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A Pearl on SAT Solving in Prolog (extended abstract)∗

Jacob M. Howe† and Andy King‡

1 Introduction

The Boolean satisfiability problem, SAT, is of continuing interest because a variety of problems
are naturally expressible as a SAT instance. Much effort has been expended in the development of
algorithms for, and implementations of, efficient SAT solvers. This has borne fruit with a number
of solvers that are either for specialised applications or are general purpose.

Recently, it has been demonstrated how a dedicated external SAT solver coded in C can be
integrated with Prolog [1] and this has been utilised for a number of applications. This work
elegantly uses of Prolog to transform propositional formulae to Conjunctive Normal Form (CNF).
The work of [1] begs the question of the suitability of Prolog as a medium for coding a SAT solver,
either for use in a stand-alone fashion or in tandem with a constraint solver. In this abstract it is
argued that a SAT solver can not only be coded in Prolog, but that this solver is a so-called natural
pearl. That is, the key concepts of efficient SAT solving can be formulated in a logic program
using a combination of logic and control features that lie at the heart of the logic programming
paradigm. This pearl was discovered when implementing an efficient groundness analyser [3],
naturally emerging from the representation of Boolean functions using logical variables.

The logic and control features exemplified in this pearl are the use of logical variables, back-
tracking and the suspension and resumption of execution via delay declarations. A delay declara-
tion is a control mechanism that provides a way to delay the selection of an atom in a goal until
some condition is satisfied. They provide a way to handle, for example, negated goals and non-
linear constraints. Delay declarations are now an integral part of Prolog systems. This abstract
demonstrates just how good the match between Prolog and SAT is, when implementing the Davis,
Putnam, Logemann, Loveland (DPLL) algorithm [2] with watched literals [6]. Watched literals
are one of the most powerful features in speeding up SAT solvers. The resulting solver is elegant
and concise, coded in twenty-two lines of Prolog, it is self-contained and it is efficient enough for
solving some interesting, albeit modest, SAT instances [3].

The full version of this note is [5], which extends [4].

2 SAT solving

This section briefly outlines the SAT problem and the DPLL algorithm [2] with watched literals
[6] that the solver implements.

The Boolean satisfiability problem is the problem of determining whether or not, for a given
Boolean formula, there is a truth assignment to the variables in the formula under which the
formula evaluates to true. Most recent Boolean satisfiability solvers have been based on the Davis,
Putnam, Logemann, Loveland (DPLL) algorithm [2]. Figure 1 presents a recursive formulation
of the algorithm adapted from that given in [8]. The first argument of the function DPLL is a
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(1) function DPLL(f : CNF formula, θ : truth assignment)
(2) begin
(3) θ1 := θ ∪ unit-propagation(f , θ);
(4) if (is-satisfied(f , θ1)) then
(5) return θ1;
(6) else if (is-conflicting(f , θ1)) then
(7) return ⊥;
(8) else
(9) x := choose-free-variable(f , θ1);
(10) θ2 := DPLL(f , θ1 ∪ {x 7→ true});
(11) if (θ2 6= ⊥) then
(12) return θ2;
(13) else
(14) return DPLL(f , θ1 ∪ {x 7→ false});
(15) endif
(16) endif
(17) end

Figure 1: Recursive formulation of the DPLL algorithm

propositional formula, f , defined over a set of propositional variables X. As usual f is assumed
to be in CNF. The second argument, θ : X → {true, false}, is a partial (truth) function. The call
DPLL(f , ∅) decides the satisfiability of f where ∅ denotes the empty truth function. If the call
returns the special symbol ⊥ then f is unsatisfiable, otherwise the call returns a truth function θ
that satisfies f .

2.1 Unit propagation

At line (3) the function extends the truth assignment θ to θ1 by applying so-called unit propagation
on f and θ. For instance, suppose f = (¬x ∨ z) ∧ (u ∨ ¬v ∨ w) ∧ (¬w ∨ y ∨ ¬z) so that X =
{u, v, w, x, y, z} and θ is the partial function θ = {x 7→ true, y 7→ false}. Unit propagation
examines each clause in f to deduce a truth assignment θ1 that extends θ and necessarily holds
for f to be satisfiable. For example, for the clause (¬x ∨ z) to be satisfiable, and hence f as a
whole, it is necessary that z 7→ true. Moreover, for (¬w ∨ y ∨ ¬z) to be satisfiable, it follows that
w 7→ false. The satisfiability of (u∨¬v ∨w) depends on two unknowns, u and v, hence no further
information can be deduced from this clause. The function unit-propagation(f, θ) encapsulates
this reasoning returning the bindings {w 7→ false, z 7→ true}. Extending θ with these necessary
bindings gives θ1.

2.2 Watched literals

Information can only be derived from a clause if it does not contain two unknowns. This is the
observation behind watched literals [6], which is an implementation technique for realising unit
propagation. The idea is to keep watch on a clause by monitoring only two of its unknowns.
Returning to the previous example, before any variable assignment is made suitable monitors for
the clause (u ∨¬v ∨w) are the unknowns u and v, suitable monitors for (¬w ∨ y ∨¬z) are w and
z and (¬x∨ z) must have monitors x and z. Note that no more than these monitors are required.

When the initial empty θ is augmented with x 7→ true, a new monitor for the third clause is
not available and unit propagation immediately applies to infer z 7→ true. The new binding on z is
detected by the monitors on the second clause, which are then updated to be w and y. If θ is further
augmented with y 7→ false, the change in y is again detected by the monitors on (¬w ∨ y ∨ ¬z).
This time there are no remaining unbound variables to monitor and unit propagation applies,
giving the binding w 7→ false. Now notice that the first clause, (u ∨ ¬v ∨ w), is not monitoring
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w, hence no action is taken in response to the binding on w. Therefore, watched literals provide
a mechanism for controlling propagation without inspecting clauses unnecessarily.

2.3 Termination and the base cases

Once unit propagation has been completely applied, it remains to detect whether sufficient vari-
ables have been bound for f to be satisfiable. This is the role of the predicate is-satisfied(f, θ).
This predicate returns true if every clause of f contains at least one literal that is satisfied. For
example, is-satisfied(f, θ1) = false since (u ∨ ¬v ∨ w) is not satisfied under θ1 because u and v
are unknown whereas w is bound to false. If is-satisfied(f, θ1) were satisfied, then θ1 could be
returned to demonstrate the existence of a satisfying assignment.

Conversely, a conflict can be observed when inspecting f and θ1, from which it follows that f
is unsatisfiable. To illustrate, suppose f = (¬x) ∧ (x ∨ y) ∧ (¬y) and θ = ∅. From the first and
third clauses it follows that θ1 = {x 7→ false, y 7→ false}. The predicate is-conflicting(f, θ) detects
whether f contains a clause in which every literal is unsatisfiable. The clause (x∨ y) satisfies this
criteria under θ1, therefore it follows that f is unsatisfiable, which is indicated by returning ⊥.

2.4 Search and the recursive cases

If neither satisfiability nor unsatisfiability have been detected thus far, a variable x is selected
for labelling. The DPLL algorithm is then invoked with θ1 augmented with the new binding
x 7→ true. If satisfiability cannot be detected with this choice, DPLL is subsequently invoked with
θ1 augmented with x 7→ false. Termination is assured because the number of unassigned variables
strictly reduces on each recursive call.

3 The SAT Solver

The code for the solver is given in Figure 2. It consists of just twenty-two lines of Prolog. Since a
declarative description of assignment and propagation can be fully expressed in Prolog, execution
can deal with all aspects of controlling the search, leading to the succinct code given.

3.1 Invoking the solver

The solver is called with two arguments. The first represents a formula in CNF as a list of
lists, each constituent list representing a clause. The literals of a clause are represented as pairs,
Pol-Var, where Var is a logical variable and Pol is true or false, indicating that the literal has
positive or negative polarity. The formula ¬x ∨ (y ∧ ¬z) would thus be represented in CNF as
(¬x ∨ y) ∧ (¬x ∨ ¬z) and presented to the solver as the list Clauses = [[false-X, true-Y],
[false-X, false-Z]] where X, Y and Z are logical variables. The second argument is the list of the
variables occurring in the problem. Thus the query sat(Clauses, [X, Y, Z]) will succeed and
bind the variables to a solution, for example, X = false, Y = true, Z = true. As a by-product,
Clauses will be instantiated to [[false-false, true-true], [false-false, false-true]].
This illustrates that the interpretation of true and false in Clauses depends on whether they
are left or right of the - operator: to the left they denote polarity; to the right they denote truth
values. If Clauses is unsatisfiable then sat(Clauses, Vars) will fail. If necessary, the solver can
be called under a double negation to check for satisfiability, whilst leaving the variables unbound.

3.2 Watched literals

The solver is based on launching a watch goal for each clause that monitors two literals of that
clause. Since the polarity of the literals is known, this amounts to blocking execution until one of
the two uninstantiated variables occurring in the clause is bound. The watch predicate thus blocks
on its first and third arguments until one of them is instantiated to a truth value. In SICStus
Prolog, this requirement is stated by the declaration :- block watch(-, ?, -, ?, ?). If the
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sat(Clauses, Vars) :-
problem_setup(Clauses), elim_var(Vars).

elim_var([]).
elim_var([Var | Vars]) :-

elim_var(Vars), assign(Var).

assign(true).
assign(false).

problem_setup([]).
problem_setup([Clause | Clauses]) :-

clause_setup(Clause),
problem_setup(Clauses).

clause_setup([Pol-Var | Pairs]) :- set_watch(Pairs, Var, Pol).

set_watch([], Var, Pol) :- Var = Pol.
set_watch([Pol2-Var2 | Pairs], Var1, Pol1):-

watch(Var1, Pol1, Var2, Pol2, Pairs).

:- block watch(-, ?, -, ?, ?).
watch(Var1, Pol1, Var2, Pol2, Pairs) :-

nonvar(Var1) ->
update_watch(Var1, Pol1, Var2, Pol2, Pairs);
update_watch(Var2, Pol2, Var1, Pol1, Pairs).

update_watch(Var1, Pol1, Var2, Pol2, Pairs) :-
Var1 == Pol1 -> true; set_watch(Pairs, Var2, Pol2).

Figure 2: Code for SAT solver

first argument is bound, then update watch will diagnose what action, if any, to perform based on
the polarity of the bound variable and its binding. If the polarity is positive, and the variable is
bound to true, then the clause has been satisfied and no further action is required. Likewise, the
clause is satisfied if the variable is false and the polarity is negative. Otherwise, the satisfiability
of the clause depends on those variables of the clause which have not yet been inspected. They
are considered in the subsequent call to set watch.

3.3 Unit propagation

The first clause of set watch handles the case when there are no further variables to watch. If the
remaining variable is not bound, then unit propagation occurs, assigning the variable a value that
satisfies the clause. If the polarity of the variable is positive, then the variable is assigned true.
Conversely, if the polarity is negative, then the variable is assigned false. A single unification is
sufficient to handle both cases. If Var and Pol are not unifiable, then the bindings to Vars do not
satisfy the clause, hence do not satisfy the whole CNF formula.

Once problem setup(Clauses) has launched a process for each clause in the list Clauses,
elim var(Vars) is invoked to bind each variable of Vars to a truth value. Control switches to a
watch goal as soon as its first or third argument is bound. In effect, the sub-goal assign(Var)
of elim vars(Vars) coroutines with the watch sub-goals of problem setup(Clauses). Thus, for
instance, elim var(Vars) can bind a variable which transfers control to a watch goal that is
waiting on that variable. This goal can, in turn, call update watch and thus invoke set watch,
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the first clause of which is responsible for unit propagation. Unit propagation can instantiate
another variable, so that control is passed to another watch goal, thus leading to a sequence of
bindings that emanate from a single binding in elim vars(Vars). Control will only return to
elim var(Vars) when unit propagation has been maximally applied.

3.4 Search

In addition to supporting coroutining, Prolog permits a conflicting binding to be undone through
backtracking. Suppose a single binding in elim var(Vars) triggers a sequence of bindings to
be made by the watch goals and, in doing so, the watch goals encounter a conflict: the unifi-
cation Var = Pol in set watch fails. Then backtracking will undo the original binding made in
elim var(Vars), as well as the subsequent bindings made by the watch goals. The watch goals
themselves are also rewound to their point of execution immediately prior to when the original
binding was made in elim var(Vars). The goal elim var(Vars) will then instantiate Vars to
the next combination of truth values, which may itself cause a watch goal to be resumed, and
another sequence of bindings to be made. Thus monitoring, propagation and search are seamlessly
interwoven.

Note that the sub-goal assign(Var) will attempt to assign Var to true before trying false,
which corresponds to the down strategy in finite-domain constraint programming. Moreover, the
variables Vars of sat(Clauses, Vars) are instantiated in the left-to-right order. Returning to
the initial query where Clauses = [[false-X, true-Y], [false-X, false-Z]], backtracking
can enumerate all the satisfying assignments to give:

X = false, Y = true, Z = true; X = false, Y = false, Z = true;
X = true, Y = true, Z = false; X = false, Y = true, Z = false;
X = false, Y = false, Z = false.

4 Extensions

The full paper [5] develops the solver to provide an easy entry into SAT and SMT solving for the
Prolog programmer. For instance, the solver can be enhanced with a technique to avoid replicating
search when the solver is applied incrementally in conjunction with, say, learning. This dovetails
with the lazy-basic instance of SMT [7] which, when applied with a technique for finding an
unsatisfiable core of a system of unsatisfiable constraints, provides a neat way of realising an SMT
solver. Developing [1], it is argued that Prolog also aids the translation of formulae over theory
literals that involve constraints into the SMT equivalent of CNF. The full paper also discusses
further extensions whilst remarking on the limitations of the solver and its approach.

Finally, the solver and other related code is available at www.soi.city.ac.uk/∼jacob/solver/.
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