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On finite-time ruin probabilities in a generalized dual risk model with

dependence

Dimitrina S. Dimitrova, Vladimir K. Kaishev∗and Shouqi Zhao

Cass Business School, City University London, UK

Abstract

In this paper, we study the finite-time ruin probability in a reasonably generalized dual risk
model, where we assume any non-negative non-decreasing cumulative operational cost function
and arbitrary capital gains arrival process. Establishing an enlightening link between this dual
risk model and its corresponding insurance risk model, explicit expressions for the finite-time
survival probability in the dual risk model are obtained under various general assumptions for
the distribution of the capital gains. In order to make the model more realistic and general,
different dependence structures among capital gains and inter-arrival times and between both are
also introduced and corresponding ruin probability expressions are also given. The concept of
alarm time, as introduced in Das and Kratz (2012), is applied to the dual risk model within the
context of risk capital allocation. Extensive numerical illustrations are provided.

Keywords: dual risk model, finite-time ruin probability, dependent risk modelling, capital
allocation, alarm time, (exponential) classical Appell polynomials

1 Introduction

Research on the so called dual risk model is recently attracting increasing attention. Substantial

amount of work has been devoted to finding the ruin probability and optimal dividend strategies

under the dual risk model. The name “dual risk model” stems from its duality to the insurance risk

model. In the classical insurance risk model, the surplus or risk process, R(t) of an insurance company

at time t is

R(t) = u+ ct− S(t), t ≥ 0, (1)

where u denotes the initial capital, c is a constant premium income rate and S(t) =
∑N(t)

i=1 Zi is

the aggregate claim amount process, where N(t) is a homogeneous Poisson process and the Zi’s

are i.i.d. consecutive claim sizes. More general assumptions on the insurance risk model, e.g. non-

linear aggregate premium income and non-homogeneous, possibly dependent claim amounts have been
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considered by Ignatov and Kaishev (2000, 2004) and Lefèvre and Picard (2006). By reversing the

signs of the premium inflow term and the aggregate claim severity process in (1), the surplus in the

classical dual risk model, first considered by Takacs (1967), is defined as

R(t) = u− ct+ S(t), t ≥ 0, (2)

where S(t) =
∑N(t)

i=1 Zi, and the interpretation of the terms in (2) is as follows. It is assumed that a

company operating in a certain industry holds initial capital u and is subject to operational expenses

accumulating in time at a rate c. As a result of its activity, the company receives capital gains of sizes

Zi, i = 1, 2, . . ., assumed i.i.d. random variables, arriving according to a homogeneous Poisson process,

N(t) with rate λ. What is nice about such a dual risk model is that it is more generally applicable

to modelling the surplus of any company, not necessarily from the insurance sector. As noted by

Avanzi et al. (2007), while the insurance risk model is suitable for insurance companies, the dual

risk model describes well the operation of companies specializing in geological exploration of minerals

and petroleum, pharmaceutical research, and technological discoveries and inventions, where routine

operations generate continuous expenses over time and occasional discoveries or inventions bring

stochastic capital gains to the company. It can also be applied in modelling the operation of research

and development departments from companies in other industries. Or alternatively, these could be

banks, hedge funds or other investment institutions, receiving capital gains from their investment and

other financial operations, while at the same time experiencing permanently accumulating operational

expenses.

Both the insurance and the dual risk models are also relevant to operational research problems,

e.g. in systems reliability risk analysis and inventory and supply chain risk management. For exam-

ple, slowdowns and server failures in computer networks, occurring at some random moments and

disrupting electronic business transactions may generate losses modelled by an aggregate loss process,

S(t). In general, losses from systems failures can be measured in different units, lost production time,

volumes of defective units, lost customers, financial losses due to credit defaults, etc. As noted by

Todinov (2006), ”maximizing the reliability of a system does not necessarily minimize the losses from

failures”. The author’s approach to modelling the systems reliability is based on maximizing the

profit (i.e. surplus) expected to emerge from its operation, which can directly be modelled by R(t)

from (1) and its more general version considered in section 2. A further natural extension of this
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reliability problem is to consider maximizing the expected profit, given the system’s survival, which

can be addressed based on the results provided in this paper. An appropriate compound aggregate

loss distribution, S(t) has also been used by Dutang et al. (2013) to model the competition among

non-life insurance companies, for policyholders in a noncooperative game.

One of the central quantities of interest, related to the operation of a firm is the probability of

its failure also referred to as ruin. Generally ruin occurs when the company’s surplus process, R(t)

becomes negative for the first time, within a finite or infinite time horizon. The literature on ruin

probability is vast. Ruin problems under different assumptions on the underlying surplus/risk model

have been considered in a number of contributions. Cifarelli et al. (2002) assume that the value of

a firm, which can be viewed as a model of its surplus, obeys a stochastic differential equation under

which ruin occurs when the firm value hits the zero barrier. Diasparra and Romera (2010) consider

ruin probabilities in a controlled discrete-time insurance risk process with interest rate modeled by a

Markov chain. Huang et al. (2009) consider mean probability of ultimate ruin under Poisson claim

arrivals and claim amounts modeled by fuzzy random variables. Some of the numerous further con-

tributions to ruin probability research are summarized in the monograph by Asmussen and Albrecher

(2010).

In what follows, we will concentrate on the dual risk model and will provide a brief overview of

some recent contributions to the related literature. Various generalizations of the classical dual risk

model have been introduced, such as dependence structures between capital gains and inter-arrival

times, Markovian features and diffusion terms in the surplus process. As in the insurance risk model,

ruin probability under the dual risk model has also attracted considerable attention. Mazza and

Rullière (2004) consider ruin in both the classical insurance and dual risk models and establish a

link between them based on wave governed random motion. Dong and Wang (2008) are concerned

with the ultimate ruin probability in a dual risk model with generalized assumptions on the capital

gain arrival process. Starting from a general renewal process N(t), integral equations and integro-

differential equations are derived for the probability of ruin and survival over infinite-time horizon.

As special cases, the Erlang(n) renewal process and the Poisson process are considered. The latter

relates to the classical dual risk model and in this case closed-form expression for the ultimate survival

probability is obtained. Zhu and Yang (2008) consider a dual Markov-modulated risk model, where

both the expense rate and the distribution of the gains are determined by a m-state Markov process,

and the conditional ruin probabilities, conditioning on the initial state, over both finite and infinite
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horizon are studied. Since, as noted by the authors, it is difficult to obtain these quantities explicitly,

a likelihood ratio approach is applied, where martingales of exponential form based on the surplus

process need to be found first and finite-time and ultimate ruin probabilities are then obtained by

change of measure. Lundberg upper and lower bounds are also derived for the ultimate probabilities

of ruin. Afonso et al. (2013) consider the classical dual risk model with linear expense outgo function

and compound Poisson capital gain process, and study its corresponding quantities of interest, such as

the ultimate ruin probability, total expected discounted dividend payments under a barrier strategy,

probability of receiving a dividend payment and the distributions of the number and the sizes of

dividend payments.

Attention has also been paid to the dual risk model assuming dividend payments with a focus at

finding an optimal dividend paying strategy. For example, Yao et al. (2011) consider the dividend

payments and capital injections control problem in a dual risk model. Further contributions in this

strand of literature include Albrecher et al. (2008), Avanzi et al. (2007), Bayraktar and Egami (2008),

Dai et al. (2010), Dong and Liu (2010), Wen (2011) and Yang and Sendova (2014).

In this paper, we consider a generalized dual risk model assuming any non-negative non-decreasing

cumulative operational cost function and arbitrary capital gain arrival process and focus on the ruin

probability over a finite horizon, which to the best of our knowledge has not been considered before.

First, by establishing an enlightening connection between the two models, a trajectory hitting an up-

per bound and a trajectory hitting a lower bound, we link the dual risk model with its corresponding

insurance risk model. It is worth mentioning that in Mazza and Rullière (2004), both the classical

insurance risk model and its corresponding dual risk model are studied and a link between these two

models is given based on a wave governed random motion. Our demonstration of the connection is

different, more straightforward and applies under more general assumptions. By revisiting the for-

mulas of survival probability in two reasonably general insurance risk models considered by Ignatov

and Kaishev (2004) and Ignatov and Kaishev (2012), we obtain explicit formulas for the finite-time

survival probability in our generalized dual risk model for exponential and Erlang capital gains, in

terms of classical Appell polynomials and the so-called exponential Appell polynomials, respectively.

These results are shown to be special cases of the finite-time survival probability formula which we

derive in the case when capital gains follow a linear combination of exponential distributions or a

hyperexponential distribution. The latter formula is then used to obtain the survival probability

for arbitrarily distributed capital gains, including heavy-tailed families. We further relax the in-
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dependence assumptions and introduce certain dependence structures between capital gains and/or

inter-arrival times. Under these dependence assumptions we provide closed-form expressions for the

survival probability. Finally, we address the problem of risk capital allocation in the dual risk model,

which to the best of our knowledge, has not been previously considered in the literature. We base

our approach on the ideas of Kaishev et al. (2008) of distributing the initial capital over a finite-time

horizon without affecting a fixed desired sufficiently high level of survival probability in the insurance

risk model. These ideas have been further extended by Das and Kratz (2012), who introduced the

concepts of alarm time, and early warning systems to the problem of risk capital allocation. In this

paper, we transfer these ideas and concepts to the dual risk model and illustrate them numerically.

To summarize, our main contributions are three-fold. First, we provide Lemma 2.1 which is

new and extends further the duality insight, providing an elegant way of establishing explicit ruin

probability results (see e.g. formulae (7), (9) and (11)) which have not been previously known in the

dual risk modelling literature. Second, we prove Lemma B.1 which is new and generalizes the result

of Ignatov and Kaishev (2012) for the finite-time ruin probability in the insurance risk model, to the

case of inter-arrival times distributed as linear combinations of exponential random variables. This

result is important on its own right, and combining it with Lemma 2.1 has allowed us to establish

Proposition 2.2 which gives a new ruin probability formula for the dual risk model, also with arbitrarily

distributed capital gains. Third, we have introduced the notion of alarm time, defined previously by

Das and Kratz (2012) for the insurance risk model, to the context of the dual risk model and the

related capital allocation problem.

This paper is organized as follows. In Section 2, we introduce our general dual risk model and

related assumptions and notations, and give Lemma 2.1. The latter is used to obtain explicit for-

mulas for the finite-time ruin probability in our dual risk model, under various assumptions on the

distribution of the capital gains (see Sections 2.1–2.2). In Section 2.3, we introduce some interesting

dependence structures among capital gains and/or inter-arrival times and across, and provide expres-

sions for the probability of survival. In Section 2.4, we consider the problem of risk capital allocation

and give a procedure for computing the related alarm time. Section 3 provides extensive numerical

illustrations of the results of section 2. Section 4 concludes the paper.
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2 The probability of non-ruin in the dual risk model

In this paper, we will be concerned with the following model. As mentioned in Section 1, we will

consider the operation of companies and organizations whose cumulative operational expenses may be

assumed to be composed of a stream of frequently occurring small and medium sized outgo payments

and occasional bigger fixed lump sum payments. Therefore, we model these by a possibly non-

linear and discontinuous non-decreasing function of time. Earnings come as occasional capital gains,

following, e.g. mineral finds, inventions or returns from investments. The inter-occurrence times

between consecutive capital gains, and their sizes are assumed stochastic, reflecting the uncertainty of

the related operations. We may assume that capital gains may occur seldomly but their sizes would

be substantial. This, for example, is the case with mineral exploration, where finds happen rarely but

may be of significant value.

Based on these ideas, let us now introduce appropriate notation and formalize the assumptions.

Assume an initial capital of size U0 (U0 > 0) is held to start business and prevent from early ruin.

Let g(t) denote the accumulation of operational costs over time t, which decrease the capital level of

the company. In contrast to the classical assumption of g(t) being a linear function of time t, here we

consider a more general case by assuming g(t) to be an arbitrary non-negative and non-decreasing real

function of time t, not necessarily linear, and with possible jumps, corresponding to lump sum expense

payments, with two natural conditions g(0) = 0 and limt→∞g(t) = ∞. Future capital gains, which

increase the capital level of the company, are assumed random variables denoted by Zi, i = 1, 2, . . .,

with a joint probability density function fZ1,...,Zk
(z1, . . . , zk), following a stochastic arrival process

N(t). The inter-arrival times are denoted by τ1, . . . , τk, which are random variables independent

of the sizes of the capital gains, and their joint density function is denoted by φτ1,...,τk(w1, . . . , wk).

Let Yi and Ti denote the partial sums of the capital gains and the inter-arrival times respectively, i.e.

Yi = Z1+. . .+Zi, Ti = τ1+. . .+τi. Let fT1,...,Tk
(t1, . . . , tk) be the joint density function of (T1, . . . , Tk).

Clearly, we have fT1,...,Tk
(t1, . . . , tk) = φτ1,...,τk(t1, t2 − t1, . . . , tk − tk−1). Let S(t) =

∑N(t)
i=1 Zi be the

aggregate capital gain process. Thus, the surplus process, R(t), in our dual risk model, can be

expressed as follows,

R(t) = U0 − g(t) + S(t) = U0 − g(t) +

N(t)
∑

i=1

Zi, t ≥ 0.
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The instant of ruin Tdual is then defined as

Tdual := inf{t : t > 0, R(t) < 0}.

The assumptions made on the dual risk model are significantly more general than the classical ones

(see e.g., Mazza and Rullière (2004)). We relax the assumptions of linear operational expenses and

Poisson capital gain arrivals, and consider possibly dependent inter-arrival times τ1, . . . , τk, having any

joint density φτ1,...,τk(w1, . . . , wk). We further consider capital gains Z1, Z2, . . . to coincide in distribu-

tion with a linear combination of exponential r.v.s, as the most general case, and its three special cases.

We first assume them to be independent, non-identically Erlang distributed, i.e. Zi ∼Erlang(gi, λi)

with different shape and scale parameters, gi, λi (as known this is a special case of Gamma distri-

bution for gi positive integer). Second, we assume them to be i.i.d. exponential with parameter λ.

Third, we consider the case in which Zi, i = 1, 2, . . ., have i.i.d. mixed exponential distributions. We

then assume capital gains Zi, i = 1, 2, . . ., to be independent and identically distributed with any

distribution, which we approximate with a mixture of exponential r.v.s. Finally, we introduce some

dependence structures between capital gain sizes, inter-arrival times and across both capital gains

and their inter-arrival times.

Under this general dual risk model, we consider the probability of non-ruin within a finite time

interval [0, x], denoted by P (Tdual > x). In order to obtain an explicit formula for P (Tdual > x), we

note that the definition of the ruin time Tdual can be re-written as

Tdual = inf{t : t > 0, R(t) < 0}

= inf{t : t > 0, U0 − g(t) +

N(t)
∑

i=0

Zi < 0}

= inf{t : t > 0,

N(t)
∑

i=0

Zi < −U0 + g(t)}

= inf{t : t > 0,

N(t)
∑

i=0

Zi < hdual(t)},

where hdual(t) = −U0 + g(t), t ≥ 0.

Thus, the ruin probability in the dual risk model can be viewed as the probability of a trajectory

hitting a lower bound, as illustrated in the left panel of Figure 1. The right panel of Figure 1, which
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represents a trajectory hitting an upper bound, is obtained by reflecting the left panel with respect

to the line t = y. As can be seen, the graph in the right panel is similar to a graph which corresponds

to an insurance risk model, in which the premium income function is the inverted aggregate expense

function, h−1
dual(y), y > 0, the capital gains Zi, i = 1, 2, . . ., are interpreted as inter-arrival times, and τi

become the claim amounts, with the first claim of size τ1 occurring at time 0+. The latter feature is not

part of an insurance risk model for which all claims (including the first one) arrive at random moments

in time strictly greater than 0. In order to adjust for this and exploit the duality suggested in Figure

1, one would need to shift down the plot in the right panel by the random amount τ1 ≡ T1. In this

way, the occurrence of a first claim (of size τ1) is eliminated and the upper bound, i.e. the aggregate

premium function, h−1
dual(y) is adjusted by subtracting τ1 from it. With these adjustments, the model

in the right panel becomes an insurance risk model, and as can be seen, finding the probability of a

trajectory hitting a lower bound in a dual risk model within a finite-time interval [0, x] is equivalent

to finding the probability of a trajectory hitting an upper bound in an insurance risk model within

the finite-time interval [0, hdual(x)].

T1 T2 T3 T4
t

-U0

Y1

Y2

Y3

Y4

St

-U0 Y1 Y2 Y3 Y4
St

T1

T2

T3

T4

t

Figure 1: Ruin under the dual risk model (left panel) and ruin under the insurance risk model (right
panel).

We can now express this equivalence in a more formal way, as follows. Consider an insurance risk

model with a premium income function hins(y) = h−1
dual(y)− τ1, y ≥ 0, where h−1

dual(y) is the inverse of

the function hdual(t) = −U0 + g(t) and τ1 is a random variable which coincides in distribution with

the first inter-arrival time τ1, in the dual risk model. Assume that the inter-arrival times, τ1, τ2, . . .,

and the capital gains, Z1, Z2, . . ., have certain given distributions, and note that their interpretation
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in the insurance risk model is interchanged. Based on the reasoning described above, the following

lemma establishes a link between the probability of non-ruin, P (Tdual > x), within the time interval

[0, x] and the probability of non-ruin, P (Tins > hdual(x)), within the time interval [0, hdual(x)] in the

related insurance risk model.

Lemma 2.1

P (Tdual > x) =







∫ h−1
dual

(0)
0 P (Tins > hdual(x))φτ1(w1)dw1, x > h−1

dual
(0),

1, x ≤ h−1
dual

(0),
(3)

where P (Tins > hdual(x)) is the probability of non-ruin within the time interval [0, hdual(x)], in the

insurance risk model with premium income function hins(y) = h−1
dual

(y)−τ1, and claim amounts τ2, τ3, . . .

with inter-arrival times Z1, Z2, . . ., and φτ1(w1) is the marginal probability density function of τ1.

In what follows, we apply Lemma 2.1 to obtain explicit expressions for the probability of survival,

P (Tdual > x), under several assumptions on the distribution of the capital gains listed previously in

this section.

2.1 Linear combination of exponential capital gains

In this section, we first derive an expression for the non-ruin probability given in Proposition 2.2 in the

case when capital gains Zi, i = 1, 2, . . ., are independent non-identically distributed random variables

which coincide in distribution with linear combinations of exponential random variables, i.e.

Zi = αi1Xi1 + · · ·+ αimi
Ximi

, i = 1, 2, . . . , (4)

where Xij , i = 1, 2, . . ., j = 1, . . . ,mi, are independent, exponentially distributed with parameter λij ,

i.e. Xij ∼Exp(λij), and αij are positive real coefficients. Considering this case is important since

linear combinations of exponentials are quite flexible and include the special cases of independent,

non-identical Erlang and i.i.d. exponential capital gains (see Corollaries 2.4 and 2.5), as well as

mixtures of exponentials. Therefore, they can be successfully applied in approximating other arbitrary

distributions for the capital gains, as an alternative to approximating with mixtures, as described in

Section 2.2. We first derive the survival probability in the insurance risk model with inter-arrival

times following a linear combination of exponential distributions (see Lemma B.1 in Appendix B)
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and then transfer the result of Lemma B.1 to the corresponding dual risk model, using Lemma 2.1.

This result is new and can be viewed as a generalization of Theorem 2.1 of Ignatov and Kaishev

(2012) obtained for the case of Erlang(gi, λi) inter-arrival times, i.e. when αij ≡ 1, gi ≡ mi and

λij ≡ λi in the definition (4). Thus, the survival probability in the dual risk model with capital gains

following a linear combination of exponential distributions and arbitrarily distributed inter-arrival

times is obtained as follows.

Proposition 2.2

P (Tdual > x) =







∑∞
k=0

∫ h−1
dual

(0)
0

∫ x
t1
· · ·

∫ x
tj(k)

Bk(hdual(x))

×fT1,...,Tj(k)+1
(t1, . . . , tj(k)+1)dtj(k)+1 . . . dt2dt1, x > h−1

dual
(0),

1, x ≤ h−1
dual

(0),

(5)

where j(k), k = 0, 1, 2, . . . , is an integer-valued function such that

m1 + . . .+mj(k) ≤ k < m1 + . . .+mj(k) +mj(k)+1,

so that

k 0 1 . . . m1 − 1 m1 . . . m1 +m2 − 1 m1 +m2 . . . m1 +m2 +m3 − 1 m1 +m2 +m3 .

j(k) 0 0 . . . 0 1 . . . 1 2 . . . 2 3 .

and Bk are called exponential Appell polynomials (see Ignatov and Kaishev 2012) defined recursively

as

Bk(x) = θke
−θk+1x

∫ x

νk+1

eθk+1zBk−1(z)dz, k = 1, 2, . . . (6)

with B0(x) = e−θ1x, νk = max{0, hdual(tj(k))}, and {θk}k≥1 is a sequence of real numbers correspond-

ingly defined as

θ1, . . . , θm1 , θm1+1, . . . , θm1+m2 , . . . ≡
λ11

α11
, . . . ,

λ1m1

α1m1

,
λ21

α21
, . . . ,

λ2m2

α2m2

, . . . .

Remark 2.3 The name exponential Appell polynomials is justified since the functions Bk(x) can be

expressed as a linear combination of exponentials multiplied by classical Appell polynomials. To see this

note that B0(x) = e−θ1xA0(x), B1(x) =
θ1

θ2−θ1
e−θ1xA0(x) −

θ1e(θ2−θ1)ν1

θ2−θ1
e−θ2xA0(x) and if θ1 = θ2 ≡ θ
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then B1(x) = θe−θx(x − ν1) = θe−θxA1(x), where Ak(x) are the classical Appell polynomials defined

as in (10). For further properties and explicit expressions for Bk(x), see Ignatov and Kaishev (2012).

For properties of Ak(x) and their connection to ruin probabilities, see Appendix A.

Proof of Proposition 2.2: The result follows applying Lemma 2.1 with P (Tins > y) given by Lemma

B.1, noting that y = hdual(x) and hins(y) = h−1
dual(y) − τ1, y ≥ 0. Hence, hins(hdual(x)) = x − τ1 and

since t = hins(y) = h−1
dual(y)− τ1, we have h−1

ins (t) = y = max{0, hdual(t+ τ1)}. Thus, when x > h−1
dual(0),

we have

P (Tdual > x) =

∫ h−1
dual(0)

0
P (Tins > hdual(x))φτ1(w1)dw1

=

∫ h−1
dual(0)

0






∞∑

k=0

∫

. . .

∫

0≤t2−t1≤...≤tj(k)+1−t1≤hins(hdual(x))

Bk(hdual(x))

×fT2,...,Tj(k)+1
(t2 − t1, . . . , tj(k)+1 − t1)dtj(k)+1 . . . dt2

)

fT1(t1)dt1

with Bk(hdual(x)) ≡ Bk(hdual(x); ν2, . . . , νk+1) where 0 ≤ ν2 ≤ ν3 ≤ . . . is a sequence of real numbers

denoting

h−1
ins (0) ≤ . . . ≤ h−1

ins (0)
︸ ︷︷ ︸

m1−1

≤ h−1
ins (t2 − t1) ≤ . . . ≤ h−1

ins (t2 − t1)
︸ ︷︷ ︸

m2

≤ . . .

correspondingly, i.e. νk = h−1
ins (tj(k) − t1). Therefore,

P (Tdual > x) =

∞∑

k=0

∫ h−1
dual(0)

0

∫ x

t1

· · ·

∫ x

tj(k)

Bk(hdual(x))fT1,...,Tj(k)+1
(t1, . . . , tj(k)+1)dtj(k)+1 . . . dt2dt1,

where Bk(hdual(x)) ≡ Bk(hdual(x); ν2, . . . , νk+1) and νk =max{0, hdual(tj(k))}.

Clearly, when x ≤ h−1
dual(0), hdual(t) ≤ 0 for t ∈ [0, x], whereas S(t) > 0, and therefore {Tdual > x}

is the sure event, i.e. P (Tdual > x) = 1. This completes the proof of the proposition. �

Next, we assume the capital gains, Zi, follow an independent, (non-identical) Erlang distribution

with shape parameter gi > 0 and rate parameter λi > 0, i.e. Zi ∼ Erlang(gi, λi), with density

fZi
(z) =

λgi
i z

gi−1e−λiz

Γ(gi)
,
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where gi’s are arbitrary positive integers and λi’s are positive real numbers. Under this assumption,

for the probability of survival, P (Tdual > x), we have

Corollary 2.4 (Zi independent non-identically Erlang(gi,λi))

P (Tdual > x) =







∑∞
k=0

∫ h−1
dual

(0)
0

∫ x
t1
· · ·

∫ x
tj(k)

Bk(hdual(x))

×fT1,...,Tj(k)+1
(t1, . . . , tj(k)+1)dtj(k)+1 . . . dt2dt1, x > h−1

dual
(0),

1, x ≤ h−1
dual

(0),

(7)

where j(k), k = 0, 1, 2, . . . , is an integer-valued function such that

g1 + . . .+ gj(k) ≤ k < g1 + . . .+ gj(k) + gj(k)+1,

so that

k 0 1 . . . g1 − 1 g1 . . . g1 + g2 − 1 g1 + g2 . . . g1 + g2 + g3 − 1 g1 + g2 + g3 . . .

j(k) 0 0 . . . 0 1 . . . 1 2 . . . 2 3 . . .

and Bk are the exponential Appell polynomials, defined recursively as

Bk(x) = λj(k−1)+1e
−λj(k)+1x

∫ x

νj(k+1)

eλj(k)+1zBk−1(z)dz, k = 1, 2, . . . (8)

with B0(x) = e−λ1x and νk = max{0, hdual(tj(k))}.

Proof of Corollary 2.4: The result directly follows from Proposition 2.2 substituting αij ≡ 1,

mi ≡ gi and λij ≡ λi in definition (4). �

Formula (7) is illustrated numerically in Example 3.3 in Section 3.

Next, we derive an expression for the non-ruin probability given in Proposition 2.2 in the case

when capital gains, Zi, i = 1, 2, . . ., follow an i.i.d. exponential distribution with parameter λ. In this

case the finite-time survival probability, P (Tdual > x), is given by the following proposition.
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Corollary 2.5 (Zi ∼Exp(λ), i.i.d.)

P (Tdual > x) =







e−λhdual(x)
(
∑∞

k=0 λ
k
∫ h−1

dual
(0)

0

∫ x
t1
· · ·

∫ x
tk
Ak(hdual(x); ν2, . . . , νk+1)

×fT1,...,Tk+1
(t1, . . . , tk+1)dtk+1 . . . dt2dt1

)

, x > h−1
dual

(0),

1, x ≤ h−1
dual

(0),

(9)

where νk = max{0, hdual(tk)}, k = 1, 2, . . ., so that ν1 ≤ ν2 ≤ · · · , and Ak(z; ν2, . . . , νk+1) are the

classical Appell polynomials of degree k, with coefficient in front of zk equal to 1/k!, defined recursively

as follows.

A0(z) = 1,

A′
k(z; ν1, . . . , νk) = Ak−1(z; ν1, . . . , νk−1) (10)

Ak(νk; ν1, . . . , νk) = 0, k = 1, 2, . . .

Proof of Corollary 2.5: The result follows from Corollary 2.4 substituting αij ≡ 1, mi ≡ gi ≡ 1

and λij ≡ λ in definition (4). The result can also be directly deduced applying Lemma 2.1 with

P (Tins > y) given by Theorem 1 in Ignatov and Kaishev (2004), noting that y = hdual(x) and hins(y) =

h−1
dual(y) − τ1, y ≥ 0. Hence, hins(hdual(x)) = x − τ1 and since t = hins(y) = h−1

dual(y) − τ1 we have

h−1
ins (t) = y = max{0, hdual(t+ τ1)}. Thus, when x > h−1

dual(0), we have

P (Tdual > x) =

∫ h−1
dual(0)

0
P (Tins > hdual(x))φτ1(w1)dw1

=

∫ h−1
dual(0)

0

(

e−λhdual(x)
∞∑

k=0

λk

∫ hins(hdual(x))

0

∫ hins(hdual(x))−w2

0
· · ·

∫ hins(hdual(x))−w2−···−wk

0

Ak(hdual(x); ν2, . . . , νk+1)× φτ2,...,τk+1
(w2, . . . , wk+1)dwk+1 . . . dw2

)

φτ1(w1)dw1

= e−λhdual(x)
∞∑

k=0

λk

∫ h−1
dual(0)

0

∫ x−w1

0

∫ x−w1−w2

0
· · ·

∫ x−w1−w2−···−wk

0

Ak(hdual(x); ν2, . . . , νk+1)× φτ1,...,τk+1
(w1, . . . , wk+1)dwk+1 . . . dw2dw1

= e−λhdual(x)
∞∑

k=0

λk

∫ h−1
dual(0)

0

∫ x

t1

∫ x

t2

· · ·

∫ x

tk

Ak(hdual(x); ν2, . . . , νk+1)fT1,...,Tk+1
(t1, . . . , tk+1)dtk+1 . . . dt2dt1,

where νk = h−1
ins (w2 + . . .+ wk) ≡ h−1

ins (tk − t1) =max{0, hdual(tk)}, tk = w1 + . . .+ wk.
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Clearly, when x ≤ h−1
dual(0), hdual(t) ≤ 0 for t ∈ [0, x] whereas S(t) > 0, and therefore {Tdual > x} is

the sure event, i.e. P (Tdual > x) = 1. This completes the proof of the proposition. �

It should be noted that, due to the connection established by Lemma 2.1, the numerical properties

of formula (9) (respectively (7) and (5)) are similar to the numerical properties of the ruin probability

formulas in the (direct) insurance risk model considered recently by Dimitrova et al. (2013).

Remark 2.6 Clearly, the numerical performance of (9) crucially depends on: 1) how (efficiently) the

Appell polynomials are computed; 2) how the infinite sum with respect to k is truncated; and 3) how

(efficiently) the multiple integrals are computed. These three aspects have been addressed in sections

4, 5 and 6 of Dimitrova et al. (2013) under the insurance risk model setting where in particular, an

algorithm of how to truncate the infinite summation, so that the resulting error is less than a pre-

specified accuracy level, is presented. Furthermore, the domain of computability with respect to the

model parameters has been investigated and shown to depend mainly on the product λy, where λ is

the Poisson rate and y is the time horizon. For instance, for λy = 50 and accuracy level 10−4 only

terms with dimensions k = 25, 26, . . . , 79 need to be evaluated and a numerical method for computing

these k dimensional integrals is provided. For further details, we refer the reader to Dimitrova et al.

(2013).

2.2 Arbitrarily distributed capital gains

As an alternative assumption on capital gains, Zi, we consider them to be independent identically

distributed with any distribution. In order to cover that case, we approximate the latter distribution

with a mixture of exponential distributions. As suggested by Botta and Harris (1986), any distribution

can be approximated by a mixed exponential distribution in the sense of weak convergence. In order

to achieve that, one can use e.g. the algorithm of Feldmann and Whitt (1998). Following this idea,

we first assume the capital gains, Zi, follow an i.i.d. mixed exponential distribution, with density

fZi
(x) = Λie

−Λix, where Λi’s are i.i.d. discrete random variables whose distribution is given by

P (Λi = λj) = αj , j = 1, . . . ,m, with
∑m

j=1 αj = 1. Equivalently, we have

fZi
(z) =

m∑

j=1

αjλje
−λjz.
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Given Λi = λ[i], where λ[i] ∈ {λ1, . . . , λm}, the distribution of Zi becomes a non-identical Erlang dis-

tribution with parameters gi = 1 and λ[i], which in fact is the exponential case. Thus, the conditional

survival probability, given Λi = λ[i], i.e. P (Tdual > x|Λ1 = λ[1], . . .), can be directly deduced from (7).

Therefore, the unconditional survival probability in the mixed exponential case is then given by

P (Tdual > x) = EΛ1,...[P (Tdual > x|Λ1 = λ[1], . . .)]. (11)

The expectation in (11) is with respect to the set of Λi’s. As noted in Remark 2.6, the infinite

summation in (7), with respect to the number of capital gains, could be appropriately truncated

when numerically implemented in order to achieve a prescribed accuracy. Thus, there are only a finite

number of Zi’s, and therefore Λi’s, in (11) and the expectation is therefore computable.

Hence, for any arbitrarily distributed capital gains, one can first fit the distribution with a mixed

exponential distribution and then approximate the corresponding survival probability using formula

(11). Numerical illustrations of formula (11) are provided in Example 3.1 and 3.2 in Section 3.

In the dual risk model introduced in subsections 2.1 and 2.2 we relax the classical assumptions of

linear operational costs and Poisson inter-arrival process, which makes the model more general than

the classical dual risk model. However, one may still argue that the assumptions of independence

among consecutive capital gains and inter-arrival times may not always be reasonable. In the next

subsection, we remove such independent assumptions to further generalize our model.

2.3 Dependence between capital gains, inter-arrival times and across

Let us recall that formulas (5), (7), (9) allow for possibly dependent arrival times in the dual risk

model with any joint density fT1,T2,...(t1, t2, . . .). However, they assume independent capital gains. In

what follows, we consider some interesting dependence structures among capital gains and inter-arrival

times and between both, and explain briefly why it may be necessary or reasonable to incorporate

such dependencies. The latter are based on applying some mixing to the (joint) distribution of the

inter-arrival times and/or the capital gains, and are illustrated on formula (7).

In practice, the inter-arrival times between consecutive capital gains may be dependent. For ex-

ample, the times spent on each invention or petroleum exploration may be jointly dependent on the

occurence/non-occurrence of an event, i.e. they may be influenced by a common random factor Θ (e.g.

funding, know-how/expertice, technological break-through etc.), which indeed justifies conditional in-
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dependence (given Θ = θ) among the inter-arrival times random variables τ1, τ2, . . .. Therefore, we

introduce a dependence structure by assuming that the inter-arrival times have a (common) distribu-

tion which depends on a common parameter, Θ, randomized with an appropriate distribution. This

is illustrated next on the basis of formula (7).

P (Tdual > x) =







∫∞
0

(
∑∞

k=0

∫ h−1
dual(0)

0

∫ x
t1
· · ·

∫ x
tj(k)

Bk(hdual(x))fT1(t1|θ)× . . .× fTj(k)+1
(tj(k)+1|θ)

dtj(k)+1 . . . dt2dt1

)

× fΘ(θ)dθ, x > h−1
dual(0),

1, x ≤ h−1
dual(0),

(12)

where fΘ(θ) is the density of the parameter Θ, and Bk(.) and j(k) are defined as in Corollary 2.4.

One should note that for such a conditionally independent structure, the corresponding unconditional

joint density of the inter-arrival times τ1, τ2, . . . may be obtained explicitly. Therefore, P (Tdual > x)

can be computed either by formula (12) with the conditionally independent structure or by formula

(7) using the corresponding (unconditional) joint density with its related dependence structure. This

is illustrated numerically in Example 3.3 in Section 3

We next consider removing the assumption of independence among consecutive capital gains and

introduce some dependence. One can argue that this is reasonable since good quality of previous

products or results will not only bring higher earnings, but would also contribute to the reputation

of the company. This could directly or indirectly increase the amounts of gains coming in the future,

whereas poor previous experience would be expected to bring lower future benefits. Following this

reasoning, one can incorporate a positive dependence structure among the capital gains, for instance,

by randomizing the rate parameter Λ of the Erlang distribution in formula (7) and obtain

P (Tdual > x) =







∫∞
0

(
∑∞

k=0

∫ h−1
dual(0)

0

∫ x
t1
· · ·

∫ x
tj(k)

Bk(hdual(x)|λ)fT1,...,Tj(k)+1
(t1, . . . , tj(k)+1)

dtj(k)+1 . . . dt2dt1

)

× fΛ(λ)dλ, x > h−1
dual(0),

1, x ≤ h−1
dual(0),

(13)

where fΛ(λ) is the density of parameter Λ, and j(k) and Bk(.) are defined as in Corollary 2.4 but

with λi’s replaced by Λ.

Furthermore, the size of each gain could be dependent on the inter-occurrence time preceding it.

For example, one can argue that the longer time is spent on exploration or research, the more likely it

is to obtain a higher capital gain (although there might exist a threshold above which this is no longer
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valid). Thus, it would be natural to introduce a positive dependence between the inter-arrival times

and gain sizes. Therefore, we randomize the parameters of the distributions of both capital gains and

inter-arrival times, denoted by Λ and Θ respectively, and model the dependence between them by a

certain joint distribution with joint density fΛ,Θ(λ, θ). For P (Tdual > x), we then obtain

P (Tdual > x) =







∫∞
0

∫∞
0

(
∑∞

k=0

∫ h−1
dual(0)

0

∫ x
t1
· · ·

∫ x
tj(k)

Bk(hdual(x)|λ)fT1(t1|θ)× . . .× fTj(k)+1
(tj(k)+1|θ)

dtj(k)+1 . . . dt2dt1

)

× fΛ,Θ(λ, θ)dλdθ, x > h−1
dual(0),

1, x ≤ h−1
dual(0),

(14)

where j(k) and Bk(.) are defined as in Corollary 2.4 but with λi’s replaced by Λ.

In order to illustrate the dependence structures introduced in this section, numerical examples are

provided for different model parameter choices in Example 3.3, 3.4 and 3.5 of Section 3.

2.4 Capital allocation and alarm time

In our dual risk model, an initial capital of some size U0 is required to start business and prevent

early ruin. The problem of determining the amount of this capital, viewed as a risk reserve capital,

is known as the capital allocation problem. The standard approach to the problem is to set the

entire risk capital amount at the beginning of the period. This may guarantee high enough survival

probability, but because capital is reserved and not invested, any investment returns would be missed.

Alternatively, as has been demonstrated by Kaishev et al. (2008) for the insurance risk model, risk

capital could be allocated in portions, first part initially and second part at a later date before the

period expires. This could guarantee the same survival probability but may lead to reducing the

initial capital thus allowing it to earn investment returns.

Various capital allocation strategies have been proposed in the literature, see e.g. Dhaene et al.

(2012), Tasche (2004, 2008). Embrechts et al. (2004) and Kaishev et al. (2008) proposed to use ruin

probability in capital allocation. The latter authors have illustrated numerically that, in the insurance

risk model, two alternative ways of capital accumulation, one linear and the other one piece-wise linear

with a jump somewhere halfway and different slopes before and after the jump, can result in the same

level of survival probability, with equal amounts of accumulated capital at the end of the time interval

considered. This implies that the initial capital level can be decreased without sacrificing the chances

of survival. The important idea from the paper by Kaishev et al. (2008) is that it is preferable to
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reserve less capital initially, allowing more of it to be invested and top it up later, even if the survival

probability may slightly be reduced, compared to setting the entire capital initially.

These ideas have been extended further in the paper by Das and Kratz (2012), who suggest to place

the capital sequentially in portions at moments where the survival probability becomes alarmingly

low. These moments are called alarm times. Such strategy would allow to sequentially maintain

sufficiently high level of survival probability throughout the entire period. It should be mentioned

however, that Das and Kratz (2012) do not consider the problem of how much capital to allocate at

each alarm time. The latter is also outside the scope of this paper and is a subject of ongoing research.

It should also be noted that the whole strategy is decided at time zero and hence, the moments and

sizes of additional capital injections are known a priori as opposed to being random and/or unknown.

In this paper, we follow the ideas from Kaishev et al. (2008) and Das and Kratz (2012) but apply

them in the context of the dual risk model. First, we provide an example to examine whether a similar

appealing phenomena to the one studied in Kaishev et al. (2008) occurs under the dual risk model.

In this example, two alternative ways of capital allocation are considered. First, we assume an initial

capital U0 and a linear function of cumulative operational costs g(t) = ct, where c is constant, so that

we have h1(t) = −U0 + ct. Second, we consider an initial capital of size U ′
0 and a jump of size J at

some instant tJ ∈ [0, x], such that U0 = U ′
0 + J , and a piecewise linear cumulative operational cost

function with different slopes before and after the jump, slopes denoted by c1 and c2 respectively, i.e.

h2(t) =

{
− U ′

0 + c1t , 0 ≤ t < tJ

− U ′
0 + c1tJ − J + c2(t− tJ) , tJ ≤ t ≤ x

(15)

so that h1(x) = h2(x). We are hoping to see if, with these two capital allocation strategies, we can

achieve the same level of survival. A numerical example is provided in Example 3.6 in Section 3,

which illustrates that this is again possible.

In fact, even if the survival probability may be sacrificed a little compared to the first strategy, the

second capital allocation strategy which requires lower initial capital can still be preferable, due to

better investment returns on capital. Thus, if the latter is pursued, a natural question arises when is

it optimal for the capital injection to take place, in order to effectively fulfil the solvency requirements.

A direct answer, as suggested by by Das and Kratz (2012), is to inject the capital at the alarm time.

Various definitions of alarm time have been introduced in different contexts in previous literature.

18



In this paper, we are mainly concerned with the one proposed by Das and Kratz (2012) in the insurance

risk model context. More precisely, the basic idea is that the alarm time is “when the probability

of ruin (in absence of any intervention) within a specified future time period is high”. Thus, the

following two intuitive requirements are taken into account when deterministic alarms are devised:

1. the alarm is sounded when, without any remedial action, the ruin probability in a specified

future time window (relatively small) is considerably high;

2. the possibility that ruin occurs before the alarm time is reasonably insignificant.

Formally, adopting definition (8) of Das and Kratz (2012) to the dual risk model, the alarm time

A is defined as

A = inf
{

s > 0 : P (Tdual ≤ s+ d|Tdual > s) ≥ 1− α and P (Tdual > s) ≥ 1− β
}

, (16)

where α and β are pre-specified probabilities and d denotes a pre-determined future time window.

Definition (16) can be rewritten as follows,

A = inf
{

s > 0 : P (Tdual > s+ d) ≤ αP (Tdual > s) and P (Tdual > s) ≥ 1− β
}

, (17)

which only involves finite-time survival probability and the explicit expressions (5), (7), (9), or (11),

(12), (13) and (14) for the latter, which have been obtained in Section 2.1–2.3, could be used in (17)

to evaluate the corresponding alarm time, A.

As noted in Das and Kratz (2012), the requirements stated above suggest that, the value of the

parameter β should be significantly small to ensure that the ruin probability before the sound of the

alarm is minimal; the value of the parameter α needs to be moderately small, but not too small so

that the prospect of ruin is realistic and a remedial action is required; d has to be moderate, neither

very small, which leaves little possibility for remedial actions to be effected, nor very large, which

indicates that ruin would occur in the distant future and there is no strong immediate likelihood of it.

In fact, as noted by Das and Kratz (2012), α and d can be inter-related. It is also worth mentioning

that, in some cases, the two conditions in (17) cannot be satisfied simultaneously. In other words,

such an alarm time A may not necessarily exist in all cases, because, for all possible values s such that

P (Tdual > s) ≥ 1− β and fixed α and d, the survival probability may not drop significantly within a
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short future period [s, s+ d]. In such cases, we define the alarm time as

A = inf
{

s > 0 : P (Tdual > s) < 1− β
}

. (18)

It has to be noted that it is difficult to obtain the alarm time A analytically, given the complexity

of the expressions for P (Tdual > x). An alternative way is to compute the alarm time numerically.

More precisely, the following procedure can be implemented.

1. For fixed α, β and d, select a relatively small s0 as a starting point such that the second condition

in (17) is fulfilled. Generally, a small s0 should not meet the first condition in (17). Set s = s0.

2. Evaluate the two probabilities involved in (17) with s in order to check if both conditions are

satisfied. If not, increase the checking point s with a small step δs until the smallest value s1

is identified which either breaks the second condition or satisfies both conditions. Thus, s1 is

an upper bound of A; if s1 breaks the second condition, s1 − δs ≤ A < s1; if s1 meets both

conditions, s1 − δs < A ≤ s1.

3. Set a new starting point s = s1 − δs and a smaller step size δs and repeat step 2 to find a new

upper bound of A with a higher level of accuracy.

4. Repeat step 3 until the alarm time A is obtained with a desirable level of accuracy, then stop.

Numerical illustrations for the alarm time are provided in Example 3.7 in Section 3.

It is worth noting that setting alarm times can efficiently warn a company when a projected capital

injection should take place, but it does not provide a solution on what the size of each capital portion

should be. We note that developing optimal capital allocation strategies is a popular research area of

considerable interest. However, it is outside the focus of this paper.

3 Numerical study

This section is devoted to studying the numerical performance of formulas (7), (11), (12), (13) and

(14), the problem of capital allocation discussed and the procedure of computing alarm time intro-

duced in Section 2.4. For the purpose, we have used Mathematica system and a PC with 2.93 GHz

Intel(R) Core(TM) i7 CPU and 8.00GB RAM. It is worth mentioning that Mathematica allows for

20



the recursive results to be stored in the RAM automatically, which contributes significantly to saving

of computation time, as all formulas of survival probability incorporate recursive structures. As also

noted in Remark 2.6, all formulas involve a summation to infinity and a truncation to k = mǫ will be

employed, as described in Dimitrova et al. (2013) for the insurance risk model, to achieve a desirable

accuracy ǫ in the resulting survival probability. For simplicity but without loss of generality, in all the

numerical examples illustrated in this section except Example 3.6, we assume linearly accumulating

expenses, i.e. g(t) = ct, where c is constant, and hdual(t) = −U0 + ct. Also the distributions and

numerical values of the parameters in all examples are chosen so as to illustrate different special cases

of Proposition 2.2. Other distributions and parameter values could of course have been selected.

We start with two examples, 3.1 and 3.2, where we assume i.i.d. heavy-tailed distribution of the

capital gains and apply the results of Section 2.1 and 2.2 to approximate the survival probability

by fitting the distribution with a hyperexponential distribution. Then, in examples 3.3–3.5 three

alternative numerical illustrations of the results of Section 2.3 are provided, where we relax the

independence assumptions and introduce dependence structures among capital gains and/or inter-

arrival times. In Example 3.6, we illustrate numerically Section 2.4 and compare two alternative

strategies of capital allocation with different cumulative operational cost functions, one linear and the

other one piecewise linear with a capital injection somewhere halfway and different slopes before and

after the capital injection. The last example 3.7 illustrates the numerical procedure of computing the

alarm time, A, introduced in Section 2.4 according to definitions (17) and (18).

3.1 Illustrations on arbitrarily distributed capital gains

Example 3.1 Assumptions: i.i.d. Pareto(a, b) distributed capital gains Zi, i = 1, 2, . . ., whose cdf is

fitted with a mixed exponential distribution as described in Section 2.2; capital gain arrivals following

a Poisson process with parameter θ; survival probability computed using formula (11).

In this example, we explore the case of i.i.d. capital gains, Zi, i = 1, 2, . . ., following a long-tail

distribution, which is best tested assuming Zi are Pareto(a, b) distributed with cdf given by

FZi
(z) = 1− (1 + bz)−a, z > 0,

where a and b are positive parameters. Without loss of generality, we choose the parameter val-

ues as a = 1.2 and b = 5, which leads to mean equal to 1. We then approximate FZi
(z) with a
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hyperexponential distribution, which is a mixture of m exponentials with cdf

Hm(z) = 1−
m∑

j=1

αje
−λjz, z > 0,

where αj ≥ 0 for all j and α1 + · · ·+ αm = 1. Various methods have been proposed in the literature

to fit an arbitrary distribution with a hyperexponential distribution. Here, we consider the algorithm

developed by Feldmann and Whitt (1998). Thus, we approximated the Pareto(1.2,5) cdf, FZi
(z) with

the cdf, H4(z), of a hyperexponential distribution with 4 exponents, i.e. m = 4, with parameters

given in Table 1. The comparison of the original and fitted cdf is illustrated in Figure 2 on a log–log

scale.

Table 1: Parameters of the hyperexponential cdf H4(z), fitted to Pareto(1.2,5), applying the algorithm
of Feldmann and Whitt (1998).

Parameters of the hyperexponential distribution, H4(z)
j αj λj 1/λj

1 0.023265 0.095738 10.445190
2 0.118326 0.616177 1.622911
3 0.359276 2.430397 0.411455
4 0.499133 8.741813 0.114393
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Figure 2: Cdf of Pareto(1.2,5) vs. cdf H4(z) of fitted hyperexponential distribution . Blue (solid) and
red (dotted) lines represent cdf’s of the original and fitted distribution respectively.

As can be observed in the left and middle panels in Figure 2, H4(z) fits the cdf of Pareto(1.2,5)

quite well in the range z ∈ [0, 10], where the maximum difference is less than 0.0113 for 0 < z ≤ 1

(attained at z = 0.085) and less than 0.0005 for 1 < z ≤ 10 (attained at z = 2.5). In the right panel

we illustrate the distance between the fitted and the original Pareto(1.2,5) distribution in the tail,

which, although visually observable, is not significant with the maximum difference being less than

0.0012 for 10 < z (attained at z = 40). Choosing the remaining parameter values as θ = 0.5, u = 1,

c = 0.6 and x = 2, formula (11) gives a theoretical survival probability (with the approximated cdf
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H4(z)) of 0.335042, where we have required ǫ = 0.001 and so, mǫ = 3. We then employ Monte Carlo

simulation to simulate directly from Pareto(1.2,5) to evaluate the survival probability, run 1,000,000

simulations each time and repeat 100 times, which yields a mean of 0.333408 and a 95% confidence

interval of (0.332475, 0.334341). Although the approximated survival probability does not fall into

the confidence interval, it is very close to the truth and the error may come from the bias of the fitted

hyperexponential distribution, in particular in the tail. It may seem counterintuitive that a higher

survival probability is obtained with the approximating distribution which allocates less mass at the

higher values (beyond 100) of the capital gains than the true one. However, it could be argued that

the short time-horizon and/or small cost rate and initial capital, x = 2, c = 0.6, u, do not leave

sufficient room for high capital gains (in the tail) to affect the survival probability.

Example 3.2 Assumptions: i.i.d. Weibull(c, a) distributed capital gains, Zi, i = 1, 2, . . ., whose

cdf is fitted with a mixed exponential distribution, as described in Section 2.2; capital gain arrivals

following a Poisson process with parameter θ; survival probability computed using formula (11).

In this example, we have chosen another member of the long-tail family, the Weibull distribution,

i.e. we assume i.i.d. Zi ∼Weibull(c, a), whose cdf has the form

FZi
(z) = 1− e−(z/a)c , z > 0,

with positive parameters c and a. In particular, we chose the parameter values as c = 0.6 and

a = 0.66464, which again gives mean equal to 1. Employing the algorithm proposed by Feldmann and

Whitt (1998), we approximate the cdf of Weibull(0.6,0.66464) with a hyperexponential distribution

H4(z), and the results are summarized in Table 2 and Figure 3. The maximum difference between

the two cdf’s is less than 0.0148 for 0 < z ≤ 1 (attained at z = 2.5 × 10−3), less than 0.0026 for

1 < z ≤ 10 (attained at z = 1) and less than 0.0004 for 10 < z (attained at z = 14.5).

Table 2: Parameters of H4(z), fitted to Weibull(0.6,0.66464), applying the algorithm of Feldmann and
Whitt (1998).

Parameters of the hyperexponential distribution, H4(z)
j αj λj 1/λj

1 0.196855 0.346155 2.888875
2 0.448458 1.155595 0.865355
3 0.236901 5.702082 0.175375
4 0.117786 54.130177 0.018474
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Figure 3: Cdf of Weibull(0.6,0.66464) vs. cdf H4(z) of fitted hyperexponential distribution . Blue
(solid) and red (dotted) lines represent cdf’s of the original and fitted distribution respectively.

Figure 3 indicates that the cdf of Weibull(0.6,0.66464) is better fitted byH4(z) than the Pareto(1.2,5)

in Example 3.1. Particularly, as is observed in the right panel in Figure 3, the fitting bias in the tail

is much less significant. With the remaining parameter values chosen as in the previous example, i.e.

θ = 0.5, u = 1, c = 0.6 and x = 2, formula (11) yields a theoretical survival probability (with the

approximated cdf H4(z)) of 0.414054, where, again, we have required ǫ = 0.001 and so, mǫ = 3. Em-

ploying Monte Carlo simulations from Weibull(0.6,0.66464), and running 1,000,000 simulations each

time repeated 100 times, lead to a survival probability with a mean of 0.414033 and a 95% confidence

interval of (0.413077, 0.414989). Clearly, the approximated survival probability falls nicely into the

confidence interval. It may be argued that, in this case, the approximated survival probability is

closer to the true value than in Example 3.1, and one possible reason is that the Weibull distribution

is moderately lighter-tailed than Pareto distribution, resulting in a relatively better approximation

with a hyperexponential distribution for the former and therefore a more accurate approximation of

the survival probability.

3.2 Illustrations on dependence between capital gains, inter-arrival times and

across

Example 3.3 Computing survival probability with formulas (7) and (12), assuming non-identically

Erlang(g, λi) distributed capital gains and exponential inter-arrival times τ1, τ2, . . . with parameter Θ,

where Θ follows a Gamma(α, β) distribution.

In this example, we introduce a dependence between the inter-arrival times by randomizing the

parameter of the distribution of τ1, τ2, . . .. Additionally, we also make the assumption that consecutive

capital gains are non-identically distributed with the justification that the capital gains will on average

24



be increasing when the company becomes stronger with time and earns more reputation. Thus, we

assume {λ1, λ2, λ3, λ4, λ5, λ6, . . .} = {1, 1, 12 ,
1
2 ,

1
3 ,

1
3 , . . .} in order to have stationary periods within the

increasing (on average) capital gains. It is worth noting that the dependence structure of exponential

inter-arrival times with a mixing parameter Θ, following a gamma distribution with parameters α

and β, leads to conditional independence i.e.

φτ1,...,τk(w1, . . . , wk|Θ = θ) =
k∏

i=1

θe−θτi = θke−θ
∑k

i=1 τi = θke−θtk , Θ ∼ Gamma(α, β).

It has been shown by Albrecher et al. (2011) (see Example 2.3 therein) that this dependence structure

is equivalent to a rotated Clayton copula with parameter α, with Pareto(α, β) marginals, where the

density of the rotated Clayton copula is defined as

cRCl(u1, . . . , uk;α) = αkΓ(1/α+ k)

Γ(1/α)

k∏

i=1

(1− ui)
−α−1

(
k∑

i=1

(1− ui)
−α − k + 1

)−1/α−k
.

As mentioned previously, a significant advantage of formula (7) is that it assumes any joint distribu-

tion, i.e. any dependence structure of inter-arrival times, so here we evaluate the survival probability

first by using formula (12) with the conditionally independent structure and then by using formula (7)

with the corresponding unconditional joint density and compare the results and computation times

in Table 3; see also Figure 4.

Table 3: Survival probability and computation times using formulas (7) and (12). Parameter values
g = 3 and {λ1, λ2, λ3, λ4, . . .} = {1, 1, 12 ,

1
2 , . . .}, α = 2, β = 0.5, U0 = 1, x = 2 and ǫ = 10−5.

Formula (12) Formula (7)
with conditional independence with copula structure

c mǫ P (Tdual > x) Time (sec) P (Tdual > x) Time (sec)

0.6 4 0.94668 5.07 0.94668 2.20
0.7 5 0.93234 6.16 0.93234 3.81
0.8 6 0.91713 35.66 0.91713 17.71
0.9 7 0.90126 81.18 0.90126 45.41
1.0 7 0.88490 55.47 0.88490 44.51

In Table 3, we compute the survival probability for different values of c and as expected, for

different c values, different truncation points mǫ are required in order to reach the same level of

accuracy; for more details on determining the truncation point mǫ for the infinite sum in the survival

probability formula, we refer the reader to Dimitrova et al. (2013). It is clearly demonstrated that it is
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Figure 4: Survival probability against c based on formula (7), respectively (12). Parameter values
g = 3 and {λ1, λ2, λ3, λ4, . . .} = {1, 1, 12 ,

1
2 , . . .}, α = 2, β = 0.5, U0 = 1, x = 2 and ǫ = 10−5.

numerically more efficient to compute P (Tdual > x) using formula (7) with the copula structure than

to use formula (12) which involves the conditional independence structure. This may be because the

latter needs additional integration with respect to Θ, which makes it more time consuming. However,

it should be noted that, not all conditional independence structures can be expressed equivalently

through an easily computable copula, and formula (12) should therefore be considered in such cases.

Example 3.4 Computing survival probability with formula (13), assuming Erlang(g,Λ) distributed

capital gains, where Λ is a random variable following a Gamma(α, β) distribution, and inter-arrival

times are i.i.d. exponentially distributed with parameter θ.

In this example, we assume a positive dependence structure among the gain sizes by assuming the

rate parameter of Erlang distribution is a random variable Λ, and evaluate the survival probability

with formula (13) as shown in Figure 5.

Figure 5 illustrates the survival probability for fixed values of U0, as a function of the shape pa-

rameter α of the gamma distribution of the randomized parameter Λ. Clearly, the survival probability

decreases with α. This is because an increasing α results in a higher expected value of the randomized

rate parameter Λ which leads to a lower expected value of future capital gains and therefore a lower

survival probability.

Example 3.5 Computing survival probability with formula (14), assuming Erlang(g,Λ) distributed

capital gains, and exponentially distributed inter-arrival times with parameter Θ, where Λ and Θ are

dependent random variables with their joint distribution modelled by a Farlie-Gumbel-Morgenstern

(FGM) copula with parameter γ, with gamma marginals with parameters αλ and βλ, αθ and βθ

respectively.
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Figure 5: Survival probability against α for Erlang capital gains with a randomized rate parameter
Λ and exponential inter-arrival times using formula (13). Parameter values g = 3, β = 3, θ = 1.5,
c = 0.6, x = 2, ǫ = 10−5 and mǫ = 4. Blue (solid), red (dashed) and purple (dotted) lines represent
U0 = 0.9, 1.0, 1.1 respectively.

In this example, we randomize the parameters of the distributions of capital gain sizes and their

inter-arrival times, Λ and Θ, and model the dependence between them using an FGM copula with

parameter γ, which is defined as

C(u1, u2) = u1u2(1 + γ(1− u1)(1− u2)),

with density

c(u1, u2) = 1 + γ(1− 2u1)(1− 2u2),

where γ represents the dependence level with domain −1 ≤ γ ≤ 1 and γ = 0 corresponds to the

independent case. This parametric family of copulas has well-studied properties and has been used

in operational research applications to model weak dependence structures, see e.g. Meade and Islam

(2010).

In Figure 6, we plot survival probability against γ. In the top left panel, the five curves from

the bottom correspond to U0 from 0.1 to 0.5, and the remaining panels illustrate each individual
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Figure 6: Survival probability against γ for Erlang capital gains with a randomized rate parameter
Λ and exponential inter-arrival times with a randomized parameter Θ and the dependence between
Λ and Θ modelled by an FGM copula, using formula (14). Parameter values g = 3, αλ = 2, βλ = 3,
αθ = 2, βθ = 0.5, c = 0.6, x = 2, ǫ = 10−5 and mǫ = 4.

curve. Although it is very difficult to observe the trend in the curves in the top left panel, it is very

interesting to see in the remaining panels that, for U0 = 0.1, 0.2, the survival probability decreases

monotonically with γ, whereas for U0 = 0.3, 0.4, 0.5, it increases monotonically with γ. This can

be explained as follows. Because of the positive dependence, if the inter-arrival time is small, the

capital gain which follows would also tend to be small and vice versa, long inter-arrival times would

be associated with large capital gains. So in either case, the cumulative capital gain would tend not

to offset the cumulative expense outgo when U0 is small, which would increase the likelihood of ruin.

This effect becomes more and more pronounced causing P (Tdual > x) to decrease when the dependence

parameter γ increases. However, when U0 is large, this is not the case and the trend in P (Tdual > x)

as a function of γ reverses. The latter phenomenon indicates that the trend in the monotonic relation

between the survival probability and the level of dependence may reverse depending on the value of

the initial capital U0.

It has to be noted that the trend in the survival probability against the dependence level is also

affected by the choice of the copula structure. For alternative choices of copula, the effect observed in

Figure 6 may not occur. Based on our extensive experiments, for some copulas such as Frank copula,

the change in the trend in the survival probability against the dependence level consistently occurs
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for different choices of model parameters, whereas for other copulas such as Clayton copula, the trend

either changes or not depending on the choice of model parameters.

3.3 Illustrations on capital allocation and alarm time

Example 3.6 Comparing two alternative strategies of capital allocation with different cumulative

operational cost functions, one linear and the other one piecewise linear with a capital injection some-

where halfway and different slopes before and after the capital injection, see (15) in Section 2.4,

assuming i.i.d. exponentially distributed capital gains with parameter λ and i.i.d. exponentially dis-

tributed inter-arrival times with parameter θ.

As already mentioned in Section 2.4, we are interested in testing whether for the dual risk model

we would observe the phenomena observed by Kaishev et al. (2008) that two alternative ways of

capital accumulation, one linear and the other one piecewise linear with a capital injection somewhere

halfway and different slopes before and after the capital injection, can result in the same level of

survival probability, with equal amounts of accumulated capital at the end of time interval considered.

Numerical results are illustrated graphically in Figure 7.

0.5 1.0 1.5 2.0
t

-0.6

-0.4

-0.2

0.2

hdualHtL

æ æ æ æ æ æ
æ æ æ æ æ æ

æ æ æ æ æ æ æ æ æ

0.5 1.0 1.5 2.0
tJ

0.965

0.970

0.975

0.980

0.985

0.990

PHTdual > 2L

Figure 7: Comparing alternative strategies of capital allocation. Left panel: two choices of hdual(t),
h1(t) = −0.777 + 0.5t (blue/solid) and h2(t) = (−0.577 + 0.491t)I{0≤t<1.1} + (−0.577 + 0.491 ∗ 1.1−
0.2 + 0.511(t − 1.1))I{1.1≤t≤2} (red/dashed). Right panel: P (Tdual > 2) as a function of the location
tJ of the capital injection in h2(t) of size J = 0.2. Parameter values: λ = 0.1, θ = 3, ǫ = 10−6 and
mǫ = 3.

In the left panel of Figure 7, two choices of hdual(t) are plotted, h1(t) = −0.777 + 0.5t and

h2(t) =

{
− 0.577 + 0.491t , 0 ≤ t < 1.1

− 0.577 + 0.491× 1.1− 0.2 + 0.511(t− 1.1) , 1.1 ≤ t ≤ 2
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In the right panel of Figure 7, moving the location tJ of the capital injection J = 0.2 from tJ = 0 to

tJ = 2 and keeping the remaining of the parameters unchanged, it can be observed that a maximum

of P (Tdual > x) is achieved at tJ = 1.1, and interestingly, there is a jump in the survival probability at

tJ = 1.2. The occurrence of a downward jump in the survival probability can be explained as follows.

Define t∗ =inf{t : 0 < t ≤ 2, h2(t) ≥ 0}. Clearly, survival is certain within the interval [0, t∗], which

is a component in the survival probability P (Tdual > 2). Changing the position of the jump between

0 and 1.1 causes t∗ to move to the right (compare the intersection points of the solid blue line and

the dashed red line with the horizontal axis in the left panel of Figure 7), which leads to an increase

in the survival probability. The downward jump in P (Tdual > 2) occurs when t∗ moves to the left

jumpwise (compare the intersection points of the dashed red line and the dotted purple line with the

horizontal axis in the left panel of Figure 7), and thereafter the survival probability decreases as the

hitting barrier is gradually moving to the left.

Clearly, in Figure 7, we can observe that, at the end of the time interval considered, x = 2,

h1(2) = h2(2) = 0.223, and the two choices of hdual(t) give equal probability of survival of 99%. The

second strategy should therefore be more favorable, as a lower initial capital is required.

Example 3.7 Computing alarm times according to definitions (17) and (18), assuming i.i.d. expo-

nentially distributed capital gains with parameter λ and i.i.d. exponentially distributed inter-arrival

times with parameter θ.

In this final example, we compute the alarm time, A, following the numerical procedure described

in Section 2.4 and the alarm times are plotted in Figure 8.

Due to the reasons discussed in Section 2.4, the values of parameters α, β and d are carefully

selected. Choosing β = 0.05 requires a reasonably high solvency level of 95% before the alarm is

sounded; α = 0.5 indicates that there is a 50% chance of ruin in the specified future time interval,

which is alarming enough for a company to take some remedial actions and of course these actions

should not be postponed until the ruin probability becomes very close to 1; d = 2 is not too distant

from the current time but leaves enough time for the remedial measures to be put into action.

In the left panel in Figure 8, the alarm time A is plotted against initial capital U0. It is observed

that the alarm is sounded later with a larger initial capital. This naturally makes sense, as more

initial capital will support the business for longer time before it reaches the bottom line of prescribed

solvency level and would require capital injection. In the right panel of Figure 8, the alarm time A
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Figure 8: Alarm times A against U0 and c, computed according to definition (17), or occasionally (18),
following the numerical procedure introduced in Section 2.4. Parameter values α = 0.5, β = 0.05,
d = 2, λ = 2 and θ = 1. Left panel: blue (solid), red (dashed) and purple (dotted) lines represent
c = 0.5, 0.6, 0.7 respectively. Right panel: blue (solid), red (dashed) and purple (dotted) lines represent
U0 = 0.8, 1.0, 1.2 respectively.

against the expense rate c is plotted. We observe that, with the increase of c, the alarm time gets

shorter and shorter. This is again reasonable, since with a higher cost rate, the same amount of initial

capital becomes less sufficient for a company to maintain the same level of survival probability within

a fixed future period. The projected capital injection should therefore be put into action earlier. The

observations are comparable to those made in the insurance risk model by Das and Kratz (2012)

where further analysis has been provided.

4 Concluding remarks

In this paper, we consider the problem of finding the probability of ruin in a finite time in a rea-

sonably generalized dual risk model, where we assume any non-negative non-decreasing cumulative

operational cost function and arbitrary capital gain arrival process. Establishing an enlightening link

between this dual risk model and its corresponding insurance risk model (see Lemma 2.1), we obtain

explicit expressions for finite-time survival probability in the dual risk model for various reasonably

general assumptions for capital gains distribution (see Proposition 2.2 and its Corollaries 2.4 and

2.5). Dependence structures among capital gains and inter-arrival times or between both have also

been incorporated to make the model more realistic and general and corresponding ruin probability

expressions have been obtained (see formulas (12), (13) and (14)). A risk capital allocation approach

based on the concept of alarm time, due to Das and Kratz (2012), has been proposed for the dual

risk model. A corresponding procedure for the computation of alarm times, where additional capital
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needs to be injected in order to maintain chance of survival above a certain level, has been developed

and implemented numerically. Numerical illustrations of the results of Section 2 have been provided

in Section 3.

Another important contribution of the paper is the result of Lemma B.1, which generalizes a

previous result of Ignatov and Kaishev (2012), obtained for the case of Erlang claim amounts to the

case of claim sizes following a linear combination of exponentials. As noted in section 2.1, due to the

connection established by Lemma 2.1, the numerical properties of formula (9) (respectively (7) and

(5)) are similar to the numerical properties of the ruin probability formulas in the (direct) insurance

risk model considered recently by Dimitrova et al. (2013). Some limitations related to the numerical

performance of these formulas have been mentioned in Remark 2.6, e.g. the need to evaluate high

dimensional integrals when the intensity of the arrival process and/or the length of the finite-time

horizon is too large; for further details the reader is referred to Dimitrova et al. (2013).

In conclusion, it has to be highlighted that the ruin probabilistic results obtained here and the

elegant duality Lemma 2.1 are worth noticing since there are very few papers in the literature devoted

to the ruin probability in the dual risk model and, to the best of our knowledge, there are no closed-

form results. As illustrated, the dual risk model has the potential for much wider applications than

the insurance risk model.
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Appendices

A Classical Appell polynomials

As first shown in Ignatov and Kaishev (2000), classical Appell polynomials appear naturally in the
non-ruin probability formula in finite time [0, y], P (Tins > y), in relation with the Poisson claim arrival
times which, for fixed N(y) = k, coincide in distribution with the order statistics of k independent,
uniformly distributed random variables in [0, y]. The latter appear in the expression for the conditional
probabilities P (Tins > y|N(y) = k), for details see also p.575 of Ignatov and Kaishev (2004). There are
several recurrence expressions which can be used to evaluate Ak(.) and, as demonstrated in Dimitrova
et al. (2013), a numerically efficient one is

Ak(x; ν1, . . . , νk) =

k−1∑

i=0

(xk−i − νk−i
k )

(k − i)!
Ai(0; ν1, . . . , νi), (19)

where A0(x) = 1, and Ak(0; ν1, . . . , νk) = −
∑k−1

j=0
νk−j
k

(k−j)!Aj(0; ν1, . . . , νj), k ≥ 1.

B A closed-form expression for the finite-time survival probability

in the insurance risk model with independent non-identical inter-

arrival times distributed as a linear combination of exponential

random variables

Here, similarly to the derivation in Section 2.1 in Ignatov and Kaishev (2012), we derive a formula

for the finite-time survival probability in the insurance risk model with inter-arrival times distributed

as a linear combination of exponential random variables. We suppress the use of subscript ins to

simplify notations.

In the insurance risk model, let τi, i = 1, 2, . . ., be a sequence of independent non-identical random

variables, denoting the inter-arrival times. We assume the inter-arrival times τi =
∑mi

j=1 αijηij , where

the coefficients αij > 0 and ηij ∼Exp(λij). Let also {τ̃n}n≥1 be a sequence of independent, exponen-

tially distributed random variables with parameters θ1, θ2, . . . correspondingly, i.e. τ̃n ∼Exp(θn), such

that θn =
λij

αij
, where

∑i−1
s=1ms < n ≤

∑i
s=1ms and j = n−

∑i−1
s=1ms. Thus, we have

(τ̃1 + · · ·+ τ̃m1 , τ̃m1+1 + · · ·+ τ̃m1+m2 , . . .)
d
= (τ1, τ2, . . .). (20)

Obviously, in this more refined representation of the claim arrivals in terms of sums of exponentials

we have that

θ1, . . . , θm1 , θm1+1, . . . , θm1+m2 , . . . ≡
λ11

α11
, . . . ,

λ1m1

α1m1

,
λ21

α21
, . . . ,

λ2m2

α2m2

, . . . .
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In the sequel it will be convenient to use the notation τ̃∗1 , τ̃
∗
2 , . . . for the r.v.s τ̃1, τ̃2, . . ., in the case

when θn = 1, n = 1, 2, . . ..

Denote by T1 = τ1, T2 = τ1 + τ2, . . ., the moments of claim arrivals and introduce the sequence of

random variables T̃1 = τ̃1, T̃2 = τ̃1 + τ̃2, . . .. Obviously, we can also write Ti = T̃m1+···+mi
i = 1, 2, . . ..

Let us also consider the partial sums, Yi, i = 1, 2, . . . of the consecutive claim amounts, Y1 = W1, Y2 =

W1 +W2, . . . with probability density function

fY1,...,Yi
(y1, . . . , yi) =

{

ϕ(y1, . . . , yi),

0

if 0 ≤ y1 ≤ . . . ≤ yi

otherwise
,

where ϕ(y1, . . . , yi) ≥ 0 for 0 ≤ y1 ≤ . . . ≤ yi and

∫

. . .

∫

0≤y1≤...≤yi

ϕ(y1, . . . , yi)dy1 . . . dyi = 1.

We will also denote by FY1,...,Yi
(y1, . . . , yi), the cdf of Y1, . . . , Yi. For brevity we will alternatively write

F (y1, . . . , yi).

We now introduce the non-decreasing sequence of variables Ỹ1, Ỹ2, . . ., independent of τ̃1, τ̃2, . . .

and such that 0 = Ỹ1 = . . . = Ỹm1−1 ≤ Y1 = Ỹm1 = . . . = Ỹm1+m2−1 ≤ Y2 = Ỹm1+m2 = . . . =

Ỹm1+m2+m3−1 ≤ . . ..

Let the integer-valued function j(k), k = 0, 1, 2, . . ., be such that

m1 + . . .+mj(k) ≤ k < m1 + . . .+mj(k) +mj(k)+1

so that

k 0 1 . . . m1 − 1 m1 . . . m1 +m2 − 1 m1 +m2 . . . m1 +m2 +m3 − 1 m1 +m2 +m3 . .

j(k) 0 0 . . . 0 1 . . . 1 2 . . . 2 3 . .

Then we can establish the following result.

Lemma B.1 In the insurance risk model, with inter-arrival times (20), the probability of survival
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within a finite time horizon [0, x] is given by

P (T > x) =
∞∑

k=0

∫

. . .

∫

0≤y1≤...≤yj(k)≤h(x)

Bk(x)f(y1, . . . , yj(k))dyj(k) · · · dy1,

where

Bk(x) = θke
−θk+1x

∫ x

νk

eθk+1zBk−1(z)dz, k = 1, 2, . . .

with B0(x) = e−θ1x and Bk(x) ≡ Bk(x; ν1, . . . , νk) where 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real

numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)
︸ ︷︷ ︸

m1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)
︸ ︷︷ ︸

m2

≤ . . . ,

correspondingly, i.e. νk = h−1(yj(k)).

Proof: Recalling eq. (14) in Ignatov and Kaishev (2012), P (T > x) can now be rewritten as

P (T > x) =
∞∑

k=0

E

[
∫ x

h−1(Ỹ1)
. . .

∫ x

h−1(Ỹk)

∫ ∞

x
fT̃1,...,T̃k+1

(t1, . . . , tk+1)dtk+1 . . . dt1

]

,

where the expectation E[·] is with respect to the random variables, Ỹ1, . . . , Ỹk and fT̃1,...,T̃k+1
(t1, . . . , tk+1)

is the joint density of T̃1, . . . , T̃k+1. It can easily be seen that the random vector T̃̃T̃T =
(

T̃1, . . . , T̃k+1

)′

coincides in distribution with the random vectorBBBk+1τ̃
∗, i.e.,BBBk+1τ̃

∗ d
= T̃̃T̃T , where τ̃∗ =

(
τ̃∗1 , . . . , τ̃

∗
k+1

)′
,

andBBBk+1 = (bij)(k+1)×(k+1) is a (k+1)×(k+1) dimensional matrix, where bij =
1
θj
, if i ≥ j, otherwise

bij = 0. Then, it is not difficult to see that

fT̃1,...,T̃k+1
(t1, . . . , tk+1) =

{

e−1·BBB−1
k+1·ttt

∣
∣detBBB−1

k+1

∣
∣

0

if 0 ≤ t1 ≤ t2 ≤ ... ≤ tk+1

otherwise
,

where, 1 =



1, . . . , 1
︸ ︷︷ ︸

k+1



, ttt = (t1, . . . , tk+1)
′, ()′ stands for transposition, and detBBB−1

k+1 denotes the

determinant of the inverse of BBBk+1. It can also be directly verified that the inverse matrix, BBB−1
k+1 =

(

b̃ij

)

, is an incomplete, lower triangular matrix, with non-zero elements only at the main and next

lower diagonals, given by b̃ij = θi, if i = j, b̃ij = −θi, if i = j + 1, otherwise b̃ij = 0. Then, P (T > x)
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becomes

P (T > x) =
∞∑

k=0

∫

. . .

∫

0≤ỹ1≤...≤ỹk≤h(x)

∫ x

h−1(ỹ1)
. . .

∫ x

h−1(ỹk)

∫ +∞

x
θ1 . . . θk+1

exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk+1 (tk+1 − tk)}]

dtk+1 . . . dt1dFỸ1,...,Ỹk
(ỹ1, . . . , ỹk) ,

which can be rewritten as

P (T > x) =
∞∑

k=0

∫

. . .

∫

0≤y1≤...≤yj(k)≤h(x)

∫ t2

h−1(0)
. . .

∫ tm1

h−1(0)
︸ ︷︷ ︸

m1−1

∫ tm1+1

h−1(y1)
. . .

∫ tm1+m2

h−1(y1)
︸ ︷︷ ︸

m2

. . .

∫ tm1+...+mj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tm1+...+mj(k)

h−1(yj(k)−1)
︸ ︷︷ ︸

mj(k)

∫ tm1+...+mj(k)+1

h−1(yj(k))
. . .

∫ tm1+...+mj(k)+s−1

h−1(yj(k))
︸ ︷︷ ︸

s−1

∫ x

h−1(yj(k))

∫ +∞

x

θ1 . . . θk+1 exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk+1 (tk+1 − tk)}] dtk+1 . . . dt1dFY1,...,Yj(k)

(
y1, . . . , yj(k)

)
,

where 0 < s = k + 1−
(
m1 + . . .+mj(k)

)
.

Let B0(x) = e−θ1x and for k = 1, 2, . . .,

Bk(x) =

∫ t2

h−1(0)
. . .

∫ tm1

h−1(0)
︸ ︷︷ ︸

m1−1

∫ tm1+1

h−1(y1)
. . .

∫ tm1+m2

h−1(y1)
︸ ︷︷ ︸

m2

. . .

∫ tm1+...+mj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tm1+...+mj(k)

h−1(yj(k)−1)
︸ ︷︷ ︸

mj(k)

∫ tm1+...+mj(k)+1

h−1(yj(k))
. . .

∫ tm1+...+mj(k)+s−1

h−1(yj(k))
︸ ︷︷ ︸

s−1

∫ x

h−1(yj(k))

∫ +∞

x

θ1 . . . θk+1 exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk+1 (tk+1 − tk)}] dtk+1 . . . dt1.
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We have

Bk(x) =

∫ t2

h−1(0)
. . .

∫ tm1

h−1(0)
︸ ︷︷ ︸

m1−1

∫ tm1+1

h−1(y1)
. . .

∫ tm1+m2

h−1(y1)
︸ ︷︷ ︸

m2

. . .

∫ tm1+...+mj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tm1+...+mj(k)

h−1(yj(k)−1)
︸ ︷︷ ︸

mj(k)

∫ tm1+...+mj(k)+1

h−1(yj(k))
. . .

∫ tm1+...+mj(k)+s−1

h−1(yj(k))
︸ ︷︷ ︸

s−1

∫ x

h−1(yj(k))

(∫ +∞

x
θk+1e

−θk+1tk+1dtk+1

)

θ1 . . . θk exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk (tk − tk−1)− θk+1tk}] dtk . . . dt1

= e−θk+1x

∫ t2

h−1(0)
. . .

∫ tm1

h−1(0)
︸ ︷︷ ︸

m1−1

∫ tm1+1

h−1(y1)
. . .

∫ tm1+m2

h−1(y1)
︸ ︷︷ ︸

m2

. . .

∫ tm1+...+mj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tm1+...+mj(k)

h−1(yj(k)−1)
︸ ︷︷ ︸

mj(k)

∫ tm1+...+mj(k)+1

h−1(yj(k))
. . .

∫ tm1+...+mj(k)+s−1

h−1(yj(k))
︸ ︷︷ ︸

s−1

∫ x

h−1(yj(k))

θ1 . . . θk exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk (tk − tk−1)− θk+1tk}] dtk . . . dt1,

from where, denoting the multiple integral on the right-hand side by Ik(x), we have

Bk(x) = e−θk+1xIk(x).

One sees that the derivative of Ik(x) is given by

dIk(x)

dx
=

∫ t2

h−1(0)
. . .

∫ tm1

h−1(0)
︸ ︷︷ ︸

m1−1

∫ tm1+1

h−1(y1)
. . .

∫ tm1+m2

h−1(y1)
︸ ︷︷ ︸

m2

. . .

∫ tm1+...+mj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tm1+...+mj(k)

h−1(yj(k)−1)
︸ ︷︷ ︸

mj(k)

∫ tm1+...+mj(k)+1

h−1(yj(k))
. . .

∫ tm1+...+mj(k)+s−2

h−1(yj(k))

∫ x

h−1(yj(k))

θ1 . . . θk exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk (x− tk−1)− θk+1x}] dtk−1 . . . dt1

= θke
(θk+1−θk)x

∫ t2

h−1(0)
. . .

∫ tm1

h−1(0)
︸ ︷︷ ︸

m1−1

∫ tm1+1

h−1(y1)
. . .

∫ tm1+m2

h−1(y1)
︸ ︷︷ ︸

m2

. . .

∫ tm1+...+mj(k)−1+1

h−1(yj(k)−1)
. . .

∫ tm1+...+mj(k)

h−1(yj(k)−1)
︸ ︷︷ ︸

mj(k)

∫ tm1+...+mj(k)+1

h−1(yj(k))
. . .

∫ tm1+...+mj(k)+s−2

h−1(yj(k))

∫ x

h−1(yj(k))

θ1 . . . θk exp [−{θ1t1 + θ2 (t2 − t1) + . . .+ θk−1 (tk−1 − tk−2)− θktk−1}] dtk−1 . . . dt1.

If s > 1, i.e. k > m1 + . . . +mj(k), we have j(k) = j(k − 1). If s = 1, i.e. k = m1 + . . . +mj(k), we
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have j(k) = j(k − 1) + 1. Thus, it is not difficult to see that

dIk(x)

dx
= θke

(θk+1−θk)xIk−1(x).

Hence,

dBk(x)

dx
= −θk+1e

−θk+1xIk(x) + θke
−θk+1xeθk+1x−θkxIk−1(x)

= −θk+1Bk(x) + θkBk−1(x).

It is not difficult to verify that the system of linear differential equations,

B
′′′

0(x) = −θ1e
−θ1x

B
′′′

k(x) = −θk+1Bk(x) + θkBk−1(x).

for k = 1, 2, . . . with initial conditions

B0(0) = 1, Bk (νk) = 0, k = 1, 2, . . .

has a unique solution, given by the following sequence of functions

Bk(x) = θke
−θk+1x

∫ x

νk

eθk+1zBk−1(z)dz , k = 1, 2, . . .

where B0(x) = e−θ1x and 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)
︸ ︷︷ ︸

m1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)
︸ ︷︷ ︸

m2

≤ . . . ,

correspondingly. Hence, the asserted result holds true. �
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