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Abstract

A succinct SAT solver is presented that exploits the control provided by delay declarations to
implement watched literals and unit propagation. Despite its brevity the solver is surprisingly
powerful and its elegant use of Prolog constructs is presented as a programming pearl. Further-
more, the SAT solver can be integrated into an SMT framework which exploits the constraint
solvers that are available in many Prolog systems.
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1. Introduction

The Boolean satisfiability problem, SAT, is of continuing interest because a variety of problems
are naturally expressible as a SAT instance. Much effort has been expended in the development of
algorithms for, and implementations of, efficient SAT solvers. This has borne fruit with a number
of solvers that are either for specialised applications or are general purpose [9]. Propositional
solvers are either applied to pure SAT instances, or increasingly are combined with constraint
solvers in the SAT modulo theories, SMT [27], approach.

Recently, it has been demonstrated how a dedicated external SAT solver coded in C can be
integrated with Prolog [5] and this has been utilised for a number of applications. This work
was published as a pear]l owing to its elegant use of Prolog to transform propositional formulae
to Conjunctive Normal Form (CNF). Likewise SMT problems are posed as Boolean formulae
combining atomic constraints. The work of [5] begs the question of the suitability of Prolog as
a medium for coding a SAT solver, either for use in a stand-alone fashion or in tandem with a
constraint solver. In this paper it is argued that a SAT solver can not only be coded in Prolog, but
that this solver is a so-called natural pearl. That is, the key concepts of efficient SAT solving can
be formulated in a logic program using a combination of logic and control features [20] that lie at
the heart of the logic programming paradigm. This pearl was discovered when implementing an
efficient groundness analyser [12], naturally emerging from the representation of Boolean functions
using logical variables; the solver has not been described prior to [14].

The logic and control features exemplified in this pearl are the use of logical variables, back-
tracking and the suspension and resumption of execution via delay declarations [25]. A delay
declaration is a control mechanism that provides a way to delay the selection of an atom in a
goal until some condition is satisfied. They provide a way to handle, for example, negated goals
and non-linear constraints. Delay declarations are now an integral part of Prolog systems, though
their centrality in the paradigm has only recently been formally established [19]. This paper
demonstrates just how good the match between Prolog and SAT is, when implementing the Davis,
Putnam, Logemann, Loveland (DPLL) algorithm [6] with watched literals [24]. Watched literals
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(1) function DPLL(f: CNF formula, 6 : truth assignment)
(2) begin

(3) 61 := 0 U unit-propagation(f, 6);

(4) if (is-satisfied(f, 61)) then

(5) return 6;

(6) else if (is-conflicting(f, 61)) then

(7) return L ;

(8) else

(9) x := choose-free-variable(f, 61);

(10) 0y := DPLL(f, 61 U {x > true});

(11) if (f3 # 1) then

(12) return 6s;

(13) else

(14) return DPLL(f, 6; U {z — false});
(15) endif

(16) endif

(17) end

Figure 1: Recursive formulation of the DPLL algorithm

are one of the most powerful features in speeding up SAT solvers. The resulting solver is elegant
and concise, coded in twenty-two lines of Prolog, it is self-contained and it will be argued that it
is efficient enough for solving some interesting, albeit modest, SAT instances [12, 13].

The solver can be developed in a number of ways, a few of which are discussed here, and
provides an easy entry into SAT and SMT solving for the Prolog programmer. For instance, the
solver can be enhanced with a technique based on a so-called black pearl [3] to avoid replicating
search when the solver is applied incrementally in conjunction with, say, learning. This dovetails
with the lazy-basic instance of SMT [21, 27] which, when applied with a technique for finding an
unsatisfiable core of a system of unsatisfiable constraints [17], provides a neat way of realising an
SMT solver. Developing [5], it is argued that Prolog also aids the translation of formulae over
theory literals that involve constraints into the SMT equivalent of CNF.

The rest of the paper contains a short summary of relevant background on SAT and SMT
solving, gives the code for the solver and comments upon it, discusses extensions to the solver and
concludes with a discussion of the limitations of the solver and its approach.

2. Background

2.1. SAT Solving

This section briefly outlines the SAT problem and the DPLL algorithm [6] with watched literals
[24] that the solver implements.

The Boolean satisfiability problem is the problem of determining whether or not, for a given
Boolean formula, there is a truth assignment to the variables in the formula under which the
formula evaluates to true. Most recent Boolean satisfiability solvers have been based on the Davis,
Putnam, Logemann, Loveland (DPLL) algorithm [6]. Figure 1 presents a recursive formulation
of the algorithm adapted from that given in [29]. The first argument of the function DPLL is a
propositional formula, f, defined over a set of propositional variables X. As usual f is assumed
to be in CNF. The second argument, 0 : X — {true, false}, is a partial (truth) function. The call
DPLL(f, #) decides the satisfiability of f where () denotes the empty truth function. If the call
returns the special symbol L then f is unsatisfiable, otherwise the call returns a truth function 6
that satisfies f.



2.1.1. Unit propagation

At line (3) the function extends the truth assignment 6 to 6; by applying so-called unit prop-
agation on f and 6. For instance, suppose f = (mz V 2) A (uV —v Vw) A (—w V y V —z) so that
X =A{u,v,w,z,y,2z} and 0 is the partial function 8 = {x +— true,y — false}. Unit propagation
examines each clause in f to deduce a truth assignment 6; that extends 6 and necessarily holds
for f to be satisfiable. For example, for the clause (—x V z) to be satisfiable, hence f as a whole, it
is necessary that z — true. Moreover, for (—wVyV —z) to be satisfiable, it follows that w +— false.
The satisfiability of (uV —vV w) depends on two unknowns, u and v, hence no further information
can be deduced from this clause. The function unit-propagation(f, ) encapsulates this reasoning
returning the bindings {w +— false,z — true}. Extending 6 with these necessary bindings gives
0.

2.1.2. Watched literals

Information can only be derived from a clause if it does not contain two unknowns. This is
the observation behind watched literals [24], which is an implementation technique for realising
unit propagation. The idea is to keep watch on a clause by monitoring only two of its unknowns.
Returning to the previous example, before any variable assignment is made suitable monitors for
the clause (u V —v V w) are the unknowns u and v, suitable monitors for (—w V y V —z) are w and
z and (—z V z) must have monitors « and z. Note that no more than these monitors are required.

When the initial empty 6 is augmented with x +— true, a new monitor for the third clause is
not available and unit propagation immediately applies to infer z — true. The new binding on z is
detected by the monitors on the second clause, which are then updated to be w and y. If € is further
augmented with y — false, the change in y is again detected by the monitors on (—w V y V —z).
This time there are no remaining unbound variables to monitor and unit propagation applies,
giving the binding w +— false. Now notice that the first clause, (u V —w V w), is not monitoring
w, hence no action is taken in response to the binding on w. Therefore, watched literals provide
a mechanism for controlling propagation without inspecting clauses needlessly.

2.1.3. Termination and the base cases

Once unit propagation has been completely applied, it remains to detect whether sufficient
variables have been bound for f to be satisfiable. This is the role of the predicate is-satisfied(f, 6).
This predicate returns true if every clause of f contains at least one literal that is satisfied. For
example, is-satisfied(f,61) = false since (u V —v V w) is not satisfied under 6; because u and v
are unknown whereas w is bound to false. If is-satisfied(f, ;) were satisfied, then 6; could be
returned to demonstrate the existence of a satisfying assignment.

Conversely, a conflict can be observed when inspecting f and 6;, from which it follows that f
is unsatisfiable. To illustrate, suppose f = (—z) A (x V y) A (—y) and 6 = (). From the first and
third clauses it follows that 81 = {z — false,y — false}. The predicate is-conflicting(f, 6) detects
whether f contains a clause in which every literal is unsatisfiable. The clause (x V y) satisfies this
criteria under 64, therefore it follows that f is unsatisfiable, which is indicated by returning L.

2.1.4. Search and the recursive cases

If neither satisfiability nor unsatisfiability have been detected thus far, a variable z is selected
for labelling. The DPLL algorithm is then invoked with 6; augmented with the new binding
x — true. If satisfiability cannot be detected with this choice, DPLL is subsequently invoked with
f, augmented with = — false. Termination is assured because the number of unassigned variables
strictly reduces on each recursive call.

2.2. SMT Solving

This section briefly outlines the SMT scheme [27] and the SMT algorithm that the solver
implements. The examples assume that the theory is quantifier-free linear real arithmetic where
the constants are numbers, the functors are interpreted as addition and subtraction, and the
predicates include equality, disequality and both strict and non-strict inequalities.



(1) function LAZY-BASIC(f: CNF formula, e : ¥ — X)
(2) begin

(3) 6 := DPLL(f,0);

(4) if (8 = 1) then

(5) return 1;

(6) else

(7) t := deduction(Th(6, e));

8) if (t = T) then

(9) return T;

(10) else

(11) return LAZY-BASIC(f A e(t), e);
(12) endif

(13) endif

(14) end

Figure 2: Recursive formulation of the SMT scheme

SMT gives a general scheme for determining the satisfiability of problems consisting of a formula
over atomic constraints in some theory T', whose set of literals is denoted .. The scheme separates
the propositional skeleton, that is the logical structure of combinations of theory literals, and the
meaning of the literals. A bijective encoder mapping e : ¥ — X associates each literal with a
unique propositional variable. Then the encoder mapping e is lifted to theory formulae, using e(¢)
to denote the propositional skeleton of a theory formula ¢. To illustrate, consider the problem
of checking the entailment (¢ < b)) A(a =0Va=1)A(b=0vVb=1)FE (1 <a+bd). The
entailment check amounts to determining that the theory formula ¢ = (a < b) A(a =0V a =1)
Ab=0Vb=1)A=(1l < a+b) is not satisfiable. For this problem, the set of literals is
Y={a<b,...,1 <a+b}. Suppose, in addition, that the encoder mapping is defined as follows:

ela<b)=z, ela=0)=y, ela=1)=2 eb=0))=u, eb=1)=v, e(l<a+bd)=w

Then the propositional skeleton of ¢, given e, is e(¢) =z A (yV z) A (uV v) A —~w. A SAT solver
gives a truth assignment 6 satisfying the propositional skeleton. From this, a conjunction of theory
literals, T'h(6, ¢) is constructed. A conjunct is the literal [ if 8(e(l)) = true and =l if 8(e(l)) = false.
This problem is passed to a specialised solver for the theory that can determine satisfiability of
conjunctions of constraints. Either satisfiability or unsatisfiability is determined, in the latter case
the SAT solver is asked for further truth assignments. Figure 2 gives a recursive reformulation
of Algorithm 11.2.1 from [21]. The first argument of the function LAZY-BASIC is a Boolean
formula, f, and the second an encoder mapping, e. In the initial call, f is the conversion to CNF
of e(f). The call LAZY-BASIC(f,e) returns the symbol L if ¢ is not satisfiable, and returns T
otherwise.

2.2.1. Truth assignments from a SAT solver

In line (3), a call to the DPLL algorithm is made to find a truth assignment satisfying the propo-
sitional formula f which is initially the propositional skeleton (converted to CNF) of the problem
¢, and in further recursive calls will have been strengthened with blocking clauses describing truth
assignments which do not correspond to a satisfying assignment to ¢. If no such model exists,
then ¢ is unsatisfiable. In the example, the initial truth assignment found by DPLL(e(¢), @) will
be 0/ = {x — true,y > true, z — true,u — true,v — true,w — false}.

2.2.2. Deduction

Of course, a truth assignment satisfying the propositional skeleton does not guarantee that
the theory problem ¢ is satisfiable. First, a model 6 of f is used to construct a conjunction of
literals in the theory, Th(f,e). In the example, this gives Th(6,e) = (a <bAa=0Aa=1Ab=



OAb=1A1>a+1b). Then the procedure deduction uses a theory specific decision procedure to
determine whether or not Th(0, ) is satisfiable. If it is, then the initial problem ¢ is satisfiable
and T is returned, if not, deduction returns the negation of a conjunction of literals in the theory
that are not satisfiable. In the example, deduction will determine that Th(#’,e) is unsatisfiable
and might return =(a=0Aa=1)=-(a=0)V -(a=1).

2.2.3. Search and the recursive call

The value returned by deduction is mapped to a new clause, a blocking clause, which is added
to the Boolean formula. LAZY-BASIC is then called recursively with the updated formula. In
the example, the clause (—y V —z) is added to the formula e(¢) and DPLL(e(¢p) A (—y V —z2), 0)
gives 0" = {x — true,y — false,z — true,u — true,v — true,w — false}. Again, Th(8",e) is
unsatisfiable, this time leading to (-2 V -z V —u) being added to the Boolean formula. Continuing
this, either T will be returned or all possible Boolean truth assignment will have been explored
and L will be returned (this is the case when running the example to completion). Note that since
the new clause blocks the previous model from being returned, a new model is always found and
the algorithm clearly terminates, assuming deduction terminates.

2.2.4. Theories

The theory in the SMT scheme can be instantiated by any theory that comes with a decision
procedure for conjunctions of theory literals. Many theories have been considered, but this paper
concentrates on quantifier-free linear real arithmetic. That is, on solving conjunctions of arithmetic
constraints consisting of strict or non-strict linear inequalities, equalities and disequalities over
the reals. This decision problem has been extensively studied [15] and in particular the decision
procedure that underpins the CLP(R) scheme [16] as implemented in [11] decides this problem.
The authors have also considered the theory of equality logic over uninterpreted functions.

3. The SAT Solver

The code for the solver is given in Figure 3. It consists of just twenty-two lines of Prolog.
Since a declarative description of assignment and propagation can be fully expressed in Prolog,
execution can deal with all aspects of controlling the search, leading to the succinct code given in
the figure.

3.1. Invoking the solver

The solver is called with two arguments. The first represents a formula in CNF as a list of
lists, each constituent list representing a clause. The literals of a clause are represented as pairs,
Pol-Var, where Var is a logical variable and Pol is true or false, indicating that the literal has
positive or negative polarity. The formula —z V (y A —z) would thus be represented in CNF as
(mx Vy) A (mz V —z) and presented to the solver as the list Clauses = [[false-X, true-Y],
[false-X, false-Z]] whereX, Y and Z are logical variables. The second argument is the list of the
variables occurring in the problem. Thus the query sat(Clauses, [X, Y, Z]) will succeed and
bind the variables to a solution, for example, X = false, Y = true, Z = true. As a by-product,
Clauses will be instantiated to [[false-false, true-true], [false-false, false-truel].
This illustrates that the interpretation of true and false in Clauses depends on whether they
are left or right of the - operator: to the left they denote polarity; to the right they denote truth
values. If Clauses is unsatisfiable then sat (Clauses, Vars) will fail. If necessary, the solver can
be called under a double negation to check for satisfiability, whilst leaving the variables unbound.

3.2. Watched literals

The solver is based on launching a watch goal for each clause that monitors two literals of
that clause. Since the polarity of the literals is known, this amounts to blocking execution until
one of the two uninstantiated variables occurring in the clause is bound. The watch predicate
thus blocks on its first and third arguments until one of them is instantiated to a truth value. In



sat(Clauses, Vars) :-
problem_setup(Clauses), elim_var(Vars).

elim_var([]).
elim_var([Var | Vars]) :-
elim_var(Vars), assign(Var).

assign(true).
assign(false).

problem_setup([]).

problem_setup([Clause | Clauses]) :-
clause_setup(Clause),
problem_setup(Clauses) .

clause_setup([Pol-Var | Pairs]) :- set_watch(Pairs, Var, Pol).

set_watch([], Var, Pol) :- Var = Pol.
set_watch([Pol2-Var2 | Pairs], Varl, Poll):-
watch(Varl, Poll, Var2, Pol2, Pairs).

:— block watch(-, 7, -, 7, 7).
watch(Varl, Poll, Var2, Pol2, Pairs) :-
nonvar (Varl) ->
update_watch(Varl, Poll, Var2, Pol2, Pairs);
update_watch(Var2, Pol2, Varl, Poll, Pairs).

update_watch(Varl, Poll, Var2, Pol2, Pairs) :-
Varl == Poll -> true; set_watch(Pairs, Var2, Pol2).

Figure 3: Code for SAT solver

SICStus Prolog, this requirement is stated by the declaration :- block watch(-, 7, -, 7, 7).
If the first argument is bound, then update_watch will diagnose what action, if any, to perform
based on the polarity of the bound variable and its binding. If the polarity is positive, and the
variable is bound to true, then the clause has been satisfied and no further action is required.
Likewise, the clause is satisfied if the variable is false and the polarity is negative. Otherwise,
the satisfiability of the clause depends on those variables of the clause which have not yet been
inspected. They are considered in the subsequent call to set_watch.

3.3. Unit propagation

The first clause of set_watch handles the case when there are no further variables to watch. If
the remaining variable is not bound, then unit propagation occurs, assigning the variable a value
that satisfies the clause. If the polarity of the variable is positive, then the variable is assigned true.
Conversely, if the polarity is negative, then the variable is assigned false. A single unification is
sufficient to handle both cases. If Var and Pol are not unifiable, then the bindings to Vars do not
satisfy the clause, hence do not satisfy the whole CNF formula.

Once problem_setup(Clauses) has launched a process for each clause in the list Clauses,
elim var (Vars) is invoked to bind each variable of Vars to a truth value. Control switches to a
watch goal as soon as its first or third argument is bound. In effect, the sub-goal assign(Var)
of elim vars(Vars) coroutines with the watch sub-goals of problem setup(Clauses). Thus,
for instance, elim_var(Vars) can bind a variable which transfers control to a watch goal that
is waiting on that variable. This goal can, in turn, call update _watch thus invoke set_watch,



the first clause of which is responsible for unit propagation. Unit propagation can instantiate
another variable, so that control is passed to another watch goal, thus leading to a sequence of
bindings that emanate from a single binding in elim vars(Vars). Control will only return to
elim var (Vars) when unit propagation has been maximally applied.

3.4. Search

In addition to supporting coroutining, Prolog permits a conflicting binding to be undone
through backtracking. Suppose a single binding in elim var(Vars) triggers a sequence of bind-
ings to be made by the watch goals and, in doing so, the watch goals encounter a conflict: the
unification Var = Pol in set_watch fails. Then backtracking will undo the original binding made
in elim var (Vars), as well as the subsequent bindings made by the watch goals. The watch goals
themselves are also rewound to their point of execution immediately prior to when the original
binding was made in elim var(Vars). The goal elim var(Vars) will then instantiate Vars to
the next combination of truth values, which may itself cause a watch goal to be resumed, and
another sequence of bindings to be made. Thus monitoring, propagation and search are seamlessly
interwoven.

Note that the sub-goal assign(Var) will attempt to assign Var to true before trying false,
which corresponds to the down strategy in finite-domain constraint programming. Moreover, the
variables Vars of sat(Clauses, Vars) are instantiated in the left-to-right order. Returning to
the initial query where Clauses = [[false-X, true-Y], [false-X, false-Z]], backtracking
can enumerate all the satisfying assignments to give:

X = false, Y = true, Z = true; X = false, Y = false, Z = true;
X = true, Y = true, Z = false; X = false, Y = true, Z = false;
X = false, Y = false, Z = false.

4. Interlude: Saving and Restoring Search State

In this section it is demonstrated how search in the SAT solver may be initialised from a given
(partial) truth assignment. Accompanying this with a mechanism to save a previous assignment
gives an efficiency optimisation to the solver presented in section 5 implementing the SMT scheme
in Figure 2. The scheme involves repeated calls to the SAT solver with the initial propositional
skeleton augmented by blocking clauses resulting from deduction. When using the SAT solver from
section 3, finding the n'® model will involve repeating all search involved in finding the n — 1*?
model. The state restoration mechanism presented here saves this repeated search.

The approach uses extra-logical features of Prolog and is akin to the technique used for back-
jumping in search described as a black pearl in [3]. The new version of the SAT solver is given
in Figure 4 (the remaining predicates are as in Figure 3). The solver uses the extra-logical black-
board where data can be stored away with bb_put/2 and retrieved with bb_get/2 to maintain a
state to be restored when sat/2 is called. This target state (henceforth referred to as the history)
might have resulted from a previous call to sat/2 or have been directly set using initialise/1.
(Clearly if the solver is not initialised, it will fail at the first call to bb_get.)

Storing the history is simple — after a (complete) satisfying assignment has been found it is
placed on the blackboard (it is reversed owing to the structure of elim vars). For example,
consider the SAT instance [[true-X], [true-Y,true-Z], [true-U,true-V], [false-W]]. With
the variables in the second clause of sat ordered [X,Y,Z,U,V,W] this will place the list of truth
values [false,true,true,true,true,true] on the blackboard.

Restoring state from the history is not quite as straightforward since the solver needs to be
directed to an assignment without search, after which point search, including backtracking past
the restored assignments, needs to continue. This is dealt with by replacing the assign/1 facts of
Figure 3 with calls to the assignment predicates assign_true/2 and assign_false/2. There are
three cases to consider: first when the history is empty, that is, when state is not being restored
and search is proceeding as normal; second, when state is being restored and the restoration step
is successful; third, when state is being restored and the restoration step fails. This third case is



:— module(sat_solver, [sat/2, initialise/1]).
:— use_module(library(lists)).

initialise(State) :- bb_put(history, State).

sat(Clauses, Vars) :-
problem_setup(Clauses), elim_var(Vars),
reverse(Vars, Rev), bb_put(history, Rev).

elim_var([]).
elim_var([Var | Vars]) :-
elim_var(Vars), assign(Var).

assign(Var) :- bb_get(history, Hs), assign_true(Hs, Var).
assign(Var) :- bb_get(history, Hs), assign_false(Hs, Var).

assign_true([], true).
assign_true([true | Hs], Var) :-
(Var = true ->
bb_put (history, Hs)

bb_put (history, [1), fail

assign_false([], false).
assign_false([false | Hs], Var):-
(Var = false ->
bb_put (history, Hs)

bb_put (history, []1), fail

Figure 4: Code for a SAT solver with state restoration

expected when blocking clauses are added to the problem; the conflict indicates the point where
further search starts. The key point to note is that when an assign decision point is revisited on
backtracking the history is read from the blackboard again, and it might well be different from
when the first branch was explored, in particular it may be empty.

The first case is straightforward. The history is empty and assign true and assign false
unify Var with true or false respectively.

In the second case, the history is not empty and the head of the history is (successfully)
unified with Var. If Var was non-ground then it is has been assigned the value it had in the
previous iteration. The history is then updated. Observe that search is avoided since the his-
tory value sets a variable immediately, rather than exploring a range of unsuccessful assignments
first. Notice also that if search returns to this decision, the history will be empty and back-
tracking possible. For example, suppose that the SAT instance above has been augmented with
[false-Y,false-Z] and in subsequent search a new assignment is found and the new history
[false,true,true,true,false,true] has been placed on the blackboard. Starting search with
this history and the problem further augmented with the clause [false-X,false-Z,false-U]
the first step will be to assign W. The history says W should be assigned false (the head of the
history) and this is achieved in assign false and the tail of the history is posted back to the
blackboard. The history now says that V should be assigned true and again this is achieved in
assign true. If search returned to this decision with [] as the history, search can backtrack to



explore assign false([], V).

In the third case, unification with the head of the history fails. This ends the restoration
process. Note that assignment in the SAT solver is ordered, with true being the first value
assigned. The solver needs to ensure that after state restoration regions of the search space visited
in previous iterations are not reexplored, and that no region of the (new) search space is omitted.
If the conflict arises when the history value is true, search can continue: the history is not needed,
hence the empty history is posted to the blackboard and the explicit fail drives search into the
false branch. This is the next possible assignment, hence no part of the search space has been
omitted. If the conflict arises when the history value is false, search should fail and return to a
previous decision, this is done by updating the history to empty and an explicit fail.

Continuing the example above, after unifying U with true attempting to unify Z with true leads
to conflict, hence the history is emptied and the fail leads to the search backtracking to the last call
of assign, it then continues with the assign _false branch (which is possible since now the history
contains []); this leads to the next solution Vars=[true,true,false,true,true,false].

5. The SMT Solver

The code for the SMT solver is given in Figure 5. The solver needs to be coupled with a
theory solver given as a module theory and exporting post_all/1 and unsat_core/3. Code for
one theory — quantifier-free linear real arithmetic — is given in Figure 6.

5.1. Invoking the solver

It is assumed that the solver is called with the theory formula having been preprocessed into
its propositional skeleton (converted into CNF) coupled with an association list mapping the
logical variables of the skeleton to the theory literals of the input problem (plus any Tseitin
variables, introduced in CNF conversion [28], that are mapped to a trivial term, triv). The
solver is called with smt (Clauses, Vars, ConsMap) where Clauses is the propositional skeleton
of the theory formula presented in CNF, Vars is a list of the variables in the skeleton, and the
ConsMap is an association list that represents the encoder mapping. For instance, to solve the
example given in section 2.2, Clauses = [[true-X], [true-Y, true-Z], [true-U, true-V],
[false-W]], Vars = [X, Y, Z, U, V, W], and ConsMap is an association list created through a
series of calls such as empty_assoc(ConsMap0O), put_assoc(X, ConsMapO, A < B, ConsMapl),
put_assoc(Y, ConsMapl, A = 0, ConsMap2), etc and finally assigning ConsMap = ConsMap6.
The goal smt(Clauses, Vars, ConsMap) succeeds then if the problem is satisfiable and fails
otherwise. Note that the predicate smt/3 will also initialise the history in the SAT solver.

5.2. Finding a truth assignment

A truth assignment satisfying the propositional skeleton is found with a call to the SAT solver
from section 4 (or 3). Note that the arguments are copies of the clauses and variables and the
solution is afterwards paired up with the original uninstantiated variables — this results from
the recursive formulation of the SMT solver with its repeated calls to the SAT solver, without
backtracking.

5.3. Deduction: finding a countermodel

The truth assignment given by the SAT solver is a candidate model for satisfying the theory
problem. The predicate satisfiable/3 tests whether this is the case; theory literals are paired
with Boolean values from the truth assignment before using the theory predicate post_all to
determine whether or not they are satisfiable. If post_all, hence satisfiable, succeeds then the
theory problem has been solved.

Otherwise, it is enough to note that the current model is unsatisfiable. However, the deduction
step aims to make a better diagnosis of why the conjunction of theory literals is unsatisfiable.
Therefore, the second clause of smt_proceed uses the theory predicate unsat_core/3 to find
an inconsistent core, that is a subset of the current model that is still unsatisfiable. The final



:— use_module(theory) .
:— use_module(sat_solver).
:- use_module(library(assoc)).

smt (Clauses, Vars, ConsMap) :-
initialise([]),
smt_call(Clauses, Vars, ConsMap).

smt_call(Clauses, Vars, ConsMap) :-
copy_term(Clauses-Vars, CopyClauses-CopyVars),
sat (CopyClauses, CopyVars), !,
zip(CopyVars, Vars, ZipVars),
smt_proceed(ZipVars, Clauses, Vars, ConsMap).

smt_proceed(ZipVars, _Clauses, _Vars, ConsMap) :-
satisfiable(ZipVars, [], ConsMap), !.

smt_proceed(ZipVars, Clauses, Vars, ConsMap) :-
unsat_core(ZipVars, ConsMap, Min),
new_clause(Min, Vars, NewClause),
smt_call([NewClause | Clauses], Vars, ConsMap).

satisfiable([], Cons, _) :- post_all(Cons).

satisfiable([Val-Var | Vals], Acc, ConsMap) :-
get_assoc(Var, ConsMap, Con),
satisfiable(Vals, [Val-Con | Acc], ConsMap).

zip([1, 0O, [1).
zip([X | Xs], [Y | Ys], [X-Y | Zs]) :- zip(Xs, Ys, Zs).

new_clause([], _, [1).
new_clause([Val | Vals], Vars, Rest) :-
new_clause(Val, Vals, Vars, Rest).

new_clause(true, Vals, [Var | Vars], [false-Var | Rest]) :-
new_clause(Vals, Vars, Rest).

new_clause(false, Vals, [Var | Vars], [true-Var | Rest]) :-
new_clause(Vals, Vars, Rest).

new_clause(na, Vals, [_ | Vars], Rest) :-
new_clause(Vals, Vars, Rest).

Figure 5: Code for SMT solver

argument of unsat_core is unified with a list of values, each corresponding to whether in the
inconsistent core the literal is posted positively (true), posted negatively (false) or is not in-
cluded (na). That is, Min describes the inconsistent core and na corresponds to a theory literal
not in this core. Referring to the example in 2.2.2, when unsat_core is called with the first argu-
ment [true-X,true-Y,true-Z,true-U,true-V,false-W] the third argument will be unified with
[na,true,true,na,na,na] indicates that the literals associated with Y and Z are inconsistent.

5.4. Recursion and adding clauses

This minimised model is negated and added to Clauses as a blocking clause in new_clause and
smt_call is called recursively. As discussed in section 4, the SAT solver returns truth assignments
one by one. If a call to the SAT solver results in failure then there are no further models to consider
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and the theory problem is unsatisfiable. Note that when using the state restoration solver from
section 4, only the original propositional skeleton and the new blocking clause are required.

5.5. Theory: linear real arithmetic

SMT solving is illustrated in this section with the theory of quantifier-free linear real arithmetic.
This example has been chosen as Prolog systems often come with the CLP(R) constraints package
which will determine the consistency of conjunctions of linear arithmetic constraints. Figure 6
presents code to realise the theory in such a way as to be used by the SMT solver.

It is assumed that the input problem has been normalised so that all the constraint predicates
are either =, =< or <. The predicate post_all posts to the store a series of constraints according to
their polarity. One of the main functions of the CLP(R) package is to determine the consistency
of its constraint store — exactly what is required.

The implementation of unsat_core given here flattens the association list and finds an un-
satisfiable core of the set of constraints by omitting from the current set of inconsistent con-
straints a single constraint at a time and testing the remainder for consistency. If the system
is still inconsistent, then the omitted constraint is not required for inconsistency. For example,
when unsat_core is called with first argument [true-X, true-Y, true-Z, true-U, true-V,
false-W], the predicate remove_redundant is called with its first argument [false-(1=<A+B),
true-(B=1), true-(B=0), true-(A=1), true-(A=0), true-(A<B)]. Omitting each of the first
three constraints still leaves an unsatisfiable system and the constraints are discarded from the
core, but omitting the fourth (and fifth) constraint from those remaining leads to a satisfiable
system. Omitting the final constraint still leaves an unsatisfiable system and remove_redundant
succeeds with its fourth argument unified with [na, true, true, na, na, nal indicating (note
the order in which the list is constructed) that the constraint sub-system comprising of just A=0 and
A=1 is unsatisfiable. The approach used to find an unsatisfiable core requires n calls to post_all
where n is the length of the list that represents the model initially passed to unsat_core. (The
method is thus similar in spirit to serial constraint deletion in the calculation of interpolants [17,
section 5]). Finally, Y and Z are the corresponding variables to these constraints and the clause
[false-Y, false-Z] is constructed by new_clause and added to the skeleton.

5.6. Theory: equality logic with uninterpreted functions

If a Prolog system does not come equipped with an appropriate constraint library, there is
no reason why a decision procedure cannot be coded in Prolog itself. Indeed, the declarative
features of the paradigm make it eminently suitable for such proposes. To illustrate, consider the
theory of equality logic with uninterpreted functions [18, 26] that is widely applied in verification
[21]. This theory satisfies the congruence axiom [21]: if z; = y; for all ¢ € {1,...,n} then
f(z1,...,2n) = f(y1,-..,yn), though the converse does not hold. For example, it follows that
(a=bAb=g(c))V(a=g(b)ANb=c) = a=g(c). This can be demonstrated by checking that the
theory formula ¢ = ((a =bAb=g(c))V (a=g(b) Ab=c)) A —(a = g(c)) is unsatisfiable. Using
the encoder

the skeleton e(¢) can be converted into the following CNF formula, denoted f:

() AN (xV—ty) A (wV—ata) A (mxV-wVit) A
F= (t1Vt) A (zv=t1)) A (yV—t1) A (mzV-yVi)

where t; and to are fresh Tseitin variables.

Solving proceeds in an analogous way to before: the SAT solver finds a truth assignment 6’ =
{v — false, w — true, x — true, y — true, z — true, t; — true, to — true} for f which is used
to construct a conjunction of literals by Th(#,e) = (g(c) # aAb=cAg(b) = aAg(c) =bAa=b)
which is unsatisfiable in equality logic. A deduction procedure can be constructed in a similar way
to a linear theory to return the unsatisfiable conjunction g(c) # aAb = c¢Ag(b) = a from which the
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:- module(theory, [post_all/1l, unsat_core/3]).
:— use_module(library(clpr)).
:- use_module(library(assoc)).

post_all([]).
post_all([Val-Con | Cons]) :- post_con(Val, Con), post_all(Cons).

post_con(true, Con) :- post_true(Con).
post_con(false, Con) :- post_false(Con).

post_true(triv).
post_true(X=<Y) :- {X=<Y}.
post_true(X<Y) :- {X<Y}.
post_true(X=Y) :- {X=Y}.

post_false(triv).

post_false(X=<Y) :- {X>Y}.
post_false(X<Y) :- {X>=Y}.
post_false(X=Y) :- {X=\=Y}.

unsat_core(VarMap, ConsMap, Min) :-
assoc_to_vals(VarMap, ConsMap, [], Comns),
remove_redundant (Cons, [], [], Min).

assoc_to_vals([], _, Cons, Cons).

assoc_to_vals([Val-Var | VarMap], ConsMap, Acc, Vs) :-
get_assoc(Var, ConsMap, Con),
assoc_to_vals(VarMap, ConsMap, [Val-Con | Accl, Vs).

check_redundant (Val-Con, Cons, TestedCons, Core, Min) :-
append(Cons, TestedCons, AllCons),
copy_term(AllCons, CopyCons),
post_all(CopyCons), !,
remove_redundant (Cons, [Val-Con | TestedCons], [Val | Core]l, Min).
check_redundant(_, Cons, TestedCs, Core, Min) :-
remove_redundant (Cons, TestedCs, [na | Core], Min).

remove_redundant ([], _, Min, Min).
remove_redundant ([Con | Cons], Tested, Core, Min) :-
check_redundant (Con, Cons, Tested, Core, Min).

Figure 6: Linear real arithmetic theory using CLP(R)

blocking clause (vV —w V —z) can be derived. Augmenting f with this clause, reapplying the SAT
solver discovers the model 0" = {v — false, w — false, © — true, y — true, z — true, t1 — true,
ty — false} from which Th(0”,e) = (g(c) #aAb# cAg(b) = aAg(c) = bAa=Db) is constructed;
this is also unsatisfiable. Deduction then derives the conjunction g(c) # a A g(c) =bAa = b from
which the blocking clause (vV —yV —z) is inferred. Augmenting f with this additional clause leads
to an unsatisfiable SAT instance, hence ¢ is unsatisfiable and the entailment relation follows.

A Prolog implementation of the decision procedure algorithm of [26], which incidentally is both
incremental and has been found to be particularly efficient [26], can be realised in less than 200
lines of code. This is because this algorithm relies on symbolic pre-processing and normalisation
which can be coded compactly in Prolog, as explained in the following section.
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6. Normalisation

The case had already been made [5] that logic programming provides a declarative way of
stating satisfiability problems and encoding them in CNF. For example, fresh variables, sometimes
known as Tseitin variables [28], are introduced when converting a propositional formula into CNF,
a process sometimes referred to as flattening. The idea is to introduce a fresh variable for each sub-
formula in the formula. For instance, the formula (zVy)@z can be translated to the equisatisfiable
formula (t & z) A (t <> (2 V y)) in which ¢ is fresh and each conjunct involves no more than three
variables. The conjuncts ¢t ® z and ¢ <> (z V y) are then individually translated to CNF, giving a
CNF representation for the whole.

Logical variables provide a natural way of generating fresh variables, but their true power is
that these placeholders can be unified and applied to decompose a problem into independent steps.
This is just what is needed when constructing the SMT equivalent of CNF. Consider the formula
(g(h(i(a),b),c) = d) A (g(h(i(a),b),c) # d) over the theory of equality logic with uninterpreted
functions [21] (which incidentally is unsatisfiable). Decision procedures for such systems [18, 26|
apply a form of flattening to terms in which a fresh symbol, say ¢, is introduced to name a non-
constant proper sub-term, such as i(a). Then i(a) is replaced everywhere by ¢, the equation i(a) = ¢
is added to the system, and the process is repeated until all non-constant proper sub-terms have
been consistently named. Note that all occurrences of the same sub-term must be replaced with
a common symbol, so the problem is not as straightforward as flattening propositional formulae.

The elegance of logical variables is that they can be applied to decompose term flattening into
two independent steps. In the first step, fresh symbols are introduced for all proper sub-terms, no
matter whether they occur singly or multiply. This is illustrated in the following table, where the
right-hand column is a list which records all the substitutions that have been made.

0 [g(h(i(a),b),c) = d, g(h(i(a),b),c) # d] (

1 [g(t1,¢) = d, h(i(a),b) = t1, g(h(i(a),b), c) # d] [h(i(a),b) — ti]

2 [g(t1,¢) =d, h(ta,b) = t1,i(a) = ta,g(h(i(a),b),c) #d] [h(i(a),b) — t1,i(a) — ta]
3 [g(t1,¢) = d, h(t2,b) = t1,i(a) = t2, g(

In the second step, different occurrences of the same sub-term are correlated. This is achieved
by key-sorting the list of substitutions [h(i(a),b) — t1, i(a) — ta, h(i(a),b) — t3, i(a) — t4] to give
[h(i(a),b) — t1, h(i(a),b) — t3, i(a) — ta, i(a) — t4]. The sorted list is then scanned in a linear
fashion to detect any replicated keys and unify the associated symbols. This unifies the symbols
t1 and t3 and likewise t5 and t4. This, in turn, transforms the flattened system of equations and
disequations to [g(t1,¢) = d, h(ta,b) = t1, i(a) = ta, g(t1,¢) # d, h(ta,b) = t1, i(a) = ta]. This list
is then itself sorted to remove duplicates. Therefore logical variables are not only of value when
generating fresh symbols, but also enable different symbols to be recoupled via unification.

7. Discussion

Thus far this paper has highlighted the ways in which Prolog provides an easy and elegant
entry point into SAT and SMT solving, whilst also making contributions on the preprocessing of
SMT inputs and the efficiency of the integration of the SAT solver into the SMT framework. This
section discusses what the code presented does not achieve in relation to state-of-the-art SAT and
SMT solvers, whilst offering hints as to how the techniques used in these solvers could be realised
in Prolog.
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The challenge of SAT solving grows with the size of the problem. This can manifest itself in
two ways: the growth of the search space and the storage of the SAT instance. The development of
SAT solvers over the last decade has resulted in numerous heuristics to reduce the search space that
dramatically improve the performance of general purpose solvers. The ways in which a number of
these refinements might be incorporated into the solver presented above are now discussed:

e The first and simplest heuristic is to use a static variable ordering. Variables are ordered by
frequency of occurrence in the input problem, with the most frequently occurring assigned
first. This wins in two ways: the problem size is quickly reduced by satisfying clauses and the
amount of propagation achieved is greater. Both reduce the number of assignments required
to reach a satisfying assignment or a conflict. This tactic, of course, can be straightforwardly
implemented in Prolog (and was used in the experiments presented in [14]).

e Another tactic is to change the problem by restructuring it using limited applications of
resolution [8]. Again, these preprocessing steps can clearly be achieved satisfactorily in
Prolog.

e Many SAT solvers use non-chronological backtracking [2], or backjumping, in order to avoid
exploration of fruitless branches of the search tree [23]. Backjumping for depth-first search
algorithms in Prolog has been explored in [3] and this approach (without learning) carries
over to the solver presented in this paper. Note that SAT solvers often realise backjumping
by altering the problem with learnt clauses. Here, following [3], backjumping is achieved by
coding additional control.

e Another popular heuristic is learning in which clauses are added to the problem that express
regions of the search space that do not contain a solution [23]. It is less clear how to achieve
this cleanly in this Prolog solver, as calls to the learnt clauses would be lost on backtracking.
That said, the SMT solver requires clauses to be added to a SAT problem to produce a
new assignment. In section 4 it was demonstrated how search can be started or resumed at
a specified point allowing the incremental problems arising in SMT to be more efficiently
solved. The approach will also work in a more general learning context. At appropriate
failure points a description of clauses to be learnt can be posted to a blackboard, then the
problem restarted with the addition of the learnt clauses followed by state restoration. This
approach also fits with the random restarts employed by some solvers. However, it is unclear
whether the cost of learning clauses in this way will be fully repaid by reduced search.

e Dynamically reordering variables during search [24] has also been widely incorporated in
SAT solvers. This can be incorporated into the solver presented in this paper in conjunction
with learning. As above, blocking clauses that will prevent search returning to a previous
assignment can be learnt. Then search may be restarted with a new variable ordering
(determined by analysing information from the previous search stored on a blackboard).

The extensions to SAT are heuristics attempting to reduce search. Extensions to SMT again
aim to reduce the amount of search, in this case by more tightly coupling the SAT solver and the
decision procedure for conjunctions of theory literals. There are two possibilities to consider:

e The DPLL(T) scheme [27] ties assignment in the SAT problem to posting constraints in
the theory. In the solver presented in this paper a complete variable assignment is found
before using this to form the conjunction Th(,e) and test it for satisfiability. In DPLL(T)
the conjunctive theory problem is incrementally extended by the literal I or - (and tested
for consistency) as e(l) is assigned true or false respectively. This allows unsatisfiability
to be detected before a complete assignment has been made, reducing propagation and
search. For linear real arithmetic, this scheme could be accomplished using the techniques
presented in this paper — a predicate blocked on e(l) would post an appropriate constraint
when the variable is instantiated. This would incrementally propagate information from the
SAT component to the theory component. Propagating information from the theory to the
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SAT component, in a fully increment way, is more challenging but might be feasible using
systems of reified constraints [4]. For example, there is no reason why the 0/1 variables that
indicate whether a reified constraint is entailed or disentailed could not be those propositional
variables that are assigned in the SAT component. For theories not exploiting the constraint
packages distributed with Prolog systems DPLL(T) requires more effort, since a model of a
constraint store needs to be built.

e Theory propagation is where assignment to the propositional variables is made not just
in the SAT component of the SMT solver, but also in the deduction procedure. That
is, with a partial assignment of the propositional variables, deduction infers that theory
satisfiability can only be achieved if theory literal [ is satisfied or otherwise. This information
is propagated to the SAT problem by setting e(l). For example [21], if e(x = y) — true and
e(y = z) — true and x = z is also a theory literal, then theory propagation might deduce
that e(x = z) — true. As this is a symbolic deduction from a set of constraints, theory
propagation could incorporated into a Prolog implementation of DPLL(T), as above.

Returning to the difficulties that arise with large problems identified at the beginning of this
section, it is, in fact, the second manifestation that is perhaps the greatest obstacle to solving really
large problems in Prolog — the programmer does not have the fine-grained memory control required
to store and access hundreds of thousands of clauses. As an example, consider the implementation
of watched literals. The literals being watched change during search and changes made during
propagation are undone on backtracking. This makes maintenance of the clauses easy, but loses
one advantage that watched literals potentially have, namely that the literals being watched do
not need to be changed on backtracking [10].

Owing to the issues outlined above, the solver presented in this paper is not going to be
competitive on the large, difficult problems set as challenges in the international SAT [22] and
SMT [1] competitions. (Though a reviewer pointed out that larger problems can sometimes be
accomodated by consulting rather than compiling the solver.) Nevertheless the solver does provide
a declarative description of SAT solving with watched literals in a succinct and self-contained
manner, and one which can be extended in a number of ways. In particular, its incorporation
into an SMT scheme using the constraint packages often distributed with Prolog systems gives a
straightforward realisation of the theory of linear real arithmetic. Furthermore, a generalisation of
constraint logic programming, T logic programming [7], offers the potential to realise new theories
and even extend an existing theory, on-the-fly, with axioms gleaned through learning.

In [14] a brief empirical evaluation of the SAT solver was given that indicated that the solver
performs well enough to be of use for small and medium-size problems, an example being detecting
stability in fixpoint calculations in Pos-based program analysis [12]. In this context, a SAT engine
coded in Prolog itself is attractive since it avoids using a foreign language interface (note that
[5] hides this interface from the user), simplifies distribution issues, and avoids the overhead of
converting a Prolog representation of a SAT instance to the internal C representation used by the
external SAT solver.

Finally, the solver is available at www.soi.city.ac.uk/~jacob/solver/. The distribution
includes all code from this paper as well as additional code relating to sections 6 and 7. The
distribution also includes Prolog code, kindly donated by a referee, that generates a Sudoku
puzzle a solution to which can be found using the SAT solver presented earlier.
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