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Background risk models and stepwise portfolio
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Abstract Assuming the multiplicative background risk model, which has been a popular

model due to its practical applicability and technical tractability, we develop a general frame-

work for analyzing portfolio performance based on its subportfolios. Since the performance of

subportfolios is easier to assess, the herein developed stepwise portfolio construction (SPC)

provides a powerful alternative to a number of traditional portfolio construction methods.

Within this framework, we discuss a number of multivariate risk models that appear in the

actuarial and financial literature. We provide numerical and graphical examples that illus-

trate the SPC technique and facilitate our understanding of the herein developed general

results.
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1 Introduction

Suppose we are dealing with the portfolio R = (R1, . . . , Rn) of n risks. We wish to know

the distribution of R, and we also wish to assess how the distribution changes when some

risks are excluded and/or new ones added. In this paper we explore this problem and

provide a solution in the form of a technique that we call stepwise portfolio construction

(SPC). Naturally, if the risks R1, . . . , Rn were independent, then the problem of assessing

the portfolio distribution based on subportfolios would be simple: the entire portfolio’s

probability density function (pdf) pR(r) would be the product of the marginal pdf’s of

R1, . . . , Rn. The case that we tackle in this paper is much more complex.

Some dependence structure needs to be assumed. To accommodate many practically

relevant scenarios, we adopt a popular and practically well-tested background risk model

(BRM). The SPC technique that we develop reduces portfolio risk assessment to that of its

subportfolios, which can in turn be reduced to further subportfolios until individual risks

are reached; hence, the the name of the technique. We note at the outset that the herein

developed SPC technique is very different from the similarly sounding ‘two-step,’ ‘two-stage,’

and ‘multi-stage’ procedures that have been used in portfolio construction (cf Marasović and

Babić 2011; Yau et al. 2011).

The SPC technique is not restricted to investment or insurance portfolios, which have

been extensively explored using methods such as constrained and unconstrained optimiza-

tion, finite-sample and bootstrap based (eg Meucci 2007; Michaud and Michaud 2008; Buch

et al. 2011; see also Bai et al. 2012; Bennett and Zitikis 2014; Stefanovits et al. 2014; You

and Li 2014; and references therein). Indeed, the SPC technique can be applied in many

other areas, including enterprise risk management (ERM) that has recently been actively

researched from various points of view by many authors (eg Fraser and Simkins 2010; Ol-

son and Wu 2010; Segal 2011; McNeil 2013; Ferrari and Migliavacca 2014; Louisot and

Ketcham 2014). In particular, ERM crucially relies on one’s ability to integrate (usually

dependent) risks and to also aggregate individual risk metrics into one enterprise-wide risk

metric. The SPC technique developed in this paper is well suited for such tasks, and we

shall illustrate it numerically and graphically.

The rest of the paper is organized as follows. In Section 2 we recall the fundamental for

this paper BRM that has been widely used in areas such finance, economics, and management

science, due to its technical tractability and practical relevance. In Section 3 we discuss a

special but highly significant BRM case, and provide corresponding SPC results alongside

their numerical and graphical illustrations. In Sections 4–6 we develop more general and

practically relevant BRM’s and their corresponding SPC results, with further numerical and

graphical illustrations. In Section 7 we give a brief overview of our main contributions.
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2 The background risk model

An ambitious project, called Solvency II, was started more than a decade ago in an attempt

to harmonize regulatory environments within the European Union’s (EU) insurance indus-

try. Its legal framework is specified by European Commission (2009). Various quantitative

impact studies (QIS) are being performed, such as feedback from insurance and reinsurance

companies to constantly augmented Solvency II specifications. A most recent study, known

as QIS 5 (cf European Commission 2010), summarizes the most probable recommendations

that will lead to the implementation of Solvency II project (eg Cruz 2009; Sandström 2010;

Chan-Lau 2013).

We now turn our attention to recommendations given to the Insurance Group (IG) reg-

ulation, which provides the ideal framework for illustrating the usefulness of BRM. Namely,

the IG’s are composed of multiple legal entities that operate in different insurance markets,

but here we focus on IG’s with multiple subsidiaries in different EU jurisdictions. Diver-

sification across IG’s represents a risk management tool, often used to abate the capital

requirements, that is, to achieve capital efficiency. We refer to Asimit et al. (2013) for a

discussion of this problem in the case of two subsidiaries.

Hence in this paper we work under BRM, also known as systemic risk model, which

we rigorously define as follows: there is an underlying risk Y , and there are (independent

or dependent) stand-alone risks X1, . . . , Xn, which are independent of Y . Every individual

risk Rk is a function of Xk and Y , and since we work under the multiplicative BRM, our

mathematical model is as follows:

R =

(
µ1 + σ1

X1

Y
, . . . , µn + σn

Xn

Y

)
,

where µ = (µ1, . . . , µn) and σ = (σ1, . . . , σn) are parameter vectors, Xk’s are stand-alone

risks, and Y is background or systemic risk. To avoid unnecessary – at least from the practical

point of view – technicalities, we assume that the random variables (rv’s) under consideration

have densities: g of Y , and pX of X = (X1, . . . , Xn). We assume that X1, . . . , Xn have the

same marginal distributions, but they may or may not be independent. Since business lines,

assets, and so on, do not usually follow identical distributions, we have accommodated this

by employing the parameter-vector σ = (σ1, . . . , σn). This multiplicative model has been

very popular in the literature (cf eg Tsetlin and Winkler 2005; Franke et al. 2006, 2011; and

references therein) due to reasons such as practical relevance and mathematical tractability.

For all our purposes, we can and thus do work under the assumption µ = (0, . . . , 0)

because the results that we shall obtain can easily be transformed into the general case

µ = (µ1, . . . , µn). Hence, for the rest of this paper, we shall deal exclusively with the
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risk-vector

Z =

(
X1/λ1

Y
, . . . ,

Xn/λn

Y

)
, (2.1)

where λk = 1/σk is a convenient re-parametrization, meaning that from now on we shall

work with the parameter-vector λ = (λ1, . . . , λn) instead of σ. Note that the pdf pZ of Z

can be expressed in terms of the pdf pX of X using the formula

pZ(z) =

( n∏
k=1

λk

)∫ ∞

0

pX(yλ1z1, . . . , yλnzn)y
ng(y)dy. (2.2)

To summarize our terminology:

• Zk’s are individual risks, which can be viewed as risks corresponding to individual busi-

ness lines, assets, etc. The risks are dependent due to reasons such as laws, regulations,

general economic conditions, etc.

• Xk’s are stand-alone risks, which are associated with individual business lines, assets,

etc, assuming no background (ie systemic) risk. Yet, Xk’s may be dependent because,

for example, business lines can be dependent by the very nature of business; we shall

consider independent and dependent cases.

• Y is background or systemic risk, which may be associated with supervisory and regu-

latory bodies, general economic conditions, etc, that affect stand-alone risks Xk, thus

giving rise to the individual risks Zk = (Xk/λk)/Y .

For applications of BRM in insurance, we refer to Tsanakas (2008) and references therein.

Bai et al. (2012) explore finite-sample statistical inference within the BRM and apply their

results for the analysis of financial data. Chan-Lau (2013) provides an in-depth discussion

of BRM from a practical perspective. Hashorva and Ji (2014) explore several background

risk models (ie random shifting and scaling) focusing on credibility theory, collective risk

models, and extreme value models. Merz and Wüthrich (2014) use BRM to study optimal

insurance designs and, in particular, risk sharing between insureds and insurers. You and

Li (2014) explore BRM within the context of capital allocations in the case of dependent

(eg exchangeable) risks and connect their research with copulas (cf eg McNeil et al. 2005;

Jaworski et al. 2010; Jaworski et al. 2013; Durante et al. 2014; and references therein). The

impact of background risk on portfolio diversification has been explored and discussed by

Busse et al. (2014), where we also find an extensive list of references on the topic.

3 Portfolio of Paretian risks

To illustrate the above introduced general BRM, and to also get some sense of how the SPC

works, we begin with the classical multivariate Pareto distribution of type II (cf Arnold 1983),
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which is usually denoted by MP(n)II (λ, α) with parameter α > 0. The joint de-cumulative

distribution function (ddf) of Z0 ∼ MP(n)II (λ, α) is

SZ0 (z | λ, α) =
(
1 +

n∑
k=1

λkzk

)−α

, (3.1)

for all z ≥ 0, and the corresponding joint pdf

pZ0 (z | λ, α) =
( n∏

i=1

λi(n+ α− i)

)(
1 +

n∑
k=1

λkzk

)−(n+α)

. (3.2)

We next present an alternative formula for the pdf of Z0 that plays a pivotal role in

developing SPC for various multivariate models to be discussed later in this paper. Namely,

let E1 be the exponential rv with mean 1, whose pdf is e−x, and let Y0(α) be the gamma rv

with shape and rate parameters α > 0 and β = 1, respectively, that is, its pdf is

gga(y | α) = 1

Γ(α)
yα−1e−y, y > 0.

We can express Z0 ∼ MP(n)II (λ, α) as the vector Z defined by equation (2.1), where the

stand-alone risks X1, . . . , Xn are independent and each of them follows the exponential dis-

tribution with mean 1, and the background risk Y is the gamma rv Y0(α) independent of all

Xi’s.

The following theorem, which is due to Vernic (2011), serves an initial building block

for our subsequent general models and gives a recurrence relation upon which we can build

SPC-type results for evaluating risk measures and capital allocations (cf Asimit et al. 2013).

Theorem 3.1 (Vernic 2011) Let n ≥ 2 and Z0 ∼ MP(n)II (λ, α). When there are at least

two unequal λk’s, say λi ̸= λj, then the pdf pZ+(z | λ, α) of the aggregate loss Z+ =
∑n

i=1 Z0,i

is given by

pZ+(z | λ, α) = 1

λj − λi

(
λjpZ(j)+

(z | λ(j), α)− λipZ(i)+
(z | λ(i), α)

)
(3.3)

for all z ≥ 0. When all λk’s are equal, say to λ, then the pdf is given by

pZ+(z | λ, α) = λnzn−1

(n− 1)!

∏n
k=1 (n+ α− k)

(1 + λz)n+α .

We have used the following notations: Given z = (z1, . . . , zn), the vector z(i) stands for

z with the coordinate zi deleted, that is, z(i) = (z1, . . . , zi−1, zi+1, . . . , zn). Furthermore,

z+ =
∑n

i=1 zi and z(i)+ = z+ − zi. We shall later use the notation z(i,m) for the vector z with

its two coordinates zi and zm deleted, and we shall use the notation z(i,j)+ = z+ − zi − zj.
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3.1 Numerical illustration

A usual feature of real-life data sets is that they are highly confidential. Therefore, to

illustrate SPC in a practically relevant context, we have ‘abstracted’ certain data that we

have dealt with while consulting. This approach also makes our task manageable within

the space limits of this paper. We have chosen to work with the tail value at risk (TVaR),

which is also known as the conditional value at risk (CVaR) or conditional tail expectation

(CTE). It is a risk measure required by Solvency II in the insurance sector (eg Cruz 2009;

Sandström 2010) and by Basel accords in the financial sector (eg Cannata and Quagliariello

2011; Sawyer 2012; Ozdemir and Miu 2013).

Specifically, given a rv Z with cdf FZ , its tail-value-at-risk TVaRp[Z] is the conditional ex-

pectation E[Z|Z > VaRp[Z]], where VaRp[Z] is the value-at-risk, also known in the statistical

literature as the pth quantile of Z and denoted by F−1
Z (p). Hence, the TVaR corresponding

to the aggregate risk Z+ = Z1 + · · ·+ Zn is

TVaRp[Z+] = E[Z+|Z+ > VaRp[Z+]] =
E[Z+1{Z+ > VaRp[Z+]}]

SZ+(VaRp[Z+])
,

where SZ+ is the ddf of Z+ and 1{A} is the indicator function of event A. This risk measure

naturally extends to capital allocations. Namely, the contribution of risk Zl to the aggregate

risk Z+ can be measured by

TVaRp[Zl, Z+] = E[Zl | Z+ > VaRp[Z+]] =
E[Zl1{Z+ > VaRp[Z+]}]

SZ+(VaRp[Z+])
.

We shall next employ the SPC technique to calculate these quantities in the case n = 3. Of

course, with the help of recurrence relations, we can tackle any dimensionality.

Hence, assume that we are dealing with three business lines, and let Z ∼ MP(3)II(λ, α)

for some α > 1. Given the recurrence relation of Theorem 3.1, we start with Z that follows

the univariate Pareto distribution of the second kind, that is, Z ∼ MP(1)II(λ, α). We have

TVaRp[Z] =
αVaRp[Z] + λ−1

α− 1

and

E[Z 1{Z > s}] = αs+ λ−1

(α− 1)(λs+ 1)α

for all s ≥ 0. With these formulas and the recurrence relation of Theorem 3.1, we obtain

the following formula in the bivariate case Z ∼ MP(2)II(λ, α):

E[Zi1{Z+ > s}] = 1

(α− 1)λi(λ2 − λ1)2

(
λ2
i (λjs+ 1)−α+1

− λj(λis+ 1)−α[(α(λi − λj) + λi)λis+ 2λi − λj]

)

6



when λ1 ̸= λ2 and i ̸= j ∈ {1, 2}, where Z+ = Z1 + Z2. When λ1 = λ2 = λ, we have

E[Zi1{Z+ > s}] = λ

2(α− 1)(λs+ 1)α+1

(
α(α + 1)s2 + 2(α+ 1)

s

λ
+

2

λ2

)
for i = 1, 2. Using these formulas, we can now in turn derive formulas in the tri-variate case

Z ∼ MP(3)II(λ, α). In Figure 3.1 we have depicted TVaRp as a function of p for various

Figure 3.1: TVaRp as a function of p for various risks originating from the tri-variate Z ∼
MP(3)II((0.8, 1, 2), 1.5).

aggregate and individual risks when λ = (0.8, 1, 2) and α = 1.5, and in Table 3.1 we have

reported TVaRp and p values for pre-specified VaRp values.

4 Portfolio of BRM(n) (λ, g) risks

4.1 An alternative view of the earlier model

Formulas (3.1) and (3.2) are fundamental, and they are almost always given as definitions

of the MP(n)II (λ, α) model. They do not, however, directly lead to SPC results, and for

this reason we next give a theorem that provides an alternative reformulation of the model

suitable for developing SPC.
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VaR = 20 VaR = 50 VaR = 100 VaR = 1000

Risks p TVaR p TVaR p TVaR p TVaR

Z1 0.9857 62.50 0.9962 152.50 0.9986 302.50 0.99995 3002.50

Z2 0.9896 62.00 0.9973 152.00 0.9990 302.00 0.99997 3002.00

Z3 0.9962 61.00 0.9990 151.00 0.9996 301.00 0.99999 3001.00

Z1 + Z2 0.9702 63.20 0.9919 153.18 0.9971 303.17 0.99991 3003.17

Z1 + Z3 0.9788 62.68 0.9943 152.67 0.9979 302.67 0.99993 3002.67

Z2 + Z3 0.9830 62.22 0.9955 152.22 0.9984 302.22 0.99995 3002.21

Z1 + Z2 + Z3 0.9617 63.49 0.9896 153.46 0.9962 303.45 0.99987 3003.44

Table 3.1: TVaRp and p values for pre-specified VaRp values in the case of several individual

and aggregate risks originating from Z ∼ MP(3)II((0.8, 1, 2), 1.5).

Theorem 4.1 The joint pdf of Z0 ∼ MP(n)II (λ, α) can be written as

pZ0 (z | λ, α) =
( n∏

k=1

λk

)∫ ∞

0

exp

{
− y

n∑
k=1

λkzk

}
yngga(y | α)dy

= E[Y n
0 (α)]

( n∏
k=1

λk

)
SE1/Yn(α)

( n∑
k=1

λkzk

)
, (4.1)

where SE1/Yn(α) is the ddf of the ratio E1/Yn(α) with Yn(α) denoting the size-biased back-

ground risk Y0(α) whose pdf is

gga,n(y | α) = yngga(y | α)
E[Y n

0 (α)]
. (4.2)

The proof of the theorem is relegated to Appendix A. We note that the procedure of

weighting distributions as we have done in formula (4.2) is a powerful tool for generating

new distributions and tackling other problems (cf Patil and Ord 1976; Patil and Rao 1978;

Patil 2002; also Furman and Zitikis 2008a, 2008b; and references therein).

The joint ddf of Z0 is given by the formula

SZ0 (z | λ, α) = SE1/Y0(α)

( n∑
k=1

λkzk

)
, (4.3)

which immediately follows from equation (4.1). The right-hand side of equation (4.3) sug-

gests a number of possible generalizations. For example, we may choose any rv ξ instead of

the ratio E1/Y0(α) and then define a multivariate ddf by the formula Sξ(
∑n

k=1 λkzk). The

latter ddf can further be extended to E[Sξ(
∑n

k=1 Tkzk)] for some non-negative rv’s T1, . . . , Tn,

and this model will naturally appear later in this paper.
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4.2 Model BRM(n) (λ, g) and its SPC

We obtain the first important generalization of Theorem 4.1 by replacing the gamma pdf

gga(y | α) by generic pdf g, thus allowing for various background-risk choices. Namely, we

say that Z1 = (Z1,1, . . . , Z1,n) ∼ BRM(n)(λ, g) when Z1 can be expressed as Z defined by

equation (2.1) with the stand-alone risks X1, . . . , Xn being independent and each following

the exponential distribution with mean 1, and with the background risk Y > 0 being abso-

lutely continuous (ie having pdf g) and independent of all Xi’s. The joint ddf of Z1 is given

by the formula

SZ1 (z | λ, g) = SE1/Y

( n∑
k=1

λkzk

)
,

and its pdf by

pZ1(z | λ, g) =
( n∏

k=1

λk

)∫ ∞

0

exp

{
− y

n∑
k=1

λkzk

}
yng(y)dy

= E[Y n]

( n∏
k=1

λk

)
SE1/Yn(g)

( n∑
k=1

λkzk

)
, (4.4)

where Yn(g) denotes the size-biased background risk Y , that is, the pdf of Yn(g) is

gn(y) =
yng(y)

E[Y n]
. (4.5)

The following theorem establishes SPC for the just introduced BRM and thus, in turn,

generalizes Theorem 3.1.

Theorem 4.2 Let n ≥ 2 and Z1 ∼ BRM(n) (λ, g). When there are at least two unequal

λk’s, say λi ̸= λj, then the pdf pZ+(z | λ, g) of Z+ =
∑n

i=1 Z1,i can be expressed by

pZ+(z | λ, g) = 1

λj − λi

(
λjpZ(j)+

(z | λ(j), g)− λipZ(i)+
(z | λ(i), g)

)
(4.6)

for all z ≥ 0. When all λk’s are equal, say to λ, then the pdf is

pZ+(z | λ, g) = λnzn−1

(n− 1)!

∫ ∞

0

e−λzyyng(y)dy. (4.7)

The proof of the theorem is relegated to Appendix A.

5 Portfolio of BRM(n) (λ, π, g) risks

We can depart from the exponential distribution – though keeping the above developed form

of recurrence relations and thus of SPC – by considering completely monotone functions

C : (0,∞) → [0,∞), which are such that C(x) =
∫
[0,∞)

e−tx π(dt) for some measures π on

[0,∞). Since the functions that we deal with are ddf’s, we always have C(0) = 1 and thus,
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in turn, all measures π that we consider are probability measures. When choosing C or,

alternatively, π for portfolio modeling purposes, we may wish, or need, to impose certain

shape constraints on them. We note, however, that shape relationships between C and π can

be quite complex, as seen from the recent works of Sendov and Zitikis (2014), and Sendov

and Shan (2015). Our next BRM follows.

5.1 Model BRM(n) (λ, π, g) and its SPC

We say that Z2 = (Z2,1, . . . , Z2,n) ∼ BRM(n) (λ, π, g) when Z2 can be expressed as Z defined

by equation (2.1) with Y > 0 being a rv with the pdf g and independent of the vector

X = (X1, . . . , Xn) whose joint ddf is given by

SX (x | π) =
∫
[0,∞)

exp

{
− t

n∑
k=1

xk

}
π(dt) (5.1)

for all x ≥ 0 with a probability measure π on [0,∞). Hence, the joint ddf of the vector Z2 is

SZ2 (z | λ, π, g) =
∫
[0,∞)

SE1/Y

(
t

n∑
k=1

λkzk

)
π(dt) = E

[
SE1/Y

(
T

n∑
k=1

λkzk

)]
,

where T is a rv with the probability law π. The joint pdf of Z2 can be expressed as

pZ2(z | λ, π, g) =
( n∏

k=1

λk

)∫
[0,∞)

tn
∫ ∞

0

exp

{
− yt

n∑
k=1

λkzk

}
yng(y)dyπ(dt)

= E[Y n]

( n∏
k=1

λk

)
E

[
T nSE1/Yn(g)

(
T

n∑
k=1

λkzk

)]
, (5.2)

where Yn(g) is a size-biased rv whose pdf is given by formula (4.5). In the next subsection

we shall discuss assumption (5.1) in detail. At the moment, we only note that when π is

concentrated at the point 1, then BRM(n) (λ, π, g) reduces to BRM(n) (λ, g).

The next theorem establishes SPC for our current model.

Theorem 5.1 Let n ≥ 2 and Z2 ∼ BRM(n) (λ, π, g). When there are at least two unequal

λk’s, say λi ̸= λj, then the pdf pZ+(z | λ, g) of Z+ =
∑n

i=1 Z2,i is

pZ+(z | λ, π, g) = 1

λj − λi

(
λjpZ(j)+

(z | λ(j), π, g)− λipZ(i)+
(z | λ(i), π, g)

)
(5.3)

for all z ≥ 0. When all λk’s are equal, say to λ, then the pdf is

pZ+(z | λ, π, g) = λnzn−1

(n− 1)!

∫ ∞

0

tn
∫ ∞

0

e−tλzyyng(y)dyπ(dt). (5.4)

The proof of the theorem is relegated to Appendix A.
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5.2 Laplace transform of π: examples

We start our discussion of assumption (5.1) by rewriting the joint survival function SX (x | π)
in terms of the Laplace transform Lπ of the measure π, that is, we have the equation

SX (x | π) = Lπ

( n∑
k=1

xk

)
. (5.5)

Given a probability measure π, we can now consult a handbook or text on Laplace trans-

forms (eg Abramowitz and Stegun, 1972; Schilling et al. 2010; Widder, 1945) and have an

expression for SX (x | π).
We next present several illustrative examples showing that the herein proposed risk model

is quite flexible, and that the stand-alone risks Xk can exhibit various degrees of heavy

tailness, such as

• heavy yet lighter than Pareto tails (Examples 5.1 and 5.2).

• Pareto-like tails (Examples 5.3, 5.4, 5.5 and 5.6).

In the examples, we shall also give formulas of the corresponding Laplace transforms Lπ,

which play a pivotal role in our numerical explorations in the following subsection.

Example 5.1 Assume that π follows the inverse gamma law, that is, has the pdf

higa(x | α, β) = βα

Γ(α)
x−α−1e−β/x, x > 0,

for some parameters α > 0 and β > 0. It is a special case of the log-exponential family

(Furman and Zitikis 2009). The corresponding Laplace transform is

Lπ(x) =
2βα/2

Γ(α)
xα/2Kα

(
2
√

βx
)
,

where Kα is the modified Bessel function of the second kind (eg Abramowitz and Ste-

gun 1972)

Kα(y) =
Γ
(
α + 1/2

)
√
π

(2y)α
∫ ∞

0

cos t(
t2 + y2

)α+1/2
dt =

√
π

2

e−y

√
y

(
1 + o(1)

)
, y → ∞.

Consequently,

SX1(x | α, β) =
√
πβ(2α−1)/4

Γ(α)
x(2α−1)/4e−2

√
βx
(
1 + o(1)

)
, x → ∞.

Hence, the stand-alone risk X1 has all finite moments.
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Example 5.2 Let the measure π be inverse Gaussian with the pdf

higauss(x | µ, σ) =
√

σ

2π
x−3/2 exp

{
− σ(x− µ)2

2µ2x

}
, x > 0,

for some parameters µ > 0 and σ > 0. This is a classical example of the exponential family

(eg Jørgensen 1997). The Laplace transform of this distribution is (Seshadri 1993, p. 41)

Lπ(x) = exp

{
σ

µ
−

√
σ2

µ2
+ 2σx

}
.

Consequently,

SX1(x | µ, σ) = eσ/µ−
√
2σx
(
1 + o(1)

)
, x → ∞.

Hence, X1 has all finite moments.

Example 5.3 When the measure π is the gamma law with the pdf

hga(x | α, β) = βα

Γ(α)
xα−1e−βx, x > 0,

for some parameters α > 0 and β > 0, which is yet another example of the exponential

family, then the Laplace transform is

Lπ(x) =
1

(1 + x/β)α
.

A simple computation yields the asymptotic formula

SX1(x | α, β) = βα

xα

(
1 + o(1)

)
, x → ∞,

and so X1 may or may not have a finite mean, depending on the value of α > 0.

Example 5.4 Here we explore the half-normal law, which is a special case of the class of

folded distributions that have emerged as excellent models for insurance data (Brazauskas

and Kleefeld 2011, 2014; Scollnik 2014) and have also been recently used to understand the

‘trends in disguise’ phenomenon (Brazauskas et al. 2015). Hence, we assume that π is the

half-normal law, whose pdf is

hhnorm(x | σ) = 2

πσ
exp

{
− x2

πσ2

}
, x > 0,

for some parameter σ > 0. The corresponding Laplace transform is

Lπ(x) = exp

{
πσ2

4
x2

}
erfc

(√
πσ

2
x

)
,

where erfc is the complementary error function

erfc(y) =
2√
π

∫ ∞

y

e−t2 dt =
1√
πy

e−y2
(
1 + o(1)

)
, y → ∞.
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The latter asymptotic formula gives

SX1(x|σ) =
2

πσx

(
1 + o(1)

)
, x → ∞.

From this expression we see that X1 has infinite mean, and we refer to Nešlehová et al. (2006)

for uses of infinite-mean distributions for modeling operational risks, as well as to Mainik

and Embrechts (2013) for further related notes.

Example 5.5 When the measure π is the Rayleigh law with the pdf

hrlgh(x | σ) = x

σ2
exp

{
− x2

2σ2

}
, x > 0,

for some parameter σ > 0, then the Laplace transform is

Lπ(x) = 1−
√

π

2
σx exp

{
σ2

2
x2

}
erfc

(
σ√
2
x

)
.

Using the asymptotic expansion

erfc(y) =
1√
πy

e−y2 − 1

2
√
πy3

e−y2
(
1 + o(1)

)
, y → ∞,

we have

SX1(x | σ) = 1

σ2x2

(
1 + o(1)

)
, x → ∞,

and so X1 has a finite mean but the second and higher order moments are infinite.

Example 5.6 When the measure π is the Maxwell-Boltzmann law with the pdf

hmb(x | σ) =
√

2

π
σ−3x2 exp

{
− x2

2σ2

}
, x > 0,

for some parameter σ > 0, then the Laplace transform is

Lπ(x) = exp

{
σ2

2
x2

}(
1 + σ2x2

)
erfc

(
σ√
2
x

)
− σ

√
2

π
x.

Using the asymptotic formula

erfc(y) =
1√
πy

e−y2 − 1

2
√
πy3

e−y2 +
3

4
√
πy5

e−y2
(
1 + o(1)

)
, y → ∞,

and some tedious algebra, we obtain

SX1(x | σ) =
√

8

π

1

σ3x3

(
1 + o(1)

)
, x → ∞.

Consequently, X1 has finite mean and variance, but the third and higher order moments are

infinite.
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5.3 Numerical illustration

Here we provide a numerical example based on the VaR0.95 risk measure for the aggregate

risk Z+ = Z1 + · · · + Zn based on π’s of the six examples in the previous subsection. To

demonstrate the technique clearly, we keep the complexities at a reasonable level by assuming

that

• all λk’s are equal to 1;

• the stand-alone risks are independent; and

• the background risk Y is either exponential with mean 1, ie pdf ge(x | 1) = exp{−x},
or gamma with shape and scale parameters 2 and 1, ie pdf gga(x | 2, 1) = x exp{−x},
respectively.

We find it also useful to view the background risk as a ‘competing risk’ in the terminology

of reliability engineering and survival analysis (cf eg Bebbington et al. 2008; and references

therein). In particular, we learn from the literature that the two distributions – exponential

and gamma – have very different hazard rate functions: constant in the exponential case

and increasing in the gamma case when the shape parameter is greater than 1, which is the

case we consider. As a result of this, we shall see distinct diversification effects for the two

distributions, which corroborates the fact that portfolio construction is influenced not only

by the stand-alone risks but also by the background (or systemic, competing, etc) risk. We

refer to Busse et al. (2014) and references therein for an in-depth discussion of the impact

of background risk on portfolio diversification.

To be able to compare our findings under various scenarios, we set the mean and the

0.95-value-at-risk of the stand-alone risks at 600 and 2,000, respectively. Since under this

set-up the underlying distribution should have at least two parameters, we now focus on

Examples 5.1–5.3 and will later explore the remaining one-parameter distributions of Exam-

ples 5.4–5.6. Numerical computations have yielded the following values:

αiga = 0.040980 and βiga = 0.000068

µigauss = 0.007363 and σigauss = 0.025166

αga = 4.152880 and βga = 1, 891.73

Via equation (5.4), we numerically find VaR0.95[Z+] for the noted three distributions (Ex-

amples 5.1–5.3). The results are reported in Table 5.1 for the exponential background risk,

ie pdf ge(x | 1). The diversification effect, which is a standard measure in risk management,

is given by

Div Eff =

(
1− VaR0.95[Z+]/

n∑
i=1

VaR0.95[Z2i]

)
100% =

(
1− VaR0.95[Z+]

nVaR0.95[Z21]

)
100%.
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Inverse Gamma Inverse Gaussian Gamma

n VaR Div Eff VaR Div Eff VaR Div Eff

1 4,130.63 0% 3,122.29 0% 11,161.47 0%

2 9,786.57 -18.46% 6,420.97 -2.82% 22,718.27 -1.77%

3 15,574.78 -25.69% 9,723.03 -3.80% 34,279.46 -2.37%

4 21,400.72 -29.52% 13,025.99 -4.30% 45,841.83 -2.68%

5 27,242.33 -31.90% 16,329.33 -4.60% 57,404.69 -2.86%

10 56,522.01 -36.84% 32,847.81 -5.20% 115,221.25 -3.23%

Table 5.1: VaR0.95[Z+] and diversification effects for various values of n under the exponen-

tially distributed background risk.

Note the always negative diversification effects in the table. This can indeed happen for the

VaR risk measure because it is not always sub-additive, that is, the bound VaRp[ξ + η] ≤
VaRp[ξ] + VaRp[η] may not hold for some risks ξ and η. For detailed discussions, properties

and pitfalls concerning portfolio diversification with emphasis on VaR aggregation in heavy-

tailed populations, we refer to Embrechts and Puccetti (2010), Embrechts et al. (2013),

Mainik and Embrechts (2013), and references therein.

It is expected that the multiplicative BRM leads to a less risky distribution when Y has

a heavier tail than the so far explored exponential. To see this phenomenon, we now assume

that Y follows the gamma distribution, ie pdf gga(x | 2, 1). From Table 5.2 we observe

Inverse Gamma Inverse Gaussian Gamma

n VaR Div Eff VaR Div Eff VaR Div Eff

1 1,393.84 0% 683.61 0% 2,154.45 0%

2 3,314.62 -18.90% 1,327.24 2.92% 4,048.40 6.05%

3 5,288.93 -26.48% 1,963.83 4.24% 5,912.07 8.53%

4 7,279.24 -30.56% 2,598.30 4.98% 7,766.25 9.88%

5 9,276.28 -33.10% 3,231.87 5.45% 9,616.26 10.73%

10 19,291.79 -38.41% 6,395.54 6.44% 18,846.02 12.53%

Table 5.2: VaR0.95[Z+] and diversification effects for various values of n under the gamma

distributed background risk.

reduced VaR levels and increased (and even positive) diversification effects.

The next natural task is to assess which of the above three models is more suitable for

our data. We may do so by looking at the risk-ratio distributions, say those of X1/X2 or

Z21/Z22, which are equally distributed. Note that the risk-ratio distribution removes the
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effect of the background risk and tells us how to identify the ‘best possible’ model, and it

also helps to check the earlier imposed independence assumption on Xi’s. In Figure 5.1 we

Figure 5.1: Survival functions for the ratio X1/X2 in the case of inverse gamma (solid) and

inverse Gaussian (dashed) distributions.

have depicted the survival functions of the ratio X1/X2 in the case of the inverse gamma and

inverse Gaussian distributions, setting the same parameters as in Table 5.1. Both graphs go

through the point (1, 1/2) due to the fact that Xi’s are assumed to be independent. In these

calculations, we have not included the third (ie gamma) distribution because it has a very

similar behavior to that in the inverse Gaussian case.

Next, we produce similar analyses of the remaining three examples, that is, of Exam-

ples 5.4–5.6. Since each of the three distributions has only one parameter, the only assump-

tion that we now impose is VaR0.95[X1] = 2, 000. As before, the background risk Y is assumed

to be exponentially distributed with mean 1, and the stand-alone risks are independent. The

numerically obtained parameter values are:

σhnorm = 0.006341, σrlgh = 0.002077, σmb = 0.001303.

Once again, numerical values of VaR0.95[Z+] have been obtained via equation (5.4) and,

together with the corresponding diversification effects, reported in Table 5.3.

Similar to the results reported in Table 5.2, the heavier tailed gamma BRM reduces the

VaR levels and increases diversification effects if compared with the exponential case. We see

this phenomenon from Table 5.4 for all three distributions of Examples 5.4–5.6. Finally, we

have depicted the survival functions of the ratio X1/X2 under the half-normal and Rayleigh

distributions in Figure 5.2. We have not included there the Maxwell-Boltzmann case because

it has a very similar behavior to that of Rayleigh.
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Half Normal Rayleigh Maxwell-Boltzmann

n VaR Div Eff VaR Div Eff VaR Div Eff

1 8,644.81 0% 10,674.49 0% 11,370.56 0%

2 18,258.04 -5.60% 21,862.25 -2.40% 23,146.32 -1.78%

3 27,929.99 -7.69% 33,064.57 -3.25% 34,927.40 -2.39%

4 37,362.62 -8.05% 44,271.09 -3.68% 46,709.94 -2.70%

5 46,990.92 -8.71% 55,479.39 -3.95% 58,493.10 -2.89%

10 95,160.88 -10.08% 111,529.33 -4.48% 117,411.71 -3.26%

Table 5.3: VaR0.95[Z+] and diversification effects for various values of n under the exponen-

tially distributed background risk.

Half Normal Rayleigh Maxwell-Boltzmann

n VaR Div Eff VaR Div Eff VaR Div Eff

1 1,863.86 0% 2,107.08 0% 2,180.97 0%

2 3,792.86 -1.75% 4,028.29 4.41% 4,096.90 6.08%

3 5,691.27 -1.78% 5,927.65 6.23% 5,982.72 8.56%

4 7,611.31 -2.09% 7,820.46 7.21% 7,859.17 9.91%

5 9,531.45 -2.28% 9,710.43 7.83% 9,731.51 10.76%

10 19,132.62 -2.65% 19,146.94 9.13% 19,073.23 12.55%

Table 5.4: VaR0.95[Z+] and diversification effects for various values of n under the gamma

distributed background risk.

Figure 5.2: Survival functions for the ratios of two risks in the case of half normal (solid)

and Rayleigh (dashed) distributions.
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6 Portfolio of BRM(n) (λ, νn, g) risks

Following Guillén et al. (2013), we say that a random vector Z3 = (Z3,1, . . . , Z3,n) follows the

multivariate beta distribution of type II, denoted by MB(n)II (λ, {pk}nk=1, q0) when it can be

expressed as Z defined by equation (2.1) with Xi = Y0(pi), i = 1, 2, . . . , n, being independent

gamma rv’s with shape parameters pi > 0, i = 1, 2, . . . , n, and the background variable

Y = Y0(q0) following the gamma distribution with shape parameter q0 > 0 and independent

of X1, . . . , Xn. In what follows, we shall extend the model by considering generic probability

measure νn instead of the probability distribution {pk}nk=1.

6.1 Model BRM(n) (λ, νn, g) and its SPC

We say that Z4 ∼ BRM(n) (λ, νn, g) when Z4 can be expressed as Z defined by equation (2.1)

with Y > 0 being a rv with pdf g and independent of the vector X = (X1, . . . , Xn) whose

joint ddf is given by

SX (x | νn) =
∫
[0,∞)n

exp

{
−

n∑
k=1

tkxk

}
νn(dt) (6.1)

for all x ≥ 0 with a probability measure νn on [0,∞)n. Then the joint ddf of Z4 is

SZ4 (z | λ, νn, g) =
∫
[0,∞)n

SE1/Y

( n∑
k=1

tkλkzk

)
νn(dt) = E

[
SE1/Y

( n∑
k=1

Tkλkzk

)]
,

where the random vector T = (T1, . . . , Tn) follows the probability measure νn. Hence, the

joint pdf of Z4 is

pZ4(z | λ, νn, g) =
( n∏

k=1

λk

)∫
[0,∞)n

( n∏
k=1

tk

)∫ ∞

0

exp

{
− y

n∑
k=1

tkλkzk

}
yng(y)dyνn(dt)

= E[Y n]

( n∏
k=1

λk

)
E

[( n∏
k=1

Tk

)
SE1/Yn(g)

( n∑
k=1

Tkλkzk

)]
, (6.2)

where Yn(g) is a size-biased rv with the pdf given by formula (4.5).

Note 6.1 In general, the vector T can be discrete, absolutely continuous, with dependent

and independent coordinates Tk. For example, when every coordinate Tk takes on value 1

almost surely, then the distribution of Z4 reduces to that of Z1, and thus BRM(n) (λ, νn, g)

reduces to BRM(n) (λ, g). If there is a rv T such that every Tk is equal to T almost surely,

then we obtain BRM(n) (λ, π, g) with π denoting the probability law of T .

Using equations (4.4) and (6.2), we express the pdf of Z4 in terms of the pdf of Z1 as

follows:

pZ4 (z | λ, νn, g) = E
[
pZ1(z | T ◦ λ, g)

]
, (6.3)
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where T ◦ λ is the Hadamard (ie element-wise) product of the vectors T and λ. Since

we have already established a recurrence relation for pZ1(z | ξ, g) irrespective of the vector

ξ = (ξ1, . . . , ξn), as long as its coordinates are positive, we combine Theorem 4.2 with

equation (6.3) and establish SPC for the model BRM(n) (λ, νn, g).

Theorem 6.1 Let T1, . . . , Tn be independent and have continuous cdf’s. Then for every pair

i ̸= j and irrespective of whether λi and λj are equal or not, the pdf of Z+ =
∑n

i=1 Z4,i is

pZ+(z | λ, νn, g)

= E

[
Tjλj

Tjλj − Tiλi

pZ(j)+
(z | (T ◦ λ)(j), g)

]
− E

[
Tiλi

Tjλj − Tiλi

pZ(i)+
(z | (T ◦ λ)(i), g)

]
. (6.4)

The proof of the theorem is relegated to Appendix A. Reflecting upon Theorem 6.1, we

see that equation (6.4) holds whenever λjTj ̸= λiTi. This allows us to consider the case when

all Tk’s are equal, say to T , provided that λj ̸= λi, which we earlier needed to assume for

the validity of equation (4.6). Note also that when all Tk’s are equal to T , then Tj and Ti

disappear from the two fractions inside the expectations on the right-hand side of equation

(6.4). Hence, we can take the expectation sign next to the two densities, which turns them

into pZ(j)+
(z | λ(j), π, g) and pZ(i)+

(z | λ(i), π, g). It now remains to notice that when all Tk’s

are equal to T , then pZ+(z | λ, νn, g) becomes equal to pZ+ (z | λ, π, g). We have arrived at

equation (5.3), which we earlier established directly.

6.2 Modeling stand-alone risks

With the model of Guillén et al. (2013) in mind, we now restrict ourselves to the class of

those measures νn that can be written as the product of some probability measures π1, . . . , πn.

Under this assumption, equation (6.1) reduces to the product

SX (x | νn) =
n∏

k=1

Ck(xk)

of completely monotone functions Ck. In other words, each Ck is the Laplace transform

Ck(x) =
∫
[0,∞)

e−txπk(dt) of a probability measure πk. Note, for example, that when all πk’s

are concentrated at point 1, then the model reduces to MP(n)II (λ, α), which we discussed

at the very beginning of this paper. The following two illustrative examples advance our

understanding of SX (x | νn).

Example 6.1 To get the model of Guillén et al. (2013), but under the restriction that all

pk’s are in the interval (0, 1], we choose the probability measures πk so that each function

Ck(x) is the ddf of the gamma rv Y0(pk), that is,

Ck(x) = Sga(x | pk) =
1

Γ(pk)

∫ ∞

x

ypk−1e−ydy (6.5)
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for all x > 0. Since pk ∈ (0, 1], function (6.5) is completely monotone. By the Bernstein

theorem (cf Schilling et al. 2010), there is a unique measure πk such that

Sga(x | pk) =
∫
[0,∞)

e−xtπk(dt).

The measure πk is absolutely continuous, that is, πk(dt) = h(t | pk)dt, with the pdf h(t | pk)
vanishing for all t ≤ 1 and equal to

1

t(t− 1)pkΓ(1− pk)Γ(pk)

for all t > 1. Note that h(t | pk) is the pdf of 1/ξk, where the rv ξk follows the beta

distribution with the parameters pk and 1− pk.

Note 6.2 When the measure πk has the pdf h(t | α, β) that vanishes for all t ≤ β and is

equal to
1

t(t/β − 1)αΓ(1− α)Γ(α)

for all t > β, where α ∈ (0, 1] and β > 0 are parameters, then each stand-alone risk Xk is

gamma distributed with the parameters α and β. The just defined pdf h(t | α, β) is that of
β/ξ, where ξ follows the beta distribution with the parameters α and 1−α. Finally, we can

express the joint ddf of the stand-alone risks X1, . . . , Xn by SX(x) = Sga(
∑n

i=1 xi | α, β).

Example 6.2 The Pareto of type II ddf is given by the formula

Spar(x | α, β) = 1

(1 + x/β)α

for all x > 0, where α > 0 and β > 0 are parameters. The ddf is completely monotone, and

thus there is a unique measure π such that

Spar(x | α, β) =
∫
[0,∞)

e−xtπ(dt).

Given our earlier investigations (cf Example 5.3), we know that π is the gamma probability

measure π(dt) = hga(t | α, β)dt.

7 Concluding notes

Numerous works have been devoted to constructing and optimizing portfolios of risks, which

could, for example, be investments, insurance policies, or enterprise business lines. While

silo-type assessment of individual risks is important and frequently serves a first step in

developing portfolios within risk tolerance and with desired rewards, the decision-maker’s

ultimate goal is nevertheless to maximize the performance of entire portfolio. For this rea-

son in particular, in this paper we have explored a powerful method, which we call stepwise
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portfolio construction, for achieving the aforementioned goals when individual risks follow

the multiplicative BRM, which has received considerable attention in the literature. In par-

ticular, our results allow us to see how the portfolio distribution changes when (dependent)

risks are added to, or excluded from, the portfolio. For example, starting with individual

risk distributions, we can derive the distribution of any subportfolio at any level of risk inte-

gration. To illustrate our general considerations, we have discussed a number of parametric

models of practical relevance, which may exhibit light, Paretian, or non-Paretian heavy tails.
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A Appendix: proofs

Proof of Theorem 4.1. Since E1, . . . , En are independent exponential rv’s with means 1,

their joint pdf is exp
{
−
∑n

k=1 xk

}
, and so formula (2.2) implies the first equation of (4.1).

To prove the second equation of (4.1), we write

SE1/Yn(α)

( n∑
k=1

λkzk

)
= P

[
E1 >

( n∑
k=1

λkzk

)
Yn(α)

]
= E

[
exp

{
−
( n∑

k=1

λkzk

)
Yn(α)

}]
=

1

E[Y n
0 (α)]

∫ ∞

0

exp

{
− y

n∑
k=1

λkzk

}
yngga(y | α)dy. (A.1)

We have arrived at equation (4.1) and finished the proof of Theorem 4.1.

Proof of Theorem 4.2. Consider first the case when λi ̸= λj and start with the equation

pZ+(z | λ, g) =
∫
Dz

(i)

pZ1(z1, . . . , zi−1, z − z(i)+, zi+1, . . . , zn | λ, g)dz(i), (A.2)

where Dz
(i) = {z(i) ≥ 0 | z ≥ z(i)+}. Consequently,

pZ+(z | λ, g) =
( n∏

k=1

λk

)∫
Dz

(i)

∫ ∞

0

exp

{
−
( n∑

k=1
k ̸=i

λkzk + λi

(
z − z(i)+

))
y

}
yng(y)dydz(i)

=

( n∏
k=1

λk

)∫ ∞

0

yng(y)

∫
Dz

(i,j)

exp

{
−
( n∑

k=1
k ̸=i,j

λkzk + λi

(
z − z(i,j)+

))
y

}

×
∫ z−z(i,j)+

0

exp {− (λj − λi) yzj} dzjdz(i,j)dy,

where Dz
(i,j) = {z(i,j) ≥ 0 | z ≥ z(i,j)+}. Continuing with the above equations, we have

pZ+(z | λ, g) =
( n∏

k=1

λk

)∫ ∞

0

yng(y)

∫
Dz

(i,j)

exp

{
−
( n∑

k=1
k ̸=i,j

λkzk + λi

(
z − z(i,j)+

))
y

}

×
1− exp

{
− (λj − λi)

(
z − z(i,j)+

)
y
}

(λj − λi) y
dz(i,j)dy

=

∏n
k=1 λk

λj − λi

∫ ∞

0

yn−1g(y)

∫
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(i,j)

[
exp
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−
( n∑
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(
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))
y
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− exp
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−
( n∑
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λkzk + λj

(
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))
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dz(i,j)dy

=
1

λj − λi

(
λjpZ(j)+

(z | λ(j), g)− λipZ(i)+
(z | λ(i), g)

)
.
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This establishes equation (4.6).

When all λi’s are equal to λ, then

pZ+(z | λ, g) = λn

∫
Dz

(i)

∫ ∞

0

exp

{
−
(
λ

n∑
k=1
k ̸=i

zk + λ
(
z − z(i)+

))
y

}
yng(y)dydz(i)

= λn

∫ ∞

0

e−λzyyng(y)

∫
Dz

(i)

dz(i)dy

=
λnzn−1

(n− 1)!

∫ ∞

0

e−λzyyng(y)dy,

where the last equation follows from
∫
Dz

(i)
dz(i) = zn−1/(n − 1)!, which has been derived by

Vernic (2011). This establishes equation (4.7) and concludes the proof of Theorem 4.2.

Proof of Theorem 5.1. With the help of equations (4.4) and (5.2), the pdf pZ2 (z | λ, π, g)
can be expressed in terms of pZ1 (z | λ, g) as follows:

pZ2 (z | λ, π, g) = E[Y n]

( n∏
k=1

λk

)
E

[
T nSE1/Yn(g)

(
T

n∑
k=1

λkzk

)]
= E

[
pZ1 (z | Tλ, g)

]
. (A.3)

Hence,

pZ+ (z | λ, π, g) =
∫
Dz

(i)

pZ2

(
z1, . . . , zi−1, z − z(i)+, zi+1, . . . , zn | λ, π, g

)
dz(i)

= E

[ ∫
Dz

(i)

pZ1

(
z1, . . . , zi−1, z − z(i)+, zi+1, . . . , zn | Tλ, g

)
dz(i)

]
= E

[
pZ+ (z | Tλ, g)

]
, (A.4)

where the last equation follows from equation (A.2). Note that equation (A.4) holds irre-

spective of whether λk’s are equal or not.

When there are at least two unequal λk’s, say λi ̸= λj, then using equations (4.6) and

(A.4), we obtain

pZ+ (z | λ, π, g) = 1

λj − λi

(
λjE

[
pZ(j)+

(
z | Tλ(j), g

) ]
− λiE

[
pZ(i)+

(
z | Tλ(i), g

) ])
=

1

λj − λi

(
λjpZ(j)+

(
z | λ(j), π, g

)
− λipZ(i)+

(
z | λ(i), π, g

))
.

This establishes equation (5.3).

When all λk’s are equal to λ, then using formula (4.7) on the right-hand side of equation

(A.4), we obtain equation (5.4) and conclude the proof of Theorem 5.1.
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Proof of Theorem 6.1. Without any assumptions on T and λ, we have equations:

pZ+(z | λ, νn, g) =
∫
Dz

(i)

pZ4(z1, . . . , zi−1, z − z(i)+, zi+1, . . . , zn | λ, νn, g)dz(i)

=

∫
Dz

(i)

E
[
pZ1(z1, . . . , zi−1, z − z(i)+, zi+1, . . . , zn | T ◦ λ, g)

]
dz(i)

= E

[ ∫
Dz

(i)

pZ1(z1, . . . , zi−1, z − z(i)+, zi+1, . . . , zn | T ◦ λ, g)dz(i)
]

= E
[
pZ+(z | T ◦ λ, g)

]
. (A.5)

Next we use equation (4.6) with T ◦ λ instead of λ, for which we need to ensure that

λjTj ̸= λiTi, but this holds irrespective of the values of λi and λj because all Tk’s are

assumed to have continuous cdf’s. Hence, from equation (4.6) we obtain

pZ+(z | T ◦ λ, g) = 1

λjTj − λiTi

(
λjTjpZ(j)+

(z | (T ◦ λ)(j), g)− λiTipZ(i)+
(z | (T ◦ λ)(i), g)

)
.

(A.6)

Using equations (A.6) and (A.5), we obtain equation (6.4) and finish the proof of Theo-

rem 6.1.
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