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Abstract

This paper proposes a test for the null that, in a cointegrated panel, the long-run
correlation between the regressors and the error term is different from zero. As is well-
known, in such case the OLS estimator is T-consistent, whereas it is v/ NT-consistent when
there is no endogeneity. Other estimators can be employed, such as the FM-OLS, that are
v/ NT-consistent irrespective of whether exogeneity is present or not. Using the difference
between the former and the latter estimator, we construct a test statistic which diverges
at a rate /N under the null of endogeneity, whilst it is bounded under the alternative
of exogeneity, and employ a randomisation approach to carry out the test. Monte Carlo
evidence shows that the test has the correct size and good power.

JEL codes: C12, C23.

Keywords: large panels; cointegration; endogeneity; Fully Modified OLS; randomised

tests.
I. Introduction

Consider the panel regression
Yir = ['it + et (1)

where t = 1,...,T, i = 1,..., N, and (1) is a cointegrating equation for each i. Inference
on (1) has been studied extensively. In a seminal contribution, Phillips and Moon (1999)
discuss both Ordinary Least Squares (OLS) estimation, and estimation based on the Fully
Modified version of the OLS estimator (FM-OLS henceforth). The choice between OLS
and FM-OLS is driven by the presence or absence of long-run correlation between Az;

and e;; (Phillips and Moon, 1999; Pedroni, 2000). In the former case, it is well known
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that the panel OLS estimator of 3 is T-consistent, and it has a non-vanishing bias. This
is in contrast with the case of no endogeneity in equation (1), where the OLS estimator is
v/ NT-consistent (Phillips and Moon, 1999; Kao, 1999).

Consequently, empirical applications that consider panel cointegration models like (1)
routinely employ estimation techniques that are designed to be robust to the presence of
endogeneity, i.e. that yield v/ NT-consistent estimates irrespective of the assumption of
exogeneity holding or not. Many examples can be found e.g. in the context of testing
for PPP (see e.g. Pedroni, 2001; and Carlsson et al., 2007, and the references therein); in
studies of employment growth and inflation (see e.g. Caporale and Skare, 2011); in the
context of the Feldstein-Horioka puzzle (see e.g. Ho, 2002); and in applications to the area
of spillovers in R&D (Edmond, 2001). A frequently employed estimator is the FM-OLS;
however, such estimation technique can suffer from severe problems in presence of moving
average roots that are close to the unit circle (Ng and Perron, 2001), and in the case of small
samples (see e.g. Breitung, 2005; Wagner and Hlouskova, 2010). Several other alternative
techniques are available: examples include the Dynamic OLS estimator, developed by
Saikkonen (1991) for the single equation case and by Kao and Chiang (2000) for panels; and
Breitung’s (2005) two stage parametric methodology. Wagner and Hlouskova (2010) assess
the relative merits of various estimators through a comprehensive simulation exercise.
Whilst some techniques are found to dominate across a wide variety of experiments, all
estimators show poor performances when 7' is small. Hence, a test to find out whether
long-run correlation between Ax;; and e;; is different from zero or not can be useful in
order to decide whether to use a standard OLS estimator, or whether it is necessary to
employ a different estimation technique.

The contribution of this paper is a test for the null hypothesis of endogeneity, i.e. for
the null hypothesis that the long-run correlation between Ax;; and e;; is not equal to zero
(so that OLS should not be employed). Under the alternative, there is exogeneity, and
therefore OLS can be employed. The test is based on using the difference (multiplied by
V'NT) between the OLS and the FM-OLS estimators. As pointed out above, whilst the
latter estimator is v/ NT-consistent under both the null and the alternative hypothesis,
the former has different rates under the null and the alternative hypothesis. Thus, the

proposed test is similar, in spirit, to a Hausman test, in that it compares two estimators



with different properties according as the null or the alternative hypothesis holds. However,
the test is not a Hausman test. Indeed, by construction, the difference between the two
estimators multiplied by v/ NT is, heuristically, a test statistic that diverges under the null
hypothesis and it is bounded under the alternative. Given that the test statistic diverges
under the null hypothesis, we propose a randomised testing procedure to carry out the test
(Pearson, 1950; Corradi and Swanson, 2002, 2006; Bandi and Corradi, 2012). A related
contribution to this paper is an article by Gengenbach and Urbain (2011; see also the
references therein), where an LM-type test for weak exogeneity in cointegrated panels is
proposed.

Other testing approaches can also be considered, e.g. by extending tests available in
the time series literature (see Ericsson and Irons, 1994). Indeed, comparisons are only
partly possible, since other approaches are usually constructed to test for the null hy-
pothesis of exogeneity, whilst our test has exogeneity as the alternative hypothesis. The
purpose of our test also is slightly different, since one of its primary goals is to help choose
between estimation techniques - this is also reinforced by the way in which the null hypoth-
esis is stated in presence of heterogeneity (in the slopes or in the dynamics), as equation
(24) illustrates. Not withstanding this, the literature has developed several approaches
to verify whether exogeneity is present or not. Usually, this is carried out by using some
parametric model (e.g. a VECM specification), and then by formulating the null hypoth-
esis of exogeneity based on such model - see e.g. the contributions by Gengenbach and
Urbain (2011) and Moral-Benito and Serven (2013; and the references therein). Such
approaches are sensitive to the correct specification of the VECM, and a less parametric
testing approach such as the one proposed in this paper could be advantageous. Similarly,
one may think of constructing a test directly based on estimates of the long-run covariance
matrices. However, such a testing strategy relies on the quality of these estimates, which
can be rather poor - see the simulations in Section III. Also, the asymptotic properties of
the estimator of a long-run covariance matrix under the null hypothesis that this is zero
(thus, on the boundary) are likely to be nontrivial. We point out that, although the test
is constructed using the FM-OLS estimator in this paper, other estimators can be em-
ployed as long as they are robust to the presence of endogeneity. Indeed, the construction

and the properties of the test do not change as long as the estimator chosen is consistent



under both the null and the alternative hypothesis. A primary example is the Dynamic
OLS estimator. Further, the analysis in this paper is based on simplifying assumptions -
mainly, the assumptions of slope homogeneity (and homogeneity of the dynamics), and of
cross-sectional independence. As we point out at the end of Section II, the test still is ro-
bust to the presence of heterogeneous slopes (and dynamics), and can be readily extended
to contexts where cross-dependence is present, and even to the case of common stochastic

trends in the regressors (see Bai et al., 2009, for inference in this case).

The paper is organised as follows. In Section II, we discuss the test, its theoretical
properties (null distribution and consistency), and its properties when our simplifying
assumptions are violated. Monte Carlo simulations are in Section III; Section IV concludes.
Proofs are in the supplementary online Appendix.

NOTATION. We denote the ordinary limits as “—”; convergence in distribution as

a.s.
“=7”. We use “a.s.” as short-hand for “almost surely”,

[44 d ”
—”; almost sure convergence as

and “=” for definitional equality. Orders of magnitude for an almost surely convergent
sequence (say s,,) are denoted as Oy, (m®) and o045 (m®) when, for some ¢ > 0 and
m < oo, P[m™°sp| < e for all m > m] = 1, and m™*s,, — 0 almost surely. Finally, we

denote the Euclidean norm as [|-||. Other notation is introduced in the remainder of the

paper.
II. The test

In this section we spell out the notation and the main assumptions on (1). We then

define the test statistic, and present the test asymptotics.

We start by introducing some notation, and the main assumptions. Let the Data
Generating Process (DGP henceforth) of z;; (assumed to be k-dimensional) in (1) be
given by:

Tit = Ti—1 + €5 (2)

Let the long-run variance of e;; be defined as {).;. Similarly, we define the long-run
covariance and one-sided long-run covariance matrix of z; as €2, ; and A, ; respectively;
finally, we define the long-run covariance and one-sided long-run covariance between x;

and e;; as Qge; and Age; respectively:
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The slope 5 can be estimated using either OLS or the FM-OLS, viz.
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In equation (5), we define y;tr = Yit — Am;tflglflm and /A\;fe = Age — Azflglﬁxe. Equa-
tions (4)-(5) are constructed under the implicit assumption of no constant in (1) and no
deterministics in (2); henceforth, we derive the main results under these restrictions for
the sake of simplicity. However, both estimators can be readily modified to accommodate
for the presence of deterministics in both (1) and (2), by using demeaned and detrended
versions of y;; and z;;. For example, if there is a constant in the DGP of z; = (v, x;t)/,
it suffices to use z;; = 2z — T—! ZST:1 Zis; similarly, if linear trends are present, one could
employ the detrended version Z; = z; — (ZZ:1 zisg;) (Zstl gsg;>71 gt with g; = (1,t),
as discussed in Phillips and Moon (2000). On a similar note, in the paper we use the
pooled, unweighted version of both the OLS and the FM-OLS estimators. Other variants
of both estimators could also be considered, e.g. weighted or group-mean versions.

The estimates of the average long-run covariances (that is, Qx, /A\w, etc.) are computed

as follows. We define:

T

$xi,j = T_l Z Al’itAxgt_j (6)
t=j+1
T

(I):pei,j = T_l Z A.ﬁitAx;t_jéitéitfj (7)
t=j+1
T

by = T Z €itCit—j (8)
t=j+1



we use €; = Yi — B;.rit, with Bl the individual equation OLS estimator. Albeit not
strictly necessary under the maintained assumption of slope homogeneity, using individual
estimates makes the testing procedure robust in case of (neglected) slope heterogeneity -
see the discussion in Section 77, and particularly Proposition 7?7 therein. Hence, letting

k (+) be a kernel with bandwidth [, we define

j=1
l ] .
Aa:,z = Z K (l) (I)m,] (10)
7=0
etc.; finally, we compute
N
A 1 A
0, = v z; Qi (11)

all the other estimators are defined similarly. It can be noted that this approach implicitly
postulates that the long run variances are homogeneous across units. At the end of this
section , we show that tests based on such estimates can still be employed even if such

assumption is incorrect, and the long-run covariances are indeed heterogeneous.

In order to derive the test and to study its asymptotics, we consider two assumptions,

on the innovation term and on the kernel & (-) respectively.

Assumption 1: (a) Assumptions 6-8 and 10 in Phillips and Moon (1999) hold for E;; =
[eit, €%/]'; (b) Ey is independent across i.
Assumption 2: Let ¢ > § be the Parzen exponent of the kernel « (-). It holds that

| — oo with

N !
im ()= 12
N <z2q min N | T) 0 (12)

Assumption 1 is standard in the analysis of non-stationary panels, and it entails that
the asymptotics for the OLS and FM-OLS estimators studied by Phillips and Moon (1999)
and Pedroni (2000) holds in our context. As far as Assumption 2 is concerned, in Lemma
A.1in the online Appendix we show that, when estimating the average long-run covariances
(e.g. when we compute Qm), the MSE of the estimators has a rate given by lgﬂq + % Inln N,

whence equation (12). Based on (12), it is possible to provide an optimal selection rule



for the bandwidth [; this can be selected as [* = arg min (m + %), which yields

NT 1/(1+2q)
=[]

2qln In N (13)

The test statistic

Consider the following well-known properties of the OLS and the FM-OLS estimators
- equations (4) and (5) respectively. For simplicity, this section only considers the case
of homogeneous long-run covariances, i.e. Qzc; = Qpe, Agei = Age, and similarly for the
others.

Consider the OLS estimator BOLS. From Phillips and Moon (1999), we know that, if
Qe = Age = 0, the OLS estimator is consistent; as (N, T') — oo with % — 0, it holds that
VNT (BOLS — ,6’) 4N (O,CQngl), where ¢ is a constant whose value depends on the
presence of deterministics in the DGP of y;; and z;;. For example, if no deterministics are
present, then ¢ = 2, whereas if a constant is present we have ¢ = 6 as shown in Phillips
and Moon (1999); similarly, it can be shown that, if a linear trend is present, ¢ = 144,
following similar passages as in Phillips and Moon (2000, Theorem 1). The test statistic
proposed below in equation (16) does not depend on the value of ¢; thus, the test has the
same properties irrespective of the presence of constants or trends in the DGPs of z;; and
Yit-

On the other hand, when either Q. # 0 or Age # 0, it holds that v NT <BOLS — B)
= 0, (\/N), ie. VNT (,@’OLS — ﬁ) diverges at a rate v/N. Turning to the FM-OLS

estimator, as (N,T) — oo with % — 0, it holds that
VNT (B = 8) N (0,6 (90 — 00,1 000) 1] (14)

thus, the FM-OLS estimator is always v NT-consistent, irrespective of the values of €1,

and Ag.. These results explain also why a Hausman-type test is fraught with difficulties:

~FM—OLS ~OLS
when Qg . = Aze = 0, both 3 and (8 have the same asymptotic variance,
~FM—-OLS  +OLS
thereby making the suitably normalised statistic HB - B H degenerate.

Based on these considerations, we propose different approach. We construct a test for



the null hypothesis of non-zero long-run covariance, i.e.

Hy:Age #0o0r Qpe #0 (15)
Hy:Ape=0and Qe =0

In view of the definitions of A, and .., it can be noted that the conditions A, # 0
or . # 0 under the null hypothesis can be met as long as there is nonzero correlation
between Axz; and e;s, at any time horizon - which corresponds to the notion of strict
exogeneity. We refer to Ericsson and Irons (1994) for a comprehensive treatment of the
notion of exogeneity (see also Engle et al., 1983). In our context, we note that the alterna-
tive hypothesis that Ay = ;. = 0 entails, from a statistical point of view that the OLS
estimator is v/ NT-consistent, and there is no need for a more complex estimator such as

the FM-OLS estimator.

We propose the following test statistic:

qujv BF“470LS——BOLSH
SNt = N BFM_OLSH (16)

~FM—OLS
Based on the discussion above, under Hy, the numerator of Syp, VNT H 15} —
~OLS

B
since the FM-OLS estimator is consistent. Under H 4, both the FM-OLS and the OLS

, diverges to positive infinity; on the other hand, the denominator is bounded,

estimators are consistent, and therefore Sy is bounded.

Given that Sy7 diverges under the null hypothesis, we propose to use a randomised
testing procedure - we refer, for details on the theory, to Pearson (1950), Corradi and
Swanson (2002, 2006) and Bandi and Corradi (2012), among others.

We illustrate the testing procedure as a four step algorithm.

Step 1 Compute ¢ (Syr), where ¢ (-) is a continuous, monotonic transformation with
lim, o ¢ (2) = +00.

T

Step 2 Randomly generate an i.i.d. standard normal sample of size r, say {fj }jzl, and

define the sample {¢1/2 (SnT) X EJ}T v
]:



Step 3 Generate the sequence {; yp (1) };:1 as

G (0) = T [612 (Swr)€; <] (7)
for all j, where u # 0 is any real number and I [-] is the indicator function. The
values of u can be selected from a density ¢ (u) with compact support U = [u, u].

Step 4 For each u € U, define

r

2 1
INT = — 1
var() = 723 G () = 5] (19)
and compute the test statistic
Oxrr = [ [Dvr (0] o (0) du (19)

The transformation ¢ () in Step 1 is required to be continuous and unbounded at
infinity. Hence, we can expect that ¢ (Syr) approaches either positive infinity or a finite
limit according as Hy or H 4 holds.

The main idea of the test is that, under Hy, gbl/ 2(Snt) x € ; should follow a normal
distribution with mean zero and (heuristically) infinite variance as (N,T) — oo. This
entails that, as (N,T) — oo under Hp, the random variable (; yp (u) has, for any u, a
Bernoulli distribution with

1 with probability

Cinr (u) = (20)

0 with probability

Nl NI

Therefore, the sequence {Cj,NT (u) };:1 is 4.i.d.; under Hy with (N, T) — oo, E [Cj,NT (w)] =
1 and Var [Cinr (w)] = 1 for all j and u. Conversely, under Ha, ¢ (Syr) converges to a
finite value. Therefore, ¢'/2 (Sy1) x € ; should (heuristically) follow a normal distribution

with mean zero and finite variance, so that, for v # 0, E [Cj,NT (u)] # %

Test asymptotics



This section contains the null distribution and the consistency of the test. Let P* be
the probability law of {{ j };:1 conditional on the sample, and let «L denote convergence
in distribution according to P*. Results are presented for the case of slope homogeneity

and homogeneous long-run covariances.

Theorem 1 Let Assumptions 1 and 2 hold. Under Hy, as (N,T,r) — oo with % —0

and
r

)

it holds that Oy, LN X3 a.s. conditionally on the sample.

-0 (21)

The Theorem states that, under the null hypothesis, the test statistic follows a chi-
squared distribution with one degree of freedom. This holds as (N, T,r) — oo, and under
% — 0. The latter restriction is typical in the context of panel data asymptotics (see
e.g. Phillips and Moon, 1999), and it constrains the cross sectional dimension, N, to be
“smaller” than the time series dimension 7'.

In addition to the restriction % — 0, the choice of r is constrained by equation (21),
and, therefore, by the choice of the transformation ¢ (-). We suggest using the exponential

transformation, i.e. ¢ (z) = e®. Therefore, r can be chosen as a polynomial transformation

of N, such as r = N. Note that the choice of r does not depend (directly) on 7.

We now discuss the consistency of the test. Define ¢, as P* [On7, < ¢y] = « under

Hy.

Theorem 2 Let Assumptions 1 and 2 hold. Under Hy, as (N,T,r) — oo with % — 0

and (21), it holds that P* [On7, > ¢o] = 1 a.s. conditionally on the sample if

T

lim @— = 22
(N,T,r)—oc0 ¢ (SNT) ( )

Theorem 2 states that tests based on © y7, have non trivial power versus H4 : Qe =
Agze = 0. In the proof we show that, under H 4, 9np, (u) has a non-centrality parameter

proportional to ¢! (Syr), whence restriction (22).

10



Equation (22) is always satisfied when Q.. = Az = 0. The test has also power
versus “local-to-null” alternatives. If ¢ (Syr) is chosen as e“N7, (22) is satisfied as long

as Age + Qze = O (dpr), where d,, is such that 57_”} =0 (@)

Inr

Discussion

The test statistic Sy7 is based on the maintained assumptions that: (a) there is no
cross sectional dependence; and (b) the slopes 5 in (1), and the long-run covariances
defined in (3), are homogeneous across i. Although this simplifies the exposition, we point
out that neither of these assumption is necessary, and that the testing procedure proposed
herein works even in presence of cross sectional dependence and heterogeneity. We discuss

the two points separately hereafter.
Cross-sectionally dependent panels

As mentioned in the comments to Assumptions 1 and 2, it is possible to carry out
tests based on Sy under less restrictive assumptions on the presence and extent of cross
dependence. Indeed, all that is required in order for the test to discriminate between
the null and the alternative hypotheses is to have an estimator which diverges under the
null hypothesis (whilst being consistent under the alternative hypothesis; the OLS is a
primary example), and another estimator which is consistent under both the null and the
alternative hypothesis. Given these two estimators, tests can be constructed following
exactly the same guidelines as above: the asymptotics of the test statistics is not driven
by the properties of the estimators, but by the randomising procedure.

More specifically, two approaches are possible. Firstly, one could filter out the cross
sectional dependence, e.g. by some defactorisation method. Alternatively, estimation
techniques that are robust to cross dependence could be employed. As a leading example
for the latter solution, in the context of cointegrating regression with common stochastic
trends, Bai et al. (2009) develop an estimation technique (the Continuously-updated Least
Squares, denoted as /BCup) which diverges at a rate v/N in presence of long-run correlation
between Ax;; and e, and a bias-corrected version (BCupBC) that makes the estimator

consistent. Using a test statistic based on vV NT'

BCW BC — BCup ’ yields exactly the same

results as derived above.

11



Heterogeneous panels

Model (1) postulates that the slopes S are homogeneous; further, in the construction
of SyT, and in the presentation of the results, we have worked under the assumption that
long-run covariances are also homogenous, i.e. that, in equation (3), Q,; = Q, for all i,
and similarly for all other quantities. Indeed, these restrictions are not necessary: the
test can be applied, with the same null distribution and power properties, to models with

heterogeneous slopes, viz. to

Yir = Bizi + et (23)

and to the case of heterogeneous long-run variances.

In the latter case, the null and the alternative hypotheses would be modified as

Hy: Zfil Agei # 0 or + Zfil Quei #0

(24)
Hy: SN Agei=0and + SN Qi =0

Equation (24) states that the average long-run covariances is equal to zero. Indeed, this
condition is in line with the purpose of our test as outlined above, viz. to suggest whether
one should use a standard OLS estimator, or a more complex technique (such as e.g. the
FM-OLS estimator). In order to provide an intuition of the main argument, consider the

case of slope homogeneity, and recall the expansion of the OLS estimation error for 3:

T

A | NI -1 LN 1N
p—pB= (NT2 ; ;xitw;t> <NT2 ; tZ: Tigit + ; Axe,i) (25)

=1 =1

if % Zf\il Agei =0, then B — B is v NT-consistent, and there is no need to filter out the
long-run covariances as the FM-OLS estimator does. This is a heuristic argument, which

is based on the fact that the test statistic Syr is based on comparing the two estimators,

~FM—OLS ~OLS ~OLS
I} and 8 . If the two are found to be similar, this means that 3 can be

employed.
Consider the following assumption, which controls for the heterogeneity of the slopes.

Assumption 3. (a) the slopes 3, are i.i.d. across ¢ with E(8;) = and E Hﬁi||2+5 <

oo for some § > 0; (b) {B;}, and {wi, ui}Y | are two mutually independent groups for

12



all ¢.

Proposition 1 summarizes the discussion above, stating that tests based on Sy have

the same properties under (23) as under (1).

Proposition 1 Let the data be generated by (23), and let Assumptions 1-3 hold. Under
Hy, as (N,T,r) — oo with & — 0 and (21), it holds that O, & X3 a.s. conditionally
on the sample. Under Hy4 and (22), as (N,T,r) — oo with % — 0 and (21), it holds that

P*[©OnTr > ¢o) = 1 a.s. conditionally on the sample.
ITI. Simulations

In this section, we consider two different exercises, using synthetic data. We firstly
provide some evidence on the properties of the (unweighted pooled) FM-OLS (and, by way
of comparison, of the OLS) estimator under exogeneity; this serves both as a motivation
for our test, which is recommended as a tool to choose between a simple estimator (such
as the OLS) and one that adjusts for endogeneity where present, and also to assess the
impact of the (possibly poor) quality of either or both estimator on the properties of the
test. Secondly, we verify the power and size of our test. Note that, in this section, for the

sake of brevity we only consider the unweighted pooled version of the FM-OLS estimator.

We consider the following design for the DGP:

Yit = o+ Prit+ e (26)

Tit = Ti—1 + €5 (27)

where «; is simulated as i.i.d. N (0,1) across i. In order to simulate serial correlation
and endogeneity, we generate the vector Ej = [éit,¢%]" as d.i.d. Gaussian with identity
covariance matrix. Contemporaneous correlation is imposed by premultiplying Fj, by the

Choleski factor of

= (28)

so that p™® represents the correlation between €;; and €5, in the vector Eit = [, éft]'. Serial

correlation is induced by creating Ej; = [e;t, €%] according to an ARMA(1,1) specification

13



as

Eit = pEy_1+ Ey + 9E3_1 (29)
Based on this, we have
1+ 92
Qe = Pxel_ipz (30)
1 p2 4 192
e = 972 (31)

We consider the following combinations of (p,#¢): (0,0), (0.5,0), (0,0.5) and (0, —0.5). We
use all combinations of (N,T) with N = (25,50, 100,200) and 7" = (25, 50, 100, 200); in
order to avoid dependence on the initial conditions (set equal to zero), we discard the first
1000 observations. When estimating long-run covariance matrices, we use a HAC-type
estimator and employ Bartlett kernel with bandwidth [ selected according to (13); thus,

for each combination of (N,T), we have

()"

All simulated data have been computed with 2000 replications.

The impact of the performance of the FM-OLS estimator on the test

A natural question that can arise under H 4 is whether the test can really work well
even in those cases when the unweighted pooled verions of the FM-OLS estimator performs
poorly. Estimating long-run covariances is not always an easy task, and sometimes the
estimators can be severely biased, thereby marring the performance of the FM-OLS. Some,
partly related evidence is also provided by the simulations in Kao and Chiang (2000), where
it is shown that a weighted version of the FM-OLS estimator does reduce the bias when
the long-run covariances are non zero (as is natural to expect), but it performs poorly,
and occasionally very poorly, when there is no endogeneity. The purpose of the exercise in
this subsection is to shed some light on this issue, by presenting some evidence as to the
properties of the OLS and FM-OLS estimators. Due to the nature of this issue, the results
reported here can be evaluated with the power of the test, reported in Table 2 below.

We generate our data using (26)-(29), with p™ = 0. We consider the following measures

14



of performance for the FM-OLS:

<
Q

) 1 FM—-OLS
biaspp—-oLs = —— <5h —5> (33)

(B )’ (34)

Q

>
—_

£
Q

MSErv—ors =

5~

h=

—_

where MC' is the number of iterations in the simulation - in our case, MC = 2000.
The former indicator represents the bias of the estimator, whereas the second is the Mean

Square Error (MSE). In addition to these classical indicators, we also consider the coverage

of the 95% confidence interval for 3, constructed as /BfM OLS \/ Var (ﬁfM OLS) with

Var (By"7") = 6 (0 - 2071 000c) 05 (3)

The coverage of the confidence interval is computed as the empirical rejection frequency

for the null that 5 =1 (the true value under the simulations), viz.

AFM OLS 1

\/Var ﬁfM OLS)

By way of comparison, we report the same indicators for the OLS estimator of 3, say

ERFry—oLs =

> 2 (36)

~OLS ~FM

B, ; in this case, the empirical rejection frequency is computed using Var (6 h ) =
GQQQ; 1. Bias, MSE and empirical rejection frequency are denoted as biasors, MSFEors
and FRFprs respectively.

Results are in Table 1:
[Insert Table 1 somewhere here]

The table shows that the FM-OLS and the OLS have, in general, a comparable perfor-
mance as far as bias and MSE are concerned. When (N, T') increases, the OLS seems to be
slightly better, but the numbers in the table are very small anyway - indeed, considering
the bias, the figures in the table indicate that, in the worst case, (8 is estimated with a

percentage bias of 2.2%. Also, the theory requires % — 0, and such restriction is not
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always satisfied in our simulations, which reinforces the idea that both OLS and FM-OLS
perform well as point estimates. Conversely, when considering the coverage of the nominal
95% confidence intervals, the FM-OLS always performs poorly, and sometimes very poorly,
in all cases considered, by severely underestimating the width of the confidence interval.
The OLS estimator also has a tendency of understating the confidence interval, but this
is less pronounced and it (slowly) vanishes as N and T increase. This can be attributed
to the poor quality of the estimated variances of the two estimators, and in particular
of the FM-OLS estimator: long-run variances are difficult to estimate, and unless such
estimation is necessary, it is preferable to avoid it. In this respect, the test proposed in
this paper could be a helpful tool to decide whether to use an estimation method based
on having to estimate the long-run variances, or not. Of course, it is unrealistic to expect
that having to estimate long-run variances can be completely avoided - even the OLS
estimator, when e.g. carrying out t-tests, requires such estimation.

It is important to note that, despite the poor performance of the FM-OLS estimator
under exogeneity, the test works very well (see Table 2 below), and it is not affected by the
problems related to the estimation of the long-run variances. Indeed, the test has good
power properties in all cases considered. This can be explained by considering the test

. .. . . ~FM—OL
statistic Syp: this is constructed using the estimators g

S ~OLS

and only, with no
need for their asymptotic variance. All that the test requires is that the two estimators do
not diverge to infinity, so that the test statistic Sy is bounded, regardless of the actual

quality of the estimators.
Size and power of the test

We consider three sets of experiments. We firstly evaluate size and power using the
DGP given by (26)-(29), which is based on equation (1) where slopes and dynamics are
assumed to be homogeneous across units. In addition to this, we also evaluate size and
power when the true DGP is (23), thereby introducing heterogeneous slopes; data are
generated as

Yit = o + Biit + eit (37)

and we generate the ;s as in (27). The slopes 3; are generated as i.i.d. N (1,1). Further,
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heterogeneity in the dynamics is introduced by perturbing the Choleski factor I defined
in (28) as p¥¢ = p™ + N (0,0.01). Finally, we consider the same DGP as in (37), thereby
assuming heterogeneity, and we also introduce some cross sectional dependence through a
factor structure, viz.

Yit = o + B;xit + €t + Nifi (38)

with A; and f; both i.i.d. N (0,1).

As far as the test specifications are concerned, we choose the exponential transforma-
tion, i.e. ¢ (Syr) = eSNT. The choice of ¢ (-) will impact on the properties of the test
- in particular, a transformation like the exponential one, which magnifies Sy7, can be
expected to reduce the probability of a Type I error. We choose r = N (unreported ex-
periments show that altering such choice does not have a major impact on the results).
Finally, we employ the test with w = 1. In general, other choices of u and also choices
of the support U with more than one value do not seem to have a significant impact on
the results. We point out that, as the proofs of Theorems 1 and 2 show, under the null
hypothesis, the test statistic has a bias that increases with the width of the support U
- equation (13) in the online Appendix. This bias vanishes asymptotically under (21);
however, if U is too wide, this could lead to size distortions. On the other hand, the
non-centrality parameter under the alternative hypothesis also depends on the width of U

- equation (16) in online Appendix.

Table 2 reports empirical rejection frequencies at a 5% level for the design based on
(26); Table 3 contains the same output, for the design based on (37), and Table 4 contains
the empirical rejection frequencies when data are generated according to (38). Given
the number of simulations, a 95% confidence interval for the empirical size is 0.05 +

2,/ L0509~ [0.04,0.06).

[Insert Tables 2-4 somewhere here]

Consider first Table 2. We start with the power of the test, which corresponds, across

all experiments, to the entries where p™ = 0. In general, the test has power above 50%
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when N > 50; we note that the power increases sharply as N increases, as predicted by
the theory, and also (although in a less evident way) when T increases. The power is
not sensitive to the dynamics of the error term, except for the case of negative MA roots,
where the power is found to be lower, and below 50% unless N > 50. Even in this case, the
power increases with N (mainly) and 7". Turning to the size (experiments with p™® = 0.4,
0.6 and 0.8), the test has the correct size, with a slight tendency to over-reject in small
samples when there is an AR root; this however vanishes as N, and (to a lesser extent) T,
increase. As far as Tables 3 and 4 are concerned, results are very similar to those in Table
2: the test has the correct size under all specifications, and it has good power properties,
with the partial exception of the negative MA root case under cross dependence, where
the test has power higher than 50% for N > 100. The results in Tables 3 and 4 therefore

confirm the theoretical findings in Proposition 1.
IV. Conclusions

This paper addresses the issue of testing whether, in a panel cointegrating regression,
there is exogeneity or not. Depending on the answer, slope estimation can be carried out
using the standard OLS estimator (in case of exogeneity), or using an estimation technique
that is robust to nonzero long-run correlation between regressors and errors. This issue is
relevant, since although many estimators have been developed that are v/ NT-consistent
when exogeneity fails to hold, they often suffer from several problems, particularly with
small T'. We propose a test for the null hypothesis of endogeneity. The test is based on
comparing two estimators, one of which is v/ NT-consistent under both the null and the
alternative hypothesis (in our case, the panel FM-OLS), whereas the other one is v/ NT-
consistent only under the alternative hypothesis (in our case, the OLS estimator) and
T-consistent under the null hypothesis. We thus construct a test statistic that diverges
under the null hypothesis, whilst being bounded under the alternative hypothesis, and use
it in a randomised test framework. We show, through a Monte Carlo exercise, that the test
has good power properties and the correct size. The test is carried out under restrictive
assumptions, such as homogeneity and cross sectional independence, but we show that
it also works in more realistic setups that allow for slope heterogeneity or dynamics in

the heterogeneity, and that it can be easily modified under cross dependence. This is an
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interesting feature of the test: a simple test statistic is found to be robust even when the
underpinning model is incorrectly specified. Thus, the test should always be carried out
under the assumption of slope and dynamic homogeneity. Finally, we point out that the
test itself is based on the FM-OLS estimator as a robust solution to endogeneity; however
upon accepting the null hypothesis that exogeneity does not hold, different estimation
techniques can be employed for the actual estimation of the slopes (e.g. the Dynamic
OLS, or a different estimator belonging to the FM-OLS family).

As a final word of warning, a test is only one of the elements that should be employed
to determine whether to use the OLS estimator, or some other technique that is robust to
endogeneity. The outcome of the test should also be interpreted on the grounds of other
considerations: if strict exogeneity is not plausible on account of prior grounds, it should
be noted that carrying out inference with OLS could be pernicious, since in presence of

endogeneity the standard errors are inconsistent.
References

Andrews, D.W.K. (1991). ‘Heteroskedasticity and autocorrelation consistent covari-
ance matrix estimation’, Econometrica, Vol. 59, pp. 817-858.

Bai, J., Kao, C., Ng, S. (2009). ‘Panel cointegration with global stochastic trends’,
Journal of Econometrics, Vol. 149, pp. 82-99.

Bandi, F., Corradi, V. (2012). ‘Nonparametric nonstationarity tests’, Econometric
Theory, forthcoming.

Breitung, J. (2005). ‘A parametric approach to the estimation of cointegration vectors
in panel data’;, Econometric Reviews, Vol. 24, pp. 151-173.

Caporale, G.M., Skare, M. (2011). ‘Employment growth, inflation and output growth:
was Phillips right? Evidence from a dynamic panel’. CESifo Working Paper Series 3502,
CESifo Group Munich.

Carlsson, M., Lyhagen, J., Osterholm, P. (2007). ‘Testing for purchasing power parity
in cointegrated panels’. Working Paper Series 2008:1, Uppsala University, Department of
Economics.

Corradi, V., Swanson, N.R. (2002). ‘A consistent test for nonlinear out of sample

predictive accuracy’, Journal of Econometrics, Vol. 110, pp. 353-381.

19



Corradi, V., Swanson, N.R. (2006). ‘The effects of data transformation on common
cycle, cointegration, and unit root tests: Monte Carlo and a simple test’, Journal of
Econometrics, Vol. 132, pp. 195-229.

Davidson, J. (2002). Stochastic limit theory, Oxford University Press, Oxford.

Edmond, C. (2001). ‘Some panel cointegration models of international R&D spillovers’,
Journal of Macroeconomics, Vol. 23, pp. 241-260.

Engle, R.F., Hendry, D.F., Richards, J.-F. (1983). ‘Exogeneity’, Econometrica, Vol.
51, pp. 277-304.

Ericsson, N.R., Irons, J.S. (1994). Testing exogeneity, Oxford University Press, Oxford.

Gengenbach, C. Urbain, J.P. (2011). ‘Testing weak exogeneity in cointegrated panels’,
mimeo.

Ho, T. (2002). ‘A panel cointegration approach to the investment-saving correlation’,
Empirical Economics, Vol. 27, pp. 91-100.

Kao, C. (1999). ‘Spurious regression and residual-based tests for cointegration in panel
data’, Journal of Econometrics, Vol. 90, pp. 1-44.

Kao, C., Chiang, M.-H. (2000). ‘On the estimation and inference of a cointegrated
regression in panel data’, Advances in Econometrics, Vol. 15, pp. 179-222.

Moral-Benito, E., Serven, L. (2013). ‘Testing for weak exogeneity in cointegrated
panels’, Documentos de Trabajo n. 1307, Banco de Espana.

Ng, S., Perron, P. (2001). ‘Lag length selection and the construction of unit root tests
with good size and power’, Econometrica, Vol. 69, pp. 1519-1554.

Pearson, E.S. (1950). ‘On questions raised by the combination of tests based on dis-
continuous distributions’, Biometrika, Vol. 37, pp. 383-398.

Pedroni, P. (2000). ‘Fully modified OLS for heterogeneous cointegrated panels’, in Bal-
tagi, B. (ed.), Nonstationary panels, panel cointegration, and dynamic panels. Advances
in Econometrics, Vol. 15. Elsevier Science, Amsterdam, New York and Tokyo.

Pedroni, P. (2001). ‘Purchasing power parity tests in cointegrated panels’, Review of
FEconomics and Statistics, Vol. 83, pp. 727-731.

Phillips, P.C.B., Moon, H.R. (1999). ‘Linear regression limit theory for nonstationary
panel data’, Econometrica, Vol. 67, pp. 1057-1112.

Phillips, P.C.B., Moon, H.R. (2000). ‘Nonstationary panel data analysis: an overview

20



of some recent developments’, Econometric Reviews, Vol. 19, pp. 263—-286.

Saikkonen, P. (1991). ‘Asymptotically efficient estimation of cointegration regressions’,
Econometric Theory, Vol. 7, pp. 1-21.

Wagner, M., Hlouskova, J. (2010). ‘The performance of panel cointegration methods:

results from a large scale simulation study’, Fconometrics Reviews, Vol. 29, pp. 182-223.

21



0.0°0 260°0 890°0 690°0 STOqym 690°0 660°0 1L0°0 ¥L0°0 STO0qym
L0°0 60°0 20°0 2070 ST0z g ST°0 61°0 ST 0 ST°0 STOgzgmw
€T 0.0 8T'1 61T STO0sv1q 99°0— LLT— S6°0— ST I— STOsv1q
gz1°0 16270 6¥1°0 9020 STO=NWdgym 0€1°0 6950 Ze1°0 102°0 STO=Wdgym
0T°0 06°0 210 9T°0 STO-Ndggn 002 12°0 69°T ¥2°0 1€°0 STO-Ndggpn 002
£€8°0— 91'6— 127 1— L1T— STO—Mdsvrq 96°¢— 20 g1 — cLg— 1877 — STO—NWdsviq
S80°0 9€T°0 880°0 180°0 STOqum €00 9110 0200 190°0 STOqum
62°0 2v0 6270 62°0 ST10gg5m 820 6L°0 890 80 ST10g5mw
8¢ T — 65— gLV — LT — STO0sv1q 127 £L°6 eV 16V STOsv2q
$91°0 €29°0 $61°0 $92°0 STO=NWdgym L8170 L1970 981°0 9820 STO-Wdgym
9%°0 6T°F £9°0 PL0 STO-Ndggmn 00T 06°0 TLL S0°'T €V T STO=NWdggpn 00T
68°0T— 10°0€— 9% I — PR PI— STO-Wds z€'8 £€2°6T 10°6 L9°T1 STO—NWdspiq
STT'0 16T°0 TIT'0 0TT'0 90T°0 0810 €010 2010 STO ym
LT°T 26°1 8T'T 6T°T TFT 1'% vz 87z STOgzs W
L H— 1% 9 €— 20°g— £ege— gg er— 60°gE— £8°65— STOsv2q
9€2°0 L29°0 €92°0 zZHE0 STO=IN gy 5 00z2°0 ¥€9°0 1%2°0 €2€°0 STO=WA gym
96°1 69°9T 62°'C cre STO-Ndggmn og €0°F (444 oL'v 0g'9 STO-NWdggn og
667 — €99 68°C— 82 0— STO—Ndsviq 0g'2z— $2'0%— v6°9— g v — STO—MWdsniq
2020 6920 061°0 €81°0 STOqym 991°0 8€2°0 €S1°0 290°0 STOqym
69'F 99°6 68°'¥ 66'F ST10gg W 196 80'8T 08°6 GL6 ST0gsmw
180~ 1L €€ 69°¢g STO0sv1q 61°LE 62 1L g8'9¢ L6°TT STO0sv2q
£0€°0 9€9°0 12€°0 PLEO STO=Wd gy q 9L2°0 819°0 00€°0 8LT'0 STO-NWdgyg
€L [t 4t €9°'8 €V TT STO-Ndggmn 14 002 PLGT 81°901 TL'ST 91°9¢ STO=NWdggpn 14 00T
12°8 9T ¥ — 69°0T ¥8°L STO—Ndsviq 68°LT €L°09 92°9¢ 06°0€ STO—MWdsniq
€900 060°0 650°0 290°0 STO. 14 ¥90°0 680°0 €900 290°0 STO.qy 5
0€°'0 €0 0€'0 0€°'0 STO0gs W 09°'0 920 09°0 09°'0 STOgs W
68°0— [ 86 0— 8% 0— STOsv1q 92°¢g $1°0 LLY ST STOsv2q
PIT'0 q1g 0 0€1°0 8LT°0 STO=Wd g 960°0 8770 01T°0 9¢1°0 STO=Nd 5
o¥'0 89°¢ [ A0] 180 STO-NWdggmn 00z 9.0 99'¥% g8'0 90°1T STO=NWdggmn 002
9L€— 62 91— 187 — 1eg— STO—Ndsviq ge°gT LL°LE €8T 28°9T STO—MWdsniq
690°0 €210 690°0 000 STOqym 2200 0210 €200 2L0°0 STOqym
LT°T SLT 8T'T 6T°1T STO0ggmw [k L8°€ jaakd ¥S'T ST0ggmw
L8°L 0g'6 L1°8 678 STO0sv1q 091 — 9828~ SV 9T — 08'81— STOsv2q
9€1°0 g8¢°0 £91°0 1€2°0 STO=NWd pyg 0210 G080 £VT°0 18170 STO=Nd iy a
€L°T 9g'€1 102 LT STO-NWdggmn 00T 9g'€e L¥°2C 18°€ v6'¥ STO=NWdggpy 00T
98¢ 0S°6 V0L VL L STO—NWdspiq G9°9T— 8G 61— 29 LT— $e 8T — STO—NWdspuq
660°0 S9T°0 001°0 160°0 STO0qym 280°0 1S1°0 2200 TL0°0 STO0qym
T8V 91’8 167 T6'V STO0z g 176 68'9T 19'6 296 STOgg N
19°L 06°% L1701 £0°01 STO0sw1q 9% 0€ 99°L9— £8°.5— 86°€E£— STO0sv1q
9L1°0 68270 902°0 692°0 STO=NWd gyg 6ST°0 L8570 8LT0 ¥¥Z0 STO=INd gy a
1672 ov'gg 06'8 ST'TT STO-Ndggpn 0g (4B At 18'G6 €8°9T 85°2C STO=-NWdggpn 0¢
96°'C L1688~ Ve 08 1T— STO—NWdspiq 6¥%°L 6T g8°9T 68°91 STO—NWdspq
¥EI'0 S1Z'0 T30 9110 STOqym 010 161°0 1600 860°0 STOqym
8261 £8'8¢ 8661 70T ST0z g W 61°LE VT oL 19°LE 00°8¢€ STOggs
8E VI — 0g'9 TH LI — 33 91— STO0sv1q ¥SoF ¥8°€1 L1907 — LL°08 STOsv1q
£92°0 285°0 8L2°0 9€€°0 STO= N gy 5 102°0 28570 612°0 28270 STO=WA gyn
czee 29'10T 29'6€ 8G°€S STO-Ndggpn 14 0s 9T LG 00°'19¢ 98°89 1626 STO-Ndggpn 4 14
¥8 1% 9¢°02C 65799 10°98 STO—NWddsprq LGSL°0 10°68T z€°61 %' TS STO—NWddsvrq
Z N Z N
(0°¢ 0) (¢'0—‘0) (g¢0°0) (0°0) (a*d) (0°g 0) (¢'0—*0) (¢0°0) (0°0) (€]

T dTdVL

‘fippauabora ypm (1) ur g fo aoppwirysa §70 2y) puv §TO-WA 241 40f sarouanbauy worpoalay vorundws puv FG N ‘svig

22



Jo wwnoo 3s1y) g olqeL

“((g“d) jo uworjeurqUod YOEH
WOy puoT 9q uvd judmIIdxo Yovo 10§ tomod oy L [90°0 ‘P0°0] JO [¥AIDIWL 20UIPYUOD ® SUY JUT OUL 0T £q POHAI[nW Wo0Qq 9ARY HGIN OYI JO PUT STIQ DY) JO SOn[EA [RUISII0 OYY

sorIjuo [[e uf

23



[[® ‘POUIDOUOD ST 359 DY) JO UWOI}RD

1oads ay) s Ie] Sy

*3s9) ayy jo romod oy) jussordor sarIjuUL 9S®D SIY} Ul pur ‘g =

2

11893 o) Jo azis [edrrrdwe 9y} dI® SUWN[OD 9SOY) UL S$OIIJUD {0 # ,,d oI9yMm sar1juo [[e o) Surpuodsoerros ‘(1) ur #5 pue *'zyy usomioq UOI}R[DII0D

‘T =7 )M JN0 JNO POLIIRD DI® §)89)

2d 0sed 9y) 0y puodsorros Lyeusfopus ou jo Vi sisoyjodAy aarjeuiaj(e oyy o) Surpuodsaliod sa113ud oy

uni-guop oxez yo Ofy stsoyrodAy [[nu oY) Idpun pajrodol 21w SaN[RA 900N

480°0  LS0°0  LS0°0  000°T 280°0 LS00 LS00 198°0 LS00 L80°0  L€0°0  000°T 4600  L80°0  LS0°0  866°0 002
€700  €V0'0  €F0°0  000'T €V0°0  €V0°0  €V0°0 T6L°0 €P0°0  €Y0°0  €F0'0  666°0 €P0°0  €¥0°0  €F0'0  T66°0 00T
0800  090°0  0S0°0  866°0 0S0°0  090°0  0S0°0  LEL'O 0S0°0  080°0  0S0°0  ¥66°0 0S0°0  080°0  00°0  9.6°0 0s 002
¥S0°0  ¥S0°0  9S0°0 166°0 $S0°0  ¥S0°0 SO0 STL°0 0S0°0  090°0  00°0  L66°0 $S0°0  ¥S0°0  ¥EO'0  €96°0 14
2S0°0 %S00 2S00 000°T 0S0°0  0S0°0  0S0°0  ¥¥LO 020°0  0S0°0  0S0°0  L66°0 020°0  0S0°0  0%0°0 1860 002
€80°0  €90°0  €90°0  €66°0 €¢0°0 €S0°0  €S0°0 999°0 €20°0  €S0°0 €S0°0  ¥86°0 €20°0  €S0°0  €S0°0  L¥6°0 00t
650°0  6S0°0  8S0°0 286°0 6S0°0  6S0°0  6S0°0  ¥T9°0 620°0  6S0°0  6S0°0  L96°0 620°0  6S0°0  6S0°0  TT6'0 o¢ 00t
¥S0°0  $S0°0  9S0°0 1960 $S0'0  $S0°0  ¥S0°0  L8S'O $S0'0  $S0°0  ¥S0°0  S¥6°0 $S0'0  $S0°0  $S0°0  €88°0 14
190°0 190°0  890°0  F¥L6'0 190°0 190°0 190°0  ¥29°0 190°0 190°0 190°0  896°0 190°0 190°0 190°0  gI6°0 002
9900  L90°0  690°0  €¥6°0 2190°0 1900  L90°0  9¥S0 1900 L90°0  690°0  0Z6°0 1900 L90°0  L90°0  6€£8°0 00T
290°0 8900  690°0  806°0 L1900 L90°0  L90°0  €0S°0 1900 L90°0  690°0  988°0 1900 L90°0  890°0 %080 0s 0s
190°0  g90°0  S90°0  6L8'0 190°0 190°0 190°0  L87°0 190°0 190°0  €90°0 198°0 190°0 190°0 190°0  9SL°0 14
9€0°0  980°0  8E0'0 G080 9€0°0  980°0  9£0°0  TEE'0 9€0°0  980°0  8E0°0  FIL'O 9€0°0  980°0  LE0°0  189°0 002
Tro’0  gVO'0  TF0'0  8SL'O TP0’0  TVO'0  gFO0'0  EEE°0 TPO'0 P00 I70°0  8TL0 gro'0  gr0'0  TF0'0  ¥E9'0 00T
6£0°0  680°0  gFO'0  00L'0 6£0°0  680°0  6£0°0  LIE0 8€0°0  8€0°0  ¢FO'0  FS9°0 6£0°0  680°0  8E0'0 89S0 0g sT
TPO'0  SY0'0  8F0°0 2990 TP0’0  TVO'0  EF0'0  60E£°0 TPO'0  €V0°0  8F0°0  6T9°0 gvo'0  ¢r0'0  9F0°0  6ES°0 14
8°0 9°0 v'o 0 8°0 9°0 1201 0 8°0 9°0 ¥0 0 80 9°0 70 0 2zd .z N
(0°¢0) (g'0—‘0) (g¢0°0) (0°0) (6 9)

(1 aof T = g = g ) sadojs snoausbowoy ypm ‘(6z)-(9z) w0 pasvq JH - savouanbaif woryoalas poraduig

¢ 4T1dVL

24



‘os[e owes oY) o1® 189} oY) Jo suorjedyroads oY) pue ‘g a[qe], ul se uorjejerdisjur owes 9y aaey sarajud oy, (T T) N "P'I'l S® pajeisuag 210N
LS0°0 LS0°0 LG0°0 000°'T LS0°0 LS0°0 LS0°0 L€8'0 LS0°0 LS0°0 LS0°0 000'T LS0°0 LS00 LS0°0 L66°0 00T
€700 €v0°0 €v0°'0 000°'T €¥0°0 €700 €v0°0 ¥8L°0 €%0°0 €¥0°0 €700 8660 €¥0°0 €%0°0 €¥0°0 €660 0ot
0g0°0 0g0°0 6700 866°0 0g0°0 0g0°0 0g0°'0 094°0 0g0°0 0g0°0 0g0'0 L66°0 080°0 0g0°0 0g0°0 g86°0 og 00T
v<0'0 ¥¢0°0 ¥<90°0 966°0 v<0'0 v<0'0 ¥<¢0°0 €9L°0 ¥<0°0 ggo'o ggo0'o0 c66°0 ¥380°0 $20°0 vc0'0 9L6°0 k14
0g0°0 0g0°0 190°0 000’1 0g0°0 0g0°0 0%0°0 L6L°0 0g0°0 0¢0°0 cgo'o 6660 080°0 0g0°0 0¢0°0 166°0 00T
€50°0 €50°0 €50°0 6860 €50°0 €50°0 €90°0 299°0 €50°0 €50°0 €50°0 186°0 €50°0 €50°0 €50°0 056°0 00T
650°0 650°0 090°0 966°0 6S0°0 650°0 650°0 1TL'0 650°0 6S0°0 650°0 066°0 650°0 650°0 8500 996°0 og oot
7500 ¥50°0 L50°0 L96°0 ¥<0°0 ¥S0°0 ¥<0°0 S19°0 ¥<0°0 ¥S0°0 950°0 996°0 ¥S0°0 ¥S0°0 €50°0 S06°0 ST
090°0 090°0 090°0 €L6°0 T90°0 T90°0 19070 929°0 190°0 T90°0 090°0 956°0 190°0 T90°0 090°0 S16°0 00g
L90°0 L90°0 890°0 0880 L90°0 L90°0 L90°0 SEV 0 L90°0 L90°0 L90°0 v€8°0 L90°0 L90°0 L90°0 TvL 0 0ot
L90°0 L90°0 890°0 Z¥8°0 L90°0 L90°0 L90°0 v0¥'0 L9070 L90°0 L90°0 T08°0 L90°0 L90°0 L90°0 669°0 og 0g
290°0 290°0 080°0 v€6°0 190°0 190°0 190°0 98G°0 190°0 T90°0 TL0°0 606°0 190°0 190°0 €90°0 8€8°0 ST
9€0°0 9€0°0 0ov0°'0 ¥18°0 9€0°0 9€0°0 9€0°0 c1¥'0 9€0°0 9€0°0 8€0°0 €LL0 9€0°0 9€0°0 9€0°0 0040 002
c¥0°0 c¥0'0 cv0°'0 60L°0 c¥0'0 c¥0°0 cv0'0 00€°'0 v0°'0 c¥0°0 v0°0 299°0 cv0°0 c¥0°0 €¥0°0 0LG'0 00T
6€0°0 6€0°0 8%0°0 SIL0 6€0°0 6€0°0 6€0°0 €1e'0 6€0°0 6€0°0 700 899°0 6€0°0 6€0°0 0%¥0°0 I8¢°0 og Sc
¥¥0°0 ¥v0°0 ¥s0°0 LL9°0 cvo'o0 cv0'0 cv0'0 ¥ze'0 cvo'0 €¥0°0 L¥0°0 cv9°'0 cv0'0 cvo'0 9%0°0 19¢°0 k14
80 90 7o 0 80 90 7o 0 80 90 7o 0 80 90 vo 0 229 L N
(0°¢ 0) (¢'0—"0) (s°0°0) (0°0) (¢ *9)

sadops snosuabosnjay ynum ‘(Lg)-(Lz) w0 pasvq O - sarousnbof woryaalas worudusy

€ HTdVL

25



Tos[e oures 9y} 91® 189} oY) Jo suorjeoyroods ay) pue ‘g o[qe], ul se uorjejordiojur swes ayy aavy satjud oy (TT) N P v pojerouss st Yg :sajon
0%0°0 0900  0%0°0  000°T 0%0°0 0900  0%0°0  8¥9°0 020°0 000  0%0°0  000°T 020°0  0€0°0  0S0°0  ¥66°0 00z
¥90°0  ¥90°0  ¥90°0  000°T ¥90°0  ¥90°0  ¥90°0  8L9°0 ¥90°0  ¥90°0  ¥90°0  866°0 ¥90°0  ¥90°0  ¥90°0  996°0 00T
g¥0'0 900 SP0'0  986°0 g¢¥0'0  9¥0°0 P00 08F'0 S¢¥0'0  ¢¥0°0  SP0'0  286°0 g¥0'0 €00 S¥0°0  &T6'0 og 00z
650°0 6900  6S0°0  TL6'O 620°0 6900  6S0°0  0€9°0 620°0  620°0  6S0°0  8¥6°0 620°0  620°0  6S0°0  898°0 gz
920°0 9900  990°0  L66°0 920°0 9900 9%0°0  LL¥'O 920°0  9¢0°0  9%0°0  S€6°0 920°0  9¢0°0  9%0°0  $86°0 00z
1¢0°0  TS0°0  190°0  986°0 1€0°0 TG00 TS0°0  SIVO 1€0°0  TS0°0  TS0°0  996°0 1¢0°0 TG00 TS0°0  TL8°0 00T
9¥0°0  9%¥0°0  9¥0'0  296°0 9¥0°0  9%¥0°0  9¥0°0  66£°0 9%0°0  9%¥0°0  9¥0'0  TE6'O 9¥0°0  9¥0°0  9¥0°0 0880 0g 00T
670°0  6¥0°0  8¥0'0  LE6'O 6v0°0  6¥0°0  0S0°0  9E%°0 6v0°0  6¥0°0  8¥V0'0 1060 6v0°0  670°0  8F0'0  9LLO gz
G90°0 9900  190°0  S96°0 ¥90°0  ¥90°0  ¥90°0  TLEO ¥90°0  ¥90°0  ¥90°0 6160 g90°0  €90°0  $90°0  SI8°0 002
8S0°0 8900  SS0°0  €T6°0 820°0  8¢0°0  8S0°0  9VEO 9S0°0  8¢0°0  8S0°0 880 850°0  8¢0°0  8S0°0  TLO 00T
G90°0 L1900  0L0'0  €98°0 G90°0  §90°0  990°0  8IE0 $90°0  S90°0  890°0  0I8°0 g90°0 9900  L90°0  629°0 og 0g
€90°0  €90°0  990°0  TER'O €90°0  €90°0  ¥90°0  SVEO €90°0  €90°0  S90°0 €820 €90°0  €90°0 €900  I¥9°0 14
1970°0  0%0°0  TF0'0  6SL°0 ¢v0'0  TP0'0  &F0'0  8TT'0 g¥0'0  0¥0'0  0F0°0  TIL0 gv0'0  g¥0'0  IF0'0  88S°0 002
8%0°0  8%0'0  6¥0°0  889°0 L¥0°0 %00 8¥0'0 9180 L¥0°0  8%0°0  6¥0°0  LZ90 L¥0°0  L¥0'0  8%0°0  00S°0 00T
170°0  ¥%0°0  8¥0'0  199°0 170°0  I¥0°0  TF0'0 1180 170°0  gF0°0  SP0'0  8LG'O 1$70°0  gF0'0  SF0'0 IS0 0g 44
1%0°0  0¥0'0  090°0  6.9°0 170°0  I¥0°0  SPO'0  0I&'0 170°0  gF0'0  ¥FO'0  I¥S0 170°0  g¥0'0  ¥F0'0  E€I¥0 14
80 9'0 v'0 0 80 92°0 v'o 0 80 90 ¥0 0 80 90 ¥0 0 g Z N
(0‘c'0) (g'0—‘0) (g'00) (0°0) (¢ *d)

sadojs snoauaboraray ynm ‘(Lg)-(Le) o pasvq JH - saouanbaf worpoalas oruaduig

v AHTIdVL

26



