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Abstract. Asymptotic results are obtained for several conditional mea-

sures of association. The chosen random variables are the first two order

statistics and the total sum within a random sum. Many of the results have

confirmed the “one-jump” property of the risk model. Non-trivial limits

are obtained when the dependence among the first two order statistics is

considered. Our results help in understanding the extreme behaviour of

well-known reinsurance treaties that involve only few large claims. Inter-

estingly, the Pearson product-moment correlation coefficient between the

first two order statistics provides an alternative procedure to estimate the

tail index of the underlying distribution.
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1. Introduction

Let X1, · · · , Xn be independent and identically distributed (iid) random variables (rv’s)

with distribution function (df) F (·), tail function F̄ = 1−F and infinite right-end point.

Extreme Value Theory (EVT) assumes that there are constants an > 0, bn ∈ ℜ such that

lim
n→∞

Pr

(

an

(

max
1≤i≤n

Xi − bn

)

≤ x

)

= G(x), for all x.
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Then, G is called an Extreme Value Distribution and F is said to belong to the domain

of attraction of G. The Fisher-Tippett theorem states that if the limit distribution is

non-degenerate then G(x) = exp{−x−α} for all x, α > 0 or G(x) = exp
{

− e−x
}

for all

x ∈ ℜ, since F is assumed to have an infinite right bound. In the first case, F has the

regularly varying (RV) property with tail index α, i.e.

lim
t→∞

F̄ (tx)

F̄ (t)
= x−α, for all x > 0, (1.1)

and we write X ∈ RV−α. In the second case, F has a Gumbel tail and it is well-known

(see, for example, Embrechts et al., 1997) that there exists a positive, measurable function

a(·) such that

lim
t→∞

F̄ (t + xa(t))

F̄ (t)
= e−x, for all x ∈ ℜ, (1.2)

and we write X ∈ Λ(a).

There are many characterizations of heavy-tailed distributions, but the largest one is

the class L of long-tailed distributions. By definition, a df F ∈ L if

lim
t→∞

Pr(X > x+ t)

Pr(X > t)
= 1,

holds for all fixed x ∈ ℜ. By the local uniformity of this convergence, it is not difficult to

find out that there is some positive and increasing function lt such that lt → ∞, lt = o(t)

and F (t ± lt) ∼ F (t). A subclass of L is the set S of subexponential distributions. By

definition, a df F with positive support belongs to S if

lim
x→∞

Pr(X1 +X2 > x)

Pr(X > x)
= 2,

where X1 and X2 are iid copies of X , and we write X ∈ S. A subclass of S is given by the

set regularly varying distributions. The remaining well-known distributions, such as Log-

Normal and Weibull, have a Gumbel tail. For more details of heavy-tailed distributions,

we refer the reader to Bingham et al. (1987), Embrechts et al. (1997) and Foss et al. (2011).

Consider an iid sequence of random variables X1, X2, . . . , XN with common distribution

function F , where N is a non-negative integer valued random variables that is independent

of X1. Denote X
(1)
N ≥ X

(2)
N ≥ . . . the order sequence. Let S =

N
∑

i=1

Xi be the random sum,

where by definition S = 0 if N = 0. A specific example is the classical risk model for

which Xi’s are the claim sizes within a finite horizon [0, T ] and {N(t), 0 ≤ t ≤ T} is the

claim arrival process (for details, see for example Embrechts et al. 1997).
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The dependence between two or more random variables can be fully described by their

copula whenever it exists (see Nelsen, 2006). Due to the data scarcity, fitting the de-

pendence is often problematic, and more simple alternative methods would be more in-

formative. For example, simple measures of association may be sufficient to estimate

the quantity of interest, such as the tail dependence index, as we will find later in the

considered setting. Recall that there are many measures of association that quantify the

degree of dependence between two rv’s, say (X, Y ), and we will mainly focus on the three

well-known ones in the literature (for more details, see Nelsen, 2006). Kendall’s tau,

τ := Pr
(

(X1 −X2)(Y1 − Y2) > 0
)

− Pr
(

(X1 −X2)(Y1 − Y2) < 0
)

,

and Spearman’s rho rank correlation,

ρR := 3
(

P
(

(X1 −X2)(Y1 − Y3) > 0
)

− P
(

(X1 −X2)(Y1 − Y3) < 0
)

)

,

are based on the concordance and discordance probabilities, where (Xi, Yi), i = 1, 2, 3,

are three iid copies from (X, Y ). It is well-known that both measures of association are

scale-invariant, and therefore robust, marginal-free whenever the marginal distributions

are continuous. Besides these two, another measure of association is Pearson product-

moment correlation coefficient,

ρL :=
cov(X, Y )

√

V ar(X)V ar(Y )
,

which is the same as Spearman’s rho if the marginals are uniform random variables. This

third measure of association evaluates the linear correlation between two dependent rv’s,

and it has been criticized for its lack of robustness, but is still a well-accepted measure

in the presence of linear dependence, which is our case since we are interested only in

extreme events that happen to be strongly correlated in the tail.

There have been many papers in the last two decades that explored the tail behaviour of

the order statistics within a random sum, such as Beirlant and Teugels (1992), Ladoucette

and Teugels (2006), Asimit and Jones (2008), Jiang and Tang (2008), Hashorva and Li

(2013), Li and Hashorva (2013). The asymptotic dependence, i.e. the joint tail behaviour,

among various order statistics has been recently investigated in Hashorva (2007), Al-

brecher et al. (2014) and Peng (2014). A recent paper, namely, Asimit et al. (2014),

studied the asymptotic behaviour of the conditional Kendall’s tau from a statistical ex-

tremes perspective. The latter paper and current one lead to a conclusive assertion that

conditional measures of association are useful in understanding individual and concomi-

tant rare events. As a side note, this paper is able to show that a classical problem in
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EVT of estimating the tail index (see for example, Lu and Peng, 2002, Li et al., 2010,

or any textbook in EVT) can be addressed via the conditional Pearson product-moment

correlation coefficient as defined in this paper.

In this paper, we seek to understand the asymptotic behaviour of the conditional version

of the three measures of association. The conditioning event is chosen to restrict our

analysis to joint extreme events between the random sum and/or the first two order

statistics of the individual outcomes from the random sum. The next section summarises

some definitions and preliminary results, while Sections 3, 4 and 5 provide our main

results for the conditional Kendall’s tau, Spearman’s rho and Pearson product-moment

correlation coefficient.

2. Definitions and Preliminaries Results

Throughout this paper, all limit relationships hold as t → ∞. In addition, for two

positive functions a(·) and b(·), we write a(·) ∼ cb(·) for some positive constant c to

mean strong equivalence, i.e., lim a(·)/b(·) = c. Moreover, we say that a(·) = o
(

b(·)
)

if

lim a(·)/b(·) = 0.

This paper deals with the model described in Section 1 for which the rv’s of interest are

S,X
(1)
N andX

(2)
N . Sometimes, multiple realizations of the process will be needed to perform

our calculations, and the three dimensional random vector of interest for the ith realization

will be denoted by
(

Si, X
(1)
N,i, X

(2)
N,i

)

. In order to assess the strength of dependence between

the extreme events arising from this process, the following two conditional Kendall’s tau

are investigated: for large values of t,

τ+1(t) = Pr
(

(S1 − S2)
(

X
(1)
N,1 −X

(1)
N,2

)

> 0|X(1)
N,1, X

(1)
N,2 > t

)

−Pr
(

(S1 − S2)
(

X
(1)
N,1 −X

(1)
N,2

)

< 0|X(1)
N,1, X

(1)
N,2 > t

)

and

τ 12(t) = Pr
((

X
(1)
N,1 −X

(1)
N,2

)(

X
(2)
N,1 −X

(2)
N,2

)

> 0|X(2)
N,1, X

(2)
N,2 > t

)

−Pr
((

X
(1)
N,1 −X

(1)
N,2

)(

X
(2)
N,1 −X

(2)
N,2

)

< 0|X(2)
N,1, X

(2)
N,2 > t

)

.

Similarly, two conditional versions of Spearman’s rho of interest are

ρ+1
R (t) = 3Pr

(

(S1 − S2)
(

X
(1)
N,1 −X

(1)
N,3

)

> 0|X(1)
N,1, X

(1)
N,2, X

(2)
N,3 > t

)

−3 Pr
(

(S1 − S2)
(

X
(1)
N,1 −X

(1)
N,3

)

< 0|X(1)
N,1, X

(1)
N,2, X

(1)
N,3 > t

)
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and

ρ12R (t) = 3Pr
((

X
(1)
N,1 −X

(1)
N,2

)(

X
(2)
N,1 −X

(2)
N,3

)

> 0|X(2)
N,1, X

(2)
N,2, X

(2)
N,3 > t

)

−3 Pr
((

X
(1)
N,1 −X

(1)
N,2

)(

X
(2)
N,1 −X

(2)
N,3

)

< 0|X(2)
N,1, X

(2)
N,2, X

(2)
N,3 > t

)

.

Finally, two conditional versions of Pearson product-moment correlation coefficient are

ρ+1
L (t) =

cov
(

S,X
(1)
N |X(1)

N > t
)

√

V ar
(

S|X(1)
N > t

)

V ar
(

X
(1)
N |X(1)

N > t
)

and

ρ12L (t) =
cov
(

X
(1)
N , X

(2)
N |X(2)

N > t
)

√

V ar
(

X
(1)
N |X(2)

N > t
)

V ar
(

X
(2)
N |X(2)

N > t
)

.

Similar to Section 1, let X
(1)
n ≥ X

(2)
n ≥ · · · ≥ X

(n)
n be the order statistics of a finite iid

sample X1, · · · , Xn. It is worth mentioning that

Pr
(

X(l)
n > t

)

∼
(

n

l

)

F̄ l(t), 1 ≤ l ≤ n, (2.1)

which will be frequently used in our further derivations. It is not difficult to find that, for

1 ≤ l ≤ n,

Pr
(

X
(l)
N > t

)

∼ E

(

N

l

)

F̄ l(t), EN l < ∞. (2.2)

A classical result (see for example, Theorem 1.3.9 of Embrechts et al. 1997) that will

often be used in our derivations is as follows:

Lemma 2.1. If F ∈ S and E(1 + ǫ)N < ∞ for some ǫ > 0, then Pr(S > t) ∼ EN F̄ (t).

Another important notion that is crucial for establishing our main results is vague

convergence. Let {µn, n ≥ 1} be a sequence of measures on a locally compact Hausdorff

space B with countable base. Then µn converges vaguely to some measure µ, written as

µn
v→ µ, if for every continuous function f with compact support we have

lim
n→∞

∫

B

f dµn =

∫

B

f dµ.

A thorough background on vague convergence is given by Kallenberg (1983) and Resnick

(1987).
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3. Main Results: Kendall’s tau

The main aim of this section is to find the limits for the Kendall’s tau, i.e. τ+1(t) and

τ12(t), as defined in Section 2. The first step is to establish some preliminary results,

which are given in Proposition 3.1.

Proposition 3.1. Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be to two iid samples with com-

mon continuous df F . In addition, X
(1)
m ≥X

(2)
m ≥ . . .≥X

(m)
m and Y

(1)
n ≥Y

(2)
n ≥ . . .≥Y

(n)
n be

the corresponding order statistics. Moreover, let Sk =

k
∑

i=1

Xi, 1 ≤ k ≤ m, and Tl =

l
∑

i=1

Yi,

1 ≤ l ≤ n, be the partial sums.

i) If F ∈ L, then it holds for every integers m,n ≥ 1 that

lim
t→∞

Pr
(

Sm > Tn, X
(1)
m > Y (1)

n |X(1)
m , Y (1)

n > t
)

=
1

2
;

ii) It holds for every integers m,n ≥ 2 that

lim
t→∞

Pr
(

X(1)
m > Y (1)

n , X(2)
m > Y (2)

n |X(2)
m , Y (2)

n > t
)

=
1

3
.

Proof. i) Note first that

Pr
(

Sm > Tn, X
(1)
m > Y (1)

n |X(1)
m , Y (1)

n > t
)

=
Pr
(

Sm > Tn, X
(1)
m > Y

(1)
n > t

)

Pr
(

X
(1)
m , Y

(1)
n > t

)
(3.1)

∼ A

mnF (t)2
.

Now,

A = mn

∫

x>y>t

Pr
(

Sm > Tn, X
(2)
m ≤ x,Xm ∈ dx, Y (2)

n ≤ y, Yn ∈ dy
)

= mn

∫

x>y>t

Pr
(

Sm−1 + x > Sn−1 + y,X(2)
m ≤ x, Y (2)

n ≤ y
)

dF (x)dF (y) .

Keeping in mind that Pr
(

X
(2)
m ≤ x, Y

(2)
n ≤ y

)

→ 1 holds uniformly on {(x, y) : x > y > t}
and Pr

(

A1

)

−Pr
(

Ā2

)

≤ Pr
(

A1∩A2

)

≤ Pr
(

A1

)

is true for any sets A1 and A2, it follows

that

A = mn

∫

x>y>t

(

Pr
(

Sm−1 + x > Tn−1 + y
)

+ o(1)
)

dF (x)dF (y)

= mn

∫

x>y>t

Pr
(

Tn−1 − Sm−1 < x− y
)

dF (x)dF (y) + o
(

F̄ 2(t)
)

= mn

(
∫

x−y>lt,y>t

+

∫

0<x−y≤lt,y>t

)

Pr
(

Tn−1−Sm−1 < x−y
)

dF (x)dF (y) + o
(

F̄ 2(t)
)

= mn
(

I1(t) + I2(t)
)

+ o
(

F̄ 2(t)
)

.
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Since Pr
(

Tn−1−Sm−1 < x−y
)

→ 1 holds uniformly, then we have

I1(t) ∼
∫

x−y>lt,y>t

dF (x)dF (y) =

∫

y>t

F̄
(

y + lt
)

dF (y) ∼
∫

y>t

F̄ (y)dF (y) =
1

2
F̄ 2(t).

Clearly,

I2(t) ≤
∫

0<x−y≤lt,y>t

dF (x)dF (y) ≤
∫ ∞

t

F̄ (y)dF (y) = o
(

F̄ 2(t)
)

.

The last two relations imply that A ∼ 1
2
mnF̄ 2(t), which together with (3.1) one may

conclude this part.

ii) Simple derivations help in finding

Pr
(

X(1)
m > Y (1)

n , X(2)
m > Y (2)

n |X(2)
m , Y (2)

n > t
)

=
Pr
(

X
(1)
m > Y

(1)
n , X

(2)
m > Y

(2)
n > t

)

Pr
(

X
(2)
m , Y

(2)
n > t

)

∼ B
m(m−1)n(n−1)

4
F̄ 4(t)

and

B =

∫

x>y>t

∫

u>v,u>x,v>y

Pr
(

X(1)
m ∈ du,X(2)

m ∈ dx
)

Pr
(

Y (1)
n ∈ dv, Y (2)

n ∈ dy
)

= mn(m−1)(n−1)

∫

x>y>t

(
∫

u>v>y,u>x

dF (u)dF (v)

)

Fm−2(x)F n−2(y)dF (x)dF (y)

∼ mn(m−1)(n−1)

∫

x>y>t

(
∫

u>v>y,u>x

dF (u)dF (v)

)

dF (x)dF (y)

= mn(m−1)(n−1)

∫

x>y>t

(

1−F̄ 2(x)

2
−
(

1−F̄ (x)
)

F̄ (y)

)

dF (x)dF (y)

= mn(m−1)(n−1)F̄ 4(t),

which justify part ii) in full. �

We are now ready to provide the main results of this section, stated as Theorem 3.1.

Theorem 3.1. Assume that N is not degenerate at 0 and EN < ∞. In addition, F is a

continuous function.

i) If F ∈ L then τ+1(t) → 1.

ii) If Pr(N ≥ 2) > 0 then τ 12(t) → 1/3.

Proof. i) Simple calculations show that

τ+1(t) = 4
Pr
(

S1 > S2, X
(1)
N,1 > X

(1)
N,2 > t

)

Pr
(

X
(1)
N,1, X

(1)
N,2 > t

)
− 1.
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For an arbitrarily fixed C > 0, observe that

Pr
(

X
(1)
N,1, X

(1)
N,2 > t,N1 > C or N2 > C

)

Pr
(

X
(1)
N,1, X

(1)
N,2 > t

)

≤
E

[

Pr
(

X
(1)
N,1 > t|N1

)

Pr
(

X
(1)
N,2 > t|N2

)

1{
N1 or N2≤C

}

]

E

[

Pr
(

X1, Y1 > t
)

1{
N1,N2≥1,N1 or N2≤C

}

]

≤
E

[

N1N21{
N1 or N2≤C

}

]

E

[

1{
N1,N2≥1,N1 or N2≤C

}

]

=

E

[

N1N21{
N1 or N2≤C

}

]

E

[

1{
N1,N2≥1,N1 or N2≤C

}

] .

Now, since the right-hand side from above tends to 0 as C → ∞, then for an arbitrarily

fixed 0 < ε < 1, we can find some large C such that

Pr
(

X
(1)
N,1, X

(1)
N,2 > t,N1 or N2 > C

)

Pr
(

X
(1)
N,1, X

(1)
N,2 > t

)
≤ ε.

is true for all t > 0, and in turn we have

Pr
(

S1 > S2, X
(1)
N,1 > X

(1)
N,2 > t

)

Pr
(

X
(1)
N,1, X

(1)
N,2 > t

)

≥
Pr
(

S1 > S2, X
(1)
N,1 > X

(1)
N,2 > t,N1, N2 ≥ 1, N1 or N2 ≤ C

)

1
1−ε

Pr
(

X
(1)
N,1, X

(1)
N,2 > t,N1, N2 ≥ 1, N1 or N2 ≤ C

)

→ 1

2
(1− ε)

and that

Pr
(

S1 > S2, X
(1)
N,1 > X

(1)
N,2 > t

)

Pr
(

X
(1)
N,1, X

(1)
N,2 > t

)

≤
Pr
(

S1 > S2, X
(1)
N,1 > X

(1)
N,2 > t,N1, N2 ≥ 1, N1 or N2 ≤ C

)

Pr
(

X
(1)
N,1, X

(1)
N,2 > t,N1, N2 ≥ 1, N1 or N2 ≤ C

)
+ ε

→ 1

2
+ ε,

where the last steps are due to Proposition 3.1. Therefore, by taking ε ↓ 0, the claim

from part i) can be retrieved.
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ii) The proof follows the same steps as in part ii) with the additional note

τ 12(t) = 4Pr
(

X
(1)
N,1 > X

(1)
N,2, X

(2)
N,1 > X

(2)
N,2|X

(2)
N,1, X

(2)
N,2 > t

)

− 3,

which completes the proof. �

4. Main Results: Spearman’s rho

The current section provides the mirror results of Section 3 for the Spearman’s rho

measure of association, i.e. ρ+1(t) and ρ12(t), as defined in Section 2. As before, we first

need to show some useful results, where the samples have deterministic sizes.

Proposition 4.1. Let X1, X2, . . . , Xm, Y1, Y2, . . . , Yn and Z1, Z2, . . . , Zn be three iid sam-

ples with common continuous df F . Moreover, denote X
(1)
m ≥ X

(2)
m ≥ . . . ≥ X

(m)
m ,

Y
(1)
n ≥ Y

(2)
n ≥ . . . ≥ Y

(n)
n and Z

(1)
r ≥ Z

(2)
r ≥ . . . ≥ Z

(r)
r the corresponding order sta-

tistics. Moreover, let Sk =
k
∑

i=1

Xi, 1 ≤ k ≤ m and Tl =
l
∑

i=1

Yi, 1 ≤ l ≤ n be the partial

sums.

i) If F ∈ L, then it holds for every integers m,n, k ≥ 1 that

lim
t→∞

Pr
(

Sm > Tn, X
(1)
m > Z(1)

r > t|X(1)
m , Y (1)

n , Z(1)
r > t

)

=
1

3
.

ii) It holds for every m,n, k ≥ 2 that

lim
t→∞

Pr
(

X(1)
m > Y (1)

n , X(2)
m > Z(2)

r |X(2)
m , Y (2)

n , Z(2)
r > t

)

=
13

45
.

Proof. i) It is useful to first note that

Pr
(

Sm > Tn, X
(1)
m > Z(1)

r > t|X(1)
m , Y (1)

n , Z(1)
r > t

)

=
Pr
(

Sm > Tn, X
(1)
m > Z

(1)
r , X

(1)
m , Y

(1)
n , Z

(1)
r > t

)

Pr
(

X
(1)
m , Y

(1)
n , Z

(1)
r > t

)

∼ D

mnkF̄ (t)3
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and

D = mnk

∫

y,z>t,x>z

Pr
(

Sm−1 + x > Tn−1 + y,X(2)
m ≤ x, Y (2)

n ≤ y, Z(2)
r ≤ z

)

×Pr (Xm ∈ dx, Yn ∈ dy, Zr ∈ dz)

∼ mnk

∫

y,z>t,x>z

Pr
(

Tn−1 − Sm−1 < x− y
)

dF (x)dF (y)dF (z)

= mnk

(
∫

y,z>t,,x>z,x−y>lt

+

∫

y,z>t,x>z,x−y≤−lt

+

∫

y,z>t,x>z,−lt<x−y≤lt

)

Pr
(

Tn−1 − Sm−1 < x− y
)

dF (x)dF (y)dF (z)

= mnk
(

J1(t) + J2(t) + J3(t)
)

.

Since Pr
(

Tn−1 − Sm−1 < x− y
)

tends to 1 uniformly, one may find that

J1(t) ∼
∫

y,z>t,x>z,x−y>lt

dF (x)dF (y)dF (z) =

∫

y,z>t

F̄
(

min
(

z, y + lt,
)

)

dF (y)dF (z).

The fact that F̄
(

min(z, y) + lt
)

≤ F̄
(

min
(

z, y + lt
)

)

≤ F̄
(

min(z, y)
)

implies that

F̄
(

min
(

z, y + lt
)

)

∼ F̄
(

min(z, y)
)

holds uniformly on y, z > t, and in turn we get

J1(t) ∼
∫

y,z>t

F̄
(

min(z, y)
)

dF (y)dF (z) = 2

∫

y>z>t

F̄ (y)dF (y)dF (z) =
1

3
F̄ 3(t).

Clearly,

J2(t) ≤ Pr
(

Tn−1 − Sm−1 < −lt
)

∫

y,z>t,x>z

dF (x)dF (y)dF (z) = o
(

F̄ 3(t)
)

and

J3(t) ≤
∫

y,z>t,x>z,−lt<x−y≤lt

dF (x)dF (y)dF (z) = o
(

F̄ 3(t)
)

,

and by putting all the results together one may fully justify part i).

ii) The proof is similar to the proof of Proposition 3.1ii), and therefore it is left to the

reader. �

We can now provide the main results of this section, stated as Theorem 4.1.

Theorem 4.1. Assume that N is not degenerate at 0 and EN < ∞. In addition, F is a

continuous function.

i) If F ∈ L then ρ+1(t) → 1.

ii) If Pr(N ≥ 2) > 0 then ρ12(t) → 7/15.



11

Proof. The proofs are similar to the ones given in Theorem 3.1, and therefore we will only

justify part i). Note that

ρ+1
R (t) = 12

Pr
(

S1 > S2, X
(1)
N,1 > X

(1)
N,2, X

(1)
N,1, X

(1)
N,2, X

(1)
N,3 > t

)

Pr
(

X
(1)
N,1, X

(1)
N,2, X

(1)
N,3 > t

)
− 3,

which together with Proposition 4.1i) clarify our claim. The proof is now complete. �

5. Main Results: Pearson correlation

The main results are now developed for the Pearson’s measures of association. The

proofs are different than in the previous two sections, and the two cases, F ∈ RVα and

F ∈ Γ(a), will be treated separately. We first need to find conditional higher moments,

which are found in Lemma 5.1.

Lemma 5.1. i) If X ∈ RV−α is a positive rv, then E(Xk|X > t) ∼ tk α
α−k

holds for all

0 < k < α. Consequently, V ar(X|X > t) ∼ t2 α
(α−2)(α−1)2

is also true for α > 2.

ii) If X ∈ Γ(a) is a positive rv, then E(Xk|X > t) = tk + ktk−1a(t)
(

1 + o(1)
)

and

V ar(X|X > t) = a2(t)
(

1 + o(1)
)

are true, where k is a positive integer.

Proof. Note first that F̄ (t) = o
(

tk
)

. Thus, integration by parts and an obvious change of

variables lead to

E(Xk|X > t) = tk + k

∫ ∞

t

xk−1 F̄ (x)

F̄ (t)
dx

= tk + ktk
∫ ∞

1

yk−1 F̄ (ty)

F̄ (t)
dy

∼ tk + ktk
∫ ∞

1

yk−α−1 dy

= tk
α

α− k
,

where the second last implication is verified by the Dominated Convergence Theorem

justified via the Potter’s bound

F̄ (ty)/F̄ (t) ≤ (1 + ε)y−α+ε, for arbitrary 0 < ε < α, large t and all y > 1

(see Theorem 1.5.6(iii) of Bingham et al., 1987). The conditional variance result is a

straightforward implication of the above result.

ii) Note first that F̄ (t) = o
(

tk
)

, which is a consequence of the representation for Von

Mises functions (see p.40, Resnick, 1987). Thus, integration by parts and a change of
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variables, x = t+ ξa(t), lead to

E(Xk|X > t) = tk + k

∫ ∞

t

xk−1 F̄ (x)

F̄ (t)
dx

= tk + ktk−1a(t)

∫ ∞

0

(

1 + ξ
a(t)

t

)k−1
F̄ (t + ξa(t))

F̄ (t)
dξ

= tk + ktk−1a(t)

k−1
∑

l=0

(

a(t)

t

)k−l−1 ∫ ∞

0

ξk−l−1 F̄ (t+ ξa(t))

F̄ (t)
dξ

= tk + ktk−1a(t)

k−1
∑

l=0

(

a(t)

t

)k−l−1
(

(k − l − 1)! + o(1)
)

= tk + ktk−1a(t) + o
(

tk−1a(t)
)

,

where the second last implication is due to the uniform convergence in equation (1.2),

Lemma 3.4 from Tang and Yang (2012) and the Dominated Convergence Theorem, while

the very last implication is a consequence of a(t) = o(t).

Now, the rate of convergence for the conditional variance cannot be obtained from the

above results, but similar derivations to the one displayed in the last equation show that

V ar(X|X > t) = E(X2|X > t)−
(

E(X|X > t)
)2

= t2 + 2ta(t)

∫ ∞

0

F̄ (t+ ξa(t))

F̄ (t)
dξ + 2a2(t)

∫ ∞

0

ξ
F̄ (t+ ξa(t))

F̄ (t)
dξ

−
(

t+ a(t)

∫ ∞

0

F̄ (t+ ξa(t))

F̄ (t)
dξ

)2

= 2a2(t)

∫ ∞

0

ξ
F̄ (t + ξa(t))

F̄ (t)
dξ − a2(t)

(
∫ ∞

0

F̄ (t+ ξa(t))

F̄ (t)
dξ

)2

= 2a2(t)
(

1 + o(1)
)

− a2(t)
(

1 + o(1)
)2

= a2(t)
(

1 + o(1)
)

,

where the second last implication is due to the uniform convergence in equation (1.2),

Lemma 3.4 from Tang and Yang (2012) and the Dominated Convergence Theorem. The

proof is now complete. �

Further, some crucial convergence results are developed in Proposition 5.1.

Proposition 5.1. Assume that X is a positive rv and N is non-degenerate at 0.

(a) If X ∈ RV−α with α > 0 and EN < ∞, then for all positive (ξ1, ξ2) we have

lim
t→∞

Pr
(

S > tξ1, X
(1)
N > tξ2

)

F̄ (t)
= EN

(

max
(

ξ1, ξ2
)

)−α

;
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(b) If X ∈ RV−α with α > 0, EN2 < ∞ and Pr(N ≥ 2) > 0, then for all positive

(ξ1, ξ2) is true

lim
t→∞

Pr
(

X
(1)
N > tξ1, X

(2)
N > tξ2

)

F̄ 2(t)
= E

(

N

2

)

{

2ξ−α
1 ξ−α

2 − ξ−2α
1 , if 0 < ξ2 < ξ1,

ξ−2α
2 , if 0 < ξ1 ≤ ξ2;

c) If F ∈ S⋂Γ(a) and E(N) < ∞, then for all positive (ξ1, ξ2) we have

lim
t→∞

Pr
(

S > t+ ξ1a(t), X
(1)
N > t+ ξ2a(t)

)

F̄ (t)
= exp

{

−max(ξ1, ξ2)
}

.

d) If F ∈ Γ(a), EN2 < ∞ and Pr(N ≥ 2) > 0, then for all positive (ξ1, ξ2) is true

Pr
(

X
(1)
N > t + ξ1a(t), X

(2)
N > t + ξ2a(t)

)

F̄ 2(t)
∼ E

(

N

2

)

{

2e−ξ1−ξ2 − e−2ξ1 , if 0 ≤ ξ2 < ξ1,

e−2ξ2 , if 0 ≤ ξ1 ≤ ξ2.

Proof. a) The case in which 0 ≤ ξ1 ≤ ξ2 is trivial due to S ≥ X
(1)
N and Lemma 2.1. Now,

consider the other case in which 0 ≤ ξ2 < ξ1. Clearly, for every C > 0

Pr
(

(X1/t, . . . , Xn/t) ∈ ·
)

F̄ (t)

v→ µ(·) (5.1)

holds on [−C,∞]n \
{

[−C, 0)n
⋃{0}

}

, where the measure µ puts its entire mass on its

axes due to the fact that X ’s are positive iid rv’s. That is, for all 1 ≤ j ≤ n

µ
(

(x1,∞]× · · · × (xn,∞]
)

= x−α
j , if − C ≤ x1, . . . , xj−1, xj+1, . . . , xn ≤ 0 and 0 < xj ,

and null if there are 1 ≤ i 6= j ≤ n such that xi > 0 and xj > 0. Denote

Dn :=

{

n
∑

i=1

xi > ξ1, max
1≤i≤n

xi > ξ2

}

.

Obviously, µ(∂Dn) = 0, and therefore relation (5.1) implies that

lim
t→∞

Pr
(

Sn > tξ1, X
(1)
n > tξ2

)

F̄ (t)
= µ(Dn) = nξ−α

1 .

Thus, the latter and the fact that

Pr
(

S > tξ1, X
(1)
N > tξ2

)

F̄ (t)
≤

∞
∑

n=1

Pr(N = n)
Pr
(

X
(1)
n > t

)

F̄ (t)
≤ EN < ∞.

allow us to apply the Dominated Convergence Theorem, which concludes part (a).

b) Whenever 0 ≤ ξ1 ≤ ξ2, our claim is trivial due to (2.2), and therefore we further

assume that 0 < ξ2 < ξ1. Now, for every positive t, there exists a constant C > 0 that
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does not depend upon t such that

Pr
(

X
(1)
N > tξ1, X

(2)
N > tξ2

)

F̄ 2(t)
=

∞
∑

n=2

Pr(N = n)
Pr
(

X
(1)
n > tξ1, X

(2)
n > tξ2

)

F̄ 2(t)

≤ C
∞
∑

n=2

Pr(N = n) n2 F̄ 2(tξ2)

F̄ 2(t)
,

which is finite due to the Potter’s bound (see Theorem 1.5.6(iii) of Bingham et al., 1987).

Thus, we may apply the Dominated Convergence Theorem by noting that

Pr(X
(1)
n > tξ1, X

(2)
n > tξ2)

F̄ 2(t)
∼

(

n

2

)

Pr(X1>tξ1, X2>tξ2) + Pr(tξ2<X1 ≤ tξ1, X2>tξ1)

F̄ 2(t)

∼
(

n

2

)

(

2ξ−α
1 ξ−α

2 − ξ−2α
1

)

,

which is a consequence of (1.1).

c) As before, we only need to justify the case in which 0 < ξ2 < ξ1, since the other

scenario can be simply recovered by using equation (1.2). Now, for any positive integer n

we have

Pr
(

X
(1)
n > t + ξ1a(t)

)

F̄ (t)
≤ Pr

(

Sn > t+ ξ1a(t), X
(1)
n > t+ ξ2a(t)

)

F̄ (t)
≤ Pr

(

Sn > t+ ξ1a(t)
)

F̄ (t)
.

Since both bounds are equal to ne−ξ1
(

1 + o(1)
)

due to (2.1) and the fact that Sn ∈ Γ(a),

we may conclude that

Pr
(

Sn > t+ ξ1a(t), X
(1)
n > t + ξ2a(t)

)

F̄ (t)
∼ ne−ξ1 .

The latter and the fact that

Pr
(

S > t+ ξ1a(t), X
(1)
N > t + ξ2a(t)

)

F̄ (t)
≤

∞
∑

n=1

Pr(N = n)
Pr
(

X
(1)
n > t

)

F̄ (t)
≤ EN < ∞,

is true for all t allow us to apply the Dominated Convergence Theorem in order to replicate

our claim.

d) A combination of some steps used in b) and c) lead to our statement. �

The main results of this section are now ready and are stated as Theorems 5.1 and 5.2.

It is interesting to note that Theorem 5.1b) provides a novel estimator for the tail index α,

which is the topical problem in statistical extremes (for further details, see Embrechts et

al., 1997). Moreover, taking α → ∞ in Theorem 5.1b), one may recover the final result

from 5.2b) Theorem 5.1b), which is not surprising, but nevertheless, both derivations are

needed.
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Theorem 5.1. Assume that X ∈ RV−α with α > 0 is a positive rv and N is non-

degenerate at 0.

a) If E(N) < ∞, then

i) E
(

Sk|X(1)
N > t

)

∼ tk α
α−k

for all α > k;

ii) E
(

SX
(1)
N > t|X(1)

N > t
)

∼ t2 α
α−2

whenever α > 2.

Consequently, limt→∞ ρ+1
L (t) = 1 whenever α > 2.

b) If EN2 < ∞ and Pr(N ≥ 2) > 0, then

i) E
(

(

X
(1)
N

)k|X(2)
N > t

)

∼ tk 2α2

(2α−k)(α−k)
for all α > k;

ii) E
(

X
(1)
N X

(2)
N |X(2)

N > t
)

∼ t2 α2

(α−1)2
whenever α > 1.

Consequently, lim
t→∞

ρ12L (t) =

√

α(α− 2)

(5α− 1)(α− 1)
whenever α > 2.

Proof. The results from parts a) and b) can be derived in the same manner, and thus, we

will focus only on part a).

a)i) It is not difficult to find the claim from this part by applying the result from

Proposition 5.1 a), Potter’s bound (see Theorem 1.5.6(iii) of Bingham et al., 1987) and

the Dominated Convergence Theorem.

a)ii) Note first that lim sup
x→∞

xPr
(

SX
(1)
N > x|X(1)

N > t
)

= 0 for all t > 0 since α > 2,

which implies that SX
(1)
N has a finite mean. Thus, integration by parts and an obvious

change of variables lead to

E
(

SX
(1)
N |X(1)

N > t
)

=

∫ ∞

t2
xPr

(

SX
(1)
N ∈ dx|X(1)

N > t
)

(5.2)

= t2 Pr
(

SX
(1)
N > t2|X(1)

N > t
)

+

∫ ∞

t2
Pr
(

SX
(1)
N > x|X(1)

N > t
)

dx

= t2 + t2
∫ ∞

1

Pr
(

SX
(1)
N > t2ξ|X(1)

N > t
)

dξ.

Note that Proposition 5.1a) implies the following weak convergence

Pr
(

(

S/t,X
(1)
N /t) ∈ ·|X(1)

N > t
)

w→ µ+(·)

holds on [1,∞]2, where the probability measure µ+

(

(x,∞] × (y,∞]
)

=
(

max(x, y)
)−α

.

For every fixed ξ > 0, let Dξ := {xy > ξ}. Since µ+(∂Dξ) = 0, the latter shows that

lim
t→∞

Pr
(

SX
(1)
N > t2ξ|X(1)

N > t
)

= µ+

(

Dξ

)

= ξ−α/2.
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Thus, the Dominated Convergence Theorem can be used in equation (5.2) as a result of

the Potter’s bound (see Theorem 1.5.6(iii) of Bingham et al., 1987) and the fact that

Pr
(

SX
(1)
N > t2ξ|X(1)

N > t
)

≤ Pr(S > t
√
ξ)

Pr(S > t)
,

which explain our claim. �

Theorem 5.2. Assume that X ∈ Γ(a) is a positive rv and N is non-degenerate at 0. If

a) E(1 + ǫ)N <∞ for some ǫ> 0 and X ∈ S, then E
(

ST |X(1)
T > t

)

− t∼a(t) and

V ar
(

ST |X(1)
T > t

)

= a2(t)
(

1 + o(1)
)

= cov
(

ST , X
(1)
T |X(1)

T > t
)

.

Consequently, ρ+1
L (t) ∼ 1

b) EN2 < ∞ and Pr(N ≥ 2) > 0, then E
(

X
(1)
T |X(2)

T > t
)

= t + a(t)
(

3/2 + o(1)
)

,

V ar
(

X
(1)
T |X(2)

T > t
)

∼ 5a2(t)/4 and cov
(

X
(1)
T , X

(2)
T |X(2)

T > t
)

∼ a2(t)/4.

Consequently, ρ12L (t) ∼ 1/
√
5.

Proof. a) A direct implication of Lemma 2.1 and equation (2.2) lead to

Pr
(

S > t+ ξa(t)|X(1)
N > t

)

= e−ξ
(

1 + o(1)
)

, for all ξ ≥ 0,

and together with Lemma 3.4 from Tang and Yang (2012), one may justify the use of the

Dominated Convergence Theorem, and we get

E
(

S|X(1)
N > t

)

= t + a(t)

∫ ∞

0

Pr
(

S > t + ξa(t)|X(1)
N > t

)

dξ = t + a(t)
(

1 + o(1)
)

,

where the first equality can be justified by following the same steps shown in the proof of

Lemma 5.1 ii). The proof of the conditional variance may be found in a similar manner

as the equivalent result from Lemma 5.1 ii), and thus, its proof is omitted.

We now derive the rate of convergence for the conditional covariance. Clearly,

cov
(

S,X
(1)
N |X(1)

N > t
)

= E
(

(

S − t
)(

X
(1)
N − t

)

|X(1)
N > t

)

− E
(

(

S − t
)

|X(1)
N > t

)

E
(

(

X
(1)
N − t

)

|X(1)
N > t

)

,

which together with the first result of this part, relation (2.2) and Lemma 5.1 ii), one may

conclude the desired result, as long as the following is true

E
(

(

S − t
)(

X
(1)
N − t

)

|X(1)
N > t

)

= 2a2(t)
(

1 + o(1)
)

. (5.3)

Note that Proposition 5.1c) implies the following weak convergence

Pr

(

(

S − t

a(t)
,
X

(1)
N − t

a(t)

)

∈ ·|X(1)
N > t

)

w→ µ+(·)
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holds on [0,∞]2, where the probability measure µ+

(

(x,∞]×(y,∞]
)

= exp
{

−max(x, y)
}

.

Let us denote Dξ := {xy > ξ} for every fixed ξ ≥ 0. Clearly, µ+(∂Dξ) = 0, and therefore

the above convergence yields that

Pr

(

(S − t)(X
(1)
N − t)

a2(t)
> ξ|X(1)

T > t

)

∼ µ+

(

Dξ

)

= µ+

(

x = y >
√

ξ
)

= exp
{

−
√

ξ
}

.

The latter and Lemma 3.4 from Tang and Yang (2012) help in using the Dominated

Convergence Theorem, which in turn implies our claim from (5.3) as follows

E
(

(

S − t
)(

X
(1)
N − t

)

|X(1)
N > t

)

= a2(t)

∫ ∞

0

Pr

(

S − t

a(t)

X
(1)
N − t

a(t)
> ξ|X(1)

N > t

)

dξ

∼ a2(t)

∫ ∞

0

exp
{

−
√

ξ
}

dξ

= 2a2(t),

which justifies in full the last result of part (a).

b) Proposition 5.1d) suggests that the following weak convergence

Pr

(

(

X
(1)
N − t

a(t)
,
X

(2)
N − t

a(t)

)

∈ ·|X(2)
N > t

)

w→ µ1(·) (5.4)

holds on [0,∞]2, where the limiting probability measure is given by

µ1

(

(ξ1,∞]× (ξ2,∞]
)

=

{

2 exp {−ξ1 − ξ2} − exp {−2ξ1} , if 0 ≤ ξ2 < ξ1,

exp {−2ξ2} , if 0 ≤ ξ1 ≤ ξ2.

Therefore, Pr
(

X
(1)
N > t + ξa(t)|X(2)

N > t
)

∼ 2e−ξ − e−2ξ for all non-negative ξ, and

due Lemma 3.4 from Tang and Yang (2012), one may justify the use of the Dominated

Convergence Theorem as follows:

E
(

X
(1)
N |X(2)

N > t
)

= t + a(t)

∫ ∞

0

Pr

(

X
(1)
N − t

a(t)
> ξ|X(2)

N > t

)

dξ

= t + a(t)

(
∫ ∞

0

(

2e−ξ − e−2ξ
)

dξ + o(1)

)

= t + a(t)
(

3/2 + o(1)
)

.
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We now justify the conditional variance result. As before, one may show that

V ar
(

X
(1)
N |X(2)

N > t
)

= 2a2(t)

∫ ∞

0

ξ Pr

(

X
(1)
N − t

a(t)
> ξ|X(2)

N > t

)

dξ

−a2(t)

(

∫ ∞

0

Pr

(

X
(1)
N − t

a(t)
> ξ|X(2)

N > t

)

dξ

)2

= 2a2(t)

(
∫ ∞

0

ξ
(

2e−ξ − e−2ξ
)

dξ + o(1)

)

− a2(t)

(
∫ ∞

0

(

2e−ξ − e−2ξ
)

dξ + o(1)

)2

= 2a2(t)
(

7/4 + o(1)
)

− a2(t)
(

3/2 + o(1)
)2

= a2(t)
(

5/4 + o(1)
)

,

where once again Lemma 3.4 from Tang and Yang (2012) and the Dominated Convergence

Theorem are the key ingredients for coming up with the needed result.

Finally, it only remains to show the conditional covariance result. Clearly,

cov
(

X
(1)
N , X

(2)
N |X(2)

N > t
)

= a2(t)cov

(

X
(1)
N − t

a(t)
,
X

(2)
N − t

a(t)
|X(2)

N > t

)

= a2(t)E

(

(

X
(1)
N − t

)(

X
(2)
N − t

)

a2(t)
|X(2)

N > t

)

(5.5)

−a2(t)E

(

X
(1)
N − t

a(t)
|X(2)

N > t

)

E

(

X
(2)
N − t

a(t)
|X(2)

N > t

)

.

Note that X
(2)
N ∈ Γ(2a) due to equation (2.2), and therefore Lemma 5.1 ii) yields that

E

(

X
(2)
N

−t

2a(t)
|X(2)

N > t

)

= 1 + o(1). Now, for every fixed ξ, denote Eξ := {xy > ξ}. The

absolutely continuous property of µ1 implies that µ1(∂Eξ) = 0, and in turn, the weak

convergence from (5.4) justifies

Pr

(

(

X
(1)
N − t

)(

X
(2)
N − t

)

a2(t)
> ξ|X(2)

N > t

)

∼ µ1

(

Eξ

)

= 2

∫

√
ξ

0

ex+ξ/x dx+ 2

∫ ∞

√
ξ

e−2x dx

= 2

∫ 2
√
ξ

0

e−y

(

1− y
√

y2 − 4ξ

)

dy + e−2
√
ξ

= 2
√

ξK
(

1, 2
√

ξ
)

,
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where a change of variables, y = x+ ξ/x or equivalently x = y−
√

y2 − 4ξ, is made in the

third implication. Also, K(·) represents the modified Bessel function of the second kind.

As before, Lemma 3.4 from Tang and Yang (2012) explains the use of the Dominated

Convergence Theorem

E

(

(

X
(1)
N − t

)(

X
(2)
N − t

)

a2(t)
|X(2)

N > t

)

=

∫ ∞

0

Pr

(

(

X
(1)
N − t

)(

X
(2)
N − t

)

a2(t)
> ξ|X(2)

N > t

)

dξ

= 2

∫ ∞

0

√

ξK
(

1, 2
√

ξ
)

dξ + o(1)

= 1 + o(1).

The latter and relation (5.5) imply cov
(

X
(1)
N , X

(2)
N |X(2)

N > t
)

= a2(t)(1/4 + o(1)), which

completes the proof. �
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