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Testing linearity against threshold effects:

uniform inference in quantile regression

Antonio F. Galvao, Jr.∗ Kengo Kato† Gabriel Montes-Rojas‡ Jose Olmo§

February 5, 2013

Abstract

This paper develops a uniform test of linearity against thresholds effects in

the quantile regression framework. The test is based on the supremum of the

Wald process over the space of quantile and threshold parameters. We establish

the limiting null distribution of the test statistic for stationary weakly dependent

processes, and propose a simulation method to approximate the critical values.

The proposed simulation method makes the test easy to implement. Monte

Carlo experiments show that the proposed test has good size and reasonable

power against nonlinear threshold models.
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1 Introduction

This paper develops a uniform test of linearity against threshold nonlinearity of the

conditional quantile function for stationary time series processes. The null hypothesis

assumes that the conditional quantile function is linear in the conditioning variables

uniformly over a given range of quantiles, while the alternative hypothesis assumes
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that the conditional quantile function follows a threshold model at some quantile,

i.e., is piecewise linear in the conditioning variables at some quantile. Under this

formulation, we develop a test based on the supremum of the Wald process over the

space of quantile and threshold parameters. We establish the limiting null distribution

of the proposed test for stationary weakly dependent processes, and show that it is

consistent against fixed alternatives and has nontrivial power against the Pitman family

of local alternatives. Unfortunately, the limiting null distribution is not pivotal because

it depends on unknowns. In order to compute critical values of the test, we propose a

simple simulation method that exploits the specific property of the quantile regression

estimator and establish its validity. We carry out Monte Carlo experiments to study

the finite sample properties of the proposed test in terms of empirical size and power.

The results show evidence that the proposed test presents empirical size very close

to the nominal size, and reasonable power performance. The simulation exercise also

confirms in finite samples the nontrivial power of our test statistic against the Pitman

family of local alternatives.

There is a large number of studies on threshold models, in particular in the time

series literature (Tong and Lim, 1980; Tong, 1983; Tsay, 1989; Chan, 1990; Hansen,

1996, 1997, 2000), and on threshold quantile regression as well (Caner, 2002; Cai and

Stander, 2008; Cai, 2010). This paper contributes to the literature by proposing a

convenient testing procedure on threshold effects, and by studying its theoretical and

practical performance in the quantile regression framework. We shall comment that

threshold models may act as a general alternative to the null of linearity. In fact, Fan

and Yao (2005, p.134) stated: “Although the test is designed for a specified alternative,

it may be applied to test a departure to a general smooth nonlinear function since a

piecewise linear function will provide a better approximation than that from a (global)

linear function.”

Quantile regression is applied in many fields because it allows for statistical in-

ference on the entire conditional distribution. Many researchers have investigated

the problem of testing the hypothesis of linearity of the conditional quantile function

(Zheng, 1998; Horowitz and Spokoiny, 2002; He and Zhu, 2003; Whang, 2005; Otsu,

2008). These tests are pointwise, i.e., they test linearity of the conditional quantile

function at a given quantile, say median, and their formulations of the testing problems

are different from ours. In an independent study, Lee et al. (2011) considered a test of

linearity against a threshold nonlinear alternative for a fixed quantile. This test is also

pointwise, and they do not allow for dynamics in the model. Therefore, the uniform

test proposed in this paper differs from those available in the literature. We shall stress

that uniform inference has an important role in the quantile regression literature. For
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a related literature on uniform inference in quantile regression, we refer to Gutenbrun-

ner and Jurečková (1992), Koenker and Machado (1999), Koenker and Xiao (2002),

Chernozhukov and Fernández-Val (2005), and Angrist et al. (2006). The last paper

states advantages of uniform inference over pointwise one in some detail. It is impor-

tant to note that in our case it is difficult to control the size of the overall procedure if

one applies pointwise tests for a number of quantile indices. More recently, Escanciano

and Velasco (2010) proposed general specification tests of parametric dynamic quantile

regression models in a different way than ours.

In the quantile regression framework, Qu (2008) and Su and Xiao (2008) developed

uniform tests for structural changes. However, there is an important difference between

threshold and structural break models. In the former, the nonlinearity is defined by

the observable history of the time series, and in the latter, the conditional distribution

changes at an exogenous date. Moreover, as Carrasco (2002) argued, tests for structural

change have no power if the data are generated by Markov-switching or threshold

models.

The paper is organized as follows. In Section 2, we formally define the test statis-

tic. In Section 3, we establish its limiting nulll distribution and show its consistency.

We also briefly comment on the limiting distribution of the test statistic under local

alternatives. In Section 4, we develop a simulation method to approximate the critical

values of the proposed test. In Section 5, we present Monte Carlo experiments of the

test’s finite sample performance. In Section 6, we give a brief summary of the paper.

Proofs are gathered in the Appendix.

2 Formulation and test statistic

Let (yt, qt,x
′
t)
′ be a triple of a scalar dependent variable yt, a scalar threshold variable

qt and a vector of d explanatory variables xt that may contain lags of yt. A typical

example of qt is an element of xt. Define zt := (qt,x
′
t)
′. Throughout the paper, we

assume that the process {(yt, z′t)′, t ∈ Z} is strictly stationary. Let At−1 denote the σ-

field generated by {zt, yt−1, zt−1, yt−2, . . . } and let Qyt(τ |At−1) denote the conditional

τ -quantile of yt given At−1, where τ ∈ (0, 1).

We consider testing the null hypothesis

H0 : Qyt(τ |At−1) = x′tθ1(τ), for all τ ∈ T
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against the alternative

H1 : Qyt(τ0|At−1) = I(qt > γ0)x′tθ1(τ0) + I(qt ≤ γ0)x′tθ2(τ0), for some τ0 ∈ T ,

where I(·) is the indicator function, T := [τL, τU ] is a bounded closed interval in

(0, 1) and γ0 is the threshold parameter. Let Γ := [γL, γU ] be the parameter space

of γ0. The null hypothesis assumes that the conditional quantile function is linear in

xt uniformly over a given range of quantiles, while the alternative hypothesis assumes

that the conditional quantile function follows a threshold model at some quantile. To

differentiate the alternative from the null hypothesis, we assume that θ1(τ0) 6= θ2(τ0).

It will be convenient to write the hypotheses in a different form. Let β(1)(τ0) =

θ1(τ0) and β(2)(τ0) = θ2(τ0)− θ1(τ0). Then the alternative hypothesis is expressed as

H1 : Qyt(τ0|At−1) = zt(γ0)′β(τ0) with β(2)(τ0) 6= 0, for some τ0 ∈ T ,

where zt(γ) = (x′t, I(qt ≤ γ)x′t)
′ and β(τ0) = (β(1)(τ0)′,β(2)(τ0)′)′. Working with this

notation, we may write the null hypothesis as

H0 : Qyt(τ |At−1) = zt(γ)′β(τ) with β(2)(τ) = 0, for all τ ∈ T , (1)

regardless of the value of γ ∈ Γ. These alternative expressions of the null and the

alternative hypotheses lead to the following testing procedure: suppose that the sample

{(yt, z′t)′}nt=1 is given. Given (τ, γ) ∈ T × Γ, let β̂(τ, γ) be the estimator defined by

β̂(τ, γ) := arg min
b∈R2d

1

n

n∑
t=1

ρτ (yt − zt(γ)′b),

where ρτ (u) := u{τ − I(u ≤ 0)} is the check function (Koenker and Bassett, 1978).

This β̂(τ, γ) is the quantile regression estimator when we treat zt(γ) as “explanatory

variables”. When H0 is true, under suitable regularity conditions, β̂2(τ, γ) converges

in probability to 0 for each (τ, γ) ∈ T × Γ. On the other hand, when H1 is true,

β̂2(τ0, γ0) converges in probability to β(2)(τ0) 6= 0. However, we know a priori neither

the quantile τ0 where the linearity breaks down nor the true value of the threshold

parameter γ0 at that quantile. Therefore, it is reasonable to reject H0 if the magnitude

of β̂2(τ, γ) is suitably large for some (τ, γ) ∈ T × Γ. A natural choice is to test H0

against H1 by the supremum of the Wald process

SWn := sup
(τ,γ)∈T ×Γ

nβ̂(2)(τ, γ)′{V22(τ, γ)}−1β̂(2)(τ, γ), (2)
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where V22(τ, γ) is the asymptotic covariance matrix of
√
nβ̂2(τ, γ) under H0. In prac-

tice, V22(τ, γ) is replaced by a suitable consistent estimate.

The problem of our test is that the threshold parameter is not identified under

the null hypothesis. Such a problem is called the Davies problem (see Davies, 1977,

1987). For works that address the Davies problem in a general but different context,

we refer to Andrews and Ploberger (1994) and Hansen (1996) among many others.

The difference from the standard situation in the Davies problem is that we now take

the supremum over two parameters (τ, γ) in the definition of SWn. We remark that

one could use more general functionals than taking supremum. The limiting null

distribution of such functionals can be obtained by the continuous mapping theorem

and the weak convergence result established in Theorem 1 below. However, a detailed

treatment of their properties is beyond the scope of this paper. In what follows, we

restrict our attention to the supremum functional.

3 Large sample theory

3.1 Limiting null distribution and consistency

In this subsection, we derive the limiting null distribution of the proposed test statistic

SWn and show its consistency against fixed alternatives. To this end, we derive the

limiting null distribution of the two-parameter process β̂(τ, γ) on T ×Γ. Here we make

the following regularity conditions.

(C1) The process {(yt, z′t)′, t ∈ Z} is strict stationary and β-mixing with β-mixing

coefficients satisfying β(j) = O(j−l) with l > p/(p − 2), where p > 2 is given in

condition (C2) below.

(C2) E[‖xt‖p] <∞ for some p > 2.

(C3) Let F (·|z) denote the conditional distribution function of yt given zt = z. As-

sume that F (·|z) has a Lebesgue density f(·|z) such that

(i) |f(y|z)| ≤ Cf on the support of (yt, z
′
t)
′ for some constant Cf > 0.

(ii) |f(y1|z)− f(y2|z)| → 0 as |y1 − y2| → 0 for each fixed z.

(C4) The threshold variable qt has a continuous distribution.

(C5) There exist an open set T ∗ ⊂ (0, 1) with T ∗ ⊃ T such that for each τ ∈ T ∗,
there exists a unique vector β∗(1)(τ) ∈ Rp that solves the equation E[(τ − I{yt ≤
x′tβ

∗
(1)(τ)})xt] = 0.
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(C6) Define the matrices

Ω0(γ1, γ2) := E[zt(γ1)zt(γ2)′],Ω1(τ, γ) := E[f(x′tβ
∗
(1)(τ)|zt)zt(γ)zt(γ)′].

Assume that Ω0(γ, γ) is positive definite for each γ ∈ Γ, and Ω1(τ, γ) is positive

definite for each (τ, γ) ∈ T × Γ.

Condition (C1) allows for time series data. We require the process to be β-mixing.

This is because our proof uses the uniform central limit theorem for β-mixing processes

displayed in Arcones and Yu (1995). For some basic properties of mixing processes, we

refer to Section 2.6 of Fan and Yao (2005) and references therein. Condition (C2) is a

moment condition. Condition (C3) is standard in the quantile regression literature (see

Angrist et al., 2006). Condition (C4) is standard in the threshold regression literature

(see Hansen, 1996, 2000). Condition (C5) needs an explanation. When H0 is true,

β(1)(τ) = β∗(1)(τ) in (1) and Qyt(τ |At−1) = x′tβ
∗
(1)(τ) for all τ ∈ T . When H0 is not

true, β∗(1)(τ) is interpreted as the coefficient vector of the best linear predictor of the

conditional quantile function against a certain weighted mean-squared loss function

(Angrist et al., 2006, Theorem 1). The reason to assume condition (C5) is that the

limiting null distribution of SWn depends on the probability limit of β̂1(τ, γ) under

the null hypothesis. To guarantee that this distribution is well defined under the

alternative hypothesis (which is relevant when we argue about consistency of the test

against fixed alternatives), we need condition (C5). Under these conditions, the map

τ ∈ T ∗ 7→ β∗(1)(τ) is continuously differentiable by the implicit function theorem (see

Angrist et al., 2006, p.560). Condition (C6) guarantees that the matrices Ω0(γ, γ) and

Ω1(τ, γ) do not degenerate for each fixed γ ∈ Γ and (τ, γ) ∈ T × Γ, respectively. In

fact, they do not degenerate uniformly over those sets under the present conditions:

Lemma 1. Under conditions (C2)-(C5), the map (γ1, γ2) 7→ Ω0(γ1, γ2) is continuous

on Γ× Γ, and the map (τ, γ) 7→ Ω1(τ, γ) is continuous on T × Γ.

Proof. Follows from standard calculations.

Because of the computational property of the quantile regression estimate (Koenker

and Bassett, 1978, Theorem 3.1), we can select β̂(τ, γ) in such a way that the path

(τ, γ) 7→ β̂(τ, γ) is bounded. Moreover, the path τ 7→ β∗(1)(τ) is continuous as men-

tioned before. Therefore, we may assume that the path (τ, γ) 7→
√
n{β̂(τ, γ) −

(β∗(1)(τ)′,0′)′} is bounded over (τ, γ) ∈ T × Γ. Let `∞(T × Γ) denote the space of all

bounded functions on T × Γ equipped with the uniform topology, and (`∞(T × Γ))2d

denote the (2d)-product space of `∞(T × Γ) equipped with the product topology. We

use the notation “⇒” for weak convergence. We refer to Chapter 1 of van der Vaart
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and Wellner (1996) for weak convergence in general non-separable metric spaces. For

a, b ∈ R, we write a ∧ b = min{a, b}. Here let β∗(τ) := (β∗(1)(τ)′,0′)′ ∈ R2d.

Theorem 1. Assume conditions (C1)-(C6). Then under H0 (that is, Qyt(τ |At−1) =

x′tβ
∗
(1)(τ) for all τ ∈ T ),

√
n{β̂(τ, γ)− β∗(τ, γ)} admits the Bahadur representation

√
n{β̂(τ, γ)−β∗(τ)} = Ω1(τ, γ)−1 1√

n

n∑
t=1

[
τ − I{yt ≤ x′tβ∗(1)(τ)}

]
zt(γ)+rn(τ, γ), (3)

where sup(τ,γ)∈T ×Γ ‖rn(τ, γ)‖ = op(1). Therefore, under H0,

√
n{β̂(τ, γ)− β∗(τ)} ⇒ Ω1(τ, γ)−1W (τ, γ) in (`∞(T × Γ))2d, (4)

where W (τ, γ) is a zero-mean, continuous Gaussian process on T × Γ with covariance

kernel

E[W (τ1, γ1)W (τ2, γ2)′] = (τ1 ∧ τ2 − τ1τ2)Ω0(γ1, γ2). (5)

A proof of Theorem 1 is given in Appendix A.

Remark 1. Under the present specification, {τ − I{yt ≤ x′tβ
∗
(1)(τ)}, t ∈ Z} is a

martingale difference sequence (m.d.s.) with respect to {At−1, t ∈ Z} under H0, so that

the limiting null distribution of β̂(τ, γ) is the same as the one as if the observations

were independent. In particular, the asymptotic covariance matrix is not an infinite

sum. The m.d.s. assumption can be violated, for example, when error processes are

serially dependent or of GARCH type. However, the m.d.s. assumption is widely used

in time series analysis of quantile regression models (see, e.g., Qu, 2008; Escanciano

and Velasco, 2010; Komunjer and Vuong, 2010a,b).1 This is partly because estimation

of long-run covariance matrices for quantile regression estimators is not well developed

(note that Andrews (1991) is not applicable since the moment functions in the quantile

regression case are discontinuous). For the sake of simplicity, we maintain the m.d.s.

assumption under the null (note that the m.d.s. assumption is assumed only under

the null, and under alternatives this assumption can be violated).

Given Theorem 1, it is now immediate to derive the limiting null distribution of

the test statistic SWn defined by (2). Let R := [O Id], the d× 2d matrix.

Corollary 1. Assume conditions (C1)-(C6). Then under H0,

SWn ⇒ sup
(τ,γ)∈T ×Γ

S(τ, γ)′{V22(τ, γ)}−1S(τ, γ), (6)

1An important exception is Su and White (2012). This reference was noted by a referee.
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where S(τ, γ) = RΩ1(τ, γ)−1W (τ, γ) and V22(τ, γ) is the asymptotic covariance matrix

of
√
nβ̂2(τ, γ) under H0:

V22(τ, γ) = E[S(τ, γ)S(τ, γ)′] = τ(1− τ)RΩ1(τ, γ)−1Ω0(γ, γ)Ω1(τ, γ)−1R′.

Proof. Follows from the continuous mapping theorem and the weak convergence result

established in Theorem 1.

Recall that, thanks to condition (C5), the distribution given by (6) is in general

well defined. The limiting null distribution of SWn is given by the supremum of a two-

parameter chi-square process and is not pivotal. In fact, it depends on the unknown

parameter β∗(1)(τ) and the distribution of zt, so critical values cannot be universally

tabulated except for some special cases. We will discuss the practical implementation

in Section 4.

It is standard to show that under the same conditions of Theorem 1, under the

alternative hypothesis H1, β̂(2)(τ0, γ0)
p→ β(2)(τ0) 6= 0, which implies that SWn

p→ ∞
under H1. So the proposed test is consistent against fixed alternatives.

3.2 Limiting distribution under local alternatives

We briefly comment on the limiting distribution of the test SWn under local alterna-

tives, which requires a slightly different formulation and a set of different regularity

conditions. Consider the following local alternatives:

H1n : Qyn,t(τ |Ant−1) = x′n,tβ
∗
(1)(τ) + I(qn,t ≤ γ0)x′n,tβ(2),n(τ),

with β(2),n(τ) = n−1/2c(τ), for all τ ∈ T ,

where the observations (yn,t, qn,t,xn,t) are now indexed by n (with Ant−1 being the σ-

field generated by (qn,t,xn,t), (yn,s, qn,s,xn,s), s ≤ t− 1), γ0 is some point in Γ, and the

maps τ 7→ β∗(1)(τ) and τ 7→ c(τ) are d-vectors of continuous and bounded functions on

T , respectively. Then subject to some tecnhical conditions, which guarantee versions

of (C1)-(C4) and (C6) uniformly in n, and uniform convergence of some matrices such

as E[zn,t(γ1)zn,t(γ2)] (where zn,t(γ) = (x′n,t, I(qn,t ≤ γ)x′n,t)
′), it will be shown that

under H1n, SWn (with a suitable change in V22(τ, γ)) converges in distribution to the

supremum of a non-central chi-square process, as in Hansen (1996) in the least squares

case. More formally, we have the following proposition. Let zn,t = (qn,t,x
′
n,t)
′ and

denote by fn(yn,t|zn,t) the conditional density of yn,t given zn,t (which we assume to
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exist). Moreover, let here

Ω0(γ1, γ2) = lim
n→∞

E[zn,t(γ1)zn,t(γ2)], (7)

Ω2(τ, γ1, γ2) = lim
n→∞

E[fn(x′n,tβ
∗
(1)(τ)|zn,t)zn,t(γ1)zn,t(γ2)], Ω1(τ, γ) = Ω2(τ, γ, γ), (8)

where we assume the limits exist.

Proposition 1. Assume conditions (D1)-(D5) in Appendix B. Then under H1n,

√
nβ̂(2)(τ, γ)⇒ S(τ, γ) + c̃(τ, γ, γ0), in (`∞(T × Γ))d,

where S(τ, γ) is as in Corollary 1 (with Ω0(γ1, γ2) and Ω1(τ, γ) repaced by (7) and (8)),

and c̃(τ, γ, γ0) = RΩ1(τ, γ)−1Ω2(τ, γ, γ0)R′c(τ).

A proof of Proposition 1 is given in Appendix B.

4 Implementation

We now go back to the setting in Section 3.1. To implement the proposed test we

have to estimate the matrices Ω0(γ, γ) and Ω1(τ, γ). It is natural to use Ω̂0(γ1, γ2) :=

n−1
∑n

t=1 zt(γ1)zt(γ2)′ as an estimator of Ω0(γ1, γ2). In fact, Ω̂0(γ1, γ2) is shown to

be uniformly consistent by the uniform law of large numbers for β-mixing processes

(Nobel and Dembo, 1993, Theorem 1). To estimate Ω1(τ, γ), we make use of a kernel

method as described in Powell (1991) and Angrist et al. (2006):

Ω̂1(τ, γ) :=
1

2nhn

n∑
t=1

I{|yt − x′tβ̃(1)(τ)| ≤ hn}zt(γ)zt(γ)′, (9)

where β̃(1)(τ) is any consistent estimator of β∗(1)(τ). We recommend to use

β̃(1)(τ) := arg min
b∈Rd

1

n

n∑
t=1

ρτ (yt − x′tb). (10)

The bandwidth hn is chosen in such a way that hn ↓ 0 and nh2
n →∞ as n→∞. Then

it is standard to show that under suitable regularity conditions, Ω̂1(τ, γ) is uniformly

consistent over (τ, γ) ∈ T × Γ by using the same argument as in Appendix A.1.4 of

Angrist et al. (2006) coupled with some modifications. Therefore, we may estimate

the matrix V22(τ, γ) by

V̂22(τ, γ) := τ(1− τ)RΩ̂1(τ, γ)−1Ω̂0(γ, γ)Ω̂1(τ, γ)−1R′.

9



For the sake of completeness, we provide a formal statement on the uniform consistency

of Ω̂0(γ1, γ2) and Ω̂1(τ, γ). A (sketch of) proof is given in Appendix C.

Lemma 2. Assume conditions (C1)-(C6). Let β̃(1)(τ) be the estimator given by (10).

Assume further that E[‖xt‖2p] <∞ (p is given in condition (C2)), hn ↓ 0 and nh2
n →

∞ as n → ∞. Then Ω̂0(γ1, γ2)
p→ Ω0(γ1, γ2) uniformly over (γ1, γ2) ∈ Γ × Γ, and

Ω̂1(τ, γ)
p→ Ω1(τ, γ) uniformly over (τ, γ) ∈ T × Γ.

Hence, under the conditions of Lemma 2, V̂22(τ, γ) is uniformly consistent, so that

the replacement of V22(τ, γ) by V̂22(τ, γ) does not affect the distributional result of

Corollary 1.

To compute approximate critical values of SWn, we propose the following scheme.

Take B as a large integer. For each b = 1, . . . , B:

(i) Generate {ubt}nt=1 independent uniform random variables on [0, 1].

(ii) Set W b
n(τ, γ) := n−1/2

∑n
t=1{τ − I(ubt ≤ τ)}zt(γ).

(iii) Compute the quantity

ŜW
b

n = max
(τ,γ)∈T ×Γ

W b
n(τ, γ)′Ω̂1(τ, γ)−1R′{V̂22(τ, γ)}−1RΩ̂1(τ, γ)−1W b

n(τ, γ).

Let ĉB1−α denote the empirical (1−α)-quantile of the simulated sample {ŜW
1

n, . . . , ŜW
B

n },
where α ∈ (0, 1) is the nominal size. We reject the null hypothesis if SWn is larger

than ĉB1−α. In practice, the supremum in step (iii) is taken over a discretized subset of

T × Γ.

The intuition behind this procedure is the fact that when the observations are

independent, the first term on the Bahadur representation of the quantile regression

estimator β̂(τ, γ):

1√
n

n∑
t=1

[
τ − I{yt ≤ x′tβ∗(1)(τ)}

]
zt(γ)

is conditionally pivotal given z1, . . . ,zn under the null hypothesis. In fact, since

x′tβ
∗
(1)(τ) is equal to the conditional τ -quantile of yt given zt, the random variables

I{y1 ≤ x′1β∗(1)(τ)}, . . . , I{yn ≤ x′nβ∗(1)(τ)} are independent Bernoulli trials with suc-

cess probability τ independent of z1, . . . ,zn when the observations are independent.

Under the present specification, the limiting null distribution of SWn is the same as

the one as if the observations were independent, so that it is expected that the method

works also for dependent observations.

A formal justification of our simulation method is stated as follows. Let {u∗t}nt=1 be

independent uniform random variables on [0, 1] independent of the sample {(yt, z′t)′}nt=1.
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Define W ∗
n(τ, γ) := n−1/2

∑n
t=1{τ − I(u∗t ≤ τ)}zt(γ) and

ŜW
∗
n := sup

(τ,γ)∈T ×Γ

W ∗
n(τ, γ)′Ω̂1(τ, γ)−1R′{V̂22(τ, γ)}−1RΩ̂1(τ, γ)−1W ∗

n(τ, γ).

Let ĉ∗1−α denote the (1−α)-conditional quantile of ŜW
∗
n given the sample {(yt, z′t)′}nt=1,

and let c1−α denote the (1−α)-quantile of the distribution given by (6) in Corollary 1.

Theorem 2. Assume the conditions of Lemma 2. Let α ∈ (0, 1) be any constant. Let

SWn be the statistic (2) with V22(τ, γ) replaced by V̂22(τ, γ). Then: (i) ĉ∗1−α
p→ c1−α;

(ii) under H0, P(SWn > ĉ∗1−α)→ α; (iii) under H1, P(SWn > ĉ∗1−α)→ 1.

A proof of Theorem 2 is given in Appendix C.

Remark 2. Lee et al. (2011, Example 3.2) considered a simulation scheme very similar

to ours to compute critical values of their test statistic. However, there are important

differences between both methods: (i) the test statistic proposed by these authors is

a likelihood ratio type test and not a Wald test as SWn, (ii) Lee et al. (2011) did not

allow for dependent observations, (iii) their test is pointwise, i.e., τ is fixed, and (iv)

they did not provide a formal justification of their simulation scheme. Finally, the

proof of Theorem 2 is different from that of Hansen (1996, Theorem 2) because we

deal with a different statistic.

5 Simulation experiments

In this section, we conduct Monte Carlo simulations to evaluate the finite sample

performance in terms of size and power of the proposed test. We are mainly interested

in studying the properties of the supremum Wald test SWn based on quantile regression

over T × Γ. In addition, since the proposed test is applicable to pointwise testing, we

also analyze the proposed test for fixed quantiles. Let SWn(τ) denote the Wald test

statistic based on quantile regression for fixed τ (SWn(τ) corresponds to (2) with

T = {τ}). For reference purposes, we compute Hansen’s (1996) supremum Wald test

SWLS
n based on least squares.

In the experiments, we implement the tests of linearity, where we estimate a two-

regime threshold model, fit quantile regression to compute SWn and SWn(τ) and least

squares to compute SWLS
n , and test the equality of the parameters in the two regimes.

Therefore, SWn and SWn(τ) are testing linearity of the conditional quantile function

against a two regime threshold model, while SWLS
n tests linearity of the conditional

mean function also against a two regime threshold model. We experiment with several

different data generating processes, and for all different cases considered below, the
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sample size n is equal to n = 250, 500, 1000 and the number of repetitions is 1, 000.

The nominal sizes α under consideration are α = 0.01, 0.05 and 0.10. When computing

the approximate critical values based on the method described in the previous section,

we take B = 1, 000. The sets T and Γ are taken to be T = {0.1, 0.15, . . . , 0.9} and Γ =

{ unconditional quantiles of yt with quantile index ranging over {0.1, 0.2, . . . , 0.9} }.
To compute Ω̂1(τ, γ) defined in (9), we use the bandwidth rule suggested in section

3.4.2 of Koenker (2005).

To investigate the empirical size of the test, we first consider a data generating

process from a standard linear AR(1) model yt = θ0 + θ1yt−1 + ut, with θ0 = 0,

θ1 = 0.5 and ut ∼ i.i.d. U(−1, 1). In this model, xt = (1, yt−1)′, qt = yt−1 and

At−1 = {yt−1, yt−2, . . . }, and the data generating process satisfies the linear conditional

quantile restriction : Qyt(τ |At−1) = (θ0 + 2τ − 1) + θ1yt−1. The simulation results

for empirical rejection rates are reported in Table 1. The SWn test presents good

empirical size. This statistic exhibits an empirical size closer to the nominal size than

the least squares counterpart statistic, SWLS
n for the three nominal sizes explored in

the simulations. Interestingly, even for n = 250, the empirical sizes are very close to

the nominal counterparts.

As for the pointwise tests based quantile regression, the results show fair size prop-

erties and variability across quantiles. Unsurprisingly, the SWn test seems to provide

more accurate estimates of the nominal size for n = 1000, especially for the upper

quantiles of the distribution. Overall, these simulations show encouraging results and

suggest that the tests developed here have empirical sizes close to their theoretical

counterparts.

In order to evaluate the power of these tests we use two different sets of experiments.

First, we assess the empirical power of the tests for three different two-regime models

defined by different threshold nonlinearities (models 2, 3 and 4 below) in order to

investigate advantages of quantile regression based tests versus least squares based

tests. Second, we study the power of the test under local deviations from the linear

null hypothesis. This family of models under the alternative hypothesis (model 5) is

indexed by a local deviation parameter n−1/2c.

For the first power experiment, we consider the following three models:

Model 2:

yt = I(yt > γ0)(θ0 + θ1yt−1 + ut) + I(yt ≤ γ0)(θ0 − θ1yt−1 + ut);
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Model 3:

yt = I(yt > γ0)(θ0 + θ1yt−1 + (1 + δyt−1)ut) + I(yt ≤ γ0)(θ0 + θ1yt−1 + (1− δyt−1)ut);

Model 4:

yt = I(yt > γ0)(θ0 + θ1yt−1 + (1 + δyt−1)ut) + I(yt ≤ γ0)(θ0 − θ1yt−1 + (1− δyt−1)ut).

Note that these data generating processes satisfy the following restrictions:

Model 2:

Qyt(τ |At−1) =

(θ0 + 2τ − 1)− θ1yt−1, yt−1 ≤ γ0,

(θ0 + 2τ − 1) + θ1yt−1, yt−1 > γ0;

E[yt|At−1] =

θ0 − θ1yt−1, yt−1 ≤ γ0,

θ0 + θ1yt−1, yt−1 > γ0;

Model 3:

Qyt(τ |At−1) =

(θ0 + 2τ − 1) + (θ1 − δ(2τ − 1))yt−1, yt−1 ≤ γ0,

(θ0 + 2τ − 1) + (θ1 + δ(2τ − 1))yt−1, yt−1 > γ0;

E[yt|At−1] =

θ0 + θ1yt−1, yt−1 ≤ γ0,

θ0 + θ1yt−1, yt−1 > γ0;

Model 4:

Qyt(τ |At−1) =

(θ0 + 2τ − 1)− (θ1 + δ(2τ − 1))yt−1, yt−1 ≤ γ0,

(θ0 + 2τ − 1) + (θ1 + δ(2τ − 1))yt−1, yt−1 > γ0;

E[yt|At−1] =

θ0 − θ1yt−1, yt−1 ≤ γ0,

θ0 + θ1yt−1, yt−1 > γ0.

Least squares based tests should be able to detect the presence of two regimes in

models 2 and 4 where the threshold nonlinearity appears in the mean process, but

not in model 3 where the mean process is identical in both regimes. Note that in

models 3 and 4, the conditional variance process also exhibits a nonlinearity, that is,

Var(yt|At−1, yt−1 ≤ γ0) 6= Var(yt|At−1, yt−1 > γ0). Quantile regression based tests,

however, should detect two regimes in all three models because there are differences

across regimes in the quantile process.
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In all these cases we use γ0 = 0, δ = 1, θ0 = 0, θ1 = 0.5 and ut ∼ i.i.d. U(−1, 1).

In these models, xt = (1, yt−1)′, qt = yt−1 and At−1 = {yt−1, yt−2, . . . }.
The results for these three experiments are reported in Tables 2, 3 and 4, respec-

tively. As expected, our proposed test SWn has good power in all cases, and the power

is increasing in n, which is consistent with the theoretical result. SWLS
n also shows

power for models 2 and 4, but this test lacks statistical power to reject the null hy-

pothesis if the nonlinearities are not in the mean process, that is, as in model 3. In

all cases we observe that for the pointwise quantile tests the empirical power increases

as we move to the tails of the distributions. These results suggest that the uniform

test is very powerful to reject linearity for models exhibiting threshold nonlinearities

in either the conditional mean or conditional variance processes.

To complete the study of the power we perform a local power analysis:

Model 5:

yt = I(yt > γ0)(θ0+(θ1+n−1/2c)yt−1+ut)+I(yt ≤ γ0)(θ0+(θ1−n−1/2c)yt−1+ut), (11)

where γ0 = 0, c ∈ {0, 1, 2, 3, 4, 5}, θ0 = 0, θ1 = 0.5, ut ∼ i.i.d. U(−1, 1) and n = 250.

The simulation results appear in Table 5. Note that for this case, where the thresh-

old nonlinearity appears in the mean process, the least squares based test is expected

to be more powerful than the developed SWn test. In fact, the table shows that this

is the case. Nevertheless, the simulation results confirm that the proposed SWn test

performs well in local deviations from the null hypothesis. Unreported simulations

show that the power function is symmetric with respect to c.

6 Summary

We have proposed a uniform test for linearity against thresholds effects in the quan-

tile regression framework. We have shown that the limiting null distribution of the

proposed test is given by the supremum of a two-parameter chi-square process. This

distribution depends on unknown parameters; hence critical values cannot be uni-

versally tabulated. We have developed a simulation method based on the Bahadur

representation of the quantile regression estimator to approximate the critical values.

The method makes the proposed test easy to implement. The Monte Carlo exper-

iments show evidence that the proposed test has correct size and reasonable power

against nonlinear threshold models.
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A Proof of Theorem 1

In this section, we provide a proof of Theorem 1. The proof is based on a combination

of modern empirical process techniques and the convexity technique developed in Kato

(2009). Throughout the section, we assume all the conditions in Theorem 1.

A.1 Auxiliary result

For any fixed vector v ∈ Rd, define the stochastic processes

Un(τ, γ) :=
1√
n

n∑
i=1

v′xtI(qt ≤ γ)[τ − I{yt ≤ x′tβ∗(1)(τ)}],

Vn(τ, γ, s) :=
1√
n

n∑
i=1

[
v′xtI(qt ≤ γ)I{yt ≤ x′t(β∗(1)(τ) + sn−1/2v)}

− E[v′xtI(qt ≤ γ)F (x′t(β
∗
(1)(τ) + sn−1/2v)|zt)]

]
,

where (τ, γ, s) ∈ T × Γ× [0, 1].

In this subsection, we study the asymptotic behaviors of Un and Vn. Let K(τ, λ)

denote a Kiefer process on [0, 1] × [0,∞), i.e., K(τ, λ) is a zero-mean, continuous

Gaussian process on [0, 1]× [0,∞) with covariance kernel

E[K(τ1, λ1)K(τ2, λ2)] = λ1 ∧ λ2(τ1 ∧ τ2 − τ1τ2).

We refer to Section 2.12 of van der Vaart and Wellner (1996) for Kiefer processes.

Define H(γ) := E[(v′xt)
2I(qt ≤ γ)]. Under conditions (C2) and (C3), the map γ 7→

H(γ) is continuous and non-decreasing.

Theorem 3. Assume conditions (C1)-(C6). Then under H0,

(i) Un(τ, γ)⇒ K(τ,H(γ)) in `∞(T × Γ) and
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(ii) Vn(τ, γ, s) = Vn(τ, γ, 0) + op(1) uniformly over (τ, γ, s) ∈ T × Γ× [0, 1].

Proof. Part (ii): We first prove Part (ii). For any compact subset B ⊂ Rd, consider

the class of functions

F := {f(y, q,x) = v′xI(q ≤ γ)I(y ≤ x′b) : γ ∈ Γ, b ∈ B}.

We first show that F is a VC subgraph class. Indeed, let g(y, q,x) := v′x, F1 :=

{f(y, q,x) = I(q ≤ γ) : γ ∈ Γ} and F2 := {f(y, q,x) = I(y ≤ x′b) : b ∈ B}.
By Lemma 2.6.15 of van der Vaart and Wellner (1996), F1 and F2 are VC subgraph

classes. Therefore, by Lemmas 2.6.18 (i) and (vi) of van der Vaart and Wellner (1996),

F = (F1 ∧ F2) · g is a VC-subgraph class.

Define the semimetric

ρ((γ1, b1), (γ2, b2)) :=
(
E[|v′xt|p·|I(qt ≤ γ1)I(yt ≤ x′tb1)−I(qt ≤ γ2)I(yt ≤ x′tb2)|p]

)1/p
,

where p > 2 is given in condition (C2). Because F is a VC subgraph class, by Theorem

2.1 of Arcones and Yu (1995) (more precisely their proof of Theorem 2.1), the stochastic

process

(γ, b) ∈ Γ×B 7→ 1√
n

n∑
t=1

{v′xtI(qt ≤ γ)I(yt ≤ x′tb)− E[v′xtI(qt ≤ γ)F (x′tb|zt)]}

=: Gn(γ, b).

is stochastically ρ-equicontinuous over T × Γ, i.e., for any ε > 0,

lim
δ↓0

lim sup
n→∞

P

{
sup
[δ]

|Gn(γ1, b1)−Gn(γ2, b2)| > ε

}
= 0,

where [δ] := {((γ1, b1), (γ2, b2)) ∈ (Γ×B)2 : ρ((γ1, b1), (γ2, b2)) < δ}.
Observe now that

{ρ((γ1, b1), (γ2, b2))}p

≤ E[|v′xt|p{I(qt ≤ γ1)I(yt ≤ x′tb1)− I(qt ≤ γ2)I(yt ≤ x′tb2)}2]

≤ 2E[|v′xt|p{I(qt ≤ γ1)− I(qt ≤ γ2)}2] + 2E[|v′xt|p · |F (x′tb1|zt)− F (x′tb2|zt)|]

= 2|E[|v′xt|pI(qt ≤ γ1)]− E[|v′xt|pI(qt ≤ γ2)]|+ 2E[|v′xt|p · |F (x′tb1|zt)− F (x′tb2|zt)|].
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By conditions (C3) and (C4), we have

sup
(τ,γ,s)∈T ×Γ×[0,1]

ρ((γ,β∗(1)(τ) + n−1/2sv), (γ,β∗(1)(τ))) = o(1).

Recall that Vn(τ, γ, s) = Gn(γ,β∗(1)(τ) + n−1/2sv). Thus, taking B sufficiently large

(so that β∗(1)(τ) + n−1/2sv ∈ B for all (τ, s) ∈ T × [0, 1]), we obtain the first assertion

because of the stochastic ρ-equicontinuity of the process Gn over Γ×B.

Part (i): Observe that under H0, {τ − I{yt ≤ x′tβ∗(1)(τ)}, t ∈ Z} is a martingale

difference sequence with respect to {At−1, t ∈ Z}, i.e., E[I{yt ≤ x′tβ∗(1)(τ)}|At−1] = τ .

The finite dimensional convergence follows from the martingale central limit theorem.

It remains to show the stochastic equicontinuity of the process Un. Decompose Un as

Un(τ, γ) =
τ√
n

n∑
t=1

v′xtI(qt ≤ γ)− 1√
n

n∑
t=1

v′xtI(qt ≤ γ)I{yt ≤ x′tβ∗(1)(τ)}

=
τ√
n

n∑
t=1

{v′xtI(qt ≤ γ)− E[v′xtI(qt ≤ γ)]} − Vn(τ, γ, 0).

Define the stochastic process Ṽn(γ) := n−1/2
∑n

t=1{v′xtI(qt ≤ γ)}−E[v′xtI(qt ≤ γ)]}.
Then Un(τ, γ) = τ Ṽn(γ)− Vn(τ, γ, 0). By the previous calculation, we see that

ρ((γ1,β
∗
(1)(τ1)), (γ2,β

∗
(1)(τ2)))→ 0, as ‖(τ1 − τ2, γ1 − γ2)‖ → 0,

which implies that the process (τ, γ) 7→ Vn(τ, γ, 0) is stochastically equicontinuous over

T × Γ with respect to the Euclidean metric. Similarly, it is shown that the process

γ 7→ Ṽn(γ) is stochastically equiontinuous over Γ with respect to the Euclidean metric.

Therefore, by a standard argument, we obtain the desired conclusion.

A.2 Proof of Theorem 1

In this subsection, we provide a proof of Theorem 1. To this end, we introduce the

local objective function

Zn(u, τ, γ) :=
n∑
t=1

{
ρτ
(
yt − x′tβ∗(1)(τ)− n−1/2u′zt(γ)

)
− ρτ

(
yt − x′tβ∗(1)(τ)

)}
,

where u ∈ R2d and (τ, γ) ∈ T ×Γ. Observe that the normalized quantity
√
n{β̂(τ, γ)−

β∗(τ)} minimizes Zn(u, τ, γ) with respect to u for each fixed (τ, γ) ∈ T × Γ.

To prove Theorem 1, we make use of Theorem 2 of Kato (2009), which makes the

overall proof simple. Indeed, since Zn(u, τ, γ) is now convex in u, by Theorem 2 of
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Kato (2009), it is sufficient to prove the following proposition.2

Proposition 2. Assume conditions (C1)-(C6). Then under H0,

Zn(u, τ, γ) = − 1√
n

n∑
t=1

[
τ − I{yt ≤ x′tβ∗(1)(τ)}

]
u′zt(γ) +

1

2
u′Ω1(τ, γ)u+ ∆n(u, τ, γ),

(12)

where sup(τ,γ)∈T ×Γ |∆n(u, τ, γ)| = op(1) for each fixed u ∈ R2d, and

1√
n

n∑
t=1

[
τ − I{yt ≤ x′tβ∗(1)(τ)}

]
zt(γ)⇒ W (τ, γ) in (`∞(T × Γ))2d. (13)

Proof. Using Knight’s (1998) identity

ρτ (x− y)− ρτ (x) = −y{τ − I(x ≤ 0)}+ y

∫ 1

0

{I(x ≤ ys)− I(x ≤ 0)}ds,

we decompose Zn(u, τ, γ) into three parts:

Zn(u, τ, γ)

= − 1√
n

n∑
t=1

u′zt(γ)
[
τ − I{yt ≤ x′tβ∗(1)(τ)}

]
+

1

n

n∑
t=1

u′zt(γ)

∫ 1

0

√
n[I{yt − x′tβ∗(1)(τ) ≤ n−1/2u′zt(γ)s)} − I{yt − x′tβ∗(1)(τ) ≤ 0}]ds

=: Z(1)
n (u, τ, γ) + Z(2)

n (u, τ, γ)

= Z(1)
n (u, τ, γ) + E[Z(2)

n (u, τ, γ)] + {Z(2)
n (u, τ, γ)− E[Z(2)

n (u, τ, γ)]}

=: Z(1)
n (u, τ, γ) + Z(21)

n (u, τ, γ) + Z(22)
n (u, τ, γ).

By Part (i) of Theorem 3, the weak convergence (13) follows. It remains to evaluate

Z
(21)
n (u, τ, γ) and Z

(22)
n (u, τ, γ).

Evaluation of Z
(21)
n (u, τ, γ): Observe that

Z(21)
n (u, τ, γ) = E

[
u′zt(γ)

∫ 1

0

√
n{F (x′tβ

∗
(1)(τ) + sn−1/2u′zt(γ))|zt)− τ}ds

]
.

Since F (x′tβ
∗
(1)(τ)|zt) = E[I{yt ≤ x′tβ∗(1)(τ)}|zt] = E[E[I{yt ≤ x′tβ∗(1)(τ)}|At−1]|zt] = τ

2In particular, Theorem 2 of Kato (2009) guarantees that there is no need to establish the uniform

n−1/2 rate for β̂(τ, γ) in the course of establishing the weak convergence of the process.
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under H0, we have

√
n{F (x′tβ

∗
(1)(τ) + sn−1/2u′zt(γ))|zt)− τ} − su′zt(γ)f(x′tβ

∗
(1)(τ)|zt)

= su′zt(γ)

∫ 1

0

{f(x′tβ
∗
(1)(τ) + svn−1/2u′zt(γ)|zt)− f(x′tβ

∗
(1)(τ)|zt)}dv. (14)

Because of condition (C3), the right side of (14) goes to zero uniformly over (τ, γ, s) ∈
T × Γ× [0, 1]. Therefore, by the dominated convergence theorem, we have

sup
(τ,γ)∈T ×Γ

∣∣∣∣Z(21)
n (u, τ, γ)− 1

2
u′Ω1(τ, γ)u

∣∣∣∣→ 0, ∀u ∈ R2d.

Evaluation of Z
(22)
n (u, τ, γ): Suppose for a moment that u ∈ R2d is arbitrarily fixed.

Define

Rn(τ, γ, s) :=
1√
n

n∑
i=1

[
u′zt(γ)I{yt − x′tβ∗(1)(τ) ≤ sn−1/2u′zt(γ)}

− E[u′zt(γ)F (x′tβ
∗
(1)(τ) + sn−1/2u′zt(γ)|zt)]

]
,

where (τ, γ) ∈ T × Γ and s ∈ R. We shall show that

sup
(τ,γ)∈T ×Γ

sup
s∈[0,1]

|Rn(τ, γ, s)−Rn(τ, γ, 0)| p→ 0, (15)

which leads to sup(τ,γ)∈T ×Γ |Z
(22)
n (u, τ, γ)| p→ 0. However, in view of

u′zt(γ) = (u1 + u2)′xtI(qt ≤ γ) + u′1xt{1− I(qt ≤ γ)},

(15) follows from Part (ii) of Theorem 3.

B Conditions and proof for Proposition 1

B.1 Conditions for Proposition 1

We make the following conditions for Proposition 1.

(D1) For every n ≥ 1, the process {(yn,t, z′n,t)′, t ∈ Z} is strict stationary and β-

mixing with β-mixing coefficients βn(j). Moreover, there exists a sequence of

non-increasing constants β(j) such that supn≥1 βn(j) ≤ β(j) and β(j) = O(j−l)

with l > p/(p− 2), where p > 2 is given in condition (D2) below.

(D2) supn≥1 E[‖xn,t‖p] <∞ for some p > 2.
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(D3) Let Fn(·|z) denote the conditional distribution function of yn,t given zn,t = z.

Assume that Fn(·|z) has a Lebesgue density fn(·|z) such that

(i) |fn(y|z)| ≤ Cf , and

(ii) |fn(y1|z)− f(y2|z)| ≤ Cf |y1 − y2|,

where Cf > 0 is a constant independent of n.

(D4) The distribution functions of qn,t are continuous uniformly in n.

(D5) Define the matrices

Ωn,0(γ1, γ2) := E[zn,t(γ1)zn,t(γ2)′],

Ωn,2(τ, γ1, γ2) := E[fn(x′n,tβ
∗
(1)(τ)|zn,t)zn,t(γ)zn,t(γ)′], Ωn,1(τ, γ) := Ωn,2(τ, γ, γ).

There exist d × d matrices Ω0(γ1, γ2) and Ω2(τ, γ1, γ2) such that Ωn,0(γ1, γ2) →
Ω0(γ1, γ2) and Ωn,2(τ, γ1, γ2) → Ω2(τ, γ1, γ2) uniformly over (γ1, γ2) ∈ Γ × Γ

and (τ, γ1, γ2) ∈ T × Γ × Γ, respectively. Moreover, Ω0(γ1, γ2) and Ω1(τ, γ) :=

Ω2(τ, γ, γ) are positive definite uniformly over (γ1, γ2) ∈ Γ×Γ and (τ, γ) ∈ T ×Γ,

respectively.

B.2 Proof of Proposition 1

As in the proof of Theorem 1, define

Zn(u, τ, γ) :=
n∑
t=1

{
ρτ
(
yn,t − x′n,tβ∗(1)(τ)− n−1/2u′zn,t(γ)

)
− ρτ

(
yn,t − x′n,tβ∗(1)(τ)

)}
,

where u ∈ R2d and (τ, γ) ∈ T × Γ. An inspection of the proof of Proposition 2 shows

that under H1n, we still have the expansion

Zn(u, τ, γ) = − 1√
n

n∑
t=1

[
τ − I{yn,t ≤ x′n,tβ∗(1)(τ)}

]
u′zn,t(γ)+

1

2
u′Ω1(τ, γ)u+∆n(u, τ, γ),

where sup(τ,γ)∈T ×Γ |∆n(u, τ, γ)| = op(1) for each fixed u ∈ R2d. Here the difference

arises since τ − I{yn,t ≤ x′n,tβ∗(1)(τ)} are not centered. Fix u ∈ R2d, and define

Z(1)
n (τ, γ) =

1√
n

n∑
t=1

[
τ − I{yn,t ≤ x′n,tβ∗(1)(τ)}

]
u′zn,t(γ).
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Let us write β∗n(τ) = (β∗(1)(τ)′,β(2),n(τ)′)′ where β(2),n(τ) = n−1/2c(τ). Observe that

Z(1)
n (τ, γ) =

1√
n

n∑
t=1

[τ − I{yn,t ≤ zn,t(γ0)′β∗n(τ)}]u′zn,t(γ)

+
1√
n

n∑
t=1

[
I{yn,t ≤ zn,t(γ0)′β∗n(τ)} − I{yn,t ≤ x′n,tβ∗(1)(τ)}

]
u′zn,t(γ)

=: Z(11)
n (τ, γ) + Z(12)

n (τ, γ)

= Z(11)
n (τ, γ) + E[Z(12)

n (τ, γ)] + Z(12)
n (τ, γ)− E[Z(12)

n (τ, γ)]

=: Z(11)
n (τ, γ) + E[Z(12)

n (τ, γ)] + Z(13)
n (τ, γ).

By Theorem 3 (with suitable modifications), we can show that

1√
n

n∑
t=1

[
τ − I{yn,t ≤ zn,t(γ0)′β∗(n)(τ)}

]
zn,t(γ)⇒ W (τ, γ), in (`∞(T × Γ))2d,

where W (τ, γ) is as in Theorem 1 (with Ω0(γ1, γ2) replaced by (7)), and

sup
(τ,γ)∈T ×Γ

|Z(13)
n (τ, γ)| = op(1).

By using Taylor’s theorem, we also have

E[Z(12)
n (τ, γ)] = u′E[fn(x′n,tβ(1)(τ)|zn,t)zn,t(γ)zn,t(γ0)′]R′c(τ) + o(1)

= u′Ω2(τ, γ, γ0)R′c(τ) + o(1).

uniformly over (τ, γ) ∈ T × Γ. Hence by Theorem 2 of Kato (2009), we conclude that

√
n{β̂(τ, γ)−(β∗(1)(τ)′,0′)′} ⇒ Ω1(τ, γ)−1(W (τ, γ)+Ω2(τ, γ, γ0)R′c(τ)), in (`∞(T ×Γ))2d,

which implies the conclusion of the proposition.

C Proofs for Section 4

C.1 Proof of Lemma 2

We only provide a sketch of the proof. It is standard to show that when the ob-

servations are independent and identically distributed, Ω̂0(γ1, γ2) → Ω0(γ1, γ2) al-

most surely uniformly over (γ1, γ2) ∈ Γ × Γ. By Theorem 1 of Nobel and Dembo

(1993), the uniform consistency of Ω̂0(γ1, γ2) now follows under the present condi-

tions. By Appendix A.1.1 of Angrist et al. (2006) together with the same theo-
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rem of Nobel and Dembo (1993), it is shown that β̃1(τ) is uniformly consistent:

supτ∈T ‖β̃(1)(τ)−β∗(1)(τ)‖ p→ 0. The proof of the uniform consistency of Ω̂1(τ, γ) is sim-

ilar to the proof given in Appendix A.1.4 of Angrist et al. (2006). Fix any 1 ≤ j, k ≤ d.

For any compact subset B ⊂ Rd and positive constant H, consider the class of func-

tions F := {f(y, q,x) = I(|y − x′b| ≤ h)I(q ≤ γ)xjxk : γ ∈ Γ, b ∈ B, h ∈ (0, H]},
where x = (x1, . . . , xd)

′. As in the proof of Theorem 3, it is shown that the class F is

a VC subgraph class. Using the uniform central limit theorem for β-mixing processes

(Arcones and Yu, 1995, Theorem 2.1), and following the proof given in Appendix A.1.4

of Angrist et al. (2006), it is shown that, under the present conditions,

1

2nhn

n∑
t=1

I(|yt − x′tβ̃(1)(τ)| ≤ hn)I(qt ≤ γ)xtjxtk

=
1

2hn
E [I(|yt − x′tb| ≤ hn)I(qt ≤ γ)xtjxtk] |b=β̃(1)(τ) +Op(n

−1/2h−1
n )

= E[f(x′tβ
∗
(1)(τ)|zt)I(qt ≤ γ)xtjxtk] + op(1),

and the convergence is uniform over (τ, γ) ∈ T × Γ. With the same proof, it is shown

that, uniformly over τ ∈ T ,

1

2nhn

n∑
t=1

I(|yt − x′tβ̃(1)(τ)| ≤ hn)xtjxtk
p→ E[f(x′tβ

∗
(1)(τ)|zt)xtjxtk].

Therefore, we have Ω̂1(τ, γ)
p→ Ω1(τ, γ) uniformly over (τ, γ) ∈ T × Γ.

C.2 Proof of Theorem 2

Let SW denote a random variable having the same distribution as (6) in Corollary 1.

We first point out that SW has an absolutely continuous distribution with bounded

density by Proposition 11.4 of Davidov et al. (1998). Therefore, by a routine argument,

(ii) and (iii) follow from (i). For example, to see that (ii) follows from (i), we first

observe that (i) implies that there exists a sequence εn → 0 such that P(|ĉ∗1−α−c1−α| ≤
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εn)→ 1, so that

P(SWn > ĉ∗1−α)

= P({SWn > ĉ∗1−α} ∩ {ĉ∗1−α ≥ c1−α − εn}) + o(1)

≤ P(SWn > c1−α − εn) + o(1)

≤ P(SW > c1−α − εn) + [P(SWn > c1−α − εn)− P(SW > c1−α − εn)] + o(1)

≤ P(SW > c1−α − εn) + sup
c∈R
|P(SWn > c)− P(SW > c)|+ o(1)

= P(SW > c1−α − εn) + o(1),

where the last equality follows from the fact that SWn ⇒ SW under H0, SW has

a continuous distribution and Polya’s theorem. Because SW has a bounded density

function, we have P(SW > c1−α − εn) = P(SW > c1−α) + o(1) = α + o(1), so that

P(SWn > ĉ∗1−α) ≤ α + o(1). A similar argument leads to that P(SWn > ĉ∗1−α) ≥
α − o(1), which implies (i). By an analogous argument, it is shown that (iii) follows

from (i).

In what follows, we wish to show (i). To this end, we need the concept of “con-

ditional weak convergence in probability”. We follow the definition given in van der

Vaart and Wellner (1996, p.181). We wish to show that, given {(yt, z′t)′}ni=1, ŜW
∗
n

converges weakly to SW in probability. Once this is established, the assertion of (i)

follows because of the fact that the quantile function of SW is everywhere continuous

by Theorem 11.1 (iv) of Davidov et al. (1998) (recall that the distribution function of

SW is continuous). By a standard argument, it suffices to show that, given {zt}nt=1, in

the space (`∞(T × Γ))2d, W ∗
n converges weakly in probability to the Gaussian process

W defined in Theorem 1.

We adapt the proof of van der Vaart and Wellner (1996, Theorem 2.9.6) to the

present context (some modifications are required because the situation is different

from that theorem; in particular, z1, . . . ,zn are now dependent and the quantile index

τ is involved in the simulated term I(u∗t ≤ τ), so their Lemma 2.9.1 can not be used in

the present case). Introduce any norm ‖·‖(`∞(T ×Γ))2d on (`∞(T ×Γ))2d that induces the

topology of (`∞(T × Γ))2d (for example, take ‖f‖(`∞(T ×Γ))2d = sup(τ,γ)∈T ×Γ ‖f(τ, γ)‖
for f ∈ (`∞(T ×Γ))2d). Let BL1 denote the space of all Lipschitz continuous functions

(`∞(T ×Γ))2d → [−1, 1] with Lipschitz constant bounded by 1. We have to show that

sup
h∈BL1

|E[h(W ∗
n)|zn1 ]− E[h(W )]| p→ 0,

where zn1 := {zt}nt=1. We divide the proof into three steps.
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Step 1: Because T × Γ is compact in R2, for any δ > 0, there exists a finite set

{(τk, γk)}Kk=1 such that sup(τ,γ)∈T ×Γ min1≤k≤K ‖(τ, γ)− (τk, γk)‖ ≤ δ. Let Πδ denote the

map from T ×Γ to {(τk, γk)}Kk=1 such that ‖(τ, γ)−Πδ(τ, γ)‖ ≤ δ for all (τ, γ) ∈ T ×Γ.

Define the stochastic process W ◦Πδ on T × Γ by W ◦Πδ(τ, γ) := W (Πδ(τ, γ)). Then

because W is uniformly continuous on T ×Γ, as δ ↓ 0, W ◦Πδ → W in (`∞(T ×Γ))2d.

Therefore, by the dominated convergence theorem, we have

lim
δ↓0

sup
h∈BL1

|E[h(W ◦ Πδ)]− E[h(W )]| = 0. (16)

Step 2: Fix any δ > 0. We wish to show that, with W ∗
n ◦Πδ(τ, γ) := W ∗

n(Πδ(τ, γ)),

sup
h∈BL1

|E[h(W ∗
n ◦ Πδ)|zn1 ]− E[h(W ◦ Πδ)]|

p→ 0. (17)

To this end, it suffices to show that conditionally on z1, z2, . . . ,

(W ∗
n(τk, γk))1≤k≤K

d→ (W (τk, γk))1≤k≤K , (18)

for almost every sequence z1, z2, . . . . Because of the ergodicity, we have: (a) Ω̂0(γk, γl) =

n−1
∑n

t=1 zt(γk)zt(γl)
′ → Ω0(γk, γl) for all 1 ≤ k, l ≤ K almost surely, and (b)

max1≤t≤n ‖xt‖/
√
n→ 0 almost surely. On the intersection of these two events (events

(a) and (b)), it is shown by the Lindberg-Feller central limit theorem that (18) holds

conditionally on z1, z2, . . . . Therefore, we obtain the desired claim.

Step 3: We wish to show that

lim
δ↓0

lim
n→∞

E

[
sup
h∈BL1

|E[h(W ∗
n)|zn1 ]− E[h(W ∗

n ◦ Πδ)|zn1 ]|
]

= 0. (19)

Observe that |E[h(W ∗
n)|zn1 ]−E[h(W ∗

n ◦Πδ)|zn1 ]| ≤ E[|h(W ∗
n)−h(W ∗

n ◦Πδ)||zn1 ], so that

E

[
sup
h∈BL1

|E[h(W ∗
n)|zn1 ]− E[h(W ∗

n ◦ Πδ)|zn1 ]|
]
≤ E

[
sup
h∈BL1

|h(W ∗
n)− h(W ∗

n ◦ Πδ)|
]
.

By essentially the same proof as that of Theorem 3, it is shown that W ∗
n ⇒ W in

(`∞(T × Γ))2d unconditionally. Thus, by Theorem 1.5.7 of van der Vaart and Wellner

(1996), for any ε > 0, there exist a constant δ = δε > 0 and a positive integer nε such

that for all n ≥ nε,

P
{
‖W ∗

n −W ∗
n ◦ Πδ‖(`∞(T ×Γ))2d > ε

}
≤ ε.

Assume that n ≥ nε. Let A0 denote the event that ‖W ∗
n −W ∗

n ◦Πδ‖(`∞(T ×Γ))2d ≤ ε. On
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the event A0, |h(W ∗
n) − h(W ∗

n ◦ Πδ)| ≤ ‖W ∗
n −W ∗

n ◦ Πδ‖(`∞(T ×Γ))2d ≤ ε, while on the

event Ac0, |h(W ∗
n)− h(W ∗

n ◦ Πδ)| ≤ 2. Observe that P(Ac0) ≤ ε. Therefore, we have

E

[
sup
h∈BL1

|h(W ∗
n)− h(W ∗

n ◦ Πδ)|
]
≤ 3ε.

This implies (19).

Finally, for any δ > 0,

sup
h∈BL1

|E[h(W ∗
n)|zn1 ]− E[h(W )]| ≤ sup

h∈BL1

|E[h(W ∗
n)|zn1 ]− E[h(W ∗

n ◦ Πδ)|zn1 ]|

+ sup
h∈BL1

|E[h(W ∗
n ◦ Πδ)|zn1 ]− E[h(W ◦ Πδ)]|

+ sup
h∈BL1

|E[h(W ◦ Πδ)]− E[h(W )]|.

The expectation of the first term on the right side goes to zero as letting n→∞ first

and then δ ↓ 0 by (19); the expectation of the second term goes to zero as n→∞ by

(17) and the dominated convergence theorem; and the last term goes to zero as δ ↓ 0

by (16). Therefore, we have

E

[
sup
h∈BL1

|E[h(W ∗
n)|zn1 ]− E[h(W )]|

]
→ 0.

By Markov’s inequality, we obtain the desired conclusion.
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Tables

Table 1: Size - One-regime AR(1) model

n = 250 n = 500 n = 1000
Theoretical size

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
0.10 0.058 0.135 0.204 0.034 0.109 0.154 0.037 0.099 0.173
0.15 0.033 0.074 0.106 0.011 0.027 0.042 0.006 0.021 0.036
0.20 0.021 0.059 0.091 0.012 0.037 0.066 0.007 0.036 0.065
0.25 0.026 0.057 0.096 0.009 0.049 0.095 0.019 0.055 0.106
0.30 0.024 0.072 0.119 0.016 0.060 0.111 0.025 0.077 0.157
0.35 0.025 0.086 0.139 0.026 0.069 0.137 0.033 0.090 0.160
0.40 0.019 0.078 0.147 0.036 0.094 0.160 0.029 0.094 0.172
0.45 0.027 0.092 0.158 0.033 0.104 0.173 0.032 0.088 0.154
0.50 0.031 0.112 0.174 0.045 0.111 0.182 0.032 0.097 0.169
0.55 0.030 0.094 0.173 0.046 0.105 0.172 0.030 0.093 0.157
0.60 0.025 0.102 0.150 0.044 0.098 0.177 0.037 0.097 0.153
0.65 0.020 0.079 0.144 0.036 0.107 0.177 0.034 0.109 0.163
0.70 0.020 0.078 0.135 0.021 0.094 0.160 0.041 0.097 0.152
0.75 0.023 0.067 0.118 0.022 0.060 0.139 0.022 0.077 0.130
0.80 0.022 0.069 0.135 0.016 0.062 0.113 0.018 0.068 0.129
0.85 0.037 0.078 0.119 0.016 0.049 0.088 0.019 0.056 0.107
0.90 0.038 0.080 0.118 0.015 0.035 0.073 0.014 0.042 0.079

SWn 0.040 0.076 0.109 0.011 0.033 0.060 0.015 0.032 0.053
SWLS

n 0.048 0.090 0.127 0.019 0.047 0.077 0.007 0.028 0.044
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Table 2: Power - Model 2
n = 250 n = 500 n = 1000

Theoretical size
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.10 0.473 0.697 0.782 0.918 0.979 0.985 1.000 1.000 1.000
0.15 0.360 0.586 0.695 0.790 0.922 0.961 0.998 1.000 1.000
0.20 0.348 0.555 0.671 0.764 0.902 0.946 0.995 1.000 1.000
0.25 0.331 0.558 0.665 0.752 0.906 0.940 0.991 0.998 1.000
0.30 0.358 0.568 0.672 0.726 0.883 0.941 0.983 0.996 0.999
0.35 0.362 0.559 0.660 0.713 0.852 0.914 0.963 0.991 0.998
0.40 0.348 0.535 0.663 0.695 0.846 0.900 0.955 0.981 0.990
0.45 0.356 0.546 0.666 0.665 0.818 0.885 0.934 0.980 0.989
0.50 0.365 0.550 0.655 0.637 0.813 0.874 0.925 0.969 0.986
0.55 0.346 0.548 0.640 0.637 0.794 0.871 0.920 0.967 0.981
0.60 0.341 0.522 0.623 0.634 0.803 0.873 0.917 0.972 0.986
0.65 0.319 0.507 0.614 0.633 0.802 0.876 0.922 0.975 0.988
0.70 0.297 0.494 0.606 0.633 0.826 0.877 0.931 0.976 0.994
0.75 0.303 0.498 0.613 0.679 0.843 0.896 0.958 0.990 0.995
0.80 0.281 0.483 0.619 0.730 0.868 0.917 0.969 0.992 0.997
0.85 0.283 0.490 0.617 0.759 0.897 0.935 0.983 0.995 0.999
0.90 0.277 0.497 0.619 0.795 0.916 0.948 0.990 0.998 1.000

SWn 0.284 0.517 0.660 0.856 0.952 0.971 1.000 1.000 1.000
SWLS

n 0.704 0.831 0.889 0.968 0.987 0.992 1.000 1.000 1.000
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Table 3: Power - Model 3
n = 250 n = 500 n = 1000

Theoretical size
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.10 0.978 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.15 0.940 0.986 0.994 0.999 1.000 1.000 1.000 1.000 1.000
0.20 0.836 0.929 0.964 0.997 1.000 1.000 1.000 1.000 1.000
0.25 0.691 0.823 0.883 0.970 0.989 0.995 1.000 1.000 1.000
0.30 0.540 0.702 0.768 0.876 0.946 0.968 0.991 0.999 0.999
0.35 0.428 0.574 0.676 0.672 0.818 0.886 0.923 0.974 0.983
0.40 0.326 0.470 0.568 0.467 0.638 0.725 0.683 0.835 0.895
0.45 0.245 0.383 0.483 0.309 0.458 0.553 0.381 0.564 0.662
0.50 0.201 0.325 0.397 0.219 0.344 0.426 0.196 0.316 0.408
0.55 0.182 0.294 0.380 0.195 0.314 0.389 0.139 0.238 0.305
0.60 0.179 0.304 0.390 0.206 0.340 0.419 0.193 0.297 0.398
0.65 0.218 0.354 0.452 0.288 0.456 0.552 0.366 0.535 0.629
0.70 0.296 0.435 0.530 0.467 0.638 0.727 0.674 0.824 0.885
0.75 0.392 0.574 0.663 0.685 0.835 0.891 0.910 0.967 0.985
0.80 0.543 0.711 0.804 0.870 0.949 0.978 0.992 0.999 1.000
0.85 0.695 0.840 0.899 0.974 0.994 0.999 1.000 1.000 1.000
0.90 0.828 0.929 0.962 0.997 1.000 1.000 1.000 1.000 1.000

SWn 0.948 0.985 0.993 1.000 1.000 1.000 1.000 1.000 1.000
SWLS

n 0.063 0.104 0.142 0.029 0.055 0.078 0.011 0.030 0.043
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Table 4: Power - Model 4
n = 250 n = 500 n = 1000

Theoretical size
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.10 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.15 0.132 0.232 0.316 0.244 0.435 0.549 0.657 0.838 0.902
0.20 0.110 0.197 0.268 0.141 0.263 0.356 0.300 0.488 0.598
0.25 0.124 0.209 0.269 0.130 0.225 0.296 0.166 0.285 0.359
0.30 0.124 0.216 0.277 0.146 0.233 0.300 0.139 0.228 0.302
0.35 0.138 0.255 0.338 0.169 0.282 0.367 0.174 0.296 0.368
0.40 0.173 0.298 0.392 0.225 0.361 0.462 0.292 0.464 0.565
0.45 0.222 0.365 0.463 0.345 0.505 0.605 0.519 0.710 0.811
0.50 0.288 0.441 0.561 0.482 0.647 0.752 0.797 0.896 0.943
0.55 0.365 0.553 0.678 0.658 0.836 0.903 0.940 0.980 0.992
0.60 0.499 0.695 0.793 0.844 0.934 0.962 0.990 0.999 1.000
0.65 0.655 0.817 0.874 0.946 0.977 0.993 1.000 1.000 1.000
0.70 0.780 0.909 0.947 0.991 0.999 1.000 1.000 1.000 1.000
0.75 0.888 0.951 0.978 0.999 1.000 1.000 1.000 1.000 1.000
0.80 0.951 0.982 0.995 1.000 1.000 1.000 1.000 1.000 1.000
0.85 0.980 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.90 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SWn 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SWLS

n 0.636 0.781 0.841 0.940 0.973 0.981 0.997 0.999 0.999
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Table 5: Local Power - Model 5. n = 250. α = 0.05.
c 0 1 2 3 4 5

0.10 0.123 0.120 0.161 0.205 0.334 0.487
0.15 0.076 0.089 0.122 0.184 0.288 0.381
0.20 0.069 0.085 0.125 0.184 0.278 0.379
0.25 0.060 0.095 0.120 0.167 0.272 0.377
0.30 0.073 0.079 0.124 0.191 0.275 0.377
0.35 0.067 0.074 0.123 0.189 0.288 0.399
0.40 0.075 0.083 0.144 0.188 0.276 0.395
0.45 0.072 0.068 0.126 0.187 0.302 0.400
0.50 0.078 0.090 0.123 0.186 0.276 0.379
0.55 0.067 0.084 0.127 0.174 0.273 0.385
0.60 0.061 0.078 0.099 0.170 0.261 0.363
0.65 0.072 0.071 0.097 0.168 0.238 0.348
0.70 0.061 0.065 0.094 0.139 0.220 0.331
0.75 0.063 0.062 0.081 0.116 0.202 0.286
0.80 0.066 0.058 0.080 0.121 0.188 0.290
0.85 0.065 0.070 0.073 0.100 0.182 0.278
0.90 0.068 0.066 0.076 0.102 0.162 0.271

SWn 0.077 0.082 0.087 0.089 0.162 0.282
SWLS

n 0.108 0.117 0.184 0.293 0.477 0.641
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