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**ref chk, fig chk, table chk, section # chk, spell chk, smart quotes layout chk, ** chk 

**Vocab: No more learned programs, we’re dealing with intelligent assistants. In 

some cases, “adaptive software” seems appropriate as well. 
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**Vocab: It’s a Why-oriented approach (capitalized) 
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Abstract **D2.5 

Machine learning techniques are increasingly used in intelligent assistants, software 

targeted at and continuously adapting to assisting end users with email, shopping, and 

other tasks. Examples include desktop SPAM filters, recommender systems, and 

handwriting recognition. Fixing such intelligent assistants when they learn incorrect 

behavior, however, has received only limited attention. To directly support end-user 

“debugging” of assistant behaviors learned via statistical machine learning, we present a 

Why-oriented approach that allows users to ask questions about how the assistant made 

its predictions, provides answers to these “why” questions, and allows users to 

interactively change these answers to “debug” these assistants’ current and future 

predictions. To understand the strengths and weaknesses of the approach, we conducted 

an exploratory study to investigate barriers that participants would encounter when 

debugging an intelligent assistant using our approach, and the information those 

participants requested to overcome these barriers. To help ensure the inclusiveness of our 

investigation, we also explored how gender differences played a role in barriers and 

information needs. We then use these results to consider opportunities for Why-oriented 

approaches to address the users’ barriers and information needs. 

1. Introduction **D2 

Machine learning is increasingly being used to power intelligent assistants, software 

that continuously tunes its behavior to match a specific end user’s interaction patterns, so 

as to assist the user in getting work done (helping organize email, recommending books 

relevant to the user’s interests, typing hand-written notes, and so on). When assistants 

adapt themselves in helpful ways, the benefits are obvious: SPAM filters misclassify 
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fewer e-mails, recommendations find interests quickly, and handwriting recognition tools 

do a good job of typing up the user’s notes. 

What happens, however, when a user’s assistant adapts itself in unhelpful ways? A 

straightforward answer might seem to be “provide more training examples,” but such an 

approach can be unrealistically time-consuming for an end user, and may not solve the 

particular misbehaviors the user cares most about. We posit instead that, just as with 

regular software, when an intelligent assistant fails, it should be possible to debug it 

directly. Further, since intelligent assistants do not return to the hands of programming 

specialists, the only people in a position to debug intelligent assistants are the end users 

themselves, because they are the only ones using that specific adaptation. 

Enabling end users to debug their assistants is non-trivial: most users have little 

knowledge of how systems based on machine learning operate. Prior work, however, has 

shown that end users can learn to understand how a learning system makes its decisions 

[Tullio et al. 2007]. We therefore prototyped a new approach that aims to support end 

users in guiding and correcting—i.e., debugging—automated text classification. The 

domain we chose to explore was classification of e-mail messages into e-mail folders, as 

supported by the widely used naïve Bayes algorithm. 

Our work makes three primary contributions. First, we present a new Why-oriented 

approach to allow end users to debug their intelligent assistants. The approach not only 

focuses on answering end-user questions about why the program is behaving in its current 

manner; it also provides interactive explanations that serve as a debugging mechanism. 

Because end users are directly debugging the assistant (as opposed to providing new 

training examples), our approach presents information that a programmer would expect 

when directly debugging other kinds of software: representations of both the intelligent 

assistant’s logic (i.e., its source code) and runtime state. The essence of the approach is 

simple: if the users do not like the explanations that answer their “why” questions, they 

can change the explanations to direct the assistant to behave more accurately. 

Second, our work explores the difficulties experienced by end users attempting to 

debug an assistant in this Why-oriented manner. We present an exploratory study that 

identifies and categorizes barriers users encountered while debugging using a prototype 

based on our interactive approach. We also investigated both what information needs of 
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end-user debuggers expressed, and when they needed this information. Finally, because 

of recent evidence of gender differences in debugging (e.g., [Grigoreanu et al. 2008, 

Subrahmaniyan et al. 2008]), we investigated differences in barriers and information 

needs by gender to highlight design considerations that could differently impact these 

subsets of end users.  

Third, we consider how to progress further with Why-oriented debugging by 

identifying machine learning solutions and open research questions as to how machine 

learning systems can address the information needs and barriers of end users attempting 

to debug their intelligent assistants. 

2. Related Work **D2.9 

As part of its support for debugging, our Why-oriented approach explains the logic of 

an intelligent assistant to end users so that they can understand how to debug it. There are 

thus two major classes of prior work: techniques that support end-user debugging, and 

techniques that support communication between users and machine learning systems. We 

next discuss each, identifying the foundations that informed the design of our own 

prototype. 

2.1 End-User Debugging **D2.75 

Outside of machine learning, there are a number of debugging systems that help end 

users find and understand the causes of faulty behavior. For example, in the spreadsheet 

domain, WYSIWYT [Burnett et al. 2003] has a fault localization device that helps users 

reason about successful and unsuccessful “tests” to locate cells whose formulas are likely 

to be faulty. Woodstein [Wagner and Lieberman 2004] helps users to debug e-commerce 

problems by explaining events and transactions between services. 

The Whyline [Ko 2008] pioneered a method (also outside the realm of machine 

learning) to debug certain types of programs in an explanation-centric way. Because the 

Whyline informs our approach, we present it in some detail.  

The original Whyline was explored in three contexts: event-based virtual worlds 

written in the Alice programming system [Ko et al. 2004], Java programs [Ko et al. 

2008], and the Crystal system for debugging unexpected behaviors in complex interfaces 

[Myers et al. 2006]. In each case, the tools help programmers understand the causes of 
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program output by allowing them to select an element of the program and receive a list of 

why and why not questions and answers in response. These “Why?” questions and 

answers are extracted automatically from a program execution history, while “Why not” 

answers derive from a reachability analysis to identify decision points in the program that 

could have led to the desired output. In the Crystal prototype, rather than presenting 

answers as sequences of statement executions, answers are presented in terms of the user-

modifiable input that influenced code execution. In all of these Whyline tools, the key 

design idea is that users select some output they want to understand, and the system 

explains the underlying program logic that caused it. 

Some researchers have focused on the problems and needs end users encounter when 

they debug. For example, Ko et al. explored learning barriers that novice programmers 

encountered when learning how to solve problems in a programming environment [Ko et 

al. 2004]. Researchers from the WYSIWYT project have categorized the information 

needs of end users debugging [Kissinger et al. 2006], enumerating the types of 

information that end users sought in attempting to debug spreadsheets. These barriers and 

information needs may also relate to non-traditional debugging, such as fixing intelligent 

assistants. **MMB to anyone: R1 wanted more on Kissinger. Potentially this is the right 

place to put that, or perhaps it goes better later? (And if later, maybe we should hint at 

that here?) **TDK: I was planning on discussing this later, in the Information Needs 

section. 

2.2 Communicating with Machine Learning Systems **D2.75 

Several recent studies have highlighted the need to explain a machine learning 

algorithm’s reasoning to users. For example, Patel et al. examined obstacles faced by 

developers familiar with machine learning who need to apply machine learning to real-

world problems [Patel et al. 2008]. Glass et al. investigated the types of questions users 

familiar with intelligent agents would like to ask an adaptive agent in order to increase 

their trust in the agent [Glass et al. 2008]. Similarly, researchers identified the types of 

information end users wanted context-aware applications to provide when explaining 

their current context, to increase both trust in and understanding of the system [Lim and 

Dey 2009]. 
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Much of the work in explaining probabilistic machine learning algorithms has 

focused on the naïve Bayes classifier [Becker et al. 2001, Kononenko 1993] and, more 

generally, on linear additive classifiers [Poulin et al. 2006]. Explanation of these 

algorithms is relatively straightforward and computationally feasible on modern 

hardware. Tullio et al. reported that, given some basic types of explanations, end users 

can understand how machine learning systems operate [Tullio et al. 2007], with the 

caveat that overcoming any preliminary faulty assumptions may be problematic. More 

sophisticated, though computationally expensive, explanation algorithms have been 

developed for general Bayesian networks [Lacave and Diez 2002]. Finally, Lim et al. 

[Lim et al. 2009] investigated the usefulness of the Whyline approach for explaining 

simple decision trees and found that the approach was viable for explaining this relatively 

understandable form of machine learning. 

Regarding allowing end users to actually influence behaviors in machine learning 

settings, some Programming by Demonstration (PBD) systems learn programs 

interactively, via machine learning techniques, based on sequences of user actions (see 

[Lieberman 2001] for a collection of such systems). When debugging these kinds of 

programs, end-user corrections are limited to the addition or removal of training data—

unless the user reverts to a traditional programming language such as Lisp (e.g., [Vander 

Zanden and Myers 1995]). For example, Gamut allows users to “nudge” the system when 

it makes a mistake, leading to the addition or deletion of training examples [McDaniel 

and Myers 1999]. Recent work with PBD systems allows some debugging of programs 

[Chen and Weld 2008], but again, their technique only allows the user to retract actions 

in a demonstration, which results in adding missing values to the training data rather than 

directly modifying the classifier’s logic. Still other systems allow users to patch up 

specific mistakes by an intelligent assistant, but do not take these corrections into account 

when the assistant makes future decisions. For example, if CoScripter/Koala programs 

misidentify web page objects, the user can specify the correct object for a particular page; 

the fix, however, will not affect how the program identifies similar objects on different 

pages [Little et al. 2007]. 

Debugging—that is, directly changing the logic of—intelligent assistants has received 

only limited attention. One such system, EnsembleMatrix [Talbot et al. 2009], provides 



 7 

both a visualization of a classifier’s accuracy and the means to adjust its logic. 

EnsembleMatrix, however, is targeted at machine learning experts developing complex 

ensemble classifiers, rather than end users working with the resulting classifiers. 

ManiMatrix [Kapoor et al. 2010] provides an interactive visualization of a classifier’s 

accuracy, but user interactions are restricted to the modification of a classifier’s cost 

matrix. 

Our own prior research has begun to explore end-user interactions with intelligent 

assistants, to understand how to effectively enable end users to debug such programs. 

Using a paper prototype, we previously investigated three different types of explanations 

(keyword-based, rule-based, and similarity-based) that machine learning systems could 

provide to end users regarding why it was behaving in a particular manner, as well as 

user reactions to these explanations [Stumpf et al. 2007]. This paper prototype was also 

used to elicit corrections to the logic from participants (e.g., adjusting feature weights), 

allowing us to design an interactive prototype supporting the explanations best 

understood by participants and the types of corrections they most requested [Stumpf et al. 

2008]. The interactive prototype permitted us to run offline experiments studying the 

effects of the corrections provided by end users on prediction accuracy versus traditional 

label-based corrections. The results suggest that even when very simple corrections are 

incorporated into the assistant’s decision-making process, it has the potential to increase 

the accuracy of the resulting predictions [Stumpf et al. 2008, Stumpf et al. 2009]. For 

some users, however, the quality of the assistant’s predictions decreased as a result of 

their corrections; there were barriers that prevented them from successfully debugging 

the assistant. 

In summary, the ability of end users to interactively debug machine-learned logic has 

been limited. Researchers have begun to investigate how such logic can be explained to 

end users, but user corrections, if available at all, has been heavily restricted to specific 

forms (e.g., addition of training data) or situations (e.g., the initial creation of a new 

program via PBD). In addition to explaining the underlying logic, this paper also 

addresses supporting end users actually fixing the logic of a program learned by a 

machine. 
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3. A Why-Oriented Approach for Debugging Intelligent 

Assistants **D2 

Inspired by the success of the Whyline’s support for debugging [Ko 2008, Myers et 

al. 2006] and favorable user feedback regarding “why” and “why not”-style explanations 

[Lim et al. 2009, Lim and Dey 2009], we developed a Why-oriented approach for end-

user debugging of intelligent assistants. We applied this approach to the design of a 

prototype that allows end users to debug an assistant’s predicted folder classifications of 

an e-mail application. 

Our approach is the first to combine the following elements:  

(1) it allows end users to ask questions directly to statistical machine learning systems 

(e.g., “why will this message be filed to ‘Systems’?”),  

(2) the answers to which explain both the current logic and execution state (e.g., a 

visualization that shows importance of features/words to this folder, and how certain the 

system is that it belongs in this folder) and  

(3) can be changed: users can change these explanations by direct manipulation, to 

debug the system’s logic. These changes result in real-time adjustments to the assistant’s 

logic and resulting predictions.  

3.1 Design of the Why Questions **D2 

Developing the set of why questions about the logic and execution state of the 

intelligent assistant comprised two stages. In the Generate stage, generated the set of all 

possible questions that could be asked via the creation of a formal grammar. Then, in the 

Filter stage, we filtered the set of questions generated by the grammar to remove 

impossible questions, where impossible refers to situations that were not related to or 

achievable by debugging an intelligent assistant. We chose this generate-and-filter 

approach, as opposed to handcrafting the questions ourselves, to be sure we would not 

miss any possible questions **2.12.  

We began the Generate stage by inventorying the domain objects, such as messages 

and folders, which inform the assistant’s logic. We also inventoried, at a more abstract 

level, all logic (and corresponding runtime states) feeding into the prediction, such as the 

importance of a word to a folder. Finally, we inventoried the types of feedback the 

assistant could provide about its logic and execution state, such as its folder predictions 
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and its estimation of word importance. The first inventory (domain objects) is 

enumerated in the Subjects section of Table **QueryGrammar, and the latter two 

together are the Situations section of Table **QueryGrammar. 

**MMB to Todd: I’d like to change “source code” to “logic” throughout -- ok? It 

makes the story line much easier to unravel... 

Step four relates to past, present, and future program states. Thus, we enumerated 

three question-word phrases -- why is, why did, and how can -- plus the negations of these 

Table **QueryGrammar: The query grammar used to generate our Why questions.  

Components Productions 

Questions • Why...?  

• How...?  

Verbs • To be 

• To do 
• Can/Make 

Modifiers • This 

• All 

• Many 

• Recent 

• Important 

Subjects • Message 

• Folder 

• Word 

• Change 

• End user (i.e., “I”) 

Situations • Current classification 

• Change in classification 

• Importance 

• Availability (i.e., displayed in the UI) 

Queries • [query] = [question] [verb] [subject] [situation] |  

[question] [situation] [verb] [subject] 

• [situation] = [situation] | [situation] [subject] |  

[subject] [situation] 

• [subject] = [subject] | [modifier] [subject] 
• [modifier] = [modifier] | [modifier] [modifier] 
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phrases. We included “how can” questions to support debugging questions about future 

states of the system: when the system explains why it did something, the answer often 

implies how alterations could make the system do something different. We split these 

three question-word phrases into two non-terminals (question words and verb words) to 

make our query production more flexible. The Questions and Verbs sections of Table 

**QueryGrammar generate a super-set of these types of question-word phrases. Finally, 

in step five we added the Modifiers section to allow generated questions to be more 

specific, e.g., a question about recently changed predictions, rather than all changed 

predictions. The Queries section of Table **QueryGrammar describes how the various 

components may be combined to form the universe of possible questions.   

For example, our grammar defines a possible query as “[question] [verb] [subject] 

[situation]”.  Selecting the first listed production for [question], [verb], and [subject] 

produces the production “Why will this message [situation]?”.  The first production for 

the Situations component (current classification) can then be substituted for [situation], 

resulting in the completed question, “Why will this message be filed to Enron News?”. 

**1.3, **2.11 

In the Filter stage, we filtered the questions generated by the grammar in three ways. 

First, we removed questions about subject/situation combinations that could not be 

accomplished by the intelligent assistant. For example, a message (a Subject) can change 

its current classification (a Situation), but words and folders (also Subjects) cannot. We 

further refined our list of questions by removing any questions not relating to debugging, 

such as “Why can important words be displayed?” Finally, we removed re-phrasings of 

similar questions; this explains why there are no questions beginning with “How can…”, 

since asking “How can I make something happen?” is answered by the same information 

provided by the “Why didn’t something happen?” questions. This decision is consistent 

with the results of [Lim et al. 2009], who found that participants were more successful 

reasoning about intelligent assistants in the form of decision trees when presented with 

answers to either “Why…” or “Why not…” questions, than participants were when 

presented with answers to “How to…” questions **1.3.  

The Filter stage resulted in the nine Why questions depicted in Table 

**WhyQuestions. (While the number nine may seem small, the original Whyline 
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required only six types of questions [Ko 2008] in the complex domain of Java 

programming.) Figure **WhyQuestionsMenu shows how these questions were presented 

in the prototype, including their context dependency (such as the ability of the user to 

select questions relating to specific folders). 

Table **WhyQuestions: The Why questions and the query grammar productions 

used to generate them. Color is used to map each non-terminal production to the 

terminal English phrase it generated. Text in < > is dynamically replaced with the 

word or folder the user has selected. 

Why Questions Generating Production 

Why will this message be filed to 
<Personal>? 

[question] [verb] [modifier] 
[subject] [situation] [subject] 

Why won’t this message be filed to 
<Bankruptcy>? 

[question] [verb] [modifier] 
[subject] [situation] [subject] 

Why did this message turn red? 
[question] [verb] [modifier] 
[subject] [situation] 

Why wasn’t this message affected 
by my recent changes? 

[question] [verb] [modifier] 
[subject] [situation] [modifier] 
[subject] 

Why did so many messages turn 
red? 

[question] [verb] [modifier] 
[subject] [situation] 

Why is this email undecided? 
[question] [verb] [modifier] 
[subject] [situation] 

Why does <banking> matter to the 
<Bankruptcy> folder? 

[question] [verb] [subject] 
[situation] [subject] 

Why aren’t all important words 
shown? 

[question] [verb] [modifier] 
[subject] [situation] 

Why can’t make I this message go 
to <Systems>? 1 

[question] [verb] [subject] 
[modifier] [subject] [situation] 
[subject] 

 

                                                 
1
 The user interface moved the location of “I” in this question to fit the grammatical 

rules of English. 
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3.2 Design of the Interactive Why Answers  **D2 

In the original WhyLine, answers to “why” questions pointed to relevant places in the 

source code, but in intelligent assistants, there is no source code that represents the 

assistant’s learned logic for end users to look at or modify. Thus, the interactive answer 

content would have to represent the assistant’s logic by some device other than source 

code, while still allowing end users to edit it effectively to change the assistant’s logic.  

Thus, we designed the interactive answers according to four principles:  

Principle Representation-1: **2.6 Representations of both the assistant’s logic and 

execution state should be available to and manipulable by end-user debuggers.  

Principle Representation-2: Explanations of the source code and execution state 

should not obscure or overly simplify the program’s logic.  

Principle ML-1: The intelligent assistant should be explainable to end users.  

Principle ML-2: The intelligent assistant should heed end users’ corrections. 

 

Principle Representation-1 was inspired by the information content that traditional 

debugging systems provide. Such systems provide a representation of the logic (source 

code) that the programmer can edit. They also provide ways to inspect concrete data 

about program execution states. For example, debuggers provide access to the value of 

variables and the stack.  

Principle Representation-2 boils down to being fully truthful with the user about the 

assistant’s logic. Machine learning often uses complex statistical models, so there is a 

 

Figure **WhyQuestionsMenu: The Why questions as presented in our prototype. 
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temptation to hide complex details from the end user in an effort to make the system 

easier to understand. Recent research [Tullio et al. 2007], however, showed that end users 

could understand the logic machine learning systems use to make their decisions, at least 

in a rule-based system **2.9. Further, obscuring this logic would break the debugging 

“principle of immediacy” [Ungar et al. 1997] by creating an artificial division between 

the logic end users can view and interact with, and the underlying logic actually 

responsible for the assistant’s output. Thus, abstracting away portions of the assistant’s 

logic may hamper, rather than help, the user’s debugging efforts. **1.2, **2.8 

Principle ML-1 is almost a corollary to Principle Representation-2. We wanted to 

support underlying learning algorithms more complex than the trivially explainable 

decision trees, but not algorithms so complex that supporting Principle Representation-2 

would become impossible. Regarding Principle ML-2, we also required that the 

underlying learning algorithm must be responsive to the user’s interactive manipulations 

to the logic representation. We expand upon both of these points in the next subsection.  

3.3 The Answer Design Principles and the Underlying Machine Learning 

Engine **D2? **MMB to WKW, pls chk wording of entire subsection. 

With these four design principles in mind, we chose the naïve Bayes [Russell and 

Norvig 2003] algorithm for our prototype. Naïve Bayes is a widely used algorithm for 

text classification, more complex than ordinary decision trees, yet seemed potentially 

explainable to end users (Principle ML-1).  

The machine learning features in our e-mail prediction application were the words 

embedded in actual e-mail messages. Given our choice of naïve Bayes as the learning 

algorithm, these features and their associated predictive value for a classification are a 

complete representation of the assistant’s logic. The execution state of the assistant is 

therefore the current set of predictions resulting from this logic, including the assistant’s 

degree of certainty in each prediction. This application of Principle Representation-1 thus 

results in user-manipulable logic (words and their associated importance), changes to 

which affect the assistant’s execution state (its predictions and their associated 

confidence). 

Although our previous work [Stumpf et al. 2007] found that rule-based explanations 

were the most easily understood type of explanation, Principle Representation-2 
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stipulates that the explanation should accurately reflect the logic of the assistant. Thus, 

given our use of naïve Bayes, we chose keyword-based explanations consisting of words 

and their weights. To implement Principle Representation-2, the visualization is a truthful 

reflection of the logic of naïve Bayes and hence displays the union of all words in all e-

mail messages. We allowed users to adjust the weights of any word.  Because naïve 

Bayes classifiers also use class distribution to inform their predictions, the distribution of 

messages across folders is also shown to the end user. Hence, the visualization and 

manipulations allow the user to directly change the logic the assistant should follow, 

based on an accurate representation of how the logic works. 

Principle ML-2 says that corrections end users give the system should be heeded. We 

had considered using user co-training [Stumpf et al. 2009] as the underlying algorithm. 

When user co-training receives new information from the user about a feature’s value to a 

folder, this technique assigns a new weight, based on a combination of the user-assigned 

value and the classifier’s internal weight—which could potentially be quite different from 

the user-assigned value. In our previous work with user co-training [Stumpf et al. 2008], 

we observed that this behavior was frustrating to users because it made the algorithm 

appear to “disobey” the user’s corrections. Thus, instead of user co-training, we modified 

the naïve Bayes implementation such that corrections can be integrated in a 

straightforward manner and, when the user modifies the weight of a word, the classifier 

can set the new value to be close to the value specified by the user. **2.1  

Being responsive to user corrections can be problematic because machine learning is 

statistical, and a single user correction may be such a small portion of data, the machine 

can appear to ignore it. When making the intelligent assistant heed the user’s correction, 

applying the user’s input directly could entirely discard the statistical aspect of machine 

learning, which is counter to our interest in improving the assistant’s intelligence (not 

discarding it). Naïve Bayes can, however, make a slight modification to the user-assigned 

weight by treating the user-specified folder assignment for the current e-mail as a new 

training data point for the classifier. This alteration makes the classifier more sensitive to 

user feedback in the interactive setting. Without it, changing the weight of one out of 

thousands of available features (e.g. changing the weight on one word out of the 
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approximately 6,000 different words contained in our email messages) would have little 

noticeable impact on classification. 

3.4 End-User Debugging with Answers **D2 

From these design choices, the answers took the following form. Textual answers are 

provided for all questions, giving high-level explanations about the logic of the assistant 

and general suggestions about how to debug the program, but three questions are also 

answered through detailed visualizations of the assistant’s logic: these answers formed 

the debugging mechanism for the end user. 

These answer visualizations are shown in Table **WhyAnswers. Similar to ExplainD 

[Poulin et al. 2006], bars represent the importance of each feature to a given 

classification. However, rather than using bar area to indicate a feature’s contribution 

toward the learning system’s prediction, we indicated importance via bar location. By 

changing a bar’s location, the feature’s weight can be adjusted in real-time **2.4, **2.5.  

The choice of bars, as opposed to points or some other representation, was because their 

large target size makes mouse-based interaction and visual discrimination easy.  To 

debug the assistant’s faulty logic, users can change these answers by manipulating the 

bars, which operate like sliders or faders, with the weight of evidence represented by each 

bar being the midpoint of the bar **2.16. 

Providing the necessary interactive aspect for these bar visualizations required 

support from the underlying machine learning algorithm. Before explaining how these 

visualizations were implemented, we formally define the following properties of the 

naïve Bayes algorithm. An e-mail message is represented as a “bag of words”, i.e., a 

Boolean vector W = (W1, …, Wm) in which Wi takes the value true if the ith word of a 

vocabulary of m words is present in the e-mail message and false otherwise. The 

vocabulary in our experiment consists of the union of the words from the following parts 

of all the e-mails: the message body, the subject line, and e-mail addresses in the ‘To’, 

‘From’ and ‘CC’ parts of the message header. Stop words, which are common words with 

little predictive value (such as “a” and “the”) were not included in the vocabulary. 

3.4.1 Answering: “Why will this message be filed in <Folder>?” and “Why does 

<Word> matter to <Folder>?” **D2 
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In previous work [Stumpf et al. 2007] we observed that end users understood how the 

presence of keywords influenced a message’s classification, but they struggled with the 

concept of how the absence of words influenced the same classification. We addressed 

this difficulty in a novel way by showing the weight associated with each word in the 

vocabulary via a bar positioned between the two extremes of Required and Forbidden, 

shown in the leftmost images of Table **WhyAnswers. For folder f, the weight of a word 

is the probability P(Wi = true | F = f) where Wi is the random variable for the ith word 

and F is the random variable for the folder. The closer the bar is to Required, the more 

important the presence of the word is to the prediction. If the top of the bar is at its 

highest position, then P(W = true | F = f) = 1.0. If the top of the bar is on the black line in 

the middle, then P(W = true | F = f) = 0.0.  Since P(Wi = false | F=f) = 1.0-P(Wi = true | 

F = f), the position of the bottom of the bar can also be interpreted as the probability of 

the absence of the word. If the bottom of the bar is at its lowest position, (i.e. closest to 

Forbidden), then P(W = true | F = f) = 0.0. In reality, although the end user is able to set 

the bars to its highest or lowest positions, the probability P(W | F=f) is never set to the 

extreme values of 1.0 or 0.0 due to the naïve Bayes algorithm’s use of Dirichlet priors to 

smooth the probabilities. As a result, the probabilities will be an epsilon different from 

Table **WhyAnswers: Visual explanations for three Why questions. 

Why does 

<word> matter 

to <folder>? 

Why will this message be filed to 

<folder>? 

Why won’t this 

message be filed 

to <folder>? 
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the extremes and the bar will be positioned slightly below / above the Required / 

Forbidden level in the visualization. 

Aside from the probability P(W | F), the naïve Bayes classifier also uses the class 

probability P(F). We chose not to display P(F) because the training set consisted of an 

equal number of emails in each folder.  

3.4.2 Answering: “Why won’t this message be filed in <Folder>?” **D2 

The answer to this question is in the form of a dual-bar view that allows the user to 

compare and contrast the importance of words between the two folders, shown in the 

right image of Table **WhyAnswers. The bars show the respective weights for the 

currently predicted folder f, and the other folder f’ the user indicated, where the positions 

of the bars correspond to P(Wi = true | F = f) and P(Wi = true | F = f’), respectively.  

We can illustrate the degree that an e-mail “belongs” to either folder f or f’ using the 

arrow, as shown at the top of Figure **DebuggingFeatures. The angle of the arrow 

between the folders is based on the difference between P( F = f’ | W1, …, Wm) and P( F = 

f | W1, …, Wm). This also serves to reveal the execution state to the end user. Since the bars 

allow weights associated with the two folders f and f’ to be manipulated, changes to 

individual words by the end user that result in P( F = f’ | W1, …, Wm) > P( F = f | W1, …, 

Wm) will be shown by the arrow moving to point to folder f’ instead.  

3.5 Debugging Scenario Using the Prototype **D2 

Figure **Prototype shows how the debugging supports we have described are 

brought together in our email prototype. The user’s view consists of familiar e-mail client 

elements: a folder list (A), a list of headers in the current folder (B), and the current 

message (C). In addition, it includes debugging panes that hold textual answers (D) and 

interactive visualizations (E).  
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If at some point the user wants to know why the program is behaving in a particular 

way, she can ask Why questions either through the global menu bar or a context-sensitive 

menu and receive an answer which supports debugging. Consider the following scenario: 

A user notices that her intelligent assistant thinks a message about Systems belongs in the 

Resumes folder. In Figure **DebuggingFeatures, this user has just asked why the 

message is not filed under Systems. The keyword bar graph shows the system’s opinion 

of the importance of each word to the Resumes folder (dark pink), which is the current 

folder for this message, versus importance to the Systems folder (light blue). While 

reviewing this explanation, the user quickly identifies a problem—her assistant thinks the 

word “please” is equally important to both folders.  The user disagrees; she wants to tell 

her intelligent assistant that she rarely sees the word “please” in messages from the 

Systems group. Thus, she drags the light blue bar lower (second from left); how much 

lower depends on her assessment of how important “please” should be to the Systems 

folder. The dark blue bar indicates the original importance of “please”, allowing the user 

 

Figure **Prototype: Screenshot of the prototype. 



 19 

to see her change and its magnitude. **3.2 

User changes to each bar graph entry cause the system to immediately recalculate its 

predictions for every message in the inbox, allowing users to instantly see the impact of 

their manipulations. These changed folder predictions are shown through a change in 

direction of the arrow between the two folders for the currently viewed message. They 

are also listed textually next to each message header in the inbox, highlighting headers 

whose predictions have changed. For every manipulation, the user immediately sees how 

both the source code (in terms of the importance of words), and the execution state (e.g., 

the resulting program’s predictions), have changed. 

4. Addressing Debugging Barriers and Information Needs 

using the Why-Oriented Approach **D1 

To investigate obstacles end users might encounter while correcting an intelligent 

assistant using this new approach, we conducted an exploratory study using the prototype 

we have just described. Our purpose was not a summative evaluation of the prototype, 

but rather to investigate three questions to understand how our approach could be 

 

Figure **DebuggingFeatures: Close-up of the visualization/debugging features. The 

user has just decreased the importance of “please” to Systems by dragging the blue 

(light) bar downward, but the system still thinks the message belongs in Resumes. 
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extended to further support end-user debugging: when and where end-user debuggers 

encounter problem areas (barriers), what could help users when they encounter these 

problem areas (information needs), and how machine learning algorithms could help 

address the barriers and information needs. Further, since researchers have recently found 

evidence of gender differences in debugging, we investigated gender as an aspect to 

highlight design considerations that could differently impact subsets of end users. 

4.1 Exploratory Study Design 

4.1.1 User Study Design and Participants **D1 

The study used a dialogue-based think-aloud design, in which pairs of users talked to 

each other while collaborating on a task. The pair design was to encourage “thinking 

aloud” by leveraging the social norms that encourage people to voice their reasoning and 

justifications for actions when working with a partner. 

Six pairs of female and five pairs of male students participated. The pairs were evenly 

distributed by gender across GPAs, years in university, and e-mail experience. All 

twenty-two participants were required to have previous e-mail experience and no 

computer science background. In order to eliminate a lack of familiarity with each other 

as a potential confound, pairs were required to sign up together. Pairs also had to be 

same-gender, so that we could clearly identify any gender differences that might arise. 

We ran the study one pair at a time. Each session started with the participants 

completing a questionnaire that asked for background information and gathered standard 

pre-session self-efficacy data [Compeau and Higgins 1995]. We then familiarized the pair 

with the software and examples of classification through a 20-minute hands-on tutorial. 

The tutorial taught participants about the filing and classification abilities of the 

prototype, taught them how to ask the prototype questions, and gave an overview of the 

the prototype’s answers and how to change those answers **3.2. 

For the study’s main task, participants were asked to imagine they were co-workers in 

a corporate department at Enron. Their department included a shared e-mail account to 

provide easy access to work communications that affected all of them. The premise was 

that new e-mail software, featuring the ability to learn from the users and automatically 

classify messages into a set of existing folders, had recently been installed; their 

supervisor then asked them to get messages from the Inbox into the appropriate folders as 
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quickly as possible, doing so in a way that would help improve later classification. 

Because the prototype’s classifier did not train on (and thus, did not learn from) messages 

the participants manually dragged to folders, the task encouraged participants to debug 

the system via the interactive explanations **3.2. 

We used the publicly available Enron e-mail data set in our study. To simulate a 

shared mailbox, we combined messages that three users (farmer-d, kaminski-v, and 

lokay-m) had originally filed into five folders (Bankruptcy, Enron News, Personal, 

Resumes, and Systems). At the start of the session, each folder held 20 messages that 

were used to initially train the classifier.  Participants were given five minutes prior to the 

main task to familiarize themselves with the existing categorization scheme, so that they 

would have an idea of how new messages should be filed **3.2, **3.4. The Inbox 

contained 50 more messages for the participants to work on. The amount of training data 

was small to simulate real-world situations in which users have not invested the time to 

label hundreds of training examples. 

The pair worked on the main task for 40 minutes, with participants switching control 

of the mouse half way through the session. We used Morae software to capture video and 

audio of each user session, synchronized with their screen activity. Our prototype also 

logged each user action. After completing the main task, participants individually filled 

out a questionnaire gathering feedback about the prototype and their post-session self-

efficacy. 

4.1.2 Analysis Methodology **D1 

To analyze the participants’ verbal protocol during our study, we developed two code 

sets (Table **BarrierCodes) to capture barriers and debugging activities. Ko et al. 

identified six types of learning barriers experienced by novice programmers using a new 

programming environment [Ko et al. 2004]; these barriers informed our investigation 

because our participants, like theirs, were problem-solving about how to make programs 

work correctly and were inexperienced with the provided facilities for debugging. 

Because our debugging environment is substantially different than the traditional textual 

programming environments studied [Ko et al. 2004], we adjusted the definitions of Ko’s 

barriers to map the high-level problems each barrier describes to the problems 

participants faced while debugging with our prototype **2.2, **3.5: 
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 Design barriers are situations where the end user does not know what they 

want the computer to do.  When debugging an intelligent assistant, this means 

the user doesn't have a clear idea of how to go about fixing the assistant. 

 Selection barriers occur when the end user knows what they want the 

computer to do, but does not know which programming tools will accomplish 

their goal. Our why-oriented approach's programming tool is the ability to 

adjust the assistant's logic via feature modification, so we mapped selection 

barriers to end user difficulties in selecting which feature to adjust. 

 Coordination barriers are times when the user knows the programming tools 

they want to use, but does not know how to make them work together. As 

with selection barriers, our programming tool is the ability to modify the 

features the assistant uses to classify items; such feature adjustments may alter 

multiple classifications. Thus, coordination barriers in this domain reflect the 

difficulty of coordinating how changes to the assistant's logic are reflected in 

updated classifications. 

 Use barriers are situations where the end user knows which programming 

tools they want to use, but does not know how to use them properly. Our 

approach's UI affordance for feature modification is to drag a slider up (to 

increase the importance of a feature's presence) or down (to increase the 

importance of a feature's absence). Trouble deciding in which direction and to 

what extent to adjust this slider is our approach's version of use barriers. 

 Understanding barriers occur when end users thought they knew what to do, 

but the results of their actions was surprising.  This barrier very cleanly 

mapped to situations where the end user was surprised by the assistant's 

feedback. 

  The first five barrier names and examples of participant utterances assigned to each 

code are in Table **BarrierCodes. We did not use Ko et al.’s sixth barrier (searching for 

external validation), because problem solving in our study was based on facts internal to 

our environment. Regarding debugging activities, previous research [Davies 1996, Ko 
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2008] identified six common actions in fixing bugs in programming environments. We 

applied the two of these not involving data structuring or writing new source code, and 

also introduced a fault detection code. These codes are also given in Table 

**BarrierCodes. 

We applied the codes to “turns”. A turn consisted of sentences spoken by a 

participant until his or her partner next spoke. Speech by one participant that contained a 

significant pause was segmented into two turns. If the same barrier spanned multiple 

Table **BarrierCodes: Coding scheme used to analyze our data. The examples are 

from actual participant transcripts **3.5. 

 Code Meaning Example 

B
a
rr

ie
rs

 

Design  Uncertainty regarding 

overall debugging strategy 

(i.e., designing a solution to 

the problem).  

“Can we just click File It?” 

Selection Knows what to do, but is 

having trouble selecting 

which object to change.  

“What kind of words should 

tell the computer to [file this] 

to Systems?” 

Coordination Doesn’t understand how 

changes affect the rest of the 

system.  

“Why... why it won’t go to 

Personal...” 

Use Trouble determining 

appropriate weights to use 

with the source code 

visualization.  

“So is [this word] 

‘unimportant’?” 

Understanding Doesn’t understand the 

system’s feedback.  

“Why is ‘web’ more forbidden 

for [the] Systems [folder]?” 

D
eb

u
g
g
in

g
 A

ct
iv

it
ie

s Fault Detection Detecting an incorrect 

prediction by the system.  

“It’s going to [the] Systems 

[folder]; we do not want 

Systems.” 

Diagnosing Diagnosing the specific 

cause of a detected fault.  

“Well, ‘e-mail’ needs to be 

higher.” 

Hypothesizing Hypothesizing a general 

solution for a detected fault.  

“Let’s move something else, 

and then maybe it’ll move [the 

e-mail] to Systems.” 
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turns (for example, if one person was interrupted by the other), only the first occurrence 

of the barrier was coded. Only one code could be applied per turn. 

Coding iteratively, two researchers independently coded a 5-minute random section 

of a transcript. We calculated similarity of coding by calculating the Jaccard index, 

dividing the size of the intersection of codes by the size of the union for each turn, and 

then averaging over all turns. Disagreements led to refinements in coding rules that were 

tested in the next coding iteration. Agreement eventually reached 82% for a five-minute 

transcript section, followed by an agreement of 81% for a complete 40-minute transcript. 

Given this acceptable level of reliability, the two researchers divided the coding of the 

remaining transcripts between themselves. A two-minute section of a coded transcript is 

include in Table **CodedTranscript to illustrate the application of our final code set. 

Table **CodedTranscript: Example of our code set applied to a participant 

transcript **3.5. 

Time Participant Utterance Code 

11 P1 

And then...  [looking at another email] 

should this be in Personal?  It'll be all right.  

EOL...dist-dist-distributions?  How come 

everything is going to Personal? 

Coordination 

11 P2 

Because we filed to Personal last time.  The 

system learned from other email.  [clicks on 

'windows 2000/outlook delay']  But this 

email should go to...systems.  So would we 

have to change every single one? 

Selection 

12 P1 Did we do something wrong in the 

beginning? 
Design 

12 P2 I think this one can go to Personal.  

12 P1 
Do we have to change the same thing again?  

Can we drag?  If we drag we have to do it 

for every one. 

 

12 P2 Do we need to make them learn everything? Design 

12 P1 But I don't want to have to do it every time 

so like in next 10 minutes. 
 

12 P2 So you adjust every single message. Hypothesizing 

12 P1 Or maybe just this one.  Maybe it will 

learn...I don't know. 
Hypothesizing 

13 P2 
[ask 'why won't this message be filed to 

systems' and sorts words alphabetically.  

Finds 'windows'] Oh look it should be 

Diagnosing 
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important but it's not.  [drags 'windows' up 

to increase importance] But I don't think 

we'll need that one that long.  So can you go 

back? 

13 P1 Are you sure it's enough? Use 

4.2 Results: Debugging Barriers (When and Where) 

4.2.1 Barriers Encountered **D1 

Our participants’ attempts to debug ran into numerous barriers, encountering an 

average of 29 barriers during the 40-minute study (with a range from 7 to 66). The 

number of barriers encountered can be contrasted with the number of messages 

participants actually filed (mean=16.1, SD=8.3); participants were less likely to 

encounter a situation where they felt comfortable filing a message than they were to 

encounter an obstacle while attempting that task **3.4. These barriers were equally likely 

to be encountered at the beginning and end of the study, but were unequally encountered 

between participants: a strong relationship existed between participant self-efficacy and 

the number of barriers they encountered (normalized for the number of utterances each 

participant made) (linear regression, F(1,9)=7.11, R
2
=0.44, beta=-0.005, p=.026) **3.4. 

Everyone hit barriers, and the participants who encountered them the most had the lowest 

confidence in their ability to fix the assistant to begin with, thus underscoring the 

importance of addressing these barriers in approaches for debugging intelligent assistants. 

As Figure **BarriersEncountered shows, the most frequent barriers our participants 

encountered were Selection barriers (40% of all barriers). Selection barriers relate to the 

difficulty of selecting the right words or messages to modify in order to correct the 

program. In Ko et al’s work [Ko et al. 2004] on traditional programming environments, 

Selection barriers did not play a large role, but this kind of barrier seems to pose a 

substantial problem to debugging intelligent assistants. This participant, for example, was 

having trouble determining which features are important for the Systems classification: 

**1.4 

P712: “Then ‘news’? Well, they like team players. Contributions? That 

would be more that you’d use for news than Systems.” 

Coordination barriers also arose frequently (28% of all barriers). Participants often 

wondered how the corrections they were about to give would change the system’s other 
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predictions, as well as coordinating how the system responded (or failed to respond) to 

their source code modifications: 

P732: “Resume? [user finds word, makes ‘resume’ required] Why didn’t 

it change it?” 

Further evidence that Selection and Coordination barriers were especially 

problematic comes from participants’ questionnaire responses, where 16 of 22 

respondents (72%) mentioned difficulty in determining which words were important 

when fixing misclassified mail. 

Some barriers encountered frequently in traditional programming environments did 

not play as much of a role as expected in debugging intelligent assistants [Ko et al. 2004]; 

our findings also contradict specific problems with strategy in end-user debugging 

[Kissinger et al. 2006]. Our participants ran into Design and Use barriers less frequently 

(14% and 12%, respectively), possibly because debugging via our approach involved 

programming constructs (i.e., feature adjustments) which only had two options—a 

feature could be made either more or less important. Both [Ko et al. 2004] and [Kissinger 

et al. 2006] explored programming environments with a wider array of available 

constructs (Visual Basic .NET and spread sheet formulas, respectively). Their 

participants may thus have had more opportunities to strategize about their debugging 

approaches, and we would expect recalling the proper usage of each programming 

construct to be more difficult than the two options (e.g., dragging a bar up or down) 

 

Figure **BarriersEncountered: Sum of barriers encountered in all transcripts. 
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available to our participants. While Design and Use barriers should not be neglected, the 

predominance of Selection and Coordination barriers in this domain suggests that end 

users may have less trouble deciding on a strategy for how to give feedback (Design and 

Use), than on where to give feedback (Selection and Coordination) **1.5.  

Our results highlight that the kinds of barriers encountered while debugging 

intelligent assistants may be rather different than those seen in traditional programming 

environments, and hence require their own specialized support. Our Why-oriented 

approach provides explanations of source code and execution state, but the prevalence of 

the Selection and Coordination barriers suggests the need for debugging approaches to 

also help users identify the most useful places to change the source code (fault 

localization) as well as explaining the likely effects of executing such changes (run-time 

outputs). 

The differences between the barriers our participants encountered and those faced by 

Ko's participants may also be related to differences in the programming environments.  

Our why-oriented approach included many instances of a single programming construct 

(feature importance); participants had relatively few problems using or understanding the 

results of interaction with this construct, but a great deal of difficulty in selecting which 

instances of the construct to interact with.  The integrated logic of machine learning 

systems may have further contributed to these obstacles, causing confusion when 

multiple predictions changed as a result of a single feature modification.  Our prototype's 

design may also have played a role: by showing feature weights in the context of 

particular messages, participants may not have expected adjustments to impact the 

assistant's other predictions. Even if participants did expect such wide-ranging changes, 

the difficulty of coordinating which and how many predictions changed in response to 

each user modification seems an innate issue with intelligent assistants—regardless of the 

underlying learning system, there are multiple possible “fixes” to the logic that will result 

in a particular item changing its classification.  If a user is focused on a single prediction, 

this reduces their search space by providing many possible targets.  However, finding the 

precise fix that both adjusts the item as desired and does not negatively impact other 

predictions may be considerably harder than in environments where each programming 

change is isolated to a single section of the application’s logic.  Such a situation would 
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explain why our participants often encountered Selection and Coordination barriers, 

while Ko’s most frequently hit Use and Understanding barriers **2.3. 

4.2.2 Gender Differences in Barrier Encounters **D1 

Are barriers different for male and female end-user debuggers, and will overcoming 

them require different kinds of support? Interestingly, males and females did not appear 

to experience the same number of barriers: females encountered an average of 33.3 per 

session, versus the male average of 24.4 per session. This difference was despite the fact 

that males talked more (and thus had more opportunities to verbalize barriers) than 

females, averaging 354 turns per session, compared to 288 for females. 

Figure **AverageBarriers shows the average barrier count per session (the same 

differences are also present in comparing the average barrier counts per turn). Females 

experienced more barriers in almost every category; the only exceptions were 

Coordination and Understanding. Selection barriers, the most common barrier type, had a 

large difference: females averaged 14 per session, about 1.5 times as many as the male 

average of nine. This difference was statistically significant despite the small size of our 

sample population (Wilcoxon Rank-Sum Test: Z = 2.1044, p < 0.05). Design barriers, 

too, exhibited a strong contrast, with females averaging 5.3 per session versus males 

averaging 2.8. The differences in both the total number of barriers and Design barriers 

encountered were not statistically significant, but this may be a result of our small sample 

size (totaling six female and five male pairs). A statistically oriented experiment with a 

larger sample is needed to provide more conclusive evidence. 

One reason for the apparent differences may be that females expected more problems 

due to lower self-efficacy (a form of self-confidence specific to the expectation of 

succeeding at an upcoming task [Bandura 1977]). As referenced earlier, there was a 

significant, inverse correlation between self-efficacy and the number of barriers a 

participant encountered. Females came into the study with lower self-efficacy (measured 

via a self-efficacy question set [Compeau and Higgins 1995]) than males, scoring an 

average of 38 out of a possible 50, compared to 42 for males (Wilcoxon Rank-Sum Test: 

Z = -2.64, p < .01). This is consistent with similar self-efficacy differences for end users 

engaging in other complex computer tasks [Beckwith et al. 2005, Grigoreanu et al. 2008, 

Subrahmaniyan et al. 2008]. As we show in the next section, our results about differences 
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in barriers are consistent with prior research in another aspect as well: these prior works 

showed gender differences in both features used and the strategies end users employed to 

find and fix errors in spreadsheets. 

Another possible cause of the observed disparities may be gender differences in 

information processing. For example, work on the selectivity theory of information 

processing [Meyers-Levy 1989] has shown a number of differences in how males and 

females process information. According to this theory, females are more likely to work 

with information comprehensively, whereas males are likely to pursue information more 

selectively. The following quotes illustrate the tendency our female pairs showed toward 

examining several words from a message before moving on, versus males’ propensity for 

advancing to the next message as quickly as possible:  

Female Pair 

P1131: “So that [word is] really important. And then, um, probably 

‘updates’ would be important. And then, um... [the word] ‘virus’?”   

P1132: “Yeah. And then, uh, [the word] ‘login’.” 

Male Pair 

P1211: “Its [classification is] correct. It’s learned something, eh.”   

P1212: “Um hmm.” 

P1211: “Lets go to the next message.” 

 

Figure **AverageBarriers: Average number of barriers per session 

encountered by males (dark blue bars) and females (light pink bars). 
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The selectivity theory is also consistent with our frequency data: females worked with 

a larger set of words than males did (106 unique words for females vs. 62 for males), 

perhaps to perfect the algorithm’s performance. Males, conversely, may have been more 

inclined to move on to the next message as soon as they obtained the desired effect. 

Supporting this hypothesis is the average number of messages each group filed—male 

pairs averaged 19.8 messages filed in each 40-minute session, while female pairs 

averages 13.0. This suggests that in order to successfully support a wide range of end 

users, debugging features should be designed so that both of comprehensive and selective 

strategies can lead to success **1.6. 

4.2.3 Barrier Transitions and Gender Differences **D1 

When a participant encountered a barrier, what happened next? Were there different 

patterns of what male and female participants did after a hitting barrier? Encountering a 

barrier may have sent participants spiraling into non-productive repetition, or maybe they 

were able to overcome the barrier by themselves. Understanding how barriers are 

encountered and resolved (or not) can provide insight into their severity and impact on 

debugging intelligent assistants, and highlight when additional support may be most 

necessary. 

To answer these questions, we investigated the sequence of barriers encountered and 

looked for differences between male and female participants. The barriers and debugging 

activities coded in participants’ verbalizations are simply states between which they can 

transition. To calculate the probability of each state (barrier or activity) following an 

initial barrier, we divided the number of occurrences of a particular subsequent state by 

the total number of states that followed the initial barrier. For example, if Selection 

followed Design once and Diagnosing followed Design twice, then the probability of 

Selection following Design was computed as 1/(1 + 2) = 0.33, or 33%, and the 

probability of Diagnosing following Design was computed as 2/(1 + 2) = 0.66, or 66%. 

We use these probabilities only for clarity; our graphs (Figures **Transitions1, 

**Transitions2, **Transitions3, and **Transitions4) show the exact number of instances 

for completeness. 

Initially, we hypothesized that there would be a commonly followed path through the 

barriers, which could allows us to support debugging at the right time. For example, 
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perhaps most users would flip between Design and Understanding barriers at the 

beginning of the task. Once those early hurdles were overcome, they might cycle through 

Selection, Coordination, and Use barriers until they understood the assistant’s logic, after 

which barriers would be encountered with considerably less frequency. When examining 

our participants’ data, however, we saw no discernible tendency for users to encounter 

barriers in specific orders or at consistent times during their debugging session. Nor did 

barrier frequency change in any significant way over time; users were just as likely to 

encounter Design barriers in the first five minutes of the study as they were in the final 

five minutes. This suggests that an approach aiming to support end-user debuggers in 

overcoming barriers must support finer-grained patterns of barriers as they are 

encountered, instead of basing its explanations on an expected common path. 

Both male and female end users exhibited finer-grained patterns for many of the 

individual barriers. Although no single barrier stood out as a frequent transition from 

Design (Figure **Transitions1), when we examined gender differences, we found that 

males reacted to Design barriers with some form of debugging activity on average 70% 

of the time, versus 46% for females. Thus, it appears that Design barriers proved less of a 

problem to males than females, since they were able to move on to a debugging activity 

instead of encountering another barrier. Since Design barriers relate to a user lacking a 

debugging strategy, an implication of this gender difference is that our approach’s 

explanations for overcoming these barriers should be certain to include strategies other 

researchers have identified as frequently employed by female end-user debuggers 

[Subrahmaniyan et al. 2008]. 

Figure **Transitions2 shows that the most common action following a Selection 

barrier was the debugging activity Diagnosing, which occurred after 40% of Selection 

barriers. The next most prevalent code was a second Selection barrier (19%), suggesting 

that Selection barriers were either quickly overcome, leading to Diagnosing, or they 

cascaded, stalling participants’ debugging progress. This implies that once a user first had 

trouble deciding where to give feedback, they became less and less able to do so. Figure 

**ExampleTransitions illustrates the problem by graphing all of the barrier transitions for 

one of our participant pairs (P701 and P702). The high number of incoming edges to the 

Selection box was typical, as is the loop from Selection back to itself. We already 
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discussed the high number of Selection barriers overall, but Figure **Transitions2 points 

to these barriers specifically stalling participants. This suggests the need for our approach 

to point out which words or features would be most likely to change the program’s 

behavior; we discuss how this might be done in Section 4.4.1. These participants, for 

example, could have benefited from this sort of help: 
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Figures **Transitions1, **Transitions2, **Transitions3, and **Transitions4 (from 

top to bottom): Number of transitions from barriers to other barriers or debugging 

activities. Light squares indicate one instance by a female pair; dark squares 

indicate one instance by a male pair. Barrier nodes are colored light purple; 

debugging activity nodes are dark blue. 
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P732: “And what about ‘interview’? Oh, we just did that, so no. 

‘Working’, maybe?” [finds word]   

P731: “Well, no because ‘working’ could be used for anything really.”   

P732: “True.”   

P731: “‘Work’, no.”   

P732: “What about... [scrolls left] ‘scheduling’. No, that could be 

News.”   

P731: “That could be News, too.”   

P732: “What about ‘scientist’?”   

P731: “That could be Personal.” 

What about those users who did not stall on Selection barriers? Males had a higher 

tendency of Hypothesizing following a Selection barrier than females, 26% to 11%. 

Recall that Hypothesizing was coded when the pair discussed a possible fix but didn’t 

include a specific word, whereas Diagnosing indicates that the pair specified the word 

they intended to modify. Thus, males were more likely to follow a Selection barrier with 

a general solution, while females tended to first agree on a word to alter. Why this 

difference? We know our female participants came into the study with lower self-efficacy 

than our male participants, and prior research [Beckwith 2007] has revealed female end 

users to be more risk averse, in general, than male end users. Both low self-efficacy and 

risk-aversion may have been alleviated by the pair coming to agreement about the best 

way to proceed; a participant’s self-efficacy could be boosted by discovering her partner 

agrees with her idea, and this improved confidence may in turn lower the perceived risk 

of the proposed debugging fix. Our approach could use the same solution proposed to 

help users overcome Selection barriers (directing end users toward words which will have 

the strongest effect on message reclassification) to help low self-efficacy users as well, by 

reducing the choice of which words to modify down to a more manageable, less 

intimidating subset. 

Like Selection barriers, Coordination barriers often led to Diagnosing (30%) (Figure 

**Transitions3). Taken together with the other two debugging actions, Fault Detection 

(14%) and Hypothesizing (20%), this barrier was followed by a debugging action 65% of 

the time. Males, however, tended to follow Coordination barriers with more Diagnosing 

than females (47% vs. 18% respectively), whereas females followed them with more 

Hypothesizing than males (29% vs. 8%). One interpretation of these results is that 
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following confusion regarding the impact of their changes, female participants were more 

likely to step back and attempt to coordinate how their changes will impact the entire 

system, whereas males tended to stay focused on a specific failure. This would be yet 

another indication of the comprehensive problem-solving strategy associated with 

females [Meyers-Levy 1989], providing further evidence of the need to support both 

comprehensive and non-comprehensive problem-solving strategies in end user debugging 

environments. 

Finally, Use barriers (Figure **Transitions4) were strongly tied with a transition to 

Diagnosing (44%); all other transitions were below 15%. It seems that when a Use 

barrier was encountered, our participants’ response was to adjust their specific solution, 

rather than move to a different problem or generalize a solution. This was equally true for 

males and females. It appears that participants can frequently overcome this barrier by 

themselves and only need additional help in a few instances. 

Thus, our why-oriented approach did not prove successful at reducing the number of 

barriers participants encountered over the duration of the study.  The patterns of barrier 

transitions is consistent with the Selectivity Hypothesis information processing strategies 

discussed earlier, adding additional emphasis to the need for intelligent assistant 

debugging approaches to support both selective and compressive information processing 

strategies **2.23. 
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4.3 Results: Information Needs (What Could Help) 

4.3.1 What Participants Wanted to Know **D1 

What information would have helped our participants overcome these debugging 

barriers? To explore this, we manually compiled a list of every question participants 

asked during the course of the study, and two researchers iteratively grouped the 

questions based on the type of information being requested **3.6. This grouping resulted 

in the seven knowledge bases described in Table **InformationNeeds; the example 

questions in each category were taken verbatim from participant quotes. The information 

needs were nearly always in transcript segments that also contained a learning barrier (as 

described in section **4.1.2).  We thus were able to calculate the relationship showing a 

categorization of participants’ verbalizations expressing what they wanted to know when 

they encountered each barrier.  This information is presented via the graphs in Table 

**InformationNeedsFigure: each graph illustrates the percentage of learning barriers 

where participants explicitly requested a specific type of information to overcome the 

barrier **3.6.  Figure **InformationNeedCounts shows the frequency of each category. 

 

 

Figure **ExampleTransitions: An example participant pair’s path through the 

debugging barriers. The width of the arrows indicate the percentage of transitions: 

thinnest = 6%, thickest = 20%. Transitions accounting for 5% or less of the total are 

not shown. 
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As Figure **InformationNeedCounts illustrates, the most frequent information 

requested by end users was concrete advice about how to fix the machine’s logic. Users 

wanted to know specifically which word weights they should be modifying to move a 

message into a specific folder, how much they should be adjusting the word weights, and 

previews of what will happen after adjusting the weights of particular words. This type of 

information alone represented nearly half of the total information requests among 

participants (42% of all requests), suggesting that even satisfying solely this information 

need may address a large number of user difficulties. Our participants most frequently 

discussed the value of this information after encountering either a Selection (71%) or Use 

(86%) barrier, suggesting that satisfying these information needs through answers to our 

Why questions could practically eliminate these two barriers. 

The second largest set of user-requested information related to the intelligent 

assistant’s current logic. This includes user questions about why the intelligent assistant is 

behaving in a particular manner, such as “Why did this message turn red?” and “Why 

won’t this message be filed to Systems?”; participants most frequently expressed a need 

for this type of information after encountering a Coordination barrier (74%). This was the 

primary set of questions we hoped to answer via our Why-oriented debugging approach. 

Note that, as with the information needs regarding how to fix the assistant’s logic, users 

appeared to want concrete information; they mentioned specific messages and folders, 

rather than general questions about how the assistant makes predictions. This desire for 

 
Figure **InformationNeedCounts: The number of times each participant implied a 

particular knowledge base would help them overcome their current debugging 

barrier.  
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concrete solutions highlighted a nuance in our prototype: it coupled concrete visual 

explanations of word weights with generalized textual explanations of the assistant’s 

general algorithm for classifying messages. Participants frequently commented that the 

generalized textual answers to their questions did not change with context and were 

unhelpful. For example: 

P1001: Ok go to the ‘why’ button. [clicks on the global why menu] Ask 

‘why not Systems’. [asks ‘why won’t this message be filed to..?’]. 

P1002: It says the same thing about word importance. 

Thus, phrasing the explanation in the context of the message a user is currently 

working with may be a better way to present this particular type of information. 

When participants encountered a Design barrier, they frequently believed they could 

overcome it if they possessed more details about debugging strategies (61% of Design 

barriers) **2.24. These strategy questions fell into two categories: general, when the end 

user appeared to be searching for a different, better strategy (e.g., “Do we have to teach 

the system everything?”), and refinement, when the user had questions about particular 

aspects of their current strategy (e.g., “Should we file it now?”). Note that participants 

expressed more interest in information about debugging strategies than about the user 

interface features of our Why-oriented prototype. Prior research [Kissinger et al. 2006] 

regarding end-users debugging spread sheet formulas reported a similar difference, and 

posits that this is part of the phenomenon of “active users” [Carroll and Rosson 1987] 

who are primarily concerned with completing a task, rather than exploring “potentially 

interesting” user interface features **1.5. 

Participants expressed an interest in overviews of the existing data set they worked 

with, such as “How many messages are in each folder?” and “What other messages are 

[some word] used in?”, a need we also observed in a previous study [Stumpf et al. 2008]. 

While these only accounted for 7% of observed information needs, a data overview was 

requested after 15% of Selection barriers, suggesting that explanations providing these 

details may help alleviate the most egregious barrier we observed in this domain **2.24. 

Further, every participant pair save one explicitly requested an overview of the data at 

least once. Part of the reason may have been due to unfamiliarity with the set of e-mail 

messages our participants worked with, but even if they had such familiarity, such an 
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overview could be useful to gauge the importance of words and the distribution of 

classifications quickly in large data sets. 
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Table **InformationNeeds: Participants’ information needs when they encountered 

barriers. Graphs indicate the percentage of Design (D), Selection (S), Coordination 

(C), Use (U), and Understanding (Un) barriers participants explicitly mentioned 

needing to overcome each barrier. 

Participants Asked … When Would This Help? 

Debugging Strategy 

• Do we have to teach the system everything? 

• Is there an easy way to get through this? 

• Can we do this quicker? 

• Should we adjust anything at all? 

• Should we file it now?   

Explanations of User Interface Features 

• Can we go back and fix bad classifications? 

• Where’s the button that was supposed to show up? 

• Which color is related to which folder? 

 

Overview of Existing User Data 

• How many messages are going to each folder? 

• Where are similar message currently filed? 

• Is [some word] used in other messages or folders? 

 
ML Algorithm’s Capabilities 

• What parts of the message are used in 

classification? 

• Can the system handle phrases? 

• Can we include context of keywords? 

• Does changing a word weight affect other folders?  

ML Program’s Current Logic 

• Why did this message turn red? 

• Why are more messages being filed to [folder]? 

• Why didn’t anything change after my last action? 

• Why won’t this message be filed to [folder]? 
 

How to Fix the ML Program’s Logic 

• How important should [word] be? 

• Which word should we modify? 

• Which words should be ‘forbidden’? 

• What if we...? 
 

User Action History 

• What have we done? 

• Were our changes helpful? 

• Was one of our past actions wrong? 
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The final two information needs, machine capabilities and user action history, were 

rare, combining for only 5% of the combined information requests. Even though their 

occurrence was low, they may have fundamental effects; clearly, a flawed understanding 

of what the intelligent assistant is capable of parsing and using in its predictions would 

seriously impair one’s ability to provide useful feedback to the program, and a clear 

indication of the actions a user has performed over time may help end users understand 

the long-term effects of their changes on the assistant’s predictions. The idea of 

displaying the history of user actions is also consistent with the Whyline approach, since 

each user-made change to the assistant’s logic can impact the classification of multiple 

messages, and similarly, a single change in classification may be the result of a collection 

of multiple user adjustments. Explanations of why such a change in classification 

occurred would be incomplete if they omitted the user modifications contributing to the 

re-classification. 

4.3.2 Gender Differences in Information Needs **D1 

Since there were gender differences in the barriers encountered, we also investigated 

whether there were discernable gender differences in participant information needs that 

could help overcome these difficulties. 

Although our data are sparse, our female participants tended to have more questions 

about UI features than male participants (Figure **InformationNeedsGender). Previous 

 

Figure **InformationNeedsGender: Average number of information needs per 

session encountered by males (dark blue bars) and females (light pink bars). 
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research [Beckwith et al. 2005] has investigated gender differences in the adoption of 

debugging features for traditional programs. In that work, females were hesitant about 

adopting new features; they adopted them less frequently and later in the process than 

familiar features, and this had repercussion on new bugs introduced through their 

debugging activities. Our Why-oriented approach introduced a new set of features that 

are aimed at debugging intelligent assistants. Providing specific support to help 

understand these features and entice females to use these features may thus be warranted. 

An interesting gender difference among our participants was their interest in strategic 

and tactical information. Figure **InformationNeedsGender illustrates that information 

about Debugging Strategy and How to Fix the ML Program was requested twice as much 

by females as males. Information regarding How to Fix the ML Program is particularly 

applicable for overcoming Selection barriers (Table **InformationNeeds), which females 

encountered almost twice as frequently as males. Moreover, females tended to encounter 

further Selection barriers after the initial Selection barrier; providing this information 

could reduce the risk of females becoming stuck in these Selection barrier loops. 

Furthermore, providing How to Fix the ML Program information could help females to 

overcome Design barriers by moving on to debugging activities (e.g., diagnosing, 

hypothesizing, or fault detection).  

Recent work has explored the possibility of using textual and video explanations to 

present end users with debugging strategies [Subrahmaniyan et al. 2007]. Such 

techniques may be especially applicable in this domain because of low user self-efficacy 

regarding their ability to debug an intelligent assistant, and the inverse correlation we 

observed between participant self-efficacy and the number of barriers participants 

encountered. According to self-efficacy theory, watching similar people succeed at the 

same type of task not only helps guide users toward successful strategies, but may also 

increase their confidence in being capable of completing the task themselves [Bandura 

1977]. 

In contrast, we did not see gender differences in understanding how the intelligent 

assistant should operate. In our study, female participants requested an overview of 

existing user data and the machine’s logic and capabilities at about the same frequency as 
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males, suggesting no gender difference in reasoning about how the classifications should 

be made by the participants themselves.  

In summary, it seems that any gender differences in information needs were more 

strongly tied to needing explanations about how to strategically make changes than to the 

specifics of the assistant’s logic. Fulfilling these targeted information needs may help to 

remove the differences in barriers (particularly Design and Selection) that affected 

females more than males. 

4.4 How machine learning algorithms can better help users (How) **D0 

If the user and her program are to be partners, each has a role in helping the other 

cope with difficulties. Our Why-oriented approach allows users to help improve the 

machine’s logic, but how can the machine further help users with their barriers and 

information needs? We focus particularly on Selection and Coordination barriers, as 

these accounted for over two thirds (68%) of the total number of debugging barriers 

participants encountered during the course of our study. 

4.4.1 Helping with Selection Barriers **D0 

**TDK to WKW: R2 wants us to discuss other options, such as TF-IDF (comment 

2.22) 

Selection barriers were the most frequently encountered type of barrier; in fact, many 

participants became stuck in loops of repeated Selection barriers. Recall that this type of 

barrier reflects the difficulty of selecting the right words or messages in order to debug 

the intelligent assistant. This difficulty occurs because a text classifier often uses all 

words appearing in all emails as features, amounting to thousands of features. The sheer 

number of features makes finding a particular word in the source code representation 

time-consuming for a user. User-interface devices can only do so much to alleviate this 

problem. For example, our bar graph was scrollable and allowed users to sort the features 

by weight or alphabetical order. Such interface tweaks are mere band-aids to the real 

problem—there are simply too many features for end users to consider. 

One way to address the Selection barrier is to reduce the number of words displayed 

in the visualization using a class of machine learning techniques known as feature 

selection [Guyon and Elisseeff 2003]. Instead of using all words in all emails as the set of 
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features, we choose the top K most predictive words as the set of features. Feature 

selection in our e-mail setting would reduce the number of features from thousands of 

words down to a few hundred. A particularly useful group of feature selection methods 

are based on sensitivity analysis, which is a technique used in statistical modeling to 

determine a model’s robustness to changes in its parameters [Chan and Darwiche 2002]. 

Methods for sensitivity analysis are important for addressing Selection barriers as 

they allow us to determine how much the weight of a word needs to be modified in order 

to change the probability that the email belongs to a folder F. Chan and Darwiche [2002] 

investigate the sensitivity of probabilistic queries on a Bayesian network in response to 

changes to a single parameter in the network. The authors then develop bounds on the 

effect of these changes to the query that allow the machine to determine if a change to a 

parameter for a word (i.e., the probability P(Wi | F)) has little to no effect on the predicted 

folder. These bounds can also be derived for the naïve Bayes classifier because it is a 

special case of a Bayesian network. Omitting from the visualization words that have little 

impact on the current prediction would allow the user to focus attention on only word 

weights that, if changed for this message, would alter the message’s classification. 

Unfortunately, this approach only captures the effects of a single parameter change. Chan 

and Darwiche [2004] investigate the effects of changes to multiple parameters, but in the 

most general case this incurs a significant computational cost. 

Although feature selection addresses some of the issues regarding selection barriers, it 

also introduces other problems. First, reducing the number of words from thousands to a 

few hundred still leaves the user with a fair number of features to sift through. Second, 

feature selection determines the top predictive features using the training set. If an email 

should be classified in a folder due to a distinct word that does not appear frequently in 

the training set, that word is unlikely to be among the top K predictive features. The end 

user would thus need to be able to add that word as a feature. Allowing end users to 

create new features is a promising direction for future work. 

Furthermore, in the case of sensitivity analysis, even if we can determine the effects 

of changing multiple parameters, there are still an infinite number of parameter changes 

that can alter the current prediction to the desired folder. Sensitivity analysis is only 

useful for determining how much a change to the parameters will affect the final 
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prediction. It is not helpful in identifying which changes out of a set of candidates would 

result in the most accurate classifier for future emails. The underlying issue to support the 

identification of features to modify is that there are an infinite number of combinations in 

which the weights on the words can be changed in order to cause the machine learning 

algorithm to classify an email to the desired folder. Ideally, these changes should improve 

the classification accuracy of the intelligent assistant not just for the current email 

message, but also future, as-yet-unseen messages. The distribution of future emails is 

clearly impossible to obtain; nevertheless, a possible method for helping with Selection 

barriers is to rely on the relationships between words in existing messages, in order to 

direct the end user’s attention to particularly important words. These relationships would 

need to come from an external source, such as a common sense database [Liu et al. 

2003]. For example, if a message was misclassified to the Finance folder when it actually 

belongs in the Sports folder, a common sense database could be used to identify words in 

the message that relate to sports and suggest that the user focus on these words. If, 

however, the end user’s folder assignments for emails are obscure, ill defined, or 

inconsistent, a common sense database may be unable to help. As such, identifying good 

features to modify remains a difficult open problem. 

Simplifying the visualization by reducing the number of features needs to be carefully 

balanced against the stated Design Principles of our Why-oriented approach. In 

particular, we believe that the visualization should not obscure the logic of the intelligent 

assistant and that the user needs to be able to modify a representation of the source code 

to debug the program. Both of these principles are at risk if the source code visualization 

is overly simplified. 

4.4.2 Helping with Coordination Barriers **D1 

Coordination barriers were the second most frequently occurring type of debugging 

barrier during our user study. Recall that these barriers concerned how changing logic in 

one message would affect the system’s other predictions, i.e., coordinating how the 

system responds (or fails to respond) to source code modifications. 

The “popularity effect” was a primary source of Coordination barriers: the folder 

with the largest number of filed e-mails dominated the classifier’s predictions for the rest 

of the messages in the inbox. This had the effect that a few participant changes could 
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(and sometimes did) incorrectly re-classify dozens of messages into the newly popular 

destination folder. Unfortunately, participants whose strategy was to concentrate on 

fixing one folder at a time (making the folder of interest temporarily very popular) 

experienced the popularity effect again and again. 

From a machine learning perspective, this popularity effect is primarily caused by the 

high dimensional nature of the data, the relatively sparse training data, and the class 

imbalance of the e-mail folders. These factors cause the classifier to overfit both the 

training data and the participant feedback for the smaller folders. For example, suppose 

an end user employs the “one folder at a time” filing strategy. He is focused on putting 

messages into the Systems folder, which has keywords such as “Windows” and 

“McAfee” that are easily identified. Once a large number of messages have been filed to 

this dominant folder and the classifier learns from the newly acquired training examples, 

the distribution for the dominant folder will be accurately learned. However, the classifier 

is poorly trained on the non-dominant folders. In fact, the classifier overfits the training 

data for the non-dominant folders. Even worse, if the user jumps in to try to debug a non-

dominant folder by tweaking an e-mail that belongs in it, the overfitting may be 

exacerbated more: the overfitting makes all other e-mails seem unlikely to be classified 

into the non-dominant folders because they must match exactly the under-smoothed 

distributions for these folders. The classifier then incorrectly files almost all of the e-

mails in the inbox under the dominant folder—the popularity effect thereby causing the 

user’s valid correction to actually make the program worse. 

It might appear on the surface that the solution from a machine learning perspective is 

simply to provide “sufficient” training data for all folders—but applying this solution to 

e-mail classification is problematic. Many real-world e-mail folders do contain small 

numbers of e-mails, resulting in sparse training data for e-mail classifiers, and e-mail is 

known to be “bursty,” i.e., e-mails from a small handful of folders dominate the inbox at 

certain times. Due to the imbalance in the number of e-mails belonging to each folder, 

explaining and addressing the popularity effect in domains such as this remains an open 

problem. 

A second major source of Coordination barriers was the unexpected adjustment of 

decision boundaries resulting from participant feedback. ManiMatrix [Kapoor et al. 2010] 
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tackles this problem by allowing end users to specify which portions of this boundary 

matter the most to the user’s task; it then adjusts the learning system’s parameters to 

maximize the accuracy of the classifications the user cares most about. This ability could 

be beneficial for our Why-oriented approach as well; our prototype showed users the 

effects of their changes, but did not give participants the choice of specifying the effects 

they wished to see, and then adjusting the learning system to match the participant’s 

goals. **2.26 

4.4.3 Supporting Answers to the Why Questions Beyond Naïve Bayes **D1 

In our study, we illustrated how one particular machine learning algorithm, naïve 

Bayes, could be used to answer Why questions. Apart from naïve Bayes, many other 

machine learning algorithms have been used to classify e-mail messages. A natural 

question to ask is whether other machine learning algorithms can also provide easily 

understood answers to these “Why” questions. 

Answering the “Why won’t this message be filed in <Folder>?” question for folders f 

and f’ requires computing P( F = f | W1, …, Wm) and P( F = f’ | W1, …, Wm). Many 

machine learning algorithms can provide these probabilities. In fact, a large subclass of 

machine learning algorithms, known as discriminative classifiers [Ng and Jordan 2002], 

explicitly model P( F | W1, …, Wm) and are well-suited to answer this “Why” question. 

Some machine learning algorithms may be better than others at providing answers to 

certain Why questions. As an example, Bayesian networks provide a sophisticated 

mechanism for providing detailed explanations of how different pieces of evidence 

influence the final prediction made by the algorithm [Lacave and Diez 2002], but this is 

computationally expensive. A current challenge for machine learning is to develop 

answers to Why questions of statistical machine learning algorithms that can be 

efficiently computed. 

5. Conclusion **D0 

This paper presented a Why-oriented approach to support end-user debugging of 

intelligent assistants, in the context of a naïve Bayes learning system for text 

classification. Our contributions fall into three categories. 
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First, our Why-oriented approach is the first to extend the successful Whyline 

debugging approach to machine learning systems. The approach is based on four 

underlying principles: (Representation-1) representations of both the program logic 

(“source code”) and execution state must be available and manipulable by end users, 

(Representation-2) these representations must be faithful and transparent as to what the 

underlying logic really is (rather than attempting to remove some aspects to simplify it), 

(ML-1) the explanations must be understandable to end users, and (ML-2) when the end 

user makes a correction, the machine is required to honor it. 

Using these principles, we developed an approach whose essence lies in posing Why-

oriented questions and answering them as follows: 

• End users can ask why-questions of statistical machine learning systems to clarify 

the program’s current behavior. 

• The answers to these why-questions provide faithful explanations of the current 

logic in terms of representations of the current source code and execution state of 

the program. 

• These answers can help the end user debug intelligent assistants. Users do this 

interactively by modifying the answers to make them more correct (from the 

user’s perspective), which immediately feeds adjustments back to the assistant’s 

logic. 

Our second category of contributions lies in lessons learned for the human aspects of 

end-users debugging this class of intelligent assistants. Our exploratory study revealed 

that, although participants were able to use our prototype, every participant encountered 

barriers while debugging their assistant. The two most common barrier types were 

Selection barriers, in which participants had difficulty selecting the right features (words) 

or contexts (messages) to modify in order to correct the assistant, and Coordination 

barriers, in which participants wondered how the feedback they were about to give would 

change the assistant’s other predictions or had trouble coordinating how the assistant 

responded (or failed to respond) to their modifications. The Selection barrier was 

particularly insidious, often leading to cyclical barrier patterns, and disproportionately 

affecting female participants. Theories imply some broad-brush attributes for solutions 
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that try to help users overcome these barriers, suggesting that debugging tools should 

support both comprehensive and non-comprehensive debugging strategies, and that 

interfaces should adequately support a wide range of self-efficacy levels and attitudes 

toward risk. Directions toward specific solutions that might be implemented within these 

constraints fall within our third category of contributions.  

The third category of contributions reveals new open questions for the machine 

learning aspects of supporting end-user debugging. The first open question is how to 

provide the information users need to overcome the Selection barrier. Regarding this 

barrier, our participants made clear the information they wish they had—namely which 

words to concentrate on, how much to adjust each, and what will happen next. Feature 

selection, such as through sensitivity analysis algorithms, may be promising directions, 

but it raises as many issues as it solves. However, these issues might be partly 

addressable by allowing users to create new features and by incorporating knowledge of 

semantic relationships among words, such as via a commonsense database. Even despite 

these promising directions, however, automatically identifying good features for the user 

to modify remains a difficult open problem. Regarding helping the users overcome 

Coordination barriers, many of these were tied to the “popularity effect” that arises in 

situations of class imbalance, as in email classification. Explaining and addressing the 

popularity effect in domains such as this one remains an open problem. Methods for 

allowing end users to specify the desired class distributions may be an alternative 

solution to this barrier. 

In summary, end-user debugging of intelligent assistants is necessary because the end 

user is the only one with knowledge as to how their own specific adaptation of an 

assistant should behave. Our Why-oriented approach allows end users to debug such 

assistants by manipulating their underlying logic, not just their predictions. Our empirical 

results, based upon a prototype of the approach, identify barriers and information needs 

that end users encountered when debugging intelligent assistants, plus solutions and open 

research questions as to how to address these barriers and information needs. Ultimately, 

assisting end users to effectively debug their intelligent assistants opens new 

opportunities to achieve better and quicker adaption on the part of the assistant, and thus 

better responsiveness to end user preferences. 
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