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Abstract

This thesis addresses the problem of quantitatively evaluating the temporal dynamics that

characterized financial time series. In particular, we perform an accurate analysis of the

Fourier estimator, a newly proposed nonparametric methodology to measure ex-post volatility

and cross-volatilities as functions of time, when financial assets are observed at different high-

frequency levels over the day. The estimator has the peculiar feature to employ the observed

data in their original form, therefore exploiting all the available information in the sample.

We first show how to considerably improve the numerical performance of the Fourier method

making possible the analysis of large sets of data, as it is usually the case with high-frequency

series. Secondly, we use Monte Carlo simulation methods to study the behavior of three

driving parameters in the estimation procedure, when the effects of both irregular sampling

and microstructure noise are taken into account. The estimator is showed to be particularly

sensitive to one of these quantities, which is in turn used to control the contribution of the

above effects. Integrated financial correlation is also analyzed within two distinct comparative

studies that involve other multivariate measures. The analysis is then extended to consider

the entire evolution of the underlying correlation process. Finally, we propose a new class of

nonparametric spot volatility estimators, which is showed to include the Fourier method as

a particular case. The full limit theory under infill asymptotics in the pure diffusive settings

of the class is derived. Empirical evidence in support of our conclusions is also provided.



Introduction

In the last decade, high-frequency financial data have become increasingly available for a

wide range of securities allowing for a deeper understanding of complex intraday patterns.

Within a high-frequency domain the price formation is followed in real time, or tick-by-

tick, resulting in a large amount of observed values and, therefore, in a virtually continuous

process. This has spawned considerable interest in the use of these data to the study of

financial market volatility and correlation, two fundamental parameters that play a central

role in the theory and practice of asset pricing, portfolio selection, and risk management.

Although several traditional models still assume volatilities and correlations to be constant,

it is widely recognized among both finance academics and practitioners that, instead, they

vary importantly over time, rising the need to properly analyze their distributional and

dynamic properties.

The existing measurement procedures for these variables can be coarsely divided into para-

metric and nonparametric models. Within the first category, volatility is considered as un-

observable quantity and is modelled by a fully specified functional structure, usually rather

complex. Both the large ARCH-GARCH family and the stochastic volatility models belong to

the category. A nonparametric approach allows instead to treat volatility as it was observable,

making possible to directly analyze, model, and forecast the variable itself. See, for instance,

Andersen et al. (2009) review. Realized volatility is the most popular and widely used non-

parametric estimator. It is simply defined as the sum of squared high-frequency returns over

a given time interval. The main idea is to aggregate squared intra-daily returns to approxi-

mate the daily increments of the semimartingale that drives the underlying logarithmic price

process, the so-called integrated volatility. We refer to the works by Andersen et al. (2001)

and Barndorff-Nielsen and Shephard (2002a,b) as the most influential on the topic. When

prices are observed at the highest possible frequency, realized volatility is in principle a very

1
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accurate nonparametric measure of the integrated variance. Unfortunately, the presence of

microstructure noise in empirical data generates a divergence between the observed price

process and the true or frictionless price process. In pure probability terms, the observed

log-return process is no longer a semimartingale. This divergence could, for example, be

induced by transaction price changes occurring as multiples of ticks (price discreteness) or by

the existence of multiple prices for buyers and sellers (bid-ask spreads), or it may be due to

liquidity or information reasons. Under these settings, it turns out that the realized volatility

actually estimates the variance of the contamination noise, rather than the underlying return

volatility. This is because, at least for the class of continuous semimartingale processes, the

volatility is of the same order of magnitude as the time interval, while the microstructure

noise has a roughly constant variance. Therefore, changes in transaction prices over very small

time intervals are mainly composed of noise and carry little information about the underlying

return volatility. The effect of noise components on the estimation method has been analyzed

in Bandi and Russell (2006b, 2008), Aı̈t-Sahalia et al. (2005, 2011), Barndorff-Nielsen et al.

(2008, 2006), Zhang et al. (2005), Hansen and Lunde (2006) and Zhang (2006a). The concept

of realized volatility can be easily extended to the multivariate case through the definition of

realized covariance. It is though necessary to take into account an additional effect related

to the non-synchronous arrival times of the traded assets: non-synchronicity relates to the

so-called Epps phenomenon (Epps, 1979), which induces a downward bias in the covariance

estimates as the sampling frequency increases. The problem is addressed in Bandi and Russell

(2005), Zhang (2006b), Voev and Lunde (2007) and Griffin and Oomen (2010) among oth-

ers. An alternative, but similar in spirit to the realized covariation estimator, is proposed

in Hayashi and Kusuoka (2004), and Hayashi and Yoshida (2005, 2006). The peculiarity of

their estimator is that it does not rely on any synchronization methods, instead required for

the realized covariance, but rather use all the available data. More importantly, it is shown to

be unbiased and consistent under the assumption that the observations are uncontaminated

by noise.

The methodology here studied follows a very different approach respect to the realized esti-

mator: it is based on harmonic analysis and exploits high-frequency data to recover the time

evolution of volatility and cross-volatility processes over a fixed time window. The method

was first introduced by Malliavin and Mancino (2002) in the context of Fourier series follow-

ing the idea to expand the instantaneous multivariate volatility function into trigonometric

polynomials with Fourier coefficients depending on the log-return process. An estimate of the

integrated volatility and cross-volatility can be obtained as a particular case. In this respect,

early recognition on the validity of the method, in absence of microstructure noise, can be

found in Barucci and Renò (2002a,b), Kanatani (2004) and Hansen and Lunde (2005). In a

comparative study, Høg and Lunde (2003) show that the their proposed wavelet estimator

is virtually indistinguishable from the Fourier estimator in terms of bias and variance, al-
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though the former method is computationally faster. However, as in the last cited works,

they do not take into account any market effect. Nielsen and Frederiksen (2008) bridge the

gab and also include in the analysis the realized volatility, as well as two alternative esti-

mators specifically designed to account for the bias induced by microstructure noise. Their

conclusion is that the Fourier estimator is superior to both the realized volatility and the

wavelet estimator, and has smaller mean square error, but slightly higher bias, with respect

to the bias-corrected methods. Nevertheless, this analysis is purely empirical and a precise

treatment of market microstructure noise effects on the Fourier estimator is needed. In their

article, Mancino and Sanfelici (2008b) derive an analytic expressions for the bias and the

mean squared error of the estimator under the condition the noise component is an inde-

pendent random variable respect to the Brownian motion driving the stock price dynamics.

They show that, by choosing an appropriate number of Fourier coefficients, the bias of the

Fourier estimator is smaller than the bias of the realized volatility in finite samples, while

the mean square error converges to a positive constant, i.e. nearly consistency. Hence, the

estimator can be made sufficiently robust to this type of market noise. One limitation of

this study is that prices are assumed to be equidistant or homogeneous in time, therefore

requiring interpolation methods to construct intraday returns, while the most appealing fea-

ture of the Fourier estimator is that it can be applied directly to market data, making use of

all the available information. In addition, a more realistic microstructure noise dependence

should also be analyzed as in Hansen and Lunde (2006), where the noise is time-dependent

and correlated with efficient returns. In the multivariate framework, we first recall the work

by Renò (2003), who exploits the methodology to investigate the determinants of the afore-

mentioned Epps effect. Using real time series, Precup and Iori (2007) make use of signature

plots to show that the Fourier method generates smoother curves with respect to interpola-

tion based methods such as the standard Pearson coefficient and the co-volatility weighted

measure proposed in Dacorogna et al. (2001). Finally, Mancino and Sanfelici (2008a) valuate

the effects of both asynchronous trading and microstructure noise on the Fourier estimator

and conclude that: (i) is consistent under asynchronous trading and uncontaminated prices;

(ii) is asymptotically unbiased and nearly consistent in the presence of independent noise.

All these approaches, valuable as they are, focus on realized measures. We are instead inter-

ested in applying the Fourier methodology to estimate the variability of the price dynamics at

a particular point in time, the so-called instantaneous or spot volatility. A first step towards

this direction is the work by Renò (2008). In his stimulating paper, the author employs the

Fourier estimator to reconstruct the volatility trajectory of a stochastic model. Similarly,

Ogawa and Sanfelici (2008) applied the method to spot volatility estimation but also con-

sider the case of slightly contaminated data. However, the significant impact that irregular

sampling might have on the estimation procedure is not considered, since both studies em-

ploy series of evenly spaced transactions. In this respect, the first purpose of this thesis is to
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place further emphasis on the estimation of univariate and multivariate volatility dynamics,

while providing a deeper insight into the Fourier method. Secondly, we would like to wide

and sustain the existing class of spot volatility estimators by proposing a new and efficient

volatility measure. In particular, the thesis consists of four main chapters as follow.

Chapter 1 describes in details the Fourier methodology and the asymptotic properties of the

estimator under univariate and multivariate settings.

Chapter 2 first shows how to apply the Fast Fourier Trasform (FFT) to enhance the calcu-

lation speed of the method. The original Fourier procedure can be quite expensive in terms

of memory requirement and computational time, but we show that it can be substantially

improved by means of the FFT algorithm. This is of great advantage for the analysis of

large sets of data, as it is usually the case when dealing with tick-by-tick prices. In the sec-

ond part of the chapter, we consider different levels of inhomogeneity and of microstructure

noise to study the behavior of three driving quantities in the estimation process, namely the

number of price and volatility Fourier coefficients, and the degree of resolution at which to

reconstruct the volatility trajectory. We simultaneously derive their optimal values using the

genetic algorithm for numerical optimization introduce by Storn and Price (1997), and known

as Differential Evolutions. Monte Carlo results reveal that the number of price coefficients

is a key parameter in controlling the efficiency of the estimator. In addition, we show that

the estimation process is affected by the joint contribution of irregular sampling and mar-

ket noise, especially when the level of these two ‘ugly’ facts is significant. The chapter also

presents two empirical applications that, overall, provide evidence in favor of the method.

Chapter 3 deals with correlation analysis. We first evaluate the performance of the Fourier

method against the popular Pearson coefficient to estimate the integrated correlation of a

large set of stocks. Although very different in their design, the two estimators result to

be equivalent proxies of the ‘true’ correlation matrix, both in the case of synchronous and

asynchronous data. To measure their level of accuracy we use the Kullback-Leibler diver-

gence, a dissimilarity measure well-known in Information Theory. The peculiar features of

this measure, namely, the asymmetry and the independence of the expectation values from

the original model, suit particularly well a comparative analysis between correlation ma-

trices. In this respect, a small Kullback-Leibler distance indicates that a large amount of

information about the model is retained by the sample matrix, here calculated with the

Fourier and Pearson estimators respectively. In a second stage of the analysis we instead

compare the Fourier method against the highly competitive correlation estimator introduced

by Hayashi and Yoshida (2005, 2006). Both methods can be applied directly to series of

tick-by-tick prices without any prior manipulation, but the latter is computationally simpler

and, most importantly, immune to Epps effects by construction. However, differently from

the Fourier approach, the Hayashi-Yoshida correlation matrix might fail to be positive de-
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fined, a mandatory requirement in the application of the Kullback-Leibler measure. To solve

the problem, we apply the shrinkage technique proposed in Ledoit and Wolf (2004b) and con-

struct a convex combination between the Fourier and Hayashi-Yoshida sample matrices. Our

results clearly show that the obtained shrinkage estimator outperforms its single components,

leaving space for a better estimation procedure once these are optimally combined. The last

part of the chapter deals with the estimate of time-varying and stochastic correlation. The

Fourier estimator is here applied for the first time and the results are only preliminary.

Chapter 4 introduces a new class of spot volatility estimators. Members of this class are fully

nonparametric measures based on delta sequences, i.e. sequences of functions that converges

at a certain rate to a Dirac delta function. In particular, we extend the kernel estimator

of Kristensen (2010) by proving that a traditional kernel function can be seen as a delta

sequence. Our class is shown to be reasonably wide and also includes the trigonometric

functions largely used in the Fourier estimator. The study of the asymptotic theory reveals

that the estimators within the class are normally distributed when the number of observa-

tions diverges to infinity, and the maximum interval between observations (not necessarily

equally spaced) shrinks to zero. Our findings are derived for diffusions under mild assump-

tions on the driving coefficients of the stochastic differential equation. We then allow for

microstructure noise in the data and use a two-scale volatility technique, similar to the one

in Zhang et al. (2005), to make our estimator robust against the noise effects. In addition,

we tackle the problem of discontinuities in the return dynamics using a threshold estimator

as in Mancini (2009) to filter out jumps from the observed price process. As a by-product,

we contribute to the result in Malliavin and Mancino (2009) by further investigating the

asymptotic behavior of the Fourier estimator. Finally, we present an empirical analysis us-

ing high-frequency transactions, where the above estimators are applied to detect intraday

volatility dynamics.



CHAPTER 1

The Fourier estimator

This chapter introduces the Fourier estimator under univariate and multivariate settings.

Some basics concepts in stochastic analysis that underlie the main theoretical results regard-

ing the method are first given.

1.1 Basic notions of stochastic processes

A stochastic process X = {X(t) : t ≥ 0} is a collection of random variables X(t) = X(t, ω)

indexed by t and defined on a common probability space (Ω,F , P ). It can also be regarded

as the function X : R+ × Ω → R and X(t, ω) can be interpreted as the value of the process

at t given the outcome ω. For a fixed ω ∈ Ω the map t→ X(t, ω) is called a trajectory of the

process X. For a specific t, the process is simply a random variable on Ω.

A stochastic process X is càdlàg if all its trajectories are almost surely (a.s.) right-continuous

with left-hand limits everywhere. In this case, we can define two other processes: the left-limit

process X− = {X(t−)} and the jump process ∆X = {∆X(t)}, respectively given by

X(t−) = lim
sրt

, X(s), X(0−) = X(0)

∆X(t) = X(t) −X(t−)

If the trajectory is continuous in t, then X(t−) = X(t) and ∆X(t) = 0. Càdlàg functions

are important in the study of stochastic processes that admit, or even require, jumps.

6
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In what follows, we assume that the price evolution of a financial asset is modelled by a

stochastic process X. In particular, we assume that the price process evolves in continuous

time over the interval [0, T ], with T finite integer. We denote the associated natural filtration

as {Ft}0≤t≤T ⊆ F , where the information set Ft represents the available history of the asset

price movement and other relevant, possibly latent, state variables up to time t. We will refer

to (Ω,F , (Ft)t≥0, P ) as to the filtered probability space.

We say that the process X is adapted to the filtration {Ft}0≤t≤T if it is Ft-measurable, i.e.

X(t) ∈ Ft, ∀t ≥ 0. The interpretation of this definition is that for every fixed t, the process

value X(t) is completely determined by the information Ft that we have access to at time t

(Bjork, 1998). Therefore, an adapted process does not look into the future.

Given the above filtered probability space, we can define the predictable σ-algebra P as the

smallest σ-algebra on R+×Ω generated by the class of all adapted, left-continuous processes.

A stochastic process X is called predictable if it is measurable respect to P.

A stochastic process X is a martingale if

1. X(t) is integrable for each t;

2. X is adapted to {Ft}0≤t≤T ;

3. X(s) = E[X(t)|Fs], a.s. ∀s, t such that 0 ≤ s ≤ t.

It the equality sign is replaced by ≤ (≥), then X is said to be a submartingale (supermartin-

gale).

A random variable τ taking values in R+∪{+∞} is a stopping time with respect to {Ft}0≤t≤T

if {τ ≤ t} ∈ Ft, ∀t ≥ 0.

An adapted, càdlàg process X is a local martingale if there exists a sequence of increasing

stopping times τn, with limn→∞ τn = ∞ a.s., such that X(t ∧ τn) {τn>0} is a uniformly

integrable martingale for each n, with t ∧ τ = min(t, τ).

A process X is said to have finite or bounded variation over [0, T ] if the sum of the absolute

values of the price increments over subintervals is bounded. In formulas

VX([0, T ]) = sup
n∑

i=1

|X(ti) −X(ti−1)| <∞

where the supremum is taken over all the partitions 0 = t0 < t1 < . . . < tn = T of [0, T ].
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1.2 Semimartingales, quadratic variation and covariation

In the fundamental theory of asset pricing the arbitrage-free logarithmic price process is a

(special) semimartingale and, as such, admits the following unique decomposition

X = A+M,

where A is a predictable process of finite variation and M is a local martingale. The process

A (the signal) has relatively smooth sample paths, while M (the noise) is characterized by

an erratic and unpredictable behavior. The increments in A may be thought of as rewards

for investing in the risky process X. The class of semimartingales is very large and includes

all the standards models applied in financial econometrics like the Itô process, the jump and

mixed jump diffusion processes. A semimartingale X defined on (Ω,F , (Ft)t≥0, P ) is called

Brownian semimartingale if the process M is of the form

M(t) =

∫ t

0
a(s)ds+

∫ t

0
σ(s)dW (s),

where a is a predictable locally bounded drift, σ(t) is a càdlàg volatility process, and W (t)

is a Brownian motion. Crucial to the economics of financial risk is the concept of quadratic

variation defined for any semimartingale as

[X,X]t = X2(t) − 2

∫ t

0
X(s−)dX(s), 0 < t ≤ T, (1.1)

where X(s−) is a càdlàg process. Equivalently, let {0 = τn
0 ≤ τn

1 ≤ τn
2 ≤ · · · ≤ τn

n = T} be a

sequence of partitions of [0, T ] such that supi≥0(τ
n
i+1−τn

i ) → 0 for n→ ∞, i.e. the maximum

distance between observations goes to zero in the limit. Then

[X,X]t = plim
n→∞

∑

i≥1

(X(t ∧ τn
i ) −X(t ∧ τn

i−1))
2, (1.2)

where the probability limit exists for all semimartingales. Theoretical results in stochastic

processes (Karatzas and Shreve, 1988) state that almost surely

[X,X]t =

∫ t

0
σ2(s)ds, (1.3)

where the quantity on the right-hand sise is known as integrated volatility. Therefore, without

any knowledge on the underlying volatility process, it is possible to obtain an accurate esti-

mate of the integrated volatility by summing increasingly finer sampled squared returns. This

feature was first applied to the context of empirical volatility measurement using high fre-

quency data by Andersen and Bollerslev (1998), Andersen et al. (2001) and, in a concurrent
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and independent work, by Barndorff-Nielsen and Shephard (2001). The proposed estimator,

known as realized volatility, take the simple form

RV =
m∑

i=1

r2i ,

where ri = Xi∆ −X(i−1)∆ is the intraday return sampled at time interval ∆ = T
m per period,

usually one day. The theory of quadratic variation shows that the realized variance converges

uniformly in probability to the quadratic variation process when the sampling frequency of

returns approaches infinity, i.e. for m→ ∞,

RV
p→
∫ t

0
σ2(s)ds,

providing a consistent estimate of the integrated volatility. This convergence property states

that, in theory and under very broad assumptions, the measurement error of the realized

volatility could be arbitrarily reduced by simply increasing the sampling frequency of returns.

However, in practice empirical data differ in many ways from the arbitrage-free continuous

time price process making this estimator strongly biased and inconsistent for small return

intervals.

The extension to the multivariate case of the above results easily follow. In particular, the

quadratic covariation of two processes X(t) and Y (t) can be conveniently obtained through

the polarization identity

[X,Y ]t =
1

4
([X + Y,X + Y ] − [X − Y,X − Y ]) , (1.4)

although similar expressions to (1.1) and (1.2) can also be derived. In the next section we

will see that, in the pure diffusive settings, the quadratic covariation effectively measure the

association between the random movements of two different continuous processes.

1.3 The Fourier method

Assume that the logarithmic prices X(t) = (X1(t), . . . , Xp(t)) are Brownian semimartingales

satisfying the stochastic differential equations

dX(t) = Θ(t)dW (t) (1.5)

where the instantaneous or spot volatility process Θ has elements which are all càdlàg, and

W is a vector standard Brownian motion defined on a filtered probability space.
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From the representation in (1.5), define the spot covariance matrix as

Σ(t) = Θ(t)Θ(t)T

where Σij(t) will denote the cross-volatility between the ith and the jth price process, with

i, j = 1, . . . , p. We are interested in estimating this quantity. In the previous sections we

have seen that the following identity holds almost surely

[Xi, Xj ]t =

∫ t

0
Σij(s)ds, (1.6)

where the quantity on the right-hand side is called integrated covariance. This result implies

that

Σij(t) =
d[Xi, Xj ]t

dt
,

for every 1 ≤ i, j ≤ p. However, high-frequency financial data are inherently non-synchronous,

in the sense that usually two transaction prices are not recorded at the same time, while the

above differentiation procedure requires to have observations available for both Xi and Xj at

each point on the grid. The problem can be successfully overcome using the Fourier procedure

introduce by Malliavin and Mancino (2002) that allows to estimate Σ(t) through time series

of data as their observed on the market, without any prior manipulation. This is possible

according to the fact that the method is based on integration, rather than differentiation, of

financial returns. The idea is to combine classical harmonic analysis with stochastic calculus

to derive the Fourier coefficients of Σij from the Fourier coefficients of the return process dXi

defined as

a0(dXi) =
1

2π

∫ 2π

0
dXi a0(Σij) =

1

2π

∫ 2π

0
Σij(t)dt

ak(dXi) =
1

π

∫ 2π

0
cos(kt)dXi ak(Σij) =

1

π

∫ 2π

0
Σij(t)cos(kt)dt

bk(dXi) =
1

π

∫ 2π

0
sin(kt)dXi, bk(Σij) =

1

π

∫ 2π

0
Σij(t)sin(kt)dt

for k = 1, . . . , N . Note that the coefficients of price are not Fourier coefficients in the usual

sense but proper stochastic integrals. Also note that, by rescaling the unit of time, we can

easily move from the interval [0, T ] to [0, 2π]. The volatility matrix Σ(t) is then reconstructed

point wise on the fixed window [0, 2π] by the classical Fourier inversion formula

Σ̂ij
N,M (t) = a0(Σij) + lim

M→∞

M∑

q=1

[aq(Σij)cos(qt) + bq(Σij)sin(qt)] . (1.7)
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Due to the presence of the limit function, the above expression cannot be calculated in

practice and is substituted by the partial Fourier series

Σ̂ij
N,M (t) = a0(Σij) +

M∑

q=1

(
1 − q

M

)
[aq(Σij)cos(qt) + bq(Σij)sin(qt)] . (1.8)

Note that now the coefficients aq(Σij) and bq(Σij) are weighted by the Fèjer window

wq =
(
1 − q

M

)
, which is responsible for reducing the contribution of the high modes in the

recovering process. Alternatively, we can employ a modified version of the Lanczos sigma

factor proposed in Malliavin and Thalmaier (2005) and defined as

ϕ(x) =
sin2(x)

x2
, ϕ(0) = 0. (1.9)

In particular, Eq. (1.8) becomes

Σ̂ij
N,M (t) = a0(Σij) +

M∑

q=0

ϕ(δq) [aq(Σij)cos(qt) + bq(Σij)sin(qt)] . (1.10)

The parameter δ can be interpreted as the time scale at which we want to reconstruct the

volatility trajectory: the higher is δ, the smoother is the estimated path but at the price of

a less detailed reconstruction.

1.3.1 The univariate case

For ease of exposition, we will first present the main result in the work by

Malliavin and Mancino (2002) for the univariate case. In particular, we will show how to

derive Fourier coefficients of the volatility from the coefficients of price. The coefficients of

the cross-volatility can then be obtained by polarization as we will see shortly. Set Σi,i = σ2

and recall that L2([0, 2π]) represents the class of functions that are square integrable over

[0, 2π].

Theorem 1.1. Consider a process satisfying (1.5) with p = 1. For a fixed integer n0 > 0

and 1 ≤ q ≤M , the Fourier coefficients of the volatility process are given by

a0(σ
2) = lim

N→∞

π

N + 1 − n0

N∑

k=n0

a2
k(dX) = lim

N→∞

π

N + 1 − n0

N∑

k=n0

b2k(dX) (1.11)

aq(σ
2) = lim

N→∞

2π

N + 1 − n0

N−q∑

k=n0

ak(dX)ak+q(dX) = lim
N→∞

2π

N + 1 − n0

N−q∑

k=n0

bk(dX)bk+q(dX) (1.12)

bq(σ
2) = lim

N→∞

2π

N + 1 − n0

N−q∑

k=n0

ak(dX)bk+q(dX) = − lim
N→∞

2π

N + 1 − n0

N−q∑

k=n0

bk(dX)ak+q(dX),

(1.13)
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where all the limits are attained in probability.

The proof of the theorem as given in the original paper is not completely correct, the main

problem laying in the statement

E



(

1

N + 1 − n0

N−q∑

k=1

GkGk+q

)2

 =

1

(N + 1 − n0)2

N−q∑

k1=0

N−q∑

k2=0

E(G2
k1
G2

k2+q),

where Gk := ak(dX), which is wrong because

E



(

1

N + 1 − n0

N−q∑

k=1

GkGk+q

)2

 =

1

(N + 1 − n0)2

N−q∑

k1=0

N−q∑

k2=0

E(Gk1Gk1+qGk2Gk2+q).

In addition, the summation indexes on both sides should start from n0. We will now show

that it is still possible to achieve the final convergence result.

Proof of Theorem 1.1. We restrict our attention to the case where σ(t) is a deterministic

function of time. The extension to the stochastic case can be obtained as in the proof of

Theorem 3.1 in Malliavin and Mancino (2002).

Choose k, h ∈ N such that k > h > 1 and set Gk := ak(dX). Then, by the Itô isometry,

E[GkGh] = E

[
1

π

∫ 2π

0
cos(kt)dX(t) · 1

π

∫ 2π

0
cos(ht)dX(t)

]

= E

[
1

π2

∫ 2π

0
cos(kt)σ(t)dW (t) ·

∫ 2π

0
cos(ht)σ(t)dW (t)

]

=
1

π2

∫ 2π

0
σ2(t)cos(kt)cos(ht)dt.

Using the identity

2cos(kt)cos(ht) = cos[(k − h)t] + cos[(k + h)t]

we obtain

E[GkGh] =
1

2π
[a|k−h|(σ

2) + ak+h(σ2)]. (1.14)

Moreover, given that
∫ 2π
0 cos2(kt)dt = 2π and

∫ 2π
0 sin2(kt)dt = 2π, by Eq. (1.8) we can

calculate the energy identity

||σ2||2L2 :=

∫ 2π

0
σ2(t)dt = 2π

+∞∑

k=0

[a2
k(σ

2) + b2k(σ
2)].

For ease of notation, in the following we will set N̄ := N − q.
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Given an integer n0 > 0 and for q ∈ N define

U q
N =

1

N + 1 − n0

N̄∑

k=n0

GkGk+q.

By means of Eq. (1.14) we get

E[U q
N ] =

1

2π

1

N + 1 − n0

N̄∑

k=n0

[aq(σ
2) + a2k+q(σ

2)] =
1

2π
aq(σ

2) +RN ,

where

|RN | =
1

2π

1

N + 1 − n0

∣∣∣∣∣∣

N̄∑

k=n0

a2k+q(σ
2)

∣∣∣∣∣∣
≤ 1√

N + 1 − n0
||σ2||L2 .

For the last passage use the Cauchy-Schwartz inequality and the fact that

∑

k

a2
k(σ

2) = ||σ2||2L2 +
∑

k

b2k(σ
2) ≤ ||σ2||2L2 ,

being b2k(σ
2) a positive quantity. Therefore, RN → 0 and

aq(σ
2) = 2π lim

N→∞
E[U q

N ].

We now want to prove that aq(σ
2) = 2π lim

N→∞
U q

N . To this purpose we first compute

E[U q
N ]2 =

1

(N + 1 − n0)2

∑

n0≤k1,k2≤N̄

E[ak1(dX)ak1+q(dX)]E[ak2(dX)ak2+q(dX)].

Since ak(dX) is a zero-mean Gaussian random variable, we can then use the well-known

formula for the product of four Gaussian variables1 to obtain

E[(U q
N )2] =

1

(N + 1 − n0)2

∑

n0≤k1,k2≤N̄

E[ak1(dX)ak1+q(dX)ak2(dX)ak2+q(dX)]

=
1

(N + 1 − n0)2

∑

n0≤k1,k2≤N̄

{
E[ak1(dX)ak1+q(dX)]E[ak2(dX)ak2+q(dX)]+

+ E[ak1(dX)ak2(dX)]E[ak1+q(dX)ak2+q(dX)]+

+ E[ak1(dX)ak2+q(dX)]E[ak1+q(dX)ak2(dX)]
}
.

1Given four Gaussian random variables xi, i = 1, 2, 3, 4, the expectation of the product is given by

E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3] − 2E[x1]E[x2]E[x3]E[x4].
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Using again Eq. (1.14), we can now calculate

E[(U q
N − E[U q

N ])2] = c
∑

n0≤k1,k2≤N̄

{
[ak1+k2(σ

2) + a|k1−k2|(σ
2)][ak1+k2+2q(σ

2) + a|k1−k2|(σ
2)]+

+ [ak1+k2+q(σ
2) + a|k1−k2−q|(σ

2)][ak1+k2+q(σ
2) + a|k1−k2+q|(σ

2)]
}
,

where c = 1
4π2

1
(N+1−n0)2

. Finally, we use Cauchy-Schwartz to show that

E[(Uq
N −E[Uq

N ])2] ≤

≤ c

[(
∑

n0≤k1,k2≤N̄

(
ak1+k2

(σ2) + a|k1−k2|(σ
2)
)2 ∑

n0≤k1,k2≤N̄

(
ak1+k2+2q(σ

2) + a|k1−k2|(σ
2)
)2
) 1

2

+

+

(
∑

n0≤k1,k2≤N̄

(
ak1+k2+q(σ

2) + a|k1−k2−q|(σ
2)
)2 ∑

n0≤k1,k2≤N̄

(
ak1+k2+q(σ

2) + a|k1−k2+q|(σ
2)
)2
) 1

2

]
≤

≤ 1

4π2

1

(N + 1 − n0)2
||σ2||2L2 .

The above inequality implies convergence in L2, and then in probability. This proves the first

part of Eq. (1.12). For the second part, it is enough to repeat the proof with Gk = bk(dX)

and use the trigonometric formula

2sin(kt)sin(ht) = cos[(k − h)t] − cos[(k + h)t].

To derive Eq. (1.13), we need to replace ak(dX), ah(dX) with ak(dX), bh(dX) and compute

E[ak(dX), bh(dX)] =
1

π2

∫ 2π

0
σ2(t)cos(kt)sin(ht)dt.

Then, by the identity

2cos(kt)sin(ht) = sin[(k − h)t] + sin[(k + h)t],

we get

E[ak(dX), bh(dX)] =
1

2π
[a|k−h|(σ

2) + ak+h(σ2)].

Proceeding as above, it is than necessary to calculate the expected value of

V q
N =

1

N + 1 − n0

N̄∑

k=n0

ak(dX)bk+q(dX)

and

W q
N =

1

N + 1 − n0

N̄∑

k=n0

bk(dX)ak+q(dX).
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Finally, Eq. (1.11) follows from

E[a2
k(dX)] = E[b2k(dX)] =

1

2π
[a0(σ

2) + a2k(σ
2)].

This completes the proof.

Corollary 1.2. For 1 ≤ q ≤M , the Fourier coefficients of σ2(t) are calculated in L2([0, 2π])

as

a0(σ
2) = lim

N→∞
π

N + 1 − n0

N∑

k=n0

1

2

[
a2

k(dX) + b2k(dX)
]

(1.15)

aq(σ
2) = lim

N→∞
π

N + 1 − n0

N−q∑

k=n0

[
ak(dX)ak+q(dX) + bk(dX)bk+q(dX)

]
(1.16)

bq(σ
2) = lim

N→∞
π

N + 1 − n0

N−q∑

k=n0

[
ak(dX)bk+q(dX) − bk(dX)ak+q(dX)

]
, (1.17)

Proof. The proof easily follows from Theorem 1.1.

In Chapter 2, Section 2.4.2, we will study in detail the role played in the estimation procedure

by the parameters N and M , namely, the number of price and volatility coefficients.

1.3.2 The multivariate case

The multivariate case is a straightforward extension of the previous analysis. In particular,

the main result can be simply obtained by polarization as follow.

Theorem 1.3. Consider a process satisfying (1.5). For a fixed integer n0 > 0, the Fourier

coefficients of the cross-volatility process are defined as

a0(Σij) = lim
N→∞

π

N + 1 − n0

N∑

k=n0

1

2

[
ak(dXi)ak(dXj) + bk(dXi)bk(dXj)

]
(1.18)

aq(Σij) = lim
N→∞

π

N + 1 − n0

N−q∑

k=n0

[
ak(dXi)ak+q(dXj) + bk(dXi)bk+q(dXj)

]
(1.19)

bq(Σij) = lim
N→∞

π

N + 1 − n0

N−q∑

k=n0

[
ak(dXi)bk+q(dXj) − bk(dXi)ak+q(dXj)

]
, (1.20)

where the limits are attained in probability.

Proof. It is enough to show how to derive coefficient a0(Σij). Using the polarization formula
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given in Eq. (1.4) and introduced in Section 1.2

[Xi, Xj ]t =
1

4
{[Xi +Xj , Xi +Xj ] − [Xi −Xj , Xi −Xj ]}

we simply substitute a2
k(dX) in Eq. (1.15) with

1

4

{[
ak(dXi) + ak(dXj)]

2 − [ak(dXi) − ak(dXj)
]2}

= ak(dXi)ak(dXj),

according to the fact that ak(dXi ± dXj) = ak(dXi) ± aK(dXj).

1.4 The complex form of the Fourier method

The Fourier series as given in Eq. (1.8) can be expressed in an algebraically simpler form

involving complex exponentials. To relate the trigonometric and exponential functions, we

make use of the well-known Euler’s formula given by

eiqt = cos(qt) + i sin(qt).

It is an immediate consequence of this formula that

cos(qt) =
eiqt + e−iqt

2
sin(qt) =

eiqt − e−iqt

2i
.

Substituting these expressions in (1.8), adapted to the univariate case, we obtain

σ̂2
N,M (t) ≈ a0 +

M∑

q=1

(
1 − q

M

)[aq − ibq
2

eiqt +
aq + ibq

2
e−iqt

]
,

where aq := aq(σ
2) and bq := bq(σ

2). If we set

c0 = a0 cq =
aq − ibq

2
c−q =

aq + ibq
2

,

with cq := cq(σ
2), then

σ̂2
N,M (t) ≈ c0 +

M∑

q=1

(
1 − q

M

)[
cqe

iqt + c−qe
−iqt
]

=
∑

|q|≤M

(
1 − q

M

)
cqe

iqt.

This is the complex form of the Fourier series of σ2(t) and the coefficients cq are called the

complex Fourier coefficients of the series. It is straightforward to see that

cq(σ
2) =

1

2π

∫ 2π

0
σ2(t)e−iqtdt, q = 0,±1, . . . ,±M.
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The last expression is analogous to the Fourier transform of σ2(t) on the real line R. In their

recent paper, Malliavin and Mancino (2009) use this complex form to define the asymptotic

properties of the Fourier estimator. In particular, they prove that, in absence of microstruc-

ture noise, the estimator is consistent and also derive a weak convergence result. We will

now present these properties in the univariate case for ease of comparison with the limiting

theory developed in Chapter 4. The results are stated without proof.

Suppose that the process X(t) is observed at instants 0 = t0 < t1 < . . . < tn = 2π over

the interval [0, T ]; the resulting tick-by-tick prices are not necessarily equally spaced in time.

Moreover, define ρ(n) := max
0≤h≤n−1

|th+1 − th| such that ρ(n) → 0, as n→ ∞. For |k| ≤ N , let

ck(dX) =
1

2π

n−1∑

j=0

e−ikt∆Xj ,

where ∆Xj = X(tj) −X(tj−1), and consider the convolution product

αq(N) =
2π

2N + 1

∑

|k|≤N

ck(dX)cq−k(dX).

Finally, define the random function

σ̂2
N,M (t) =

∑

|q|≤M

(
1 − q

M

)
αq(N)eiqt. (1.21)

Theorem 1.4. For every q ∈ N, the following convergence in probability holds

lim
n,N→∞

αq(N) = cq(σ
2).

Moreover, the estimator of instantaneous volatility σ2(t) is consistent uniformly in time

lim
n,N→∞

sup
t∈[0,2π]

|σ̂2
N,M (t) − σ2(t)| = 0.

The limiting distribution result is based on the following set of assumptions defined in

Mykland and Zhang (2006) and necessary to deal with unevenly sampled series of data

(i) ρ(n) → 0 and ∆nρ(n) = O(1), where ∆n = 2π
n

(ii) Hn(t) =

∑
tj+1,n≤t(tj+1,n−tj,n)2

∆n
→ H(t) as n→ ∞

(iii) H(t) is continuously differentiable.
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Theorem 1.5. Let σ̂2
N,M (t) be defined as in Eq. (1.21) and assume that conditions (i)-(iii)

are satisfied. Then, for n,N,M → ∞ and any Lipschitz continuous function h(t) of order

α > 1
2 with compact support in (0, 2π), and provided that ρ(n)N2α → ∞ we have

1√
ρ(n)

∫ 2π

0
h(t)

[
σ̂2

N,M (t) − σ2(t)
]
dt

L−→ MN

(
0, 2

∫ 2π

0
H ′(t)h2(t)σ4(t)dt

)
,

where the above convergence is in law.

In order extend the theorem to the multivariate case, suppose that the log-price processes

X1 and X2 are discretized on two distinct irregular grids 0 = t10 < t11 < . . . < t1n1
= 2π and

0 = t20 < t21 < . . . < t2n2
= 2π respectively. Then, ρs(n) := max

0≤h≤n−1
|tsh+1 − tsh|, s = 1, 2, and

assume that ρ(n) := ρ1(n) ∨ ρ1(n) → 0 as n → ∞. Finally, define the rescaled Dirichelet

kernel as

DN (t) :=
1

2N + 1

∑

|k|≤N

eikt.

Theorem 1.6. Under the hypothesis of Theorem 1.5, the following result holds

1√
ρ(n)

∫ 2π

0
h(t)

[
Σ̂12

N,M (t) − Σ12(t)
]
dt =

=
1√
ρ(n)

n1−1∑

i=0

n2−1∑

j=0

hM (t2j )DN (t2j − t1i )

(∫ t1i∧t2j

t1i−1∨t2j−1

∫ t

t1i−1∨t2j−1

dX1(s)dX2(s)

+

∫ t1i∧t2j

t1i−1∨t2j−1

∫ t

t1i−1∨t2j−1

dX2(s)dX1(s)

)
+ op(1),

where op(·) is defined for n→ ∞ and

hM (t) =
∑

|q|≤M

(
1 − q

M

)
cq(h)e

iqt

with cq(h) denoting the q-th Fourier coefficient of the function h.

We have used the notation MN(0, V ) to denote a mixed normal distribution with stochastic

variance V .



CHAPTER 2

Spot volatility estimation via Fourier method

In this chapter, we will discuss some practical issues related to the implementation and

application of the Fourier methodology previously introduced. We recall that the procedure

employs the observations in their original form and allows to recover the time evolution

of a multivariate volatility process over a fixed window. We first show how to apply the

Fast Fourier Transform algorithm to calculate the Fourier coefficients of price, obtaining a

remarkable improvement in terms of computational efficiency. We then contribute to clarify

two important aspects in the application of the method, namely, the choice of the number

of price and volatility coefficients, and the choice of the scale at which to reconstruct the

volatility trajectory. We show how to simultaneously estimate these quantities using the

Differential Evolution optimization algorithm introduced by Storn and Price (1997). Finally,

we perform a detailed analysis on the impact that different levels of inhomogeneity in the

data and microstructure noise might have on the above parameters, and on the performance

of the Fourier estimator as a consequence. This is a relevant step in the estimation procedure

as applied to recover the temporal dynamics of a stochastic process, and it is here investigated

for the first time. All the results in the chapter are derived for an univariate process, but can

be easily extended to the multivariate case.

2.1 Preliminaries

In the Fourier method proposed by Malliavin and Mancino (2002), the instantaneous volatil-

ity process σ2(t) is expanded into trigonometric polynomials whose coefficients depend on

the observed log returns. In order to apply spectral analysis to random processes, X(t) is

19
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assumed to be a periodic functions of period T on the interval [0, T ]. A function f(x) is called

periodic if there exists a constant ϕ > 0 such that f(x+ϕ) = f(x), for every x in the domain

of definition of f(x). Therefore, a periodic function repeats itself at regular intervals, and the

period ϕ is the time between successive repetitions. The functions cos(t) and sin(t) involved

into the estimation procedure are periodic with period 2π, and any linear combination of

them will also be periodic, i.e. if we consider a generic function of the form

f(t) =
∞∑

k=0

[akcos(kt) + bksin(kt)],

where an and bn are the standard Fourier coefficients, then f(t) must be a periodic function

of period 2π itself, whatever values we assign to an and bn. To model a process with period

T rather than 2π, it is necessary to rescale the unit of time and move from the frequency

domain on [0, 2π] to the time domain on [0, T ]. If we assume that prices are observed on the

market at times 0 = t0 ≤ t1 ≤ . . . ≤ tn = T , this can be achieved by simply taking

τj =
2π(tj − t0)

tn − t0
=

2πtj
T

,

where 2π
T is called the angular frequency and 1

T is the fundamental frequency.

2.2 A faster way to calculate the Fourier coefficients of price

It is well-recognized that the Fourier algorithm is not numerically efficient, both in terms

of memory requirement and computational time. In this section we will show that it can

be substantially improved by applying a Fast Fourier Trasform to the calculation of the

coefficients of price.

2.2.1 Preliminary results

The Fourier coefficients of price introduced in Chapter 1, Section 1.3, now become

a0(dX) =
1

T

∫ T

0
dX(t) (2.1)

ak(dX) =
2

T

∫ T

0
cos(θkt)dX(t) (2.2)

bk(dX) =
2

T

∫ T

0
sin(θkt)dX(t), k = 1, . . . , N (2.3)

where θk = 2πk
T are the angular frequencies.
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The implementation is carried out by computing the integrals via integration by parts as

follow

∫ T

0
cos(θkt)dX(t) = X(T ) −X(0) + θk

∫ T

0
sin(θkt)X(t)dt

∫ T

0
sin(θkt)dX(t) = −θk

∫ T

0
cos(θkt)X(t)dt

We now take the process X(t) to be constant and left continuous on the interval [tj−1, tj ], i.e.

X(t) = X(tj−1) for t ∈ [tj−1, tj ] and j = 1, . . . , n. This is a reasonable assumption because

prices do not evolve continuisly on the market, but are instead recorded at discrete times, as

already stated. Then, the first integral above becomes

θk

∫ tj

tj−1

sin(θkt)X(t)dt = X(tj)θk

∫ ti

tj−1

sin(θkt)dt = X(tj−1)
[
cos(θktj−1) − cos(θktj)

]
,

and similar arguments holds for the second one. It follows that the coefficients can be calcu-

lated approximately as

a0(dX) =
X(T ) −X(0)

T
(2.4)

ak(dX) =
X(T ) −X(0)

T/2
+

2

T

n∑

j=1

X(tj−1) [cos(θktj−1) − cos(θktj)] (2.5)

bk(dX) =
2

T

n∑

j=1

X(tj−1) [sin(θktj−1) − sin(θktj)] . (2.6)

Although very simple, the following result represents an important step in our effort to

computationally improve the Fourier estimator.

Proposition 2.1. Equations (2.5) and (2.6) can be equivalently written as

ak(dX) =
2

T

n−1∑

j=1

cos(θktj)∆Xj (2.7)

bk(dX) =
2

T

n−1∑

j=1

sin(θktj)∆Xj , k = 1, . . . , N (2.8)

where ∆Xj = X(tj) −X(tj−1) is the log-price return observed at time tj.

Proof. It is enough to show how to derive Eq. (2.8). To this end, let us consider the simple
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case where n = 4. The extension to a general n easily follows. We have

bk(dX) =
2

T

4∑

j=1

X(tj−1)
[
sin(θktj−1) − sin(θktj)

]

=
2

T

[
X(t0)sin(θkt0) −X(t0)sin(θkt1) +X(t1)sin(θkt1) −X(t1)sin(θkt2)+

+X(t2)sin(θkt2) −X(t2)sin(θkt3) +X(t3)sin(θkt3) −X(t3)sin(θkt4)
]

=
2

T

[
X(t0)sin(θkt0) + sin(θkt1)(X(t1) −X(t0)) + sin(θkt2)(X(t2) −X(t1))+

+ sin(θkt3)(X(t3) −X(t2)) −X(t3)sin(θkt4)
]

=
2

T

[
X(t0)sin(θkt0) −X(t3)sin(θkt4)

]
+

1

π

[
sin(θkt1)(X(t1) −X(t0))+

+ sin(θkt2)(X(t2) −X(t1)) + sin(θkt3)(X(t3) −X(t2))
]

=
2

T

3∑

j=1

sin(θktj)∆Xj ,

where the periodicity of the trigonometric functions implies

2

T

[
X(t0)sin(θkt0) −X(t3)sin(θkt4)

]
= 0

given that t0 = 0 and t4 = T for a sample of length n = 4.

Corollary 2.2. The following relation holds

ak(dX) − ibk(dX) =
2

T

n−1∑

j=1

∆Xj e
−iθktj , k = 1, . . . , N (2.9)

where the quantity on the left-hand side is a complex number and i =
√
−1.

Proof. Given Eq. (2.7) and (2.8), we easily obtain

ak(dX) − ibk(dX) =
2

T




n−1∑

j=1

cos(θktj)∆Xj − i
n−1∑

j=1

sin(θktj)∆Xj




=
2

T

n−1∑

j=1

∆Xj

[
cos(θktj) − i sin(θktj)

]

=
2

T

n−1∑

j=1

∆Xj e
−iθktj ,

where the last equality follows from the Euler’s identity e−iφ = cosφ− sinφ.
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The summation in Eq. (2.9) is called the Discrete Fourier Transform (DFT), and it maps

the n − 1 returns ∆Xj defined on the time domain into n − 1 complex numbers defined on

the frequency domain. The transform requires a discrete number of points as input data,

which in our case are obtained by sampling the continuous process X(t). In addition, the

points must be sampled at evenly spaced intervals in time, i.e. tj = j∆, where ∆ = T
N is the

sampling interval, and therefore

2π(tj − t0)

T
= j

2π

N
.

This requirement seems to be in contrast with the peculiar property of the Fourier estimator

to employ data as they are observed on the market. However, in the next section we will

provide evidence that the estimator is not affected by the imputation procedure used to

construct equally spaced prices, if this is carefully chosen. From the above result, it is clear

that the Fourier coefficients of price are simply the real and imaginary part of the complex

numbers mapped by the DFT from a finite sequence of intraday returns. We will see now

how they can be calculated efficiently using Fast Fourier Trasform.

2.2.2 The Fast Fourier Transform algorithm

The Discrete Fourier Transform requires a considerable amount of time to be computed using

the definition in Eq. (2.9): there are N outputs and for each output a sum of N terms is

needed. The complexity of the calculation becomes more clear if we define the root of unity

w = e−i 2π
N , traditionally called twiddle factor, and rewrite the DTF as

yk =
N∑

j=1

xjw
jk, k = 1, . . . , N (2.10)

where we have also set yk = ak(dX) − ibk(dX) and xj = ∆Xj to simplify the notation. The

equation can be expressed in matrix form as follows




y1

y2

...

yN




=




w w2 . . . wN

w2 w4 . . . w2N

...
...

...

wN w2N . . . wN2







x1

x2

...

xN



.

Equivalently, we can use the matrix notation and write

y = Wx,

where W is a matrix of N ×N complex numbers. Note that W is symmetric, i.e. W = W T .
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For instance, if N = 4

W =




w w2 w3 w4

w2 w4 w6 w8

w3 w6 w9 w12

w4 w8 w12 w16




=




w w2 w3 1

w2 1 w2 1

w3 w2 w 1

1 1 1 1




=




−i −1 i 1

−1 1 −1 1

i −1 −i 1

1 1 1 1



,

since w = cos
(

2π
4

)
− isin

(
2π
4

)
= −i and w4 = 1, the latter obtained using the property

i2 = −1. It should be now easier to see that the above matrix-vector product involves N2

multiplications and N2 additions. Hence, for an input sequence of N intraday returns, com-

puting the DTF directly would require a number of arithmetic operations proportional to N2.

This number can be dramatically reduced to be proportional to N log2N by applying the Fast

Fourier Trasform (FFT). The difference between the two speed factors is extremely large:

with n = 106 data points, the FFT can perform the DFT in, roughly, 30 seconds of CPU time

against the 2 weeks of CPU time of the original DFT formula on a microsecond time cycle

computer. The algorithm became very popular after the work of Cooley and Tukey (1965),

however, it was later discovered that the German mathematician Carl Friedrich Gauss essen-

tially proposed a very similar method back in 1805 (the paper was published posthumously

in 1866). Here we will describe the simplest and most common form of the Cooley and Tukey

algorithm, namely, the Radix-2 FFT. The method recursively breaks down the original DFT

into smaller DFTs of size N
2 at each step, and makes use of intermediate calculations to

reduce the overall computational time. In particular, the DFT is first rearranged into two

parts: one is obtained from the even-numbered points of the original N , the other from the

odd-numbered points as follow

yk =
N∑

j=1

xjw
jk

=

N
2∑

j=1

x2jw
2jk +

N
2∑

j=1

x2j+1w
(2j+1)k

=

N
2∑

j=1

x2j(w
2)jk + wk

N
2∑

j=1

x2j+1(w
2)jk

=

N
2∑

j=1

x2jw
jk
N
2

+ wk

N
2∑

j=1

x2j+1w
jk
N
2

=: ye
k + wkyo

k,

where w2 = e−2i 2π
N = e

−i 2π
N
2 = wN

2
.
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In the last equation, ye
k and yo

k denote the DFTs of length N
2 obtained from the even and

odd components of the original sequence xj respectively. The sample size N is necessarily

restricted to be a power of 2, but this does not represent a limit in the application of the

algorithm to our context, as we will see shortly. It is also important to note that the index

k varies from 0 to N , while the above summations are stopped at N
2 . However, the outputs

for N
2 ≤ k < N from a DFT of length N

2 are identical to the outputs for 0 ≤ k < N
2 − 1,

being ye
k and yo

k periodic functions in k with period N
2 . This is related to the periodicity of

the twiddle factor given by

wk+N
2 = e−i 2π

N
(k+N

2
) = e−iπe−i 2π

N
k = −e−i 2π

N
k = −wk

w
k+N

2
N
2

= e
−i 2π

N
2

(k+N
2

)
= e−i2πe

−i 2π
N
2

k
= e

−i 2π
N
2

k
= wk

N
2

.

Proceeding as above, we obtain that

yk+N
2

=

N
2
−1∑

j=1

x2jw
jk
N
2

− wk

N
2
−1∑

j=1

x2j+1w
jk
N
2

=: ye
k − wkyo

k.

Therefore, it is enough to calculate the terms ye
k and yo

k for k = 1, . . . , N
2 , and use them to

obtain both yk and yk+N
2

simultaneously. This relation is often described by the following

butterfly diagram

ye
k

//

''PPPPPPPPPPPPPP ye
k + wkyo

k

yo
k

//

wk

77nnnnnnnnnnnnnn

ye
k − wkyo

k

Each stage of the FFT calculation is composed of N
2 radix-2 butterflies for a total of N

2 log2N

diagrams per FFT. The computational effort implied in the FFT algorithm after the first cycle

is here summarized:

• ye
k requires N

2 complex multiplications and additions to be calculated, and so does yo
k.

For all k = 1, . . . , N
2 terms, this results in 2(N

2 )2 arithmetic operations;

• N
2 multiplications are necessary to calculate wkyo

k for all k = 1, . . . , N
2 ;

• N = N
2 + N

2 additions are necessary to calculate ye
k + wkyo

k and ye
k − wkyo

k.

Hence, the total number of arithmetic steps is approximately N2

2 , half the number required

by the direct DFT formula. After having reduced the problem to the evaluation of ye
k and yo

k,
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the procedure can be used recursively on ye
k and yo

k themselves to get

ye
k = yee

k + (w2)kyeo
k , ye

k+n
4

= yee
k − (w2)kyeo

k

and

yo
k = yoe

k + (w2)kyoo
k , ye

k+n
4

= yoe
k − (w2)kyoo

k

This process of halving the order of the DFTs continues until the data are subdivided into

log2N transforms of length 1, where the Fourier transform of a number is the number itself,

in the sense that yoeooeoe···eeo
k = xq for some q > 1.

2.2.3 The Zero-padding effect

Although the Cooley-Tukey FFT procedure only works with sets of data equally distant in

time and of length 2m, where m is a positive integer, it is still possible to apply the algorithm

to our series of prices. The solution is equivalent to the zero-padding technique of adding

a number of zero valued data to increase the length of the data sequence and match the

transform size supported by the algorithm. This practice will generally decrease the overall

system efficiency because a portion of the available processing power is wasted on zero valued

data. However, in our case the gain in terms of calculation time is still impressive. In addition,

by looking into the literature, it is clear as fast algorithms for transform size rather than a

power of two appear to be more complex and computational expensive1.

To illustrate the zero-padding approach, we first need to artificially create a series of evenly

spaced prices starting from the row, and irregularly spaced, transactions. If the latter are

given by t0 ≤ t1 . . . ≤ tn, then the price at time t ∈ [tj−1, tj ] can be obtained using either the

previous tick or the linear interpolation method, respectively given by

X(t) := X(tj−1)

X(t) := X(tj−1) +
t− tj−1

tj − tj−1
[X(tj) −X(tj−1)].

Both methods are discussed in Dacorogna et al. (2001). However, the linear interpolation

method is showed to induce a downward bias in the Fourier estimation of the integrated

volatility, which intensifies as the sampling frequency increases (Barucci and Renò, 2002a).

We will therefore avoid using it. There is also another reason to prefer the previous tick

method: setting the price at time t to be equal to the last available observation is equivalent

to our initial assumption that the price process X(t) is piecewise constant on the interval

[tj−1, tj ], see Section 2.2.1. Hence, if we look at the alternative expressions for the coefficients

1Our choice in favor of the Radix-2 Cooley-Tukey technique is also motived by practical reasons. All the
applications in this thesis have been implemented using the C programming language, and the source code for
this specific algorithm is publicly available on the Net.
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of price given in Eqs. (2.7) and (2.8), it should be clear that any two interpolated prices

between two consecutive (not equally distant) market transactions, a zero return is added

into the formulas, but without effecting the overall result. Let us consider a simple example.

Suppose that our sample is made of X(1), X(3), X(4) and X(8) observations, where t =

1, 3, 4, 8 are seconds. After applying the previous tick interpolation scheme to obtain a price

every second, and calculating the returns ∆Xj , we get

X(1)
gg

0

77
X(1)

gg

∆X3

77
X(3)

gg

∆X4

77
X(4)

gg

0

77
X(4)

gg

0

77
X(4)

gg

0

77
X(4)

gg

∆X8

77
X(8)

The number of non-zero returns before and after interpolating the data is exactly the same.

Therefore, to obtain a equally space sequence of length 2m, it is enough to first interpolate

the observed prices and then keep adding the last transaction until the desired transform

size is reached. Zero-padding the input sequence of returns has no consequences on the DFT

calculation: it does not change the real and imaginary part of the output spectrum, but

only increases the density of the DFT points in the frequency domain by interpolating the

original, unpadded data. To gain a better understanding of the effect, let us consider the

simple case of extending the length of the sample by filling in zeros at the end of the last

available observation. Define a new time series of returns that consists of the original series

followed by N∗ −N zeros

x = [x1, x2, . . . , xN , 0, 0, . . . , 0].

The new DFT is then given by

yk =
N∗∑

j=1

xje
i 2π

N∗ jk =
N∑

j=1

xje
i 2π

N∗ jk, k = 1, . . . , N∗.

Respect to the previous formula, two details should be noted: the index k goes up to N∗

and 2π
N∗ < 2π

N , as N∗ > N . The last quantity is called the frequency bin of the DFT, and

refers to the spacing between two adjacent points in the frequency domain. It turns out

that, by zero padding, the output frequency spectrum now contains more data points in the

same frequency range. However, these additional points are interpolated from the unpadded

values and, therefore, no extra information is carried in respect to that already contained

in the original series. In other words, zero padding simply provides a very accurate spectral

representation of the original N -sample sequence (see the example in Appendix A.1).

2.2.4 Application

In all our application the input values xj are real numbers. The theoretical results presented

so far are still valid but the real to complex FFT performs about twice as fast as the complex
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to complex FFT, when they are both applied on the same finite sequence of data. This is

possible because the transform, when calculated with real values, satisfies the symmetry

y∗k = yN−k,

where y∗k denotes the complex conjugate2 of yk. The property exploits the periodicity of the

twiddle factor and can be easily proved. The main idea of the real to complex FFT is the

following: the input real sequence is treated as a complex array of half the length, and then

the output is cleverly rearranged to reconstruct the desired yk values. In this way, it is not

necessary to change the implementation of the algorithm to welcome real instead of complex

numbers. The idea can be expressed in more details as follows. Take the real sequence

x1, x2, . . . , xN of length N = 2m and treat it as a sequence of complex values x2j + ix2j+1 of

length N
2 , that is, N

2 elements of the input vector represent the real part of the these values,

and the remaining N
2 elements the imaginary part. Then, the linearity of the DFT implies

that

zk =

N
2∑

j=1

(x2j + ix2j+1)w
jk
N
2

=

N
2∑

j=1

x2jw
jk
N
2

+ i

N
2∑

j=1

x2j+1w
jk
N
2

, k = 1, . . . ,
N

2
.

To work these results into the transform of the original data set xj , compare the last equation

with that derived in Section 2.2.2 and given by

yk =

N
2∑

j=1

x2jw
jk
N
2

+ wk

N
2∑

j=1

x2j+1w
jk
N
2

, k = 1, . . . , N.

The similarity leads to the following efficient algebraic solution for the yk in terms of the zk

values

yk =
1

2

(
zk + z∗N

2
−k

)
+

1

2i

(
zk − z∗N

2
−k

)
wk, k = 1, . . . , N

The result is derived in Appendix A.2. It follows that there is no need to save the entire

frequency spectrum because yN
2

+1, yN
2

+2, . . . , yN can be obtained by taking the complex

conjugate of the previously computed yk’s. Hence, in the implementation process it is only

necessary to store N
2 of the output (complex) numbers . Going back to the identity between

the Fourier coefficients of price and the DFT in Eq. (2.9), it means that the FFT output

2For any complex number a + ib, the complex conjugate is given by a − ib. It has the same real part but
imaginary part of opposite sign.
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will consist in N
2 coefficients ak(X) and an equal number of coefficients bk(X). As we will

see shortly, this number correspond to the Nyquist frequency that we expect to choose when

the data are equally spaced in time.

We conclude the section showing that the coefficients ak(X) and bk(X) can be effectively

calculated by means of the FFT algorithm. To this purpose, we generate a series of prices

using the diffusion model described in Chapter 1 with a sampling interval of 1 second for a

total of n = 7200 seconds. In order to mirror the market behavior and generate an irregularly

traded series of prices, we randomly delete 20% of the transactions from the sample; the

previous tick imputation scheme is then employed to interpolate the missing data and extend

the length of the sequence to n = N + 1 = 8193, with N = 213. Finally, we calculate

the Fourier coefficients using both the standard procedure and the one based on the FFT

algorithm, we will hereafter refer to as the improved procedure. In particular,

• we apply the standard procedure to the extended series of prices (scenario A);

• we apply the improved procedure to the extended series of prices (scenario B).

The output for the first 10 coefficients is summarized in the following table.

ak(dX) bk(dX)

k A B A B

1 -4.178395 -4.178395 0.000000 0.000000

2 1.014212 1.014211 -3.347712 -3.347711

3 -2.386532 -2.386531 -4.540582 -4.540581

4 1.491427 1.491421 -2.898089 -2.898089

5 -7.557976 -7.557971 -3.706359 -3.706359

6 12.506399 12.506399 3.512145 3.512146

7 -0.803598 -0.803598 -3.857507 -3.857507

8 -2.326363 -2.326363 1.533958 1.533958

9 -0.424159 -0.424159 -6.790314 -6.790314

10 14.788901 14.788900 0.901543 0.901544

Table 2.1: Fourier coefficients of price calculated with the standard procedure (column A) as opposed to the
FFT algorithm (column B).

Although the size of the initial sequence is too small to fully appreciate the advantages of using

the fast transform in terms of computational time, it is apparent as the results corroborate

the theoretical analysis developed in the previous sections. The differences in the values are

mainly due to rounding errors linked to the floating point type variables employed in the

implementation process.
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2.3 The optimal choice of the Fourier parameters

In applying the Fourier method to study ex post volatility dynamics, one is left with the

problem of choosing the number of Fourier coefficients of price N and the number of volatility

coefficients M to include in the estimation process, and to set the level of resolution δ. Recall

that the latter two quantities appear in the Fourier-Fèjer inversion formula

σ̂2
N,M (t) = a0(σ

2) +
M∑

q=1

ϕ(δq)
[
aq(σ

2)cos(qt) + bq(σ
2)sin(qt)

]
, (2.11)

where ϕ(δq) = sin2(δq)
(δq)2

, and with the volatility coefficients aq(σ
2) and bq(σ

2) as derived in

Theorem 1.1, Chapter 1, for the case i = j. If the process is observed at regular intervals,

it is possible to define an upper limit for N . In particular, suppose that n observations are

available; then N should not be set above the Nyquist critical level (see Priestley, 1979), in

our case given by

fNyq =
1

2∆
(2.12)

where ∆ = T
n is the sampling interval, i.e. the time interval between consecutive samples.

This is the fastest frequency that can be represented when data are recorded every ∆ units

of time. If N was set to a larger value, than the spectral density of the original process that

lies outside the frequency range (−fNyq, fNyq) would be aliased, i.e. falsely translated, into

the range itself resulting in a corrupted reconstruction of the volatility trajectory. Before

proceeding with the analysis, let us consider a simple example to illustrate the problem of

aliasing from another prospective. Figure 2.1 shows that a set of five data points (the dots)

recorded every second can be delivered by sampling two sinusoids at different frequencies. In

particular, it is clear that the cosine wave with the higher frequency (black line), which exceeds

the Nyquist level, can be easily mistaken for the one with a lower frequency (gray line),

since they are observationally indistinguishable. Also note that, by increasing the frequency

even further, we would certainly find another sinusoid able to match the sample due to

the periodicity of the trigonometric functions. Therefore, under the assumption of equally

spaced data, we need to use enough Fourier coefficients of price to preserve the information

on the original process, but we cannot exceed the maximum limit given in Eq. (2.12) either,

otherwise the observed data will not adequately represent the price process itself, and so the

underlying volatility dynamics.

After a continuous process has been evenly sampled, the aliasing effect cannot be removed.

An anti-aliasing filter could be applied to the process to cut the high frequency out before

sampling but, needless to say, the solution is not suitable to our context. The good news is

that usually prices are not observed on the market at regular intervals, and this is enough

to guarantee absence of spurious frequencies in the spectrum. On the other end, a natural
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Figure 2.1: Aliasing effect: the sinusoid with a frequency larger than the Nyquist (black line) and that
one obtained with a lower frequency (gray line) are observationally indistinguishable. The dots represent the
observed and equally spaced data points.

limit for the maximum frequency is no longer available. Intuitively, we can only expect N

to also exceed the Nyquist level when some points are located much closer than the average

sampling rate, as it might be the case with irregularly spaced data. It is therefore important

to know the maximum frequency content of the original process.

To deal with the problem of choosing an adeguate value for N but also for the frequency M

and the smoothing parameter δ, we propose to employ a stochastic optimization algorithm to

simultaneously estimate the three quantities. The algorithm is presented in the next section.

2.3.1 Joint optimization with Differential Evolution

The Differential Evolution (DE) algorithm belongs to the class of genetic or evolutionary

methods that use mechanisms inspired by biological evolution, such as reproduction, mu-

tation and natural selection, to solve difficult optimization problems. First introduced by

Storn and Price (1997), DE is a population based method, in the sense that several solutions

are considered at the same time to find the global minimum of a multidimensional, nonlin-

ear and multimodal object function. Unlike other stochastic techniques that usually perturb

existing results in accordance with a random quantity to locate new points on the search

domain, DE uses weighted differences between decision space vectors to mutate elements of

a current population and then generates new offspring’s.

In the Differential Evolution algorithm, individuals are represented by d-dimensional vectors

of candidates xi with i = 0, 1, . . . , P − 1, where d is the number of parameters and P is the

population size. For each solution xi of the current population, a new offspring solution oi

is generated. The new solution ui consists of a crossed over combination between xi and
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oi where each element has a probability of π to come from oi and xi otherwise. The new

candidate solution ui therefore contains (combination of) values up to four current solutions:

xp1 ,xp2 , xp3 and xi. If one element of x has the same value in all of these parenting solutions,

then so will the offspring; if they disagree, the offspring will either inherit xi’s values, with

a low probability of (1 − π), or will be given a new value which is in the neighborhood of

the corresponding value in xp1 . Finally, if ui has lower objective value than xi, the offspring

replaces xi, otherwise solution xi survives.

The fundamental steps of the algorithm are here summarized.

1. Initialization: select an upper and lower bound for each parameter d and collect these

values into two d-dimensional vectors bl and bu. Then, each element of the candidate

parameters xi is initialized by extracting a random value within this range as follows

xi,j = uj · (bj,u − bj,l) + bj,l j = 1, . . . , d

where uj ∼ U(0, 1) is a uniformly distributed random number.

2. Mutation: recombine the population to obtain a vector of P trial values given by

oi = xp1 + F · (xp2 − xp3)

with i 6= p1 6= p2 6= p3 ∈ [0, P − 1] randomly sampled integers and F > 0 is a

real constant factor that determines the rate at which the populations evolves. This

difference based mutation operator is the distinctive feature of the DE algorithm.

3. Crossover: construct a trial vector through a crossover operation which combines

components from the current vector and from the mutant vector, according to a control

parameter π ∈ (0, 1)

vi =

{
oi if U(0, 1) < π

xi otherwise.

4. Selection: replace xi with vi if f(vi) < f(xi), for a given objective function f(x).

Once the population is initialized, the process of mutation, crossover and selection is repeated

through a finite number of generationsG until the optimum is located on the parameter space,

or another termination criteria is satisfied, e.g. the maximum number of iterations Gmax is

reached. There are three critical parameters in the heuristics: the population size P , the

crossover probability π and the scaling factor F . As a general rule, it is advisable to set P to

10 times the number of the decision variables, while there is no upper limit for F , although

effective values are seldom grater than 1.
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Depending on the programming language in used, the implementation process of the the DE

algorithm can be quite demanding as several technical details must be carefully considered.

Moreover, to adapt the algorithm to the Fourier context an additional and substantial effort

is required. To partially assist our work, we have referred to the book by Price et al. (2005),

which offers an extended description of the method with a comprehensive overview of the

aforementioned details (see Chapter 2 therein), including useful pseudo-code and sample

applications. See also Maringer and Meyer (2008) for an accurate comparison of different

evolutionary algorithms and the most recent developments in the field.

2.4 Numerical analysis

We will start with a simple example of spot volatility estimation in order to understand how

the Fourier method works. A detailed analysis of the estimation process will be developed

in the second part of the section. Consider the short interest rate model introduced by

Chan et al. (1992). This is a broad class of processes that includes the mean reverting

version of the Ornstein-Uhlenbeck process proposed by Vasicek (1977) and the one-factor

general equilibrium model developed in Cox et al. (1985). It is defined as the solution of the

following stochastic differential equation

d r(t) = β(α− r(t))dt+ ηrγ(t)dW (t). (2.13)

To simulate the process, we have used the parameters estimated in Jiang (1998) on the

3-month Treasury bill rates via an indirect inference approach and given by α̂ = 0.079,

β̂ = 0.093, γ̂ = 1.474, and η̂ = 0.794. Figure 2.2 illustrates the temporal behavior of the

diffusion coefficient σ2(t) = η̂2r2γ̂(t) on 5, 000 daily prices obtained by sampling the process

r(t). The estimate obtained with the Fourier methodology is showed to well follow the dy-

namics of the simulated path, leading to a good pointwise reconstruction of the volatility

trajectory. In particular, it is important to point out that the latter was obtained directly

from the generated interest rates values and not from the simulated diffusion process, here

used only for comparison.

2.4.1 Simulation design

From the previous simple application, it should be clear that the Fourier approach can be a

successful procedure to estimate spot volatility. However, its performance crucially depends

on the choice of the frequencies N and M , as well as of the level of resolution δ in Eq. (2.11).

In our opinion, the existing literature on the method is not very clear about the actual role

played by these quantities: it mainly follows the convention to set M equal to N and to

adjust δ to filter out the high frequency noise modes. We would like to see whether this
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Figure 2.2: Top panel: squared diffusion coefficient η̂2r2γ̂(t) as simulated by model (2.13). Bottom panel:
estimated trajectory via Fourier method (daily data).

could be a reasonable solution, or it is possible to define a less intuitive and more structured

approach instead. To this purpose, we apply the estimation methodology to a model where

both the log-price and the volatility are allowed to follow a continuous time diffusion process.

Note that in Eq. (2.13) the randomness of the volatility component is instead generated

by the state variable itself with the parameter γ measuring the degree of dependence of the

variance from the interest rate level. The new settings refer to the popular Heston model

(Heston, 1993)

dX(t) = σ(t)dW1

dσ2(t) = κ(θ − σ2(t))dt+ ησ(t)dW2,
(2.14)

where the driving Brownian motions W1 and W2 are correlated, i.e.

dW1 · dW2 = ρ dt.

The parameter κ represents the speed of reversion of the variance σ2(t) to its long-run mean

θ, while η is the volatility of volatility term. The correlation parameter is typically found to

be negative implying that an increase in volatility usually comes after a fall in prices, which

is sometimes referred to as leverage effect. A negative ρ also implies that the conditional, on

initial stock price X(t) and volatility σ(t), returns distribution is skewed to the left.
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In order to simulate data from the model, we divide the unit interval [0, 1] into m segments

of equal length ∆ = 1
m and then apply the Euler-Maruyama discretization scheme to the

Heston process (2.14), see Kloeden and Platen (1999),

X(ti) = X(ti−1) + σ(ti−1)ǫ1
√

∆

σ2(ti) = σ2(ti−1) + κ(θ − σ2(ti−1))∆ + ησ(ti−1)
(
ρǫ1 +

√
1 − ρ2ǫ2

)√
∆,

where ǫ1 and ǫ2 are i.i.d standard normal variables and ti = i∆ for i = 1, . . . ,m. In the last

equation we also make use of the Cholesky decomposition to correlate the variables.

We use the Differential Evolution method previously introduced to find an optimal value for

the frequencies N and M , and the appropriate level of resolution δ. The objective function

to be evaluated at each iteration of the algorithm is given by the root mean square error

(RMSE) defined as

RMSE =

(
1

n

n∑

k=1

[
σ2(tk) − σ̂2

N,M (tk)
]2
) 1

2

,

where σ̂2
N,M (tk) is the Fourier volatility and σ2(tk) is the simulated volatility, both estimated

at point tk. The difference in the above equation is taken point by point over the two

trajectories for a total of n points. We can also choose to set n ≡ m. It follows that

the optimal tern (N̂ , M̂ , δ̂) is the one able to deliver the minimum RMSE. Overall, the

performance of the estimator is evaluated by looking at the average of the minimum values

obtained after L replications of the optimization process over L different trajectories.

To introduce more empirical realism in our Monte Carlo study, we consider also the

case where data are contaminated by market microstructure effects. As described in

Hasbrouck (1993, 1996), a general way to model the impact of various sources of microstruc-

ture effects is to decompose the observed price into the sum of two unobservable components:

a martingale component representing the informationally efficient price process, and a sta-

tionary pricing error component expressing the discrepancy between the efficient price and

the observed one. According to Hasbrouck, the contaminated intraday log-price observed at

time ti is defined as

Y (ti) = X(ti) + η(ti), (2.15)

where η(ti) is the market noise component. We can now look at X(ti) as the price in equi-

librium, that is, the price that would be observed in absence of microstructure effects. The

divergence between the observed and the true prices can be induced by many sources, such

as the random arrivals of buy and sell orders on the market that make the price bounce

back and forth between buyers and sellers, the so-called bid-ask spread (Roll, 1984), or price

discreteness (Harris, 1990), and properties of the trading mechanism (Black, 1976). We

assume that the η’s are i.i.d Gaussian variables with parameters (0, ξ2), and that are inde-
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pendent from X. This market microstructure model, that we will call independent noise,

is usually justified by bid-ask bounce effects. In Hansen and Lunde (2006), it is consid-

ered an inaccurate description of the noise component when data are sampled at ultra-high

frequencies, that is, less than 1 minute as in our simulation study, and a noise correlated

with the price process would be a more suitable choice. However, Griffin and Oomen (2008)

show that such dependence can be triggered by the sampling scheme adopted for the anal-

ysis, i.e. calendar time against tick time, even when the actual noise process is independent

(see also Bandi and Russell, 2006a). In addition, several noteworthy studies evaluate the ef-

fects of independent noise, including Corsi et al. (2001), Curci and Corsi (2003), Zhang et al.

(2005), Zhang (2006a) and Bandi and Russell (2008). We will therefore limit our attention

to this case.

If we denote the intraday return observed at time ti as ∆Yi = Y (ti) − Y (ti−1), than we can

easily calculate

Var(∆Yi) =

∫ ti

ti−1

σ2(s)ds+ 2ξ2 and Cov(∆Yi,∆Yi−1) = −ξ2,

where the process Y (t) clearly exhibits spurious volatility and negative serial correlation.

Hence, according to this model, the observed variance is equal to the true integrated variance

plus an additional term coming from the noise component. This last term is likely to induced

a bias in the volatility estimates3. As long as the length of the return interval is sufficiently

long, i.e. one day or one week in physical time, the contribution of the microstructure noise

is negligible and so is the bias of the volatility estimation. However, when high-frequency

data are used the contribution of the additional component increases and the size of the bias

is no longer negligible. In the next section, we will see that is possible to contrast this effect

by a suitable choice of the frequency N .

In order to simulate the volatility model (2.14), we take m = 32, 768, corresponding to 215,

and normalize 1 second to be 1
m so that [0, 1] is thought to span over roughly 9 hours of

trading. In this way we can easily apply the Fast Fourier Transform to the calculation of the

price coefficients. For the parameters of the Heston model, we consider the estimation results

in Bakshi et al. (1997) and set κ = 1.15, θ = 0.04, η = 0.39, ρ = −0.64 and σ2(0) = 0.04.

To mirror the inherently non homogeneous nature of data, we assume that the intervals

between two contiguous trades, the so called durations, are exponentially distributed with

mean λ > 04. By setting λ = 1, 2, 5, 8, 10, 15, 20, 30 seconds, we generate different levels

3Mancino and Sanfelici (2008b) compute analytically the bias of the Fourier estimator for the case of
integrated volatility and under the condition of regularly sampled data.

4The Exponential distribution is also employed in the work by Barucci and Renò (2002a) where the authors
claim that the empirical distribution of the time intervals for the one-year DM-US$ exchange rate time
series, used in their application, can be approximated with an Exponential curve with λ = 14 seconds. We
have repeated a similar analysis on a different data set given by the 3-month futures contracts for the S&P
index, the JPY-USD and AUD-USD exchange rates respectively. Despite the different level of liquidity of
the three contracts, the Exponential appears to be a good approximation of the empirical distribution also
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Figure 2.3: Front and back view of the RMSE surface for a series of n = 16, 384 evenly sampled prices with
N = n

2
and a selected grid of values for the frequency M ∈ [0, 400] and the smoothing parameter δ ∈ [0.01, 1].

of trading activity, and obtain different sets {ti, X(ti), i = 1, . . . , n} of unevenly prices as a

result. In particular, if λ = 1 it means that we are taking all the second-by-second data points

in the simulated series, i.e. n ≡ m. The series are then extended back to the original length

m using the previous tick interpolation as describe in Section 2.2.3. The implementation

of the Differential Evolution algorithm requires to define an upper and lower bound for the

three parameters under study. We decide to take N,M ∈ [5, n
2 ] and δ ∈ [0.01, 1], where n

2

corresponds to the Nyquist level in the case of data sampled every second. To complete the set

up of the optimization problem, we first explore the behavior of the RMSE object function.

Figure 2.3 shows a two-side view of the RMSE surface obtained for an evenly sequence of

points over a fixed grid of values for the frequency M and scale factor δ, with N = fNyq. The

area of the local minimum is visible by the contour plot and appear to be quite smooth with

a considerable large range of possible candidates. Therefore, we decide to set the population

size to P = 35, i.e. 5 elements more than the suggested limit of 10 times the number of

parameters, and to iterate the DE algorithm Gmax = 50 times for each trajectory, for a total

of L = 500 trajectories. The trajectories are reconstructed point wise over the interval [0, 1]

with a time step of 10 seconds for a total of n = 3, 276 points. As a termination criteria,

we simply choose to reach the maximum number of generations Gmax. This is a convenient

strategy given the dynamics of the RMSE function, but it is slightly more expensive in terms

of computational time. Finally, preliminary tests confirm that π = 0.5 and F = 0.7 are

reasonable choices for the cross probability and the scaling factor respectively.

in our case. However, we believe that the Autoregressive Conditional Duration (ACD) model proposed by
Engle and Russell (1998) would be a better choice but it is here left as a future development.
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λ fNyq(λ) N̂ M̂ δ̂ RMSE N̂/fNyq

1 16384 16359 498 0.038 0.00377 0.9985
[16060, 16658] [362, 434] [0.036, 0.040]

2 8192 6963 323 0.066 0.00426 0.8500
[6772, 7154] [292, 353] [0.062, 0.071]

5 3277 2594 255 0.073 0.00534 0.7916
[2484, 2704] [227, 282] [0.068, 0.078]

8 2048 1598 214 0.091 0.00612 0.7802
[1530, 1666] [187, 241] [0.085, 0.097]

10 1638 1273 209 0.109 0.00691 0.7769
[1213, 1332] [183, 234] [0.102, 0.116]

15 1092 792 203 0.121 0.00781 0.7250
[747, 837] [178, 230] [0.112, 0.130]

20 819 601 190 0.152 0.00874 0.7331
[564, 638] [166, 214] [0.142, 0.162]

30 546 403 179 0.187 0.00952 0.7387
[383, 423] [156, 202] [0.175, 0.199]

Table 2.2: Summary results for the optimization procedure via Differential Evolution with uncontaminated
prices. The 95% confidence intervals for the Fourier parameter N, M and δ are shown in brackets.

2.4.2 Simulation results

We first consider the case of uncontaminated prices. The results are presented in Table 2.2.

In general, we note that the optimal values for the two frequencies N and M are inversely

related to the size of the time interval between consecutive prices, while an opposite behavior

characterized the resolution parameter δ. Let us first analyze the frequency N . The second

column in the table corresponds to the Nyquist levels that we would obtain if we generate

regularly spaced series of prices with a uniform sampling interval λ, and are calculated as

fNyq(λ) = 32,768
2·λ . These numbers are clearly higher than the maximum frequencies N̂ selected

by the optimization method, an aspect that can be explained by taking a closer look at the

effect of the induced inhomogeneity in the data. With uneven sampling, clusters of adjacent

prices are opposed to observations that may fall well apart from each other, and while in

the former case a sampling frequency around the Nyquist critical level would be appropriate,

the distant points would instead require a much lower number of weaves harmonics to be

detected, i.e. a lower frequency. Although the following might be related to the arrival times

dynamics imposed by the Exponential generator, when we plot the sets of values for fNyq(λ)

and N̂ , other features become apparent, see Figure 2.4. We first note that the curves get

closer and seem to converge for durations on average larger than 15 seconds.

Table 2.2 also shows the frequency ratios defined as N̂/fNyq and, indeed, the values decrease

consistently for λ ≤ 15 to revert the tendency and increase at a much lower rate afterwards.

In addition, if we take the associated optimal frequencies N̂ and compute the corresponding

time step as λ̂ = 32,768

2·N̂ , we obtain
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Figure 2.4: Theoretical Nyquist levels fNyq(λ) (circles) and estimated values N̂ (stars) behavior.

λ 1.00 2.00 5.00 8.00 10.00 15.00 20.00 30.00

λ̂ 1.00 2.35 6.32 10.25 12.87 20.69 27.28 40.61

We can then conclude that for sampling rates below or, equivalently, for time steps above a

certain level, the Fourier method becomes more vulnerable to the absence of information in the

sample at the point that it cannot distinguish between the homogeneous and inhomogeneous

scenario due to the significant contribution of periods with no trading activity in both cases.

As far as the frequency M is concerned, from the results in Table 2.2 we first note that

its estimated values are always well under those obtained for N , which is in contrast with

the intuition in Renò (2008), then adopted in Ogawa and Sanfelici (2008), to set M to the

maximum possible value, i.e. M = N − 1, and then randomly adjust δ to refine the volatility

reconstruction. Note that taking M = N − 1 volatility coefficients would also increase

the computational effort necessary to complete the point-by-point estimation process. In

addition, the aq(σ
2) and bq(σ

2) terms are measured with a precision that deteriorates with

q, since the calculation exploits N − q coefficients of price (see Chapter 1, Section 1.3.1).

Therefore, we can expect the optimal values for M to be smaller than those for N , in terms of

minimum RMSE. More in general, having to work with samples of finite size, the performance

of the Fourier estimator will always be affected by two error sources: one related to the

approximation of the ak(dX) and bk(dX) coefficients, as derived at the beginning of the

chapter, and the other due to the presence of the limits N,M → ∞ in the price and volatility

coefficient formulas. However, our optimization study reveals that both N and M can not be

set arbitrarily high in the attempt to minimize the error but, instead, they have to be properly

chosen to account for the different degrees of information provided by the data. It is at this

stage that the contribution of the modified Lanczos sigma factor ϕ(δq) in Eq. 2.11 becomes

apparent. In the applications, the most convenient truncated Fourier series would be the one
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Figure 2.5: The modified Lanczos sigma factor ϕ(x) at different values of the smoothing parameter δ.

with coefficients that decrease rapidly. In this case, the first few terms of the series would

suffice to give a faithful representation of the true function, since the sum of all the remaining

terms would be small. Hence, the faster the coefficients decrease, the fewer terms of the

series are needed to guarantee an appropriate degree of accuracy. This is the idea behind the

Lanczos factor: it is a smoothing procedure that attenuates the oscillations associated with

the higher modes in the trigonometric approximant. Its behavior is graphically represented

in Figure 2.5 where we can see that the function barely oscillates after a certain level of the

frequency M . Moreover, this cut-off level becomes smaller as the value of δ is increased.

In this way, it is possible to shape the partial Fourier series more gradually rather than

truncating it abruptly. We can also easily infer that the optimal values for the driving

parameter δ and frequency M are tightly connected and that the former affects the level

of the latter. Consistently to our intuition, Table 2.2 shows that increasing values of the

parameter δ have been selected by the optimization algorithm: the more the data are sparsely

sampled, the higher is the degree of smoothing necessary to compensate for the consequent

lack of precision.

The jointly effect of the three parameters on the estimated trajectories is illustrated in

Figure 2.6 where the quality of the reconstruction is clearly altered by durations on average

larger than 15 seconds. Also note as progressively higher values of δ results into a smoother

but biased trajectory. However, the obtained reconstructions are still able to follow the lead-

ing dynamics of the original volatility process in Eq. (2.14) with a good representation of

both the abrupt changes and the more regular sections in the volatility path. We emphasize

that the time evolution of the volatility process in the figures was recovered by applying the

Fourier methodology directly to the simulated prices X(ti) without making any assumption

on the volatility process itself. Since the algorithm perform badly at the boundaries due to
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Figure 2.6: Fourier spot volatility estimation with unevenly sampled data.
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Low noise High noise

λ N̂ M̂ δ̂ RMSE N̂ M̂ δ̂ RMSE

1 1223 358 0.055 0.00493 216 139 0.142 0.01105
[1201, 1245] [324, 392] [0.052, 0.058] [199, 233] [115, 163] [0.137, 0.147]

2 945 231 0.072 0.00686 113 90 0.153 0.01221
[919, 971] [204, 257] [0.067, 0.077] [104, 122] [68, 112] [0.146, 0.160]

5 768 181 0.091 0.00728 81 70 0.162 0.01356
[736, 801] [157, 205] [0.085, 0.097] [73, 87] [50, 90] [0.153, 0.171]

8 628 178 0.107 0.00768 66 69 0.180 0.01407
[602, 655] [155, 201] [0.100, 0.114] [61, 71] [50, 88] [0.171, 0.189]

10 577 172 0.123 0.00809 61 67 0.191 0.01638
[549, 604] [149, 194] [0.115, 0.131] [57, 65] [48, 86] [0.182, 0.200]

15 505 161 0.151 0.00886 53 63 0.225 0.01707
[476, 534] [140, 183] [0.143, 0.162] [49, 57] [45, 81] [0.213, 0.237]

20 420 153 0.172 0.00957 44 59 0.251 0.01974
[394, 446] [132, 173] [0.161, 0.183] [41, 47] [42, 76] [0.238, 0.264]

30 379 142 0.203 0.01201 40 55 0.283 0.02257
[360, 398] [122, 162] [0.190, 0.216] [37, 43] [38, 72] [0.268, 0.298]

Table 2.3: Summary results of the optimization procedure via Differential Evolution with prices affected by
Gaussian microstructure noise with standard deviation ξ = 0.00005 (Low noise) and ξ = 0.0119 (High noise)
respectively. The 95% confidence intervals for the Fourier parameter N, M and δ are shown in brackets.

the well-known diffraction phenomena of Fourier series (see Malliavin and Thalmaier, 2005),

we have excluded 2% of the outocomes from the final representation.

The effect of market noise

We will now analyze the impact of the market microstructure noise on the optimum val-

ues for the three parameters. To this purpose, we first set the standard deviation of the

independent noise to ξ = 0.00005 (Low noise), and then consider a more realistic level

given by ξ = 0.0119 (High noise). The latter is derived in the unpublished appendix of

Bandi and Russell (2008) using IBM equity returns; values of similar magnitude are also

obtained in Hansen and Lunde (2006). We report the results of the optimization procedure

in Table 2.3. It is immediate to note that the number of price coefficients N is now much

smaller than in the case of uncontaminated prices, especially when the microstructure noise

corresponds to the value calibrated with market data. This aspect was already uncovered in

Barucci and Renò (2002a), and then employed in the work by Mancino and Sanfelici (2008b).

Both papers deal with the estimate of the integrated volatility using the Fourier method.

Therefore, our findings corroborate those in Barrucci and Renò and confirmed that they re-

main valid also when the estimation process is extended to the point wise reconstruction of

the entire volatility trajectory.

The value of N remains small to undo the microstructure effects and guarantee a reliable

computation of the Fourier coefficients also at high frequencies. This becomes clear when we

plot the first volatility coefficient a0(σ
2), given by the sum of the squared price coefficients

ak(dX) and bk(dX) (see Eq. (1.15) in Chapter 1), while letting the number of its components
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Figure 2.7: First volatility coefficient a0(σ
2) as a function of the frequency N . The x-axis is represented in

logarithmic scale.

N varying over the interval [0, n
2 ]. The result is illustrated in Figure 2.7. The plotted curve

can be interpreted as the mean of the power spectrum of the price process X(t) over a fixed

range of frequencies. It is similar in spirit to a signature plot, where the average realized

volatility (see Chapter 1) is displayed as a function of the sampling interval5. Indeed, by

integrating Eq. (2.11), we can easily obtained that

∫ T

0
σ2(t)dt = a0(σ

2).

If dX(t) was normally distributed, as in a model like (2.14), the spectrum would be flat and

would converge to a0(σ
2). Instead, the plot clearly shows that the curve sharply increases

starting from a certain value of N as a consequence of the negative serial correlation induced

by the noise on the returns. Therefore, it is in principle possible to make the Fourier estimator

invariant to market noise by choosing a suitable number of coefficients6 to include in the

estimation such that N << n
2 . From this point of view N becomes the moderate sampling

frequency that satisfies the trade-off between the bias induced by the noise and the precision of

the estimate. For instance, the optimal valueN = 1223 in Table 2.3 corresponds to a sampling

rate of 32,768
2·N ·60 = 1.23 minutes, which means that only the long-run dynamics contained in

the data are retained in the volatility computation, while those related to a shorter time

horizon are excluded to eliminate, or at least reduce, the effect of microstructure noise. In

their paper on the Fourier-based estimation of integrated volatility, Mancino and Sanfelici

5Signature plots first appeared in an unpublished thesis by Fang (1996) but were named and made popular
by Andersen et al. (2000).

6Whilst exploring the behavior of the power spectrum to choose N may represent just a ‘visual’ solution
to the problem, we believe it remains a reasonable method, easily implementable and particularly welcome in
practice.
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(2008b) claim that the estimator does not need any bias correction in order to be robust

to some kind of market noise if N is appropriately chosen. They also emphasize that this

peculiarity of the method relies on the use of all the available data by integration and on the

convolution product is based on, which let to incorporate not only the squared increments

but also the autocovariances of all orders along the time window. The existing literature in

the field includes important examples of biased-corrected integrated volatility estimators that

utilize autocovariances to compensate for the presence of microstructure, see Zhou (1996),

Hansen and Lunde (2006) and Barndorff-Nielsen et al. (2008). However, this seems to be

a valid conclusion only when prices are slightly contaminated by noise, as in the work by

Mancino and Sanfelici (2008b). We will provide further insight on this point in Chapter 4.

Moving back to the point estimation problem, we can see from Figure 2.8 that the correction

terms embedded into the Fourier algorithm allows for a good reconstruction of the volatility

trajectories when they are combined with a smaller number of coefficients as showed in Table

2.3 (Low noise). The RMSE is now just above that in the case of uncontaminated prices,

and so is the smoothing parameter δ. With an increased level of microstructure noise, it is

apparent from Figure 2.9 that the estimator becomes less accurate in recovering the volatility

path, even when the data are sparsely sampled with a moderate average duration of λ ≤ 5

. The results in Table 2.3 (High noise) clearly highlight the effort required in the estimation

process: N is optimally set to a very low value in order to account for the distortion induced

by the noise, while the delivered RMSE is almost as twice as the error measured in the

previous case. In the attempt to explain such behavior, we first note how the quality of the

reconstruction seems to be, in general, highly influenced by the level of the parameter N . As

already stated in our first experiment, the Fourier coefficients of price convey the information

on the underlying volatility process contained in the data into the estimated points along the

trajectory. Moreover, the error related to the limit N → ∞ in the calculation formulas is

further increased by the smaller N . Therefore, the recovered process would follow the original

path dynamics with different degrees of accuracy, depending on how we choose N . Due to the

microstructure effects, we are forced to limit the contribution of the price coefficients and the

result is clearly a less effective estimation procedure. As we have seen above, this is equivalent

to sampling the data at a frequency that is lower than the actual frequency rate at which the

data itself arrives on the market, therefore, foregoing details about the original process. In

addition, we let the distance between consecutive prices to increase through λ, but sampling

over a coarser grid can only imply a larger discretization error. From the right-hand side

values in Table 2.3 we also observe that the frequency M initially remains lower than N and

then inverts its tendency, in particular, starting from λ = 8. We assume that the estimator

is attempting to compensate for the lack of precision triggered by N by adding additional

volatility coefficients, although setting M = N does not produce any substantial change in

the final reconstruction.
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Figure 2.8: Fourier spot volatility estimation with unevenly sampled data and low microstructure noise.



2.4. Numerical analysis 46

0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

V
o

la
ti
lit

y

 

 
original

λ = 2

0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

V
o

la
ti
lit

y

 

 
original

λ = 8

0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

V
o

la
ti
lit

y

 

 
original

λ = 15

0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

0.05

0.06

Time

V
o

la
ti
lit

y

 

 
original

λ = 20

Figure 2.9: Fourier spot volatility estimation with unevenly sampled data and high microstructure noise.
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2.5 Empirical application

The purpose of this study is to use market data to verify the goodness of the Fourier volatility

estimates within a more realistic context. Obviously, in empirical analysis the true volatility

is not observable, hence no direct evaluation criteria of the quality of the volatility estimators

exist. However, general indirect methods can be employed. We start by making the usual

assumption that the log-price X(t) follows a standard continuous time stochastic volatility

diffusion process without drift, i.e. dX(t) = σ(t)dW (t). It follows that the univariate series

of price returns can be naturally decomposed as r(t) = σ(t)z(t) for each t ∈ [0, T ], where

z(t) are i.i.d. standard Normal variables. By rearranging this decomposition, we obtain the

σ-standardized return

z(t) =
r(t)

σ(t)
. (2.16)

If the Fourier volatility estimator was an adequate measure for σ(t), then under the above

assumption the distribution and dependence structure of this quantity should be Gaussian.

Using a set of high-frequency transactions for the S&P 500 stock index futures, we now show

that the actual empirical distribution is in fact consistent with this theoretical prediction,

indicating that the Fourier estimator is a reliable spot volatility measure.

Our dataset is composed of 251 trading days from 4th January 1999 to 30th December 1999.

We restrict our attention to contracts closer to maturity and we take prices between 8 : 30 a.m.

to 3 : 15 p.m. every day for a total of 704, 406 observations. The resulting tick-by-tick series

is very liquid with transactions occurring on average every 7 seconds, and an average of 3, 054

prices every day. By means of signature plots, we first set the number of price coefficients to

N = 150, and then we choose M = 100 and δ = 0.15 according to our simulation study. We

obtain a volatility trajectory estimated at each observed tick time in order to calculate the

above standardized returns. To verify our results, we first plot the returns in a histogram as

showed in Figure 2.10 (left panel), and note that the characteristic symmetric bell-shape pat-

tern is clearly detected. We add to the plot a standard normal distribution curve as a further

evidence obtaining a good fit. The diagnostic statistics in Table 2.5 also confirm our first im-

pression: following the Jarque-Bera test the distribution is Gaussian, with only slightly fatter

tails. This feature is also well represented in the Q-Q plot in Figure 2.10 (right panel), which

indeed deviates from the linear trend at the margins. The presence of jumps in the observed

price returns is likely to result in fat-tailed distributions. It is well recognized in literature

that volatility jumps and market price jumps occur in most cases at the same time and exhibit

negative dependence, i.e. a large negative price movement is usually followed by a positive

jump in volatility (see, for instance, the recent paper by Todorov and Tauchen, 2010). Al-

though the Fourier estimator does not allow to separate the diffusion part from the jump

component in the volatility estimation process, our intuition suggests that at each point of
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Mean 0.033

Median 0.019

Maximum 3.671

Minimum -3.173

Std. Dev. 1.122

Skewness 0.016

Kurtosis 3.306

Jarque-Bera 1.788

JB p-value 0.409

Table 2.4: Descriptive statistics for the σ-standardized returns

−4 −3 −2 −1 0 1 2 3 4

0.05

0.15

0.25

0.35

0.45

x

P
ro

b
a
b
il
it
y

µ = 0.033

σ = 1.122

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

S&P Return Quantile

T
h
e
o
re

ti
c
a
l 
N

o
rm

a
l 
Q

u
a
n
ti
le

Figure 2.10: Left panel: histogram of the σ-standardized returns in Eq. 2.16 and added standard normal
distribution. Right panel: relative qq-plot. The spot volatility is estimated via Fourier method as applied to
a series of high-frequency transactions for the S&P 500 stock index futures.

discontinuity it calculates the average of the variance values corresponding to the left and

right-hand sides of the point. This would mean that it does not overestimate the volatility

at that point. Therefore, we can conclude that the Fourier method is able to deliver reliable

estimates of the spot volatility process, and the excess kurtosis can be mainly explained by

the presence of large price variations in the returns employed in Eq. (2.16)7.

7In Chapter 4 we will use the same set of market data in a different empirical application and show that
this is indeed the case.
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2.6 An analysis of the East Asian Crisis period

Comforted by the results in the previous section, we now extend the empirical application

to include a larger set of high-frequency data. In particular, we consider time series for two

currency futures, the Australian dollar and the Japanese yen (both in terms of the US dollar),

and for the S&P 500 index future, all observed tick-by-tick from April to December 1997.

This time window includes the first phase of the East Asian Crisis, which slowly started in

July of that year. The currency futures were chosen because of the geographical proximity

of these countries to the center of the crisis and the index future because of the role of the

underlying index as leading indicator of the US stock market performance. The objective is

to test the Fourier estimator amid a period of financial turmoil, where large price movements

triggered by a market crash are usually followed by a sudden increase in the volatility, as

previously stated. We expect the estimator to be able to clearly link changes in market

volatility to well defined periods.

The futures on the S&P 500 is the most liquid contract in our dataset with 567, 465 tick

prices, occurring on average every 8 seconds, followed by the JPY-USD and the AUD-USD

series with 206, 360 and 19, 027 available quotes. The average durations for the last two

contracts are equal to 28 seconds and almost 4 minutes respectively. The Australian market

is therefore characterized by the smaller turnover of transactions. A closer look to the AUD-

USD prices also reveals that long periods of no trading activity alternate with hours of liquid

trading. This suggests to break down the series in order to gain a better control of the

Fourier settings. Indeed, if a small value for the leading frequency N would accommodate

the most active intervals to account for the microstructure noise, a higher value would be

more appropriate for the other case, when the noise should instead be negligible8. After

a careful inspections of the sample, we apply the estimator independently to the following

periods: April-May, June, July-August, September, October and November-December, using

Tables 2.2 and 2.3 as benchmarks to set the three parameters. For the other contracts, we

resort to signature plots to roughly estimate N and then look at Table 2.3 to lead the choice

of the remaining quantities. The results are the sets {N,M, δ} = {1200, 1100, 0.18} for the

S&P 500, and {300, 400, 0.25} for the JPY-USD currency futures, considering the more realist

case of high market noise.

We first represent the times series in Figure 2.11 together with their relative logarithmic

returns. The effect of the Hong Kong stock market crash, also known as “mini-crash”,

caused by the Asian crisis on October 27 is evident and translates into a clear price drop for

both the AUD-USD and the S&P 500 index futures. On the other side, by looking at the

graphs for the JPY-USD contract, it appears that the Asian events did not have a remarkable

8Bandi and Russell (2008) show that market data recorded at a frequency above 2 minutes are only slightly
affected by microstructure noise.
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Figure 2.11: Left panel: series of tic-by-tick prices for Australian dollar and the Japanese yen currency
futures and the S&P 500 index future. Right panel: relative logarithmic returns.

effect on the Japanese market. In Figure 2.12 we plot the volatility estimates for the three

contracts in hand over the period under consideration. We observe that the volatilities of

the AUD-USD and the S&P 500 futures follow each other rather closely between July and

November 1997 and in particular around the mini-crash of October 27. A peak on May 21,

following Thailand announced (on May 15) of wide-ranging capital controls, is detected on the

AUD-USD futures but not on the other two contracts. The JPY-USD futures also presents

a spike on October 27, but not a persistently high volatility after the event. The volatility of

the JPY-USD is highest during the end of May and mid June 1997, before the crisis properly

started, and cluster of high volatility are also detected around June 10. A second period

of increased volatility is observed from August to September 1997. The Japanese economy

was only marginally affected by the 1997 turmoil (Dungey et al., 2003, 2004). Milton (1999)

argued that the severe period of recession and stagnation Japan was going through actually

predated and transcended the Asian crisis. Ellis and Lewis (2001), by analyzing daily market-

close data for stock prices, bond futures prices and exchange rates, found that developments in

the US market generally had a much greater influence on price movements and volatility than

cross-market shocks originating in the Asian crisis economies. They also provide evidence

that stock markets reacted to the developments in Asia after the United States did, instead

of responding directly to the news itself. Volatility of both the Australian dollar and the

New Zealand dollar exchange rates against the US dollar increased remarkably during the

Asian crisis, building towards the end of the period, and remained high into the world crisis
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Figure 2.12: Fourier spot volatility estimation of the S&P 500 index futures (top panel), the AUD-USD
(middle panel) and JPY-USD currency (bottom panel) currency futures over the period Apr-Dec 1997.
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period. Our results seem to strengthen the analysis of Ellis and Lewis and show that the

volatility of the AUD-USD futures follows closely the volatility of the S&P 500 index futures.

This conclusion is well supported by the clear, large spike in the volatility trajectory of the

Australian futures which occurs soon after a similar level of volatility is detected for the

futures on the index.

2.7 Summary

We have thoroughly studied the Fourier estimator proposed by Malliavin and Mancino (2002)

and provided strong evidence that the method is able to recover the temporal dynamics of a

latent volatility process, also when the input series of data are not sampled at regular intervals,

as it is usually the case with high-frequency transactions. We have showed in details how

to use the Fast Fourier Transform in the implementation process, obtaining a significant

improvement of the numerical performance of the estimator. An important part of this

chapter is devoted to the analysis of three crucial quantities in the estimation process, namely,

the number of price and volatility coefficients, and the resolution parameters, the first being

the most influential. The problem of choosing an optimal value for these quantities is tackled

through the Differential Evolution algorithm. The principal limitation of this approach is

that it cannot be applied to real market data, unless an analytical formula for the mean

square error of the Fourier estimator is previously obtained. An alternative objective function

would work equally well. Nonetheless, the optimization procedure allowed us to highlight the

separate contribution of the three variables under reasonable market conditions. It was of

particular interest realize that the quality of the reconstructed trajectories strongly depends

upon the number of added Fourier price coefficients, which also can be seen as the dominating

frequency in the volatility spectrum. The role of this frequency is also determinant in the case

of contaminated prices as it helps to control the bias induced by the microstructure noise.

However, when a higher level of noise is considered, a further drop in the frequency level also

generates a larger approximation error (related to the coefficients formula), penalizing the

accuracy of the estimator. The effect is further exacerbated when the degree of inhomogeneity

in the data is also increased. Empirical evidence is provided by using an indirect criterion to

asses the quality of the Fourier volatility estimates. The method is showed capable to measure

the adequacy of the commonly used continuous time model for the observed asset prices. We

have then applied the estimator to market futures time series, observed at different trading

frequencies and spanning the period over the East Asian crisis. Our results are coherent with

the exiting literature. We have found that the Australian economy was not impacted by

the Asian events directly but its reaction was rather driven by the developments in the US

market. Also, we have observed that the Asian turmoil did not have a noticeable effect on

the Japanese market.



CHAPTER 3

Correlation analysis

According to Markowitz (1959), the asset selection process should focus on identifying stocks

that eliminate firm-specific risks while isolating the impact of market-risk on the overall re-

turn of the portfolio. Such analyses are important to avoid naive diversification and dealing

with idiosyncratic risk. Thus, a well-diversified portfolio is not simply a collection of good

dissimilar assets, but a collection of assets that minimize the total risk of the portfolio it-

self. In terms of risk reduction, market co-movements between stocks become crucial. It is

common practice to measure such movements by means of the popular Pearson correlation

coefficient. However, two major effects may invalidate the reliability of this estimator: the

statistical uncertainty triggered by the finite length of the sample; the asynchronous nature

of the time series of prices under analysis. It is therefore important to compare different

correlation measures. In this chapter, we examine the performance of the Pearson coeffi-

cient against the Fourier estimator, here applied to a large set of stocks for the first time.

In particular, we evaluate the performance of the two methods by means of the Kullback-

Leibler divergence, a dissimilarity measure between two completely determined probability

distributions. The analysis is then extended to include the correlation estimator proposed

by Hayashi and Yoshida (2005), which is showed to be highly competitive in absence of mi-

crostructure noise. However, differently from the other methods, this procedure does not

guarantee the positive definiteness of the output correlation matrix, therefore invalidating

the use of the Kullback-Leibler distance. We handle this problem by means of the shrinkage

technique developed in Ledoit and Wolf (2004b). Finally, in a pioneering study, we apply the

Fourier measure to recover the time-varying and stochastic dynamics of a correlation process,

and also unveil further aspects of the estimation procedure.

53



3.1. The Pearson coefficient 54

3.1 The Pearson coefficient

The Pearson coefficient measures the tendency of two random processes to move together.

Differently from the Fourier method, it can only be applied to synchronous data and, there-

fore, it is usually necessary to first synchronize the tick prices on a common grid using the

interpolation methods presented in Section 2.2.3. Suppose now that X(ti) and Y (ti) are

the observed prices of two financial assets X(t) and Y (t). Let ∆Xi = X(ti) − X(ti−1) and

∆Yi = Y (ti)− Y (ti−1) the logarithmic returns sampled at regular intervals 1
n , where n is the

sample size. Then the Pearson correlation coefficient is defined as

ρP
ij =

∑n
i=1

(
∆Xi −

∑n
i=1 ∆Xi

)(
∆Yi −

∑n
i=1 ∆Yi

)
√∑n

i=1

(
∆Xi −

∑n
i=1 ∆Xi

)2∑n
i=1

(
∆Yi −

∑n
i=1 ∆Yi

)2 (3.1)

The values of the coefficient range in the interval [−1, 1]. Preliminary to the analysis devel-

oped in this chapter, we recall that the Pearson correlation matrix relative to a system of p

assets is always positive definite, i.e. has no negative eigenvalues.

3.2 Modelling integrated correlation via Fourier method

We first recall that the Fourier method is based on the assumption that the logarithmic prices

X(t) = (X1(t), . . . , Xp(t)) are Brownian semimartingales satisfying the stochastic differential

equations

dXi(t) = σi(t)dWi(t), i = 1, . . . , p

where σi is the instantaneous volatility of asset i. We assume to work with correlated Brow-

nian motions, i.e. d[Wi,Wj ]t = ρij dt, for i, j = 1, . . . , p. It follows that the elements of the

volatility matrix Σ(t) are given by Σij(t) = ρijσi(t)σj(t). This is a time-dependent covari-

ance matrix evolving according to the dynamics of the volatilities and the constant correlation

among asset returns. In Section 3.7 we will allow the correlation to be stochastic. We have

already seen that a consistent estimator of Σij(t) is given by

Σ̂ij
N,M (t) ≈ a0(Σij) +

M∑

q=1

ϕ(δq) [aq(Σij)cos(qt) + bq(Σij)sin(qt)] t ∈ [0, 2π]. (3.2)

Using this inversion formula, it is easy to show that an estimate of the integrated covariance

is given by ∫ 2π

0
Σ̂ij

N,M (t)dt = 2πa0(Σij),

where

a0(Σij) ≈
π

N + 1 − n0

N∑

k=n0

1

2

[
ak(dXi)ak(dXj) + bk(dXi)bk(dXj)

]
, (3.3)
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which implies that

ρF
ij =

a0(Σij)√
a0(Σii)a0(Σjj)

. (3.4)

Therefore, the calculation of the integrated correlation is only affected by the choice of the

convenient frequency N at which to stop the expansion (3.3). We will see in Section 3.5

that the role played by this frequency is again determinant in driving the accuracy of the

estimates. This would be particularly evident when we extend our analysis to consider the

case of non-synchronous data.

3.3 The Kullback Leibler divergence

In probability and in information theory the Kullback-Leibler divergence

(Kullback and Leibler, 1951), also known as relative entropy, is a dissimilarity mea-

sure between two probability distributions, the true distribution Q1 and a target distribution

Q2. It is defined as
K(Q1, Q2) = EQ1

[
ln

(
Q1

Q2

)]
,

where EQ1 [·] indicates the expected value with respect to the distribution Q1. The relative

entropy has the property to be always non negative and equals zero when the two distribu-

tions are equivalent. However, it is clearly not symmetric and does not satisfy the triangle

property either; therefore, it cannot be considered as a proper distance, hence the term

‘divergence’ to characterized it (in common practice the two terms are nonetheless used in-

terchangeably). The smaller the entropy, the more similar are the distributions of the two

variables. This motivate the use of the divergence to measure, for instance, the error one

commits in considering two random variables X and Y as uncorrelated variables by evaluat-

ing K[q(X,Y ), q(X)q(Y )], where q(X,Y ) is the joint probability density function while q(X)

and q(Y ) are the corresponding marginal distributions.

In what follow, we will mainly consider the Kullback-Leibler divergence between multivariate

Gaussian distributions. We will refer to the probability density function (pdf) of such distri-

bution as η(Ψ, X), where Ψ is the correlation matrix of the system X. Given two different

multivariate Gaussian distributions η(Ψ1, X) and η(Ψ2, X), Tumminello et al. (2007b) show

that

K[η(Ψ1, X), η(Ψ2, X)] = Eη(Ψ1,X)

[
ln

(
η(Ψ1, X)

η(Ψ2, X)

)]

=

∫
η(Ψ1, X)ln

(
η(Ψ1, X)

η(Ψ2, X)

)
dX

=
1

2

[
ln

( |Ψ2|
|Ψ1|

)
+ tr(Ψ−1

2 Ψ1) − p

]
, (3.5)
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where | · | indicates the determinant of Ψ.

From the last equation it is apparent as the Kullback-Leibler divergence is an explicit function

of the correlation matrices Ψ1 and Ψ2, and we can then simplify the notation by referring to

the entropy as to K(Ψ1,Ψ2). Note that, differently from a typical distance measure such as

the Frobenius distance, the divergence (3.5) can be calculated only if Ψ1 and Ψ2 are positive

definite.

In the next section we will largely use the expectations of the Kullback-Liebler divergence as

an absolute term of comparison in our correlation analysis. We present here the theoretical

results as derived in Tumminello et al. (2007b) by exploiting the theory of Wishart matrices

E[K(Ψ, R1)] =
1

2


p ln

(
2

n

)
+

n∑

j=n−p+1

Γ′( j
2)

Γ( j
2)

+
p(p+ 1)

n− p− 1


 (3.6)

E[K(R1,Ψ)] =
1

2


p ln

(n
2

)
+

n∑

j=n−p+1

Γ′( j
2)

Γ( j
2)


 (3.7)

E[K(R1, R2)] =
1

2

p(p+ 1)

n− p− 1
, (3.8)

where R1 and R2 are two sample correlation matrix obtained from two independent realiza-

tions of the system, and Γ′ is the derivative of the Gamma function Γ. With asynchronous

data, the effective length of the series differs from stock to stock and it is necessary to modify

the expected values of the Kullback-Leibler distance accordingly. In particular, for two time

series of length n1 and n2 the last equation becomes

E[K(R1, R2)] =
1

2

[
p ln

(
n1

n2

)
+

n2∑

j=n2−p+1

ϕ

(
j

2

)
−

n1∑

j=n1−p+1

ϕ

(
j

2

)
+

p(p+ 1)

n2 − p− 1

]
, (3.9)

where ϕ(z) = Γ′(z)/Γ(z) is the first-order Polygamma function. Note that the formula in

Eq. (3.5) is independent of T and there is no need to modify it accordingly.

The asymmetry of the distance turns out to be very useful when it is necessary to distinguish

between quantities assumed to be ‘true’, such as the correlation matrix in a real system, and

quantities that are estimated empirically. It is also apparent that all the expectation values

are independent of the specific model because Ψ does not appear in any of the above formulas.

This peculiar aspect has two important implications: (i) the expected value of the Kullback-

Leibler divergence can be calculated also in the common case where the underlying system

model is unknown; (ii) the relative entropy is a valid approach to measure the statistical

uncertainty of the correlation matrix due to the finite length of the data sample.
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3.4 Simulation design

The comparative analysis presented in the next section is based on a large number of simulated

high-frequency series of prices. To introduce more empirical realism in the data, we first

apply a clustering technique to extract useful information from a set of 100 highly capitalized

equity stocks traded on the New York Stock Exchange, following the intuition that financial

assets within a specific market sector tend to move broadly together. This allows to identify

the hierarchical structure of an initial correlation matrix, that is then used to establish

interdependencies among the underlying-driving processes of the simulated assets1. The

above structure is described in terms of a factor model. The next section formalize the whole

idea in details.

3.4.1 A hierarchically nested factor model

Consistently with the assumption that certain economic factors play the role of determinants

in affecting the price returns of a broad portfolio of traded stocks (Ross, 1976), we can look

at financial markets as complex systems organized in a nested hierarchical structure: the

elements of the system can be partitioned in clusters which in turn can be partitioned in

subclusters and so on, up to a certain level (Mantegna, 1999). The shared information within

each cluster can be evaluated in terms of a similarity measure, usually given by the correlation

between elements within the cluster. Therefore, a correlation matrix R of a multivariate

complex system can be used to extract information about the hierarchical organization of the

system itself. As a result of the clustering procedure, a hierarchical tree, or dendrogram,

is associated with the matrix providing a graphic representation of the hierarchies. An

illustrative example is given in Figure 3.1. A dendrogram is a rooted tree where a special

node, the root, is singled out respect to the remaining leaves and internal nodes of the tree.

In our example, this node is labeled by α1. An ordered set of internal nodes called genealogy

G(i) (G(αh)) is connecting the leaf i (internal node αh) to the root α1. For instance, by

looking at the graph, we note that the genealogy of leaf 8 is G(8) = {α4, α3, α1}, and that

of node α8 is G(α8) = {α8, α5, α4, α3, α1}, where the internal node α8 is included in G(α8).

Depending on the clustering algorithm in use, the output dendrogram can be slightly different

as different aspects of the sample correlation matrix are highlighted by the method. A large

number of hierarchical clustering procedures can be found in the literature. Here we will

use the Average Linkage Cluster Analysis where clusters that exhibits high level of similarity

within the cluster are merged together by taking the average of the correlation coefficients

1It is interesting to observe that the relevance of economic sectors and subsectors in the correlation structure
is shown to depend on the sampling time horizon of the stock returns as well. Specifically, the system turns out
to be more hierarchically structured at daily time horizon confirming that the market needs a finite amount
of time to assess the correct degree of cross correlation between pairs of stocks.
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Figure 3.1: Example of dendrogram related to a system of p = 10 elements (leaves in the tree), where
{α1, . . . , α9} represent the p − 1 = 9 internal nodes.

between all pairs of elements in the clusters (Anderberg, 1973). In general, starting from a

empirical correlation matrix R, the clustering algorithm associates the correlation coefficient

rαi
of R with each internal node αi. The whole information contained in the hierarchical tree

is then stored in a filtered similarity matrix R̄ of elements r̄ij = rαk
, where αk is the first

internal node in which leaves i and j merge together. For instance, from Figure 3.1 we have

r̄37 = rα1 and r̄57 = rα5 . Note that, by construction, in R̄ there are at most p − 1 distinct

coefficients against the p(p−1)/2 of the original matrix. Finally, we use the notation b = g(a)

to indicate that an internal node b is the parent of the node a if b immediately precedes a on

the path from the root to a, e.g. α5 = g(α8) in our graphical example.

Tumminello et al. (2007a) show that it is possible to describe the above structure in terms

of a factor model2 as long as this is constructed in such a way that its correlation matrix

coincides with the similarity matrix filtered by the clustering procedure as applied to R. The

proposed model is called Hierarchically Nested Factor Model (HNFM) and is defined as

xi(t) =
∑

αh∈G(i)

γαh
fαh(t) + ψiǫi(t), i = 1, . . . , p (3.10)

with ψi =
√

1 −∑αh∈G(i) γ
2
αh

. The model postulates that the variable xi(t) is linearly

dependent upon a few unobservable random variables fαh(t) called factors, and an additional

source of variation ǫi(t). In particular, the h-th factor fαh(t) and ǫi(t) are i.i.d. variables

with zero mean and unit variance. The bijective relation between the factor model and the

2A factor model is motivated by the following argument: suppose that some variables within a particular
group are highly correlated among themselves, but have relatively small correlations with variables in a different
group. Than it is possible that each group of variables represents a single underlying factor that is responsible
for the observed correlations.
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filtered matrix R̄ is established by setting

γα1 =
√
rα1

γαh
=
√
rαh

− rg(αh), h = 2, . . . , p− 1 (3.11)

where we assume that rα1 ≥ 03. To prove that R̄ is the correlation matrix of the factor

model (3.10), we need to show that the cross correlation E(xi, xj) is given by r̄ij = rαk
,

where (i, j) is a generic pair of elements merging together at the node αk and corresponding

to the correlation level rαk
. We first note that E(xi, xj) depends only on the factors fαh

which are common to xi and xj , and since there is a factor for each internal node in the

dendrogram, it is necessary to identify the internal nodes belonging to both the genealogies

G(i) and G(j). To this purpose, we see that G(i)∩G(j) = G(αk) holds true. The relation can

be easily verified with the example in Figure 3.1 where we have that G(8) = {α4, α3, α1} and

G(9) = {α9, α3, α1}, and therefore, G(8) ∩G(9) = {α3, α1} = G(α3). Finally, by Eqs. (3.10)

and (3.11) we have that the cross-correlation between variable xi and xj is

E(xi, xj) =
∑

αh∈G(αh)

γ2
αh

= rαk

= r̄ij .

For instance, E(x8, x9) = γ2
α3

+ γ2
α1

= rα3 − rg(α1) + rg(α1) = rg(α3) = r̄89. Hence, the HNFM

is an opportunely designed factor model able to take into account the hierarchical properties

of the investigated system. Moreover, when a factor model with correlation matrix R̄ exists,

it implies that R̄ is always positive definite if rα1 ≥ 0.

The model as given in Eq. (3.10) is based on p − 1 factors coming from a dendrogram of

m elements. However, it is possible to remove the factors that are not statistically ‘reliable’

respect to a predefined standard threshold. In Tumminello et al. (2007a), this is achieved

through a method based on a non-parametric bootstrap technique (Efron, 1979). The method

allows to associate a bootstrap value to each internal node of a hierarchical tree; due to the

one-to-one relation between the nodes in the hierarchical tree and the factors in the HNFM,

the bootstrap value associated with a certain node is also associated with the corresponding

factor in the HNFM. The bootstrap value corresponds to the fraction of bootstrap replicas

preserving the internal node in the dendrogram, i.e. given an internal node αh in the original

dendrogram, a bootstrap replica is preserving the node if and only if there exists a node α̂h in

a replica dendrogram connected to the same leaves of αh. For example, we say that the node

α2 in Figure 3.1 is preserved if and only if a node in some replica dendrogram belongs to the

3Should this value be negative, it is possible to define a suitable linear transformation of the similarity
measure that does not modify the final structure of the dendrogram.
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genealogy of all the leaves 1,2,3 and 4. The authors than proposed to remove the nodes, and

therefore the corresponding factors, with bootstrap value smaller than a suitable threshold,

whose value is inferred from the data.

3.5 Comparing Fourier and Pearson estimators

Our comparison study between the Pearson coefficient and the Fourier estimator is based on

100 sets of p = 100 series of stock prices of length n generated from HNFM. In particular,

the log prices satisfy the diffusion process

dXi(t) = σidWi(t)

where

dWi(t) =

Q∑

k=1

γikfk(t) + ψiǫi(t), i = 1, . . . , p

with Q indicating the number of significative factors and ψi =
√

1 −∑Q
k=1 γ

2
ik. In our

framework the factors fk(t) and the noise component ǫi(t) are independent and identically

distributed Gaussian random variables with zero mean and unite variance. To correlate the

Brownian motions, we employ the correlation matrix obtained in Tumminello et al. (2007a)

using the aforementioned bootstrapping technique as applied to a set of daily price returns of

100 highly capitalized equity stocks traded on the New York Stock Exchange. The resulting

number of factors is equal to Q = 23.

3.5.1 Synchronous data

We start considering the simple case of synchronous data with prices simulated every 1 second

for a total of n = 32, 768 transactions. The length of the series is set to n = 215 in order to

easily apply the Fast Fourier Trasform (FFT) technique as shown in the previous chapter.

The significant gain in terms of computational time is especially welcome in this context

given the size of the dataset under analysis. We then estimate the correlation matrices

following both the Pearson and the Fourier approaches, and compare the results through the

Kullback-Leibler distance K(Ψ, R), where Ψ is the true correlation matrix of HNFM and R

is the estimated one. By closely looking at Eq (3.3), we note that the Fourier procedure can

provide a correlation point, or a correlation matrix if we consider p assets, for each value

of frequency N . In particular, the upper bound of this range of values corresponds to the

fastest frequency representable using data sampled at 1 second, namely the Nyquist frequency

introduced in Chapter 2 and here given by N = n
2 . By means of the relation N = n

2·τ , it

is then possible to associate at each frequency the corresponding sampling rate τ in the

time domain. In particular, we restrict our attention to a selected number of rates ranging
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Figure 3.2: Average Kullback-Leibler distance between the true correlation matrix of the model Ψ and the
Fourier (Pearson) correlation matrix R estimated from n = 100 synchronously sampled time series of length
T = 32, 768. The average is taken over 100 independent datasets. The straight line represents the theoretical
expected value given in Eq. (3.6). The increasing level of accuracy follows the arrow direction.

from τ = 1 to τ = 288 seconds, for a total of 41 correlation matrices for each stock. The

Pearson coefficients are calculated by taking prices every τ seconds with no need to previously

interpolate them since the data are already synchronous. We first employ the Kullback-Lieber

distance to measure the precision of the two methods. In Figure 3.2 the Pearson and Fourier

estimators are showed to be in complete agreement with respect to the theoretical expected

value of the distance given in Eq. (3.6). Deviations from this value would mean that the

sample matrix R is not consistent with the true matrix Ψ. It is also clear that the most

accurate estimate is obtained at τ = 1 second or, equivalently, when N equals the Nyquist

frequency n
2 . Being the time series synchronous and sampled every second, Fourier delivers

the best result in correspondence of the maximum attainable frequency, therefore when all

the available information is carried into the estimated points. A larger value (not displayed

in the graph) would trigger aliasing effects, whilst a smaller frequency, i.e. a larger τ , would

amplify the approximation error due to the limit in the coefficient formulas, reducing the

accuracy of the outcomes as a consequence. This is clearly showed in the graph. Similarly,

the accuracy of the Pearson coefficient decreases as the data in the sample become more

sparsely, implying a higher discretization error. Overall, we observe that the relative entropy

between the correlation matrix of the model and its Fourier or Pearson estimation at different

sampling intervals is an increasing function of the interval itself: as expected, increasing the

sample rate reduces the statistical uncertainty and clearly improve the resulting correlation

estimates in both cases. Nonetheless, it is of great interest to realize that both methods are

on average equally accurate, despite being based on a very different theoretical background.



3.5. Comparing Fourier and Pearson estimators 62

10
0

10
1

10
2

10
1

10
2

τ

<
K

[R
i(τ

=
2

8
8

),
 R

i(τ
)]

>

 

 
Fourier

Pearson

Expectation

(τ=288, τ=144)

Figure 3.3: Average Kullback-Leibler distance between the Fourier (Pearson) correlation matrix at τ = 288
and the correlation matrices relative to the remaining time intervals. Each correlation matrix is estimated
from the same dataset of n = 100 synchronously sampled time series of length T = 32, 768 for a total of 100
independent datasets. The theoretical expected value in Eq. (3.9) is also reported. The increasing level of
smoothness follows the arrow direction.

Our conclusions seem to be in contrast with previous studies where the Fourier estimator is

claimed to perform better than the Pearson estimator. We refer in particular to the work by

Precup and Iori (2007). The authors employ real high-frequency transactions and signature

plots4 to compare the Fourier method against the Pearson coefficient and the co-volatility

adjusted correlation measure proposed in Dacorogna et al. (2001). The correlation spectrum

associated to the Fourier estimator and found by the authors is undoubtedly smoother than

that for the other two methods, which shows instead a more erratic behavior. This has been

interpreted as an index of higher precision in favor of the Fourier approach, whilst we will

show here that it is simply due to a peculiar feature of the estimator.

We start by considering correlation estimates within the same sample of p = 100 stocks. In

particular, we calculate the distance between the correlation matrix obtained at τ = 288, the

largest available sampling interval (smaller values of τ can be equally chosen), and each single

correlation matrix calculated at the remaining values of τ ranging from 1 to 240. We then

repeat the procedure for all the 100 realizations of the system. Figure 3.3 plots the aver-

age distance 〈K[Ri(τ = 288), Ri(τ)]〉. It is apparent as the entropy trajectory related to the

Fourier estimator behaves more regularly than that one relative to the Pearson coefficient, es-

pecially at low frequencies. However, it does not mean that the Fourier measure outperforms

the Pearson coefficient, but rather that the errors implied in the estimation procedure are

more correlated at different τ ’s than are in the Pearson case. Let us make a simple example

to clarify this point. Suppose that the true correlation between asset i and j is ψij = 0.3.

4In the case of the Pearson and Fourier estimator, the signature plots are obtained by representing, respec-
tively, the correlation coefficients (3.1) and (3.4) as a function of τ .
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Figure 3.4: Average Kullback-Leibler distance between the Fourier (Pearson) correlation matrix at τ = 288
and the correlation matrices relative to the remaining time intervals. The matrices are estimated from 100
independent datasets of n = 100 synchronously sampled time series of length T = 32, 768 and the average
is taken across sets. The theoretical expected value in Eq. (3.9) is also reported. The increasing level of
smoothness follows the arrow direction.

Should Fourier estimates a value of ρF
ij = 0.32 at τ = 288, then also that at τ = 240 would

be likely larger than the true one. For the Pearson coefficient this is still possible but the

probability of the event is smaller. In particular, given the way the coefficient is defined, it

can be shown that this mainly happens for values of τ which are exact divisors of τ = 288, e.g.

the point 〈K[Ri(τ = 288), Ri(τ = 144)]〉 indicated by an arrow in Figure 3.3. Therefore, the

curves in the graph are only representative of the possible connections between the estimation

error relative to a certain sampling frequency and that associated to a subsequent frequency.

It follows that the Fourier estimator is characterized by stronger autocorrelated errors than

the Pearson coefficient. The interpretation of this distinctive behavior is twofold. From one

side, it means that we can count on a certain degree of flexibility in choosing the value of the

frequency N ; from the other we should be aware that choosing a value for N well below the

optimal, and usually unknown, level would carry an estimation error definitely higher than

that generated by the opposite choice. But Figure 3.3 reveals another interesting aspect.

When we add the theoretical expected value of the Kullback-Lieber divergence as calculated

between independent realizations of the system (gray straight line), and given in Eq. (3.9),

we first note that the Pearson curve gets much closer for large time horizons than Fourier’s

does, indeed because the autocorrelation effect is less pronounced. Secondly, we observe that

increasing the sampling frequency by reducing the time scale, i.e. for small τ ’s, both the

curves converge to the analytical value indicating that the estimation error is vanishing. This

result corroborates our expectations given that both measures provide consistent estimates

of the true correlation matrix Ψ.
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In support of our findings, we repeat the above experiment by considering correlations be-

tween independent realizations, i.e. K[Ri(τ = 288), Rj(τ)]. The results are plotted in

Figure 3.4. It is clear as both the Fourier and the Pearson methodology are now able to

provide correlation matrices that, on average, match almost perfectly the theoretical ex-

pected value without showing any autocorrelation effect as in the previous case. At large

frequencies, i.e. small tau’s, the information carried by the data reaches the maximum level

and both estimators deliver a correlation structure very close to Ψ, the predictable feature

also visible in the previous figure. Note that, in both cases, the Pearson coefficient slightly

outperforms the Fourier estimator for arrival times shorter than 10 seconds where the curve

perfectly overlaps the theoretical value.

3.5.2 Asynchronous data

To get a deeper insight into the analysis, we induce asynchronicity in the above generated

series by extracting the time intervals between consecutive transactions from an Esponential

distribution with mean equal to λ = 25 seconds5. We aim to study the estimators behavior in

the presence of the non-trading effect triggered by asynchronicity (Lo and MacKinlay, 1990).

In order to apply the Pearson coefficient, the series are first interpolated over a common

grid using the previous tick method. We set the grid points to be regularly spaced with a

time step of 1 second. It is important to emphasize that this way of sampling prices does

not eliminate the above effect but simply ensures that returns across assets are measured

over matching intervals. In addition, we have seen in the previous chapter that the Fourier

estimator can be equivalently applied to interpolated series of data, allowing to calculate the

Fourier coefficients of price using the Fast Fourier Transform algorithm.

In Figure 3.5, above panel, a first comparison of the Fourier and Pearson estimators is given.

Respect to the synchronous case, the Kullback-Leibler curves now clearly display a mini-

mum point indicating the existence of an ‘optimal’ sampling rate at which both estimators

maximally approach the real correlation matrix Ψ. This is due to the contribution of two

effects: (i) the discretization error that generates a loss of accuracy for large time horizons;

(ii) the aforementioned non-synchronous trading effect. The latter is described as a dramatic

drop in the absolute value of the covariance and correlation measures when the sampling fre-

quency is increased. The phenomenon was first reported by Epps (1979) and since then has

been studied by several other authors including Dacorogna and Lundin (1999), Renò (2003),

Martens (2004) and Voev and Lunde (2007). In the case of the Pearson coefficient, the Epps

effect is a consequence of assuming that two time series are sampled simultaneously when

instead are non-synchronous. The previous tick interpolation method used to this purpose

artificially sets equal prices over periods of no trading activity that generate null returns and

5Although the distribution of the intervals is common to all the 100 stocks, we still obtain sets of asyn-
chronous series of different length due to the random nature of the generating process.
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zero cross-product values as a consequence, resulting in a correlation estimate biased down-

wards. Oversampling increases the contribution of these values and, therefore, exacerbates

the negative bias even further. Looking back at the graph, we can see that the deterioration

of the Kullback-Leibler distance for small τ ’s is clearly depicted: the divergence between the

model and the estimator is widened and the accuracy is indeed reduced.

As far as the Fourier estimator is concerned, we first note that the null returns should not

be account for the bias clearly visible in the figure. This becomes apparent when we rewrite

the covariance term as follow

2πa0(Σ12) ≈
2π2

N + 1

N∑

k=1

[
ak(dX1)ak(dX2) + bk(dX1)bk(dX2)

]

≈ 2

N + 1

N∑

k=1

[
n∑

i=1

cos(kt1i )∆X
1
i ·

n∑

j=1

cos(kt2j )∆X
2
j +

+
n∑

i=1

sin(kt1i )∆X
1
i ·

n∑

j=1

sin(kt2j )∆X
2
j

]

≈ 2

N + 1

N∑

k=1

[
n∑

i=1

n∑

j=1

∆X1
i ∆X2

j

(
cos(kt1i )cos(kt2j ) + sin(kt1i )sin(kt2j )

)]

≈ 2

N + 1

N∑

k=1

[
n∑

i=1

n∑

j=1

∆X1
i ∆X2

j cos(k(t1i − t2j ))

]

≈ 2

N + 1

n∑

i=1

n∑

j=1

∆X1
i ∆X2

j

N∑

k=1

cos[k(t1i − t2j )]

=
2

N + 1

n1∑

i=1

n2∑

j=1

∆X1
i ∆X2

j

N∑

k=1

cos[k(t1i − t2j )], (3.12)

where we have used the trigonometric identity cos(α− β) = cos(α)cos(β) + sin(α)sin(β) and

Eqs (2.7) and (2.8) in Section 2.2. In addition we have

ωN :=
N∑

k=1

cos(kx) =





N if x = 0
sin

(N+1)x
2

cos Nx
2

sin x
2

otherwise.
(3.13)

In Eq. (3.12), n1 and n2, where n1, n2 < n = 32, 768, represent the effective length of the

series after taking into account the zero returns. Hence, for every N ≥ 1, their contribution is

‘absorbed’ through the calculation of the price coefficients and the covariance formula turns

out to be identical to the one we would obtain by applying the Fourier method directly to

the original, and not interpolated, data. The same reasoning holds true for the variance

estimation.
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The cross-product term
∑n1

i=1

∑n2
j=1 ∆X1

i ∆X2
j also suggest that the price returns of two as-

sets not only correlate contemporaneously, but the returns of one asset also correlate with

all possible lead-lag returns of the other asset. In principle, the presence of leads and lags in

the covariance measure should reduce the effect of non synchronicity, as thoroughly demon-

strated in the work by Griffin and Oomen (2010) using a modified first-order autocovariance

corrected estimator. The Fourier methods includes higher order cross terms, but these seem

to be redundant and to generate unnecessary lead-lag adjustments. However, from Figure 3.5,

it is clear that if N is properly chosen, for instance by means of covariance signature plots as

previously suggested, than it is possible to minimize the non-trading effect. In particular, the

covariance level is driven by N through the quantity ωN , which weights the contribution of

the cross increments to the above summation. In their interesting paper, Griffin and Oomen

(2010) also show that the size of the negative bias due to non synchronicity is mainly determi-

nate by the slowest asset, when prices are not contaminated by microstructure noise as in our

case. This is consistent with the work by Dacorogna and Lundin (1999) where the authors

find that correlation is inversely related to trading activity: the more an asset is traded, the

less evident is the Epps effect. Renò (2003) employs the Fourier estimator to investigate

the effect, and also provides further evidence on the above inverse relationship using both

simulated and real time series. Moreover, he shows that the impact of non-synchronicity can

be considerably reduced by using only synchronous transactions, i.e. tick prices that occur

at the same time without any prior interpolation, although this method sacrifices a large

portion of the available data as expected.

Finally, we complete our study calculating the Kullback-Leibler distance between the sample

correlation matrices R obtained from both dependent and independent realizations of the

system. The results are plotted in Figure 3.5, middle and below panels respectively. It is

important to note that the two scenarios differs from those found in the synchronous case only

for the discrepancy due to the Epps effect, visible for short time horizons. These fundings

corroborate our preliminary conclusion that the Fourier and Pearson estimators are equally

accurate also when more realistic market features are taken into account. The combination

of asynchronicity and discretization error implies a careful choice of the sampling interval for

both estimators, however, the Pearson coefficient seems to control the first effect on average

slightly better than the Fourier estimator.

This space intentionally left blank



3.5. Comparing Fourier and Pearson estimators 67

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

<
K

[Ψ
, 

R
i(τ

)]
>

 

 
Fourier

Pearson

Expectation

10
0

10
1

10
2

10
1

10
2

<
K

[R
i(τ

=
2

8
8

),
 R

i(τ
)]

>

 

 
Fourier

Pearson

Expectation

10
0

10
1

10
2

10
1

10
2

τ

<
K

[R
i(τ

=
2

8
8

),
 R

j(τ
)]

>

 

 
Fourier

Pearson

Expectation

Figure 3.5: As in Figure 3.2 (above panel), in Figure 3.3 (middle panel) and in Figure 3.4 (below panel) but
with asynchronously sampled data. The average interval time between consecutive transactions is generated
from an Exponential distribution with parameter λ = 25 seconds.
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3.6 The Hayashi-Yoshida covariance estimator

In a recent paper Hayashi and Yoshida (2005) propose a new covariance procedure to deal

with the problem of non-synchronous trading. The resulting estimator is free of bias and can

be applied directly to the observed data, with no need to first interpolate them on a regular

grid. It is also showed to be consistent as the observation time intensity increases to infinity.

In order to define the estimator, suppose that X and Y are two continuous semimartingales.

Let ΠX = {ti : i = 1, . . . , n1} and ΠY = {tj : j = 1, . . . , n2} denote the sets of random

times at which transaction are recorded with n1 and n2 being the number of quotes for each

asset. The results are derived under the assumption that both assets trade at t0 = 0 and

ti = tj = 1, where t = 1 is the end of the trading day6. Let ∆Xi = X(ti) − X(ti−1) and

∆Yj = Y (tj) − Y (tj−1) be the tick-by-tick returns of X and Y respectively. The cumulative

covariance estimator is then defined as

HY =

n1∑

i=1

n2∑

j=1

I {(ti−1, ti] ∩ (tj−1, tj ] 6= ∅}∆Xi∆Yj , (3.14)

where I{·} denotes the usual indicator function. If we compare this expression with Eq. (3.12),

we note that the Fourier and HY estimators share a similar structure but assign different

weights to the cross returns. Surprisingly, the presence of the indicator function seems to

highly improve the performance of the estimator. Indeed, differently from the Fourier estima-

tor, the product of the returns contributes to the sum as long as the corresponding intervals

overlap: the tick return of the base asset, say X, is multiplied by all the possible tick returns

of Y , but the cross products are limited to the interval starting before or at ti−1 up to or

beyond ti. Because of this particular feature, the estimator does not suffer from the Epps

effect. This should also better clarify our comment regarding the Fourier estimator and the

distortion generated by an overflow of leads and lags components, as discussed in the previous

section. Following the intuition of Hayashi and Yoshida, we note that if ωN in Eq. (3.13)

was instead defined as

ωN :=
N∑

k=1

cos[k(ti − tj)] =





N if (ti−1, ti] ∩ (tj−1, tj ] 6= ∅
sin
(

(N+1)(ti−tj)

2

)
cos
(

N(ti−tj)

2

)

sin
(

(ti−tj)

2

) otherwise,

the Fourier estimator would become a generalized version of HY , where the contribution of

the non overlapping terms would be controlled by a correct choice of the frequency N . This

is an interesting results that it would be worth exploring in a future work.

6Without this assumption, left and right censoring will induce an additional bias, which would be negligible
for actively traded assets. By censoring we mean that usually assets start trading some time after the start of
the trading day (left censoring) and stop trading before the end of the trading day (right censoring)
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Using Eq. (3.14), a non synchronous correlation estimator is given by

ρHY
ij =

∑
i,j I {(ti−1, ti] ∩ (tj−1, tj ] 6= ∅}∆Xi∆Yj

√∑
i ∆Xi

√∑
j ∆Yj

,

where the quantities at the denominator represent the realized volatilities calculated using

raw data. Besides being consistent, Hayashi and Yoshida (2006) establish the asymptotic

normality of this estimator when the correlation ρ between Brownian motions is constant.

3.6.1 Comparing Fourier and Hayashi-Yoshida estimators

The two estimators have been already analyzed by Hoshikawa et al. (2008) and

Mancino and Sanfelici (2008a) in two separate comparative studies that also involve other

cross-volatility measures. In the first paper the authors show that the Hayashi-Yoshida esti-

mator outperforms the Fourier method in terms of minimum MSE and bias, but the results

are restricted to a very small range of possible values for the frequency N . In addition, their

study does not contemplate the presence of microstructure noise. From this prospective, the

work by Mancino and Sanfelici (2008a) is more complete since it takes into account different

levels of both independent and correlated noise, and N is let to vary widely, as we also did in

our numerical analysis. Both the Fourier and Hayashi-Yoshida estimators are implemented

using the same settings as in Voev and Lunde (2007) leading to similar conclusions as far as

HY is concerned: the estimator is unbiased and quite robust to microstructure effects under

independent noise, as long as this is set to a moderate level (see also Griffin and Oomen,

2010). It also performs better than the Fourier estimator both in terms of MSE and bias.

However, when the noise is allowed to be correlated with the price process and serially cor-

related with the noise itself, although for a limited amount of time as in Bandi and Russell

(2005), HY turns out to be both biased and inconsistent. Voev and Lunde (2007) propose

a simply but effective way to bias correct the estimator, while they suggest to employ the

subsampling technique introduced in Zhang et al. (2005) to also achieve consistency. In this

respect, Mancino and Sanfelici (2008a) prove that the Fourier estimator is asymptotically

unbiased in the presence of independent and correlated noise, but a ‘nearly’ consistency, i.e.

the MSE converges to a constant value as the number of observations increases, is derived

only in the case of i.i.d noise. Nonetheless, Monte Carlo simulations provide evidence that

these properties are maintained also when the noise process is of more general type, once

the frequency N is properly chosen. Indeed, the Fourier method delivers the best results

among all the other estimators, which include HY , the realized covariance and the realized

covariance with lead-lag adjustment. On the other side, the more efficient versions of the

Hayashi-Yoshida estimator proposed by Voev and Lunde (2007) is showed to outperform a

larger range of covariance measurements when the effects of different scenarios are investi-
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gated.
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It would be therefore interesting to complete the Mancino and Sanfelici study with a compar-

ison between the Fourier method and these alternative estimators under similar conditions.

The purpose of our comparative analysis is different. Firstly, we are interested in modelling

co-movements of a very large number of stocks; secondly, the estimation methods are not

examined directly but by means of the Kullback-Leibler distance as previously done. In

this respect, we note that the Kullback-Leibler formula, as derived in Eq. (3.5), requires the

computation of the inverse of a matrix and of the logarithm of its determinant. It follows that

the correlation matrices under analysis must be positive definite and, therefore, nonsingular.

Unfortunately, the nonsingularity of the Hayashi-Yoshida correlation matrix is not always

guaranteed: differently from the Fourier estimator, the full correlation matrix obtained by

assembling all the pairwise estimates ρHY
ij might not be positive definite. One way to tackle

this problem is to apply the method proposed in Rebonato and Jackel (1999), which generates

a positive semidefinite correlation matrix that closely approximates the target symmetric, but

singular matrix. However, an early stage of the procedure consists in setting to zero all the

negative eigenvalues of the ill-conditioned matrix, and this would violate the requirement

of positive determinant compulsory to the calculation of the Kullback-Leibler distance7. It

is then necessary to employ a methodology that fulfills such condition, but is also able to

guarantee the positive definiteness of the output correlation matrix. A possible solution is the

shrinkage technique proposed in Ledoit and Wolf (2004b). Following this idea, we compute

a convex combination between the sample correlation matrices RF and RHY obtained using

the Fourier and Hayashi-Yoshida estimators respectively, and defined as

RS = ηRF + (1 − η)RHY , (3.15)

where η ∈ [0, 1] is called the shrinkage constant, a measure of the weight that is given to each

estimator. In the above expression, RF represents the ‘structured’ estimator RHY is shrunk

to, also known as shrinkage target. The purpose is to reduce the singularity of RHY by safely

pulling its small eigenvalues away from zero. This can be easily seen by taking the spectral

decomposition of the two matrices.

To evaluate the efficacy of the method, we employ the 100 data sets of n = 100 asynchronous

time series used in Section 3.5.2 and calculate the Kullback-Leibler divergence between the

true correlation matrix Ψ and the shrinkage estimator RS , letting the shrinkage constant

η vary in [0, 1]. Note that RF is estimated by setting the frequency N to the best value

obtained with the accuracy test performed in the same section. The obtained results are

shown in Figure 3.6. Only the values of the shrinkage constant for which RS is positive

definite are plotted, given that it would not be possible to calculate the relative entropy

otherwise. By looking at the figure, we can see that the curve reaches a minimum point

7We recall the reader that the determinant of a square matrix is equal to the product of its eigenvalues.
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Figure 3.6: Kullback-Leibler divergence between the true correlation matrix Ψ and the shrinkage estimator
ηRF + (1 − η)RHY as a function of the shrinkage constant η. Only the values of the shrinkage constant that
lead to the positive definiteness of RS are considered.

at η = 0.66, therefore in favor of the Fourier estimator. We believe this is related to the

presence of positive but almost zero eigenvalues in correspondence of small η’s that clearly

jeopardize the performance of the measure. Indeed, the resulting correlation matrix RS is

still invertible but numerically instable, which means that inverting the matrix amplifies the

estimation error dramatically, as it is evident from the plot. As η is increased, the critical

eigenvalues are pulled away from their initial minimal level and the positive contribution of

the well-structured Fourier estimator slowly prevails over RHY . It is important to note that,

at the end, only an optimally weighted combination of the two methodologies leads to the

best result, indicating that there is still space for improvement.

It would be now interesting to find a way to optimally select the shrinkage constant. At

the present time, we do not have a valid solution to the problem but we believe we can rely

on the estimation procedures developed in Ledoit and Wolf (2003, 2004a,b) to find one. In

general, their method consists in minimizing the quadratic distance between the true and the

shrinked correlation matrices, which leads to the following optimization problem

min
η
E
[
||Ψ −RS ||2

]

s.t. RS = ηRF + (1 − η)RHY ,

where ||Ψ − RS || =
√∑n

i=1

∑n
j=1(ρij − rij)2 is the Frobenius distance between the two ma-

trices Ψ = [ψij ]n×n and RS = [rij ]n×n. It is important to emphasize that the method does

not involve the inverse of any matrix and, therefore, it will not break down in case of sin-

gularity issues. Unfortunately, the optimal shrinkage constant η̂ turns out to depend on the



3.7. Modelling stochastic correlation via Fourier method 73

true but unobservable correlation matrix Ψ. Ledoit and Wolf (2004b) find a way to consis-

tently estimate this quantity obtaining a shrinkage intensity of the form η̂ = k
n , where k is a

constant and n is the number of observations. In our case, we expect the intensity to be a

function of the different length of the times series in use and, therefore, of the different level

of asynchronicity in the data. To be more precise, the shrinkage intensity should depend,

among other things, on the estimation error contained in the sample estimator: when the

number of observations is high, the shrinkage intensity will tend to be small and vice versa.

Our analysis employs tick-by-tick data that makes the values of n vary across assets with the

consequence that pairwise correlations obtained with less observations should be shrinked

more than those computed from highly liquid assets.

A naive solution to our optimal problem, would be to use η̂ as derived in Ledoit and Wolf,

but instead of applying the same constant to all the elements of the correlation matrix, we

could construct a matrix of weights Γ with elements Γij = 1/min{ni, nj}, where ni is the

number of ticks for asset i. The correlation shrinkage estimator would then take the form

R̂S = η̂ Γ ◦RF + (I − η̂ Γ) ◦RHY ,

where I is a n × n matrix of ones, while the symbol ◦ indicates the element-by-element

Hadamard, or Schur, product. For the time being, we will postpone any test on the validity of

this estimator to future work, together with a deeper analysis of the overall optimal problem.

3.7 Modelling stochastic correlation via Fourier method

Although correlation is traditionally modelled as a constant variable, it is well known in

practice that is instead highly time-varying and can be even more unstable than volatility,

as clearly displayed by the example in Figure 3.7. This feature is also highlighted in several

empirical studies. For instance, Longin and Solnik (1995) use a GARCH model to investi-

gate the behavior of monthly international equity returns and conclude that the resulting

correlation change dynamically. They also provide evidence that correlations increase during

highly volatile periods. Ball and Torous (2000) use instead filtering methods to show that the

estimated correlation structure is changing over time. However, most of the existing financial

econometrics research in the field is mainly based on complex multivariate GARCH models,

the last cited study being an exception, which suffer from increasing parameter dimension-

ality and can be often estimated only after imposing severe restrictions. A breakthrough

solution is represented by the Dynamic Conditional Correlation (DCC) estimator developed

by Engle (2002) and characterized by the same flexibility of an univariate GARCH model.

Moreover, the number of parameters implied by the model is independent of the number

of series to be correlated and very large correlation matrices can be estimated. Recently,
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Figure 3.7: Daily correlation between the Dow Jones and the EUR/USD exchange rate estimated through
the Pearson coefficient given in Eq. (3.1) using 10-minute returns.

Engle and Rangel (2008) introduce the Factor-Spline-GARCH model to generalize the DCC

estimator. The model is able to captures the correlation dynamic patterns at high and low

frequencies, and also allows to incorporate features of the underlying asset pricing framework

and/or of the economic fundamentals. However, their approach is based on a simple on-factor

CAPM model for the stock returns and becomes over-complicated for more complex models.

Once we concentrate back on nonparametric modelling, we become aware that none of the

existing methods concerning spot volatility estimation has been successfully extended to the

multivariate case, at least to the best of our knowledge. We will now take some tentative

steps in this direction by employing the Fourier method to recover the stochastic behavior

of a simulated correlation path. In practice, simple methods such as rolling historical cor-

relations and the exponential smoothing used by RiskMatrics are widely used to detect the

time-varying identity of correlations.

3.7.1 Fully stochastically correlated Brownian motions

Consider two independent standard Brownian motions W1(t) and W2(t) with respect to some

filtration F . For instance, we could take the natural filtration generated by W = (W1,W2).

Assume that

dρ(t) = a (t, ρ(t)) dt+ b (t, ρ(t)) dW̃ (t)

is a measurable stochastic process taking values in [−1, 1], where W̃ is a one-dimensional

Brownian motion independent of both W1 and W2, and a and b are two suitable random
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functions. Then set

V (t) = W1(t)

Z(t) =

∫ t

0
ρ(s)dW1(s) +

∫ t

0

√
1 − ρ2(s)dW2(s), Z(0) = 0,

for every t ∈ [0, T ]. Following the definition of quadratic variation, we have

[Z,Z]t =

∫ t

0
ρ2(s)d[W1,W1]s +

∫ t

0

(
1 − ρ2(s)

)
d[W2,W2]s + 2

∫ t

0
ρ(s)

√
1 − ρ2(s)d[W1,W2]s

=

∫ t

0
ρ2(s)ds+

∫ t

0

(
1 − ρ2(s)

)
ds

= t,

since the assumed independence implies that [W1,W2]t = 0 and d[Wi,Wi]t = dt, for i = 1, 2.

Therefore, by the Lévy characterization theorem (see Musiela and Rutkowski, 1998), the

process Z is also a standard one-dimensional Brownian motion with respect to F . Moreover,

the cross-variation between V and Z satisfies d[V,Z]t = ρ(t)dt given that, proceeding as

above,

[V,Z]t =

∫ t

0
ρ(s)d[W1,W1]s +

∫ t

0

√
1 − ρ2(s)d[W1,W2]s =

∫ t

0
ρ(s)ds.

Note that the result agrees with the case of constant correlation where the quadratic covari-

ation would be d[V,Z]t = ρ dt, as assumed in Section 3.2.

According to the definitions in Section 3.2, the elements of the instantaneous volatility ma-

trix Σ(t) are now given by Σij(t) = ρij(t)σi(t)σj(t). From this, we get the instantaneous

correlation matrix R(t) by setting

R(t) = D(t)Σ(t)D(t),

where D(t) is a diagonal matrix with entries dii = 1
σi(t)

. It follows that a Fourier estimate of

the stochastic pairwise correlation ρi,j(t) can be obtained as

ρ̂i,j(t) =
Σ̂ij

N,M (t)
√

Σ̂ii
N,M (t)Σ̂jj

N,M (t)
, (3.16)

where Σ̂ij
N,M (t) is given in Eq. (3.2). It is important to note that, differently from the

integrated case, it is now necessary to select three parameters, i.e. N , M and δ, for both

the numerator and the denominator. We will have the chance to return on this point in

Section 3.7.3 below.
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3.7.2 The model

The practical example in the introductory section shows that correlation is not deterministic.

This suggests that the risk implied by correlation movements is not only significant, affecting

in particular optimal portfolio selection problems, but it can be also very different with re-

spect to the risk implied by stochastic volatility, which practitioners have indeed found to be

smaller. Although our conclusions should be based on further experiments, we can already

infer from Figure 3.7 that: (i) correlation seems to vary stochastically around a mean; (ii) it

reverts to that mean over time. We also note that the obtained trajectory never reaches the

boundaries, at least in this particular case. According to Skintzi and Refens (2005) another

important feature of asset return correlation is persistence: periods of high (low) correlation

are likely to be followed by periods of high (low) correlation again. By introducing the im-

plied correlation index for the DJIA, they provide evidence that the autocorrelations remains

significant up to 40 days suggesting a long-run dependence in the correlation index.

To model correlation, we follow the idea in Driessen et al. (2005) and van Emmerich (2006)

and choose ρ to be a mean-reverting Jacobi process defined by the following stochastic dif-

ferential equation

dρ(t) = κ (θ − ρ(t)) dt+ α
√

(ρ(t) − a) (b− ρ(t))dW̃ (t), ρ(0) = r ∈ [a, b], (3.17)

where a < b are the boundaries of the process, κ ≥ 0 is the rate of mean reversion, α > 0

is the diffusion parameter and θ ∈ (a, b) represent the level of mean reversion. Note that

the modelling of stochastic correlation through this process still admits basic autocorrelation

functions of the form e−κ∆t (Bibby et al., 2005), which implies that the process has persistence

properties, especially if the mean reversion parameter κ is low. It is now important to derive

the parameters conditions that ensure the boundaries of (3.17) to be unattainable. Concretely

speaking, the boundaries a and b are considered to be unattainable if the process does not

reach them in finite time with positive probability. We want the boundaries of stochastic

correlation to be unattainable in order to avoid situations where the correlation process

sticks to either of its boundaries and in order to avoid degenerate correlation structures. For

the specific case of our interest where [a, b] = [−1, 1], van Emmerich (2006) shows that the

lower boundary is attainable if κ
α2 (θ + 1) < 1, while the upper boundary is attainable if

κ
α2 (θ − 1) < 1. Therefore, the boundaries of the considered Jacobi process are unattainable

if and only if

κ ≥ α2

1 ± θ
.

As an alternative, we will also consider the ad hoc correlation model

ρ(t) =
e2x(t) − 1

e2x(t) + 1
(3.18)
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introduced by Barndorff-Nielsen and Shephard (2004), where x(t) follows the GARCH diffu-

sion

dx(t) = κ(θ − ρ(t))dt+ αx(t)dW (t), (3.19)

which is again characterized by a mean reverting property. This model is also employed in

Voev and Lunde (2007).

3.7.3 Preliminary results

The aim of our study is to show whether the Fourier method is able to provide an estimate

of the cross-volatility dynamics as claimed in Malliavin and Mancino (2002, 2009), bridging

theory and practice. In particular, we will take an exploratory approach to uncover some of

the practical aspects that need to be addressed in the estimation procedure. It follows that,

for the time being, the results will be based on a single realization of the generating process,

leaving a deeper investigation of the method to future research.

With Section 3.7.1 in mind, we start considering a stochastic correlation model of the form

dX1(t) = σ1dW1(t)

dX2(t) = σ2dW2(t)

with

d[W1,W2]t = ρ(t)dt,

and where

dρ(t) = κ (θ − ρ(t)) dt+ α
√

1 − ρ2(t)dW̃ (t) (3.20)

is the pairwise correlation between stock X1 and X2 defined as the Jacobi process previously

introduced. We arbitrarily set σ1 = 0.2 and σ2 = 0.4, while the parameters of the correlation

process results from a last-square fitting of (3.20) to the historical data in Figure 3.7 under

the constrain of unattainability, and are given by θ = −0.2, κ = 9.4 and α = 1. Although the

underlying volatilities are chosen to be constant, we will still employ the Fourier method to

get an estimate of these quantities8. We use the Euler-Maruyama scheme to discretized the

model, and then simulate n = 213 = 8192 tick-by-tick prices for both assets with return inter-

vals of one second. We start by applying the Fourier estimator to the original, synchronous

series. The result is showed in Figure 3.8. As expected, when prices are only contemporane-

ously correlated, i.e. the non-synchronous trading effect is not present, the method is able to

provide a consistent estimate of the trajectory.

8A simpler but less realistic solution consists in setting the denominator of the correlation coefficient equal

to σ1σ2 rather to
√

Σ̂11
N,M (t)Σ̂22

N,M (t), the latter being the Fourier estimate of the former quantity.
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Figure 3.8: Fourier spot correlation estimate of two stochastically correlated assets using synchronous tick-
by-tick prices.

To simulate asynchronous data, we proceed as in Chapter 2 and generate the inter-trade times,

the so-called durations, from two independent Exponential distributions with means λ1 and

λ2 respectively. In particular, we compare two different scenarios by first setting λ1 = 2 and

λ2 = 2, and then λ1 = 3 and λ2 = 6. Given that the durations are randomly sampled, the

first set of parameters implies that the two assets are trading at the same speed but not

necessarily at the same time, while with the second combination we obtain that X1 is trading

twice as fast as X2 leading to a higher level of asynchronicity. The previous tick imputation

scheme is then employed to interpolate the missing data and to extend the sequences back to

the original size n in order to employ the FFT algorithm in the calculation process. To limit

the bias due to the Epps effect, we choose the frequency N or, equivalently, the number of

Fourier coefficients of price, by looking at two distinct signature plots, one for each scenario,

where the integrated covariances are plotted against a range of possible values for N . The

plots stabilize around N = 900 and N = 500 respectively. The remaining parameters M

and δ are instead selected by simply comparing the MSE of a few hand trials. Figure 3.9

shows the estimated trajectories. Although both curves are able to mirror the main features

of the original correlation process, it is apparent as the quality of the reconstruction is rather

affected by the level of asynchronicity. In Chapter 2 we have seen that increasing the number

of Fourier coefficients would increase the precision of the final estimate. However, this gain

in precision is balanced out by the bias due to the non-synchronous trading effect. If from

one side the trade-off between the two implies a bias reduction, from the other we obtain an

accumulation of measurement error since the limits in the Fourier formulas are approximated
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Figure 3.9: Fourier spot correlation estimate of two stochastically correlated assets through model (3.17)
using non-synchronous tick-by-tick prices.

with a lower number of terms. Moreover, the latter source of error lies both at the numerator

and the denominator of the correlation coefficient, leading to a weaker reconstruction respect

to the one-dimensional case, even when both assets are highly traded.

Let us now consider the more realist case where both the volatilities of the underlying assets

follow a stochastic process themselves. In particular, we simulate two series of tick prices

using the bivariate model

dXk(t) = σk(t)dWk(t)

dσ2
k(t) = λk

(
ω1 − σ2

k(t)
)
dt+

√
2λkθkσ

2
k(t)dWh(t),

for k = 1, 2 and h = 3, 4, and where the correlation is captured through d[W1,W2]t = ρ(t)dt.

This is the bivariate continuous time limit of the well-known GARCH(1,1) model as developed

in Nelson (1990), with parameter estimated in Andersen and Bollerslev (1998) using daily

return times series of the DEM-USD and JPY-USD exchange rates and given by

θ1 = 0.035 θ2 = 0.054

ω1 = 0.636 ω2 = 0.476

λ1 = 0.296 λ2 = 0.480.

It is worth noting that these estimates were obtained independently for each of the above

time series and are here used only for illustrative purposes. The same set of parameters

is employed in the Monte Carlo studies by Andreou and Ghysels (2002), Renò (2003) and
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Figure 3.10: Fourier spot correlation estimate of two correlated assets through the time-varying functions
in Eqs. (3.21)-(3.23) using synchronous tick-by-tick prices.

Andersen et al. (2004). We first define the correlation process ρ(t) to be a simple function of

time. In particular, for t ∈ [0, 1], we consider

• Linear function

ρ(t) = −0.2 +
t

2n
(3.21)

• Step function

ρ(t) =





0.7 t < n
4

0.2 n
4 ≤ t < n

2

−0.3 n
2 ≤ t < 3

4n

0.4 3
4n ≤ t < n

(3.22)

• Trigonometric function

ρ(t) = 0.5
[
sin(3t̄) + 0.8 cos(5t̄+ 0.5)

]
, t̄ =

2π

n
t. (3.23)

Figure 3.10 shows that the estimator is able to deliver a good reconstruction of the simu-

lated trajectories in accordance with our expectations, given that the series of tick prices

are synchronous. However, when we analyze the case where the correlations is a stochas-

tic process itself, we obtain a different result, see Figure 3.11. In particular, ρ(t) is the
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Figure 3.11: Fourier spot correlation estimate of two stochastically correlated assets through model (3.18)-
(3.19) using synchronous tick-by-tick prices.

process defined in Eqs. (3.18)-(3.19) with κ = 0.03, δ = 0.64 and α = 0.118, as in

Barndorff-Nielsen and Shephard (2004). Although the Fourier method is applied to the same

data set, clearly the quality of the estimates is not as good as before. We first point out

that the frequency N was set equal to the Nyquist level, given by n
2 . This is because with

synchronous prices there is no need to adjust N to account for the Epps effect. Less triv-

ial would be the case with non-synchronous data as the computation of the cross-volatility

Σ̂ij
N,M (t) would require a lower frequency N respect to the volatility components to contrast

the downward bias induced by the effect. This would result into two distinct values for N .

As far as the frequency M is concerned, we remind the reader that in general M should

be adjusted according to the degree of resolution δ, beside being M << N (see Chapter 2,

Section 2.4.2). Therefore, when the input data are synchronous, we can only improve the

quality of the Fourier estimates by tuning the resolution of the covariance at the numerator

and that of the variances at the denominator of the correlation coefficient, respectively de-

fined by δcov and δvol. In Figure 3.11 we demonstrate that selecting δcov 6= δvol can indeed

result in a slightly better reconstruction as the right combination of parameters can reduce

the overall estimation error. However, this is not enough: respect to the case illustrated in

Figure 3.9, it is now apparent as the performance of the Fourier method is clearly compro-

mised by the additional source of randomness related to the stochastic nature of the volatility

processes9. Our intuition is supported by the analysis developed in this section: when the

volatility is fixed to a constant level or the correlation is a simple time-varying function, the

9This can be true only in small sample analysis as the estimator is asymptotically consistent.
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method can indeed reproduce the main features of the correlation dynamics, also when data

are unevenly sampled. Finally, we observe that if we induced asynchronicity in the data, the

non-synchronous trading effect would undermine the accuracy of the estimates even further.

In addition, we would be left with the problem of choosing not only (δcov, δvol), but also

(Ncov, Nvol) as previously anticipated, and (Mcov,Mvol). A simplified solution would consist

in taking the same set of parameters for both the covariance and the volatilities but at the

price of a potentially higher estimation error. Given the unsatisfactory results obtained with

synchronous prices, we will not provide evidence on the asynchronous case.

3.8 Summary

We have first performed a comparative study on correlation estimation involving the popular

Pearson coefficient and the Fourier method. The two estimators are built on a very different

theoretical ground and also differ on the way they make use of the raw input data: the

Pearson coefficient requires the construction of a regular grid depending on the frequency of

tick arrivals, while the Fourier estimator directly and efficiently employs the observations in

their original form. Nonetheless, the two approaches turned out to be very similar, in the sense

that they equally convey the information about the true correlation of the system from the

data under analysis. The performance is evaluated in terms of the Kullback-Leibler distance

and in the presence of synchronous and asynchronous trading. In particular, when the time

interval between transactions is not constant, we observed the existence of a optimal sampling

frequency at which returns should be computed in order to deliver the best approximation

of the true matrix.

In a second study, the Fourier estimator is compared against the Hayashi-Yoshida method,

which is also designed to directly handle asynchronous data. The validity of the method is

widely recognized in the econometric literature. As above, the analysis exploits the Kullback-

Leibler divergence and is based on a large set of stock, but Hayashi-Yoshida matrix fails to

satisfy the requirement of positive definiteness. We suggested to use the shrinkage approach

to address the problem, and also showed that the best estimator in terms of minimum distance

can be obtain by properly combining the Fourier and Hayashi-Yoshida estimators.

Finally, we have performed an exploratory study to evaluate the behavior of the Fourier

method as applied to the estimate of a both time-varying and stochastic correlation processes.

Both in the case where the volatilities of the price processes are kept constant, but the

correlation is stochastic, and the case with both stochastic volatilities and correlation, the

method is showed to deliver good estimates of the underlying correlation dynamics. However,

when the two sources of randomness are combined together, the result is clearly unsatisfactory,

despite the data are synchronous and finely sampled on a regular grid.



CHAPTER 4

Spot Volatility Estimation Using Delta Sequences

In Chapter 2 we have showed the potentials but also the shortcomings of the Fourier method

as applied to spot volatility estimation. Motivated by our findings, we here introduce a new

class of nonparametric estimators based on delta sequences and conceived to include many

of the existing measures as special cases. The full limit theory under infill asymptotics and

finite time-horizon is first derived in the pure diffusive settings. We then extend our class to

include jumps or microstructure noise effects in the observed price process. As a development

of our results, we study the distribution theory of the Fourier estimator and further improve

the computational aspects of the algorithm. Empirical evidence from the stock index futures

market is also provided.

4.1 Introduction

One way of estimating instantaneous volatility consists in assuming that the volatility pro-

cess is a deterministic function of the observable state variable, and nonparametric techniques

can be applied both in absence (Florens-Zmirou, 1993; Bandi and Phillips, 2003; Renò, 2008)

and in presence of jumps (Bandi and Nguyen, 2003; Johannes, 2004; Mancini and Renò,

2009). Fully nonparametric methods where volatility is instead a (random) function

of time include the idea of rolling sample volatility estimators in Foster and Nelson

(1996), see also Andreou and Ghysels (2004), the spot volatility estimation approach

of Bandi and Renò (2008), and the kernel based method of Fan and Wang (2008),

Mykland and Zhang (2008), and Kristensen (2010). Alternatives are given by the Fourier

estimator previously introduced, and the wavelet-based estimators in Genon-Catalot et al.

83
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(1992) and Hoffmann (1999, 2002). In addition, Ogawa and Sanfelici (2008) propose a two-

step regularization scheme designed to filter out microstructure noise, and Boudt et al. (2008)

apply integrated measures to estimate the periodic component in intraday volatility. Finally,

when volatility becomes the (unobservable) state variable in a bivariate process, nonparamet-

ric estimation of the functionals driving the volatility dynamics have been studied in Renò

(2008) using the Fourier method, in Comte et al. (2010) using mean-square methods, and in

Bandi and Renò (2008) using infinitesimal moments.

The purpose of our study is to define a large class of nonparametric estimators in order to

generalize the aforementioned methods. We will follow the intuition that a spot volatility

estimator can be written as the convolution of squared price returns with a function, known

as delta sequence, which is asymptotically equivalent to the distribution of a Dirac delta

function, i.e. it concentrates all the probability mass around one point in the limit. For

applications of delta sequences in statistics we refer to Watson and Leadbetter (1964), and

Walter and Blum (1979). In particular, Watson and Leadbetter provide sufficient conditions

for a sequence of functions to be a delta sequence.

4.2 Spot Volatility Estimation in the Basic Setting

In what follows, we will consider a univariate logarithmic price process X(t) defined on a

filtered probability space (Ω,F , (Ft)0≤t≤T ,P) as specified in Chapter 1. Our results are

based on the set of assumptions outlined below.

Assumption 1. The logarithmic price X(t) is the solution of the following stochastic differ-

ential equation

dX(t) = µ(t)dt+ σ(t)dW (t), (4.1)

where the initial condition X0 is measurable with respect to F0, and W (t) is a standard

Brownian motion defined on the filtered probability space; the drift µ(t) and the diffusion

term σ(t) are adapted and uniformly bounded processes on [0, T ] × Ω. Given a fixed point

t ∈ [0, T ], there exists a constant C > 0 and 0 < γ ≤ 1 such that

|σ2(t) − σ2(s)| ≤ C|t− s|γ (4.2)

almost surely in a neighborhood of t.

The class of processes for σ(t) we wish to estimate point wise is larger than the class of

differentiable functions, and it includes the important case where σ(t) is generated itself by

a Brownian motion as in a stochastic volatility model, see Revuz and Yor (2001) or, more

recently, Kristensen (2010). Condition (4.2) imposes restrictions on the local behavior of the

volatility process, allowing for deterministic patterns, nonstationarity, and is automatically
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satisfied when σ2(t) has continuous trajectories. Moreover, it also allows for finite, but not

infinite, jump activity in the volatility process itself (see Bandi and Nguyen, 2003, and the

methods used therein). In this respect, the estimator we are going to propose below is robust

to jumps in volatility, and so is the Fourier estimator in Section 4.4.

Denote the log-price return by ∆Xi = Xti −Xti−1 . Our proposed estimator takes the form

of a discrete convolution

σ̂2
n,f (t) =

n∑

i=1

fn(t− ti−1) (∆Xi)
2 , (4.3)

where fn(·) is a sequence of real functions whose properties are specified below.

Assumption 2.

i) Let D be an open subset of R such that 0 ∈ D. For each integer n, the real function

fn(x) : R → R is zero outside D, belongs to L4(R), and is continuous and differentiable

in D with supx∈D |f ′n(x)| ≤ Cfn(0) for a suitable constant C > 0 which does not depend

on n.

ii) Define by C+
t the class of stochastic processes defined on [0, T ] and almost surely non-

negative, bounded and continuous in a neighborhood of t ∈ [0, T ]. For all ϕ ∈ C+
t , we

assume that

∫ T

0
fn(t− s)ϕ(s)ds = ϕ(t) +Rn(t), (4.4)

1

fn(0)

∫ T

0
f2

n(t− s)ϕ(s)ds = cfϕ(t) + op(1), (4.5)

1

f2
n(0)

∫ T

0
f4

n(t− s)ϕ(s)ds = Op(fn(0)), (4.6)

where the constant cf ∈]0, 1], and Rn(t) = op(1). The asymptotics op(·) and Op(·) are

defined for n→ ∞ (see Appendix B.1).

We first ask mild smoothness conditions on fn(x) in a neighborhood of zero to be applied

in the asympthotic results derived below. Note that fn(x) is assumed to be zero outside the

open subset D in order to include the indicator function, which leads to the case of realized

volatility estimators. Eq. (4.4) can be reformulated with the short-hand notation

fn(x)
p−→

n→∞
δ(x), (4.7)

where δ(x) is known as the Dirac delta function. It follows that fn(x) is a delta sequence1.

However, we cannot use all the possible sequences since we have to impose some regularity

1See Appendix B.2 and B.3 for a formal definition of Dirac function and delta sequence.
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conditions to make the estimation of spot volatility possible. In Eq. (4.5) we choose to

normalize f2
n(x) by fn(0), but fn(0) can be replaced by any sequence an able to deliver

the same result, such as an =
∫
f2

n(x)dx or an = supx∈D fn(x). Eq. (4.5) also implies that

gn(x) = f2
n(x)/(cffn(0)) fulfills Eq. (4.4) and thus is a delta sequence as well. Eq. (4.6) is a

sufficient condition for the central limit Theorem 4.3 below and is automatically met if gn(x)

satisfies Eq. (4.5).

Some relevant examples of sequences fn(x) satisfying Assumption 2 are the followings. Other

examples can be found in Walter and Blum (1979).

Example 1: Trigonometric functions

The Dirichlet kernel is defined as

fn(x) = DNn(x), (4.8)

where

DNn(x) :=
∑

|h|≤Nn

eihx =
sin
[(
Nn + 1

2

)
x
]

sinx
2

, (4.9)

and Nn is a sequence such that Nn/n→ 0. In this case, fn(0) = 2Nn + 1 and cf = 1. If the

Dirichlet kernel can be negative at some points, a positive trigonometric example is given by

fn(x) = FNn(x) where FNn(x) is the Fejér kernel

FNn(x) :=
∑

|s|≤Nn

(
1 − |s|

Nn + 1

)
eisx =

1

Nn + 1

(
sinNn+1

2 x

sinx
2

)2

, (4.10)

with fn(0) = Nn + 1 and cf = 2
3 . Conditions (4.4)-(4.6) can be verified using the Dirichlet

and Fejér kernel’s properties in the proof of Proposition 4.11.

Example 2: Kernel functions

Consider a non-negative function K(x) such that

(i)
∫

R
K(x)dx = 1; |x|

∣∣K(i)(x)
∣∣→ 0 as |x| → ∞, i = 0, 1; there exists φ, ϕ < ∞ such that∣∣Ki(x)

∣∣ ≤ φ and, for some v > 1,
∣∣Ki(x)

∣∣ ≤ φ ‖x‖−v for ‖x‖ ≥ ϕ, i = 0, 1.

(ii)
∫

R
xiK(x)dx = 0, i = 1, . . . , r − 1, and

∫
R
|x|r |K(x)| dx <∞ for some r ≥ 0.

These regularity conditions are satisfied by most standard kernels for r ≤ 2. See also

Appendix C for a detailed introduction to kernel functions. Then define

fn(x) =
1

hn
K

(
x

hn

)
, (4.11)

where the bandwidth hn → 0. Since fn(0) = 1
hn
K(0), we can interpret fn(0) as the inverse
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of the bandwidth. Moreover, we have

∫ T

0

1

hn
K

(
t− s

hn

)
σ2(s)ds =

n∑

i=1

1

hn
K

(
t− ti−1

hn

)
σ2(ti−1)∆

i
n + oa.s.

(
∆n

hn

)

= σ2(t) + op

(
∆n

hn

)
,

as shown in Kristensen (2010), with cf = K2/K(0). In particular, for the Epanechnikov

kernel cf = 4/5, while cf = 1/
√

2 in the case of the most commonly used Gaussian kernel. In

a similar way, it is possible to verify conditions (4.5) and (4.6). Note that both the Dirichlet

and Fejér kernels previously introduced cannot be casted in the form (4.11).

Example 3: Estimation at boundaries

When estimating σ2(t) at the boundary t = 0, a suitable choice is a delta sequence fn(x) of

the form

fn(x) =

{
0 if x < 0 or x > n−

1
2

n
1
2 if 0 ≤ x ≤ n−

1
2

with fn(0) = n
1
2 and cf = 1.

From Assumption 2, we can easily deduce the rate of convergence of Rn(t) when ϕ(t) = σ2(t).

This is an important first result because Rn(t) estimates the asymptotic bias term. Hereafter,

proofs will be postponed to Appendix E.

Proposition 4.1. Let Assumptions 1, 2 and 3 hold. Then Rn(t) = Op(fn(0)−γ), if

ϕ(t) = σ2(t).

Note that, by taking ϕ(s) = I{t−s∈D}, Eq. (4.4) implies

∫

D
fn(x)dx−→

n→∞
1,

and Eq. (4.5) implies that the value of the constant cf can be recovered by

1

fn(0)

∫

D
f2

n(x)dx−→
n→∞

cf .

In order to work with irregular sampling, we adapt to our settings the concept of quadratic

variation of time defined in Mykland and Zhang (2006).

Assumption 3.

i) Suppose that the process Xt is observed at instants 0 = t0 < t1 < . . . < tn = T , not

necessarily equally spaced, and with T fixed. Then set ∆i
n = ti − ti−1 and ∆n = T

n



4.2. Spot Volatility Estimation in the Basic Setting 88

with maxi=1,...,n{∆i
n} = O(∆n). The quadratic variation of time is defined as H(t) =

limn→∞Hn(t), where

Hn(t) =
1

∆n

∑

ti≤t

(
∆i

n

)2
. (4.12)

Assuming that the above limit exists, we require H(t) to be a continuously differentiable

function.

ii) Uniformly in [0, T ], we have

lim
n→∞

fn(0)

(
Hn(t) −Hn

(
t− 1

fn(0)

))
= H ′(t). (4.13)

The last condition is necessary to interchange limits and differentiability when using the

quadratic variation of time. In the restrictive case of equally spaced observations, ∆i
n = ∆n

and H ′(t) = 1. When observations are more (less) concentrated around t, we have H ′(t) < 1

(H ′(t) > 1).

With the next theorem we derive the asymptotic distribution of the proposed volatility esti-

mator (4.3). Preliminary to this result is the definition of stable convergence, Jacod (1997)

or, more recently, Podolskij and Vetter (2010).

Definition 4.2. A sequence of random variables Gn converges stably in law with limit G,

hereafter Gn
Lst−→ G, defined on an appropriate extension (Ω̃, F̃ , P̃) of a probability space

(Ω,F ,P), if and only if for any F-measurable and bounded random variable H, and any

bounded and continuous function g we have that

lim
n→∞

E [Hg(Gn)] = Ẽ [Hg(G)] .

Stable convergence is slightly stronger than the mere convergence in law, and it is here

necessary to account for the case where σ2(t) is a stochastic process. In the following, we will

use the MN(0, V ) to denote a mixed normal distribution with stochastic variance V .

Theorem 4.3. Let Assumptions 1, 2 and 3 hold. If n, fn(0) → ∞ in such a way that

fn(0)∆n → 0 and Rn = op(1), then we have

σ̂2
n,f (t)

p−→ σ2(t).

If furthermore Rn(t) = op

(√
fn(0)∆n

)
, then

1√
fn(0)∆n

[
σ̂2

n,f (t) − σ2(t)
] Lst−→ MN

(
0, 2cfH

′(t)σ4(t)
)
.
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A similar result is found in Kristensen (2010) when fn(x) is a kernel function. The central

limit theorem condition Rn(t) = op

(√
fn(0)∆n

)
can be rewritten as fn(0)1+2γ∆n → ∞ by

Proposition 4.1, and conforms to the requirement that fn(0)∆n → 0, for every γ ∈ ]0, 1].

Remark 4.4. (Choice of the optimal fn)

The choice of the optimal fn relies on the usual bias and variance trade-off considerations

(see, Appendix C). In the proof of Theorem 4.3, we have seen that the bias of σ̂2
n,f (t) is

proportional to Rn(t), the latter being Op(fn(0)−γ) by Proposition 4.1. It follows that the

mean-square error optimal fn(0) is proportional to (∆n)
− 1

1+2γ . Note that γ is unknown in

practice. By imposing further differentiability to fn (similar to the higher order conditions

typically imposed on kernels), we find that, asymptotically, the mean integrated square error

(MISE) optimal choice is the Epanechnikov kernel, i.e. a function fn such that

fn(x) = fn(0)

[
1 −

(
4

3
fn(0)x

)2
]+

,

where x+ = max(x, 0). The form of the optimal kernel when estimating at boundaries is

derived in Zhang et al. (1999).

Remark 4.5. (Small sample correction)

In small samples, it is advisable to use the estimator

̂̂σ
2

n,f (t) =

∑n
i=1 fn(t− ti−1)(∆Xi)

2

∑n
i=1 fn(t− ti−1)∆i

n

, (4.14)

for which the asymptotic results in Theorem 4.3 are still valid given that

n∑

i=1

fn(t− ti−1)∆
i
n −→ 1, as n→ ∞.

Remark 4.6. (Equivalent estimators)

All the estimators of the form

σ̂2
n,f (t) + ŝn

have the same asymptotics of σ̂2
n,f (t) if ŝn = op

(√
fn(0)∆n

)
and cov

(
sn, σ̂

2
n,f (t)

)
→ 0.

Therefore, the class of our estimators can be defined modulo the difference of op

(√
fn(0)∆n

)

uncorrelated terms.
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4.3 Estimation in presence of jumps and microstructure noise

In this section we show that, with proper adjustments, the estimator σ̂2
n,f (t) can be employed

to the analysis of a more general data generating process where prices are affected by mi-

crostructure noise or can display a finite number of jumps, two important aspects that play

a relevant role in the study of financial time series.

4.3.1 Robustness to microstructure effects

We assume that the logarithmic prices X(ti) are observed at discrete times t0, . . . , tn and are

subject to an observation error due to microstructure noise.

Assumption 4. Let

X(ti) = Y (ti) + εi, (4.15)

where Y (ti) is the unobservable efficient price satisfying Assumption 1, and εi denotes the

noise component. The noise process {εi}0≤i≤n is i.i.d. and independent of Y with E[ǫi] = 0,

Vε = E[ǫ2i ] < +∞ and κε = E[ǫ4i ] < +∞.

Lemma 4.7. Let Assumption 2,3 and 4 hold. If Rn(t) = op(∆nfn(0)) and fn(0)∆n → 0 as

n→ ∞, then

1√
fn(0)∆n

(
1

2
∆nH

′(t)σ̂2
n,f (t) − Vε

)
−→ N

(
0,

1

2
cfH

′(t)
(
κε + V 2

ε

))
, (4.16)

where the above convergence is in distribution.

It is immediate to see that the market microstructure-induced bias is given by

E[σ̂2
n,f (t) − σ2(t)] =

2Vε

∆nH ′(t)
+ o

(
1

∆n

)
, (4.17)

which diverges at rate n. However, when appropriately corrected by a factor 1
2∆nH

′(t), a

consistent estimate of the noise variance can be obtained and is of the form

V̂ε =
1

2
∆nH

′(t)σ̂2
n,f (t).

To derive a consistent and normally distributed estimator of the spot variance, we follow

the two-scale approach in Zhang et al. (2005) and propose an estimator with overlapping

prices at the lower frequencies. The idea is to remove the market microstructure noise by

subtracting volatility estimated at two different frequencies, low and high. Another possible

method is to smooth the observed time series via pre-averaging as in Jacod et al. (2007), or

to use autocovariances and a flat-top kernel as in Barndorff-Nielsen et al. (2008).
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Define an integer n < n. Our small sample bias-corrected estimator is defined as

σ̂2,TS
n,n̄ (t) = σ2

n,n̄(t) − 1

n
σ̂2

n,f (t), (4.18)

where

σ2
n,n̄(t) =

1

n

n−n+1∑

i=1

fn(t− ti−1)
(
Xti+n−1 −Xti−1

)2
(4.19)

is the low-frequency estimator obtained by sampling sparsely over subgrids of observations.

The following Theorem shows that σ̂2,TS
n,n̄ (t) is a consistent and normally distributed estimator

in the presence of microstructure noise.

Theorem 4.8. Let Assumptions 2,3 and 4 hold. If n, fn(0), n → ∞ in such a way that

nfn(0)∆n → 0 and Rn(t) = op(1), then we have

σ̂2,TS
n,n̄ (t)

p−→ σ2(t).

Furthermore, if Rn(t) = op

(√
fn(0)∆nn

)
and n = c(∆n)−

2
3 with c ∈ R, then

1√
fn(0)(∆n)

1
3

[
σ̂2,TS

n,n̄ (t) − σ2(t)
] Lst−→ MN

(
0, 2cf

[
V 2

ε

H ′(t)
+ cH ′(t)σ4(t)

])
.

Remark 4.9. (Choice of the optimal fn or n under microstructure noise)

The rate n ∼ c(∆n)−
2
3 in Theorem 4.8 corresponds to the optimal choice for minimizing the

asymptotic variance, as for the case of integrated volatility in Zhang et al. (2005). However,

other options for n are possible and still lead to the asymptotic normality but at a different

rate and with a different asymptotic variance. In particular, from the proof of Theorem 4.8, it

can be inferred that Proposition 2.1 still holds, and that the leading term in the bias calculation

is again fn(0)−γ. Moreover, following the same reasoning as in Remark 4.4, if n ∼ (∆n)−
2
3 ,

then the MISE-optimal fn(0) turns out to be proportional to (∆n)
− 1

3+6γ . Instead, if fn(0) is

given, the MISE-optimal n for subsampling is found when fn(0)−2γ ∼ fn(0)

n2∆n
+nfn(0)∆n, that

is, when n ∼
√

fn(0)1+2γ

∆n
if ∆nfn(0)1+2γ → 0, and when n ∼ ∆

− 2
3

n otherwise.

4.3.2 Robustness to jumps

We now consider the case where a finite number of Poisson jumps is added to the stochastic

process driving the state variable dynamics.

Assumption 5. The adapted process X(t) defined on [0, T ] satisfies

X(t) = Y (t) + J(t) (4.20)
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with dJ(t) = cJ(t)dN(t), where Y (t) fulfills Assumption 1, J(t) is a doubly stochastic Poisson

process, and N(t) is a non-explosive Poisson counting process whose intensity is an adapted

stochastic process λ(t). The size of the jumps occurring at times τ1, . . . , τN(t) is measured by

adapted, i.i.d. random variables cJ(τj) such that P({cJ(τj) = 0}) = 0 ∀t ∈ [0, T ].

Following the approach in Mancini (2009), we define our estimator to be

/̂σ
2

n,f (t) =

n∑

i=1

fn(t− ti−1) (∆Xi)
2 I{(∆Xi)

2≤ϑn}, (4.21)

where I{·} denotes the indicator function and ϑn is a suitable sequence. The aim of the

threshold ϑn is to disentangle the discontinuous variation induced by the Poisson jumps from

the continuous variation induced by the Brownian motion. Asymptotically, this happens

when ϑn converges to zero slower than the modulus of continuity of the Brownian motion,

as specified in the next Theorem. Note that ϑn can also be either a function of time or a

stochastic process (see Mancini and Renò, 2009). Alternative options to (4.21) are the flat

kernel estimator in Aı̈t-Sahalia and Jacod (2009), or the locally averaged bipower variation

proposed by Veraart (2010). Both approaches admit infinite jump activity in the data.

Theorem 4.10. Let Assumptions 2,3 and 5 hold. If n, fn(0) → ∞ and ϑn → 0 in such a

way that fn(0)∆n → 0, ϑn

(
∆n log 1

∆n

)
−→ ∞ and Rn(t) = op (1), then we have

/̂σ
2

n,f (t)
p−→ σ2(t).

Furthermore, if Rn(t) = op

(√
fn(0)∆n

)
, then

1√
fn(0)∆n

[
/̂σ

2

n,f (t) − σ2(t)
] Lst−→ MN

(
0, 2cfH

′(t)σ4(t)
)
.

This results also indicates how to choose the threshold ϑn. Given that the absolute value

of the increments of the Brownian motion tends to zero a.s. at the same speed as the

deterministic function
√

2∆n ln 1
∆n

, when we find that the squared increment (∆Xi)
2 is larger

than ϑn > 2∆n ln 1
∆n

for small ∆n, than it is likely that a jump has occurred.

4.4 Relation to the Fourier estimator

In this section, we show that the Fourier estimator can be a member of our class under

certain conditions. This is related to the role played by the Fejér and Dirichlet kernels in

the estimation procedure, although this cannot be clearly inferred from the original formula.

Recall that the two kernels were defined in Example 2 of Section 4.2. Due to the large amount
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of calculations required, we will consider the estimator in its complex form (see Chapter 1),

which implies that the volatility estimate is now given by

σ̂2,F
n,N,M (t) =

∑

|k|≤M

(
1 − |k|

M

)
αk(N)eikτ , (4.22)

where

αk(N) :=
T

2N + 1

∑

|s|≤N

cs(dX)ck−s(dX), (4.23)

and

cs(dX) :=
1

T

n∑

j=1

e−isτj−1∆Xj . (4.24)

The last quantity is the discrete Fourier transform of dXt. Here τ = 2πt/T and τj = 2πtj/T

are rescaled times. Malliavin and Mancino (2009) prove that

σ̂2,F
n,N,M (t)

p−→ σ2(t),

when n,N,M → ∞. They also provide a weak convergence result for the whole stochastic

process σ2(t) but the asymptotic distribution properties of σ̂2,F
n,N,M (t) are, to our knowledge,

still unknown. In order to apply the Fourier estimator, it is necessary to set the number

of coefficients of the price N , and the number of volatility coefficients M . Note that both

parameters are functions of n. We have seen in Chapter 2 that a typical value for the first

parameter is N = n/2, also known as Nyquist frequency (Priestley, 1979), while the second

should be chosen in a way that M
N → 0.

The next proposition states the central limit theorem for σ̂2,F
n,N,M (t) in the pure diffusive

settings, i.e. in absence of microstrucure noise, also specializing the weak convergence result

of Theorem 1.5, Chapter 1, to the case of spot volatility.

Proposition 4.11. The Fourier estimator given in (4.22) is such that

σ̂2,F
n,N,M (t) = σ̂2

n,f (t) + φn,f,g(t) (4.25)

where

φn,f,g(t) =
2

gn(0)

n∑

i=1

i−1∑

j=1

fn(t− tj−1)gn(tj−1 − ti−1)∆Xi∆Xj , (4.26)

with

fn(x) =
1

T
FM−1

(
2πx

T

)
gn(x) =

1

T
DN

(
2πx

T

)
.
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Moreover, let Assumption 1,2 and 3 hold and N and M be sequences depending on n such

that, when n,N,M → ∞, we have M
n → 0. If M

N → 0 and N
n → 0, then

√
N

M

[
σ̂2,F

n,N,M (t) − σ2(t)
] Lst−→ MN

(
0,

4

3
σ4(t)

)
.

Instead, if N
n → c ∈]0, 1

2 ] then

√
n

M

[
σ̂2,F

n,N,M (t) − σ2(t)
] Lst−→ MN

(
0,

4

3
H ′(t)σ4(t) +

8

3

(
1

2
− cH ′(t)

)
σ4(t)

)
.

Therefore, the Fourier estimator does not belong directly to our class but it can be rearranged

into the sum of two independent terms: the newly proposed volatility estimator σ̂2
n,f (t), with

fn(·) equal to a rescaled version of the Fejér kernel, and a cross-product term. Let us analyze

the role played by this term in details.

Depending on the ratio N
n , we can distinguish two main scenarios: if N

n → 0, then

φn,f,g(t) = Op

(
M
N

)
, dominating the variance and leading to a slower speed of convergence;

instead, if N
n → c ∈]0, 1

2 ], then φn,f,g(t) = op

(
M
n

)
, implying a faster rate of convergence. In

the latter case, the asymptotic variance reaches its minimum at cH ′(t) = 1
2 , which occurs

when, for instance, prices are observed at regular time intervals, i.e. H ′(t) = 1, and N = n
2 .

This is in agreement with our findings in Chapter 2, where the best volatility reconstruc-

tion, in terms of minimum MSE, is indeed obtained when all the evenly sampled prices are

used. We have also noted that N > n
2 would lead to aliasing effects, however, we can now

assert more precisely that a larger N is actually allowed if H ′(t) < 1, that is, if observations

are unevenly spaced and more concentrated around t than they are on average. To state it

concisely, when N
n → 1

2H′(t)
the Fourier estimator falls within the class of estimators (4.3),

with fn(·) given by the Fejér kernel (4.10), plus a zero-mean term whose variance becomes

negligible in the limit (see Remark 4.6). Under these settings, it is then convenient to remove

the cross-product term as it leads to the same asymptotic distribution but the number of

computational steps is dramatically reduced from O(n2) to O(n).

Finally, we perform a simple numerical test and plot the outcomes in Figure 4.1, when σ2(t)

is both a deterministic function of time and a stochastic process, the latter obtained using the

Heston model (see Chapter 2). All the evenly sampled data are used for a total of n = 1000

tick-by-tick prices with a time interval of 1 second. It is apparent as the trajectory estimated

with the Fourier method without cross products (circles), and the one obtained setting N = n
2

(black line) perfectly overlap, while a lower N clearly generates higher variance.

It is important to note that the conclusions from Proposition 4.11 are obtained under pure

diffusive settings and might not be necessarily true when microstructure effects are considered.

Following the intuition in Barndorff-Nielsen et al. (2008) for the case of integrated volatility,
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Figure 4.1: Fourier estimate of the variance of a single generated path over a sample of n = 1000 tick
prices when σ2(t) is both deterministic (above panel) and stochastic (below panel). The parameters are set
to M = 8, N = n/2 (black line) and N =

√
n (gray line). The estimate (4.3) with the Fejér delta sequence is

also displayed (circles).

then adopted in Mancino and Sanfelici (2008b), the product of disjoint increments in φn,f,g(t)

could effectively act as control variates against such effects and, therefore, it might not be

convenient to remove the term. It follows that our numerical study in Chapter 2 remains

valid and provides useful guidelines to the finite sample behavior of the estimator.
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Figure 4.2: Intraday spot volatility for the S&P500 stock index futures over one year of data calculated using
the two scale estimator (4.18). Days with relevant jump activity are previously removed from the sample.
The inset shows the average estimate of the microstructure noise variance Vǫ.

4.5 Empirical application

In this final Section, we apply the proposed estimators (4.18) and (4.21) to the set of market

data used in Chapter 2 and consisting in high-frequency transactions of the S&P 500 stock

index futures. For both estimators we use the Epanechnikov kernel with h = 15 minutes, the

latter estimated using the normal reference bandwidth selector in Eq. (C.13).

To calculate the low frequency estimator σ2
n,n̄(t) on the right-hand side of (4.18), we inter-

polate the data on a grid of 5 seconds using the previous-tick scheme, i.e. X(t) = X(tj)

for t ∈ [tj , tj+1), and then apply a subsamplying technique similar to the one described in

Zhang et al. (2005) with n = 12, which corresponds to one-minute return. In order to avoid

the effect of jump dynamics in the observed data, we first remove from the sample all the days

characterized by significant price changes using the procedure described below. Figure 4.2

plots the estimated intraday spot volatility averaged across days and calculated in daily time

units. The well known U−shape is clearly detected, as it was already observed in previous

studies, see for instance Andersen and Bollerslev (1997). The estimate of the microstructure

variance Vε is also provided.

To show that our threshold estimator /̂σ
2

n,f (t) is robust to price jumps, we compare it with

the original spot volatility estimator (4.3) using a dataset created by removing all days

with relevant jump activity. The resulting intraday volatility curves then should be almost

identical. To identify the jumps, we employ the C-Tz statistics in Corsi et al. (2009). The test

is similar in spirit to the z statistics of Barndorff-Nielsen and Shephard (2006) but is based
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on an alternative e newly introduced estimator of realized volatility in the presence of jumps:

the threshold multipower variation (see Appendix D). After setting the daily significance

level of a jump to 99%, a total of 28 days are detected and then excluded from the sample.

It is important to point out that we have applied the C-Tz test to series of 5 minutes returns

to avoid microstructure effects. We estimate θn through the iterating procedure developed in

Corsi et al. (2009). The result is a time-dependent threshold. The above panel in Figure 4.3

shows that the volatility curves obtained with the two aforementioned estimators match

almost everywhere, meaning that that /̂σ
2

n,f (t) is not affected by large price movements and is

instead able to provide robust estimates of the intraday volatility dynamics. To highlight this

feature, we apply the same estimation procedure to a sample made of the 28 days initially

removed; the result in plotted in Figure 4.3, below panel. As expected, now the two curves

behave quite differently, especially around the market opening time.

4.6 Summary

In this chapter, we have enlarged the class of spot volatility estimators using the peculiar

property of localizing functions to converge in probability to a Dirac delta function. As a con-

sequence, only their differentiability conditions around zero become relevant, together with

the speed of convergence to the delta function. Under mild hypotheses on the data generating

process, a complete asymptotic theory for the estimators within the class is provided, and

suitable changes to assess the effect of microstructure noise or price discontinuities are pro-

posed. We then applied the resulting estimators to a dataset of high-frequency stock index

futures and successfully recovered the traditional U-shaped intraday volatility pattern. As

a special case, we found the asymptotic distribution of the Fourier spot volatility estimator.

In particular, we carefully examined the estimation methodology and showed that it can be

significantly improved by removing a cross-product term. However, it remains an inefficient

member of our class because the Fejér kernel is based on is not the optimal kernel.



4.6. Summary 98

0 0.2 0.4 0.6 0.8 1

0.8

1.2

1.6

2
x 10

−4

Time

In
tr

a
d
a
y 

vo
la

til
ity

 

 
volatility estimator

threshold volatility estimator

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6
x 10

−4

Time

In
tr

a
d
a
y 

vo
la

til
ity

 

 
volatility estimator

threshold volatility estimator

Figure 4.3: Intraday spot volatility for the S&P500 stock index futures over one year of data calculated
using the original volatility estimator (4.3) and the threshold estimator (4.21) respectively. Above panel:
original dataset without relevant jump activity measured on daily basis. Below panel: sample made of 28 days
characterized by large price movements. The significance level of jump detection is set to 99%.



CHAPTER 5

Conclusions and directions for future research

When the Fourier estimator was first proposed by Malliavin and Mancino back in 2002, it was

welcome as a very promising methodology to estimate volatility and correlation dynamics.

In particular, the advantage of using the observed data directly into the estimation process

without any prior manipulation, that it was showed to induce a bias in the estimate, has

always symbolized one of its most attractive features. Although it was mainly studied by

an inner circle of people, rather than being widely recognized as a nonparametric estimator,

numerical and empirical evidence have highly supported its application to different finan-

cial problems. Further and more recent applications has then focused on the peculiarity of

the estimator to deal with market noise effects by simply choosing a convenient number of

Fourier coefficients. However, all these studies, valuable as they are, employ the procedure

as integrated measure, therefore only partially exploring the potential, but also the possible

shortcomings of the method. This thesis bridges the gab by applying the Fourier method to

locally estimate the univariate or bivariate process driving the underlying price behavior.

Our research has emphasized new and interesting aspects of the methodology. In particular,

with the numerical study on volatility estimation we provide novel and useful guidelines for

setting the fundamental Fourier parameters to an appropriate level. Analytically derived

optimal values would be ideal but they would also require a substantial calculation effort

due to the synthesis of harmonic analysis and stochastic calculus the estimator is built on.

From the study it is also clear that the estimator requires finely sampled series of data to

deliver reliable volatility reconstructions, indicating that it should be mainly apply to the

analysis of liquid stocks. In this way, we would obtain a better trade-off between the amount

of information contained in the sample and that effectively carried into the final estimate

99
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by a proper choice of the leading frequency N . Our empirical applications also support this

conclusion. Unfortunately, when we moved to investigate the multivariate case the obtained

results failed to fulfill our expectations, despite the chosen settings were in favor of the esti-

mator. In addition, we observed that the more realistic context of asynchronous series would

force to select distinct Fourier parameters for the covariance and the variance components

of the correlation coefficient, leaving space to a number of possible combinations that would

not be easy to handle in practice. Although our analysis is based only on simulated data,

and therefore cannot completely reflect market realism, we believe it is accurate enough to

let us draw the preliminary conclusion that the Fourier method should not be yet applied

to multivariate spot volatility estimation using real data, unless a deeper inspection on the

compounded role of the frequencies and resolution parameter is first conducted. When in-

stead the procedure is used to estimate integrated correlation, we obtained a considerable

improvement in the quality of the outcomes: the parameter space shrinks to one frequency

for each asset, and so does the estimation error. On the other side, we found that the Fourier

method and the plain Pearson coefficient on average perform similarly, also suggesting that

the advantage of using the observed market prices directly, as mentioned above, should no

longer be interpreted as a distinctive feature of the estimator. This becomes also evident

when we introduce the FFT algorithm to enhance the computational time involved in the

estimation process.

The above comments on the application of the method, together with the significant effort

required by the implementation itself, has motivated our interest in searching alternative ap-

proaches. The new class of spot volatility estimators developed in this thesis, is characterized

by a much simpler structure, and it is flexible enough to be successfully adjusted against

the impact of microstructure noise and jumps. In this respect, we recall that the Fourier

estimator can be made robust to the presence of market noise but it cannot be informative

about the contribution of jumps in the observed price process because it simultaneously mea-

sures both the variance of the instantaneous return and the quadratic variation of the jump

component. Being able to distinguish between jumps and continuous price movements can

be relevant in terms of risk management and asset allocation purposes. We also proved that

the estimator is a member of our class combined with an additional term, which is showed

to have disruptive effects on the final results under certain conditions.

To conclude, our research has shed new light on the Fourier estimator but has also revealed

some important limitations of the method. At the time we started this work, the estimator

was one of the very few existing nonparametric measures able to recover ex-post market

volatility and, potentially, correlation dynamics. In the meantime, we have witnessed a

growing econometric literature in the field, especially around kernel-based methods, with our

newly introduced class of spot volatility estimators being a very recent example. However,

there is still space for improvement in both directions.
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In our study involving the Kullback-Leibler distance, we have found an optimal frequency,

respectively time scale, at which price returns should be evaluated in order to obtain the best

estimate of the true correlation matrix. It would be now useful to derive this value analyt-

ically, also taking into account both the length of tick-by-tick series and possibly different

levels of asynchronicity in the data. This would allow us to safely choose the correct number

of Fourier price coefficient to insert in the estimation procedure. Another possible extension

would consist in the analysis of microstructure noise effects, from which the natural step

forward would be to analyze real market data. The Kullback-Leibler distance would easily

accommodate the latter case since the theoretical expectation formulas are independent of

the true, and unknown, correlation matrix.

The work on the shrinkage estimator was only preliminary but still very encouraging. Being

able to find and analytical expression for the shrinkage constant would let us define a new

correlation estimator that would be better, in terms of Kullback-Leibler distance, than both

the Fourier and Pearson measures, once its components are optimally combined.

Regarding our new class of estimators, there are two possible developments along the

line. First, we would like to widen our theoretical framework to include the combined

effect of microstructure noise and jumps. To this purpose, the techniques developed in

Jacod et al. (2007) and in Podolskij and Vetter (2009) would represent a good reference

source to start from. An extension to the multivariate case would also be ideal to bridge

the gap with the existing literature. This would also imply the need to adjust the estimator

against the Epps effect.

Finally, the role played by the cross-product term in the equivalent expression we have derived

for the Fourier estimator should be better investigate in the presence of microstructure noise.

Although it is believed to positively contribute to lower the bias generated by the noise,

a precise analytical study is needed to support our intuition. A good understanding of this

peculiar feature would give us the confidence to further extend the application of the method.

For instance, it would be interesting to estimate the variance of the volatility process, the

so-called volatility of volatility, which is pivotal to the pricing process of many volatility-based

derivatives. The Fourier procedure would allow for a direct approach to this issue since it

can be easily iterated, as a result of basic trigonometric properties combined to stochastic

integration.
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APPENDIX A

FFT and Zero-padding

A.1 Zero-padding: an example

In order to illustrate the effect of zero-padding in the FFT calculation, we generate a sequence

of n = 100 stock prices from a simple Geometric Brownian Motion (GBM) model using the

formula

X(t) = X(t− 1)e(µ−
σ2

2
)t+σW (t), t = 1, . . . , 99

setting the initial price and the parameters to x(0) = 100, µ = 0.05 and σ = 0.2 respec-

tively. We follow the steps describe in the chapter to first create uneven transactions,

and then interpolate and extend the data by zero-padding to reach three different lengths:

N = 128, 256, 512. Figure A.1 shows the resulting log returns.

We finally apply the Fast Fourier Trasform to the above series and obtain the results plotted

in Figure A.2. First note how the series has been decomposed into a linear combination of

periodic waves with different frequencies. It is then apparent as the two-sided spectrum does

not change shape but only gets visually denser as the sample size increases. This is because

adding zeros in the time domain leads to interpolation in the frequency domain with new

spectrum lines added between the original N
2 harmonic frequencies, although the information

about the frequency content of the input data remains the same.
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Figure A.1: Series of price returns extended by zero-padding
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Figure A.2: Effect of zero-padding on the output spectrum. Only the frequency interval [-10,10] is plotted
to get a clearer view.
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A.2 The real valued FFT

Assume x1, x2, . . . , xN is a real sequence of length N and arrange it as it was a sequence of
N
2 complex numbers by taking x2j + ix2j+1. For the linearity of the DFT, we get

zk =

N
2∑

j=1

(x2j + ix2j+1)w
jk
N
2

=

N
2∑

j=1

x2jw
jk
N
2

+ i

N
2∑

j=1

x2j+1w
jk
N
2

=: fk + igk k = 1, . . . ,
N

2
. (A.1)

Then, note that

f∗N
2
−k

=

N
2∑

j=1

x∗2j

[
w

j(N
2
−k)

N
2

]∗
=

N
2∑

j=1

x2jw
jk
N
2

= fk

because x2j is real, i.e. the complex conjugate of a real number is the number itself, and

[
w

j(N
2
−k)

N
2

]∗
= e

i 2π
N
2

(N
2
−k)

= ei2πe
−i 2π

N
2

k
= e

−i 2π
N
2

k
= wk

N
2

,

implied by the the periodicity of the twiddle factor. Since x2j+1 are also real, g∗N
2
−k

= gk.

The complex conjugate of zk can be now expressed in terms of fk and gk as shown below

z∗N
2
−k

= f∗N
2
−k

− ig∗N
2
−k

= fk − igk. (A.2)

Combining (A.1) and (A.2), we immediately obtain

fk =
1

2

(
zk + z∗N

2
−k

)
gk =

1

2i

(
zk − z∗N

2
−k

)

Finally, we use these quantities to recover the original yk values

yk =

N
2∑

j=1

x2jw
jk
N
2

+ wk

N
2∑

j=1

x2j+1w
jk
N
2

=: fk + wkgk, k = 1, . . . , N

by direct substitution as follow

yk =
1

2

(
zk + z∗N

2
−k

)
+

1

2i

(
zk − z∗N

2
−k

)
wk.



APPENDIX B

Mathematical definitions

B.1 Order of probability notation: big-Op and little-op

Given two sets of random variables Xn and Yn, where the latter can also be a non-random se-

quence, the notation Xn = op(Yn) means that Xn

Yn

p→ 0, as n approaches an appropriate limit.

It can be equivalently written as Xn = Ynop(1). It follows that the statement Xn = op(1)

implies Xn
p→ 0. The notation Xn = Op(Yn) instead means that the set of values Xn

Yn
is

bounded in probability.

B.2 The Delta function

The delta function was first introduced by Dirac (1930) as a technical device in the mathe-

matical formulation of quantum mechanics. It is defined as

δ(t) =

{
0 if t 6= 0

∞ if t = 0

with ∫ ∞

−∞
δ(t)dt = 1.

Dirac referred to δ(t) as an improper function because is not a function in the usual mathemat-

ical sense: if a function is zero everywhere except at a single point, its integral is necessarily

zero and not one. However, it can be regarded as the limit of a sequence of ordinary functions
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and becomes meaningful when it is integrated against other functions. For this reason the

Dirac’s delta is rather known as generalized function, whose properties can be very different

from the properties of an ordinary function. For instance, a generalized function is always

differentiable and has derivatives of all orders.

By looking at the definition of delta function given above, it should be clear that only the

behavior of the function in the neighborhood of t = 0 really matters. Alternatively, it can be

defined as

δǫ(t) = 0 if |t| > ǫ,

∫ ǫ

−ǫ
δǫ(t)dt = 1

where ǫ > 0 and δǫ(t) → ∞ within a small-sized interval of t = 0. This clearly represents the

delta function as an infinitely high pick in a neighborhood of t = 0 with the area under the

curve equal to 1.

B.2.1 Basic properties

If f(t) is an arbitrary function which is bounded, integrable and continuous at t = 0, then

∫ ∞

−∞
δ(t)f(t)dt = f(0).

Since the delta function takes only a large value at t = 0 and is zero otherwise, the result

of multiplying δ(t) by a function f(t) is simply the value of function itself at zero. The

integration is needed to deal with the infinite height and infinitesimal width of the unit point

mass. Therefore, we could informally write δ(t)f(0) instead of δ(t)f(t) and pull f(0) outside

the integral getting the final result. This important relation is called the sifting property and

it can be easily generalized to the case where t = a, for any constant a, as follow

∫ ∞

−∞
δ(t− a)f(t)ds = f(a).

The other properties are:

• δ(−t) = δ(t) or δ(a− t) = δ(t− a)

• tδ(t) = 0 or (t− a)δ(t− a) = 0

• δ(at) = |a|−1δ(t), (a 6= 0).
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B.3 The Delta Sequence

By a delta sequence we mean any sequence of n continuous and differentiable functions ϕn(t)

defined on an open interval J ∈ R with the following properties:

(i)
∫∞
−∞ ϕn(t)dt = 1 for all n ∈ N

(ii) There is a sequence of positive numbers αn → 0 such that

ϕn(t) = 0 for |t| ≥ αn, n ∈ N

(iii)

lim
n→∞

∫ ∞

−∞
ϕn(t− a)f(t)dt = f(a)

Therefore, in the limit the sequence becomes a delta function. Generally, a delta sequence

can be recognized by observing that the functions are increasingly sharply picked around the

point t = a.



APPENDIX C

Kernel functions overview

Suppose we are given a realization X1, · · · , Xn of an unknown process with marginal distri-

bution f(x), and we wish to estimate f at the point x0. Since the density is the derivative

of the cdf F (x0), we have

f(x0) = lim
h→0

F (x0 + h) − F (x0 − h)

2h

= lim
h→0

Pr(x0 − h < x < x0 + h)

2h

Given our sample of size n, it is possible to use the estimator

f̂(x0) =
1

n

n∑

i=1

1

h
I

(
x0 −

h

2
< Xi < x0 +

h

2

)
(C.1)

where I(·) denotes the usual indicator function. The estimator f̂(x0) is an histogram cen-

tered at x0 with bin width 2h. Since the intervals are not overlapping and the number of

observations in each interval is counted and then divided by the sample size N , we neces-

sarily obtain a estimator that satisfies the based requirement for a density: it sums to one.

Although the histogram represents the easiest and most popular density estimator, it retains

some undesirable properties that can be summarized as follow:

• The resulting density estimate is a step function, even if the underlying density is

continuous, with jumps at the boundaries of the bins. It is not differentiable at the

jumps and has zero derivative elsewhere.
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• Sample size affects the relative frequencies and the visual appearance of the histogram.

• The shape of the histogram crucially depends on the bandwidth, i.e. on the bin width.

There are several objective ways to select a bin width Silverman (1986). However, even

in the ideal case where we somehow know in advance that the true distribution is, for

instance, bell-shaped, there are additional proposed rules for the appropriate number of

bins according to the sample size and, in some cases, also to other factors Scott (1992).

• Histograms vary according to the locations of the bin boundaries. This is clearly illus-

trated in Figure C.1 where the two histograms (panel (a) and (b)) have the same bin

width and the same number of bins but different location of the left and right bound-

aries of the bins. We situation does not improve when we increase the number of the

bins (panel (c) and (d)).

−3 −2 −1 0 1 2 3
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20
(a)
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0

5

10

15

20
(b)
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(c)

−3 −2 −1 0 1 2 3

5
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15
(d)

Figure C.1: Effect of locating different bin boundaries on visual appearance of an histogram given a random
set of data. Reducing the bin width from 1 (panel (a) and (b)) to 0.5 (panel (c) and (d)) does not make any
improvement.

The kernel density estimator introduced by Rosenblatt (1956), generalizes the histogram

estimate (C.1) by using an alternative weighting function as follow

f̂h(x) =
1

n

n∑

i=1

1

h
K

(
x−Xi

h

)
, (C.2)

where K(·) is a kernel function and h is a bandwidth parameter representing the window

size. Figure C.2 shows how, by introducing a kernel function, the probability mass 1
n at each

observed point (the red cross) is smoothly redistributed to its vicinity. The bandwidth h

is the standard deviation of the Gaussian density functions plotted under the final density

estimate.
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Figure C.2: Kernel density estimation spreads the probability mass at each point, depicted by a cross, to
its vicinity and adds the redistributed masses together to obtain the final estimate.

Albeit rather crude, the histogram estimator can be casted in the form (C.2) by considering

the simple case of a Uniform kernel function with K(u) = 1
2 I(|u| ≤ 1). Then,

f̂h(x) =
1

nh

n∑

i=1

1

2
I

(∣∣∣∣
x−Xi

h

∣∣∣∣ ≤ 1

)
, (C.3)

which is another way to rearrange Eq. (C.1). Needless to say, also this estimator is limited

by the several shortcomings listed above. In particular, it is clear how the Uniform kernel

function assigns equal weight 1
2 to each observation Xi no matter its vicinity to x (the point

at which we want estimate the pdf). In addition, points farther away from x get zero weight

due to the definition of indicator function. A more suitable choice would be a continuous

function able to weight the contribution coming from data points close to x more than that

coming from distant observations. For example, consider

f̂h(x) =
1

2nh

n∑

i=1

3

2

[
1 −

(
x−Xi

h

)2
]

I

(∣∣∣∣
x−Xi

h

∣∣∣∣ ≤ 1

)
(C.4)

=
1

n

n∑

i=1

1

h
K

(
x−Xi

h

)
, (C.5)

where K(·) is the shorthand notation for a different weighting function, the well-known

Epanechnikov kernel

K(u) =
3

4
(1 − u2)I(|u| ≤ 1).
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Other commonly used kernels are listed in Table C. These are continuous, non-negative,

symmetric functions and share the following additional properties

(i)
∫

R
K(u)du = 1 and

∫
R
uk(u)du = 0

(ii)
∫

R
|k(u)|du <∞ and

∫
R
u2k(u)du <∞

(iii) (a) |u|K(u) → 0 as |u| → ∞
(b)K(u) = 0 if |u| ≤ u0 for some u0

The last property refers to the effective support of the kernel function. Therefore, even with

the same bandwidth h, different kernels use different amounts of information provided by the

local data points around x (see Figure C.3 for an illustration).

Kernel K(u)

Triangle (1 − |u|)I(|u| ≤ 1)

Biweight 15
16(1 − u2)2I(|u| ≤ 1)

Triweight 35
32(1 − u2)3I(|u| ≤ 1)

Cosine π
4 cos

(
π
2u
)
I(|u| ≤ 1)

Gaussian 1√
2π

exp
(
−1

2u
2
)

Table C.1: Kernel functions.

In using a kernel estimator, the choice of the bandwidth plays a crucial role respect to the

choice of the kernel function. Once the bandwidth is optimally chosen, the form of kernel

does not affect the performance of the estimator, as long as the kernel functions are both

symmetric and unimodal. This is evident from Figure C.4 where the kernel density for one

day of data of the S&P 500 stock index is obtained using different bandwidths. If the optimal

h is calculated by Eq. (C.11) below, the resulting curve (black solid line) appears to be quite

similar both in the case of Gaussian and Epanechnikov kernel. With a smaller bandwidth,

less local data points are available to reduce the variance of the estimate and the curve may

exhibit unrealistic multimodalities and picks (gray solid line). On the contrary, when a larger

bandwidth is applied, the curve appears to be oversmoothed (dashed line), hiding the fine

structure of the underlying distribution and leading to an highly biased estimate.

C.1 Bandwidth selection

It is possible to select the appropriate bandwidth by simply minimizing the mean square

error (MSE) respect to h. Following the usual bias and variance decomposition, we have

MSE(x) = E[f̂h(x) − f(x)]2 (C.6)

= Bias[f̂h(x)]2 + Var[f̂h(x)]. (C.7)
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Figure C.3: Commonly used kernels.
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Figure C.4: Estimated distributions for the S&P 500 stock index (1 day of data) using a Gaussian (left)
and an Epanechnikov (right) kernel with a small (gray solid line), large (dashed line) and an optimally chosen
(solid line) bandwidth.
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The bias is simply given by

Bias[f̂h(x)] = E[f̂h(x)] − f(x)

=
1

n

n∑

i=1

E[Kh(x−Xi)] − f(x)

=

∫

R

1

h
K

(
x− u

h

)
f(u)du− f(x)

where we have used the short-hand notation Kh(u) = 1
hK(u

h). With the change of variable

s = u−x
h , the symmetry of the kernel function, i.e. K(−s) = K(s) and the second order

Taylor expansion of f(u) around x, it can be shown that

Bias[f̂h(x)] =
h2

2
f ′′(x)µ2(K) + o(h2), ash→ 0, (C.8)

provided that f has a continuous second derivative. Here we denote µ2(K) =
∫

R
u2K(u)du

the variance of K. Since the bias is proportional to h2, it can be reduced by choosing a small

bandwidth or, equivalently, a kernel function with a small variance. It also depends on f ′′(x),

the curvature of the density at x and, therefore, it reaches its highest at the peaks of the

distribution. Similarly for the variance we have

Var[f̂h(x)] = Var

[
1

n

n∑

i=1

Kh(x−Xi)

]

=
1

n2

n∑

i=1

Var[Kh(x−Xi)]

=
1

n
Var[Kh(x−X)]

=
1

n
{E[K2

h(x−X)] − E[Kh(x−X)]2}.

Using

E[Kh(x−X)]2 = E[f̂h(x)]2 = O(1)

1

n
E[K2

h(x−X)] =
1

nh2

∫

R

K2

(
x− u

h

)
f(u)du,

a change of variable and Taylor expansion arguments as before, we obtain

Var[f̂h(x)] =
1

nh
‖K‖2

2 f(x) + o

(
1

nh

)
, asnh→ ∞ (C.9)

where ‖g‖2
2 =

∫
R
g2(u)du is the L2-norm (for a formal proof see Fan and Yao (2003), Theorem

5.1). It follows that, given the sample size n, we have to choose a fairly large h in order
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to make the variance small. We also obtain the familiar result that the variance decreases

proportionately with the size of the sample as, for a fixed value of h, increasing n will decrease

the factor nh−1. Finally, substituting (C.8) and (C.9) into (C.6) gives

MSE(x) =

[
h2

2
f ′′(x)µ2(K)

]2

+
1

nh
‖K‖2

2 f(x) + o

(
h2 +

1

nh

)
. (C.10)

If we look at this formula, it is clear that we face the common trade-off between variance and

bias: we surely want to keep them small but increasing h will lower the variance and rise the

bias, while decreasing h will lead to the opposite effect. The optimal choice of h, obtained by

minimizing MSE(x), would then represents a compromise between under and oversmoothing.

To this purpose, we will refer to the mean integrated square error (MISE) instead of MSE, the

former having the advantage of being a global rather than a local measure of the estimation

accuracy, i.e. we are interested in tailoring the bandwidth for all points x in the domain of

f(x) and not for a specific point x. The MISE is defined as follow

MISE =

∫

R

MSE(x)

≈ 1

nh
‖K‖2

2

∫

R

f(x)dx+
h2

4
µ2

2(K)

∫

R

[f ′′(x)]2dx

≈ 1

nh
‖K‖2

2 +
h2

4

∥∥f ′′
∥∥2

2
µ2

2(K).

Minimizing the asymptotic MISE with respect to h gives the optimal bandwidth

hopt =

(
‖K‖2

2

n ‖f ′′‖2
2 µ

2
2(K)

) 1
5

. (C.11)

The resulting minimum MISE is

MISE(hopt) =
5

4

(
‖K‖2

2)
) 4

5 (
µ2(K)

∥∥f ′′
∥∥

2

) 2
5 n−

4
5 . (C.12)

Note that, since hopt = O(n−
1
5 ), the consistency conditions are well satisfied, namely hopt → 0

and nhopt → ∞ as n→ ∞. The quantity nh is sometimes called the “the effective sample size”

and the requirement that nh→ ∞ as n→ ∞ simply means that, as we get more information,

we can average over a narrower region (h → 0) but the amount of local information must

increase at the same time. When both bias and variance goes to zero the kernel density

estimator f̂h(x) is consistent, i.e. converges in mean square to f . In particular, if h = cn−
1
5

for some c > 0 as above, we can achieve a consistency rate of n−
2
5 by taking the square root

of the minimum MISE in Eq. (C.12).

Having obtained the appropriate bandwidth conditional on the choice of a particular form

for K(u), it can be shown that the optimal kernel function, in terms of minimal MISE, is
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the Epanechnikov kernel (C.4). A derivation of this result can be found in Pagan and Ullah

(1999) or in Fan and Yao (2003), Theorem 5.5. However, several studies indicate that the

difference between the value of MISE(hopt) attained by most kernels and the Epanechnikov

kernel is actually very small (see Silverman (1986), Table 3.1 and Fan and Yao (2003), Table

5.1), resulting in a range of estimators having similar relative efficiency levels. Therefore, it

is possible to select the kernel function by simply taking into account computational aspects

and its simplicity, the Gaussian kernel being a popular choice.

Although hopt is theoretically desirable, it depends on the unknown underlying density

through the functional ‖f ′′‖2
2 and can not be applied in practice. A frequently used method

to estimate this quantity consists in assuming that the unknown density f belongs to the

Gaussian family of distributions with mean µ and variance σ2. Then we have

∥∥f ′′
∥∥2

2
=

1

σ5

3

8
√
π
≈ 0.212

σ5
,

where σ can be replaced by the sample standard deviation s. To apply (C.11) we also need

to choose a kernel function. For instance, if the take either the Gaussian kernel or the

Epanechnikov kernel, we obtain the following bandwidths

ĥ =

{
1.06n−

1
5 s Gaussian kernel

2.34n−
1
5 s Epanechnikov kernel

(C.13)

However, the careful reader might object that assuming the normality of f is just the opposite

of the philosophy of nonparametric density estimation. This is true but what we achieve by

working under this assumption is an explicit, applicable formula for bandwidth selection. In

practice, we do not know whether X is normally distributed. If it is, then ĥ will give the

optimal bandwidth. If not, ĥ will give a bandwidth not to far from the optimum value if

the data are nearly Gaussian. For this reason we refer to (C.13) as a simple rule of thumb

or, more formally, as the the normal reference bandwidth selector (Silverman, 1986). The

method is often a reasonable choice in many applications and, in particular, provides good

results when the distributions are unimodal, fairly symmetric and the tails are not too fat,

as it seems to be the case for the series in Figure C.4. This is also the method we have apply

in a empirical analysis of this chapter.

The Silverman’s rule of thumb belongs to the class of the plug-in methods for bandwidth

selection. More refined versions of these methods, that also include the case of multimodal

densities, can be found in Woodroofe (1970), Scott et al. (1977), Park and Marron (1990)

and Sheather and Jones (1991). Another important technique for selecting the bandwidth is

the cross-validation procedure. This data-driven approach is known to fulfill certain opti-

mality properties and has been intensively investigated by Rudemo (1982), Bowman (1984),

Scott and Terrell (1987), Hall et al. (1992) and, more recently, Hart and Yi (1998).



APPENDIX D

The C-Tz jump detection test

The test statistics proposed by Corsi et al. (2009) and used in the empirical analysis to verify

the presence of significative jumps is given by

C-Tz = ∆
1
2
n

(RV(X) − C-TBPV(X)) · RV(X)−1

√(
π2

4 + π + 5
)

max
{

1, C-TTriPV(X)

(C-TBPV(X))2

} .

Under the null hypothesis of no jumps in the series, the authors show that C-Tz → N(0, 1)

stably in law as ∆n → 0. The different components of the test are defined as follow:

• Realized volatility

RV(X) =
n∑

i=1

(∆Xi)
2

• Corrected threshold multipower variation

C-TMPV(X)(γ1,...,γM ) = ∆
1− 1

2
(γ1+···+γM )

n

[T/∆n]∑

i=M

M∏

k=1

Zγk
(∆Xj−k+1, θj−k+1)

for γ1, . . . , γM > 0, with

Zγ(x, y) =





|x|γ if x2 ≤ y

1
2Φ(−cθ)

√
π
(

2
c2
θ

y
) γ

2
Γ
(

γ+1
2 ,

c2
θ

2

)
if x2 > y

and where Φ(x) is the standard normal cumulative function
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• Corrected threshold bipower variation

C-TBPV(X) = µ−2
1 C-TMPV(X)(1,1)

• Corrected threshold tripower variation

C-TTriPV(X) = µ−3
4
3

C-TMPV(X)(
4
3
, 4
3
, 4
3
)

The corrected versions of the above estimators overcome the finite sample weaknesses of the

multipower variation introduced by Barndorff-Nielsen and Shephard (2004, 2006) to estimate

realized variance in the presence of jumps. The estimator is defined as

MPV(X)(γ1,...,γM ) = ∆
1− 1

2
(γ1+···+γM )

n

[T/∆n]∑

i=M

M∏

k=1

|∆Xi−k+1|γ
k

.

To give an idea of the problems arising with the use of this technique in practice, suppose

that ∆Xi contains a jump. By definition, the estimator would multiply two adjacent returns,

∆Xi−1 and and ∆Xi+1. Asymptotically, both these returns will vanish and the multipower

variation will converge to the integrated continuous volatility. But for finite ∆n these re-

turns will not vanish, causing a positive bias which will be larger as ∆Xi increases. The

problem cannot be accommodated by simply shrinking the observation interval, since market

microstructure effects would jeopardize the estimation in an unpredictable way. This con-

sideration suggests that the bias of multipower variation will be extremely large in case of

consecutive jumps. In the above estimators, jumps larger than θi are minimized using the

function Zγ(x, y), thus correcting for the bias. The threshold is a positive random function

given by

θt = c2θ V̂t,

where c2θ is a scale-free constant and V̂t is an auxiliary estimator of σ2(t). In the empirical

application we use cθ = 3. This parameter can be used to change the threshold and test

the robustness of proposed estimators with respect to the choice of the threshold. The local

variance is estimated by iterating in Q the following nonparametric filter of length 2L + 1

(Fan and Yao, 2003), adapted to the presence of jumps in Corsi et al. (2009) and defined as

V̂ Q
t =

L∑

i=−L, i6=−1,0,1

K

(
i

L

)
(∆Xt+1)

2I{(∆Xt+1)2≤ c2
V

V̂ Q−1
t+1 }

L∑

i=−L, i6=−1,0,1

K

(
i

L

)
I{(∆Xt+1)2≤ c2

V
V̂ Q−1

t+1 }

, Q = 1, 2, · · ·

with V̂ 0 = ∞ as starting values, which corresponds to using all the available observations in

the first step, and CV = 3.
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At each iteration, large returns are eliminated by the condition (∆Xt+1)
2 ≤ c2V V̂

Q−1
t . The

iterations stop when no further large returns are removed. With high frequency data, this

typically happens with Q = 2, 3 iterations. The bandwidth parameter L controls the number

of adjacent returns included in the estimation of the local variance around point t. In our

application, we set L = 25. We also choose to employ the Gaussian kernel K(x) = 1√
2π
e

x2

2 .



APPENDIX E

Proofs

Proof of Proposition 4.1. By the mean value theorem, there exists a number ξn,x such that
fn(x) = fn(0) + f ′n(ξn,x)x for all x ∈ [−1/2fn(0), 1/2fn(0)]. Using the bound on the first
derivative in Assumption 2, we also have |fn(x) − fn(0)| ≤ Cfn(0)|x|. Therefore, by setting
the test process in Eq. (4.4) to ϕ(s) = I{|t−s|≤1/(2fn(0))}, we obtain

∣∣∣∣∣

∫ 1
2fn(0)

− 1
2fn(0)

fn(x)dx − 1

∣∣∣∣∣ ≤
1

4

C

fn(0)
−→ 0.

Instead, with ϕ(s) = σ2(s)I{|t−s|≤1/(2fn(0))} and the local Hölder property (4.2),

|Rn(t)| =

∣∣∣∣
∫ T

0
fn(t− s)σ2(s)I{|t−s|≤1/(2fn(0))}ds− σ2(t)

∣∣∣∣ ≤ Ct

∫ 1
2fn(0)

− 1
2fn(0)

fn(x)|x|γdx. (E.1)

Again, by the mean value theorem and the bound on the first derivative we can conclude
that

|Rn(t)| ≤ C̆fn(0)−γ ,

where C̆ is a suitable constant.

Lemma E.1. Consider a bounded process A(t) defined in [0, T ] and satifying the same prop-
erties of σ2(t). Under Assumptions 2 and 3 we have

1

∆n

n∑

i=1

fn(t− ti−1)A(ti−1)(∆
i
n)2

p−→
n→∞

H ′(t)A(t) (E.2)

and
1

∆nfn(0)

n∑

i=1

f2
n(t− ti−1)A(ti−1)(∆

i
n)2

p−→
n→∞

cfH
′(t)A(t). (E.3)
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Proof. It is enough to show Eq. (E.2), since f2
n/(cffn(0)) is also a delta sequence. By

Assumption 2,

H ′(t)A(t) =

∫ T

0
fn(t− s)H ′(s)A(s)ds+ op(1) =

n∑

i=1

fn(t− ti−1)H
′(ti)A(ti)∆

i
n + op(1).

Moreover, we can write

1

∆n

n∑

i=1

fn(t− ti−1)A(ti−1)(∆
i
n)2 −

n∑

i=1

fn(t− ti−1)H
′(ti)A(ti)∆

i
n =

=
n∑

i=1

fn(t− ti−1)A(ti)∆
i
n

(
H ′(ti) −

∆i
n

∆n

)
.

If ǫn is a sequence such that ǫnfn(0) → 0, then Eq. (4.13) implies

∣∣∣∣H
′(ti) −

Hn(ti) −Hn(ti − ǫn)

ǫn

∣∣∣∣ −→ 0,

uniformly in 1 ≤ i ≤ n. Now, set ǫn = (1 − ǫ′)∆i
n, where ǫ′ is an arbitrarely small positive

number. Since ∆i
nfn(0) = O(∆nfn(0)) → 0, we get

∣∣∣∣H
′(ti) −

∆i
n

∆n(1 − ǫ′)

∣∣∣∣ −→ 0,

uniformly in 1 ≤ i ≤ n, and since
∑n

i=1 fn(t− ti−1)A(ti)∆
i
n

p−→ A(t) by the consistency part
of Theorem 4.3, we finally obtain Eq. (E.2).

Proof of Theorem 4.3. It is not restrictive to set µ(t) = 0, see Kristensen (2010) and
Lee and Mykland (2008). If ϕ(s) = σ2(s)I{|t−s|>z} for a given number z > 0, then Assump-
tion 2 implies ∫

|t−s|>z
fn(t− s)σ2(s)ds

p−→ 0.

Therefore, only the convergence in a neighborhood of t matters and we can assume that
property (4.2) holds in [0, T ]. We start by proving convergence in law. Consider

∫ T

0
fn(t− s)σ2(s)ds−

n∑

i=1

fn(t− ti−1)

∫ ti

ti−1

σ2(s)ds =

=
n∑

i=1

∫ ti

ti−1

[fn(t− s) − fn(t− ti−1)]σ
2(s)ds.

By the mean value theorem, there exists a point ξi ∈ [ti−1, s] such that

[fn(t− s) − fn(t− ti−1)] ≤ f ′n(ξi)|s− ti−1|,

and using the properties of fn specified in Assumption 2, we have
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∫ T

0
fn(t− s)σ2(s)ds−

n∑

i=1

fn(t− ti−1)

∫ ti

ti−1

σ2(s)ds =

=
n∑

i=1

∫ ti

ti−1

f ′n(ξi)σ
2(s)|s− ti−1|ds

≤ Cfn(0)
n∑

i=1

1

2
(∆i

n)2 = Oa.s.(fn(0)∆n).

The last term follows from the fact that σ2(t) is a bounded process, i.e.

∫ ti

ti−1

σ2(s)|s− ti−1|ds ≤
(

sup
t∈[0,T ]

σ2(t)

)∫ ti

ti−1

|s− ti−1|ds =
1

2

(
sup

t∈[0,T ]
σ2(t)

)
(∆i

n)2,

and from the definition of the quadratic variation of time in Eq. (4.12). Finally, using
Eq. (4.4),

1√
fn(0)∆n

[
n∑

i=1

fn(t− ti−1)∆X
2
i − σ2(t)

]
=

=
1√

fn(0)∆n

[
n∑

i=1

fn(t− ti−1)∆X
2
i −

∫ T

0
fn(t− s)σ2(s)ds+Rn(t)

]

=
1√

fn(0)∆n

[
n∑

i=1

fn(t− ti−1)

(
∆X2

i −
∫ ti

ti−1

σ2(s)ds

)
+Oa.s.(fn(0)∆n) +Rn(t)

]

=
n∑

i=1

fn(t− ti−1)√
fn(0)∆n



(∫ ti

ti−1

σ(s)dW (s)

)2

−
∫ ti

ti−1

σ2(s)ds




+Oa.s.

(√
fn(0)∆n

)
+

Rn(t)√
fn(0)∆n

(E.4)

:=
n∑

i=1

Ui + op(1),

since Rn(t) = op

(√
fn(0)∆n

)
. To derive a central limit theorem stable in law for

∑n
i=1 Ui,

we refer to Theorem IX.7.28 in Jacod and Shiryaev (2003). According to this result, the
following are sufficient conditions

(i)
n∑

i=1

Ei−1[Ui]
p−→ 0 (iii)

n∑

i=1

Ei−1[U
4
i ]

p−→ 0

(ii)
n∑

i=1

Ei−1[U
2
i ]

p−→ Vt (iv)
n∑

i=1

Ei−1[Ui∆Hi]
p−→ 0,

where Ei−1[·] denotes the conditional expectation E[·|Fti−1 ].
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In (iv), we have that H = W or H = B, and B is any bounded martingale orthogonal (in
the martingale sense) to W . It is immediate to prove the first condition using Itô isometry

n∑

i=1

Ei−1 [Ui] =
n∑

i=1

fn(t− ti−1)√
fn(0)∆n

Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)2

−
∫ ti

ti−1

σ2(s)ds




=
n∑

i=1

fn(t− ti−1)√
fn(0)∆n

[∫ ti

ti−1

Ei−1[σ
2(s)]ds−

∫ ti

ti−1

Ei−1[σ
2(s)]ds

]

= 0.

For condition (ii), consider

n∑

i=1

Ei−1

[
U2

i

]
=

n∑

i=1

f2
n(t− ti−1)

fn(0)∆n

Ei−1








(∫ ti

ti−1

σ(s)dW (s)

)2

−
∫ ti

ti−1

σ2(s)ds





2


=
n∑

i=1

f2
n(t− ti−1)

fn(0)∆n



Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)4

+ Ei−1



(∫ ti

ti−1

σ2(s)ds

)2

 −

− 2Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)2(∫ ti

ti−1

σ2(s)ds

)




 .

Now, write

Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)4

 = Ei−1



(∫ ti

ti−1

[σ(ti−1) + σ(s) − σ(ti−1)] dW (s)

)4



= 3σ4(ti−1)(∆
i
n)2 + Ei−1



(∫ ti

ti−1

[σ(s) − σ(ti−1)] dW (s)

)4

+

+ 6σ2(ti−1)∆
i
nEi−1



(∫ ti

ti−1

[σ(s) − σ(ti−1)] dW (s)

)2

 .

Using the Burkholder-Davis-Gundy inequality and the local Hölder property (4.2), for suitable
positive constants C1, C2 and C3, we have

Ei−1



(∫ ti

ti−1

[σ(s) − σ(ti−1)] dW (s)

)4

 ≤ C1Ei−1



(∫ ti

ti−1

[σ(s) − σ(ti−1)]
2 ds

)2



≤ C2(∆
i
n)2(∆i

n)4γ = op(∆
i
n)2,
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and

σ2(ti−1)∆
i
nEi−1



(∫ ti

ti−1

[σ(s) − σ(ti−1)] dW (s)

)2

 =

= σ2(ti−1)∆
i
nEi−1

[(∫ ti

ti−1

[σ(s) − σ(ti−1)]
2 ds

)]

≤ C3σ
2(ti−1)

(
∆i

n

)2+2γ
= op(∆

i
n)2.

Similarly,

Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)2(∫ ti

ti−1

σ2(s)ds

)
 = σ4(ti−1)(∆

i
n)2 + op(∆

i
n)2.

From the above results, together with Assumption (4.5) and Lemma E.1, we get

n∑

i=1

Ei−1

[
U2

i

]
= 2

n∑

i=1

f2
n(t− ti−1)

fn(0)∆n

[
σ4(ti−1)(∆

i
n)2 + op(∆

i
n)2
]

p−→ 2cfσ
4(t)H ′(t).

Proceeding as earlier, condition (iii) is also verified since

n∑

i=1

Ei−1

[
U4

i

]
=

Op(∆n)

f2
n(0)

∫ T

0
f4

n(t− s)σ8(s)ds+ oa.s.(∆n)4+γ ,

which is Op(fn(0)∆n) given Eq. (4.6).

Finally, we consider condition (iv) starting from the case H = B. Using the boundedness of
B, which implies |∆Bi| ≤ C, we obtain

n∑

i=1

Ei−1 [Ui∆Bi] ≤ C
n∑

i=1

fn(t− ti−1)√
fn(0)∆n

Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)2

−
∫ ti

ti−1

σ2(s)ds




= Op(1).

When instead H = W ,

n∑

i=1

Ei−1 [Ui∆Wi] ≤

≤
n∑

i=1

fn(t− ti−1)√
fn(0)∆n

√√√√√Ei−1



(∫ ti

ti−1

σ(s)dW (s)

)2

−
∫ ti

ti−1

σ2(s)ds




2√
Ei−1

[
(∆W 2

i )
]

= Op(∆n) ·Op(1).

This completes the proof of stable convergence of σ̂2
n,f (t).
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For the convergence in probability the condition Rn(t) = op

(√
fn(0)∆n

)
is not required.

Indeed, to prove the convergency result, it is enough to multiply both sides of Eq. (E.4) by√
fn(0)∆n and apply the law of large numbers to the sum of martingale differences, see e.g.

Lemma 4.1 in Jacod (2007).

Proof of Lemma 4.7. The proof is based on that of Theorem 4.3. In what follows, we compute
conditional expectations with respect to a new augmented filtration Fε

t obtained by including
the observed noise (εi)ti≤t for each t ∈ [0, T ]. Set µ(t) = 0 and write

σ̂2
n,f (t) = An +Bn + Cn,

where

An =

n∑

i=1

fn(t− ti−1)(∆Yi)
2

Bn = 2
n∑

i=1

fn(t− ti−1)∆Yi(εi − εi−1)

Cn =
n∑

i=1

fn(t− ti−1)(εi − εi−1)
2.

Note that An and Cn are independent and Cov(An, Bn) = Cov(Bn, Cn) = 0. For the first
term An, we can simply apply Theorem 4.3. Next, define

UB,i := 2fn(t− ti−1)∆Yi(εi − εi−1)/
√
fn(0).

We have

n∑

i=1

Ei−1 [UB,i] = 0

n∑

i=1

Ei−1

[
U2

B,i

]
= 8

n∑

i=1

f2
n(t− ti−1)

fn(0)
VεEi−1

[
(∆Yi)

2
] p−→ 8Vεcfσ

2(t)

n∑

i=1

Ei−1

[
U4

B,i

]
= Op(∆n),

the latter equality attained using Eq. (4.6). Then

√
fn(0)Bn −→ MN

(
0, 8Vεcfσ

2(t)
)
.

Now, set zn = 1
2∆nH

′(t). We have that znAn
p→ 0 with rate ∆

3
2
nfn(0)

1
2 by Theorem 4.3, and

znBn
p→ 0 with rate ∆nfn(0)−

1
2 for the above result. Consider

UC,i =

√
1

∆nfn(0)

(
znfn(t− ti−1)(εi − εi−1)

2 − Vǫ∆
i
nfn(t− ti−1)

)
.
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As in the proof of Theorem 4.3, we have that znCn − Vε =
∑n

i=1 UC,i + op(1) under the
assumption Rn(t) = op(fn(0)∆n) and

n∑

i=1

Ei−1 [UC,i] = 0

n∑

i=1

Ei−1

[
U2

C,i

]
=

n∑

i=1

f2
n(t− ti−1)

fn(0)

(
2κε + 6V 2

ε

4
− V 2

ε

)
H ′(ti−1)∆

i
n

p−→ 1

2

(
κε + V 2

ε

)
cfH

′(t)

n∑

i=1

Ei−1

[
U4

C,i

]
= op(fn(0)∆n),

which implies Eq. (4.16).

Proof of Theorem 4.8. As in the previous result, we set µ(t) = 0 and compute conditional
expectations with respect to the new augmented filtration Fε

t . Write

σ̂2,TS
n,n̄ (t) := Sn +R1,n +R2,n +R3,n (E.5)

where

Sn =
1

n

n−n+1∑

i=1

fn(t− ti−1)
(
Yti+n−1 − Yti−1

)2

R1,n =
1

n

n−n+1∑

i=1

fn(t− ti−1)
[(
εti+n−1 − εti−1

)2 −
(
εti − εti−1

)2]

R2,n =
2

n

n−n+1∑

i=1

fn(t− ti−1)
[(
εti+n−1 − εti−1

) (
Yti+n−1 − Yti−1

)
−
(
εti − εti−1

)
∆Yi

]

R3,n = − 1

n

n−n+1∑

i=1

fn(t− ti−1)(∆Yi)
2.

By Theorem 4.3, R3,n = Op

(√
fn(0)∆n

n

)
→ 0. Now note that

Sn =
1

n

n−n+1∑

i=1

fn(t− ti−1)




n−1∑

j=0

∆Yi+j




2

=
1

n

n∑

i=1

(∆Yi)
2




n∧i∑

j=1

fn(t− ti−j)




︸ ︷︷ ︸
An

+
2

n

n∑

i=1

∆Yi




n−1∧i∑

j=1

fn(t− ti−j−1)
(
Yti−1 − Yti−j−1

)



︸ ︷︷ ︸
Bn

.
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Using the mean value theorem and f ′n(x) = O(fn(0)),

n∧i∑

j=1

fn(t− ti−j) = (n ∧ i)fn(t− ti−1) +O
(
n2fn(0)∆n

)
,

and together with Theorem 4.3,

An = σ2(t) +Op

(
nfn(0)∆n

)
.

End effects are op(nfn(0)∆n) and can be systematically neglected. For the term

Bn :=
∑n

i=1 Ũ
B
n,i we have

∑n
i=1 Ei−1

[
ŨB

n,i

]
= 0 and

n∑

i=1

Ei−1

[(
ŨB

n,i

)2
]

=

=
4

n2

n∑

i=1

σ2(ti−1)∆
i
n




n−1∧i∑

j=1

f2
n(t− ti−j−1)

(
Yti−1 − Yti−j−1

)2

+ op(1)

=
4

n2

n∑

i=1

σ4(ti−1)∆
i
n

n−1∧i∑

j=1

f2
n(t− ti−j−1) (ti−1 − ti−j−1) + op(1)

= 4n
n∑

i=1

1

2
σ4(ti−1)H

′(ti−1)∆nf
2
n(t− ti−1)∆

i
n + op(nfn(0)∆n),

where we used the Hölder property, the mean value theorem and that

n−1∑

j=1

(ti−1 − tti−j−1) = H ′(ti−1)∆n
(n− 1)(n− 2)

2
+ o(1)

as implied by lemma E.1 for sufficiently large n. Similarly, we can show that

n∑

i=1

Ei−1

[(
ŨB

n,i

)4
]

= op(nfn(0)∆n),

which implies 1√
nfn(0)∆n

Bn
d−→ MN

(
0, 2cfσ

4(t)H ′(t)
)
.

Therefore, Sn = σ2(t) +Op

(√
fn(0)∆nn

)
. Proceeding as earlier, it is possible to show that

n∑

i=1

Ei−1

[(
ŨB

n,i + ŨA
n,i

)4
]

= op(nfn(0)∆n),

where An :=
∑n

i=1 Ũ
A
n,i.
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Since Cov(An, Bn) = 0, we also have

1√
nfn(0)∆n

(
Sn − σ2(t)

)
−→ MN

(
0, 2cfσ

4(t)H ′(t)
)
.

Note that subsampling does not improve the asymptotic variance because of the localization
procedure induced by the Dirac delta sequence. For integrated volatility instead, subsampling
provides a factor 4

3 instead of 2.

We now evaluate the remaining terms using the independence between Y (t) and εt and the
following identities, which hold true for every i, j > 1 under our assumptions:

E
[
(εi+j − εi)

2
]

= 2Vε

E [(εi+j − εi) (εi+1 − εi)] = Vε

E
[
(εi+j − εi)

4
]

= 2κε + 4V 2
ε

E
[
(εi+j − εi)

2 (εi+1 − εi)
2
]

= κε − V 2
ε

E
[(
Yti+j

− Yti

) (
Yti+1 − Yti

)]
= E[σ2(ti)]∆

i+1
n +Oa.s.

(
∆

1+γ
n

)

E
[(
Yti+j

− Yti

)2 (
Yti+1 − Yti

)2]
= E[σ2(ti)]E[σ2(ti+1)]∆

i+2
n ∆i+1

n (j − 1) +

+3E[σ2(ti−1)]
(
∆i+1

n

)2
+Oa.s(∆

1+γ
n ).

Write R1,n :=
∑n

i=1 U
R1
n,i+n−1. Then, for sufficiently large n,

n∑

i=1

Ei+n−2

[
UR1

n,i+n−1

]
=

=
1

n

n−n+1∑

i=1

fn(t− ti−1)Ei+n−2

[
ε2ti+n−1

− 2εti+n−1εti−1 − ε2ti + 2εti−1εti

]

=
1

n

n−n+1∑

i=1

fn(t− ti−1)
[
Vε − ε2ti + 2εti−1εti

] p−→ 0,

where we have applied the law of large numbers. Similarly,

n∑

i=1

Ei+n−2

[(
UR1

n,i+n−1

)2
]

=

=
1

n2

n−n+1∑

i=1

f2
n(t− ti−1)

[
κε + 4Vεε

2
ti−1

+ ε4ti + 4ε2tiε
2
ti−1

− 4E[ε3]εti−1+

−2Vεε
2
ti + 4Vεεtiεti−1 − 4ε3tiεti−1

]

p−→ cf
fn(0)

n2∆nH ′(t)

(
2κε + 6V 2

ε

)
.

Proceeding in the same way, we can also show that
∑n

i=1 Ei+n−2

[(
UR1

n,i+n−1

)4]
= op(1).
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This implies the asymptotic mixed normality of R1,n with the variance above. Now, set
R2,n =

∑n
i=1 U

R2
n,i+n−1. We have

n∑

i=1

Ei+n−2 =
[
UR2

n,i+n−1

]
=

1

n

n−n+1∑

i=1

fn(t− ti−1)
[
−εti−1

(
Yti+n−2 − Yti−1

)]
= op(1)

and

n∑

i=1

Ei+n−2

[(
UR2

n,i+n−1

)2
]

=

=
4

n2

n−n+1∑

i=1

f2
n(t− ti−1)




(Vε + ε2ti−1
)[σ2(ti+n−2)∆

i+n−1
n︸ ︷︷ ︸

Op

(√
fn(0)

n2

)
+ (Yti+n−2 − Yti−1)

2

︸ ︷︷ ︸
Op

(√
fn(0)

n

)

+[2∆Yi+n−1(Yti+n−2 − Yti−1)]

+
(
εti − εti−1

)2
(∆Yi)

2

︸ ︷︷ ︸
Op

(√
fn(0)

n2

)

+2εti−1

(
εti − εti−1

)
(Yti+n−2 − Yti−1)




= op

(√
fn(0)

n

)
,

where the last asymptotic order refers to the expression within brackets. Analogously, it can

be shown that
∑n

i=1 Ei+n−2

[(
UR2

n,i+n−1

)4]
= op(1). Moving to cross-terms, we have

n∑

i=1

Ei+n−2

[
UR2

n,i+n−1U
R1
n,i+n−1

]
= op

(
fn(0)

n2∆n

)

and the same applies between R2,n and R3,n while R1,n and R3,n are independent. Therefore,

the leading order terms are (Sn − σ2(t)) and R1,n = Op

(√
fn(0)

∆n(n)2

)
. When n = c∆

− 2
3

n ,

the rates of convergence of Sn and R1,n are the same and the final result follows. Stable
convergence in law can be derived as in the proof of Theorem 4.3.

Proof of Theorem 4.10. Denote by X = Y + J where Y is a continuous semimartingale. By
virtue of Theorem 1 in Mancini (2009), for n large enough, we can write

/̂σ
2

n,f (t) =
n∑

i=1

fn(t− ti−1)(∆Yi)
2 −

n∑

i=1

fn(t− ti−1)(∆Yi)
2I{∆Ni 6=0}.

Theorem 4.3 can be applied to the first term, while the second term is Op(NT ∆nfn(0)), or

equivalently, op

(√
∆nfn(0)

)
, where NT is the Poisson counting process and is vanishing in

the limit.
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Lemma E.2. Let Assumptions 1,2,3 hold. With φn,f,g defined in (4.26), let fn, gn be two

sequences satisfying Assumption 2 with gn symmetric around 0 and such that gn(0)
fn(0) → ∞. If

∆ngn(0) → 0, then √
gn(0)

fn(0)
φn,f,g(t)

Lst−→ MN(0, 2 cfcgσ
4(t)). (E.6)

Proof. As above, we set µ(t) = 0 and define

n∑

i=1

Ui :=

√
gn(0)

fn(0)

∑

i

2

gn(0)

∑

j<i

fn(t− tj−1)gn(tj−1 − ti−1)∆Xi∆Xj ,

with the Ui terms measurable with respect to Fti . Condition (i) in the proof of Theorem 4.3
is clearly satisfied as Ei−1[∆Xi∆Xj ] = ∆XjEi−1[∆Xi] = 0. To valuate condition (ii), we use
previous arguments to find

n∑

i=1

Ei−1

[
U2

i

]
=

4

fn(0)gn(0)

∑

i

Ei−1





∑

j<i

fn(t− tj−1)gn(tj−1 − ti−1)∆Xi∆Xj




2


=
4

fn(0)gn(0)

∑

i

∑

j<i

f2
n(t− tj−1)g

2
n(tj−1 − ti−1)Ei−1[(∆Xi)

2](∆Xj)
2

=
4

fn(0)gn(0)

∑

i

∑

j<i

f2
n(t− tj−1)g

2
n(tj−1 − ti−1)

(
σ2(ti−1)σ

2(tj−1)∆
i
n∆j

n+

+ oa.s.[(∆
i
n)1+γ(∆j

n)1+γ ]
)

=
4

fn(0)gn(0)

∫ T

0
f2

n(t− u)σ2(u)

(∫ u−∆nH′(s)

0
g2
n(u− s)σ2(s)ds

)
du+

+ oa.s.[(∆n)1+γ(∆n)1+γ ],

where we have applied the law of large numbers. We now study the convergence of the term

Gn :=
1

gn(0)

∫ u−∆nH′(s)

0
g2
n(u− s)σ2(s)ds.

As in the proof of Proposition 4.1, we have that

G′
n :=

1

gn(0)

∫ ∆nH′(s)

−∆nH′(s)
g2
n(u− s)σ2(s)ds = Op(gn(0)∆n),

and Gn has the same limit of 1−G′
n

2 due to the symmetry of gn(·). Therefore, if ∆ngn(0) → 0,
Gn converges to 1

2cgσ
2(u) by Eq. (4.5) and we get

n∑

i=1

Ei−1

[
U2

i

] p−→ 2 cfcgσ
4(t).
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As far as the fourth moment is concerned, we note that

n∑

i=1

Ei−1

[
U4

i

]
=

16

f2
n(0)g2

n(0)

∑

i

Ei−1





∑

j<i

fn(t− ti−1)gn(tj−1 − ti−1)∆Xi∆Xj




4


=
16

f2
n(0)g2

n(0)
(An +Bn),

where

An :=
n∑

i=2

i−1∑

j=1

f4
n(t− ti−1)g

4
n(tj−1 − ti−1)Ei−1

[
∆X4

i

]
(∆X4

j )

= 9
n∑

i=2

i−1∑

j=1

f4
n(t− ti−1)g

4
n(tj−1 − ti−1)

(
σ4(ti−1)σ

4(tj−1)(∆
i
n)2(∆j

n)2+

+ oa.s.[(∆
i
n)2+γ(∆j

n)2+γ ]
)

and

Bn := 6

n∑

i=2

i−2∑

j=1

i−1∑

k=j+1

f4
n(t− ti−1)g

4
n(tj−1 − ti−1)Ei−1

[
∆X4

i

]
(∆X2

j )(∆X2
k)

= 18
n∑

i=2

i−2∑

j=1

i−1∑

k=j+1

f4
n(t− ti−1)g

2
n(tj−1 − ti−1)g

2
n(tk−1 − ti−1)·

·
(
σ4(ti−1)σ

2(tj−1)σ
2(tk−1)(∆

i
n)2∆j

n∆k
n + oa.s.[(∆

i
n)2+γ(∆j

n)1+γ(∆k
n)1+γ ]

)
.

Moving to the integral form, we find that
∑n

i=1 Ei−1(U
4
i )

p−→ 0. Stable convergence in law
follows as in the proof of Theorem 4.3.

Proof of Proposition 4.11. From Eq. (4.22)-(4.24) we have

σ̂2,F
n,N,M (t) = lim

M→∞

∑

|k|≤M

(
1 − |k|

M

)
αk(N)eikτ

= lim
M→∞

∑

|k|≤M

(
1 − |k|

M

)
 T

2N + 1

∑

|s|≤N

cs(dX)ck−s(dX)


 eikτ

= lim
M→∞

1

T

∑

|k|≤M

(
1 − |k|

M

)
 1

2N + 1

∑

|s|≤N

n∑

j′=1

n∑

j=1

e−isτj′−1e−i(k−s)τj−1∆Xj∆Xj′


 eikτ .

Now, note that

1

T

∑

|k|≤M

(
1 − |k|

M

)
 1

2N + 1

∑

|s|≤N

n∑

j′=1

n∑

j=1

e−isτj′−1e−i(k−s)τj−1∆Xj′∆Xj


 eikτ
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can be written as

1

T

∑

|k|≤M

(
1 − |k|

M

)[
1

2N + 1

∑

|s|≤N

(
n∑

j′=1

e−ikτj′−1(∆Xj′)
2+

+ 2
n∑

j′=2

j′−1∑

j=1

e−isτj′−1e−i(k−s)τj−1∆X ′
j∆Xj

)]
eikτ

=
1

T

n∑

j′=1

∑

|k|≤M

(
1 − |k|

M

)
eik(τ−τj′−1)(∆Xj′)

2+

+
2

T (2N + 1)

n∑

j′=2

j′−1∑

j=1

∑

|k|≤M

(
1 − |k|

M

)
eik(τ−τj−1)

∑

|s|≤N

eis(τj−1−τj′−1)∆Xj′∆Xj .

By the definitions of Dirichlet and Fejér kernel as given in equations (4.9) and (4.10), we then
get

σ̂2,F
n,N,M (t) = σ2

n,F (t) + φn,F,D(t),

where

σ2
n,F (t) :=

1

T

n∑

j=1

FM−1(τ − τj−1)(∆Xj)
2

φn,F,D(t) :=
1

T

2

DN (0)

n∑

j′=2

j′−1∑

j=1

FM−1(τ − τj−1)DN (τj−1 − τj′−1)∆Xj′∆Xj .

Since DN (0) = 2N + 1, then Lemma E.2 applies if N
n → 0. To calculate the values of cg and

cf , it is enough to employ the properties we have derived for the Dirichlet and Fejér kernels,
namely,

(i)
1

2π

∫ 2π

0
FM−1(x)dx = 1 (ii)

1

2π

∫ 2π

0
DN (x)dx = 1

(iii) D2
N (x) = (2N + 1)F2N (x) (iv)

1

FM−1(0)

∫ 2π

0
F 2

M−1(x)dx =
4π

3
,

where FM−1(0) = M and DN (0) = 2N+1, as above. We first perform the change of variables
s = T

2πx, then cg = 1 follows from identity (iii) and the relation

1

T

1

DN (0)

∫ T

0
D2

N

(
2π

T
s

)
ds = cg,

while the value cf = 2
3 can be easily obtained using property (iv). When N

n → c ∈]0, 1
2 ], we

have to evaluate

1

DN (0)

∫ −∆j′−1
n

−∞
D2

N (x)dx
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(see the proof of Lemma E.2). To this purpose, we use again identity (iii) and the result

∫ ε

−ε
F2N (x)dx = 2Nε,

for ε > 0. Using Lemma E.1, we then obtain

Var
[
φn,F,D(t)

]
−→ 4cfFM−1(0)∆n

(
1

2
− cH ′(t)

)
.

Theorem 4.3 and the equality Cov(φn,F,D(t), σ2
n,F ) = 0 conclude the proof.
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Barucci, E. and R. Renò, 2002a: On measuring volatility and the GARCH forecasting
performance. Journal of International Financial Markets, Institutions and Money, 12,
183–200.
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