗
γ/ω LMω LMω/γ LM∗

ω/γ LMγω

50 2 0.013 0.052 0.003 0.047 0.009 0.027 0.018
50 5 0.031 0.027 0.024 0.048 0.021 0.042 0.032
50 10 0.044 0.022 0.041 0.042 0.030 0.045 0.040
100 2 0.014 0.048 0.004 0.053 0.010 0.032 0.020
100 5 0.032 0.025 0.026 0.052 0.022 0.045 0.034
100 10 0.039 0.013 0.035 0.045 0.034 0.049 0.040

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. (γ, ω) =
(0, 0). Panel data models with (N, T) = (50, 5).
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Table 2: Empirical size: Consistency

N T LMγ LMγ/ω LM∗

γ/ω LMω LMω/γ LM∗

ω/γ LMγω

γ = 0, ω = 0

10 5 0.027 0.072 0.021 0.032 0.013 0.035 0.025
20 5 0.030 0.036 0.028 0.039 0.017 0.036 0.026
50 5 0.027 0.023 0.024 0.039 0.023 0.035 0.030
100 5 0.028 0.019 0.022 0.047 0.022 0.037 0.028
200 5 0.040 0.023 0.029 0.047 0.022 0.044 0.031
500 5 0.032 0.011 0.024 0.039 0.021 0.031 0.031
1000 5 0.032 0.010 0.024 0.055 0.023 0.046 0.035

γ = 0.1, ω = 0

10 5 0.048 0.029 0.025 0.059 0.014 0.053 0.043
20 5 0.118 0.013 0.077 0.114 0.021 0.061 0.105
50 5 0.256 0.057 0.161 0.183 0.014 0.073 0.226
100 5 0.547 0.158 0.358 0.262 0.016 0.071 0.436
200 5 0.818 0.390 0.604 0.440 0.022 0.101 0.731
500 5 0.998 0.904 0.971 0.822 0.018 0.135 0.995
1000 5 1.000 0.958 0.990 0.897 0.020 0.141 1.000

γ = 0, ω = 0.1

10 5 0.038 0.033 0.017 0.116 0.029 0.091 0.082
20 5 0.065 0.009 0.010 0.231 0.066 0.188 0.154
50 5 0.152 0.003 0.019 0.455 0.165 0.349 0.333
100 5 0.302 0.002 0.018 0.726 0.393 0.615 0.627
200 5 0.546 0.002 0.017 0.953 0.725 0.892 0.917
500 5 0.913 0.006 0.018 1.000 0.986 0.999 0.998
1000 5 0.996 0.006 0.020 1.000 1.000 1.000 1.000

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Panel data models with
(N, T) = (50, 5).
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Table 3: Empirical size: Power and robustness

γ ω LMγ LMγ/ω LM∗

γ/ω LMω LMω/γ LM∗

ω/γ LMγω

0.000 0.000 0.028 0.023 0.022 0.041 0.020 0.036 0.025

0.000 0.050 0.063 0.009 0.026 0.182 0.062 0.143 0.124
0.000 0.100 0.151 0.005 0.019 0.456 0.179 0.370 0.358
0.000 0.150 0.298 0.005 0.019 0.718 0.342 0.625 0.624
0.000 0.200 0.458 0.004 0.018 0.868 0.509 0.793 0.807
0.000 0.250 0.601 0.003 0.014 0.950 0.647 0.906 0.915
0.000 0.300 0.733 0.003 0.013 0.975 0.746 0.952 0.959
0.000 0.350 0.832 0.002 0.012 0.992 0.828 0.980 0.984
0.000 0.400 0.895 0.003 0.012 0.997 0.875 0.993 0.995

0.050 0.000 0.078 0.014 0.053 0.070 0.020 0.053 0.070
0.100 0.000 0.258 0.050 0.163 0.161 0.019 0.071 0.212
0.150 0.000 0.565 0.192 0.363 0.293 0.018 0.099 0.476
0.200 0.000 0.849 0.420 0.620 0.484 0.014 0.144 0.769
0.250 0.000 0.963 0.666 0.805 0.657 0.014 0.193 0.929
0.300 0.000 0.996 0.871 0.936 0.816 0.013 0.278 0.988
0.350 0.000 1.000 0.964 0.985 0.920 0.012 0.384 0.999
0.400 0.000 1.000 0.995 0.998 0.968 0.014 0.512 1.000

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Panel data models with
(N, T) = (50, 5).
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Table 4: Empirical size: Different DGP

γ ω LMγ LMγ/ω LM∗

γ/ω LMω LMω/γ LM∗

ω/γ LMγω

DGP : t4 Student

0.000 0.000 0.035 0.033 0.027 0.044 0.020 0.039 0.033

0.000 0.050 0.066 0.007 0.023 0.197 0.076 0.159 0.137
0.000 0.100 0.159 0.003 0.014 0.454 0.190 0.371 0.357
0.000 0.150 0.285 0.005 0.019 0.667 0.349 0.588 0.579
0.000 0.200 0.444 0.004 0.013 0.811 0.490 0.741 0.743
0.000 0.250 0.579 0.003 0.012 0.896 0.618 0.844 0.851
0.000 0.300 0.682 0.006 0.012 0.942 0.696 0.904 0.917
0.000 0.350 0.768 0.004 0.010 0.964 0.767 0.942 0.944
0.000 0.400 0.823 0.004 0.011 0.982 0.819 0.964 0.973

0.050 0.000 0.073 0.015 0.055 0.073 0.022 0.053 0.069
0.100 0.000 0.261 0.056 0.161 0.158 0.020 0.069 0.209
0.150 0.000 0.571 0.196 0.369 0.294 0.018 0.093 0.475
0.200 0.000 0.837 0.417 0.599 0.487 0.017 0.139 0.761
0.250 0.000 0.969 0.683 0.819 0.667 0.013 0.201 0.938
0.300 0.000 0.994 0.876 0.932 0.809 0.012 0.278 0.988
0.350 0.000 0.999 0.960 0.981 0.914 0.011 0.387 0.997
0.400 0.000 1.000 0.993 0.996 0.964 0.013 0.505 0.999

DGP : χ2
1

0.000 0.000 0.030 0.018 0.021 0.041 0.019 0.035 0.030

0.000 0.050 0.076 0.008 0.021 0.195 0.083 0.156 0.147
0.000 0.100 0.173 0.006 0.019 0.461 0.213 0.384 0.372
0.000 0.150 0.324 0.006 0.020 0.642 0.353 0.571 0.569
0.000 0.200 0.436 0.006 0.018 0.770 0.462 0.707 0.703
0.000 0.250 0.560 0.004 0.012 0.853 0.574 0.795 0.799
0.000 0.300 0.650 0.006 0.011 0.903 0.664 0.860 0.866
0.000 0.350 0.734 0.004 0.011 0.939 0.737 0.908 0.909
0.000 0.400 0.791 0.005 0.013 0.962 0.774 0.933 0.937

0.050 0.000 0.079 0.017 0.056 0.074 0.018 0.045 0.073
0.100 0.000 0.255 0.061 0.158 0.157 0.022 0.071 0.208
0.150 0.000 0.565 0.182 0.361 0.296 0.021 0.102 0.463
0.200 0.000 0.848 0.402 0.602 0.472 0.017 0.139 0.755
0.250 0.000 0.973 0.674 0.798 0.667 0.015 0.201 0.938
0.300 0.000 0.998 0.866 0.927 0.830 0.017 0.289 0.994
0.350 0.000 1.000 0.959 0.977 0.911 0.012 0.371 0.999
0.400 0.000 1.000 0.992 0.995 0.969 0.011 0.482 1.000

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Panel data models with
(N, T) = (50, 5).
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Table 5: Empirical application: real GDP per capita growth

Dynamic persistence Time-invariant persistence Both
Hγ

0 : γ = 0 Hω
0 : ω = 0 Hγω

0 : γ = ω = 0

marginal conditional robust marginal conditional robust joint
LMγ LMγ/ω LM∗

γ/ω LMω LMω/γ LM∗

ω/γ LMγω

with time trend

statistic 42.75 8.52 14.17 51.87 2.51 23.28 66.03
decision reject reject reject reject accept reject reject

without time trend

statistic 46.37 10.12 16.79 50.90 2.09 21.32 67.69
decision reject reject reject reject accept reject reject

Notes: See text for details. Tests based on a 5% significance level.
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