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Dependent competing risks: Cause elimination and

its impact on survival

Dimitrina S. Dimitrova∗, Steven Haberman and Vladimir K. Kaishev
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Abstract

The dependent competing risks model of human mortality is consid-
ered, assuming that the dependence between lifetimes is modelled by a
multivariate copula function. The effect on overall survival of removing
one or more causes of death is explored under two alternative defini-
tions of removal, ignoring the causes and eliminating them. Under the
two definitions of removal, expressions for the overall survival functions
in terms of the specified copula (density) and the net (marginal) sur-
vival functions, are given. The net survival functions are obtained as a
solution to a system of non-linear differential equations, which relates
them through the specified copula (derivatives) to the crude (sub-)
survival functions, estimated from data. The overall survival functions
in a model with four competing risks, cancer, cardiovascular diseases,
respiratory diseases and all other causes grouped together have been
implemented and evaluated, based on cause specific mortality data for
England and Wales published by the Office for National Statistics, for
year 2007. We show that the two alternative definitions of removal of a
cause of death have different effects on the overall survival and in par-
ticular on the life expectancy at birth and at age 65, when one, two or
three of the competing causes are removed. An important conclusion,
is that the eliminating definition is better suited for practical use in
competing risks applications, since it is more intuitive, and it suffices
to consider only positive dependence between the lifetimes which is not
the case under the alternative ignoring definition.

Keywords: dependent competing risks model, lifetimes, failure
times, overall survival function, copula functions, cause elimination,
cause removal
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1 Introduction

In the competing risks model, a group of individuals (units) is subject to the

simultaneous operation of a set of competing risks which cause death (fail-

ure). It is assumed that each individual can die from any one of the causes

and that there are corresponding lifetime random variables attached to

him/her at birth. This model has been widely studied in the (bio)statistical,

medical, actuarial and demographic literature, under the assumption of in-

dependence of the corresponding lifetimes. Important contributions to the

subject, to mention only a few, are the books by Pintilie (2006), Kalbfleisch

and Prentice (2002), Crowder (2001), Lawless (2003), Bowers et al. (1997)

and Elandt-Johnson and Johnson (1980), the recent overview by Lindqvist

(2007) and papers by Solari et al. (2008), Salinas-Torres et al. (2002) and

Bryant and Dignam (2004), where various aspects and problems related to

the competing risks model such as statistical methods for estimating (sub-

) survival functions, marginal survival functions and related inference are

considered.

A considerable amount of work has been devoted to the competing risks

model and its application in economics, reliability, medicine and actuarial

science, under the assumption of dependence of the competing risks lifetimes.

Important early contribution in this strand of literature are the papers by

Elandt-Johnson (1976), and also by Yashin et al. (1986) who consider con-

ditional independence of the times to death, given an assumed stochastic

covariate process. Tsiatis (1975) shows that it is impossible to identify the

dependence structure underlying the (dependent) joint distribution of the

competing risks failure times and their (marginal) distributions, based on

observed data. This is the well-known, unresolvable problem of identifia-

bility. It has been overcome in more recent work by simply assuming that

the dependence structure is known. With this approach, Zheng and Klein

(1995) propose the so called copula-graphic estimator of the marginal distri-

butions for dependent competing risks, assuming dependence is represented

by a known copula with known parameters. Recently, under the similar as-

sumption of a completely specified underlying copula, Chen (2010) develops

a non-parametric maximum likelihood estimation of the marginal semipara-

metric transformation models. Lo and Wilke (2010) apply a risk pooling

approach combined with the two-dimensional copula-graphic estimator of
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Zheng and Klein (1995) in order to estimate the marginal survival func-

tions in a multivariate dependent competing risks model with an assumed

Archimedean copula. They test their model on unemployment duration

data. EM-based estimation of sub-distribution functions under the assump-

tion that some of the competing causes are masked, has been considered by

Craiu and Reiser (2006). Bounds in a dependent competing risks models

with interval outcome data have been derived by Honoré and Lleras-Muney

(2006), who apply their model in estimating changes in cancer and cardio-

vascular mortality in USA. Recently, Lindqvist and Skogsrud (2009) has

focused at modelling dependent competing risks in reliability, by consider-

ing first passage times of Wiener processes. A useful survey of statistical

methods for dependent competing risks is provided by Moeschberger and

Klein (1995).

The dependent competing risks model of human mortality, under the

assumption of a (known) underlying copula function, has been considered

by Carriere (1994, 1995) and Escarela and Carriere (2003) and more recently

by Kaishev et al. (2007). Carriere (1994) and Escarela and Carriere (2003)

have modelled dependence between two failure times by a two dimensional

copula. In Escarela and Carriere (2003), the bi-variate Frank copula was

fitted to a prostate cancer data set. Carriere (1994) was the first to use a

bi-variate Gaussian copula in order to model the effect of complete removal

of one of two competing causes of death on human mortality. However, the

mortality data used by Carriere (1994) was not complete with respect to

older ages and therefore, it was not possible to calculate such important

survival characteristics as expected lifetimes and draw relevant conclusions.

This deficiency has been overcome in the paper by Kaishev et al. (2007)

who close the life table by applying a method of spline extrapolation up to

a limiting age 120. They have extended further the work of Carriere (1994),

considering a multidimensional copula model for the joint distribution of the

lifetimes. The model has been tested on the example of up to four compet-

ing causes of death, (cancer, heart diseases, respiratory diseases and other

causes grouped together), based on the US general population cause specific

mortality data set, provided by the National Center for Health Statistics,

NCHS (1999). Several alternative four dimensional copula models underly-

ing the joint distribution of the life times have been explored: the Gaussian

copula, the Student t-copula, the Frank copula and the Plackett copula.

3



The impact of removal of one, two or three of the competing causes of death

on the overall survival function and the life expectancy, which have utmost

importance in medical, biostatistical and actuarial applications, has been

studied.

In the paper by Kaishev et al. (2007), as well as in the earlier paper by

Carriere (1994), it has been assumed that deaths by a cause are removed

by simply ignoring that cause, i.e., by omitting the corresponding lifetime

random variable from the vector of lifetimes considered. For this reason,

removal of a cause of death under this definition, can be described more

precisely as ignoring the cause. However, as pointed out by Kaishev et al.

(2007) and also earlier, by Elandt-Johnson (1976), an alternative definition

of removal of a certain cause may be given by considering the limiting dis-

tribution of the vector of lifetimes, given that the lifetime with respect to

the removed cause tends to infinity, or more realistically to the limiting age.

In other words, under this definition, it is assumed that deaths from the re-

moved cause would not occur and all individuals would survive an infinitely

long time (in reality up to the limiting age) with respect to that cause. In

what follows, we will call this type of removal of deaths from a particular

cause, elimination of that cause. As pointed out by Kaishev et al. (2007),

this alternative definition is more intuitive and easy to interpret, but leads

to more complex expressions for the limiting survival distribution, under the

assumption that dependence is modelled by a suitable copula.

The purpose of this paper is to explore the two alternative definitions of

ignoring a cause and eliminating that cause, within the multivariate copula

dependent competing risks model. We compare and contrast the two defi-

nitions, based on UK cause specific mortality data for year 2007, provided

by the Office for National Statistics, ONS (2008), which includes deaths

from cancer, heart disease, respiratory diseases and all other causes grouped

together. We show that the choice of definition of cause removal has a signif-

icant effect on the overall survival function and the life expectancy at birth

and at age 65, in the cases where one, two or three of the competing causes of

death are simultaneously removed. It is demonstrated that the eliminating

definition is easier and more intuitive to interpret and does not necessarily

require the use of comprehensive copulas and also that the complexity re-

lated to its implementation can be overcome without difficulty. Therefore,

an important conclusion of the current work is that the eliminating defi-
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nition is preferable for practical use compared to the ignoring definition,

studied earlier in the papers by Carriere (1994) and Kaishev et al. (2007).

A second purpose of the paper is to demonstrate that, given a known

copula, the approach of estimating the net survival functions by solving a

system of differential equations, first considered by Carriere (1994) in the

two dimensional case, and later extended by Kaishev et al. (2007) to the

multivariate case, is numerically accurate and viable. Recently, this has been

questioned by Lo andWilke (2010) who have instead used the copula-graphic

estimator of Zheng and Klein (1995) to estimate the net survival functions

in the special case of (exchangeable) multivariate Archimedean copulas. It

can be argued that in practice it is restrictive to assume symmetry in the

dependence structure of competing risks failure times. Contrary to this,

our approach is general and allows to incorporate any copula model for the

competing-risk failure times distribution.

The paper is organized as follows. In section 2, we introduce the depen-

dent competing risks model under the assumption that dependence between

the competing risks lifetimes is modelled by a suitable copula function. We

summarize the methodology for obtaining net survival functions, given esti-

mates of the crude survival functions, considered earlier by Carriere (1994)

and Kaishev et al. (2007). In section 3, we give two alternative definitions

of removal of a cause of death, ignoring and eliminating and provide expres-

sions for the overall survival functions when one or more causes are removed.

In section 4, we implement the definitions numerically and compare the ef-

fect they have on the overall survival and on the life expectancy. Section 5

provides some conclusions and comments.

2 The dependent competing risks model

As pointed out by a number of authors, see e.g., Hooker and Longley-Cook

(1957), Carriere (1994), Kalbfleisch and Prentice (2002), Valdez (2001),

Fukumoto (2005), Lindqvist (2007), Lindqvist and Skogsrud (2009), risks

in many real life applications tend to be dependent. In particular, as estab-

lished in studying disease interactions (see e.g., Kaput et al. 1994, Weir 2005,

Lobo 2008), diseases may be jointly caused by the interaction of particular

genes. For example, as pointed out by Kaput et al. (1994), high levels of

dietary fat, regulated and characterized by certain genes, jointly enhance
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the severity of certain cancers, obesity and cardiovascular diseases. There-

fore, successful treatment of obesity, may lead to considerable reduction in

the number of deaths from certain types of cancer and atherosclerosis. Weir

(2005) has studied the interaction between cardiovascular disease (CVD)

and chronic kidney disease (CKD) in patients with CKD and has explained

the increased risk for CVD in patients with CKD. The paper by Lobo (2008)

is devoted to understanding epistatic interactions between genes as the key

to understanding complex diseases, such as Alzheimer’s disease, diabetes,

cardiovascular disease, and cancer. These and other studies in the medical

literature suggest that, by reducing (or completely removing) deaths from

one disease, it is possible to significantly improve mortality rates from the

related (interacting) disease. In terms of lifetimes, this means that the life-

times of interacting diseases are related (mutually dependent), and this de-

pendence, which characterizes the overall survival from such causes, can be

represented and studied under the copula-dependent competing risks model

considered in this section.

The copula-dependent competing risks model of human mortality has

recently been considered by Kaishev et al. (2007) where a detailed account

of its properties, model assumptions and parameter estimation can be found.

For our purpose of considering the model uncertainty with respect to the

definition of cause elimination, we will briefly introduce the model and recall

its basic characteristics.

Consider a group of individuals, exposed tom competing causes of death.

It is assumed that each individual may die from any single one of them

causes. To make the problem more formally tractable it is assumed that, at

birth, each individual is assigned a vector of potential life times T1, . . . , Tm,

0 ≤ Tj < ∞, j = 1, . . . ,m, if he/she were to die from each one of the

m causes. Obviously, the actual lifetime span is the minimum of all the

T1, . . . , Tm. Thus, it is clear that under this model the lifetimes T1, . . . , Tm

are unobservable and we can only observe the min (T1, . . . , Tm). In the

classical competing risks model the random variables T1, . . . , Tm are assumed

independent, whereas here we will be interested in their (dependent) joint

survival distribution function

S (t1, . . . , tm) = Pr (T1 > t1, . . . , Tm > tm) (1)
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which is assumed absolutely continuous and where tj ≥ 0, for j = 1, . . . ,m.

In what follows, we will also need the marginal survival functions S
′(j)(t) =

Pr (Tj > t), j = 1, . . . ,m, associated with S (t1, . . . , tm), which we call net

survival functions. As we will see, S
′(j)(t) are the target quantities in our

study since, if we know them we can identify and calculate the joint sur-

vival function S (t1, . . . , tm) and hence, evaluate the overall survival function

S(t, . . . , t), under some appropriate assumptions on the dependence struc-

ture underlying (1). Note that, S
′(j)(t), j = 1, . . . ,m are not observable.

Let us recall that the classical model of independence of the r.v.s T1, . . . , Tm

implies that

S (t1, . . . , tm) = S
′(1) (t1)× . . .× S

′(m) (tm) .

The overall survival of an individual, under the dependent competing risks

model assumptions, is defined by the random variable T = min (T1, . . . , Tm),

and we will be interested in modelling the overall survival function,

S(t, . . . , t) = Pr (T1 > t, . . . , Tm > t) = Pr(T > t)

where t ≥ 0. In order to do so, one can apply the celebrated theorem

of Sklar and express the survival function S (t1, . . . , tm) in terms of the

net (marginal) survival functions S
′(j)(t) and a suitable copula function,

C (u1, . . . , um), 0 ≤ ui ≤ 1, i = 1, . . . ,m which captures the dependence

structure, underlying the multivariate survival distribution of the random

vector T1, . . . , Tm.

Copula functions have become a well established tool for modelling

stochastic dependence and their properties are well documented in the mono-

graphs by Nelsen (2006), Joe (1997) and Cherubini et al. (2004). There are

numerous copula related papers scattered throughout the statistical, finan-

cial and actuarial journals and some relevant references can be extracted

from the CopulaWiki web page http://140.78.127.5/mediawiki/index.

php/Main$\_$Page. For a concise summary of the main properties of copu-

las, relevant to the multivariate dependent competing risks model of human

mortality, see Kaishev et al. (2007).

Having fixed a suitable copula, we can write

S (t1, . . . , tm) = C
(
S

′(1) (t1) , . . . , S
′(m) (tm)

)
, (2)
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from where we can also evaluate the overall survival function

S(t, . . . , t) = C
(
S

′(1)(t), . . . , S
′(m)(t)

)
, (3)

if the net survival functions S
′(j) (tj), j = 1, . . . ,m were known. In order to

find them, we may use the relationship between S
′(j)(t) and the so called

crude survival functions, S(j)(t), j = 1, . . . ,m. The crude survival function

S(j)(t) is defined as the survival function with respect to the j-th cause of

death, due to which death actually occurs, i.e.,

S(j)(t) = Pr (min (T1, . . . , Tm) > t,min (T1, . . . , Tm) = Tj)

The survival function S(j)(t) is called crude, since it reflects the observed

mortality of an individual and hence, may be estimated, from the observed

mortality data of a population, as will be illustrated in section 4. In the bio-

statistics literature the crude survival function S(j)(t) is sometimes called

the sub-survival function and the related cumulative distribution function

is named sub-distribution function or cumulative incidence function. A con-

siderable amount of literature exists which focuses at the use and estimation

of the latter functions in the context of competing risks (see e.g. Gaynor

et al. 1993, Lin 1997, Gooley 1999, Kalbfleisch and Prentice 2002, Lawless

2003, Craiu and Reiser 2006, Jeong and Fine 2007), where further references

can be traced down.

It is not difficult to see that

S(t, . . . , t) = S(1)(t) + . . . .+ S(m)(t) (4)

since the events min (T1, . . . , Tm) = Tj , j = 1, . . . ,m are mutually exclusive.

This obviously suggests that S(j)(0) < 1, j = 1, . . . ,m and the crude survival

functions are defective.

As shown by Carriere (1994), under the assumption of differentiability

of C (u1, . . . , um) with respect to uj ∈ (0, 1) and of S
′(j) (tj) with respect to

tj > 0, fort > 0, the following system of differential equations relates the
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crude and net survival functions

d

dt
S(1)(t) = C1

(
S

′(1)(t), . . . , S
′(m)(t)

)
× d

dt
S

′(1)(t)

d

dt
S(2)(t) = C2

(
S

′(1)(t), . . . , S
′(m)(t)

)
× d

dt
S

′(2)(t)

... (5)

d

dt
S(m)(t) = Cm

(
S

′(1)(t), . . . , S
′(m)(t)

)
× d

dt
S

′(m)(t)

where Cj (u1, . . . , um) = ∂
∂uj

C (u1, . . . , um), j = 1, . . . ,m.

It is important to note that (5) is a system of nonlinear, differential

equations which may be solved with respect to the net survival functions

S
′(j)(t), given a suitable copula and estimates of the crude survival functions

S(j)(t), j = 1, . . . ,m. The (approximate) numerical solution of (5) has

been considered by Carriere (1994) in the two dimensional case, m = 2.

The choice of the copula function, C, the (spline) estimation of S(j)(t),

j = 1, . . . ,m and the efficient numerical solution of (5) in the multivariate

case, m > 2 usingMathematica has been considered by Kaishev et al. (2007).

The derivatives with respect to time of the crude and net survival func-

tions in (5) are actually the crude and net probability density functions of

the r.v.s T1, T2, . . . , Tm. We will denote these densities as f (j)(t) and f
′(j)(t),

j = 1, . . . ,m, respectively.

Let us also note that equality (4) can be used as a check on the solution

of (5). For this purpose, we can apply (3) to express the overall survival

function on the left-hand side of (4) as

C
(
S

′(1)(t), . . . , S
′(m)(t)

)
= S(1)(t) + . . . .+ S(m)(t)

where , 0 ≤ t ≤ 120.

Once the net survival functions are obtained, one can use (3) and evaluate

the overall survival function which is of major interest in our investigation.

More precisely, we will be interested in studying the effect of removal of

a cause of death on the overall survival function, under two alternative

definitions of removal, which will be introduced in the next section.
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3 Removal of a cause of death

Our main interest in the paper is to investigate the effect of removing a

cause of death, say indexed j, on the overall survival function S(t, . . . , t).

This effect depends on the definition of removal and, as mentioned in the

introduction, one can consider two alternative definitions, either ignore the

cause or eliminate it. The two alternatives have been highlighted already

in the early paper by Elandt-Johnson (1976). Under the first approach,

deaths arising from the j-th cause are removed by simply ignoring the j-th

cause and considering a modified version of the lifetime random variable T ,

defined as

T
(−j)
ignore = min (T1, . . . , Tj−1, Tj+1, . . . , Tm)

i.e., considering the marginal distribution

F (t1, . . . , tj−1, tj+1, . . . , tm) = Pr (T1 ≤ t1, . . . , Tj−1 ≤ tj−1, Tj+1 ≤ tj+1, . . . , Tm ≤ tm)

with overall survival function

S
(−j)
ignore(t) = S(t, . . . , t, 0, t, . . . , t)

= Pr (T1 > t1, . . . , Tj−1 > tj−1, Tj+1 > tj+1, . . . , Tm > tm)

= Pr
(
T
(−j)
ignore > t

)
,

(6)

where t = 0 appears on the j-th position. Similarly, ignoring two causes,

say the j-th and the k-th ones, j ̸= k, would lead to considering the survival

function

S
(−j,−k)
ignore (t) = S(t, . . . , t, 0, t, . . . , t, 0, t, . . . , t). (7)

Alternatively, the j-th cause of death, may be eliminated by considering

the limiting distribution, conditional on Tj ↑ ∞, of surviving from all other

causes. Under this definition, the overall survival distribution function be-

comes

S
(−j)
eliminate(t) = lim

tj→∞

S (t, . . . , t, tj , t, . . . , t)

S′(j) (tj)
. (8)

Similarly, eliminating the j-th and the k-th cause, j ̸= k, may be defined as

considering the survival function

S
(−j,−k)
eliminate(t) = lim

tj→∞,tk→∞

S (t, . . . , t, tj , t, . . . , t, tk, t, . . . , t)

S′(j,k) (tj , tk)
, (9)
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where S
′(j,k) (tj , tk), is the marginal survival function with respect to the

j-th and the k-th causes. Note that both expressions (7) and (9) directly

generalize to the case of removing more than two competing risks.

The elimination definition allows for a more natural interpretation of the

dependence between lifetimes and of the elimination of their corresponding

causes, as will be illustrated numerically in the next section. To see this, as-

sume that the j-th cause is strongly positively correlated with, say, the k-th

cause. In this case, eliminating the j-th cause will mean that an individual

is much more likely to survive to a longer time-horizon with respect to the

k-th cause and more precisely, under perfect positive correlation, Tj ↑ ∞
would lead to Tk ↑ ∞, which is intuitive. On the other extreme, if Tj and

Tk are perfectly negatively correlated, if Tj ↑ ∞, then Tk ↓ 0 which could be

described as: elimination of the j-th cause would lead to increased mortal-

ity with respect to the k-th cause and hence, to decreased overall survival.

Clearly, this is of little practical relevance since removal of a cause of death

usually leads to improvement of the overall survival and for this reason,

elimination should be considered only under non-negative correlation. Let

us note that this is not the case for the alternative ignoring definition, under

which both negative or positive correlations between lifetimes may produce

improvements in the overall mortality, and worse mortality is not achiev-

able, as confirmed numerically in section 4 in this paper on the example of

the UK cause specific mortality data and also in Kaishev et al. (2007) for

US data. Therefore, the requirements with respect to the copula functions

are more stringent under the ignoring definition, since in order to cover the

whole range, from perfectly negative to perfectly positive correlation, only

comprehensive copulas may be used. It is also more difficult to give a mean-

ingful interpretation of ignoring a cause under both negative and positive

correlation between competing lifetimes.

It has to be noted that the elimination approach is confronted with the

difficulty that the limiting conditional distributions in (8) and (9), may

not always exist and if they exist, the evaluation of the overall survival

function may in general be more complex. Based on a particular selection

of copulas, we show in section 4 that, the numerical complexity added due

to the change of definition of elimination may be successfully overcome. Let

us also note that, in the case when T1, . . . , Tm are assumed independent, the

two approaches are equivalent (see Elandt-Johnson 1976).
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While the somewhat simpler approach of ignoring a cause has been im-

plemented and explored further in the papers by Carriere (1994) and more

recently by Kaishev et al. (2007), to the best of our knowledge, the alter-

native approach of eliminating a cause of death has not been implemented

and studied previously.

Our major goal in this paper will be to find representations, in terms

of a suitable copula, of the survival functions S
(−j)
ignore(t), S

(−j,−k)
ignore (t),. . . and

S
(−j)
eliminate(t), S

(−j,−k)
eliminate(t),. . . under the two alternative definitions of removal

of a cause of death. This will allow us to quantify and compare the effect of

removal of one or more causes, under the two alternative definitions, on life

expectancy at birth and at age 65.

Applying Sklar’s theorem one can express S
(−j)
ignore(t) as defined in (6), in

terms of a copula function as

S
(−j)
ignore(t) = C(S

′(1)(t), . . . , S
′(j−1)(t), 1, S

′(j+1)(t), . . . , S
′(m)(t)

)
, (10)

where the marginal (net) survival function S
′(j)(t) = Pr (Tj > t) due to

cause j, are found as solutions to the system of differential equations, (5),

following the methodology described in section 2.

Similarly, one can write

S
(−j,−k)
ignore (t) = C

(
S

′(1)(t), . . . , S
′(j−1)(t), 1, S

′(j+1)(t),

. . . , S
′(k−1)(t), 1, S

′(k+1)(t), . . . , S
′(m)(t)

)
. (11)

Alternatively, under the elimination approach, applying definition (8) the

following expression for the overall survival function, given the j-th cause

has been eliminated can be written

S
(−j)
eliminate(t) =

∫ ∞

t
. . .

∫ ∞

t
c
(
S

′(1) (t1) , . . . , S
′(j−1) (tj−1) , 0, S

′(j+1) (tj+1) ,

. . . , S
′(m) (tm)

)
×

m∏
i=1,i ̸=j

f
′(i)(t)dt1 . . . dtm, (12)

where c (u1, . . . , uj−1, 0, uj+1, . . . , um), is the copula density, f
′(i)(t), i =

1, . . . ,m are the marginal (net) probability density functions, corresponding

to each cause of death and the integral in (12) has dimension m− 1.
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Similarly, following (9),

S
(−j,−k)
eliminate(t) =

∫ ∞

t
. . .

∫ ∞

t

1

Cjk(0, 0)
c
(
S

′(1) (t1) , . . . , S
′(j−1) (tj−1) , 0, S

′(j+1) (tj+1) ,

. . . , S
′(k−1) (tk−1) , 0, S

′(k+1) (tk+1) , . . . , S
′(m) (tm)

)
×

m∏
i=1,i ̸=j,i̸=k

f
′(i)(t)dt1 . . . dtm,

(13)

where

Cjk(0, 0) =
∂

∂uj

∂

∂uk
C (1, . . . , 1, uj , 1, . . . , 1, uk, 1, . . . , 1) |uj=0,uk=0.

It is easy to see how (11) and (13) generalize directly to the case of elimi-

nating more than two causes, and therefore we will omit the corresponding

formulae.

Comparing expressions (10) and (11), with (12) and (13), it can be seen

that the latter are more complex and more difficult to evaluate. In order

to evaluate (10) and (11), it is sufficient to compute the copula function

C whereas, in order to evaluate (12) and (13) one would need to compute

a multiple integral of a relatively complex integrand function. In order

to produce a simpler expression for S
(−j)
eliminate(t) and S

(−j,−k)
eliminate(t), one may

consider either simplifying (12) and (13) or finding explicitly the limits in (8)

and (9). In general, both approaches are confronted with difficulties. One of

them is that the marginal densities, f
′(i)(t), i = 1, . . . ,m, are not in analytic

form but are derived from the numerical solution of (5), so direct integration

in (12) and (13) is not plausible even for copulas with simpler representation,

such as Frank or Plackett copulas. Furthermore, directly finding the limits

in (8) and (9) is difficult since, the denominator, S
′(j)(s) is obtained as a

numerical solution of (5), and it tends to zero as s → ∞. However, as

is established in section 4, definitions (8) and (9) lead to a more efficient

numerical implementation than the more involved integral expressions (12)

and (13). The implementation of the competing risks model under both the

ignoring and the eliminating definition, is illustrated in the next section 4.
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4 Numerical results

In this section, we apply the methodology described earlier to UK cause

specific mortality data for year 2007, published by the ONS (2008), which

includes deaths from cancer, heart disease, respiratory diseases and all other

causes grouped together. The classification of causes of death is according

to the 10th revision of the International Classification of diseases (ICD-10).

For ease of presentation, we consider the two dimensional and the multidi-

mensional competing risk models separately. The numerical implementation

of the methodology has been performed using Mathematica 7.

4.1 Two causes of death

We consider here the simplest case of only two competing causes of death,

one due to cancer (ICD-10 codes C00-D48), and a second one due to all

other, non-cancer causes, pooled together. Thus, here m = 2 and we denote

by Tc and To the lifetime random variables for the cancer and non-cancer

causes of death and by S(c)(t), S
′(c)(k), and S(o)(t), S

′(o)(k), the crude and

net survival functions for cancer and non-cancer respectively. As noted in

section 2, it is possible to estimate crude survival functions based on an

appropriate set of cause specific, mortality data. In order to estimate the

crude survival functions for cancer and other (non-cancer) causes, we have

used a two decrement life table, obtained on the basis of England and Wales

cause specific female mortality data for year 2007, published by the ONS

(2008); for further details see Table 5, therein. For more details on how the

two decrement life table was obtained, see the Appendix. The two decrement

life table data are presented in 5 year age intervals and cover the age range

from 0 to 95+ years. We have fitted a cubic spline function to the observed

crude survival data for ages from 0 to 100, noting that the values published

by ONS (2008) have already been smoothed and no further smoothing was

required. In order to obtain a “closed” mortality model up to a limiting

age of 120, we have extrapolated the fitted cubic spline functions S(c)(t)

and S(o)(t), for the cancer and the other (non-cancer) causes, over the 100-

120 age range, under the condition that S(c)(120) = S(o)(120) = 10−10.

For further details regarding the method and formulas used to obtain the

observed and extrapolated values of the crude survival functions, we refer

to the Appendix. For a summary on different methods which can be used
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to extrapolate and close a life table, we refer to Kaishev et al. (2007) and

Buettner (2004).

The fitted cubic spline survival functions S(c)(t) and S(o)(t), 0 ≤ t ≤ 120

and their densities are given in Fig. 1.
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Figure 1: Interpolated crude survival functions (left panel) and their densi-
ties (right panel) for ’cancer’ and ’other’ causes of death.

Having estimated the crude survival functions S(c)(t) and S(o)(t), 0 ≤ t ≤
120, we obtain the net survival functions S

′(c)(t) and S
′(o)(t), 0 ≤ t ≤ 120,

by solving the system (5), using three different type of copulas, namely

Gaussian, Frank and Plackett copulas. The solutions S
′(c)(t), S

′(o)(t), 0 ≤
t ≤ 120, obtained from (5) have been checked applying equation (4) for

the case m = 2. As can be seen from Fig. 1, the crude survival functions,

S(c)(t) and S(o)(t) are both close to zero in the age range 100 ≤ t ≤ 120,

therefore numerical solutions of (5), S
′(o)(t) and S

′(c)(t) may not possess

the Mathematica precision for the built-in function NDSolve in that range.

Another important point is that both, S
′(o)(t) and S

′(c)(t), are influenced by

the extrapolated sections of the crude survival functions not only for 100 ≤
t ≤ 120 but within the entire age range 0 ≤ t ≤ 120. This in turn means that

the exact figures presented in the tables later in this section, depend on the

extrapolation that has been carried out. However, the general results and

conclusions with respect to survival under the dependent competing risks

model are still valid. Furthermore, the life expectancy at birth for females

of 81.66 years, reported by the ONS (see the 2005-07 Interim Life Table

for England and Wales) coincides with the corresponding figure obtained by

integrating the (extrapolated) overall survival function given by (4).

The net survival functions, obtained as a solution of (5), using the Gaus-

sian copula, CGa (u1, u2), with values of ρ corresponding to five different

values of Kendall’s τ are plotted in Fig. 2 (so that τ = 0.91 corresponds to
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ρ = 0.99, τ = 0.35 corresponds to ρ = 0.52 and so on). Let us recall that

the (non-linear) dependence between the causes of death is measured by the

Kendall’s τ which in the case of a Gaussian copula is expressed through the

linear correlation parameter ρ as τ(Tc, To) =
2
π arcsin(ρ(Tc, To)). The linear

correlation ρ is considered as a free parameter, by means of which different

degrees of association, between the cancer and non-cancer modes of death,

are preassigned. Thus, the system (5) has been solved for values of ρ equal to

−0.99,−0.52, 0.00, 0.52, 0.99 and the obtained net survival functions S
′(o)(t)

and S
′(c)(t), 0 ≤ t ≤ 120, are given in the left and right panel in Fig. 2. The

corresponding densities, f
′(o)(t) and f

′(c)(t) are plotted in Fig. 3. Plots for

S
′(o)(t) and S

′(c)(t), assuming Frank and Plackett copulas are very similar

and therefore have been omitted.
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Figure 2: The survival functions S
′(o)(t) ≡ S

(−c)
ignore(t), 0 ≤ t ≤ 120 (left

panel) and S
′(c)(t) ≡ S

(−o)
ignore(t) (right panel), assuming a Gaussian copula.

In the remainder of this section, we will compare and analyze the nu-

merical results of survival under the two alternative definitions of removal

of a cause of death, the ignoring and the eliminating definitions given by (6)

and (8) in section 3.

In the bi-variate case, under the ignoring definition, for fixed ρ, the

net survival function, S
′(o)(t), 0 ≤ t ≤ 120, coincides with the overall sur-

vival function, S
(−c)
ignore(t), 0 ≤ t ≤ 120, when cancer has been removed, i.e.,

S
′(o)(t) ≡ S

(−c)
ignore(t) and f

′(o)(t) ≡ f
(−c)
ignore(t), where f

(−c)
ignore(t) = −dS

(−c)
ignore(t)

dt .

Obviously, if cancer is ignored in the bi-variate decrement model, the overall

survival will entirely be determined by the only remaining cause of death,

that of non-cancer, and vice-versa. Therefore, in order to study the overall

survival, when cancer is ignored, we may directly study the non-cancer net

survival function S
′(o)(t) and its corresponding density, f

′(o)(t), given in the
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left panel of Fig. 3.
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Figure 3: The density functions, f
′(o)(t) ≡ f

(−c)
ignore(t), 0 ≤ t ≤ 120, (left

panel) and f
′(c)(t) ≡ f

(−o)
ignore(t), 0 ≤ t ≤ 120, (right panel), assuming a

Gaussian copula.

As can be seen from the left panel of Fig. 2, ignoring cancer affects

survival most significantly when Kendall’s τ = −0.91 (ρS = −0.99), which

corresponds to the case of extreme negative dependence. This effect of

rectangularization of the overall survival function is seen even more clearly

on the right panel of Fig. 2, where the ’other’ cause of death has been

removed. In addition, we note that in the case of negative dependence or

even independence between Tc and To, the trend of the overall survival curves

suggests that the limiting age lies somewhere beyond 120 and it would not

be natural to expect the old age survivors to die almost simultaneously at

120.

Survival under the eliminating definition of removal of a cause is illus-

trated for the three different choices of copula, Gaussian, Frank and Plackett

copulas, in Fig. 4-6, respectively. It is worth noting that, contrary to the

ignoring definition, the net survival function, S
′(o)(t), 0 ≤ t ≤ 120, does not

coincide with the overall survival function, S
(−c)
eliminate(t), 0 ≤ t ≤ 120, when

cancer has been eliminated, i.e., S
′(o)(t) ̸= S

(−c)
eliminate(t). The overall survival

function, S
(−c)
eliminate(t), has been computed based on definition (8) (see sec-

tion 3) for the case m = 2, with s → ∞ replaced by s → 120, in which case

S
′(j)(s) → 0 has been replaced by S

′(j)(s) → 10−10, i.e. (8) simplifies to

S
(−j)
eliminate(t) = C

(
S

′(1)(t), . . . , S
′(j−1)(t), 10−10, S

′(j+1)(t), . . . , S
′(m)(t)

)
×1010.

(14)

It has to be noted that expression (12) can be used as an alternative to

(14), however, its evaluation is much more time consuming and in the case
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of the Gaussian and t-copulas, for which considerable probability mass is

located at the origin, this leads to unstable computations. In contrast, the

evaluation of (14) is stable and requires only a few seconds in the case of

m = 2, for any of the three copulas selected.

We are interested in assessing the gain in life expectancy due to a cause

removal and hence, in what follows we will compare the corresponding values

with the life expectancy (81.66 years) in the case when none of the causes

has been removed. The life expectancy at birth,
◦
e
(−j)

0 , and at age 65,
◦
e
(−j)

65 ,

when the j-th cause is removed can be expressed as

◦
e
(−j)

0 =

∫ 120

0
S(−j)(t) dt (15)

and as
◦
e
(−j)

65 =

∫ 120

65

S(−j)(t)

S(−j)(65)
dt, (16)

where the survival function S(−j)(t) is substituted from expressions (10) and

(14) for the ignore and eliminate definitions of removal, respectively.

As can be seen from Fig. 4-6, for negative values of τ , the overall sur-

vival function, S
(−c)
eliminate(t), when cancer is eliminated, suggests very poor

survival from the remaining cause (all other causes pooled together) for all

three copula choices. This is confirmed by the negative values of the gain

in the life expectancies at birth,
◦
e
(−c)

0 , and at age 65,
◦
e
(−c)

65 , calculated ac-

cording to (15) and (16) respectively with j = c, presented in Tables 1-3

for τ = −0.91 and τ = −0.35. The latter phenomenon is observed because,

under strong negative correlation i.e., τ = −0.91, individuals survive to

120 from cancer (when it is eliminated) and hence, they will tend to die

from the remaining competing cause already at birth, due to the assumed

strong negative correlation of the corresponding lifetimes. Clearly, under

the eliminating definition, such negative correlation makes little sense, since

it suggests that improvement of mortality with respect to one cause would

lead to increasing the mortality from the remaining cause. Such a setting is

of little relevance when the competing risks are critical illnesses, since what

is important in the context of medical, demographic and actuarial applica-

tions is how life expectancy and other survival characteristics are affected if

mortality improves as a result of successful elimination of any of the main

causes of death. Therefore, under the eliminating definition of removal of a
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cause of death, it is sufficient to study only the range of positive correlation

between the competing lifetime random variables. Hence, copula functions

which are not necessarily comprehensive can be used. The latter is particu-

larly important in the truly multivariate case, m > 2, where the number of

comprehensive copulas is limited.

As can be seen from the left panel of Fig. 4, assuming almost perfect

positive correlation and eliminating cancer, i.e. achieving perfect survival

with respect to it, naturally leads to perfect survival with respect to the

only remaining competing risk (all other causes pooled together), and hence

leads to perfect overall survival, given cancer is eliminated. This is clearly

illustrated by the curve, S
(−c)
eliminate(t) for τ = 0.91, which is almost rectangu-

lar.

Comparing Fig. 2 and Fig. 4, and also the columns “Ignore” and “Elimi-

nate” of Table 1, which summarizes the values of
◦
e
(−c)

0 and
◦
e
(−c)

65 , under both

the ignoring and eliminating definitions, it can be seen that survival under

the two alternative definitions is quite different. Thus, under the ignoring

definition, improvement in mortality is achieved for all values of τ ∈ (−1, 1),

whereas under the eliminating definition, mortality improvement is achieved

only for non-negative values of τ ∈ [0, 1). On the other hand, looking at Fig.

2 and Fig. 4, it can be seen that the overall survival function under the ig-

noring definition varies within a relatively small range and is bounded from

above by the curve for τ = −0.91 which is nearly the best possible mortality

improvement, attained in the limit, as τ → −1, in which case the Gaussian

copula converges to the lower Fréchet-Hoeffding bound. In contrast to the

ignoring case, under the elimination definition survival is very sensitive with

respect to the value of τ and can vary within the entire range, from zero

life span to 120 years life span, as seen from Fig. 4and the values for
◦
e
(−c)

0

and
◦
e
(−c)

65 , presented in Table 1. Also, contrary to the ignoring definition,

under elimination, survival depends significantly on the choice of the copula

modelling the dependence between the lifetimes, as can be seen comparing

the survival functions in Figures 4, 5 and 6, and the numbers for
◦
e
(−c)

0 and
◦
e
(−c)

65 , presented in Tables 1-3. Comparing the curves in Fig. 2 and Fig. 4,

it can be verified that the two definitions are equivalent in the independent

case τ = 0, as noted in section 3.

What can also be observed, comparing the survival curves in Fig. 4, 5

and 6 is that the curves corresponding to the Frank and Plackett copulas
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are relatively much closer to each other then to the curves for the Gaussian

copula case. This is consistent also with the numerical results for
◦
e
(−c)

0 and
◦
e
(−c)

65 , presented in the columns “Eliminate” of Tables 2 and 3, which are

close to each other for most of the values of τ . It can also be seen from

Fig. 5 and 6 that for both copulas, improvement of survival is somewhat

more limited and rectangularization for τ = 0.91 is not achieved, in contrast

to the case of Gaussian copula, given in Fig. 4. Comparing the numerical

values for
◦
e
(−c)

0 and
◦
e
(−c)

65 , summarized in Table 1 with those given in Tables

2 and 3, one can conclude that, under the eliminating definition, the results

are more sensitive both with respect to the value of τ and the choice of

copula, than under the ignoring definition.
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Figure 4: Overall survival functions, S
(−c)
eliminate(t), given cancer eliminated

(left panel) and S
(−o)
eliminate(t), given all other causes eliminated (right panel),

assuming Gaussian copula dependence.
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Figure 5: Overall survival functions, S
(−c)
eliminate(t), given cancer eliminated

(left panel) and S
(−o)
eliminate(t), given all other causes eliminated (right panel),

assuming Frank copula dependence.

Although our focus so far has been at the changes in the overall survival

function S(t), 0 ≤ t ≤ 120, under the two alternative definitions of ignoring
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Figure 6: Overall survival functions, S
(−c)
eliminate(t), given cancer eliminated

(left panel) and S
(−o)
eliminate(t), given all other causes eliminated (right panel),

assuming Plackett copula dependence.

Table 1: Gaussian copula results.

τ N(ρ)

◦
e
(−c)

0 [gain]
◦
e
(−c)

65 [gain]

Ignore Eliminate Ignore Eliminate

-0.91 ρ = −0.99
90.56 0 27.94 0
[8.90] [-81.66] [7.93] [-20.01]

-0.35 ρ = −0.52
86.39 7.37 23.55 6.63
[4.74] [-74.29] [3.54] [-13.38]

0 ρ = 0
85.21 85.21 22.33 22.33
[3.55] [3.55] [2.31] [2.31]

0.35 ρ = 0.52
84.07 107.48 21.27 42.48
[2.41] [25.82] [1.25] [22.47]

0.91 ρ = 0.99
82.02 119.96 20.06 54.96
[0.36] [38.30] [0.05] [34.95]
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Table 2: Frank copula results.

τ F (θ)

◦
e
(−c)

0 [gain]
◦
e
(−c)

65 [gain]

Ignore Eliminate Ignore Eliminate

-0.91 θ = −44.88
89.74 37.87 27.08 3.97
[8.08] [-43.79] [7.07] [-16.04]

-0.35 θ = −3.46
86.28 75.32 23.43 16.34
[4.62] [-6.34] [3.42] [-3.67]

0.35 θ = 3.46
84.15 92.24 21.28 27.54
[2.49] [10.58] [1.27] [7.53]

0.91 θ = 44.88
82.20 101.05 19.94 36.05
[0.54] [19.39] [-0.07] [16.04]

Table 3: Plackett copula results.

τ P (θ)

◦
e
(−c)

0 [gain]
◦
e
(−c)

65 [gain]

Ignore Eliminate Ignore Eliminate

-0.91 θ = 1
735.8

88.93 8.36 26.22 9.77
[7.27] [-73.30] [6.21] [-10.24]

-0.35 θ = 1
5.022

86.30 73.53 23.46 16.42
[4.64] [-8.13] [3.45] [-3.59]

0.35 θ = 5.022
84.17 92.42 21.32 27.94
[2.51] [10.76] [1.30] [7.93]

0.91 θ = 735.8
82.12 105.28 20.10 40.29
[0.46] [23.62] [0.08] [20.28]
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and eliminating a cause of death, the joint survival function of Tc and To,

S (t1, t2) = Pr (Tc > t1, To > t2), 0 ≤ tj ≤ 120, j = 1, 2, is also of interest.

However, since either one of the causes leads to death, and the other lifetime

remains latent, probabilistic inference related to the joint distribution of Tc

and To is somewhat artificial. Nevertheless, it is instructive and in Fig. 7-

9 we have plotted the joint density of Tc and To, in case of the bi-variate

Gaussian, Frank and Plackett copulas for Kendall’s τ = 0.35. For any bi-

variate copula, the joint density of Tc and To can be calculated from (2)

as

∂2

∂t1∂t2
S (t1, t2) = c

(
S

′(c) (t1) , S
′(o) (t2)

)
× f

′(c) (t1)× f
′(o) (t2) (17)
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Figure 7: A 3D plot and a contour plot of the joint density of Tc and To,
expressed through the Gaussian copula, for Kendall’s τ = 0.35.

As seen from Fig. 7-9, under this assumption of positive dependence,

jointly increasing values of the lifetimes Tc and To are likely to occur. This is

valid, regardless of which copula has been assumed to model the dependence.

There are, of course, some copula specific differences in the joint density

functions, as is natural to expect in view of (17). As can be seen from

Fig. 8 and 9, the plots of the joint density of Tc and To are similar for the

Frank and Placket cases, and are somewhat different to the density plots in

case of the Gaussian copula given in Fig. 7. The Gaussian copula seems to

preserve the peak at the early infant mortality which is inherent from the
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(empirical) crude survival functions. Another, obvious characteristic of the

joint density function for all three copulas is that it has two modes, more

strongly expressed in the case of Frank and Placket copulas. Clearly, the

choice of copula would be contingent on the availability and access to data,

providing information about the interaction between diseases, and medical

experts opinion (cf. Section 4.1 in Kaishev et al. (2007)).
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Figure 8: A 3D plot and a contour plot of the joint density of Tc and To,
expressed through the Frank copula, for Kendall’s τ = 0.35.
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Figure 9: A 3D plot and a contour plot of the joint density of Tc and To,
expressed through the Plackett copula, for Kendall’s τ = 0.35.
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4.2 Multiple causes of death (m = 4)

We now illustrate the extension of the proposed methodology to the mul-

tivariate case by considering four competing causes of death, cancer (c),

(ICD-10 codes C00 − D48), heart diseases (h), (ICD-10 codes I00 − I99),

respiratory diseases (r), (ICD-10 codes J00 − J99), and other causes (o),

grouped together. As in the bi-variate case, we have constructed a four

decrement life table using England and Wales cause specific female mortal-

ity data for year 2007, published by the ONS (2008). For more details on

how the four decrement life table was obtained see the Appendix. The inter-

polated crude survival functions S(c)(t), S(h)(t), S(r)(t), S(o)(t), 0 ≤ t ≤ 120

and their derivatives are given in Fig. 10.
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Figure 10: The crude survival functions (left panel) and their densities (right
panel).

For illustrative purposes we have used the multivariate Frank copula to

model purely positive dependence between the lifetimes Tc, Th, Tr and To,

which, as noted in the bi-variate case, is the meaningful range of dependence

under the elimination definition of cause removal. The four net survival

functions obtained as a solution to system (5), and their densities for the

multivariate Frank copula with parameter θ = 3.46, are presented in Fig.

11.

In the left panels of Fig. 12 and Fig. 14 we give the overall survival

functions with each one of the three possible diseases individually removed,

j ∈ {h, c, r}, under the ignoring and the eliminating definitions of removal,

respectively, and compare them to the overall survival function with no dis-

ease removed, S(t). As can be seen, the improvement in survival is more

significant under the eliminating definition than under the ignoring one.

This is confirmed also by comparing the corresponding gains in the life ex-

pectancy, summarized in the first three rows of Table 4. It is logical to
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Figure 11: The net survival functions (left panel) and their densities (right
panel).

obtain more significant gains in life expectancy under the elimination defi-

nition, since in that case the lifetime for the eliminated cause is pushed to

the limiting age, which also causes other (positively) correlated lifetimes to

increase. As a result, gain in life expectancy, due to the collective improve-

ment of lifetimes, is much more significant. In contrast, under the ignoring

definition the lifetime is simply omitted from the set of competing lifetimes,

which leads to a much less expressed association with the remaining lifetimes

and therefore, less gain in life expectancy.

Another interesting conclusion, drawn from Table 4, is that maximum

gain in
◦
e
(−j)

65 is achieved when heart disease is removed, i.e. j ≡ {h}, and
this is true under both the ignoring and eliminating definitions. Under the

ignoring definition, the maximum gain in
◦
e
(−j)

0 is achieved if cancer is ig-

nored, i.e., j = c, contrary to the eliminating definition where the maximum

gain is attained if heart disease is eliminated. However, ignoring cancer or

heart disease produces very similar gains in the life expectancy at birth,
◦
e
(−j)

0 , as can be seen from Table 4.

As it is also illustrated in Fig. 12 and Fig. 14, under both definitions

the most significant improvement in survival for the age range 40 ≤ t ≤
85 is achieved if cancer is removed, whereas for 85 ≤ t ≤ 120 the best

improvement in survival is due to removal of heart disease. As expected,

improvement in survivorship due to the removal of respiratory disease is not

as significant.

In the left panels of Fig. 13 and Fig. 15 we give the overall survival func-

tions with all possible pairs of diseases removed, i.e., j ≡ {c, h}, j ≡ {c, r},
j ≡ {h, r}, under the ignoring and the eliminating definitions of removal,

respectively and again contrast them to the overall survival functions with
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no disease removed, S(t). As in the case of removing only one disease at

a time, if a pair of diseases is removed, improvement in survival is more

significant under the eliminating definition, compared to the ignoring one.

This is confirmed also comparing the corresponding gains in the actuarial

functions, summarized in the second three rows of Table 4. Under the ignor-

ing definition, the maximum gain in
◦
e
(−j)

0 and
◦
e
(−j)

65 is achieved if the pair,

j = ch is removed, whereas under the eliminating definition the maximum

in
◦
e
(−j)

0 and
◦
e
(−j)

65 is attained if j = hr . However, as can be seen from Table

4, under the eliminating definition, the gains in
◦
e
(−j)

0 and
◦
e
(−j)

65 are very

similar in the case of j ≡ {c, h} and j ≡ {h, r}, so one may argue that under

both definitions, the removal of cancer and heart (j ≡ {c, h}) brings about
(most) significant gains in the life expectancy figures summarized in Table

4.

It is worth noting also another way in which the two definitions are

different. Comparing the gains obtained if one cause is removed to the gains

resulting from the removal of two causes, one can see that the gains nearly

double under the ignoring definition while they are nearly the same under

the eliminating definition. This is natural to expect since one and the same

level of positive correlation between the lifetime random variables, Tc, Th, Tr

and To, has a different interpretation and numerical effect on the functions
◦
e
(−j)

0 and
◦
e
(−j)

65 , under the two alternative definitions. And finally we note

that regardless of the definition, the maximum gain is achieved when all

three diseases are removed and this is illustrated by the last row of Table 4.
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Figure 12: The overall survival functions with no disease ignored and with
only one disease ignored (left panel) and their densities (right panel).
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Figure 13: The overall survival functions with no disease ignored and with
only two diseases ignored (left panel) and their densities (right panel).

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

Seliminate
H-cL

HtL

Seliminate
H-hL

HtL

Seliminate
H-rL

HtL
SHtL

20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

â Seliminate
H-cL

HtL�â t

â Seliminate
H-hL

HtL�â t

â Seliminate
H-rL

HtL�â t
â SHtL�â t

Figure 14: The overall survival functions with no disease eliminated and with
only one disease eliminated (left panel) and their densities (right panel).
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Figure 15: The overall survival functions with no disease eliminated and with
only two diseases eliminated (left panel) and their densities (right panel).
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Table 4: Multivariate Frank copula results.

τ

◦
e
(−c)

0 [gain]
◦
e
(−c)

65 [gain]

Ignore Eliminate Ignore Eliminate

j ≡ c
84.15 92.25 21.28 27.55
[2.49] [10.59] [1.27] [7.53]

j ≡ h
84.06 93.63 22.19 29.10
[2.40] [11.97] [2.17] [9.08]

j ≡ r
82.56 91.95 20.80 27.44
[0.89] [10.29] [0.78] [7.42]

j ≡ c, h
87.48 95.47 24.23 30.71
[5.82] [13.81] [4.22] [10.69]

j ≡ c, r
85.35 93.45 22.31 28.73
[3.69] [11.79] [2.29] [8.71]

j ≡ h, r
85.64 95.59 23.68 31.05
[3.98] [13.93] [3.66] [11.03]

j ≡ c, h, r
89.91 98.05 26.49 33.26
[8.25] [16.39] [6.47] [13.24]
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5 Concluding remarks

In this paper, we have demonstrated how copula functions can be applied in

modelling dependence between lifetime random variables in the context of

competing risks. We have implemented the multivariate copula dependent

competing risks model to study the impact of removing one or more causes

of death on England & Wales 2007 cause specific mortality. In particular,

we have focused at comparing and contrasting two alternative definitions

of cause removal, namely ignoring and eliminating a cause, and their effect

on the overall survival and the life expectancy at birth and age 65. For

this purpose, we have provided expressions for the overall survival functions

in terms of the specified copula (density) and the net (marginal) survival

functions.

We have shown that there are substantial differences in the overall sur-

vival functions, given one or more risks are removed, under the two defini-

tions which is also reflected in the values of the life expectancy. An impor-

tant conclusion derived from this work is that the elimination definition is

more appropriate for biostatistical, medical, demographic or actuarial ap-

plications, since it suffices to consider only positive dependence among the

competing lifetimes and the model results are more intuitive and easily in-

terpretable.

The methodology and results may be applied in: managing longevity

risk; setting target levels for mortality rates that will assist with scenario

testing and sensitivity analyses in the presence of dependence between causes

of death; population forecasting and planning; life insurance business where

the financial impact of mortality improvements on life insurance and annu-

ities products may be investigated.

The question of how to estimate the (pairwise) correlations between

causes of deaths via their associated lifetimes, requires further research in

close collaboration with the medical profession. In this regard, promising

directions of research may be to look at estimation, based on the so called

Expectation-maximization algorithms, and also quantitative methods for

modelling expert’s opinion.
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Appendix

In order to illustrate the competing risks framework and compare the two

cause removal definitions presented in the paper, we need a cause-specific

mortality table. Unfortunately, such tables are not directly available for the

UK population and so, here we describe how we have constructed a two

and a four decrement UK female population data set (FP), using “Table 5.

Death: underlying cause, sex and age-group, 2007: summary” from ONS

(2008) and the England & Wales 2005-07 Interim Life Table as published by

ONS. Table 5 from ONS (2008) contains number of deaths by cause of death

and total number of deaths, relating to five year age groups, e.g. 5-9, 10-14,

15-19 and so on. The first and the last age spans for which data are given

in the table are correspondingly 0-1 and 95+ and the causes of death are

coded according to the International Classification of Diseases (ICD), 10th

revision. So, from these data we have extracted the proportions in every age

group of people dying from cancer (c), (ICD-10 codes C00-D48), from heart

diseases (h), (ICD-10 codes I00-I99), from respiratory diseases (r), (ICD-10

codes J00-J99) and all other causes of death, (o), pooled together. Clearly,

for the purpose of constructing the two decrement table we have combined

the figures for heart and respiratory diseases and added them to the group of

’other’ causes of death. The proportions obtained in this way were applied to

the number of deaths, dx, given in the England & Wales 2005-07 Interim Life

Table and the resulting age-grouped, multiple decrement tables are given in

Table 5 and Table 6.

Based on the crude data presented in Table 5 and Table 6, we easily

obtain the observed values at ages k = 1, 5, 10, . . . , 95, 100 of the crude

survival functions S(c)(k) and S(o)(k), see Table 7, and S(c)(k), S(h)(k),

S(r)(k) and S(o)(k), see Table 8. As mentioned in section 4, cubic spline

functions were fitted to these crude survival data and an extrapolation has

been performed over the 100-120 age range by setting S(j)(120) = 10−10,

j ∈ {c, h, r, o}. It has to be noted that the spline functions have been fitted

to logS(j)(k) data and than transformed back to the original scale. The

latter allows to avoid some unwanted wiggling of the spline curves when

fitted directly to S(j)(k) data, as for example the fit becoming negative

in the very old ages. In order to obtain the observed values of the crude

survival functions presented in Tables 7 and 8, the following quantities were
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calculated:

∞q
(j)
0 - the multiple-decrement probability that a newborn will die from

cause of death j, j ∈ {c, h, r, o}
∞d

(j)
0 - the total number of deaths from cause of death j, j ∈ {c, h, r, o},

for all ages from 0 to ∞
The following formula were used to obtain the values of ∞q

(c)
0 = 0.24 and

∞q
(o)
0 = 0.76 in the two-decrement case, and ∞q

(c)
0 = 0.24, ∞q

(h)
0 = 0.34,

∞q
(r)
0 = 0.15 and ∞q

(o)
0 = 0.27 in the four-decrement case, based on the

values given in Table 5 and Table 6:

∞q
(j)
0 =

∑
x d

(j)
x

l0
=

∞d
(j)
0

l0
, j ∈ {c, h, r, o}.

The following formulae were used to calculate the values of kd
(j)
0 , S

(j)
0 (k)

and S(k) given in Table 7 and Table 8, based on the values given in Table

5 and Table 6:

kd
(j)
0 =

∑
x<k

d(j)x

S(j)(k) = ∞q
(j)
0 − kd

(j)
0

l0

S(k) =
∑
j

S(j)(k) =
lk
l0

S(j)(0) = ∞q
(j)
0

S(0) =
∑
j

S(j)(0) =
l0
l0

= 1, j ∈ {c, h, r, o}.

35



Table 5: England & Wales female general population two-decrement life
table.

x d
(c)
x d

(o)
x lx

0-1 213 44097 10000000

1-4 1073 6807 9955690

5-9 1064 3226 9947810

10-14 1346 4274 9943520

15-19 1872 8908 9937900

20-24 2646 10384 9927120

25-29 3988 12542 9914090

30-34 6290 16450 9897560

35-39 13564 21136 9874820

40-44 23533 32087 9840120

45-49 43620 45210 9784500

50-54 73104 66816 9695670

55-59 114939 93951 9555750

60-64 174080 147690 9346860

65-69 242126 252514 9025090

70-74 315043 457087 8530450

75-79 390913 831207 7758320

80-84 410689 1331611 6536200

85-89 330792 1695808 4793900

90-94 187292 1546768 2767300

95-100 55287 768993 1033240

100+ 208960

x - age span;

d
(j)
x - the number of deaths due to cause of death j, j ∈ {c, o}, during

the age interval x;

lx - the number of living at the beginning of the age interval x;
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Table 6: England & Wales female general population four-decrement life
table.

x d
(c)
x d

(h)
x d

(r)
x d

(o)
x lx

0-1 213 670 1065 42362 10000000

1-4 1073 369 905 5533 9955690

5-9 1064 213 319 2695 9947810

10-14 1346 381 381 3513 9943520

15-19 1872 725 332 7851 9937900

20-24 2646 863 489 9032 9927120

25-29 3988 1735 761 10046 9914090

30-34 6290 2616 1030 12803 9897560

35-39 13564 4538 1455 15143 9874820

40-44 23533 8109 2571 21407 9840120

45-49 43620 13852 4502 26856 9784500

50-54 73104 22628 8185 36003 9695670

55-59 114939 34924 14672 44355 9555750

60-64 174080 60412 30146 57132 9346860

65-69 242126 116199 54753 81562 9025090

70-74 315043 219829 97070 140187 8530450

75-79 390913 407032 174312 249863 7758320

80-84 410689 655486 259676 416449 6536200

85-89 330792 827607 312966 555235 4793900

90-94 187292 692113 293420 561235 2767300

95-100 55287 284870 164274 319850 1033240

100+ 208960

x - age span;

d
(j)
x - the number of deaths due to cause of death j, j ∈ {c, h, r, o}, during

the age interval x;

lx - the number of living at the beginning of the age interval x;
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Table 7: The crude survival functions S(j)(k), j ≡ {c, o}, obtained on the
basis of the two decrement life table given in Table 5.

k kd
(c)
0 kd

(o)
0 S(c)(k) S(o)(k) S(k)

0 − − 0.2407 0.7593 1

1 213 44097 0.2407 0.7548 0.9956

5 1286 50904 0.2406 0.7542 0.9948

10 2350 54130 0.2405 0.7538 0.9944

15 3696 58404 0.2404 0.7534 0.9938

20 5568 67312 0.2402 0.7525 0.9927

25 8215 77695 0.2399 0.7515 0.9914

30 12202 90238 0.2395 0.7502 0.9898

35 18493 106687 0.2389 0.7486 0.9875

40 32057 127823 0.2375 0.7465 0.984

45 55591 159909 0.2352 0.7433 0.9785

50 99211 205119 0.2308 0.7387 0.9696

55 172315 271935 0.2235 0.7321 0.9556

60 287254 365886 0.212 0.7227 0.9347

65 461333 513577 0.1946 0.7079 0.9025

70 703460 766090 0.1704 0.6826 0.853

75 1018503 1223177 0.1389 0.6369 0.7758

80 1409416 2054384 0.0998 0.5538 0.6536

85 1820105 3385995 0.0587 0.4207 0.4794

90 2150897 5081803 0.0257 0.2511 0.2767

95 2338189 6628571 0.0069 0.0964 0.1033

100 2393476 7397564 0.0014 0.0195 0.0209

k - exact age in years;

kd
(j)
0 - the number of deaths due to cause of death j, j ∈ {c, o}, from age

0 to age k;

S(j)(k) - observed values at age k of the crude survival function for cause
of death j, j ∈ {c, o};

S(k) - observed values at age k of the overall survival function;
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Table 8: The crude survival functions S(j)(k), j ≡ {c, h, r, o}, obtained on
the basis of the four decrement life table given in Table 6.

k kd
(c)
0 kd

(h)
0 kd

(r)
0 kd

(o)
0 S(c)(k) S(h)(k) S(r)(k) S(o)(k) S(k)

0 − − − − 0.2407 0.3427 0.1465 0.27 1

1 213 670 1065 42362 0.2407 0.3427 0.1464 0.2658 0.9956

5 1286 1038 1971 47895 0.2406 0.3426 0.1463 0.2652 0.9948

10 2350 1251 2290 50590 0.2405 0.3426 0.1463 0.265 0.9944

15 3696 1632 2670 54102 0.2404 0.3426 0.1462 0.2646 0.9938

20 5568 2356 3002 61953 0.2402 0.3425 0.1462 0.2638 0.9927

25 8215 3219 3491 70985 0.2399 0.3424 0.1461 0.2629 0.9914

30 12202 4954 4252 81031 0.2395 0.3422 0.1461 0.2619 0.9898

35 18493 7571 5282 93834 0.2389 0.342 0.146 0.2606 0.9875

40 32057 12109 6737 108977 0.2375 0.3415 0.1458 0.2591 0.984

45 55591 20218 9308 130384 0.2352 0.3407 0.1456 0.257 0.9785

50 99211 34070 13810 157239 0.2308 0.3393 0.1451 0.2543 0.9696

55 172315 56698 21996 193242 0.2235 0.3371 0.1443 0.2507 0.9556

60 287254 91621 36667 237598 0.212 0.3336 0.1428 0.2463 0.9347

65 461333 152033 66814 294730 0.1946 0.3275 0.1398 0.2405 0.9025

70 703460 268232 121567 376292 0.1704 0.3159 0.1343 0.2324 0.853

75 1018503 488061 218637 516480 0.1389 0.2939 0.1246 0.2184 0.7758

80 1409416 895093 392949 766342 0.0998 0.2532 0.1072 0.1934 0.6536

85 1820105 1550579 652625 1182791 0.0587 0.1877 0.0812 0.1517 0.4794

90 2150897 2378186 965591 1738026 0.0257 0.1049 0.0499 0.0962 0.2767

95 2338189 3070299 1259011 2299262 0.0069 0.0357 0.0206 0.0401 0.1033

100 2393476 3355169 1423284 2619111 0.0014 0.0072 0.0042 0.0081 0.0209

k - exact age in years;

kd
(j)
0 - the number of deaths due to cause of death j, j ∈ {c, h, r, o}, from

age 0 to age k;

S(j)(k) - observed values at age k of the crude survival function for cause
of death j, j ∈ {c, h, r, o};

S(k) - observed values at age k of the overall survival function;
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