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Abstract

We solve a portfolio selection problem of an investor with a determin-

istic savings plan who aims to have a target wealth value at retirement.

The investor is an expected power utility-maximizer. The target wealth

value is the maximum wealth that the investor can have at retirement.

By constraining the investor to have no more than the target wealth

at retirement, we find that the lower quantiles of the terminal wealth

distribution increase, so the risk of poor financial outcomes is reduced.

The drawback of the optimal strategy is that the possibility of gains above

the target wealth are eliminated.
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1 Introduction

Investing for retirement is usually characterized by a period of savings followed
by a period of consumption. The question of how to invest the savings before
retirement has been considered widely in the academic literature. We consider
the problem of how to invest an initial wealth and periodic amounts in order to
reach some target capital at a fixed time horizon that represents the intended
retirement date. This is a different formulation of one of the problems described
in Dhaene et al. (2005, page 277), in which an investor wishes to find the optimal
constant-proportion portfolio that attains the highest target capital with a fixed
probability. We constrain the investor to have at most the target capital at the
time of retirement, whereas Dhaene et al. (2005) ensure that at least the target
capital is attained with maximum probability. Since our focus is on a broad
analysis of following the optimal strategy, we assume throughout this paper
a simple continuous-time complete market model. Wealth can be invested in
a risky asset and in a risk-free asset. Our discussion is about the strategies
regarding the amount invested in each of those. As the investment period is
long, we are interested in the long-run outcome, namely the distribution of the
terminal wealth, rather than in the fluctuations of wealth during the savings
phase.

Our paper is about the reduction of the risk of terminal wealth being too
large and too low. We assume that investors are willing to accept that gains
may not be too large in the long-run, if there is a higher chance that terminal
wealth is not too low. We consider this problem to be of crucial importance to
consumers, who do not want the accumulated value of their retirement savings
to be insufficient for their retirement needs. Our approach differs from Gerrard
et al. (2014) who examined the lowest part of the terminal wealth distribution
after savings and consumption. Here we study only the savings phase and we
rather fix an upper target wealth, which should not be exceeded at the terminal
time point. This is what we call a constrained strategy. As a return for the
sacrifice of profits, the terminal wealth distribution is more concentrated in the
values below the target wealth than in the constrained plan, so that the prob-
ability of small values is lower than under the pure unconstrained investment
strategy.

We find an optimal strategy for investors in the current framework. This
result follows from maximizing the expected utility of terminal wealth plus de-
signing a call option on the fixed target. Moreover, we also find that there is an
optimal target level of wealth to be chosen, which provides a larger difference
in the rate of return to the investor compared with the optimal unconstrained
strategy, in which the investor holds a fixed proportion of his wealth in the risky
asset.

We do not look at portfolio selection when there is more than one risky asset
available, like in Van Weert et al. (2010), but we do take into consideration risk
aversion through a utility function in addition to the constraint on the terminal
wealth values. We also permit a dynamic asset allocation strategy. Our results
can easily be extended to the case where investors have both an upper and a
lower target in the terminal wealth distribution.

We should mention here several recent works on dynamic asset allocation
strategies. Some authors do not formally specify the investor’s problem and
simply propose an investment strategy. Basu et al. (2011) look at performance
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relative to a target return and suggest a contrarian strategy of switching the
investor’s asset allocation between 100% of wealth invested in stocks, and 80%
of wealth in stocks and the remainder in bonds according to whether the cumu-
lative target return is attained or not. Similar strategies are compared in Basu
and Drew (2009). Both papers show that defensiveness towards the end of the
investor’s time horizon, through diminishing the investment in the risky assets
(a so-called lifecycle strategy), is costly in terms of the overall return (Guillén
et al. 2013 arrives at a similar conclusion using a different methodology).

Another approach in the literature is to specify the investor’s problem within
a model and then determine the optimal investment strategy. Typically, the
investor’s core problem is to maximize the expected utility of terminal wealth
subject to specified constraints being satisfied. Grossman and Zhou (1996)
impose the constraint that the terminal wealth must be at least some fraction
of the initial wealth. Korn and Trautmann (1995) impose a constraint on the
expected value of the terminal wealth. Other authors impose the constraint
that the investor’s terminal wealth is at least a minimum value with a certain
probability. (This is similar to the problem in Dhaene et al. (2005, page 277)
except that the latter maximise the minimum value directly and do not use a
utility function.) In Boyle and Tian (2007), the minimum value is a random
variable that models a benchmark strategy. Bouchard et al. (2010) prove a
viscosity solution characterization of the value function in a very general setting
when there are terminal wealth constraints. De Franco and Tankov (2011) and
Gaibh et al. (2009) use a risk-measure constraint that is applied only to terminal
losses that are worse than a fixed level.

Browne (1999) solves a similar problem to the one that we consider, except
that he maximises directly the probability of reaching the target retirement
wealth. The formulation is attractive, since it requires only a target wealth to
be specified by the investor; calibrating utility functions to individual investors
is complicated (von Gaudecker et al., 2011). In other words, Browne (1999)
does not capture explicitly the investor’s emotional responses to investment
gains and losses, as we do here very simply with a power utility function or as
Jin and Zhou (2008) do by applying prospect theory. However, the consequence
is that following the optimal strategy in Browne (1999) results in an “all-or-
nothing” terminal wealth: either the target wealth is attained or the terminal
wealth is zero. We believe that such binary outcomes would be disagreeable
to most retirement investors. Indeed, the experiments of Benartzi and Thaler
(1999) suggest that investors are highly sensitive to the distribution of terminal
wealth.

We are not aware of another paper that considers constraining the terminal
wealth to be at most some target capital. Setting a retirement savings wealth
goal is in line with advice given to individuals by financial advisers (Greninger
et al., 2000). Although it may appear to be rather unambitious to aim at or
below a target value rather than above it, we find that there are very appealing
consequences. The probability of attaining the target is higher than under the
optimal unconstrained strategy. This may be more reassuring to the retirement
investor. The quantiles below the target are higher than those for the optimal
unconstrained strategy, and they are higher by a constant ratio that can be
calculated in advance. In summary, the investor increases their chances of at-
taining their desired target retirement wealth and, even if they fail to reach it,
they still have a higher wealth than if they had no such target.
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This paper is organized as follows. Section 2 presents the market model and
the investor generic savings behaviour with deterministic cash flows. Our setting
can be generalized, but we do not consider random cash flows for simplicity.
Section 3 provides the solution to the unconstrained case, where terminal wealth
is not bounded. The constrained optimal strategy is shown in Section 4. Section
5 discusses the choice of a target level in the terminal wealth distribution. A
numerical illustration and a discussion conclude the paper.

2 Notation and model assumptions

2.1 Market model

We assume investment in a continuous-time market model over a finite time
horizon [0, T ] for an integer T > 0. We refer to T as the terminal time.

The market consists of one risky stock and one risk-free bond. The price
of the stock is driven by an 1-dimensional, standard Brownian motion W =
{W (t); t ∈ [0, T ]} defined on a complete probability space (Ω,F ,P). The risk-
free bond has price process {S0(t); t ∈ [0, T ]} and the risky stock has price
process {S1(t); t ∈ [0, T ]} with dynamics

dS0(t) = rS0(t) dt, dS1(t) = S1(t) (µdt+ σdW (t)) , (2.1)

with σ > 0, S0(0) = 1, a.s. and S1(0) = 1, a.s. We assume that µ > r ≥ 0.
Define the constant market price of risk

θ :=
µ− r

σ
.

The information available to investors is represented by the filtration

Ft := σ{W (s), s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ],

where N (P) denotes the collection of all P-null events in the probability space
(Ω,F ,P).

2.2 Investor

An investor starts with a fixed non-random initial wealth x0 > 0 and plans to
make a sequence of known future savings. Define C(t) to be the undiscounted
sum from time 0 to time t of the investor’s planned savings. The idea is that
the investor has decided at time 0 how much money they will save towards
their retirement. The savings plan g : [0, T ] → [0,∞) of the investor, i.e. the
discounted sum of the future savings to be made by the investor, is given by

g(t) :=

∫ T

t

e−r(s−t)dC(s), ∀t ∈ [0, T ]. (2.2)

A portfolio process π = {π(t); t ∈ [0, T ]} is a R-valued, square-integrable,
{Ft}-progressively measurable process. The investor follows a self-financed
strategy, investing at each instant t ∈ [0, T ] a monetary amount π(t) in the
stock such that the π = {π(t); t ∈ [0, T ]} is a portfolio process.
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The wealth process Xπ = {Xπ(t); t ∈ [0, T ]} corresponding to a portfolio
process π and savings plan g is the {Ft}-adapted process given by the wealth
equation

dXπ(t) = (r (Xπ(t) + g(t)) + π(t)σθ) dt+π(t)σ dW (t)−dg(t), Xπ(0) = x0 a.s.
(2.3)

The set of admissible portfolios for the investor’s initial wealth x0 > 0 is
defined to be

A := {π : Ω×[0, T ] → R : Xπ(0) = x0, a.s. and Xπ(t)+g(t) ≥ 0, ∀t ∈ (0, T ] a.s.}.

We say that a portfolio process π is admissible if π ∈ A.
Define the state price density processH asH(t) := exp

(

−
(

r + 1
2θ

2
)

t− θW (t)
)

,
for each t ∈ [0, T ]. A portfolio π must satisfy the budget constraint that

E (H(T )Xπ(T )) ≤ x0 + g(0). (2.4)

The utility function of the investor is the power utility function

U(x) :=
1

γ
xγ , x > 0,

for a fixed constant γ ∈ (−∞, 1) \ {0}. The investor seeks to maximise the
expected utility of their terminal wealth, subject to constraints on the range of
values of the terminal wealth.

3 Unconstrained problem

Before solving the constrained problem, we give the solution to the correspond-
ing unconstrained problem. The unconstrained solution provides the foundation
for the solution to the constrained problem. To avoid confusion caused by sub-
tle differences in notation, we use u⋆ to denote the optimal portfolio for the
unconstrained problem.

Problem 3.1 (Unconstrained problem). The unconstrained problem is to find
u⋆ ∈ A such that

E

(

U(Xu⋆

(T ))
)

= sup
u∈A

{E (U(Xu(T )))}.

As the solution to the above problem can be found in, for example, Gerrard
et al. (2014, Section 3) or Korn and Krekel (2002, Theorem 4), we simply state
it. However, first we introduce some notation that we use throughout the paper.

Define the constant

A :=
θ

σ(1− γ)

and the process

Z(t) = exp

((

r + θσA− 1

2
σ2A2

)

t+ σAW (t)

)

, ∀t ∈ [0, T ]. (3.1)

The optimal investment strategy for Problem 3.1 is to invest in the risky stock
the monetary amount

u⋆(t) := u⋆(t;x0, g) := A (x0 + g(0))Z(t). (3.2)
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The more risk averse the investor, the smaller the value of the constant A and
the less that the investor puts in the risky stock. The corresponding wealth
process is

Xu⋆

(t) = (x0 + g(0))Z(t)− g(t), (3.3)

in which Z(t) is defined by (3.1) and g(t) by (2.2). Thus we can write u⋆(t) =
A
(

Xu⋆

(t) + g(t)
)

, so that the optimal amount invested in the risky asset at
time t depends on the investor’s current wealth and the discounted value of
their future savings.

Remark 3.2. If the investor does not plan to make any future savings, so that
g ≡ 0, then the optimal investment strategy for Problem 3.1 is to invest in the
risky stock the monetary amount Ax0Z(t) at each time t ∈ [0, T ]. Comparing
this amount to that for an investor who has a non-trivial savings plan g 6= 0,
the investor with a savings plan puts more in the risky stock at each time.
Effectively, the latter investor is borrowing against their future savings to do
this. Indeed, as u⋆(t;x0, g) = u⋆(t;x0 + g(0), 0), an investor with initial wealth
x0 and a savings plan g invests in the risky stock as if he had initial wealth
x0 + g(0) and no savings plan (although the wealth process would be adjusted
to take account of the future savings).

This result is well known in the literature (for example, see Bodie et al. 1992).
The message is that the investor should today borrow against their future human
capital, i.e. they should take more risk now, in order to maximize their expected
utility of wealth at their retirement date. In practice, most investors will only
invest at most the value of their current wealth in the risky stock. Various
papers encompass such portfolio or borrowing constraints (for example, Cuoco
1997 and Zariphopoulou 1994), which we do not consider here.

Nonetheless, we leave in the savings plan to emphasize that it should be
considered in the asset allocation decision. It is particularly important for highly
risk-averse investors who would invest less than the current value of their wealth
in the risky stock if they did not have a savings plan.

4 Constrained problem

Next we introduce the constrained problem, in which the investor seeks to maxi-
mize the expected utility of their terminal wealth, subject to the terminal wealth
being bounded above by a target wealth K > 0. Although the wealth is not con-
strained to hit the target, but rather to be no greater than the target, there is
a high probability of the wealth hitting the target. Naturally, the probability of
attaining the target wealth K at the terminal time increases as K decreases.

The motivating idea for introducing the target wealth constraint is that the
investor gives up the “upside” (i.e. there is zero probability of having a wealth
in excess of the target wealth) in exchange for a reduction in the “downside”
(i.e. an increased probability of having a particular wealth that is below the
target wealth). Furthermore, the extent to which the “downside” quantiles of
the constrained terminal wealth are higher than the corresponding quantiles for
the unconstrained terminal wealth can be explicitly calculated in our chosen
model.

The security of more certainty about the range of values for the terminal
wealth may be attractive to an individual. However, the disadvantage of giving
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up potentially high values of wealth is that the constrained investor has a lower
expected terminal wealth compared to an unconstrained investor.

In this section, we show that the solution to the constrained problem is to
invest in line with the unconstrained optimal portfolio, i.e. the solution to the
unconstrained problem (3.1), but with a different initial wealth value, while
simultaneously selling a synthetic European call option that is written on the
corresponding unconstrained optimal wealth process. The solution is detailed
in Proposition 4.5.

Problem 4.1 (Constrained problem). The constrained problem is to find π⋆ ∈
A such that

E

(

U(Xπ⋆

(T ))
)

= sup
π∈A

{E (U(Xπ(T )))},

and Xπ⋆

(T ) ∈ [0,K], a.s.

In order to avoid the uninteresting case that the investor can immediately
be assured of maximizing the terminal utility, we assume that

Assumption 4.2. K > (x0 + g(0))erT .

4.1 The optimal terminal wealth

The next proposition is the key result that helps us to determine the optimal
investment strategy for Problem 4.1.

Proposition 4.3. Define

X⋆(T ) := (z0 + g(0))Z(T )−max {0, (z0 + g(0))Z(T )−K} , (4.1)

with the shadow wealth z0 > 0 chosen so that the budget constraint (2.4) is
satisfied with equality by X⋆(T ). Then supπ∈A E (U(Xπ(T ))) ≤ E (U(X⋆(T ))).

Proof. Adapt Grossman and Zhou (1996, Proof of Lemma 2). For the investor’s
utility function, the first derivative U ′(x) = xγ−1, which is a strictly decreasing
function, has a strictly decreasing inverse I with

I(y) := y
1

γ−1 , y > 0.

After some algebra, we find that for the constant y⋆ := (z0+g(0))γ−1e(γr+
1

2

γ

1−γ
θ2)T ,

we have
(z0 + g(0))Z(T ) = I(y⋆H(T )).

We work with I(y⋆H(T )) in the proof, rather than with (z0 + g(0))Z(T ) due to
the properties of I(x) and U ′(x): they are both strictly decreasing functions.

Let X(T ) ∈ [0,K], a.s. be any attainable terminal wealth (i.e. there exists a
portfolio process π ∈ A that replicates X(T )) with E (H(T )X(T )) ≤ x0 + g(0).
We show that

E (U(X(T ))) ≤ E (U(X⋆(T ))) .

Then by arbitrary choice of X, supπ∈A E (U(Xπ(T ))) ≤ E (U(X⋆(T ))).
From equation (4.1) and using the fact that U ′ is a strictly decreasing func-

tion,

X⋆(T ) =

{

I(y⋆H(T )) if I(y⋆H(T )) < K
K if I(y⋆H(T )) ≥ K

=

{

I(y⋆H(T )) if y⋆H(T ) > U ′(K)
K if y⋆H(T ) ≤ U ′(K).
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First, as U is a concave function then for any a, b ∈ R, U(a) − U(b) ≤
U ′(b) · (a− b). In particular,

U(X(T ))− U(X⋆(T )) ≤ U ′(X⋆(T )) · (X(T )−X⋆(T )), a.s.

Take expectations in the above inequality to get

E (U(X(T ))− U(X⋆(T )))

≤E (U ′(X⋆(T )) · (X(T )−X⋆(T )))

≤E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | y⋆H(T ) > U ′(K)) · P [y⋆H(T ) > U ′(K)]

+ E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | y⋆H(T ) ≤ U ′(K)) · P [y⋆H(T ) ≤ U ′(K)] .

We consider the last two terms separately. Observe that on the event [y⋆H(T ) > U ′(K)],

U ′(X⋆(T )) = U ′(I(y⋆H(T ))) = y⋆H(T )

so that

E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | y⋆H(T ) > U ′(K))

=E (y⋆H(T ) · (X(T )−X⋆(T )) | y⋆H(T ) > U ′(K)) .

Next observe that on the event [y⋆H(T ) ≤ U ′(K)], as X(T ) ∈ [0,K] a.s. and
X⋆(T ) = K a.s, then

X(T )−X⋆(T ) = X(T )−K ≤ 0

and
U ′(X⋆(T )) = U ′(K) ≥ y⋆H(T ).

Upon multiplying both sides of the inequality U ′(X⋆(T )) ≥ y⋆H(T ) by the nega-
tive random variableX(T )−X⋆(T ), we find that on the event [y⋆H(T ) ≤ U ′(K)],

U ′(X⋆(T )) · (X(T )−X⋆(T )) ≤ y⋆H(T ) · (X(T )−X⋆(T )).

Thus

E (U ′(X⋆(T )) · (X(T )−X⋆(T )) | y⋆H(T ) ≤ U ′(K))

≤E (y⋆H(T ) · (X(T )−X⋆(T )) | y⋆H(T ) ≤ U ′(K)) .

In summary,

E (U(X(T ))− U(X⋆(T )))

≤E (y⋆H(T ) · (X(T )−X⋆(T )) | y⋆H(T ) > U ′(K)) · P [y⋆H(T ) > U ′(K)]

+ E (y⋆H(T ) · (X(T )−X⋆(T )) | y⋆H(T ) ≤ U ′(K)) · P [y⋆H(T ) ≤ U ′(K)]

≤E (y⋆H(T ) · (X(T )−X⋆(T ))) .

As both X(T ) and X⋆(T ) satisfy the budget constraint (2.4), from the last line
in the above inequality

E (y⋆H(T ) · (X(T )−X⋆(T ))) ≤ y⋆ · ((x0 + g(0))− (x0 + g(0))) = 0,

which means E (U(X(T ))− U(X⋆(T ))) ≤ 0, as required.
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4.2 The synthetic European call option

If we can find an admissible portfolio that results in terminal wealth X⋆(T ),
given by (4.1), then supπ∈A E (U(Xπ(T ))) = E (U(X⋆(T ))), and the portfolio
is the optimal one for the constrained strategy.

To this end, note that the expression for X⋆(T ) is the sum of the optimal
terminal wealth for the unconstrained strategy, albeit with initial wealth z0
rather than x0, less the value of a synthetic European call option. The latter
unconstrained strategy has value Y (t)− g(t) at time t, with

Y (t) := (z0 + g(0))Z(t).

The synthetic European call option has strike price K and is written on a basket
of assets with value Y (t) at time t. We begin by finding the pricing function of
the call option.

Lemma 4.4. The price at time t ∈ [0, T ] of a European call option with payoff
max {0, (z0 + g(0))Z(T )−K} is given by c(t, Y (t)) with

c(t, y) := yΦ(d+(t, y))−Ke−r(T−t)Φ(d−(t, y)),

in which Φ(d) denotes the cumulative standard normal distribution function at
d ∈ R and

d±(t, y) :=
1

σA
√
T − t

(

ln
( y

K

)

+

(

r ± 1

2
σ2A2

)

(T − t)

)

, ∀y > 0. (4.2)

The replicating portfolio for the option is to hold the amount πc (t, Y (t)) in
the risky stock at time t ∈ [0, T ], with

πc (t, y) := AyΦ(d+(t, y)), ∀y > 0, (4.3)

and the remaining amount c(t, Y (t))− πc (t, Y (t)) in the risk-free bond.

Proof. We use risk-neutral pricing to calculate the pricing function c(t, y) of the
call option. Denote the risk-neutral pricing measure by Q and define WQ(t) :=
W (t)+ θt, for t ∈ [0, T ]. Then WQ is a standard Brownian motion under Q and

e−rTY (T ) = Y (0) exp

(

−1

2
σ2A2T + σA

√
TL

)

,

in which L := WQ(T )/
√
T ∼ N (0, 1) under Q. After some algebra, we find that

Y (T ) > K ⇔ L > −d−(0, Y (0)).

Using 1 [A] to denote the zero-one indicator function on the set A ⊂ Ω,

c(0, Y (0))

=EQ

(

e−rT max {0, Y (T )−K}
)

=EQ

((

Y (0) exp

(

−1

2
σ2A2T + σA

√
TL

)

−Ke−rT

)

· 1 [L > −d−(0, Y (0))]

)

.

By integration over the probability density function of the standard normally
distributed random variable L, we obtain

c(0, Y (0)) = Y (0)Φ (d+(0, Y (0)))−Ke−rTΦ(d−(0, Y (0))) .
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The general result follows by the usual argument: we re-start the Black-Scholes
model at time t ∈ (0, T ). Then there are T − t years until maturity, we replace
Y (0) by Y (t), etc.

Next we calculate the replicating portfolio of the European call option. Dif-
ferentiating the pricing function c, we get

ct(t, y) = −yφ(d+(t, y))σA

2
√
T − t

− rKe−r(T−t)Φ(d−(t, y)),

cy(t, y) = Φ(d+(t, y)), cyy(t, y) =
φ(d+(t, y))

yσA
√
T − t

.

By Ito’s formula,

dc(t, Y (t)) = ct(t, Y (t))dt+ cy(t, Y (t))dY (t) +
1

2
cyy(t, Y (t))d [Y ] (t),

in which
dY (t) = (r + θσA)Y (t)dt+ σAY (t)dW (t).

Substituting for the derivatives of the pricing function c, the dynamics of Y and
the candidate replicating portfolio πc (t, Y (t)) := AY (t) Φ(d+(t, Y (t))), we find
that the dynamics of the pricing function c satisfy the wealth equation (with
g ≡ 0). Hence πc (t, Y (t)) is the amount to be invested in the risky stock at
time t in order to replicate the payoff of the synthetic European call option.

4.3 An optimal strategy for Problem 4.1

Proposition 4.5. An optimal investment strategy for Problem 4.1 is to invest
the amount

π⋆(t) := AY (t) [1− Φ(d+ (t, Y (t)))] (4.4)

in the risky stock at time t, in which the function d+ is defined by equation (4.2)
and Y (t) = (z0 + g(0))Z(t).

The wealth process corresponding to this optimal investment strategy is

Xπ⋆

(t) = Y (t)− g(t)− c(t, Y (t)). (4.5)

In particular, the shadow initial wealth z0 is chosen to satisfy

x0 = z0 − c(0, z0 + g(0)). (4.6)

Proof. By substituting the portfolio π⋆ into the wealth equation (2.3), we find
that the corresponding wealth processXπ⋆

agrees with (4.5). AsXπ⋆

(t)+g(t) =
Y (t)− c(t, Y (t)) ≥ 0, then π⋆ ∈ A.

Furthermore, as g(T ) = 0, then Xπ⋆

(T ) is the same a.s. as X⋆(T ) de-
fined by (4.1). It follows from Proposition 4.3 that supπ∈A E (U(Xπ(T ))) =
E
(

U(Xπ⋆

(T ))
)

. As Xπ⋆

(T ) ∈ [0,K], a.s, we have shown that π⋆ is an optimal
solution for Problem 4.1.

The equation to be satisfied by the shadow initial wealth z0 follows from
Proposition 4.3 and by evaluating the budget constraint (2.4) with equality.
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Remark 4.6. As the target wealth K becomes larger and larger, the shadow
initial wealth z0 converges to the investor’s actual initial wealth: from equation
(4.6), since limK→∞ c(0, z0+ g(0)) = 0, it follows that limK→∞ z0 = x0. Conse-
quently, the optimal unconstrained strategy can be obtained from the optimal
constrained strategy by letting the target wealth tend to infinity.

Remark 4.7. The amount invested in the risky stock is always positive which
can be seen from the positivity of the terms on the right-hand side of equation
(4.4) (note that under the assumption that µ > r, it follows that A > 0). Thus
the investor never short-sells the risky stock for the optimal strategy.

4.4 Interpretation of the shadow initial wealth z0

The relative value of the shadow initial wealth z0 over the investor’s actual initial
wealth x0 has a concrete interpretation. For the p-quantiles of the constrained
terminal wealth that fall below the target wealth K, it gives their uplift over
those for the unconstrained terminal wealth.

To see this, we calculate the p-quantiles under both the constrained and the
unconstrained strategies. For the constrained strategy, there is a probability
mass at the target wealth K. For this reason we use the following generalised
definition of the p-quantile.

Definition 4.8. Fix p ∈ (0, 1). The p-quantile for a random variable X is

Qp(X) = inf {y ∈ R : P [X ≤ y] ≥ p} ,

with the convention that inf {∅} = ∞.

For an investor with initial wealth x0 and savings plan g, let X⋆(t;x0, g,∞)
be the optimal wealth (3.3) for the unconstrained problem. For the same in-
vestor who also chooses a target wealth K, denote by X⋆(t;x0, g,K) the optimal
wealth (4.5) for the constrained problem. Then

X⋆(t;x0, g,K) = X⋆(t; z0, g,∞)− c(t, Y (t))

and, following from Remark 4.6, limK→∞ X⋆(t;x0, g,K) = X⋆(t;x0, g,∞), a.s.

Lemma 4.9 (p-quantiles). Suppose an investor has initial wealth x0 > 0 and
follows the savings plan g. Fix p ∈ (0, 1) and define the constant

βp := σA
√
T Φ−1(p) +

(

r + θσA− 1

2
σ2A2

)

T. (4.7)

If the investor follows the optimal unconstrained strategy then the p-quantile
of the investor’s terminal wealth X⋆(T ;x0, g,∞) is

Qp(X
⋆(T ;x0, g,∞)) = (x0 + g(0))eβp . (4.8)

If the investor follows the optimal constrained strategy with a target wealth
K then the p-quantile of the investor’s terminal wealth X⋆(T ;x0, g,K) is

Qp(X
⋆(T ;x0, g,K)) = min

{

K, (z0 + g(0))eβp
}

, (4.9)

in which z0 satisfies equation (4.6).
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Proof. Suppose first that the investor follows the optimal unconstrained strat-
egy, resulting in a terminal wealth X⋆(T ;x0, g,∞) = (x0 + g(0))Z(T ). As there
is no probability mass at the terminal time for the unconstrained strategy,

p = P [(x0 + g(0))Z(T ) ≤ Qp(X
⋆(T ;x0, g,∞))] .

Substituting for Z(T ) from equation (3.1), using the fact that W (T )/
√
T ∼

N (0, 1) under P, we obtain the desired expression (4.8).
Next suppose that the investor follows the optimal constrained strategy,

resulting in a terminal wealth X⋆(T ;x0, g,K). We determine the value of

Qp(X
⋆(T ;x0, g,K)) = inf {y ∈ R : P [X⋆(T ;x0, g,K) ≤ y] ≥ p} .

It is useful to consider another investor who has the initial wealth z0, with z0
satisfying equation (4.6), savings plan g and follows the optimal unconstrained
strategy. The wealth at time T of the second investor is

X⋆(T ; z0, g,∞) = (z0 + g(0))Z(T )− g(T ) = Y (T ).

Thus the terminal wealth of the constrained investor is related to that of the
second unconstrained investor by

X⋆(T ;x0, g,K) =

{

X⋆(T ; z0, g,∞) if X⋆(T ; z0, g,∞) ≤ K
K if X⋆(T ; z0, g,∞) > K.

The desired expression (4.9) follows by consideration of the last expression.

Define pK to be the solution to QpK
(X⋆(T ;x0, g,K)) = K. Then by Lemma

4.9,
Qp(X

⋆(T ;x0, g,K))

Qp(X⋆(T ;x0, g,∞))
=

z0 + g(0)

x0 + g(0)
, for p ∈ (0, pK ].

Furthermore, as x0 = z0 − c(0, z0 + g(0)) ≤ z0, the quantiles of the constrained
terminal wealth exceed those of the unconstrained terminal wealth, up to the
point at which the target wealth K is attained by the constrained terminal
wealth (see Leshno and Levy 2002 for the related concept of “almost stochastic
dominance”), i.e.

Qp(X
⋆(T ;x0, g,K)) ≥ Qp(X

⋆(T ;x0, g,∞)), for p ∈ (0, pK ].

The uplift z0+g(0)
x0+g(0) in the lower quantiles represent the reduction in the “down-

side” risk obtained by giving up the possibility of a terminal wealth above the
the target K.

Remark 4.10. The uplift z0+g(0)
x0+g(0) decreases as the target wealth K gets larger.

This is because the shadow initial wealth z0 is a decreasing function of the target
wealth K, which can be seen by differentiating equation (4.6) with respect to
K to find

∂z0
∂K

= −e−rTΦ(d−(0, z0 + g(0)))

Φ (−d+(0, z0 + g(0)))
< 0. (4.10)
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5 Determining the target wealth K that max-

imises a chosen p-quantile

Here we look at choosing the target wealth in order to maximise a p-quantile
of the constrained terminal wealth, for a chosen value of p ∈ (0, 1). The impact
of this maximal target wealth can be significant. For example, in the numerical
illustrations, we find that choosing the target wealth that maximises the median
terminal wealth gives an increase in the median annual return of around 0.5%
per annum over that for the unconstrained strategy.

Proposition 5.1. Fix p ∈ (0, 1). The target wealth Kp that maximises the
p-quantile for the constrained terminal wealth is

Kp =
x0 + g(0)

e−βp (1− Φ(ηp)) + e−rTΦ
(

ηp − σA
√
T
) , (5.1)

with the constant βp given by equation (4.7) and the constant ηp := −Φ−1(p) +

(σA− θ)
√
T .

Proof. As we are varying the target wealth in the proof, for the target wealth
K denote the p-quantile for the constrained strategy by y(G) and use z0(K) to
represent the shadow initial wealth.

From equation (4.9),

y(K) = min
{

K, (z0(K) + g(0))eβp
}

.

The target wealth Kp given by (5.1) is the value of K at which the two terms
in the above minimum are equal: set z0(K) + g(0) = Ke−βp in equation (4.6)
and solve to find the explicit expression for Kp. Then

y(Kp) = Kp = (z0(Kp) + g(0))eβp . (5.2)

We show that y(K) is maximised at K = Kp by showing that y(K) < y(Kp)
for all K 6= Kp.

First suppose that K < Kp. As noted in Remark 4.10, the shadow initial
wealth z0(K) is a decreasing function of the target wealth K. Thus K < Kp

implies that z0(K) > z0(Kp). Hence

(z0(K) + g(0))eβp > (z0(Kp) + g(0))eβp = Kp > K.

Thus for the quantile

y(K) = min
{

K, z0(K)eβp
}

= K < Kp = y(Kp).

Next suppose that K > Kp. Following the same argument as above results
in

(z0(K) + g(0))eβp < Kp < K.

Hence for the quantile

y(K) = min
{

K, (z0(K) + g(0))eβp
}

= (z0(K) + g(0))eβp < Kp = y(Kp).

We have now shown that the maximum p-quantile for the constrained terminal
wealth occurs at Kp.
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6 Numerical illustration

Here we investigate the optimal strategy for the constrained strategy. We use
the unconstrained strategy as the benchmark strategy. We set the unit time
period to be one year and fix the parameter values:

r = 0, µ = 0.0343, σ = 0.1544, A = 1, T = 30, g ≡ 0, x0 = 300.

The target wealth K is varied according to the illustration. Note that the choice
of the parameters implies that the investor’s risk aversion constant is γ = −0.44.

Figure 1 shows four sample paths of the proportion of wealth invested in the
risky stock for an investor who follows the optimal constrained strategy with
a target wealth of K = 1038.57. The impact of the target wealth constraint
is seen in Figures 1(a)-1(b), as the amount in the risky asset declines to zero
before the terminal time.

Table 1 shows part of the distribution of the terminal wealth under the
constrained strategy for various choices of the target wealth. The distribution of
the terminal wealth under the unconstrained strategy is also shown. The target
wealths have been chosen to correspond to the 50%, 75% and 95% quantiles of
the unconstrained strategy.

As the target wealth becomes larger, the probability of achieving it at the
terminal time declines. Similarly, the degree by which the quantiles of the
constrained terminal wealth exceed those of the unconstrained terminal wealth
decreases as the target wealth increases. However, the uplift in the quantiles
can be significant: it is 23% for the target wealth K = 587.10.

Table 1: Table showing the quantiles of the distribution of the terminal wealth
for the unconstrained strategy and the constrained strategy, for various choices
of the target wealth K.

Unconstrained Constrained p-quantile
p-quantile Qp(X

⋆(30; 300, 0,K)) for

p Qp(X
⋆(30; 300, 0,∞)) K = 587.10 K = 1038.57 K = 2359.53

5% 146.08 179.48 154.12 146.88
25% 331.88 407.77 350.14 333.69
50% 587.10 587.10 616.40 590.30
75% 1038.57 587.10 1038.57 1044.23
95% 2359.53 587.10 1038.57 2359.53

P[X⋆(30; 300, 0,K) = K] N/A 59.62% 27.05% 5.07%
z0 N/A 368.59 316.50 301.63

Quantile uplift z0/300 N/A 122.86% 105.50% 100.55%

The optimal constrained strategy results in a dynamic asset allocation, which
changes as the price of the risky stock fluctuates (equation (2.1) gives the dy-
namics of the risky stock price S1). Figure 2(a) shows the proportion of wealth
invested in the risky stock plotted as a function of the risky stock price, at two
different times. For low values of the stock price, the investor’s wealth is below
the target wealth and the optimal unconstrained strategy is to invest a high pro-
portion of the investor’s wealth in the risky stock. As the stock price increases,
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(c) Sample path 3
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(d) Sample path 4

Figure 1: Sample paths of the proportion of wealth invested in the risky stock
when following the optimal constrained strategy with a target wealth of K =
1038.57. The optimal unconstrained strategy, shown by the solid line in each
figure, is to invest all of the wealth in the risky stock at all times. The sample
paths are generated at monthly time intervals.

it is more likely that the investor’s wealth achieves the target wealth, and so
the proportion of wealth in the risky stock declines. These effects are magnified
as the time remaining until the terminal time decreases. For example, if the
price of the risky stock is low near to the terminal time, a greater proportion of
the investor’s wealth is invested in the risky stock in order to have a chance of
attaining the target wealth.

Figure 2(b) shows the same plot but for a higher target wealth. In this case,
a higher proportion of the investor’s wealth is invested in the risky asset in order
to attempt to achieve the higher target wealth.

As shown in Proposition 5.1, the target wealth can be chosen to maximize the
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Figure 2: Proportion of wealth in the risky stock plotted as a function of the
risky stock price, at two different times from maturity. Each figure is plotted
for a different target wealth value.

value of a p-quantile of the constrained terminal wealth, for any chosen p ∈ (0, 1).
Table 2 shows the maximal target wealths for a selection of values of p. The
corresponding p-quantiles of the terminal wealth for an investor who follows the
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Table 2: Table illustrating how the maximal choice of the target wealth K
can provide a higher equivalent annual return at a desired p-quantile. Note
that a maximised target wealth Kp is equal to the p-quantile of the constrained
terminal wealth. The maximal target wealths are calculated from equation (5.1).

Equivalent Maximal Equivalent

Unconstrained return on target return on

p-quantile unconstrained wealth constrained

p Qp(X
⋆(30; 300, 0,∞)) p-quantile Kp p-quantile

5% 146.08 -2.40% p.a. 343.29 0.45% p.a.
25% 331.88 0.03% p.a. 470.20 1.50% p.a.
50% 587.10 2.24% p.a. 679.83 2.73% p.a.
75% 1038.57 4.14% p.a. 1089.17 4.30% p.a.
95% 2359.53 6.87% p.a. 2372.17 6.89% p.a.

optimal unconstrained strategy are shown for comparison. Also shown – to ease
the interpretation of the wealth values – is the equivalent annual continuously-
compounded return: for a terminal wealth value x > 0, and assuming no future

savings, this is calculated as 1
T
ln
(

x
x0

)

.

For example, an investor who wishes to maximize their median constrained
terminal wealth (i.e. 50%-quantile) would choose the target wealth K0.5 =
679.83. This means that the investor has probability 50% (= 1−p) of attaining
a terminal wealth 679.83 by following the optimal constrained strategy (equiv-
alent to an annual return of 2.73%). By comparison, the median unconstrained
terminal wealth is the lower value of 587.10 (equivalent to an annual return of
2.24%). The difference in annual returns between the median constrained and
unconstrained terminal wealth values is 0.49%, averaged over the 30–year time
horizon of the investor.

Note that the uplift in the lower quantiles, i.e. those quantiles below the
target, are not maximised by Kp. As discussed in Remark 4.10, the uplift
decreases as the target wealth is increased. That means, for example, that the
uplift in the lower quantiles for the optimal target wealth K0.5 = 679.83 is less
than that for the target wealth K = 587.10 (in fact, the uplift is 115.80% for
the former and 122.86% for the latter).

7 Conclusion and discussion

Investors face a number of possible strategies to maximize wealth at retirement.
These investment strategies have traditionally been dominated by the maxi-
mization of expected returns, with some control on the risk when approaching
the retirement age. Our method addresses the control of risk in the terminal
wealth distribution from the start of the savings period and finds an optimal
strategy which is advantageous compared to an unconstrained plan.

We intend to extend our results to dynamic strategies that can be imple-
mented in practice and we also propose to explore strategies that allow only
positive liabilities.
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