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erfectly matched layer in numerical wave
ropagation: factors that affect its performance

rti Agrawal and Anurag Sharma

The perfectly matched layer �PML� boundary condition is generally employed to prevent spurious reflec-
tions from numerical boundaries in wave propagation methods. However, PML requires additional
computational resources. We have examined the performance of the PML by changing the distribution
of sampling points and the PML’s absorption profile with a view to optimizing the PML’s efficiency. We
used the collocation method in our study. We found that equally spaced field sampling points give better
absorption of beams under both optimal and nonoptimal conditions for low PML widths. At high PML
widths, unequally spaced basis points may be equally efficient. The efficiency of various PML absorption
profiles, including new ones, has been studied, and we conclude that for better numerical efficiency it is
important to choose an appropriate profile. © 2004 Optical Society of America

OCIS codes: 000.4430, 350.5500.
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. Introduction

n recent years, methods for propagating beams nu-
erically have gained importance for design and

nalysis of optical waveguides and devices. These
ethods directly give the total picture of a field as it

ropagates through a waveguide, which may have a
omplicated structure involving several branches and
ariations in physical characteristics. Some of these
ethods are the fast-Fourier-transform beam-

ropagation method,1 the finite-difference beam-
ropagation method,2 and the collocation method.3–7

One of the major problems with any beam propa-
ation method is that the infinite transverse extent of
pace has to be represented by a finite domain
ounded by numerical boundaries. In these meth-
ds the numerical boundary is represented by the
xtreme points on which the field is sampled. Be-
ause the whole numerical scheme is generally loss-
ess, the total energy within the numerical window
emains the same, and hence any wave that in reality
hould leave the numerical window region is directed
ack into the numerical window, thereby represent-
ng an unreal phenomenon. The conventional way
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o reduce the effect of this problem is to put a strongly
bsorbing medium of appropriate thickness at the
dge of the window, thereby imposing the so-called
bsorbing boundary condition.8–11 Another way is
o use the so-called transparent boundary
ondition12–14 in which the parameters of the wave
ear the edge of the window are so modified for a
iven angle of incidence that it represents an outgo-
ng plane wave at that angle. Both of these methods
ave been successful to a limited extent. Some time
go, Berenger15 introduced the concept of a perfectly
atched layer (PML) for application with finite-

ifference time domain �FDTD� solutions of Max-
ell’s equations. In the PML method a layer of a

pecially designed anisotropic medium is put at the
dge of the window. The absorption profile in this
indow can be arbitrarily chosen, subject to certain

onditions. The PML boundary condition was found
o be highly effective for applications to optical wave
ropagation.11,16–20 Huang et al.16 first applied the
ML in the beam propagation method and also
howed its use in modal analysis of optical
aveguides in which the PML was found to be effec-

ive in the computation of leaky modes.17 Zhou et
l.18 developed the PML boundary condition for the
calar FDTD. Chew and Weedon19 showed that
odifying Maxwell’s equations and adding extra de-

rees of freedom permit the specification of absorbing
oundaries with zero reflection for all angles of inci-
ence and frequencies. Chen et al.20 introduced the
odified PML, which permits effective absorption of

he evanescent mode energy.
20 July 2004 � Vol. 43, No. 21 � APPLIED OPTICS 4225
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In any implementation of the PML method �or any
ther method�, one seeks to increase the absorption of
he undesired reflections as well as to keep the layer
s thin as possible so as not to increase the compu-
ation effort significantly. In this respect, the design
f the absorption profile of the PML assumes signif-
cance. Further, in the numerical beam propagation

ethods the points on which the field is sampled are
enerally taken equally spaced. However, in a num-
er of cases unequally spaced points have also been
ried, with a distinct computational advantage.

We have implemented the PML boundary condi-
ion in the collocation methods of beam propagation
nd have found it effective. Using this implementa-
ion, we investigated the effect of distribution of sam-
le points on the PML’s performance. Finally, we
nvestigated the influence of various absorption pro-
les in the PML, including a new type of absorption
rofile.

. Perfectly Matched Layer Technique

n the PML technique, a layer of an artificial aniso-
ropically absorbing medium that strongly absorbs
he waves propagating along the x direction but does
ot absorb the waves propagating along the z direc-
ion �which is the general direction of propagation� is
ntroduced at the edge of the numerical window.11,15

urther, the layer is matched perfectly at the inter-
ace with the real window, so there are no reflections
rom there. The perfectly matched layer is imple-

ented as a variable transformation in which the
ransverse coordinate x becomes complex, with the
maginary part increasing gradually as one moves
nto the layer.11 Thus we introduce a transforma-
ion �see Fig. 1�

x � h���, (1)

ith

h��� � � � � xp

� xp � � ��1 � ip����d� xp � � � xb, (2)

here � � � 	 xp, xp is the edge of the real medium,
nd x is the edge of the numerical window. The

Fig. 1. Geometry of implementation of the PML technique.
b
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bsorption profile function p��� should be such that
�0� � 0 � p
�0� for perfect matching at x � xp. The
egion up to xp is termed the real window, whereas
he region between xp and xb is the PML.

A variety of profiles have been described in the
iterature.18,19 These are all power-law profiles, in-
luding square, cubic, and quartic profiles:

p��� � p0�
q, q � 2, 3, 4, . . . . (3)

t has been shown that for FDTD schemes the quartic
rofile is better than the usual square profile.18,21

owever, for continuous wave propagation problems,
enerally the square profile has been used. We in-
estigated various power-law profiles for the wave
ropagation problems. We also investigated a new
rofile:

p��� � p0 sinq����2��, q � 2, 3, 4, . . . , (4)

here � is the width of the PML layer and q defines
he shape of the profile. By appropriate choice of
ower q, strength p0, and width � � xp 	 xb of the
ML, the wave can be absorbed to a desired level to
educe reflections into the computation window.

. Collocation Method

or simplicity, we confine our discussion to two-
imensional waveguides; however, the method dis-
ussed can be extended to three-dimensional
tructures. A two-dimensional waveguide structure
s defined by its refractive-index distribution n2�x, z�.
he electromagnetic fields that propagate through
uch a dielectric structure must satisfy Maxwell’s
quations. However, in a majority of practical
aveguiding structures �we confine our discussion to

uch cases� the relative variation of the refractive
ndex is sufficiently small to allow the scalar wave
pproximation to be made. It then suffices to con-
ider instead a much simpler Helmholtz equation:


2�


 x2 �

2�


 z2 � k0
2n2� x, z��� x, z� � 0, (5)

here ��x, z� represents one of the Cartesian com-
onents of the electric field �generally referred to as
he scalar field�. The time dependence of the field
as been assumed to be exp�i�t�, and k0 � ��c is the
ree-space wave number.

In the collocation method, we express the unknown
eld as a linear combination over a set of orthogonal
asis functions �n�x�:

�� x, z� � �
n�1

N

cn� z��n� x�, (6)

here cn�z� are the expansion coefficients, n is the
rder of the basis functions, and N is the number of
asis functions used in the expansion. The choice of
n�x� depends on the boundary conditions and the
ymmetry of the guiding structure. The coefficients
f expansion cn�z� are unknown and represent the
ariation of the field with z. In the collocation
ethod, one can effectively obtain these coefficients
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y requiring that the differential equation, Eq. �5�, be
atisfied exactly by the expansion, Eq. �6�, at N col-
ocation points xj, j � 1, 2, . . . , N, which are chosen
uch that these are the zeros of �N�1�x�. Thus, us-
ng this condition and with some algebraic

anipulations,3–6 one converts the wave equation,
q. �5�, into an ordinary differential matrix equation:

d2�

dz2 � �S0 � R� z���� z� � 0, (7)

here

�� z� � �
�� x1, z�
�� x2, z�

···
�� xN, z�

� ,

R� z� � k0
2�

n2� x1, z� 0 � 0
0 n2� x2, z� � �

� � � 0
0 � 0 n2� xN, z�

� ,

(8)

nd S0 is a known constant matrix defined by the
asis functions. We refer to Eq. �7� as the collocation
quation. In deriving this equation from the wave
quation, Eq. �5�, we made no approximation except
hat N is finite and that Eq. �7� is exactly equivalent
o Eq. �5� as N3 �. Thus the accuracy of the collo-
ation method improves indefinitely as N increases.

In the collocation method, one can either solve the
ollocation equation directly or invoke the paraxial
pproximation, if it is valid, to obtain the equation for
he envelope:

d�

dz
�

1
2ik

�S0 � R� z� � k2I��� z�, (9)

here ��z� � ��z�exp�ikz� � col���x1, z� ��x2,
� . . . ��xN, z�� and I is a unit matrix. This equation
an be solved directly by use of, e.g., the Runge–Kutta
ethod or of the operator method as in the fast-
ourier-transform beam-propagation method. The

atter procedure has been shown to be uncondition-
lly stable numerically.6
A unique feature of the collocation method is that

ne obtains an equation as a result that can be solved
r modified in a variety of ways. It can be solved as
n initial-value problem by use of any standard
ethod such as the Runge–Kutta method3–5 or the

redictor–corrector method. In the paraxial form it
an also be solved by matrix operator methods based
n the approach of symmetrized splitting of the sum
f two noncommutating operators.6 One could also
se to advantage a suitable transformation of the

ndependent or the dependent variable or both. In-
eed, it has been shown7 that a transformation could
e used to redistribute the collocation points �which
re the field sampling points in the transverse cross
ection� in such a way that the density of points in-
reases in and about the guiding region, and the
ransverse extent, covered by the sampled field, also
ncreases.

. Equally Spaced Sample Points

he electric field can be expressed in terms of plane
aves that can further be expressed in terms of si-
usoidal functions. These sinusoidal functions are
olutions of the Helmholtz equation for a homoge-
eous medium. These functions oscillate even at x

� in order that the field vanish at large distances;
e assume an artificial boundary at �L where the
eld is assumed to vanish. With these boundary
onditions the Helmholtz equation for a homoge-
eous medium gives solutions that vary as

�n� x� � cos�vn x�, n � 1, 3, 5, · · ·N � 1,

�n� x� � sin�vn x� n � 2, 4, 6, · · ·N, (10)

here vn � n��2L. The collocation points are then
he equally spaced zeros of cos�vN�1x� for an even N;
hus, xj � ��2j�N � 1� 	 1�L, j � 1, 2, 3 . . ., N. In
his case, matrix S0 is given by

S0 � AHA	1, (11)

here A � �Aij:Aij � �j�xi�� and H � diag�	v1
2 	

2
2 	 v3

2 . . . 	vN
2�. Thus the collocation equation,

q. �9�, is fully defined and can be solved numerically
or a given n2�x, z�.

. Unequally Spaced Sample Points

or unequally spaced sample points we choose the
xpansion functions to be Hermite–Gauss functions
uch that

�n� x� � Nn	1Hn	1��x�exp�	1⁄2 �2x2�, (12)

here Nn	1 is the normalization constant and � is an
djustable parameter. The collocation points are
ow given by

HN��xj� � 0, j � 1, 2, . . . , N. (13)

he Hermite polynomial HN defined above has N
istinct zeros, which are unequally spaced. Matrix
0 in this case is given by

S0 � D1 � AD2A	1, (14)

here

D1 � �4 � diag�	x1
2 � x2

2 · · · 	xN
2�,

D2 � �2 � diag�1. . .3. . .5. . .2N � 1�,

A � �Aij: Aij � �j� xi��. (15)

. Implementation of the Perfectly Matched Layer by
se of the Variable Transformation

t was shown earlier7 that one can easily implement
variable transformation in the collocation method.
herefore we have implemented the PML technique
y using the variable transformation given in Section
, using the formalism outlined below.
20 July 2004 � Vol. 43, No. 21 � APPLIED OPTICS 4227
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We implemented the PML by transforming Eq. �5�,
sing

x � h���,

�� x, z� � �h
���U��, z�, (16)

here h��� is defined in Eq. �2�. Equation �5� then
ecame


2U

 z2 � f ���


2U

�2 � � g��� � k0

2n2��, z��U��, z� � 0,

(17)

here

f ��� � �h
����	2, (18)

g��� �
1

2h
4 �h�h
 �
3
2

h�2� , (19)

here a prime denotes differentiation with respect to
. Equation �17� is similar to Eq. �5� in form, except
or a factor f ��� in the second term. We can there-
ore use the collocation method of Sec. 3 to convert Eq.
17� into a matrix equation7:

d2U
dz2 � �Ŝ0 � R� z��U� z� � 0. (20)

he vector U�z� � �Uj:Uj � U��j�� denotes the values
f the transformed field at the collocation points, and
atrix Ŝ0 is given by

Ŝ0 � FD1 � FAD2A	1 � G, (21)

here F � �Fj:Fj � f ��j��, G � �Gj:Gj � g��j��, and A,
1, and D2 are defined in Eq. (15) above, except that
ow x is replaced by �. Using the paraxial approx-

mation for the envelope, �̂�z� � U�z�exp�ikz�, we ob-
ain the equation

d�̂

dz
�

1
2ik

�Ŝ0 � R� z� � k2I��̂� z�. (22)

Equation �22� can be solved as an initial-value
roblem by use of any standard method such as the
unge–Kutta method or the predictor–corrector
ethod. We have used the fourth-order Runge–
utta method in our examples. It may be noted

hat, in the real window, the fields U��� and ��x� are
dentical; hence, �̂ directly gives �, which is the quan-
ity of interest.

. Numerical Examples and Results

he effectiveness of the PML layer depends on the
istribution of the sampling points and on thickness
f the PML as well as on its absorption profile p���.
o assess the performance of a PML we studied the
bsorption of a Gaussian beam launched at different
ngles with the z axis in a medium of index 1.4472.
he width of the beam is 4 �m, and the wavelength
f light is 1.31 �m. As a measure of absorption in
he PML, we computed the energy remaining in the
228 APPLIED OPTICS � Vol. 43, No. 21 � 20 July 2004
eal window. With reference to Fig. 2, the beam is
aunched at point A at an angle � with the z axis.
he beam would hit the edge of the numerical win-
ow at point B and get reflected to reach point C,
ituated exactly above point A in Fig. 2. Thus, if
oint A is at a distance xA from the edge of the nu-
erical window, the total distance propagated along
would be AC � 2xA cot �. The fractional power

emaining in the real window at z � AC has been
sed as a measure of the absorption by the PML; this

s designated ER. Ideally, for total absorption, ER �
. In most figures ER has been plotted for different
arameters. In some figures, however, the frac-
ional power remaining in the real window has been
lotted as a function of the propagated distance z;
his is designated Ez. For each PML width and the
ilt angle of the beam, we obtained the value of p0 by
inimizing the value of ER. Such a layer is termed

n optimized PML layer for that angle.
We have computed ER in order to compare the

arious absorption profiles. By using both Hermite–
auss and sinusoidal bases we explored the effect of
oint distribution on the PML profiles. In all calcu-
ations, the total width of the numerical window is
44.6 �m and the number of sample points is N �
00.

. Distribution of Sampling Points

n Fig. 3 we have plotted ER as a function of PML
idth �expressed in percentage of the total window

ize� for the beam tilted at 25° with respect to the z
xis, for equal and unequal sampling points. The
ML has a square absorption profile, and each indi-
idual PML layer was optimized to absorb the inci-
ent beam. It can be seen quite clearly that, with
ncreasing PML width, ER decreases for both equally
nd unequally spaced points. However, in equally
paced points, ER is much lower, by �3 orders of
agnitude at the lowest PML width, than in the
nequally spaced points. For other widths also, the
bsorption is better for equally spaced sample points,
hough for larger PML widths equally spaced points
nd unequally spaced points perform nearly equally
ell.

Fig. 2. Geometry of the definition of ER.
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To test performance under nonoptimum conditions
e optimized the layer for absorption at a given angle

f the beam and then propagated beams at other
ngles. Figure 4 shows the results for the square
bsorption profile. The layer is optimized for a tilt
ngle of 25°. It can be seen that, for unequally
paced points, as the angle deviates from 25°, ER
ncreases rapidly. But in equally spaced points,
ven as the angle increases, ER varies much less.
hus with equally spaced points the PML can better
bsorb beams at angles other than the one for which
he layer is optimized.

The final test is absorption of two beams incident
nto the PML at different angles simultaneously.
he layer is optimized to absorb a beam at 22.5°, and
e consider the propagation of two beams, tilted at
5° and 30°, whose widths are 4 and 2 �m, respec-
ively. Figures 5 and 6 show the variation of Ez for
qually spaced as well as unequally spaced points, for
ayers of widths 3.5 �m �8% of the total window� and
.7 �m �15% of the total window�, respectively. The
eam tilted at the higher angle hits the PML first and
ets absorbed first, so we see a decrease in Ez, which
hen becomes somewhat constant, whereas the sec-
nd beam continues to travel in the real window for

ig. 3. Energy remaining in the real window, ER �in %�, as a
unction of the PML width �% of the total numerical window� for
he square profile with the unequally spaced and equally spaced
istributions of sample points.

ig. 4. Energy remaining in the real window, ER �in %�, as a
unction of beam tilt angle for the square profile with unequally
paced and equally spaced distributions of sample points.
ome more distance. When the second beam also
its the PML, Ez again starts decreasing. The im-
ortant point to note is that at lower PML width �Fig.
� Ez is lower by almost 3 orders of magnitude in the
qually spaced basis, whereas performance is compa-
able in both cases at higher width �Fig. 6�. The two
gures also show that the PML’s absorptivity is much
ore sensitive to width when the points are un-

qually spaced, whereas with equally spaced points
he PML’s performance is not affected as much with
hange in width. Thus, at lower PML width, the use
f equally spaced points has a distinct advantage in
educing reflected energy under optimum as well as
onoptimum conditions. For larger widths, the
ML’s performance for the two types of point distri-
ution is comparable.
One can understand the difference in PML perfor-
ance for the two types of point distribution with

eference to Fig. 7, in which we have plotted absorp-
ion profiles for the two point distributions that cor-
espond to Fig. 3 for 8% PML width. The figure
hows that for the unequally spaced points the profile
s steeper and the number of points is 6, whereas in
he case of the equally spaced points the profile is less

ig. 5. Energy remaining in the real window, Ez �in %�, as a
unction of propagation distance z. Results are shown for square
rofiles with unequally spaced and equally spaced distributions of
ample points. The PML width is 3.5 �m �8% of the total win-
ow�.

ig. 6. Energy remaining in the real window, Ez �in %�, as a
unction of propagation distance z. Results are shown for square
rofiles with unequally spaced and equally spaced distributions of
ample points. The PML width is 6.7 �m �15% of the total win-
ow�.
20 July 2004 � Vol. 43, No. 21 � APPLIED OPTICS 4229
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teep and the number of points is 9 �although the
otal number of sample points in the entire compu-
ation domain is the same, in an unequally spaced
oint distribution the number of points in the guiding
egion is increased, leaving fewer points near the
dge of the window�. This means that for unequally
paced points the change in the value of p�x� from one
ample point to the next is large compared with that
or the equally spaced point distribution. Thus
here is a stronger discretization for unequally
paced points. It was shown by Vassallo and Col-
ino11 that such a discretization leads to reflections.

stronger discretization gives larger reflections.
his argument is further strengthened by Fig. 8, in
hich we have plotted the absorption profile for the

wo point distributions that correspond to Fig. 3 for
9% PML width. The figure shows that the number
f points is nearly equal in the two cases and that the
teepness is also similar, making the discretization
rror similar in the two cases. The result is that the
alue of ER is nearly same for both types of point
istribution �see Fig. 3�.

. Absorption Profile

e next examine the effect of the absorption profile
n the performance of the PML. We consider the
ower-law profiles �Eq. �3��, which have been used
ommonly, and also consider the new sine power-law
rofile �Eq. �4�� in our investigation. Figure 9 shows

ig. 7. Square absorption profile in the unequally and the equally
paced point distributions for PML width 8%.

ig. 8. Square absorption profile in the unequally and the equally
paced point distributions for PML width 19%.
230 APPLIED OPTICS � Vol. 43, No. 21 � 20 July 2004
plot of ER as a function of the PML width for several
rofiles for equally spaced points, and Fig. 10 shows
he same results for unequally spaced points. In the
ase of equally spaced points, the sin4 profile is by far
he best, at all widths. The cubic, quartic, and the
in3 profiles perform similarly, and square and sin2

re by far the worst. With unequally spaced points,
owever, quartic and sin4 profiles are worst at lower
idth, and square and sin2 are best. At higher
idths, all the profiles show ER values saturated to
early the same value when there are unequally
paced points. Comparing these two figures, we can
onclude that, for all profiles, at lower width, an
qually spaced basis is better, and with this point
istribution a steeper profile sin4 is the best among
ll the profiles investigated.
The above results show that for smaller widths of

he PML it is important to choose a correct point
istribution, which is equally spaced at least for the
xample that we have chosen, and an appropriate
bsorption profile, which is sin4 for our example. Of
ourse, one could choose a large �20–25%� PML width
nd not worry about the specifics of the point distri-
ution and the absorption profile; however, the pen-
lty would be a larger computation window and a
arger computational effort. For repetitive compu-
ations, as in the case of a typical design exercise, it

ig. 9. Energy remaining in the real window, ER �in %�, as a
unction of PML width �%� for several absorption profiles with
qually spaced point distributions.

ig. 10. Energy remaining in the real window, ER �in %�, as a
unction of PML width �%� for several absorption profiles with
nequally spaced point distributions.
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ould pay to follow the first option of using a lower
ML width with appropriately chosen point distribu-

ion and absorption profile.

. Summary and Conclusions

he perfectly matched layer boundary condition has
een implemented in the collocation method for
qually spaced and unequally spaced distributions of
ample points. We studied the performance of the
ML as an absorbing layer for a Gaussian beam as a

est case. The effects of different distributions of
ample points and of different PML absorption pro-
les on PML performance have thus been studied.
e found that equal spacing between points leads to

etter absorption of beams under both optimal and
onoptimal conditions for lower PML widths. At
igher PML widths, unequally spaced and equally
paced points perform equally well. The PML per-
ormance is a strong function of the absorption profile
or smaller �and hence, numerically more efficient�
ML widths, whereas for larger widths the nature of

he absorption profile matters much less. For
maller widths, a newly suggested sin4 absorption
rofile with equally spaced points gives the best PML
erformance. For better numerical efficiency, one
ould like to use smaller PML widths; for optimized
erformance of the PML, it would be important to
hoose an appropriate point distribution and absorp-
ion profile.
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