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The development of highly dispersive lower and higher order cladding modes and their degeneration with 

respect to the fundamental core mode in a bent photonic crystal fiber is rigorously studied by use of 
the full-vectorial finite element method. It is shown that changes in the bending radius can modify 

the modal properties of large-area photonic crystal fibers, important for a number of potential practical 

applications. 

 

 

Introduction 

Photonic crystal fibers (PCF) [1] are seen potentially as specialized optical waveguides due to 

the advantages arising from their inherent modal properties, such as controllable spot-size, 

birefringence and dispersion properties by tailoring their structural parameters.  In their 

practical applications, such PCF go thorough bends, twists and stress. It is also well known 

that when a fiber is bent, the modal field shifts in the outward direction and suffers from 

radiation loss.  One of the main disadvantages of standard silica fiber has been that the 

significant bending loss arises due to the low index contrast between the core and the cladding 

when compared to a PCF.  However, sometimes a small bending radius may be unavoidable 

for any optical waveguide but on the other hand bending has been utilized to design 

functional devices such as ring resonators [2], arrayed waveguide filters [3], optical delay 

lines [4], S-bend attenuators [5] or to suppress higher order modes [6].  In this paper, work is 

reported on the rapid variation of key modal parameters which arises from the change in the 

coupling between the fundament core mode and localized cladding mode between the air-

holes by using a rigorous full-vectorial finite element method. 

 

Numerical Solutions 

 

Various methods has been considered so far to study the modal characteristics of PCFs. One 

of the first methods used was the effective index method [10], which is a scalar field approach 

treats the PCF as an equivalent step-index fiber and cannot yield the actual modal field profile 

and the modal birefringence of the PCF.  The plane wave method (PWM) [11], a more widely 

used approach needs a larger ‘supercell’ that demands periodicity of the PCF cladding and 

suffers from an inefficient computation time.  The localized basis function method [12], the 

multipole method [13], and the supercell lattice method [14] are more effective methods than 

the PWM; but these methods have limitations in defining practical PCFs with a finite lattice 

period.  These methods are unable to consider an arbitrary transverse variation of the PCF 

cross-section, such as is required in describing non-circular air-holes or non-identical multiple 

defects.  On the other hand, more powerful and versatile finite difference method (FDM) [15], 

finite element method (FEM) [16] and beam propagation method (BPM) [18] are more 

effective when studying such complex microstructured fibrers. A full-vectorial FEM [20] can 

be used efficiently in determining the quasi-TE and TM fundamental and higher order modes.  

A real value eigenvalue problem determined by the H field formulation can be solved with 

higher computing efficiency, compared to other methods, in determining their important 
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modal properties such as the effective index, spot-size, dispersion, and cut-off of fundamental 

and higher order modes [21]. 

 

In the modal solution approach based on the FEM, the intricate cross-section of a PCF can be 

accurately represented by using nearly a million triangles of different shapes and sizes.  The 

flexibility of irregular mesh makes the FEM preferable when compared to the FDM which not 

only uses inefficient regular spaced meshing, but also cannot represent adequately slanted or 

curved dielectric interfaces of the air-holes.  The optical modes in a PCF with two dimensional 

confinement and  high index contrast air/silica interfaces, are also hybrid in nature, with all six 

components of the E and H fields being present.  Hence, only a vectorial formulation needs to 

be used to calculate accurately their modal solutions. The H field formulation with the 

augmented penalty function technique is given below [20]: 
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where H


is the full-vectorial magnetic field, ̂ and ̂  are the permittivity and permeability 

respectively of the waveguide, 0 is the permittivity of the free-space, 2
 is the eigenvalue, 

where  is the angular frequency of the wave and  is a dimensionless parameter used to 

impose the divergence-free condition of the magnetic field in a least squares sense.  

 

To study arbitrary bends, various numerical methods have been developed and used to 

simulate the light propagation in bent waveguides with the aim of characterizing the bending, 

transition and polarization losses.  The conformal transformation [22] has most widely been 

used to represent such bent waveguides by converting a curved dielectric waveguide to its 

equivalent straight waveguide with a modified index profile. The coordinate transformation 

allows a bent optical waveguide in the x-plane to be represented by an equivalent straight 

waveguide with modified refractive index distribution, neq(x,y) 
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where n(x,y) is the original refractive index profile of the bent waveguide, neq(x,y) is the 

equivalent index profile of a straight guide, R is the radius of the curvature and x is the 

distance from the centre of the waveguide.  Subsequently, the straight waveguide with a 

transformed index profile can be analysed by a number of modal solution techniques, such as 

the eigenmode expansion [23], the methods of lines [24], the FDM [26], the variational 

method [28], the matrix method [29], the WKB analysis [30], and the FEM [32,33].  The 

FEM has also been employed by using cylindrical co-ordinate with E field [35] and the 

equivalent anisotropic refractive index approaches [36].   The beam propagation approach 

[37, 38] has been used successfully, but this approach makes the problem 3-dimensional with 

additional computational costs.  Similarly the finite-difference time-domain (FDTD) [40] 

approach has also been used, which is more computer intensive than the modal solution or the 

BPM approaches. 

 

In the original H-field formulation [20], which considered a real eigenvalue equation, the 

PML [41] can be introduced around the orthodox computation window.   The PML layer 

allows the electromagnetic waves to leak out of bent waveguides and avoids the reflection at 

the hard boundary of the orthodox computational window by using a slowly varying complex 



refractive index profile.  This allows the calculation of power loss out of the computation 

window but the introduction of the complex refractive index in the PML region also modifies 

the real eigenvalue to a complex eigenvalue equation. The modal loss value is calculated from 

the imaginary part () of the complex propagation constant = +j. The width of PML layer 

has been chosen such that the modal solutions are stable with respect to the variations of the 

PML and the refractive indices of the local elements in the PML layer are matched with the 

local refractive indices at the edge of the cladding. Only one-half of the PCF cross section is 

considered here as the existing one-fold mirror symmetry of a bent PCF has been exploited. 

 

   

 

Results 

 

In this study, silica photonic crystal fiber with air-holes arranged in a triangular lattice is 

considered, with the diameter of air-hole denoted by d and distance between two air-holes 

denoted by .  The refractive index of silica is taken as 1.444 at the operating wavelength of 

1.55 m.  A PCF can support two fundamental H
y
11 (quasi-TE) and H

x
11 (quasi-TM) modes 

and for higher  and d/ values, a PCF can also support additional higher order modes of a 

given polarization.   

 

It is well known that such PCF suffers from leakage loss as the modal index is lower than the 

refractive index of the outer cladding silica region. This leakage loss can be reduced by 

increasing the number of air-hole rings or considering a well confined mode operating the far 

away from its cutoff condition. It is also well known that optical waveguides suffer from 

increased bending loss as its bending radius is reduced. The variation of the total loss for the 

fundamental quasi-TM (H
x
11) mode with the bending radius, R, for three different pitch 

values, are shown in Fig. 1.  In this case the d/ is taken to be constant and equal to 0.5. For a 

lower pitch length, = 1.6 µm, the bending loss increases monotonically as the bending radius 

is reduced. However, in this case as leakage loss (for straight waveguide or when R is very 

large) is also high as the PCF is operating close to its modal cutoff. PCF with such a smaller 

pitch length is mostly not preferred due to their higher leakage losses. As the pitch length is 

increased, for = 2.6 µm, the leakage loss reduced by three order of magnitude (at R = 10
4
 

µm, total loss contains mainly the leakage loss as the pure bending loss is nearly zero).  For 

this case, as the bending radius is reduced, progressively the bending loss increases and as a 

result the total loss also increases. It can be noted that increases in the bending loss with the 

bending radius is more rapid as this is reduced, compared to the case with a lower pitch 

length, = 1.6 µm. At a lower bending radius, this also shows a non-monotonic nature with 

oscillations in the total loss values. In these cases, it has been observed that the modal and 

leakage properties of both the quasi-TE and TM modes are almost similar along with the 

transition in their loss properties also at similar locations. When the pitch length is increased 

further, = 5.0 µm, the leakage loss is significantly reduced to 10
-3

 dB/m, and such a PCF 

with a larger dimension is often preferred.  In this case, as the bending radius is reduced the 

total loss value increases rapidly and for some fixed radius values this value can even be 

higher than that of a PCF with a lower pitch value. However, in this case with a larger , the 

oscillations in the loss values are more frequent and appear to be random in nature. Similar 

features have also been observed experimentally [x]. 

 

To study this particular feature more closely, a smaller bending radius range is further 

expanded with many additional simulated results in that region. Variation of the effective 



index for the quasi-TM  mode with the bending radius is shown in Fig.2. In this region, two 

distinct modes can easily be identified (their field profiles are shown later on). The solid line 

represents the first, H
x
1 eigenmode, with a higher effective index and that of the second 

eigenmode, H
x
2, shown by a dashed line has a lower effective index for the range of bending 

radius shown here. In a way similar to the formation of the even and odd-like supermodes of 

two nonidentical coupled waveguides [7], these two curves never cross each other but these 

two modes go through a transition near R   1445 µm, when they are phase matched.  The 

horizontal sections of these two lines represent the H
x
11 core mode confined at the center of 

the PCF. The slanted line represents a highly dispersive H
x
c1 cladding mode, which is located 

at the right side of the core and between the two air-holes for a bent PCF. This cladding mode 

has a smaller core area but with a progressively higher local equivalent refractive index value 

as the bending radius is reduced. For a specific bending radius the effective index of the 

cladding mode becomes equal to that of the core mode and they degenerate. It should be 

noted that the dispersion properties of the TE and TM polarized modes for both the core and 

cladding modes are similar.  

 

The loss values for these first H
x
1 and second H

x
2 modes are shown in Fig.3 by a solid and a 

dashed line, respectively. Part of these two curves form the lower section, which shows the 

loss values of the H
x
11 core mode is around 100 dB/m (U:check it). On the other hand, the 

upper lines represent H
x
c1 cladding modes with significantly higher loss values, around 12000 

dB/m. However, these two curves also go through a transition near R   1450 µm, similar as 

the effective index curves shown in Fig.2. It can be observed that the upper curve shows a 

local minimum near the mode degeneration point as being mixed with a less lossy H
x
11 core 

mode. Similarly loss value of the lower curve also peaks near the resonance as being mixed 

with a highly lossy cladding mode. This local peak was clearly shown in Fig.1 for = 5 µm 

around R = 1445 µm.  

 

Variation of the Hx field for the H
x
11 core mode along the center of the guide in the x-

direction is shown in Fig.4 when R = 1480 µm. It can be observed that field is predominantly 

confined at the center of the PCF core, however, its maximum value is shifted slightly right of 

the waveguide center, shown by an arrow. Two local peaks are also visible located in the 

silica bridge region between the first and second air-hole rings and the 2
nd

 and 3
rd

 air-hole 

rings (shown as 1, 2 and 3), respectively. These peaks are only visible on the right of the core, 

not on the left side, as due to the conformal transformation, higher local equivalent index 

value allows such local modes to be formed on the right side of the core. Its spot-size is xxx 

µm
2
, (U: give me the value) where the spot-size is defined as the area with more than 1/e

th
 of 

the maximum field intensity. 

 

At this particular bending radius, R = 1460 µm, a local cladding mode also exists with its 

effective index slightly lower than the H
x
11 core mode. The 2-D Hx field contour for this H

x
c1 

cladding mode is shown in Fig.5. The location of the air-hole positions are shown by circles. 

It can clearly be observed that this cladding mode is formed in between the air-holes of the 

second and third rings. The spot-size area of this mode is significantly smaller ( = xx µm
2
) 

(U: give me the value) as being restricted to a smaller silica bridging region but this mode is 

highly dispersive with a higher loss value.  

 

When the bending radius is reduced below the degeneration point (R < 1445 µm) effective 

index of the cladding mode becomes higher than that of the H
x
11 core mode and the 

eigenvalues change their positions. The 3-D Hx field profile of the H
x
11 core mode, when R = 

1430 µm, is shown in Fig. 6. The local peaks on the right of the main peak are visible. 



However, it can be observed that the sign of second peak in the cladding area is negative, 

which is also an indication of the change in mode order.  

 

The 3-D Hx field profile of the H
x
c1 cladding mode, when R = 1430 µm, is shown in Fig.7. Its 

narrower peak in between two air-holes (marked by 1 and 2) is clearly visible. Besides that, 

one local peak in the core region and another between the 2
nd

 and 3
rd

 air-hole rings are also 

visible.  

 

It has been mentioned that the modal properties of the quasi-TM and TM modes were almost 

identical as the original straight PCF has a 6-fold rotational symmetry, before the bending is 

considered. In Fig.1, it was also noted that bending loss curve for = 5µm, showed several 

local perturbations. To study this more thoroughly, the bending radius is further reduced and 

the variation of the effective index values for the quasi-TE core and cladding modes are 

shown in Fig. 8. The effective index variation of the first H
y
1 and second H

y
2 modes are 

shown by a dashed and a solid line. It can be noted that the effective index of the fundamental 

core mode is higher than that shown in Fig.2, as bending radius is now significantly reduced. 

Similar as shown in Fig.2, these two effective index curves do not cross each other but 

transforms from the H
y
11 core mode to the H

y
c2 cladding mode or vice versa around R  833 

µm. Lower bending radius further increases the local refractive index on the right-side of the 

PCF center. The dispersion slope of the H
y
c2 cladding mode is also higher in this case than 

that of the H
x
c1 cladding mode.  

 

Variation of the total loss values for the H
y
11 core and H

y
c2 cladding modes are shown in 

Fig.9. In this case, the core mode with a lower loss value transforms to higher loss cladding 

mode near the degeneration position. In this case the H
y
11 cladding mode has a higher loss 

value than that of the H
x

11 core mode around R  1445 µm, since the bending radius is now 

significantly reduced. Its loss value also peaks near the degeneration point, R  833 µm, as 

being mixed with a higher loss cladding mode. Similarly loss value of the cladding mode is 

reduced near the degeneration as being mixed with a lower loss core mode.  

 

To understand the modal properties of this cladding mode at the lower bending radius range, 

the corresponding field plots are shown in Fig.10. The H
y
 field profile along the x-axis for the 

H
y
11 core mode is shown in Fig.10, when R = 840 µm, just right of degeneration point is 

shown in Fig.10. The existence of a second peak in-between the first and second air-hole 

rings is clearly visible. In this case, the secondary peak is of a higher magnitude as the local 

equivalent refractive index is much higher due to a smaller bending radius being considered 

here. The Hy field profile of the H
y
11 core mode at R = 830 µm, just left of the degeneration 

point is shown in Fig.11. In this case, the secondary peaks are also clearly visible. However, 

the change in its sign indicate that this mode is now a higher order mode, as its eigenvalue 

position has been shifted by the cladding mode.  

 

The 2-D Hy contour of the H
y
c2 cladding mode is shown in Fig.12. The locations of the air-

holes are also shown by circles. It can be clearly observed that modal field is confined in the 

silica bridge region, between the first and second air-hole rings. It can also be noticed that the 

field spreads to link three silica bridging areas. However, one feature is very clear that this is 

a higher order cladding mode with its two positive and negative peaks shown by different 

colored contours. It should also be noted that local equivalent index value in between first and 

second air-hole rings would be lower that that of the between second and third air-hole rings. 

Thus, this cladding mode, also being a higher order mode, its effective index is significantly 

lower (compared to H
x
c1 shown in Fig.5) for a larger bending radius. Hence, its effective 



index value only crosses that of the fundamental core mode at a much lower bending radius, 

when this value is increased significantly.  

 

Conclusions 

The above figures clearly show the origin of localised cladding modes in the silica bridging 

regions in-between the air-holes. As these areas are smaller than the PCF core (where an air-

hole is missing), for a straight PCF these modes with lower effective indices do not interact 

with the PCF core mode. However, for a bent PCF, as the local equivalent index is increased, 

the dispersion slopes of these modes are higher and for smaller bending radii they can be 

phase matched to the core mode to form coupled supermodes. This mode degeneration cause 

mixing of these modes, formation of the supermodes and transom for one mode to another. 

These cause rapid changes in their modal properties, the effective index, spot-size and 

bending loss values. A higher pitch value or larger d/ ratio increases the silica bridging 

regions and such mode degeneration would appear at a higher bending radius, as often 

encountered in practical applications. In these cases, the mode degeneration appears more 

frequently and shows as noisy loss various in experimental measurements [x, y]. 

 

The origin of these fundamental and higher order cladding modes and coupling to core mode 

can effect the design of various PCF based applications. Study of this mode degeneration 

gives insight to the practical application of PCF and their handing during their real world 

applications. This understanding can also be useful in the study of PCF-based devices, 

exploiting bending loss, such as effectively single mode waveguide with differential modal 

losses and  single polarization waveguide with highly differential polarization dependent 

bending losses, or in the design of optical attenuators. 
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Fig. 1. Variation of the total losses with the bending radius, R for the quasi-TM modes. 

 

Bending Radius, R (m)

103 104

L
o

s
s

 (
d

B
/m

)

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

= 1.6 m

= 2.6 m

= 5.0 m

d/ = 0.5

 = 1.55m
N = 3

H
x

11 mode



 

Bending Radius, R (m)

1380 1400 1420 1440 1460 1480 1500 1520 1540

E
ff

e
c

ti
v
e

 I
n

d
e

x
, 
n

e

1.4382

1.4384

1.4386

1.4388

1.4390

1.4392

1.4394

H
x

1

H
x

2

 = 5.0m

d/ = 0.5

 = 1.55m
N = 3

H
x

c1

H
x

11
H

x

11

H
x

c1

 

Fig. 2. Variation of the effective indices with the bending radius, R. 
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Fig. 3. Variation of the total losses with the bending radius, R. 
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Fig. 4. Hx field profile of the H
x
11 core mode along the X-axis through the center of the core, 

when R = 1460 µm. 
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Fig. 5. Hx field contour for H

x
c1 cladding mode when R = 1460 µm. 
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Fig. 6. Hx field profile for the H
x
11 core mode, when R = 1430 µm. 
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Fig.7. Hx field profile for the H
x
c1 cladding mode when R = 1430 µm. 
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Fig. 8. Variation of the effective indices with the bending radius for the quasi-TE modes. 
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Fig. 9. Variation of the total losses with the bending radius, R 
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Fig. 10. Hy field profile along the X-axis for the H

y
11 core mode, when R = 840 µm, above the 

degeneration point. 
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Fig. 11. Hy field profile along the X-axis for the H
y
11 core, when R= 830 µm, below the 

degeneration point. 
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Fig. 12. Hy contour of the higher order cladding mode, when R = 833 m. 

 

 

 

 


