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New Method for Non-Paraxial Beam Propagation 

 

Anurag Sharma and Arti Agrawal 

Physics Department, Indian Institute of Technology Delhi, New Delhi-110 016, India 

 

Abstract- A new method for solving the wave equation is presented, which is non-

paraxial and can be applied to wide-angle beam propagation. It shows very good 

stability characteristics in the sense that relatively larger step-sizes can be taken. An 

implementation using the collocation method is presented, in which only simple 

matrix multiplications are involved and no numerical matrix diagonalization or 

inversion is needed. The method is, hence, faster and is also highly accurate.  

OCIS Codes:130.2790, 230.7370, 350.5500 

 

I. Introduction 

Recently several schemes have been suggested for wide-angle and bi-directional beam 

propagation through guided-wave devices.1-13 In general, this non-paraxial propagation would involve 

solving directly the wave equation, which contains a second order partial derivative with z  (the general 

direction of propagation) as against the first order partial derivative in the paraxial wave equation. All the 

methods for non-paraxial beam propagation discussed in the literature approach this problem iteratively, 

in which a numerical effort equivalent to solving the paraxial equation several times is involved.  The 

actual number of iterations depends on the desired accuracy and the obliquity of the beam. Many of these 

methods neglect the backward propagating components and solve the one-way wave equation; but even 

methods that deal with bi-directional propagation employ special techniques either to suppress or to 

model evanescent modes, which are a source of instability in these methods.8-10 In all these methods, the 
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square root of the propagation operator involved in the wave equation is approximated in various ways. 

One of the approximations used is based on the Padé approximants.1-11 We have recently shown that a 

direct numerical solution (DNS) of the scalar wave equation gives very good accuracy and is also 

numerically efficient.14 The method is non-paraxial and hence, is applicable to wide-angle as well as to 

bi-directional propagation. We used the collocation method15-17 to formulate our equations. In this paper, 

we present a new method to solve the non-paraxial wave equation using symmetrized splitting of the 

operators. Examples show that this method is more tolerant to larger step sizes than other methods 

including the DNS.14 

 

II.  Split-step non-paraxial (SSNP) method 

For simplicity, we shall confine our discussions in this paper to two-dimensional wave 

propagation for which the scalar wave equation is given by   
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where ),( zxψ represents one of the Cartesian components of the electric field (generally referred to as 

the scalar field) and ),(2 zxn defines the refractive index distribution of the medium. The time 

dependence of the field has been assumed to be )exp( tiω  and ck /0 ω=  is the free space wave number. 

 Equation (1) can be rewritten as 
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The operator H can be written as a sum of two operators, one representing the propagation through a 

uniform medium of index, say rn , and the other representing the effect of the index variation of the 

guiding structure; thus, 
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A formal solution of Eq. (2), after using the symmetrized splitting of summation of operators as in Eq. 

(4), can be written as 

( )3)()()()( zΟzzzz ∆+=∆+ ΦPQPΦ       (5) 
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The operator P represents propagation in the uniform medium rn  over a distance of 2/z∆ , and hence, 

can be evaluated using any method like the collocation, finite-difference or FFT methods. The operator 

)(zQ can also be easily evaluated due to the specific form of the matrix and it can be easily seen that 
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due to the special form of the matrix 2H . It may be noted that for lossless propagation the matrix P 

would be Hermitian, while the matrix Q always has a determinant value equal to unity.  

 

 The method given above can be implemented with any of the numerical methods employed to 

solve the wave equation, e.g., the FFT-BPM, FD-BPM or the collocation method. In this paper, we 

discuss the implementation using the collocation method, and the implementation using the FD-BPM will 

be discussed elsewhere.  

 

III. Implementation in the Collocation method 

 

We have implemented the SSNP formalism in the collocation method, in which the wave 

equation is converted to a matrix ordinary differential equation using the representation of the field 

),( zxψ as a linear combination of a set of orthogonal basis functions, )(xnφ : 
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where )(zcn  are the expansion coefficients, n  is the order of the basis functions and N is the number of 

basis functions used in the expansion. The choice of )(xnφ  depends on the boundary conditions and the 

symmetry of the guiding structure. The coefficients of expansion, )(zcn , are unknown and represent the 

variation of the field with z . In the collocation method,15-17 these coefficients are effectively obtained by 

requiring that the differential equation, Eq. (1), be satisfied exactly by the expansion, Eq. (9), at N  

collocation points Njx j ,....,2,1, = , which are chosen such that these are the zeroes of )(1 xN+φ . Thus, 
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using this condition and with some algebraic manipulations,15-17 one converts the wave equation, Eq. (1), 

into a matrix ordinary differential equation: 
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where 222 ),(),( rmm nzxnzxn −=∆ , Nm ,,2,1 L= , and 0S  is a constant known matrix defined by the 

basis functions.15-17 We refer to Eq. (10) as the collocation equation. In deriving this equation from the 

wave equation, Eq. (1), no approximation has been made except that N  is finite and Eq. (10) is exactly 

equivalent to Eq. (1) as ∞→N . Thus, the accuracy of the collocation method improves indefinitely as 

N  increases. The collocation equation is a matrix ordinary differential equation and can be solved as an 

initial value problem using any standard method such as the Runge-Kutta method as we have done in the 

DNS.14 In this paper, we solve this equation using the SSNP discussed in Sec. II. 

We have chosen here a set of sinusoidal functions as the basis functions16,17 and following the 

procedure outlined in Sec. II, we obtain the formal solution of Eq. (10) as in Eq. (5), with the operators P 

and Q, and the field function Φ  now being block matrices: 
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where I and 0 the unit and null matrices, respectively.  The operator P represents propagation in uniform 

medium of index rn over a distance of 2/z∆  and can be easily obtained as a constant square matrix 

using the basis functions and their properties.17 It has to be evaluated only once. Each propagation step 

thus requires 12 multiplications of an NN ×  square matrix with a column matrix except at the first and 

the last steps where 8 such multiplications are additionally required. We would like to emphasize that 

using the sinusoidal basis functions in the collocation method here has an advantage, since no FFT, 

matrix inversion or matrix diagonalization need be done for propagation through uniform medium and all 

matrices involved are obtained analytically; the details are presented in the Appendix.  

IV.  Numerical Results 

We consider a number of examples to show the effectiveness of the method. In the first example, 

we consider the propagation of the fundamental mode through a tilted graded-index waveguide,5 with 

index profile given by )/2(sech2)( 222 wxnnnxn ss ∆+= , sn =2.1455, n∆ =0.003, w =5 mµ  and 

λ=1.3 mµ . The computation was done with 530 collocation points and the width of the numerical 

window was about 185 mµ . As a measure of accuracy, we computed an error (ERR), which includes the 

effects of both the dissipation in power as well as the loss of shape of the propagating mode:  
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where calcinp ψψ , and exactψ are the input, the propagated and the exact fields, respectively.18 

The first result for a straight waveguide, which we have plotted in Fig. 1, shows the performance 

of the method in respect of stability of the method for relatively larger values of z∆ . The direct 

numerical solution (DNS) based on the Runge-Kutta solution of the collocation equation14 becomes 

unstable for m1.0 µ>∆z , whereas the SSNP method remains stable even for 1 mµ . To the best of our 
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knowledge, a step size equal to or larger than 1 mµ for non-paraxial propagation has not been reported 

earlier. Even with such a large step, an accuracy better than 0.001 in propagation over a distance of 1000 

mµ is significantly better than those reported in the literature. In Fig.2, we have plotted the error in 

propagation ( ERR ) as a function of the tilt angle. The figure shows that the SSNP method gives accuracy 

of the order of 10-4 even with a step size of 0.25 mµ , which is much better than those obtained by 

Shibayama et al.5 To illustrate the point, let us consider the error for a tilt angle of o50 . The error in the 

best results reported by Shibayama et al.5 for the 3-step GD scheme is about 0.04 with z∆ =0.05 mµ , 

whereas in our method the error is less than 0.001 with z∆ =0.25 mµ . This would thus mean much faster 

and accurate propagation. Of course, one gets better accuracy with the DNS as the single step error in the 

Runge-Kutta method (used in the DNS) is ( )5)( zΟ ∆  as against ( )3)( zΟ ∆  in the SSNP method, but then 

the computation effort is significantly reduced with the latter method. 

We next consider propagation of the TE1 mode in step index waveguides. Fig. 3 shows a plot of 

ERR  as a function of the of propagation steps for the step index waveguide6 with con =1.002, 

cladn =1.000, λ =1.0 mµ , w =15.092 mµ . Even with a step size as large as 0.4 mµ , the propagation is 

extremely stable and highly accurate while DNS becomes unstable for this step size. Fig. 4 shows 

performance with variation in tilt angle of the waveguide. We can see that the present method and DNS14 

curves are very close, except for SSNP method with step size 0.4 mµ at 0o where error is higher. 

However, the error value even with 0.4 mµ step size is better than that reported by Yamauchi et al.6 at 

50o. The SSNP method gives better accuracy with twice the step size used by Yamauchi et al.6; in fact, 

only 500 computation points are required as against 1800 by Yamauchi et al.6 

 Figures 5 and 6 show performance of the method for the TE1 mode in the benchmark waveguide19 

with con =3.3, cladn =3.17, λ =1.55 mµ , w =8.8 mµ . As the refractive index change from core to 

cladding is very large here, only small step sizes can be taken, yet the SSNP method is stable for a step 
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size of 0.2 mµ , as shown in Fig. 5. In fact, the performance at large tilt angles with 0.2 mµ is quite close 

to that for the DNS,14 as shown in Fig. 6. We may note that oscillatory behaviour in the error curves 

becomes more pronounced for the step-index waveguide with larger index jump at the core-cladding 

interface (compare Figs. 3 and 5). This may be attributed to the fact that any discretization would 

approximate the index-step by an interpolating curve between two successive sample points around the 

step. Expectedly, this oscillation becomes larger as z∆ increases from 0.01 mµ to 0.2 mµ (although the 

logscale deceptively shows nearly equal oscillations). 

 The final example is that of the propagation of the TE10 mode in the benchmark waveguide19 

described above and we have obtained the power remaining in the guide after propagation of 100 mµ at a 

tilt angle of 20o. Table 1 compares the SSNP method with other methods. It is quite obvious from the 

table that with fewer points, the SSNP method shows higher accuracy. The method is faster than the 

DNS,14 taking only about half the time. It is also much easier to implement. 

 An important parameter to choose is the reference refractive index, rn . Although, in principle, its 

value can be arbitrarily chosen, the value in general affects the accuracy. However, as Fig. 7 shows, the 

accuracy is largely insensitive to the choice of rn . 

 We would like to add that the SSNP method and the DNS method are also not very sensitive to 

perturbations in the value of the initial field or its derivative. We have carried out preliminary 

investigations by adding and subtracting a small error (10-3) alternately in the initial field and its 

derivative at successive sample points. The error in the overlap integral was 1.9× 10-2 as against 2.6 × 10-5 

for propagation of the TE1 mode at 0o for 100 mµ with a propagation step size of 0.1 mµ , in the 

benchmark waveguide19 where con =3.3, cladn =3.17, λ =1.55 mµ , w =8.8 mµ . Thus, the propagation 

remains stable. 
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V. Conclusions 

 We have presented a new method to solve the non-paraxial wave equation based on a 

symmetrized splitting of the operator. We have implemented this method with the collocation method. 

We have also included comparison with reported results of other methods.  The method shows better 

stability with relatively larger step sizes being possible. The method involves only simple multiplication 

of matrices and no numerical diagonalization or inversion of any matrix is needed. It is therefore much 

faster and easier to implement, and is more efficient than other methods. 
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Appendix:  Evaluation of )exp( z∆1H  

This amounts to a solution of the collocation equation, Eq. (10), without the )(zR term, i.e., propagation 

in a medium of uniform refractive index, rn  over a distance of z∆ . That is, solution of the equation: 

0)(
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d
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=+ z
z

ΨSΨ
         (A1)  

where ISS 22
00 rnk+=   is a constant matrix. Equation (A1) can also be written as   
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where )(zΦ is defined in Eq. (12), and  
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is a constant matrix and has to be evaluated just once. A formal solution Eq. (A2) can be written: 

)(e)( 1 zzz zΦΦ H ∆=∆+ .        (A3) 

The evaluation of )exp( z∆1H can be done by diagonalization of 1H ; however, 1H  is a NN 22 ×  

non-symmetric matrix and its diagonalization may involve complex matrix algebra and hence, 

present some difficulties. We present here a much simpler and analytical method to 

evaluate )exp( z∆1H . 

Since Eq. (A1) represents propagation in a uniform medium, the propagation can be obtained by 

eigenvalue decomposition method.  Thus, the solution of Eq. (A1) over a single step can be written as 
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Using this solution in Eq. (A3) gives 
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In order to evaluate the functions of the matrices involved in Eq. (A6), we use the diagonalization 

procedure. Thus, let 1−= VΛVS  where V  and Λ are the eigenvectors and eigenvalues of S , 

respectively. Then, we have 

1)( −∆=∆ VΛVS zz         with    ).( iΛdiag=Λ ,     (A7) 

and : 

1)cos()cos( −∆=∆ VΛVS zz         (A8) 
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The operator P in Eq. (12) is thus given by Eq. (A10) with z∆  replaced by 2/z∆ .  
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In the case of sinusoidal basis functions in the collocation method,16 the form of S  is such that 

the eigenvalues decomposition required as per Eq. (A7) is simply done analytically. In this case, we 

choose the basis functions as  

Nnx
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where Lnn 2/πν = , with computation window being from –L to L. The collocation points are at 
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The matrix S  in this case is then given by16,17 

122221 )( −− +=+= AIGAIAGAS roro nknk        (A11) 

where A is a constant square matrix with elements as )( ijij xA φ= and the matrix G is given by 
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Thus, we have 

 222and iroi nkΛ ν−== AV        (A13) 

Further, it can be shown that  
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Thus, no matrix eigenvalue equation need be solved. With these values of V  and Λ , one obtains from 

Eq. (A10): 
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where  

).sin(~and)sin(1),cos( zΛΛszΛ
Λ

szΛc iiii
i

iii ∆−=∆=∆=     

In cases, where iΛ  is imaginary [see Eq. (A13)], the quantities ii sc ,  and is~  remain real and sine and 

cosine functions are evaluated through the corresponding hyperbolic functions. 
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Table I: Comparison of error/power loss in propagation to 100 mµ in 
the benchmark19 step index waveguide for TE10 modes using different 

methods. 
     

Method Nz Nx Power in waveguide at 20o 
SSNP 1000 800 ∼0.96 
DNS14 1000 800 ∼0.90 

AMIGO19 1429 1311 ∼0.95 
FD2BPM19 1000 2048 ∼0.95 
FTBPM19 1000 256 ∼0.55 

LETI-FD19 200 1024 ∼0.15 
 
 

 



 17 

Figure Captions 

Fig. 1 Error in propagation as a function of the number of propagation steps with ∆z for the graded 

index waveguide5. 

Fig. 2   Error in propagation with the tilt angle of the graded-index waveguide5 for propagation up to 

100 mµ . 

Fig. 3  Error in propagation as a function of the number of propagation steps with ∆z for the step 

index waveguide.6 

Fig. 4  Error in propagation with the tilt angle of the step-index waveguide6 for propagation up to 

100 mµ . 

Fig. 5 Error in propagation as a function of the number of propagation steps with ∆z for the 

benchmark step-index waveguide19. 

Fig. 6 Error in propagation with the tilt angle of the benchmark step-index waveguide19 for 

propagation up to 100 mµ . 

Fig. 7 Error in propagation with the reference refractive index for the benchmark step-index 

waveguide19 for propagation up to 100 mµ with step size 0.1 mµ at 40o. 
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Fig. 1 



 19 

  

        10 
- 10 

         10 
- 9 

         10 
- 8 

         10 
- 7 

          10 
- 6 

         10 
- 5 

  

         10 
- 4 

  

       10 
- 3 

  

0     5     10     15     20     25     30     35     40     45     50   

E
R

R
 

Angle (degrees)   

SSNP ∆z=0.25µm 

SSNP ∆z=0.1µm 
  

SSNP ∆z=0.05µm 
  

DNS ∆z=0.1µm 
  

 

 

 

 

 

 

 

 

 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 

 

 

 

 

 

 

 

 

 


