

City, University of London Institutional Repository

Citation: Kulesza, T., Stumpf, S., Wong, W-K., Burnett, M., Perona, S., Ko, A. & Oberst, I.

(2011). Why-Oriented End-User Debugging of Naïve Bayes Text Classification. Transactions
on Interactive Intelligent Systems, 1(1), pp. 1-31. doi: 10.1145/2030365.2030367

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12414/

Link to published version: https://doi.org/10.1145/2030365.2030367

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1

**ref chk, fig chk, table chk, section # chk, spell chk, smart quotes layout chk, ** chk

**Vocab: No more learned programs, we’re dealing with intelligent assistants. In

some cases, “adaptive software” seems appropriate as well.

**Vocab: “data” is plural. So, need “data are” instead of “data is”.

**Vocab: It’s a Why-oriented approach (capitalized)

**Vocab: It’s naïve Bayes (lower-case ‘n’)

**Vocab/numbering: change the following globally:

 Principle (i) -> Principle Representation-1

 Principle (ii) -> Principle Representation-2

 Principle (iii) -> Principle ML-1

 Principle (iv) -> Principle ML-2

**Length: TiiS suggests manuscripts be between 10,000 and 15,000 words.

Why-Oriented End-User Debugging of

Naïve Bayes Text Classification
*

Todd Kulesza1, Simone Stumpf2, Weng-Keen Wong1,

Margaret M. Burnett1, Stephen Perona1, Andrew Ko3, Ian Oberst1

1Oregon State University

School of Electrical Engineering and Computer Science

Corvallis, OR 97331 USA

1-541-737-3617

{kuleszto,wong,burnett,peronas,obersti}@eecs.oregonstate.edu

2City University London

Centre for Human-Computer Interaction Design

London, UK EC1V 0HB

++44-20-7040 8168

Simone.Stumpf.1@city.ac.uk

*
 An early version of this paper appeared in IUI’09 [Kulesza et al. 2009].

 2

3The Information School

DUB group

University of Washington

Seattle, WA 98195 USA

ajko@uw.edu

Abstract **D2.5

Machine learning techniques are increasingly used in intelligent assistants, software

targeted at and continuously adapting to assisting end users with email, shopping, and

other tasks. Examples include desktop SPAM filters, recommender systems, and

handwriting recognition. Fixing such intelligent assistants when they learn incorrect

behavior, however, has received only limited attention. To directly support end-user

“debugging” of assistant behaviors learned via statistical machine learning, we present a

Why-oriented approach that allows users to ask questions about how the assistant made

its predictions, provides answers to these “why” questions, and allows users to

interactively change these answers to “debug” these assistants’ current and future

predictions. To understand the strengths and weaknesses of the approach, we conducted

an exploratory study to investigate barriers that participants would encounter when

debugging an intelligent assistant using our approach, and the information those

participants requested to overcome these barriers. To help ensure the inclusiveness of our

investigation, we also explored how gender differences played a role in barriers and

information needs. We then use these results to consider opportunities for Why-oriented

approaches to address the users’ barriers and information needs.

1. Introduction **D2

Machine learning is increasingly being used to power intelligent assistants, software

that continuously tunes its behavior to match a specific end user’s interaction patterns, so

as to assist the user in getting work done (helping organize email, recommending books

relevant to the user’s interests, typing hand-written notes, and so on). When assistants

adapt themselves in helpful ways, the benefits are obvious: SPAM filters misclassify

 3

fewer e-mails, recommendations find interests quickly, and handwriting recognition tools

do a good job of typing up the user’s notes.

What happens, however, when a user’s assistant adapts itself in unhelpful ways? A

straightforward answer might seem to be “provide more training examples,” but such an

approach can be unrealistically time-consuming for an end user, and may not solve the

particular misbehaviors the user cares most about. We posit instead that, just as with

regular software, when an intelligent assistant fails, it should be possible to debug it

directly. Further, since intelligent assistants do not return to the hands of programming

specialists, the only people in a position to debug intelligent assistants are the end users

themselves, because they are the only ones using that specific adaptation.

Enabling end users to debug their assistants is non-trivial: most users have little

knowledge of how systems based on machine learning operate. Prior work, however, has

shown that end users can learn to understand how a learning system makes its decisions

[Tullio et al. 2007]. We therefore prototyped a new approach that aims to support end

users in guiding and correcting—i.e., debugging—automated text classification. The

domain we chose to explore was classification of e-mail messages into e-mail folders, as

supported by the widely used naïve Bayes algorithm.

Our work makes three primary contributions. First, we present a new Why-oriented

approach to allow end users to debug their intelligent assistants. The approach not only

focuses on answering end-user questions about why the program is behaving in its current

manner; it also provides interactive explanations that serve as a debugging mechanism.

Because end users are directly debugging the assistant (as opposed to providing new

training examples), our approach presents information that a programmer would expect

when directly debugging other kinds of software: representations of both the intelligent

assistant’s logic (i.e., its source code) and runtime state. The essence of the approach is

simple: if the users do not like the explanations that answer their “why” questions, they

can change the explanations to direct the assistant to behave more accurately.

Second, our work explores the difficulties experienced by end users attempting to

debug an assistant in this Why-oriented manner. We present an exploratory study that

identifies and categorizes barriers users encountered while debugging using a prototype

based on our interactive approach. We also investigated both what information needs of

 4

end-user debuggers expressed, and when they needed this information. Finally, because

of recent evidence of gender differences in debugging (e.g., [Grigoreanu et al. 2008,

Subrahmaniyan et al. 2008]), we investigated differences in barriers and information

needs by gender to highlight design considerations that could differently impact these

subsets of end users.

Third, we consider how to progress further with Why-oriented debugging by

identifying machine learning solutions and open research questions as to how machine

learning systems can address the information needs and barriers of end users attempting

to debug their intelligent assistants.

2. Related Work **D2.9

As part of its support for debugging, our Why-oriented approach explains the logic of

an intelligent assistant to end users so that they can understand how to debug it. There are

thus two major classes of prior work: techniques that support end-user debugging, and

techniques that support communication between users and machine learning systems. We

next discuss each, identifying the foundations that informed the design of our own

prototype.

2.1 End-User Debugging **D2.75

Outside of machine learning, there are a number of debugging systems that help end

users find and understand the causes of faulty behavior. For example, in the spreadsheet

domain, WYSIWYT [Burnett et al. 2003] has a fault localization device that helps users

reason about successful and unsuccessful “tests” to locate cells whose formulas are likely

to be faulty. Woodstein [Wagner and Lieberman 2004] helps users to debug e-commerce

problems by explaining events and transactions between services.

The Whyline [Ko 2008] pioneered a method (also outside the realm of machine

learning) to debug certain types of programs in an explanation-centric way. Because the

Whyline informs our approach, we present it in some detail.

The original Whyline was explored in three contexts: event-based virtual worlds

written in the Alice programming system [Ko et al. 2004], Java programs [Ko et al.

2008], and the Crystal system for debugging unexpected behaviors in complex interfaces

[Myers et al. 2006]. In each case, the tools help programmers understand the causes of

 5

program output by allowing them to select an element of the program and receive a list of

why and why not questions and answers in response. These “Why?” questions and

answers are extracted automatically from a program execution history, while “Why not”

answers derive from a reachability analysis to identify decision points in the program that

could have led to the desired output. In the Crystal prototype, rather than presenting

answers as sequences of statement executions, answers are presented in terms of the user-

modifiable input that influenced code execution. In all of these Whyline tools, the key

design idea is that users select some output they want to understand, and the system

explains the underlying program logic that caused it.

Some researchers have focused on the problems and needs end users encounter when

they debug. For example, Ko et al. explored learning barriers that novice programmers

encountered when learning how to solve problems in a programming environment [Ko et

al. 2004]. Researchers from the WYSIWYT project have categorized the information

needs of end users debugging [Kissinger et al. 2006], enumerating the types of

information that end users sought in attempting to debug spreadsheets. These barriers and

information needs may also relate to non-traditional debugging, such as fixing intelligent

assistants. **MMB to anyone: R1 wanted more on Kissinger. Potentially this is the right

place to put that, or perhaps it goes better later? (And if later, maybe we should hint at

that here?) **TDK: I was planning on discussing this later, in the Information Needs

section.

2.2 Communicating with Machine Learning Systems **D2.75

Several recent studies have highlighted the need to explain a machine learning

algorithm’s reasoning to users. For example, Patel et al. examined obstacles faced by

developers familiar with machine learning who need to apply machine learning to real-

world problems [Patel et al. 2008]. Glass et al. investigated the types of questions users

familiar with intelligent agents would like to ask an adaptive agent in order to increase

their trust in the agent [Glass et al. 2008]. Similarly, researchers identified the types of

information end users wanted context-aware applications to provide when explaining

their current context, to increase both trust in and understanding of the system [Lim and

Dey 2009].

 6

Much of the work in explaining probabilistic machine learning algorithms has

focused on the naïve Bayes classifier [Becker et al. 2001, Kononenko 1993] and, more

generally, on linear additive classifiers [Poulin et al. 2006]. Explanation of these

algorithms is relatively straightforward and computationally feasible on modern

hardware. Tullio et al. reported that, given some basic types of explanations, end users

can understand how machine learning systems operate [Tullio et al. 2007], with the

caveat that overcoming any preliminary faulty assumptions may be problematic. More

sophisticated, though computationally expensive, explanation algorithms have been

developed for general Bayesian networks [Lacave and Diez 2002]. Finally, Lim et al.

[Lim et al. 2009] investigated the usefulness of the Whyline approach for explaining

simple decision trees and found that the approach was viable for explaining this relatively

understandable form of machine learning.

Regarding allowing end users to actually influence behaviors in machine learning

settings, some Programming by Demonstration (PBD) systems learn programs

interactively, via machine learning techniques, based on sequences of user actions (see

[Lieberman 2001] for a collection of such systems). When debugging these kinds of

programs, end-user corrections are limited to the addition or removal of training data—

unless the user reverts to a traditional programming language such as Lisp (e.g., [Vander

Zanden and Myers 1995]). For example, Gamut allows users to “nudge” the system when

it makes a mistake, leading to the addition or deletion of training examples [McDaniel

and Myers 1999]. Recent work with PBD systems allows some debugging of programs

[Chen and Weld 2008], but again, their technique only allows the user to retract actions

in a demonstration, which results in adding missing values to the training data rather than

directly modifying the classifier’s logic. Still other systems allow users to patch up

specific mistakes by an intelligent assistant, but do not take these corrections into account

when the assistant makes future decisions. For example, if CoScripter/Koala programs

misidentify web page objects, the user can specify the correct object for a particular page;

the fix, however, will not affect how the program identifies similar objects on different

pages [Little et al. 2007].

Debugging—that is, directly changing the logic of—intelligent assistants has received

only limited attention. One such system, EnsembleMatrix [Talbot et al. 2009], provides

 7

both a visualization of a classifier’s accuracy and the means to adjust its logic.

EnsembleMatrix, however, is targeted at machine learning experts developing complex

ensemble classifiers, rather than end users working with the resulting classifiers.

ManiMatrix [Kapoor et al. 2010] provides an interactive visualization of a classifier’s

accuracy, but user interactions are restricted to the modification of a classifier’s cost

matrix.

Our own prior research has begun to explore end-user interactions with intelligent

assistants, to understand how to effectively enable end users to debug such programs.

Using a paper prototype, we previously investigated three different types of explanations

(keyword-based, rule-based, and similarity-based) that machine learning systems could

provide to end users regarding why it was behaving in a particular manner, as well as

user reactions to these explanations [Stumpf et al. 2007]. This paper prototype was also

used to elicit corrections to the logic from participants (e.g., adjusting feature weights),

allowing us to design an interactive prototype supporting the explanations best

understood by participants and the types of corrections they most requested [Stumpf et al.

2008]. The interactive prototype permitted us to run offline experiments studying the

effects of the corrections provided by end users on prediction accuracy versus traditional

label-based corrections. The results suggest that even when very simple corrections are

incorporated into the assistant’s decision-making process, it has the potential to increase

the accuracy of the resulting predictions [Stumpf et al. 2008, Stumpf et al. 2009]. For

some users, however, the quality of the assistant’s predictions decreased as a result of

their corrections; there were barriers that prevented them from successfully debugging

the assistant.

In summary, the ability of end users to interactively debug machine-learned logic has

been limited. Researchers have begun to investigate how such logic can be explained to

end users, but user corrections, if available at all, has been heavily restricted to specific

forms (e.g., addition of training data) or situations (e.g., the initial creation of a new

program via PBD). In addition to explaining the underlying logic, this paper also

addresses supporting end users actually fixing the logic of a program learned by a

machine.

 8

3. A Why-Oriented Approach for Debugging Intelligent

Assistants **D2

Inspired by the success of the Whyline’s support for debugging [Ko 2008, Myers et

al. 2006] and favorable user feedback regarding “why” and “why not”-style explanations

[Lim et al. 2009, Lim and Dey 2009], we developed a Why-oriented approach for end-

user debugging of intelligent assistants. We applied this approach to the design of a

prototype that allows end users to debug an assistant’s predicted folder classifications of

an e-mail application.

Our approach is the first to combine the following elements:

(1) it allows end users to ask questions directly to statistical machine learning systems

(e.g., “why will this message be filed to ‘Systems’?”),

(2) the answers to which explain both the current logic and execution state (e.g., a

visualization that shows importance of features/words to this folder, and how certain the

system is that it belongs in this folder) and

(3) can be changed: users can change these explanations by direct manipulation, to

debug the system’s logic. These changes result in real-time adjustments to the assistant’s

logic and resulting predictions.

3.1 Design of the Why Questions **D2

Developing the set of why questions about the logic and execution state of the

intelligent assistant comprised two stages. In the Generate stage, generated the set of all

possible questions that could be asked via the creation of a formal grammar. Then, in the

Filter stage, we filtered the set of questions generated by the grammar to remove

impossible questions, where impossible refers to situations that were not related to or

achievable by debugging an intelligent assistant. We chose this generate-and-filter

approach, as opposed to handcrafting the questions ourselves, to be sure we would not

miss any possible questions **2.12.

We began the Generate stage by inventorying the domain objects, such as messages

and folders, which inform the assistant’s logic. We also inventoried, at a more abstract

level, all logic (and corresponding runtime states) feeding into the prediction, such as the

importance of a word to a folder. Finally, we inventoried the types of feedback the

assistant could provide about its logic and execution state, such as its folder predictions

 9

and its estimation of word importance. The first inventory (domain objects) is

enumerated in the Subjects section of Table **QueryGrammar, and the latter two

together are the Situations section of Table **QueryGrammar.

**MMB to Todd: I’d like to change “source code” to “logic” throughout -- ok? It

makes the story line much easier to unravel...

Step four relates to past, present, and future program states. Thus, we enumerated

three question-word phrases -- why is, why did, and how can -- plus the negations of these

Table **QueryGrammar: The query grammar used to generate our Why questions.

Components Productions

Questions • Why...?

• How...?

Verbs • To be

• To do
• Can/Make

Modifiers • This

• All

• Many

• Recent

• Important

Subjects • Message

• Folder

• Word

• Change

• End user (i.e., “I”)

Situations • Current classification

• Change in classification

• Importance

• Availability (i.e., displayed in the UI)

Queries • [query] = [question] [verb] [subject] [situation] |

[question] [situation] [verb] [subject]

• [situation] = [situation] | [situation] [subject] |

[subject] [situation]

• [subject] = [subject] | [modifier] [subject]
• [modifier] = [modifier] | [modifier] [modifier]

 10

phrases. We included “how can” questions to support debugging questions about future

states of the system: when the system explains why it did something, the answer often

implies how alterations could make the system do something different. We split these

three question-word phrases into two non-terminals (question words and verb words) to

make our query production more flexible. The Questions and Verbs sections of Table

**QueryGrammar generate a super-set of these types of question-word phrases. Finally,

in step five we added the Modifiers section to allow generated questions to be more

specific, e.g., a question about recently changed predictions, rather than all changed

predictions. The Queries section of Table **QueryGrammar describes how the various

components may be combined to form the universe of possible questions.

For example, our grammar defines a possible query as “[question] [verb] [subject]

[situation]”. Selecting the first listed production for [question], [verb], and [subject]

produces the production “Why will this message [situation]?”. The first production for

the Situations component (current classification) can then be substituted for [situation],

resulting in the completed question, “Why will this message be filed to Enron News?”.

**1.3, **2.11

In the Filter stage, we filtered the questions generated by the grammar in three ways.

First, we removed questions about subject/situation combinations that could not be

accomplished by the intelligent assistant. For example, a message (a Subject) can change

its current classification (a Situation), but words and folders (also Subjects) cannot. We

further refined our list of questions by removing any questions not relating to debugging,

such as “Why can important words be displayed?” Finally, we removed re-phrasings of

similar questions; this explains why there are no questions beginning with “How can…”,

since asking “How can I make something happen?” is answered by the same information

provided by the “Why didn’t something happen?” questions. This decision is consistent

with the results of [Lim et al. 2009], who found that participants were more successful

reasoning about intelligent assistants in the form of decision trees when presented with

answers to either “Why…” or “Why not…” questions, than participants were when

presented with answers to “How to…” questions **1.3.

The Filter stage resulted in the nine Why questions depicted in Table

**WhyQuestions. (While the number nine may seem small, the original Whyline

 11

required only six types of questions [Ko 2008] in the complex domain of Java

programming.) Figure **WhyQuestionsMenu shows how these questions were presented

in the prototype, including their context dependency (such as the ability of the user to

select questions relating to specific folders).

Table **WhyQuestions: The Why questions and the query grammar productions

used to generate them. Color is used to map each non-terminal production to the

terminal English phrase it generated. Text in < > is dynamically replaced with the

word or folder the user has selected.

Why Questions Generating Production

Why will this message be filed to
<Personal>?

[question] [verb] [modifier]
[subject] [situation] [subject]

Why won’t this message be filed to
<Bankruptcy>?

[question] [verb] [modifier]
[subject] [situation] [subject]

Why did this message turn red?
[question] [verb] [modifier]
[subject] [situation]

Why wasn’t this message affected
by my recent changes?

[question] [verb] [modifier]
[subject] [situation] [modifier]
[subject]

Why did so many messages turn
red?

[question] [verb] [modifier]
[subject] [situation]

Why is this email undecided?
[question] [verb] [modifier]
[subject] [situation]

Why does <banking> matter to the
<Bankruptcy> folder?

[question] [verb] [subject]
[situation] [subject]

Why aren’t all important words
shown?

[question] [verb] [modifier]
[subject] [situation]

Why can’t make I this message go
to <Systems>? 1

[question] [verb] [subject]
[modifier] [subject] [situation]
[subject]

1
 The user interface moved the location of “I” in this question to fit the grammatical

rules of English.

 12

3.2 Design of the Interactive Why Answers **D2

In the original WhyLine, answers to “why” questions pointed to relevant places in the

source code, but in intelligent assistants, there is no source code that represents the

assistant’s learned logic for end users to look at or modify. Thus, the interactive answer

content would have to represent the assistant’s logic by some device other than source

code, while still allowing end users to edit it effectively to change the assistant’s logic.

Thus, we designed the interactive answers according to four principles:

Principle Representation-1: **2.6 Representations of both the assistant’s logic and

execution state should be available to and manipulable by end-user debuggers.

Principle Representation-2: Explanations of the source code and execution state

should not obscure or overly simplify the program’s logic.

Principle ML-1: The intelligent assistant should be explainable to end users.

Principle ML-2: The intelligent assistant should heed end users’ corrections.

Principle Representation-1 was inspired by the information content that traditional

debugging systems provide. Such systems provide a representation of the logic (source

code) that the programmer can edit. They also provide ways to inspect concrete data

about program execution states. For example, debuggers provide access to the value of

variables and the stack.

Principle Representation-2 boils down to being fully truthful with the user about the

assistant’s logic. Machine learning often uses complex statistical models, so there is a

Figure **WhyQuestionsMenu: The Why questions as presented in our prototype.

 13

temptation to hide complex details from the end user in an effort to make the system

easier to understand. Recent research [Tullio et al. 2007], however, showed that end users

could understand the logic machine learning systems use to make their decisions, at least

in a rule-based system **2.9. Further, obscuring this logic would break the debugging

“principle of immediacy” [Ungar et al. 1997] by creating an artificial division between

the logic end users can view and interact with, and the underlying logic actually

responsible for the assistant’s output. Thus, abstracting away portions of the assistant’s

logic may hamper, rather than help, the user’s debugging efforts. **1.2, **2.8

Principle ML-1 is almost a corollary to Principle Representation-2. We wanted to

support underlying learning algorithms more complex than the trivially explainable

decision trees, but not algorithms so complex that supporting Principle Representation-2

would become impossible. Regarding Principle ML-2, we also required that the

underlying learning algorithm must be responsive to the user’s interactive manipulations

to the logic representation. We expand upon both of these points in the next subsection.

3.3 The Answer Design Principles and the Underlying Machine Learning

Engine **D2? **MMB to WKW, pls chk wording of entire subsection.

With these four design principles in mind, we chose the naïve Bayes [Russell and

Norvig 2003] algorithm for our prototype. Naïve Bayes is a widely used algorithm for

text classification, more complex than ordinary decision trees, yet seemed potentially

explainable to end users (Principle ML-1).

The machine learning features in our e-mail prediction application were the words

embedded in actual e-mail messages. Given our choice of naïve Bayes as the learning

algorithm, these features and their associated predictive value for a classification are a

complete representation of the assistant’s logic. The execution state of the assistant is

therefore the current set of predictions resulting from this logic, including the assistant’s

degree of certainty in each prediction. This application of Principle Representation-1 thus

results in user-manipulable logic (words and their associated importance), changes to

which affect the assistant’s execution state (its predictions and their associated

confidence).

Although our previous work [Stumpf et al. 2007] found that rule-based explanations

were the most easily understood type of explanation, Principle Representation-2

 14

stipulates that the explanation should accurately reflect the logic of the assistant. Thus,

given our use of naïve Bayes, we chose keyword-based explanations consisting of words

and their weights. To implement Principle Representation-2, the visualization is a truthful

reflection of the logic of naïve Bayes and hence displays the union of all words in all e-

mail messages. We allowed users to adjust the weights of any word. Because naïve

Bayes classifiers also use class distribution to inform their predictions, the distribution of

messages across folders is also shown to the end user. Hence, the visualization and

manipulations allow the user to directly change the logic the assistant should follow,

based on an accurate representation of how the logic works.

Principle ML-2 says that corrections end users give the system should be heeded. We

had considered using user co-training [Stumpf et al. 2009] as the underlying algorithm.

When user co-training receives new information from the user about a feature’s value to a

folder, this technique assigns a new weight, based on a combination of the user-assigned

value and the classifier’s internal weight—which could potentially be quite different from

the user-assigned value. In our previous work with user co-training [Stumpf et al. 2008],

we observed that this behavior was frustrating to users because it made the algorithm

appear to “disobey” the user’s corrections. Thus, instead of user co-training, we modified

the naïve Bayes implementation such that corrections can be integrated in a

straightforward manner and, when the user modifies the weight of a word, the classifier

can set the new value to be close to the value specified by the user. **2.1

Being responsive to user corrections can be problematic because machine learning is

statistical, and a single user correction may be such a small portion of data, the machine

can appear to ignore it. When making the intelligent assistant heed the user’s correction,

applying the user’s input directly could entirely discard the statistical aspect of machine

learning, which is counter to our interest in improving the assistant’s intelligence (not

discarding it). Naïve Bayes can, however, make a slight modification to the user-assigned

weight by treating the user-specified folder assignment for the current e-mail as a new

training data point for the classifier. This alteration makes the classifier more sensitive to

user feedback in the interactive setting. Without it, changing the weight of one out of

thousands of available features (e.g. changing the weight on one word out of the

 15

approximately 6,000 different words contained in our email messages) would have little

noticeable impact on classification.

3.4 End-User Debugging with Answers **D2

From these design choices, the answers took the following form. Textual answers are

provided for all questions, giving high-level explanations about the logic of the assistant

and general suggestions about how to debug the program, but three questions are also

answered through detailed visualizations of the assistant’s logic: these answers formed

the debugging mechanism for the end user.

These answer visualizations are shown in Table **WhyAnswers. Similar to ExplainD

[Poulin et al. 2006], bars represent the importance of each feature to a given

classification. However, rather than using bar area to indicate a feature’s contribution

toward the learning system’s prediction, we indicated importance via bar location. By

changing a bar’s location, the feature’s weight can be adjusted in real-time **2.4, **2.5.

The choice of bars, as opposed to points or some other representation, was because their

large target size makes mouse-based interaction and visual discrimination easy. To

debug the assistant’s faulty logic, users can change these answers by manipulating the

bars, which operate like sliders or faders, with the weight of evidence represented by each

bar being the midpoint of the bar **2.16.

Providing the necessary interactive aspect for these bar visualizations required

support from the underlying machine learning algorithm. Before explaining how these

visualizations were implemented, we formally define the following properties of the

naïve Bayes algorithm. An e-mail message is represented as a “bag of words”, i.e., a

Boolean vector W = (W1, …, Wm) in which Wi takes the value true if the ith word of a

vocabulary of m words is present in the e-mail message and false otherwise. The

vocabulary in our experiment consists of the union of the words from the following parts

of all the e-mails: the message body, the subject line, and e-mail addresses in the ‘To’,

‘From’ and ‘CC’ parts of the message header. Stop words, which are common words with

little predictive value (such as “a” and “the”) were not included in the vocabulary.

3.4.1 Answering: “Why will this message be filed in <Folder>?” and “Why does

<Word> matter to <Folder>?” **D2

 16

In previous work [Stumpf et al. 2007] we observed that end users understood how the

presence of keywords influenced a message’s classification, but they struggled with the

concept of how the absence of words influenced the same classification. We addressed

this difficulty in a novel way by showing the weight associated with each word in the

vocabulary via a bar positioned between the two extremes of Required and Forbidden,

shown in the leftmost images of Table **WhyAnswers. For folder f, the weight of a word

is the probability P(Wi = true | F = f) where Wi is the random variable for the ith word

and F is the random variable for the folder. The closer the bar is to Required, the more

important the presence of the word is to the prediction. If the top of the bar is at its

highest position, then P(W = true | F = f) = 1.0. If the top of the bar is on the black line in

the middle, then P(W = true | F = f) = 0.0. Since P(Wi = false | F=f) = 1.0-P(Wi = true |

F = f), the position of the bottom of the bar can also be interpreted as the probability of

the absence of the word. If the bottom of the bar is at its lowest position, (i.e. closest to

Forbidden), then P(W = true | F = f) = 0.0. In reality, although the end user is able to set

the bars to its highest or lowest positions, the probability P(W | F=f) is never set to the

extreme values of 1.0 or 0.0 due to the naïve Bayes algorithm’s use of Dirichlet priors to

smooth the probabilities. As a result, the probabilities will be an epsilon different from

Table **WhyAnswers: Visual explanations for three Why questions.

Why does

<word> matter

to <folder>?

Why will this message be filed to

<folder>?

Why won’t this

message be filed

to <folder>?

 17

the extremes and the bar will be positioned slightly below / above the Required /

Forbidden level in the visualization.

Aside from the probability P(W | F), the naïve Bayes classifier also uses the class

probability P(F). We chose not to display P(F) because the training set consisted of an

equal number of emails in each folder.

3.4.2 Answering: “Why won’t this message be filed in <Folder>?” **D2

The answer to this question is in the form of a dual-bar view that allows the user to

compare and contrast the importance of words between the two folders, shown in the

right image of Table **WhyAnswers. The bars show the respective weights for the

currently predicted folder f, and the other folder f’ the user indicated, where the positions

of the bars correspond to P(Wi = true | F = f) and P(Wi = true | F = f’), respectively.

We can illustrate the degree that an e-mail “belongs” to either folder f or f’ using the

arrow, as shown at the top of Figure **DebuggingFeatures. The angle of the arrow

between the folders is based on the difference between P(F = f’ | W1, …, Wm) and P(F =

f | W1, …, Wm). This also serves to reveal the execution state to the end user. Since the bars

allow weights associated with the two folders f and f’ to be manipulated, changes to

individual words by the end user that result in P(F = f’ | W1, …, Wm) > P(F = f | W1, …,

Wm) will be shown by the arrow moving to point to folder f’ instead.

3.5 Debugging Scenario Using the Prototype **D2

Figure **Prototype shows how the debugging supports we have described are

brought together in our email prototype. The user’s view consists of familiar e-mail client

elements: a folder list (A), a list of headers in the current folder (B), and the current

message (C). In addition, it includes debugging panes that hold textual answers (D) and

interactive visualizations (E).

 18

If at some point the user wants to know why the program is behaving in a particular

way, she can ask Why questions either through the global menu bar or a context-sensitive

menu and receive an answer which supports debugging. Consider the following scenario:

A user notices that her intelligent assistant thinks a message about Systems belongs in the

Resumes folder. In Figure **DebuggingFeatures, this user has just asked why the

message is not filed under Systems. The keyword bar graph shows the system’s opinion

of the importance of each word to the Resumes folder (dark pink), which is the current

folder for this message, versus importance to the Systems folder (light blue). While

reviewing this explanation, the user quickly identifies a problem—her assistant thinks the

word “please” is equally important to both folders. The user disagrees; she wants to tell

her intelligent assistant that she rarely sees the word “please” in messages from the

Systems group. Thus, she drags the light blue bar lower (second from left); how much

lower depends on her assessment of how important “please” should be to the Systems

folder. The dark blue bar indicates the original importance of “please”, allowing the user

Figure **Prototype: Screenshot of the prototype.

 19

to see her change and its magnitude. **3.2

User changes to each bar graph entry cause the system to immediately recalculate its

predictions for every message in the inbox, allowing users to instantly see the impact of

their manipulations. These changed folder predictions are shown through a change in

direction of the arrow between the two folders for the currently viewed message. They

are also listed textually next to each message header in the inbox, highlighting headers

whose predictions have changed. For every manipulation, the user immediately sees how

both the source code (in terms of the importance of words), and the execution state (e.g.,

the resulting program’s predictions), have changed.

4. Addressing Debugging Barriers and Information Needs

using the Why-Oriented Approach **D1

To investigate obstacles end users might encounter while correcting an intelligent

assistant using this new approach, we conducted an exploratory study using the prototype

we have just described. Our purpose was not a summative evaluation of the prototype,

but rather to investigate three questions to understand how our approach could be

Figure **DebuggingFeatures: Close-up of the visualization/debugging features. The

user has just decreased the importance of “please” to Systems by dragging the blue

(light) bar downward, but the system still thinks the message belongs in Resumes.

 20

extended to further support end-user debugging: when and where end-user debuggers

encounter problem areas (barriers), what could help users when they encounter these

problem areas (information needs), and how machine learning algorithms could help

address the barriers and information needs. Further, since researchers have recently found

evidence of gender differences in debugging, we investigated gender as an aspect to

highlight design considerations that could differently impact subsets of end users.

4.1 Exploratory Study Design

4.1.1 User Study Design and Participants **D1

The study used a dialogue-based think-aloud design, in which pairs of users talked to

each other while collaborating on a task. The pair design was to encourage “thinking

aloud” by leveraging the social norms that encourage people to voice their reasoning and

justifications for actions when working with a partner.

Six pairs of female and five pairs of male students participated. The pairs were evenly

distributed by gender across GPAs, years in university, and e-mail experience. All

twenty-two participants were required to have previous e-mail experience and no

computer science background. In order to eliminate a lack of familiarity with each other

as a potential confound, pairs were required to sign up together. Pairs also had to be

same-gender, so that we could clearly identify any gender differences that might arise.

We ran the study one pair at a time. Each session started with the participants

completing a questionnaire that asked for background information and gathered standard

pre-session self-efficacy data [Compeau and Higgins 1995]. We then familiarized the pair

with the software and examples of classification through a 20-minute hands-on tutorial.

The tutorial taught participants about the filing and classification abilities of the

prototype, taught them how to ask the prototype questions, and gave an overview of the

the prototype’s answers and how to change those answers **3.2.

For the study’s main task, participants were asked to imagine they were co-workers in

a corporate department at Enron. Their department included a shared e-mail account to

provide easy access to work communications that affected all of them. The premise was

that new e-mail software, featuring the ability to learn from the users and automatically

classify messages into a set of existing folders, had recently been installed; their

supervisor then asked them to get messages from the Inbox into the appropriate folders as

 21

quickly as possible, doing so in a way that would help improve later classification.

Because the prototype’s classifier did not train on (and thus, did not learn from) messages

the participants manually dragged to folders, the task encouraged participants to debug

the system via the interactive explanations **3.2.

We used the publicly available Enron e-mail data set in our study. To simulate a

shared mailbox, we combined messages that three users (farmer-d, kaminski-v, and

lokay-m) had originally filed into five folders (Bankruptcy, Enron News, Personal,

Resumes, and Systems). At the start of the session, each folder held 20 messages that

were used to initially train the classifier. Participants were given five minutes prior to the

main task to familiarize themselves with the existing categorization scheme, so that they

would have an idea of how new messages should be filed **3.2, **3.4. The Inbox

contained 50 more messages for the participants to work on. The amount of training data

was small to simulate real-world situations in which users have not invested the time to

label hundreds of training examples.

The pair worked on the main task for 40 minutes, with participants switching control

of the mouse half way through the session. We used Morae software to capture video and

audio of each user session, synchronized with their screen activity. Our prototype also

logged each user action. After completing the main task, participants individually filled

out a questionnaire gathering feedback about the prototype and their post-session self-

efficacy.

4.1.2 Analysis Methodology **D1

To analyze the participants’ verbal protocol during our study, we developed two code

sets (Table **BarrierCodes) to capture barriers and debugging activities. Ko et al.

identified six types of learning barriers experienced by novice programmers using a new

programming environment [Ko et al. 2004]; these barriers informed our investigation

because our participants, like theirs, were problem-solving about how to make programs

work correctly and were inexperienced with the provided facilities for debugging.

Because our debugging environment is substantially different than the traditional textual

programming environments studied [Ko et al. 2004], we adjusted the definitions of Ko’s

barriers to map the high-level problems each barrier describes to the problems

participants faced while debugging with our prototype **2.2, **3.5:

 22

 Design barriers are situations where the end user does not know what they

want the computer to do. When debugging an intelligent assistant, this means

the user doesn't have a clear idea of how to go about fixing the assistant.

 Selection barriers occur when the end user knows what they want the

computer to do, but does not know which programming tools will accomplish

their goal. Our why-oriented approach's programming tool is the ability to

adjust the assistant's logic via feature modification, so we mapped selection

barriers to end user difficulties in selecting which feature to adjust.

 Coordination barriers are times when the user knows the programming tools

they want to use, but does not know how to make them work together. As

with selection barriers, our programming tool is the ability to modify the

features the assistant uses to classify items; such feature adjustments may alter

multiple classifications. Thus, coordination barriers in this domain reflect the

difficulty of coordinating how changes to the assistant's logic are reflected in

updated classifications.

 Use barriers are situations where the end user knows which programming

tools they want to use, but does not know how to use them properly. Our

approach's UI affordance for feature modification is to drag a slider up (to

increase the importance of a feature's presence) or down (to increase the

importance of a feature's absence). Trouble deciding in which direction and to

what extent to adjust this slider is our approach's version of use barriers.

 Understanding barriers occur when end users thought they knew what to do,

but the results of their actions was surprising. This barrier very cleanly

mapped to situations where the end user was surprised by the assistant's

feedback.

 The first five barrier names and examples of participant utterances assigned to each

code are in Table **BarrierCodes. We did not use Ko et al.’s sixth barrier (searching for

external validation), because problem solving in our study was based on facts internal to

our environment. Regarding debugging activities, previous research [Davies 1996, Ko

 23

2008] identified six common actions in fixing bugs in programming environments. We

applied the two of these not involving data structuring or writing new source code, and

also introduced a fault detection code. These codes are also given in Table

**BarrierCodes.

We applied the codes to “turns”. A turn consisted of sentences spoken by a

participant until his or her partner next spoke. Speech by one participant that contained a

significant pause was segmented into two turns. If the same barrier spanned multiple

Table **BarrierCodes: Coding scheme used to analyze our data. The examples are

from actual participant transcripts **3.5.

 Code Meaning Example

B
a
rr

ie
rs

Design Uncertainty regarding

overall debugging strategy

(i.e., designing a solution to

the problem).

“Can we just click File It?”

Selection Knows what to do, but is

having trouble selecting

which object to change.

“What kind of words should

tell the computer to [file this]

to Systems?”

Coordination Doesn’t understand how

changes affect the rest of the

system.

“Why... why it won’t go to

Personal...”

Use Trouble determining

appropriate weights to use

with the source code

visualization.

“So is [this word]

‘unimportant’?”

Understanding Doesn’t understand the

system’s feedback.

“Why is ‘web’ more forbidden

for [the] Systems [folder]?”

D
eb

u
g
g
in

g
 A

ct
iv

it
ie

s Fault Detection Detecting an incorrect

prediction by the system.

“It’s going to [the] Systems

[folder]; we do not want

Systems.”

Diagnosing Diagnosing the specific

cause of a detected fault.

“Well, ‘e-mail’ needs to be

higher.”

Hypothesizing Hypothesizing a general

solution for a detected fault.

“Let’s move something else,

and then maybe it’ll move [the

e-mail] to Systems.”

 24

turns (for example, if one person was interrupted by the other), only the first occurrence

of the barrier was coded. Only one code could be applied per turn.

Coding iteratively, two researchers independently coded a 5-minute random section

of a transcript. We calculated similarity of coding by calculating the Jaccard index,

dividing the size of the intersection of codes by the size of the union for each turn, and

then averaging over all turns. Disagreements led to refinements in coding rules that were

tested in the next coding iteration. Agreement eventually reached 82% for a five-minute

transcript section, followed by an agreement of 81% for a complete 40-minute transcript.

Given this acceptable level of reliability, the two researchers divided the coding of the

remaining transcripts between themselves. A two-minute section of a coded transcript is

include in Table **CodedTranscript to illustrate the application of our final code set.

Table **CodedTranscript: Example of our code set applied to a participant

transcript **3.5.

Time Participant Utterance Code

11 P1

And then... [looking at another email]

should this be in Personal? It'll be all right.

EOL...dist-dist-distributions? How come

everything is going to Personal?

Coordination

11 P2

Because we filed to Personal last time. The

system learned from other email. [clicks on

'windows 2000/outlook delay'] But this

email should go to...systems. So would we

have to change every single one?

Selection

12 P1 Did we do something wrong in the

beginning?
Design

12 P2 I think this one can go to Personal.

12 P1
Do we have to change the same thing again?

Can we drag? If we drag we have to do it

for every one.

12 P2 Do we need to make them learn everything? Design

12 P1 But I don't want to have to do it every time

so like in next 10 minutes.

12 P2 So you adjust every single message. Hypothesizing

12 P1 Or maybe just this one. Maybe it will

learn...I don't know.
Hypothesizing

13 P2
[ask 'why won't this message be filed to

systems' and sorts words alphabetically.

Finds 'windows'] Oh look it should be

Diagnosing

 25

important but it's not. [drags 'windows' up

to increase importance] But I don't think

we'll need that one that long. So can you go

back?

13 P1 Are you sure it's enough? Use

4.2 Results: Debugging Barriers (When and Where)

4.2.1 Barriers Encountered **D1

Our participants’ attempts to debug ran into numerous barriers, encountering an

average of 29 barriers during the 40-minute study (with a range from 7 to 66). The

number of barriers encountered can be contrasted with the number of messages

participants actually filed (mean=16.1, SD=8.3); participants were less likely to

encounter a situation where they felt comfortable filing a message than they were to

encounter an obstacle while attempting that task **3.4. These barriers were equally likely

to be encountered at the beginning and end of the study, but were unequally encountered

between participants: a strong relationship existed between participant self-efficacy and

the number of barriers they encountered (normalized for the number of utterances each

participant made) (linear regression, F(1,9)=7.11, R
2
=0.44, beta=-0.005, p=.026) **3.4.

Everyone hit barriers, and the participants who encountered them the most had the lowest

confidence in their ability to fix the assistant to begin with, thus underscoring the

importance of addressing these barriers in approaches for debugging intelligent assistants.

As Figure **BarriersEncountered shows, the most frequent barriers our participants

encountered were Selection barriers (40% of all barriers). Selection barriers relate to the

difficulty of selecting the right words or messages to modify in order to correct the

program. In Ko et al’s work [Ko et al. 2004] on traditional programming environments,

Selection barriers did not play a large role, but this kind of barrier seems to pose a

substantial problem to debugging intelligent assistants. This participant, for example, was

having trouble determining which features are important for the Systems classification:

**1.4

P712: “Then ‘news’? Well, they like team players. Contributions? That

would be more that you’d use for news than Systems.”

Coordination barriers also arose frequently (28% of all barriers). Participants often

wondered how the corrections they were about to give would change the system’s other

 26

predictions, as well as coordinating how the system responded (or failed to respond) to

their source code modifications:

P732: “Resume? [user finds word, makes ‘resume’ required] Why didn’t

it change it?”

Further evidence that Selection and Coordination barriers were especially

problematic comes from participants’ questionnaire responses, where 16 of 22

respondents (72%) mentioned difficulty in determining which words were important

when fixing misclassified mail.

Some barriers encountered frequently in traditional programming environments did

not play as much of a role as expected in debugging intelligent assistants [Ko et al. 2004];

our findings also contradict specific problems with strategy in end-user debugging

[Kissinger et al. 2006]. Our participants ran into Design and Use barriers less frequently

(14% and 12%, respectively), possibly because debugging via our approach involved

programming constructs (i.e., feature adjustments) which only had two options—a

feature could be made either more or less important. Both [Ko et al. 2004] and [Kissinger

et al. 2006] explored programming environments with a wider array of available

constructs (Visual Basic .NET and spread sheet formulas, respectively). Their

participants may thus have had more opportunities to strategize about their debugging

approaches, and we would expect recalling the proper usage of each programming

construct to be more difficult than the two options (e.g., dragging a bar up or down)

Figure **BarriersEncountered: Sum of barriers encountered in all transcripts.

0

50

100

150

 27

available to our participants. While Design and Use barriers should not be neglected, the

predominance of Selection and Coordination barriers in this domain suggests that end

users may have less trouble deciding on a strategy for how to give feedback (Design and

Use), than on where to give feedback (Selection and Coordination) **1.5.

Our results highlight that the kinds of barriers encountered while debugging

intelligent assistants may be rather different than those seen in traditional programming

environments, and hence require their own specialized support. Our Why-oriented

approach provides explanations of source code and execution state, but the prevalence of

the Selection and Coordination barriers suggests the need for debugging approaches to

also help users identify the most useful places to change the source code (fault

localization) as well as explaining the likely effects of executing such changes (run-time

outputs).

The differences between the barriers our participants encountered and those faced by

Ko's participants may also be related to differences in the programming environments.

Our why-oriented approach included many instances of a single programming construct

(feature importance); participants had relatively few problems using or understanding the

results of interaction with this construct, but a great deal of difficulty in selecting which

instances of the construct to interact with. The integrated logic of machine learning

systems may have further contributed to these obstacles, causing confusion when

multiple predictions changed as a result of a single feature modification. Our prototype's

design may also have played a role: by showing feature weights in the context of

particular messages, participants may not have expected adjustments to impact the

assistant's other predictions. Even if participants did expect such wide-ranging changes,

the difficulty of coordinating which and how many predictions changed in response to

each user modification seems an innate issue with intelligent assistants—regardless of the

underlying learning system, there are multiple possible “fixes” to the logic that will result

in a particular item changing its classification. If a user is focused on a single prediction,

this reduces their search space by providing many possible targets. However, finding the

precise fix that both adjusts the item as desired and does not negatively impact other

predictions may be considerably harder than in environments where each programming

change is isolated to a single section of the application’s logic. Such a situation would

 28

explain why our participants often encountered Selection and Coordination barriers,

while Ko’s most frequently hit Use and Understanding barriers **2.3.

4.2.2 Gender Differences in Barrier Encounters **D1

Are barriers different for male and female end-user debuggers, and will overcoming

them require different kinds of support? Interestingly, males and females did not appear

to experience the same number of barriers: females encountered an average of 33.3 per

session, versus the male average of 24.4 per session. This difference was despite the fact

that males talked more (and thus had more opportunities to verbalize barriers) than

females, averaging 354 turns per session, compared to 288 for females.

Figure **AverageBarriers shows the average barrier count per session (the same

differences are also present in comparing the average barrier counts per turn). Females

experienced more barriers in almost every category; the only exceptions were

Coordination and Understanding. Selection barriers, the most common barrier type, had a

large difference: females averaged 14 per session, about 1.5 times as many as the male

average of nine. This difference was statistically significant despite the small size of our

sample population (Wilcoxon Rank-Sum Test: Z = 2.1044, p < 0.05). Design barriers,

too, exhibited a strong contrast, with females averaging 5.3 per session versus males

averaging 2.8. The differences in both the total number of barriers and Design barriers

encountered were not statistically significant, but this may be a result of our small sample

size (totaling six female and five male pairs). A statistically oriented experiment with a

larger sample is needed to provide more conclusive evidence.

One reason for the apparent differences may be that females expected more problems

due to lower self-efficacy (a form of self-confidence specific to the expectation of

succeeding at an upcoming task [Bandura 1977]). As referenced earlier, there was a

significant, inverse correlation between self-efficacy and the number of barriers a

participant encountered. Females came into the study with lower self-efficacy (measured

via a self-efficacy question set [Compeau and Higgins 1995]) than males, scoring an

average of 38 out of a possible 50, compared to 42 for males (Wilcoxon Rank-Sum Test:

Z = -2.64, p < .01). This is consistent with similar self-efficacy differences for end users

engaging in other complex computer tasks [Beckwith et al. 2005, Grigoreanu et al. 2008,

Subrahmaniyan et al. 2008]. As we show in the next section, our results about differences

 29

in barriers are consistent with prior research in another aspect as well: these prior works

showed gender differences in both features used and the strategies end users employed to

find and fix errors in spreadsheets.

Another possible cause of the observed disparities may be gender differences in

information processing. For example, work on the selectivity theory of information

processing [Meyers-Levy 1989] has shown a number of differences in how males and

females process information. According to this theory, females are more likely to work

with information comprehensively, whereas males are likely to pursue information more

selectively. The following quotes illustrate the tendency our female pairs showed toward

examining several words from a message before moving on, versus males’ propensity for

advancing to the next message as quickly as possible:

Female Pair

P1131: “So that [word is] really important. And then, um, probably

‘updates’ would be important. And then, um... [the word] ‘virus’?” 

P1132: “Yeah. And then, uh, [the word] ‘login’.”

Male Pair

P1211: “Its [classification is] correct. It’s learned something, eh.” 

P1212: “Um hmm.”

P1211: “Lets go to the next message.”

Figure **AverageBarriers: Average number of barriers per session

encountered by males (dark blue bars) and females (light pink bars).

0

5

10

15

 30

The selectivity theory is also consistent with our frequency data: females worked with

a larger set of words than males did (106 unique words for females vs. 62 for males),

perhaps to perfect the algorithm’s performance. Males, conversely, may have been more

inclined to move on to the next message as soon as they obtained the desired effect.

Supporting this hypothesis is the average number of messages each group filed—male

pairs averaged 19.8 messages filed in each 40-minute session, while female pairs

averages 13.0. This suggests that in order to successfully support a wide range of end

users, debugging features should be designed so that both of comprehensive and selective

strategies can lead to success **1.6.

4.2.3 Barrier Transitions and Gender Differences **D1

When a participant encountered a barrier, what happened next? Were there different

patterns of what male and female participants did after a hitting barrier? Encountering a

barrier may have sent participants spiraling into non-productive repetition, or maybe they

were able to overcome the barrier by themselves. Understanding how barriers are

encountered and resolved (or not) can provide insight into their severity and impact on

debugging intelligent assistants, and highlight when additional support may be most

necessary.

To answer these questions, we investigated the sequence of barriers encountered and

looked for differences between male and female participants. The barriers and debugging

activities coded in participants’ verbalizations are simply states between which they can

transition. To calculate the probability of each state (barrier or activity) following an

initial barrier, we divided the number of occurrences of a particular subsequent state by

the total number of states that followed the initial barrier. For example, if Selection

followed Design once and Diagnosing followed Design twice, then the probability of

Selection following Design was computed as 1/(1 + 2) = 0.33, or 33%, and the

probability of Diagnosing following Design was computed as 2/(1 + 2) = 0.66, or 66%.

We use these probabilities only for clarity; our graphs (Figures **Transitions1,

**Transitions2, **Transitions3, and **Transitions4) show the exact number of instances

for completeness.

Initially, we hypothesized that there would be a commonly followed path through the

barriers, which could allows us to support debugging at the right time. For example,

 31

perhaps most users would flip between Design and Understanding barriers at the

beginning of the task. Once those early hurdles were overcome, they might cycle through

Selection, Coordination, and Use barriers until they understood the assistant’s logic, after

which barriers would be encountered with considerably less frequency. When examining

our participants’ data, however, we saw no discernible tendency for users to encounter

barriers in specific orders or at consistent times during their debugging session. Nor did

barrier frequency change in any significant way over time; users were just as likely to

encounter Design barriers in the first five minutes of the study as they were in the final

five minutes. This suggests that an approach aiming to support end-user debuggers in

overcoming barriers must support finer-grained patterns of barriers as they are

encountered, instead of basing its explanations on an expected common path.

Both male and female end users exhibited finer-grained patterns for many of the

individual barriers. Although no single barrier stood out as a frequent transition from

Design (Figure **Transitions1), when we examined gender differences, we found that

males reacted to Design barriers with some form of debugging activity on average 70%

of the time, versus 46% for females. Thus, it appears that Design barriers proved less of a

problem to males than females, since they were able to move on to a debugging activity

instead of encountering another barrier. Since Design barriers relate to a user lacking a

debugging strategy, an implication of this gender difference is that our approach’s

explanations for overcoming these barriers should be certain to include strategies other

researchers have identified as frequently employed by female end-user debuggers

[Subrahmaniyan et al. 2008].

Figure **Transitions2 shows that the most common action following a Selection

barrier was the debugging activity Diagnosing, which occurred after 40% of Selection

barriers. The next most prevalent code was a second Selection barrier (19%), suggesting

that Selection barriers were either quickly overcome, leading to Diagnosing, or they

cascaded, stalling participants’ debugging progress. This implies that once a user first had

trouble deciding where to give feedback, they became less and less able to do so. Figure

**ExampleTransitions illustrates the problem by graphing all of the barrier transitions for

one of our participant pairs (P701 and P702). The high number of incoming edges to the

Selection box was typical, as is the loop from Selection back to itself. We already

 32

discussed the high number of Selection barriers overall, but Figure **Transitions2 points

to these barriers specifically stalling participants. This suggests the need for our approach

to point out which words or features would be most likely to change the program’s

behavior; we discuss how this might be done in Section 4.4.1. These participants, for

example, could have benefited from this sort of help:

 33

Figures **Transitions1, **Transitions2, **Transitions3, and **Transitions4 (from

top to bottom): Number of transitions from barriers to other barriers or debugging

activities. Light squares indicate one instance by a female pair; dark squares

indicate one instance by a male pair. Barrier nodes are colored light purple;

debugging activity nodes are dark blue.

 34

P732: “And what about ‘interview’? Oh, we just did that, so no.

‘Working’, maybe?” [finds word] 

P731: “Well, no because ‘working’ could be used for anything really.” 

P732: “True.” 

P731: “‘Work’, no.” 

P732: “What about... [scrolls left] ‘scheduling’. No, that could be

News.” 

P731: “That could be News, too.” 

P732: “What about ‘scientist’?” 

P731: “That could be Personal.”

What about those users who did not stall on Selection barriers? Males had a higher

tendency of Hypothesizing following a Selection barrier than females, 26% to 11%.

Recall that Hypothesizing was coded when the pair discussed a possible fix but didn’t

include a specific word, whereas Diagnosing indicates that the pair specified the word

they intended to modify. Thus, males were more likely to follow a Selection barrier with

a general solution, while females tended to first agree on a word to alter. Why this

difference? We know our female participants came into the study with lower self-efficacy

than our male participants, and prior research [Beckwith 2007] has revealed female end

users to be more risk averse, in general, than male end users. Both low self-efficacy and

risk-aversion may have been alleviated by the pair coming to agreement about the best

way to proceed; a participant’s self-efficacy could be boosted by discovering her partner

agrees with her idea, and this improved confidence may in turn lower the perceived risk

of the proposed debugging fix. Our approach could use the same solution proposed to

help users overcome Selection barriers (directing end users toward words which will have

the strongest effect on message reclassification) to help low self-efficacy users as well, by

reducing the choice of which words to modify down to a more manageable, less

intimidating subset.

Like Selection barriers, Coordination barriers often led to Diagnosing (30%) (Figure

**Transitions3). Taken together with the other two debugging actions, Fault Detection

(14%) and Hypothesizing (20%), this barrier was followed by a debugging action 65% of

the time. Males, however, tended to follow Coordination barriers with more Diagnosing

than females (47% vs. 18% respectively), whereas females followed them with more

Hypothesizing than males (29% vs. 8%). One interpretation of these results is that

 35

following confusion regarding the impact of their changes, female participants were more

likely to step back and attempt to coordinate how their changes will impact the entire

system, whereas males tended to stay focused on a specific failure. This would be yet

another indication of the comprehensive problem-solving strategy associated with

females [Meyers-Levy 1989], providing further evidence of the need to support both

comprehensive and non-comprehensive problem-solving strategies in end user debugging

environments.

Finally, Use barriers (Figure **Transitions4) were strongly tied with a transition to

Diagnosing (44%); all other transitions were below 15%. It seems that when a Use

barrier was encountered, our participants’ response was to adjust their specific solution,

rather than move to a different problem or generalize a solution. This was equally true for

males and females. It appears that participants can frequently overcome this barrier by

themselves and only need additional help in a few instances.

Thus, our why-oriented approach did not prove successful at reducing the number of

barriers participants encountered over the duration of the study. The patterns of barrier

transitions is consistent with the Selectivity Hypothesis information processing strategies

discussed earlier, adding additional emphasis to the need for intelligent assistant

debugging approaches to support both selective and compressive information processing

strategies **2.23.

 36

4.3 Results: Information Needs (What Could Help)

4.3.1 What Participants Wanted to Know **D1

What information would have helped our participants overcome these debugging

barriers? To explore this, we manually compiled a list of every question participants

asked during the course of the study, and two researchers iteratively grouped the

questions based on the type of information being requested **3.6. This grouping resulted

in the seven knowledge bases described in Table **InformationNeeds; the example

questions in each category were taken verbatim from participant quotes. The information

needs were nearly always in transcript segments that also contained a learning barrier (as

described in section **4.1.2). We thus were able to calculate the relationship showing a

categorization of participants’ verbalizations expressing what they wanted to know when

they encountered each barrier. This information is presented via the graphs in Table

**InformationNeedsFigure: each graph illustrates the percentage of learning barriers

where participants explicitly requested a specific type of information to overcome the

barrier **3.6. Figure **InformationNeedCounts shows the frequency of each category.

Figure **ExampleTransitions: An example participant pair’s path through the

debugging barriers. The width of the arrows indicate the percentage of transitions:

thinnest = 6%, thickest = 20%. Transitions accounting for 5% or less of the total are

not shown.

 37

As Figure **InformationNeedCounts illustrates, the most frequent information

requested by end users was concrete advice about how to fix the machine’s logic. Users

wanted to know specifically which word weights they should be modifying to move a

message into a specific folder, how much they should be adjusting the word weights, and

previews of what will happen after adjusting the weights of particular words. This type of

information alone represented nearly half of the total information requests among

participants (42% of all requests), suggesting that even satisfying solely this information

need may address a large number of user difficulties. Our participants most frequently

discussed the value of this information after encountering either a Selection (71%) or Use

(86%) barrier, suggesting that satisfying these information needs through answers to our

Why questions could practically eliminate these two barriers.

The second largest set of user-requested information related to the intelligent

assistant’s current logic. This includes user questions about why the intelligent assistant is

behaving in a particular manner, such as “Why did this message turn red?” and “Why

won’t this message be filed to Systems?”; participants most frequently expressed a need

for this type of information after encountering a Coordination barrier (74%). This was the

primary set of questions we hoped to answer via our Why-oriented debugging approach.

Note that, as with the information needs regarding how to fix the assistant’s logic, users

appeared to want concrete information; they mentioned specific messages and folders,

rather than general questions about how the assistant makes predictions. This desire for

Figure **InformationNeedCounts: The number of times each participant implied a

particular knowledge base would help them overcome their current debugging

barrier.

0

50

100

150

D
e

b
u
g

g
in

g
S

tr
a
te

g
y

U
I

F
e

a
tu

re
s

U
s
e
r

D
a

ta
O

v
e
rv

ie
w

M
a

c
h

in
e

C
a

p
a
b

ili
ti
e
s

C
u

rr
e
n

t
M

L
 L

o
g
ic

H
o

w
 t
o
 F

ix
M

L
 P

ro
g
ra

m

U
s
e
r

A
c
ti
o
n

H
is

to
ry

 38

concrete solutions highlighted a nuance in our prototype: it coupled concrete visual

explanations of word weights with generalized textual explanations of the assistant’s

general algorithm for classifying messages. Participants frequently commented that the

generalized textual answers to their questions did not change with context and were

unhelpful. For example:

P1001: Ok go to the ‘why’ button. [clicks on the global why menu] Ask

‘why not Systems’. [asks ‘why won’t this message be filed to..?’].

P1002: It says the same thing about word importance.

Thus, phrasing the explanation in the context of the message a user is currently

working with may be a better way to present this particular type of information.

When participants encountered a Design barrier, they frequently believed they could

overcome it if they possessed more details about debugging strategies (61% of Design

barriers) **2.24. These strategy questions fell into two categories: general, when the end

user appeared to be searching for a different, better strategy (e.g., “Do we have to teach

the system everything?”), and refinement, when the user had questions about particular

aspects of their current strategy (e.g., “Should we file it now?”). Note that participants

expressed more interest in information about debugging strategies than about the user

interface features of our Why-oriented prototype. Prior research [Kissinger et al. 2006]

regarding end-users debugging spread sheet formulas reported a similar difference, and

posits that this is part of the phenomenon of “active users” [Carroll and Rosson 1987]

who are primarily concerned with completing a task, rather than exploring “potentially

interesting” user interface features **1.5.

Participants expressed an interest in overviews of the existing data set they worked

with, such as “How many messages are in each folder?” and “What other messages are

[some word] used in?”, a need we also observed in a previous study [Stumpf et al. 2008].

While these only accounted for 7% of observed information needs, a data overview was

requested after 15% of Selection barriers, suggesting that explanations providing these

details may help alleviate the most egregious barrier we observed in this domain **2.24.

Further, every participant pair save one explicitly requested an overview of the data at

least once. Part of the reason may have been due to unfamiliarity with the set of e-mail

messages our participants worked with, but even if they had such familiarity, such an

 39

overview could be useful to gauge the importance of words and the distribution of

classifications quickly in large data sets.

 40

Table **InformationNeeds: Participants’ information needs when they encountered

barriers. Graphs indicate the percentage of Design (D), Selection (S), Coordination

(C), Use (U), and Understanding (Un) barriers participants explicitly mentioned

needing to overcome each barrier.

Participants Asked … When Would This Help?

Debugging Strategy

• Do we have to teach the system everything?

• Is there an easy way to get through this?

• Can we do this quicker?

• Should we adjust anything at all?

• Should we file it now?

Explanations of User Interface Features

• Can we go back and fix bad classifications?

• Where’s the button that was supposed to show up?

• Which color is related to which folder?

Overview of Existing User Data

• How many messages are going to each folder?

• Where are similar message currently filed?

• Is [some word] used in other messages or folders?

ML Algorithm’s Capabilities

• What parts of the message are used in

classification?

• Can the system handle phrases?

• Can we include context of keywords?

• Does changing a word weight affect other folders?

ML Program’s Current Logic

• Why did this message turn red?

• Why are more messages being filed to [folder]?

• Why didn’t anything change after my last action?

• Why won’t this message be filed to [folder]?

How to Fix the ML Program’s Logic

• How important should [word] be?

• Which word should we modify?

• Which words should be ‘forbidden’?

• What if we...?

User Action History

• What have we done?

• Were our changes helpful?

• Was one of our past actions wrong?

0% 25% 50% 75% 100%

D

S

C

U

Un

0% 25% 50% 75% 100%

D

S

C

U

Un

0% 25% 50% 75% 100%

D

S

C

U

Un

0% 25% 50% 75% 100%

D

S

C

U

Un

0% 25% 50% 75% 100%

D

S

C

U

Un

0% 25% 50% 75% 100%

D

S

C

U

Un

0% 25% 50% 75% 100%

D

S

C

U

Un

 41

The final two information needs, machine capabilities and user action history, were

rare, combining for only 5% of the combined information requests. Even though their

occurrence was low, they may have fundamental effects; clearly, a flawed understanding

of what the intelligent assistant is capable of parsing and using in its predictions would

seriously impair one’s ability to provide useful feedback to the program, and a clear

indication of the actions a user has performed over time may help end users understand

the long-term effects of their changes on the assistant’s predictions. The idea of

displaying the history of user actions is also consistent with the Whyline approach, since

each user-made change to the assistant’s logic can impact the classification of multiple

messages, and similarly, a single change in classification may be the result of a collection

of multiple user adjustments. Explanations of why such a change in classification

occurred would be incomplete if they omitted the user modifications contributing to the

re-classification.

4.3.2 Gender Differences in Information Needs **D1

Since there were gender differences in the barriers encountered, we also investigated

whether there were discernable gender differences in participant information needs that

could help overcome these difficulties.

Although our data are sparse, our female participants tended to have more questions

about UI features than male participants (Figure **InformationNeedsGender). Previous

Figure **InformationNeedsGender: Average number of information needs per

session encountered by males (dark blue bars) and females (light pink bars).

0

6

12

18

D
e

b
u
g

g
in

g
S

tr
a
te

g
y

U
I

F
e

a
tu

re
s

U
s
e
r

D
a

ta
O

v
e
rv

ie
w

M
a

c
h

in
e

C
a

p
a
b

ili
ti
e
s

C
u

rr
e
n

t
M

L
 L

o
g
ic

H
o

w
 t
o
 F

ix
M

L
 P

ro
g
ra

m

U
s
e
r

A
c
ti
o
n

H
is

to
ry

 42

research [Beckwith et al. 2005] has investigated gender differences in the adoption of

debugging features for traditional programs. In that work, females were hesitant about

adopting new features; they adopted them less frequently and later in the process than

familiar features, and this had repercussion on new bugs introduced through their

debugging activities. Our Why-oriented approach introduced a new set of features that

are aimed at debugging intelligent assistants. Providing specific support to help

understand these features and entice females to use these features may thus be warranted.

An interesting gender difference among our participants was their interest in strategic

and tactical information. Figure **InformationNeedsGender illustrates that information

about Debugging Strategy and How to Fix the ML Program was requested twice as much

by females as males. Information regarding How to Fix the ML Program is particularly

applicable for overcoming Selection barriers (Table **InformationNeeds), which females

encountered almost twice as frequently as males. Moreover, females tended to encounter

further Selection barriers after the initial Selection barrier; providing this information

could reduce the risk of females becoming stuck in these Selection barrier loops.

Furthermore, providing How to Fix the ML Program information could help females to

overcome Design barriers by moving on to debugging activities (e.g., diagnosing,

hypothesizing, or fault detection).

Recent work has explored the possibility of using textual and video explanations to

present end users with debugging strategies [Subrahmaniyan et al. 2007]. Such

techniques may be especially applicable in this domain because of low user self-efficacy

regarding their ability to debug an intelligent assistant, and the inverse correlation we

observed between participant self-efficacy and the number of barriers participants

encountered. According to self-efficacy theory, watching similar people succeed at the

same type of task not only helps guide users toward successful strategies, but may also

increase their confidence in being capable of completing the task themselves [Bandura

1977].

In contrast, we did not see gender differences in understanding how the intelligent

assistant should operate. In our study, female participants requested an overview of

existing user data and the machine’s logic and capabilities at about the same frequency as

 43

males, suggesting no gender difference in reasoning about how the classifications should

be made by the participants themselves.

In summary, it seems that any gender differences in information needs were more

strongly tied to needing explanations about how to strategically make changes than to the

specifics of the assistant’s logic. Fulfilling these targeted information needs may help to

remove the differences in barriers (particularly Design and Selection) that affected

females more than males.

4.4 How machine learning algorithms can better help users (How) **D0

If the user and her program are to be partners, each has a role in helping the other

cope with difficulties. Our Why-oriented approach allows users to help improve the

machine’s logic, but how can the machine further help users with their barriers and

information needs? We focus particularly on Selection and Coordination barriers, as

these accounted for over two thirds (68%) of the total number of debugging barriers

participants encountered during the course of our study.

4.4.1 Helping with Selection Barriers **D0

**TDK to WKW: R2 wants us to discuss other options, such as TF-IDF (comment

2.22)

Selection barriers were the most frequently encountered type of barrier; in fact, many

participants became stuck in loops of repeated Selection barriers. Recall that this type of

barrier reflects the difficulty of selecting the right words or messages in order to debug

the intelligent assistant. This difficulty occurs because a text classifier often uses all

words appearing in all emails as features, amounting to thousands of features. The sheer

number of features makes finding a particular word in the source code representation

time-consuming for a user. User-interface devices can only do so much to alleviate this

problem. For example, our bar graph was scrollable and allowed users to sort the features

by weight or alphabetical order. Such interface tweaks are mere band-aids to the real

problem—there are simply too many features for end users to consider.

One way to address the Selection barrier is to reduce the number of words displayed

in the visualization using a class of machine learning techniques known as feature

selection [Guyon and Elisseeff 2003]. Instead of using all words in all emails as the set of

 44

features, we choose the top K most predictive words as the set of features. Feature

selection in our e-mail setting would reduce the number of features from thousands of

words down to a few hundred. A particularly useful group of feature selection methods

are based on sensitivity analysis, which is a technique used in statistical modeling to

determine a model’s robustness to changes in its parameters [Chan and Darwiche 2002].

Methods for sensitivity analysis are important for addressing Selection barriers as

they allow us to determine how much the weight of a word needs to be modified in order

to change the probability that the email belongs to a folder F. Chan and Darwiche [2002]

investigate the sensitivity of probabilistic queries on a Bayesian network in response to

changes to a single parameter in the network. The authors then develop bounds on the

effect of these changes to the query that allow the machine to determine if a change to a

parameter for a word (i.e., the probability P(Wi | F)) has little to no effect on the predicted

folder. These bounds can also be derived for the naïve Bayes classifier because it is a

special case of a Bayesian network. Omitting from the visualization words that have little

impact on the current prediction would allow the user to focus attention on only word

weights that, if changed for this message, would alter the message’s classification.

Unfortunately, this approach only captures the effects of a single parameter change. Chan

and Darwiche [2004] investigate the effects of changes to multiple parameters, but in the

most general case this incurs a significant computational cost.

Although feature selection addresses some of the issues regarding selection barriers, it

also introduces other problems. First, reducing the number of words from thousands to a

few hundred still leaves the user with a fair number of features to sift through. Second,

feature selection determines the top predictive features using the training set. If an email

should be classified in a folder due to a distinct word that does not appear frequently in

the training set, that word is unlikely to be among the top K predictive features. The end

user would thus need to be able to add that word as a feature. Allowing end users to

create new features is a promising direction for future work.

Furthermore, in the case of sensitivity analysis, even if we can determine the effects

of changing multiple parameters, there are still an infinite number of parameter changes

that can alter the current prediction to the desired folder. Sensitivity analysis is only

useful for determining how much a change to the parameters will affect the final

 45

prediction. It is not helpful in identifying which changes out of a set of candidates would

result in the most accurate classifier for future emails. The underlying issue to support the

identification of features to modify is that there are an infinite number of combinations in

which the weights on the words can be changed in order to cause the machine learning

algorithm to classify an email to the desired folder. Ideally, these changes should improve

the classification accuracy of the intelligent assistant not just for the current email

message, but also future, as-yet-unseen messages. The distribution of future emails is

clearly impossible to obtain; nevertheless, a possible method for helping with Selection

barriers is to rely on the relationships between words in existing messages, in order to

direct the end user’s attention to particularly important words. These relationships would

need to come from an external source, such as a common sense database [Liu et al.

2003]. For example, if a message was misclassified to the Finance folder when it actually

belongs in the Sports folder, a common sense database could be used to identify words in

the message that relate to sports and suggest that the user focus on these words. If,

however, the end user’s folder assignments for emails are obscure, ill defined, or

inconsistent, a common sense database may be unable to help. As such, identifying good

features to modify remains a difficult open problem.

Simplifying the visualization by reducing the number of features needs to be carefully

balanced against the stated Design Principles of our Why-oriented approach. In

particular, we believe that the visualization should not obscure the logic of the intelligent

assistant and that the user needs to be able to modify a representation of the source code

to debug the program. Both of these principles are at risk if the source code visualization

is overly simplified.

4.4.2 Helping with Coordination Barriers **D1

Coordination barriers were the second most frequently occurring type of debugging

barrier during our user study. Recall that these barriers concerned how changing logic in

one message would affect the system’s other predictions, i.e., coordinating how the

system responds (or fails to respond) to source code modifications.

The “popularity effect” was a primary source of Coordination barriers: the folder

with the largest number of filed e-mails dominated the classifier’s predictions for the rest

of the messages in the inbox. This had the effect that a few participant changes could

 46

(and sometimes did) incorrectly re-classify dozens of messages into the newly popular

destination folder. Unfortunately, participants whose strategy was to concentrate on

fixing one folder at a time (making the folder of interest temporarily very popular)

experienced the popularity effect again and again.

From a machine learning perspective, this popularity effect is primarily caused by the

high dimensional nature of the data, the relatively sparse training data, and the class

imbalance of the e-mail folders. These factors cause the classifier to overfit both the

training data and the participant feedback for the smaller folders. For example, suppose

an end user employs the “one folder at a time” filing strategy. He is focused on putting

messages into the Systems folder, which has keywords such as “Windows” and

“McAfee” that are easily identified. Once a large number of messages have been filed to

this dominant folder and the classifier learns from the newly acquired training examples,

the distribution for the dominant folder will be accurately learned. However, the classifier

is poorly trained on the non-dominant folders. In fact, the classifier overfits the training

data for the non-dominant folders. Even worse, if the user jumps in to try to debug a non-

dominant folder by tweaking an e-mail that belongs in it, the overfitting may be

exacerbated more: the overfitting makes all other e-mails seem unlikely to be classified

into the non-dominant folders because they must match exactly the under-smoothed

distributions for these folders. The classifier then incorrectly files almost all of the e-

mails in the inbox under the dominant folder—the popularity effect thereby causing the

user’s valid correction to actually make the program worse.

It might appear on the surface that the solution from a machine learning perspective is

simply to provide “sufficient” training data for all folders—but applying this solution to

e-mail classification is problematic. Many real-world e-mail folders do contain small

numbers of e-mails, resulting in sparse training data for e-mail classifiers, and e-mail is

known to be “bursty,” i.e., e-mails from a small handful of folders dominate the inbox at

certain times. Due to the imbalance in the number of e-mails belonging to each folder,

explaining and addressing the popularity effect in domains such as this remains an open

problem.

A second major source of Coordination barriers was the unexpected adjustment of

decision boundaries resulting from participant feedback. ManiMatrix [Kapoor et al. 2010]

 47

tackles this problem by allowing end users to specify which portions of this boundary

matter the most to the user’s task; it then adjusts the learning system’s parameters to

maximize the accuracy of the classifications the user cares most about. This ability could

be beneficial for our Why-oriented approach as well; our prototype showed users the

effects of their changes, but did not give participants the choice of specifying the effects

they wished to see, and then adjusting the learning system to match the participant’s

goals. **2.26

4.4.3 Supporting Answers to the Why Questions Beyond Naïve Bayes **D1

In our study, we illustrated how one particular machine learning algorithm, naïve

Bayes, could be used to answer Why questions. Apart from naïve Bayes, many other

machine learning algorithms have been used to classify e-mail messages. A natural

question to ask is whether other machine learning algorithms can also provide easily

understood answers to these “Why” questions.

Answering the “Why won’t this message be filed in <Folder>?” question for folders f

and f’ requires computing P(F = f | W1, …, Wm) and P(F = f’ | W1, …, Wm). Many

machine learning algorithms can provide these probabilities. In fact, a large subclass of

machine learning algorithms, known as discriminative classifiers [Ng and Jordan 2002],

explicitly model P(F | W1, …, Wm) and are well-suited to answer this “Why” question.

Some machine learning algorithms may be better than others at providing answers to

certain Why questions. As an example, Bayesian networks provide a sophisticated

mechanism for providing detailed explanations of how different pieces of evidence

influence the final prediction made by the algorithm [Lacave and Diez 2002], but this is

computationally expensive. A current challenge for machine learning is to develop

answers to Why questions of statistical machine learning algorithms that can be

efficiently computed.

5. Conclusion **D0

This paper presented a Why-oriented approach to support end-user debugging of

intelligent assistants, in the context of a naïve Bayes learning system for text

classification. Our contributions fall into three categories.

 48

First, our Why-oriented approach is the first to extend the successful Whyline

debugging approach to machine learning systems. The approach is based on four

underlying principles: (Representation-1) representations of both the program logic

(“source code”) and execution state must be available and manipulable by end users,

(Representation-2) these representations must be faithful and transparent as to what the

underlying logic really is (rather than attempting to remove some aspects to simplify it),

(ML-1) the explanations must be understandable to end users, and (ML-2) when the end

user makes a correction, the machine is required to honor it.

Using these principles, we developed an approach whose essence lies in posing Why-

oriented questions and answering them as follows:

• End users can ask why-questions of statistical machine learning systems to clarify

the program’s current behavior.

• The answers to these why-questions provide faithful explanations of the current

logic in terms of representations of the current source code and execution state of

the program.

• These answers can help the end user debug intelligent assistants. Users do this

interactively by modifying the answers to make them more correct (from the

user’s perspective), which immediately feeds adjustments back to the assistant’s

logic.

Our second category of contributions lies in lessons learned for the human aspects of

end-users debugging this class of intelligent assistants. Our exploratory study revealed

that, although participants were able to use our prototype, every participant encountered

barriers while debugging their assistant. The two most common barrier types were

Selection barriers, in which participants had difficulty selecting the right features (words)

or contexts (messages) to modify in order to correct the assistant, and Coordination

barriers, in which participants wondered how the feedback they were about to give would

change the assistant’s other predictions or had trouble coordinating how the assistant

responded (or failed to respond) to their modifications. The Selection barrier was

particularly insidious, often leading to cyclical barrier patterns, and disproportionately

affecting female participants. Theories imply some broad-brush attributes for solutions

 49

that try to help users overcome these barriers, suggesting that debugging tools should

support both comprehensive and non-comprehensive debugging strategies, and that

interfaces should adequately support a wide range of self-efficacy levels and attitudes

toward risk. Directions toward specific solutions that might be implemented within these

constraints fall within our third category of contributions.

The third category of contributions reveals new open questions for the machine

learning aspects of supporting end-user debugging. The first open question is how to

provide the information users need to overcome the Selection barrier. Regarding this

barrier, our participants made clear the information they wish they had—namely which

words to concentrate on, how much to adjust each, and what will happen next. Feature

selection, such as through sensitivity analysis algorithms, may be promising directions,

but it raises as many issues as it solves. However, these issues might be partly

addressable by allowing users to create new features and by incorporating knowledge of

semantic relationships among words, such as via a commonsense database. Even despite

these promising directions, however, automatically identifying good features for the user

to modify remains a difficult open problem. Regarding helping the users overcome

Coordination barriers, many of these were tied to the “popularity effect” that arises in

situations of class imbalance, as in email classification. Explaining and addressing the

popularity effect in domains such as this one remains an open problem. Methods for

allowing end users to specify the desired class distributions may be an alternative

solution to this barrier.

In summary, end-user debugging of intelligent assistants is necessary because the end

user is the only one with knowledge as to how their own specific adaptation of an

assistant should behave. Our Why-oriented approach allows end users to debug such

assistants by manipulating their underlying logic, not just their predictions. Our empirical

results, based upon a prototype of the approach, identify barriers and information needs

that end users encountered when debugging intelligent assistants, plus solutions and open

research questions as to how to address these barriers and information needs. Ultimately,

assisting end users to effectively debug their intelligent assistants opens new

opportunities to achieve better and quicker adaption on the part of the assistant, and thus

better responsiveness to end user preferences.

 50

Acknowledgments

We thank the participants of our study and Joe Markgraf, Amber Shinsel, Akshay

Subramanian, and Rachel White for their assistance. This work was supported in part by

NSF IIS-0803487.

References

Bandura, A. 1977. Self-efficacy: Toward a unifying theory of behavioral change.

Psychological Review 8, 2, 191-215.

Becker, B., Kohavi, R., and Sommerfield, D. 2001. Visualizing the simple Bayesian

classifier. In Fayyad, U, Grinstein, G. and Wierse A. (Eds.) Information Visualization

in Data Mining and Knowledge Discovery, 237-249.

Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S., and Hastings, M. 2005.

Effectiveness of end-user debugging software features: Are there gender issues? Proc.

CHI, 869-878.

Beckwith, L. 2007. Gender HCI issues in end-user programming. Ph.D. thesis, Oregon

State University, Corvallis, OR.

Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., and Wallace, C. 2003.

End-user software engineering with assertions in the spreadsheet paradigm. Proc.

ICSE, 93-103.

Carroll, J., and Rosson, M. 1987. Paradox of the active user, In Interfacing Thought:

Cognitive Aspects of Human-Computer Interaction, J. Carroll (Ed.), MIT Press, 80-

111.

Chan, H. and Darwiche, A. 2002. When do numbers really matter? Journal of Artificial

Intelligence Research, 17, 265-287.

Chan, H. and Darwiche, A. 2004. Sensitivity analysis in Bayesian networks: from single

to multiple parameters. Proceedings of the 20
th

 conference on Uncertainty in Artificial

Intelligence, 67-75.

Chen, J. and Weld, D. S. 2008. Recovering from errors during programming by

demonstration. Proc. IUI, 159-168.

Cohen, W. 1996. Learning rules that classify e-mail. Proc. AAAI. Spring Symp.

Information Access.

 51

Compeau, D. and Higgins, C. 1995. Application of social cognitive theory to training for

computer skills. Information Systems Research, 6,2, 118-143.

Davies, S. P. 1996. Display-based problem solving strategies in computer programming,

Proc. Wkshp. Empirical Studies of Programmers, Ablex, 59-76.

Glass, A., McGuinness, D. and Wolverton, M. 2008. Toward establishing trust in

adaptive agents, Proc. IUI, 227-236.

Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, K., Burnett, M., Wiedenbeck, S.

2008. Can feature design reduce the gender gap in end-user software development

environments? Proc. VL/HCC 2008, IEEE, 149-156.

Guyon, I., and Elisseeff, A. 2003. An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research, 3, 1157-1182.

Hastie, T., Tibshirani, R., and Friedman, J. H. 2003. The Elements of Statistical Learning.

Springer.

Kapoor, A., Lee, B., Tan, D., and Horvitz, H. 2010. Interactive optimization for steering

machine classification. In Proceedings of the 28th international conference on Human

factors in computing systems (CHI '10). ACM, New York, NY, USA, 1343-1352.

Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan, N., Beckwith, L., Yang, S., and

Rosson, M. B. 2006. Supporting end-user debugging: what do users want to know?.

Proc. AVI, 135-142.

Ko, A. J. 2008. Asking and answering questions about the causes of software behaviors,

Ph.D. thesis available as Human-Computer Interaction Institute Technical Report

CMU-CS-08-122.

Ko, A. J., Myers, B., and Aung, H. 2004. Six learning barriers in end-user programming

systems. Proc. VL/HCC 2004, IEEE, 199-206.

Kononenko, I. 1993. Inductive and Bayesian learning in medical diagnosis. Applied

Artificial Intelligence, 7, 317-337.

Kulesza, T., Wong, W., Stumpf, S., Perona, S., White, R., Burnett, M. M., Oberst, I., and

Ko, A. J. 2009. Fixing the program my computer learned: barriers for end users,

challenges for the machine. Proc. IUI, 187-196.

Lacave, C. and Diez, F. 2002. A review of explanation methods for Bayesian networks.

The Knowledge Engineering Review, 17, 2, Cambridge University Press, 107-127.

 52

Lieberman, H. (ed.) 2001. Your Wish is My Command: Programming By Example,

Morgan Kaufmann Publishers, Inc.

Lim, B. Y., Dey, A. K., and Avrahami, D. 2009. Why and why not explanations improve

the intelligibility of context-aware intelligent systems. Proc. CHI, 2119-2128.

Lim, B. Y. and Dey, A. K. 2009. Assessing demand for intelligibility in context-aware

applications. Proc. UbiComp, 195-204.

Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., and Kandogan, E. 2007. Koala:

Capture, share, automate, personalize business processes on the web. Proc. CHI, 943-

946.

Liu, H., Lieberman, H., and Selker, T. 2003. A model of textual affect sensing using real-

world knowledge. Proc. IUI. 125-132.

McDaniel, R. and Myers, B. 1999. Getting more out of programming-by-demonstration,

Proc. CHI, 442-449.

Meyers-Levy, J. 1989. Gender differences in information processing: A selectivity

interpretation. P. Cafferata & A. Tybout, (Eds) Cognitive and Affective Responses to

Advertising, Lexington Books.

Myers, B., Weitzman, D., Ko, A. J., and Chau, D. H. 2006. Answering why and why not

questions in user interfaces. Proc. CHI, 397-406.

Ng, A.Y., and Jordan, M.I. 2002. On Discriminative vs Generative classifiers: A

comparison of logistic regression and naïve Bayes. In Advances in Neural Information

Processing Systems 14, 841-848.

Patel, K., Fogarty, J., Landay, J., and Harrison, B. 2008. Investigating statistical machine

learning as a tool for software development. Proc. CHI, 667-676.

Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R., Wishart, D. S., Fyshe, A., Pearcy,

B., MacDonell, C., and Anvik, J. 2006. Visual explanation of evidence in additive

classifiers. Proc. IAAI, 1822-1829.

Russell, S. J., and Norvig, P. 2003. Artificial Intelligence: A Modern Approach. Upper

Saddle River, NJ: Prentice Hall.

Stumpf S., Rajaram V., Li L., Burnett M., Dietterich T., Sullivan E., Drummond R.,

Herlocker J. 2007. Toward harnessing user feedback for machine learning. Proc. IUI,

82-91.

 53

Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong, W.-K., and Burnett, M. 2008.

Integrating rich user feedback into intelligent user interfaces. Proc. IUI, 50-59.

Stumpf, S., Rajaram, V., Li, L., Wong, W.-K., Burnett, M., Dietterich, T., Sullivan, E.,

and Herlocker, J. 2009. Interacting meaningfully with machine learning systems: Three

experiments. International Journal of Human-Computer Studies, 67,8, 639-662.

Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D., Kaplan, J., Beckwith, L., and

Burnett, M. 2007. Explaining Debugging Strategies to End-User Programmers. Proc.

VL/HCC 2007. IEEE. 127-136.

Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett, M., Wiedenbeck, S.,

Narayanan, V., Bucht, K., Drummond, R., and Fern, X. 2008. Testing vs. code

inspection vs. ... what else? Male and female end users’ debugging strategies. Proc.

CHI, 617-626.

Talbot, J., Lee, B., Kapoor, A., and Tan, D. S. 2009. EnsembleMatrix: interactive

visualization to support machine learning with multiple classifiers. Proc. CHI, 1283-

1292.

Tullio, J., Dey, A., Chalecki, J. and Fogarty, J. 2007. How it works: a field study of non-

technical users interacting with an intelligent system. Proc. CHI, 31-40.

Ungar, D., Lieberman, H., and Fry, C. 1997. Debugging and the experience of

immediacy. Communications of the ACM, 40, 4 (April 1997), 38-43.

Vander Zanden, B. and Myers, B. 1995. Demonstrational and constraint-based techniques

for pictorially specifying application objects and behaviors. Transactions on Computer-

Human Interaction, 2,4, 308-356.

Wagner, E. and Lieberman, H. 2004. Supporting user hypotheses in problem diagnosis on

the web and elsewhere. Proc. IUI, 30-37.

