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ABSTRACT  
What does a user need to know to productively work with 
an intelligent agent? Intelligent agents and recommender 
systems are gaining widespread use, potentially creating a 
need for end users to understand how these systems operate 
in order to fix their agent’s personalized behavior. This 
paper explores the effects of mental model soundness on 
such personalization by providing structural knowledge of a 
music recommender system in an empirical study. Our 
findings show that participants were able to quickly build 
sound mental models of the recommender system’s 
reasoning, and that participants who most improved their 
mental models during the study were significantly more 
likely to make the recommender operate to their 
satisfaction. These results suggest that by helping end users 
understand a system’s reasoning, intelligent agents may 
elicit more and better feedback, thus more closely aligning 
their output with each user’s intentions. 

Author Keywords 
Recommenders; mental models; debugging; music; 
personalization; intelligent agents; 

ACM Classification Keywords 
H.5.m [Information interfaces and presentation]: 
Miscellaneous;  

INTRODUCTION  
Intelligent agents have moved beyond mundane tasks like 
filtering junk email. Search engines now exploit pattern 
recognition to detect image content (e.g., clipart, 
photography, and faces); Facebook and image editors take 
this a step further, making educated guesses as to who is in 
a particular photo. Netflix and Amazon use collaborative 
filtering to recommend items of interest to their customers, 
while Pandora and Last.fm use similar techniques to create 
radio stations crafted to an individual’s idiosyncratic tastes. 
Simple rule-based systems have evolved into agents 

employing complex algorithms. These intelligent agents are 
computer programs whose behavior only becomes fully 
specified after they learn from an end user’s training data.  

Because of this period of in-the-field learning, when an 
intelligent agent’s reasoning causes it to perform incorrectly 
or unexpectedly, only the end user is in a position to better 
personalize—or more accurately, to debug—the agent’s 
flawed reasoning. Debugging, in this context, refers to 
mindfully and purposely adjusting the agent’s reasoning 
(after its initial training) so that it more closely matches the 
user’s expectations. Recent research has made inroads into 
supporting this type of functionality [1,11,14,16]. 
Debugging, however, can be difficult for even trained 
software developers—helping end users do so, when they 
lack knowledge of either software engineering or machine 
learning, is no trivial task. 

In this paper, we consider how much ordinary end users 
may need to know about these agents in order to debug 
them. Prior work has focused on how an intelligent agent 
can explain itself to end users [9,13,15,22,27,28], and how 
end users might act upon such explanations to debug their 
intelligent agents [1,11,14,16,24]. This paper, in contrast, 
considers whether users actually need a sound mental 
model, and how that mental model impacts their attempts to 
debug an intelligent agent. Toward this end, we investigated 
four research questions: 

(RQ1): Feasibility: Can end users quickly build and recall a 
sound mental model of an intelligent agent’s operation? 

(RQ2): Accuracy: Do end users’ mental models have a 
positive effect on their debugging of an intelligent agent? 

 (RQ3): Confidence: Does building a sound mental model 
of an intelligent agent improve end users’ computer self-
efficacy and reduce computer anxiety? 

(RQ4): User Experience: Do end users with sound mental 
models of an intelligent agent experience interactions 
with it differently than users with unsound models? 

To answer these research questions, we conducted an 
empirical study that investigates the effects of explaining 
the reasoning of a music recommender system to end users. 
We developed a prototype, AuPair, which allowed 
participants to set up radio stations and make adjustments to 
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the songs that it chose for them. Half of the participants 
received detailed explanations of the recommender’s 
reasoning, while the other half did not. Our paper’s 
contribution is a better understanding of how users’ mental 
models of their intelligent agents’ behavior impacts their 
ability to debug their personalized agents. 

BACKGROUND AND RELATED WORK  

Functional and Structural Mental Models 
Mental models are internal representations that people build 
based on their experiences in the real world. These models 
allow people to understand, explain and predict phenomena, 
and then act accordingly [10]. The contents of mental 
models can be concepts, relationships between concepts or 
events (e.g., causal, spatial, or temporal relationships), and 
associated procedures. For example, one mental model of 
how a computer works could be that it simply displays 
everything typed on the keyboard and “remembers” these 
things somewhere inside the computer’s casing. Mental 
models can vary in their richness—an IT professional, for 
instance, has (ideally) a much richer mental model of how a 
computer works. 

There are two main kinds of mental models: Functional 
(shallow) models imply that the end user knows how to use 
the computer but not how it works in detail, whereas 
structural (deep) models provide a detailed understanding 
of how and why it works. Mental models must be sound 
(i.e., accurate) enough to support effective interactions; 
many instances of unsound mental models guiding 
erroneous behavior have been observed [18]. 

Mental model completeness can matter too, especially when 
things go wrong, and structural models are more complete 
than functional models. While a structural model can help 
someone deal with unexpected behavior and fix the 
problem, a purely functional model does not provide the 
abstract concepts that may be required [10]. Knowing how 
to use a computer, for example, does not mean you can fix 
one that fails to power on. 

To build new mental models, it has been argued that users 
should be exposed to transparent systems and appropriate 
instructions [21]. Scaffolded instruction is one method that 
has been shown to contribute positively to learning to use a 
new system [20]. One challenge, however, is that mental 
models, once built, can be surprisingly hard to shift, even 
when people are aware of contradictory evidence [28]. 

Mental Models of an Intelligent Agent’s Reasoning 
There has been recent interest in supporting the debugging 
of intelligent agents’ reasoning [1,11,13,14,16,25], but the 
mental models users build while attempting this task have 
received little attention. An exception is a study that 
considered the correctness of users’ mental models when 
interacting with a sensor-based intelligent agent that 
predicted an office worker’s availability (e.g., “Is now a 
good time to interrupt so-and-so?”) [28], but this study did 
not allow users to debug these availability predictions. 

Making an agents’ reasoning more transparent is one way 
to influence mental models. Examples of explanations by 
the agent for specific decisions include why… and why 
not… descriptions of the agent’s reasoning [13,15], visual 
depictions of the assistant’s known correct predictions 
versus its known failures [26], and electronic “door tags” 
displaying predictions of worker interruptibility with the 
reasons underlying each prediction (e.g., “talking detected”) 
[28]. Recent work by Lim and Dey has resulted in a toolkit 
for applications to generate explanations for popular 
machine learning systems [16]. Previous work has found 
that users may change their mental models of an intelligent 
agent when the agent makes its reasoning transparent [14]; 
however, some explanations by agents may lead to only 
shallow mental models [24]. Agent reasoning can also be 
made transparent via explicit instruction regarding new 
features of an intelligent agent, and this can help with the 
construction of mental models of how it operates [17]. 
None of these studies, however, investigated how mental 
model construction may impact the ways in which end 
users debug intelligent agents. 

Making an intelligent agent’s reasoning transparent can 
improve perceptions of satisfaction and reliability toward 
music recommendations [22], as well as other types of 
recommender systems [9,27]. However, experienced users’ 
satisfaction may actually decrease as a result of more 
transparency [17]. As with research on the construction of 
mental models, these studies have not investigated the link 
between end users’ mental models and their satisfaction 
with the intelligent agent’s behavior. 

EMPIRICAL STUDY  
To explore the effects of mental model soundness on end-
user debugging of intelligent agents, we needed a domain 
that participants would be motivated to both use and debug. 
Music recommendations, in the form of an adaptable 
Internet radio station, meet these requirements, so we 
created an Internet radio platform (named AuPair) that 
users could personalize to play music fitting their particular 
tastes. 

To match real-world situations in which intelligent agents 
are used, we extended the length of our empirical study 
beyond a brief laboratory experiment by combining a 
controlled tutorial session with an uncontrolled period of 
field use. The study lasted five days, consisting of a tutorial 
session and pre-study questionnaires on Day 1, then three 
days during which participants could use the AuPair 
prototype as they wished, and an exit session on Day 5. 

AuPair Radio 
AuPair allows the user to create custom “stations” and 
personalize them to play a desired type of music. Users start 
a new station by seeding it with a single artist name (e.g., 
“Play music by artists similar to Patti Smith”). Users can 
debug the agent by giving feedback about individual songs, 
or by adding general guidelines to the station. Feedback 
about an individual song can be provided using the 5-point 



rating scale common to many media recommenders, as well 
as by talking about the song’s attributes (e.g., “This song is 
too mellow, play something more energetic”, Figure 1). To 
add general guidelines about the station, the user can tell it 
to “prefer” or “avoid” descriptive words or phrases (e.g., 
“Strongly prefer garage rock artists”, Figure 2, top). Users 
can also limit the station’s search space (e.g., “Never play 
songs from the 1980’s”, Figure 2, bottom). 

AuPair was implemented as an interactive web application, 
using jQuery and AJAX techniques for real-time feedback 
in response to user interactions and control over audio 
playback. We supported recent releases of all major web 
browsers. A remote web server provided recommendations 
based on the user’s feedback and unobtrusively logged each 
user interaction via an AJAX call. 

AuPair’s recommendations were based on The Echo Nest 
[6], allowing access to a database of cultural characteristics 
(e.g., genre, mood, etc.) and acoustic characteristics (e.g., 
tempo, loudness, energy, etc.) of the music files in our 
library. We built our music library by combining the 
research team’s personal music collections, resulting in a 
database of more than 36,000 songs from over 5,300 
different artists. 

The Echo Nest developer API includes a dynamic playlist 
feature, which we used as the core of our recommendation 
engine. Dynamic playlists are put together using machine 
learning approaches and are “steerable” by end users. This 

is achieved via an adaptive search algorithm that builds a 
path (i.e., a playlist) through a collection of similar artists. 
Artist similarity in AuPair was based on cultural 
characteristics, such as the terms used to describe the 
artist’s music. The algorithm uses a clustering approach 
based on a distance metric to group similar artists, and then 
retrieves appropriate songs. The user can adjust the distance 
metric (and hence the clustering algorithm) by changing 
weights on specific terms, causing the search to prefer 
artists matching these terms. The opposite is also 
possible—the algorithm can be told to completely avoid 
undesirable terms. Users can impose a set of limits to 
exclude particular songs or artists from the search space. 
Each song or artist can be queried to reveal the computer’s 
understanding of its acoustic and cultural characteristics, 
such as its tempo or “danceability”. 

Participants  
Our study was completed by 62 participants, (29 females 
and 33 males), ranging in age from 18 to 35. Only one of 
the 62 reported prior familiarity with computer science. 
These participants were recruited from Oregon State 
University and the local community via e-mail to university 
students and staff, and fliers posted in public spaces around 
the city (coffee shops, bulletin boards, etc.). Participants 
were paid $40 for their time. Potential participants applied 
via a website that automatically checked for an HTML5-
compliant web browser (applicants using older browsers 
were shown instructions for upgrading to a more recent 

 
Figure 1. Users could debug by saying why the 

current song was a good or bad choice.  

 
. . . 

 
Figure 2. Participants could debug by adding guidelines on the type of  

music the station should or should not play, via a wide range of criteria. 



browser) to reduce the chance of recruiting participants who 
lacked reliable Internet access or whose preferred web 
browser would not be compatible with our prototype. 

Experiment Design & Procedure  
We randomly assigned participants to one of two groups—a 
With-scaffolding treatment group, in which participants 
received special training about AuPair’s recommendation 
engine, and a Without-scaffolding control group. Upon 
arrival, participants answered a widely used, validated self-
efficacy questionnaire [5] to measure their confidence in 
problem solving with a hypothetical (and unfamiliar) 
software application.  

Both groups then received training about AuPair, which 
differed only in the depth of explanations of how AuPair 
worked. The Without-scaffolding group was given a 15-
minute tutorial about the functionality of AuPair, such as 
how to create a station, how to stop and restart playback, 
and other basic usage information. The same researcher 
provided the tutorial to every participant, reading from a 
script for consistency. To account for differences in 
participant learning styles, the researcher presented the 
tutorial interactively, via a digital slideshow interleaved 
with demonstrations and hands-on participation. 

The With-scaffolding group received a 30-minute tutorial 
about AuPair (15 minutes of which was identical to the 
Without-scaffolding group’s training) that was designed to 
induce not only a functional mental model (as with the 
Without-scaffolding group), but also a structural mental 
model of the recommendation engine. This “behind the 
scenes” training included illustrated examples of how 
AuPair determines artist similarity, the types of acoustic 
features the recommender “knows” about, and how it 
extracts this information from audio files. Researchers 
systematically selected content for the scaffolding training 
by examining each possible user interaction with AuPair 
and then describing how the recommender responds. For 
instance, every participant was told that the computer will 
attempt to “play music by similar artists”, but the With-
scaffolding participants were then taught how tf-idf (term 
frequency-inverse document frequency, a common measure 
of word importance in information retrieval) was used to 
find “similar” artists. In another instance, every participant 
was shown a control for using descriptive words or phrases 
to steer the agent, but only With-scaffolding participants 
were told where these descriptions came from (traditional 
sources, like music charts, as well as Internet sources, such 
as Facebook pages). 

After this introduction, each participant answered a set of 
six multiple-choice comprehension questions in order to 
establish the soundness of their mental models. Each 
question presented a scenario (e.g., “Suppose you want 
your station to play more music by artists similar to The 
Beatles”), and then asked which action, from a choice of 
four, would best align the station’s recommendations with 
the stated goal. Because mental models are inherently 

“messy, sloppy… and indistinct” [18], we needed to 
determine if participants were guessing, or if their mental 
models were sound enough to eliminate some of the 
incorrect responses. Thus, as a measure of confidence, each 
question also asked how many of the choices could be 
eliminated before deciding on a final answer. A seventh 
question asked participants to rate their overall confidence 
in understanding the recommender on a 7-point scale. 

The entire introductory session (including questionnaires) 
lasted 30 minutes for Without-scaffolding participants, and 
45 minutes for With-scaffolding participants. Both groups 
received the same amount of hands-on interaction with the 
recommender. 

Over the next five days, participants were free to access the 
web-based system as they pleased. We asked them to use 
AuPair for at least two hours during this period, and to 
create at least three different stations. Whenever a 
participant listened to music via AuPair, it logged usage 
statistics such as the amount of time they spent debugging 
the system, which debugging controls they used, and how 
frequently these controls were employed. 

After five days, participants returned to answer a second set 
of questions. These included the same self-efficacy and 
comprehension questionnaires as on Day 1 (participants 
were not told whether their comprehension responses were 
correct), plus the NASA-TLX survey to measure perceived 
task load [8]. We also asked three Likert-scale questions 
about user’s satisfaction with AuPair’s recommendations, 
using a 21-point scale for consistency with the NASA-TLX 
survey, and the standard Microsoft Desirability Toolkit [3] 
to measure user attitudes toward AuPair. 

Data Analysis  
We used participants’ answers to the comprehension 
questions described earlier to measure mental model 
soundness. Each question measured the depth of 
understanding for a specific type of end user debugging 
interaction, and their combination serves as a reasonable 
proxy for participants’ understanding of the entire system. 
We calculated the soundness of participant’s mental models 
using the formula !!"##$!%&$'!! !!!!"#$%&'#!!!!! , 
where correctness is either 1 for a correct response, or -1 
for an incorrect response and confidence is a value between 
1 and 4 (representing the number of answers the participant 
was able to eliminate). These values were summed for each 
question i to create a participant’s comprehension score, 
ranging from -24 (indicating a participant who was 
completely confident about each response, but always 
wrong) to +24 (indicating someone who was completely 
confident about each response and always correct).  

Mental models evolve as people integrate new observations 
into their reasoning [18], and previous studies have 
suggested that participants may adjust their mental models 
while working with an intelligent agent that is transparent 
about its decision-making process [14]. Furthermore, 



constructivist learning theory [12] places emphasis on 
knowledge transformation rather than the overall state of 
knowledge. Hence, we also calculated mental model 
transformation by taking the difference of participants’ two 
comprehension scores (day_5_score – day_1_score). This 
measures how much each participant’s knowledge shifted 
during the study, with a positive value indicating increasing 
soundness, and a negative value suggesting the replacement 
of sound models with unsound models.  

Table 1 lists all of our metrics and their definitions.  

RESULTS 

Feasibility (RQ1)  

Effectiveness of Scaffolding 
Understanding how intelligent agents work is not trivial—
even designers and builders of intelligent systems may have 
considerable difficulty [11]. Our first research question 
(RQ1) considers the feasibility of inducing a sound mental 
model of an algorithm’s reasoning process in end users—if 
participants fail to learn how the recommender works given 
a human tutor in a focused environment, it seems 
unreasonable to expect them to learn it on their own. 

We tested for a difference in mental model soundness 
(measured by comprehension scores weighted by 
confidence) between the With-scaffolding group and the 
Without-scaffolding group. The With-scaffolding group had 
significantly higher scores than the Without-scaffolding 
group, both before and after the experiment task (Day 1: 
Welch’s t-test, p=.004, t=-3.03, df=53.64) (Day 5: Welch’s 
t-test, p<.001, t=-3.77, df=59.87). To ensure these 
differences were not primarily the result of differing levels 
of confidence, we performed the same test without 
weighting the comprehension scores by confidence, finding 
nearly identical results (Day 1: Welch’s t-test, p=.003, t=-
3.09, df=55.11) (Day 5: Welch’s t-test, p<.001, t=-3.55, 
df=59.36). Neither group’s mean comprehension score 
changed significantly during the 5-day study (Figure 3). 

Participants also showed differences in their perceived 
mental model soundness, at least at first. On Day 1, the 
Without-scaffolding group was significantly less certain 
that they accurately understood how the system selected 
songs and responded to feedback (mean score of 4.5 out of 
7) than the With-scaffolding group (mean score of 5.6 out 
of 7) (Welch’s t-test, p=.015, t=-2.51, df=58.00). By Day 5, 
however, the Without-scaffolding group’s responses had 
risen to a mean of 5.25, with no evidence of statistical 
difference against the With-scaffolding group (with a mean 
of 5.3). 

Discussion 
These results provide insights into four aspects of the 
practicality of end users comprehending and debugging the 
reasoning of an intelligent agent.  

First, even a short 15-minute scaffolding tutorial effectively 
taught participants how the recommender “reasoned”. 
With-scaffolding participants were significantly more likely 
to correctly and confidently answer the comprehension 
questions. This in turn suggests that the With-scaffolding 
participants should be better equipped to debug the 
recommender’s reasoning than the Without-scaffolding 
participants, a point we investigate in RQ2. 

Second, mental model soundness did not significantly 
improve during the five days participants interacted with 
AuPair on their own—simply using the system did not 
significantly help participants develop sounder mental 

 
Figure 3. With-scaffolding participants (dark) held sounder 
mental models than without-scaffolding participants (light), 
both immediately following the tutorial, and five days later.  

Metric Definition 
Mental model 

soundness Responses to comprehension questions (sum of correct responses, weighted by confidence). 

Perceived mental model 
soundness 

Response to Likert question "Are you confident all of your statements are accurate?" after 
participants were asked to enumerate how they think the recommender made decisions. 

Mental model 
transformation Post-task mental model soundness minus pre-task mental model soundness. 

Debugging interactions Number of actions a participant used to debug the playlist (e.g., providing feedback, getting 
the next recommendation, or viewing a song’s features), from the automated log files. 

Interaction time Length of time a participant spent on the task, i.e. listening to and interacting with AuPair. 
Cost/benefit Response to Likert question "Do you feel the effort you put into adjusting the computer was 

worth the result?" 
Satisfaction Response to Likert question "How satisfied are you with the computer's playlists?" 

Table 1: Definitions for each metric used in our data analysis. 



models about its reasoning. This is in contrast to recent 
work in interactive machine learning, which has found that 
for some systems (e.g., gesture recognition frameworks), 
repeated use taught people the most salient aspects of how 
the system worked [7]. 

Third, the soundness of participants’ mental models largely 
persisted for the duration of the study. This appeared to be 
the case for both the Without-scaffolding and With-
scaffolding groups, with neither groups’ comprehension 
scores significantly changing between Day 1 and Day 5. 
This bodes well for end users retaining and recalling sound 
models initially learned about an intelligent agent. 

Fourth, however, is the issue of initially building unsound 
models: once incorrect models were built, they were hard to 
shift. Even though the Without-scaffolding group formed 
less sound mental models, their confidence in their mental 
models increased, suggesting that they had convinced 
themselves they were, in fact, correct. Making in situ 
explanations available on an ongoing basis, such as in 
[9,14,26], may be a way to address this issue. 

Together, these findings provide evidence that furnishing 
end users with a brief explanation on the structure of an 
intelligent agents’ reasoning, such as the attributes used, 
how such attributes are collected, and the decision-making 
procedure employed, can significantly improve their mental 
model’s soundness. 

Accuracy (RQ2) 
A recommender’s effectiveness is in the eye of the 
beholder. Personalized recommendations cannot have a 
“gold standard” to measure accuracy—only the end users 
themselves can judge how well an agent’s 
recommendations match their personal tastes. Hence, for 
our second research question (RQ2), we turned to a pair of 
more appropriate measures to explore the effects of mental 
model soundness on “accuracy”—cost/benefit and 
participant satisfaction. 

Cost/Benefit 
In theory, a sound mental model enables a person to reason 
effectively about their best course of action in a given 
situation [10]. Thus, we expected participants with sounder 
mental models (the With-scaffolding participants, according 
to the RQ1 results) to debug more effectively than those 
with less sound models. For example, knowing that the 
recommender could be steered more effectively by using 
unique, highly specific words (e.g., “Merseybeat”) rather 
than broad, common descriptors (e.g., “oldies”) should have 
helped such participants debug the agent’s reasoning more 
effectively than participants who did not understand this.  

Surprisingly, when using participants’ perceptions of 
cost/benefit as a surrogate for effectiveness, the soundness 
of participants’ mental models showed little impact on this 
measure of debugging effectiveness. However, mental 
model transformation was tied with cost/benefit: 

participants who most improved the soundness of their 
mental models reported that the effort of debugging was 
significantly more worthwhile than participants whose 
mental models improved less, or not at all (Table 2, row 1 
& Figure 4A). 

Participants’ opinions of effectiveness were confirmed by 
their debugging interactions to adjust or assess AuPair’s 
recommendations (e.g., providing feedback, getting the next 
recommendation, or viewing a song’s features). The count 
of these debugging interactions was significantly correlated 
with the improvement in mental model soundness for With-
scaffolding participants, while no such correlation existed 
among Without-scaffolding participants (Table 2, rows 2 
and 3 & Figure 4B). Sounder changes to the mental model, 
then, may have had a positive effect on debugging, whereas 
changes in an initially unsound model did not serve the 
Without-scaffolding participants as well. 

Further, participants who most improved the soundness of 
their mental models spent significantly less time on their 
interactions than others (Table 2, row 4 & Figure 4C). In 
light of the increases in perceived cost/benefit and 
debugging interactions, this suggests positive mental model 
transformations were linked to more efficient debugging.  

An alternative explanation of the above results is that 
debugging interactions were responsible for participants’ 
mental model transformations, rather than the other way 
around. Recall, however, that the Without-scaffolding 
group showed no correlation between debugging 
interactions and mental models (Table 2, row 3). Thus, the 
evidence suggests that it was the in situ enhancement of 
relatively sound models that was linked to improved 
attitudes toward debugging. 

Satisfaction 
Our second measure of debugging effectiveness and the 
accuracy of the result was participants’ satisfaction with 
AuPair’s resulting recommendations. To measure this, we 
asked participants (using a Likert scale) “How satisfied are 
you with the computer’s playlists?” at the end of the study. 

As with the cost/benefit results, neither treatment nor 
mental model soundness was predictive of participant 
satisfaction (Table 2, rows 5 and 6). However, here again, 
transformation of mental models appeared to matter—
mental model transformation was marginally predictive of 
how satisfied participants felt with AuPair’s playlists (Table 
2, row 7). For example, the participant whose mental 
model’s soundness decreased the most expressed 
dissatisfaction and a feeling of being unable to control the 
computer: 

“The idea is great to be able to ‘set my preferences’, but if 
the computer continues to play what I would call BAD 
musical choices—I’d prefer the predictability of using 
Pandora.”



Conversely, one of the participants whose mental model 
most increased in soundness expressed a feeling of being 
more in control: 

“I like the idea of having more control to shape the station. 
Controls made sense and were easy to use. The user has a 
lot of options to tune the station.” 

Perceived cost/benefit from debugging the recommender 
was also significantly correlated with participant 
satisfaction (Table 2, row 8 & Figure 4D)—further 
evidence that satisfaction was indicative of an increased 
ability to debug the agent’s reasoning. To ensure that 
participant satisfaction was not simply a result of time and 
effort invested, we tested for a relationship between 
reported satisfaction and the number of debugging 
interactions each participant performed, but found no 
evidence of a correlation (Table 2, row 9). 

Discussion 
It should be noted that one additional factor may have 
affected participant satisfaction. Our music database held 
songs by just over 5,300 artists—pandora.com, by 
comparison, has over 80,000 different artists [19]. 
Participant satisfaction may have been confounded by the 
fact that some participants hoped their stations would play 

music that was unavailable to AuPair. As one participant 
commented: 

“The songs played weren’t what I was looking for, the 
selection was poor. The system itself was excellent, but I 
need more music.” 

Despite this potential factor, the confluence of several 
metrics (cost/benefit, debugging interactions, interaction 
time, and satisfaction) suggests that transformations in 
mental model soundness translated to an improved ability to 
debug the recommender’s reasoning, resulting in more 
satisfaction with AuPair’s recommendations. Because our 
evidence suggests mental model transformations (which 
occurred during the study) helped participants debug more 
efficiently and effectively, continuing to provide 
explanations of an intelligent agent’s reasoning while end 
users interact with the agent may help to increase their 
ultimate satisfaction with the agent’s decisions. Such on-
line explanations, however, were not investigated by the 
current study; we focused our exploration on the impact of 
explanations prior to (rather than during) user interaction 
with an intelligent agent. 

One potential explanation of why we found no evidence 
that end-of-study mental model soundness was predictive of 

 Metric Statistical Test Result Figure 

1 Mental model transformation vs. cost/benefit Linear regression p=.041, R2=.07, F(1,60)=4.37 Figure 4A 
2 Mental model transformation (With-scaffolding) 

vs. debugging interactions 
Pearson correlation p=.031, r=.39, t=2.27, df=28 Figure 4B 

3 Mental model transformation (Without-scaffolding) 
vs. debugging interactions 

Pearson correlation p=.952, r=.01, t=0.06, df=30  

4 Mental model transformation vs. interaction time Pearson correlation p=.032, r=-.27, t=-2.19, df=60 Figure 4C 
5 Satisfaction between With-scaffolding/Without-

scaffolding groups 
Welch’s t-test p=.129, t=1.53, df=59.9  

6 Satisfaction vs. mental model soundness Linear regression p=.272, R2=.02, F(1,60)=1.23  
7 Satisfaction vs. mental model transformation Linear regression p=.053, R2=.06, F(1,60)=3.89  
8 Satisfaction vs. cost/benefit Pearson correlation p<.001, r=.73, t=8.25, df=60 Figure 4D 
9 Satisfaction vs. debugging interactions Pearson correlation p=.293, r=-.13, t=-1.06, df=60  

Table 2. Positive mental model transformations were consistently associated with better benefits, lower costs,  
and improved satisfaction (significant results shaded). Definitions for each metric are listed in Table 1. 

   
(A) (B) (C) (D) 

Figure 4: Scatterplots of raw data for each significant result from Table 2. Definitions for axis measurements are listed in Table 1. 

 



debugging ability could be that the information presented to 
the With-scaffolding tutorial participants was not helpful 
for debugging the recommender’s reasoning. Instead, the 
most effective participants may have learned to debug by 
using the system. However, this alternative explanation is 
weakened by the fact that the prototype was not transparent 
about how it made its decisions; the only time when 
participants were presented with explanations of AuPair’s 
reasoning occurred during the With-scaffolding tutorial. 

Confidence (RQ3)  
Presenting a complex system to unsuspecting users could 
overwhelm them. We are particularly concerned with 
peoples’ willingness to debug intelligent agents—some 
people (especially those with low computer self-efficacy) 
may perceive a risk that their debugging is more likely to 
harm the agent’s reasoning than to improve it. Similarly, 
computer anxiety (a “degree of fear and apprehension felt 
by individuals when they consider the utilisation, or actual 
use, of computer technology” [4]) is known to negatively 
impact how (and how well) people use technology, and is 
negatively correlated with computer self-efficacy [29].  

As Table 3 shows, almost three-quarters of the With-
scaffolding participants experienced an increase in their 
computer self-efficacy between Day 1 and Day 5. Without-
scaffolding participants, conversely, were as likely to see 
their computer self-efficacy decrease as to increase. A X2 

comparison showed that With-scaffolding participants were 
significantly more likely than a uniform distribution (in 
which only half would increase their self-efficacy) to 
increase their computer self-efficacy (X2=6.5333, df=1, 
p=.011). This suggests that exposure to the internal 
workings of intelligent agents may have helped to allay, 
rather than to increase, participants’ perceived risk of 
making their personalized agents worse. 

As further evidence that it was understanding how the 
system worked (rather than simply a byproduct of using it) 
that influenced participants’ computer self-efficacy, 
participants’ perceived mental model soundness was 
significantly correlated with their computer self-efficacy at 
the end of the study (Pearson correlation, p<.001, r=.44, 
t=3.81, df=60). Additionally, there was no evidence of a 
correlation between the number of debugging interactions 
participants made and their self-efficacy at the end of the 

study (Pearson correlation, p=.286, r=.13, t=1.07, df=60); 
participants did not appear to grow more confident by 
simply interacting with the system. Thus, participants who 
at least thought they understood the nuances of AuPair’s 
reasoning scored higher on the computer self-efficacy 
questionnaire than those who expressed little confidence in 
their knowledge of the recommender’s logic. 

Discussion 
We hope further research will shed additional light on this 
preliminary link between learning how an intelligent 
computer program reasons, and increasing levels of 
computer self-efficacy (and, by association, decreasing 
levels of computer anxiety). Challenging tasks, when 
successfully accomplished, have been found to have a 
significantly larger impact on self-efficacy than overcoming 
small obstacles [2]. Personalizing intelligent agents seems 
exactly the sort of difficult computer task that, successfully 
carried out, may make people say, “If I could do that, surely 
I can do this…”, thereby reducing the obstacles of risk and 
anxiety toward future computer interactions. 

User Experience (RQ4)  
For our final research question, we looked at the potential 
effects of mental model soundness on perceptions of 
experience, such as cognitive demands and emotional 
responses. 

Cognitive Demands 
Prior work has found that explaining concrete decisions of 
an intelligent agent’s reasoning to end users in situ created 
an increase in participants’ frustration with, and mental 
demand of, debugging the agent (measured via the NASA-
TLX questionnaire) [14]. We suspected that end users 
might experience similar effects when presented with prior 
structural knowledge. However, the With-scaffolding 
participants showed no significant difference to Without-
scaffolding participants’ TLX scores. While acquiring a 
sound mental model undoubtedly requires mental effort on 
the part of end users, we encouragingly found no evidence 
that this was any greater than the mental effort required to 
interact with an intelligent agent without a clear 
understanding of its underpinnings. This suggests that end 
users’ experience with intelligent agents does not 
necessarily suffer when they are exposed to more 
knowledge of how the agent works. 

Emotional Responses 
We used the Microsoft Desirability Toolkit [3] to 
investigate participants’ user experience with the AuPair 
music recommender. Participants were given a list of 118 
adjectives and asked to underline each one they felt was 
applicable to their interactions with AuPair. 

The Internet General Inquirer (a tool which associates 
participants’ words with either positive or negative 
connotations, based on the content analysis framework 
proposed in [23]) revealed that With-scaffolding 
participants employed slightly more positive descriptions of 

 Self-Efficacy 
Did  

Improve  
Did Not 
Improve 

Average 
Change 

Without-
scaffolding 16 16 3.29% 

With-
scaffolding 22 8 5.90% 

Table 3. Participants in the With-scaffolding group were likely 
to end the experiment with higher computer self-efficacy than 

when they began. 



AuPair than the Without-scaffolding group (54.9% vs. 
49.6%) and fewer negative descriptions (9.9% vs. 12.0%). 
While not statistically significant between groups, these 
numbers suggest that the With-scaffolding participants 
(with their sounder mental models) may have viewed the 
overall experience of interacting with AuPair in a more 
positive light than Without-scaffolding participants. 

Participants’ descriptions revealed a subtler picture of the 
difficulties they faced. Word clouds—in which a word’s 
frequency is indicated by its size—of the negative 
descriptions show that the With-scaffolding group’s 
complaints may have stemmed more from difficulties using 
the system than difficulties understanding it; these 
participants were apt to complain the system was 
“simplistic”, “annoying”, and “frustrating” (Figure 5, 
bottom), while the Without-scaffolding group appeared to 
have trouble even understanding the impact of their 
debugging interactions, citing the system as “confusing”, 
“complex”, “overwhelming”, and “ineffective” (Figure 5, 
top). 

Participants’ choices of positive descriptions provide 
further evidence the With-scaffolding participants’ mental 
models contributed positively to interacting with the agent 
(Figure 6). The phrase “easy to use” dominated their 
responses, alongside “innovative” and “accessible”. In 
contrast, the Without-scaffolding participants focused on 
the visual appearance of the agent, with words like “clean” 
and “appealing”. Participants with a deeper understanding 
of the system may have placed more emphasis on the 
interaction experience than aesthetics. 

Discussion 
Numerous benefits are associated with sound mental 
models, and in the case of this intelligent agent, it appears 
possible to gain these without impairing the user 
experience. This is encouraging for the feasibility of end-
user debugging of recommendation systems (and possibly 
other types of intelligent agents), especially when the user 
associates a benefit with debugging the agent’s reasoning.  

CONCLUSION  
This paper provides the first empirical exploration of how 
mental models impact end users’ attempts to debug an 
intelligent agent. By scaffolding structural models for half 
of our study’s participants, we learned that: 

• Despite the complexity inherent to intelligent agents, 
With-scaffolding participants quickly built sound mental 
models of how one such agent (a music recommender) 
operates “behind the scenes”—something the Without-
scaffolding participants failed to accomplish over five 
days. 

• The participants’ mental model transformations—from 
unsound to sound—was predictive of their ultimate 
satisfaction with the intelligent agent’s output. 
Participants with the largest transformations were able to 
efficiently adjust their recommenders’ reasoning, 
aligning it with their own reasoning better (and faster) 
than other participants. These same participants were 
also likely to perceive a greater benefit from their 
debugging efforts. 

• Participants presented with structural knowledge of the 
agent’s reasoning were significantly more likely to 
increase their computer self-efficacy, which is known to 
correlate with reduced computer anxiety and increased 
persistence when tackling complex computer tasks. 

• Participants who were presented with structural 
knowledge showed no evidence of feeling overwhelmed 
by this additional information and viewed interacting 
with the intelligent agent in a positive light, while 
participants holding only functional mental models more 
frequently described their debugging experience in 
negative terms, such as “confusing” and “complex”. 

This work demonstrates the value and practicality of 
providing end users with structural knowledge of their 

Without-scaffolding:

 
With-scaffolding:

 
Figure 5. Tag cloud of negative descriptive terms for AuPair. 

Without-scaffolding participants found the system 
“overwhelming” and “complex” (top), whereas the With-

scaffolding group (bottom) viewed it as “simplistic”.  

Without-scaffolding: 

 
With-scaffolding:

 
Figure 6. Tag cloud of positive descriptive terms for AuPair. 

Without-scaffolding participants (top) focused on visual 
appearance more than With-scaffolding participants (bottom). 



intelligent agents’ reasoning. Our results suggest that such 
an approach could better support end-user personalization 
of intelligent agents—telling an end user more about how it 
does work may help him or her tell the agent more about 
how it should work. 
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