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Abstract

The relationship of the chain ladder method to mathematical statistics has

long been debated in actuarial science. During the nineties it became clear

that the originally deterministic chain ladder can be seen as an autoregres-

sive time series or as a multiplicative Poisson model. This paper draws on

recent research and concludes that chain ladder can be seen as a structured

histogram. This gives a direct link between classical aggregate methods and

continuous granular methods. When the histogram is replaced by a smooth

counter part, we have a continuous chain ladder model. Re-inventing classical

chain ladder via double chain ladder and its extensions introduces statisti-

cally solid approaches of combining paid and incurred data with direct link

to granular data approaches. This paper goes through some of the extensions

of double chain ladder and introduces new approaches to incorporating and

modelling incurred data.

Keywords: Stochastic Reserving; General Insurance; Solvency II; Chain Lad-

der; Reserve Risk; Claims Inflation; Incurred Data; Model Validation; Granular

Data.
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1 Introduction

Double chain ladder is a bridge between the chain ladder method (CLM) and math-

ematical statistics. Double chain ladder is modelling the full system of reported

claims, their delay and the resulting claims. Bootstrapping it with or without pa-

rameter uncertainty is easy. Double chain ladder bootstrapping does not face the

stability problems resulting when bootstrapping the CLM. The full model struc-

ture is the key here: bootstrapping a well defined statistical model is simple and

straightforward. The reason it is tricky to bootstrap the CLM is that only one

part of the system is modelled: the aggregated paid or incurred claims. The full

data generation process is not known in classical chain ladder, and approximations

have to be introduced to come up with some sort of bootstrapping. The typical

assumption taken is that all adjusted residuals arise from the same distribution.

But adjusted residuals on the aggregated paid data or incurred data models do

not follow the same distribution. These residuals can be very close to the normal

distribution and very right skewed depending on the underlying number of claims

leading to this residual. Instability occurs if an unimportant right skewed residual

of little weight is reshuffled as a very important residual in the bootstrap. Double

chain ladder is estimated from the exact same data structure as chain ladder. It

uses triangle type of data on frequencies, paid and incurred data. Communicating

the implementation and structure of double chain ladder to actuaries is therefore a

simple exercise. Furthermore, double chain ladder gives - almost - the exact same

reserve as chain ladder. One can therefore see double chain ladder as a more stable,

better understood version of CLM with the clear advantage of being easy to gen-

eralize. When generalizing or developing double chain ladder, the actuary can see

any development as moving away from chain ladder. The vast amount of experience

and tacit knowledge actuaries have invested in the chain ladder model is therefore

directly useful when working with and interpreting double chain ladder and its ex-

tensions. In this paper we will consider double chain ladder, double chain ladder and

Bornhuetter-Ferguson, incurred double chain ladder and RBNS-preserving double

chain ladder and we will give these four methods the acronyms DCL, BDCL, IDCL

and PDCL. BDCL was the first published extension of DCL. It was verified that

the severity inflation (inflation in cost per claim) in the underwriting year direction

is the key to many of the hardest challenges of chain ladder, and it was shown that

this severity inflation could be extracted from incurred data via a simple estimation

trick. Replacing the paid data’s severity inflation in DCL with the incurred data’s

severity inflation is the definition of BDCL. Incurred double chain ladder is simply

defined as that severity inflation (cost per claim in the underwriting year direction)

resulting exactly in the same reserves for every underwriting year as the reserve
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resulting from the chain ladder method applied to incurred data. The advantage

of having IDCL instead of the incurred chain ladder is similar to the advantages of

having DCL instead of chain ladder given above. Finally PDCL is one version of

double chain ladder that does not change the RBNS values. DCL was published

via the three Astin Bulletin papers, Verrall et al. (2010) and Martinez-Miranda

et al. (2011, 2012). BDCL was published in North American Actuarial Journal

in Mart́ınez-Miranda et al. (2013b), PDCL is introduced in this British Actuarial

Journal paper and IDCL was introduced in the Variance paper Agbeko et al. (2015).

One could have that point of view that developments of double chain ladder might

become redundant, when full granular reserving based on micro models enter ac-

tuarial practice. While this might be true, then we believe that granular reserving

should be developed in the exact same way as double chain ladder was developed:

one should be able to follow step by step how an aggregate chain ladder is changed

into a granular model and developed. When progressing this way, one makes sure

that the tacit knowledge and experience of actuaries, built via the CLM, is carried

over to the granular data approach. We call this “the bath water approach” to de-

veloping reserving techniques, because we do not want to throw the baby out with

the bathwater and develop new methods missing important features and properties

of classical methods. In Section 6 below, a preliminary first approach to granular

chain ladder called continuous chain ladder is described. Continuous chain ladder is

a smooth structured density reflecting the fact that chain ladder could be viewed as

a structured histogram. The difference between a structured smooth density and a

structured histogram is just which nonparametric estimation procedure is applied.

The histogram approach reproducing chain ladder or a smooth version of it called

continuous chain ladder. Since chain ladder itself is a granular method based on a

suboptimal histogram approach, everything we develop via double chain ladder and

it’s extensions can indeed be viewed as granular methods with smooth continuous

counter parts waiting to be formally defined.

The rest of the paper is structured as follows. Section 2 describes the data and

the expert knowledge, introduces the notation and defines the model assumptions.

Section 3 discusses the outstanding loss liabilities point estimates. Section 4 de-

scribes four methods to estimate the parameters in the model: DCL, BDCL, PDCL

and IDCL. The validation of these four methods is considered in Section 5 through

a back-testing procedure. Section 6 describes the link between classical reserving

and granular reserving. Section 7 provides some concluding remarks.
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2 Data and first moment assumptions and some

comments on granular data

This section describes the classical aggregated data used in most non-life insurance

companies. However, in Section 6 below we make it clear that working with this kind

of aggregated data indeed is very closely connected to working with granular data.

The resulting estimators of aggregated data are piecewise constant or structured

histograms, while the resulting estimators of continuous data are continuous and

easier to optimize. Because the classical chain ladder method is closely related to

the continuous chain ladder method, every single extension of double chain ladder

is also a contribution to granular methodology. One can - so to speak - develop the

practical ideas on aggregated data and develop the continuous versions later. This

paper will work on aggregated data, in the form of incremental run-off triangles,

and contribute to the understanding and validation of chain ladder, but it will in

particular introduce new ways of considering incurred data and expert opinion. We

start by describing the data and expert knowledge extracted from incurred data, that

we are going to work with. Data are aggregated incurred counts (data), aggregated

payments (data) and aggregated incurred payments (expert knowledge). All of those

three objects have the same structural form, i.e. they live on the upper triangle

I = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m− 1; i+ j ≤ m},

m > 0. Here, m is the number of underwriting years observed. It will be assumed

that the reporting delay, that is the time from underwriting of a claim until it is

reported, as well as the settlement delay, that is the delay between the report of a

claim and its settlement, are bounded by m. This, in contrast to the classical CLM,

will make it possible to also get estimates in the tail, that is when reporting delay

plus settlement delay is greater than m. Our data can now be described as follows.

The data:

Aggregated incremental incurred counts: NI = {Nik : (i, k) ∈ I}, with Nik being

the total number of claims of insurance incurred in year i which have been

reported in year i+ k, i.e. with k periods delay from year i.

Aggregated incremental payments: XI = {Xij : (i, j) ∈ I}, with Xij being the total

payments from claims incurred in year i and paid with j periods delay from

year i.

Note that the meaning of the second coordinate of triangle I varies between the two

different data. While in the counts triangle it represents the reporting delay, in the

payments triangle it represents the development delay, that is reporting delay plus

4



settlement delay.

To describe the aggregated incurred payments, we need some theoretical micro-

structural descriptions. These micro-structural descriptions follow the line of Mart́ınez-

Miranda et al. (2012) and also build the base of the forthcoming DCL assumptions.

By N
paid
ikl , we will denote the number of the future payments originating from the Nik

reported claims, which were finally paid with a delay of k+ l, where l = 0, . . . ,m−1.

Also, let X
(h)
ikl denote the individual settled payments which arise from N

paid
ikl ,

h = 1, . . . , Npaid
ikl . Finally, we define

Xikl =

N
paid

ikl∑

h=0

X
(h)
ikl , (i, k) ∈ I, l = 0, . . . ,m− 1,

i.e. those payments originating from underwriting year i, which are reported after

a delay of k and paid with an overall delay of k + l.

The aggregated incurred payments are then considered as unbiased estimators of∑m−1
l=0 Xikl. Technically, we model the expert knowledge as follows.

Expert knowledge:

Aggregated incremental incurred payments : II = {Iik : (i, k) ∈ I}, with Iik being

Iik =
k∑

s=0

m−1∑

l=0

E[Xisl| F(i+k)]−
k−1∑

s=0

m−1∑

l=0

E[Xisl| F(i+k−1)], (1)

where Fh is an increasing filtration illustrating all the expert knowledge at

calendar time h, which has influenced the case estimates.

In this manuscript, we will only consider best estimates (or pointwise estimates)

and for this we can define the DCL model just under first-order moment assumptions,

i.e. assumptions on the mean. We show that the classical chain ladder multiplicative

structure holds under very general underlying dependencies on the mean. For fixed

i = 0, . . . ,m; k, l = 0, . . . ,m− 1, and h = 1, . . . , Npaid
ikl , the first-order moment

conditions of the DCL model are formulated as follows.

A1. The counts, Nik, are random variables with mean having a multiplicative

parametrization E[Nik] = αiβk, for given parameters αi, βj , under the identifi-

cation
∑m−1

k=0 βk = 1.

A2. The number of payments, Npaid
ikl , representing the RBNS delay, are random

variables with conditional mean E[Npaid
ikl |NI ] = Nikπ̃l, for given parameters π̃l.

A3. The individual payments sizes X
(h)
ikl are random variables whose mean condi-

tional on the number of payments and the counts is given by E[X
(h)
ikl |N

paid
ikl , NI ] =

µ̃klγi, for given parameters µ̃kl, γi.
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Assumption A1 is the classical chain ladder assumption applied on the counts

triangle. See also Mack (1991). The main point hereby is the multiplicativity be-

tween underwriting year and reporting delay. Assumptions A2 and A3 are necessary

to connect reporting delay, settlement delay and development delay - the main idea

of DCL. See also Verrall et al. (2010) and Mart́ınez-Miranda et al. (2011, 2012).

Note that the observed aggregated payments can be written as

Xij =

j∑

l=0

Xi,j−l,l =

j∑

l=0

N
paid

i,j−l,l∑

h=1

X
(h)
i,j−l,l.

And then, using assumptions A1 to A3, we can derive the mean of the aggregated

payments conditional to the counts as follows:

E[Xij|NI ] = E




j∑

l=0

N
paid

i,j−l,l∑

h=1

X
(h)
i,j−l,l|NI




=

j∑

l=0

E




N
paid

i,j−l,l∑

h=1

E[X
(h)
i,j−l,l|NI , N

paid
i,j−l,l]|NI




=

j∑

l=0

E[Npaid
i,j−l,lµ̃j−l,lγi|NI ]

= γi

j∑

l=0

Ni,j−lπ̃lµ̃j−l,l.

Thus, the unconditional mean is given by

E[Xij ] = αiγi

j∑

l=0

βj−lµ̃j−l,lπ̃l. (2)

Mart́ınez-Miranda et al. (2012) discussed how to estimate the parameters in the

model using the triangles XI and NI . To this goal they introduce the restriction

µ̃k,l = µ̃l to identify the parameters. With such simplification we define

µ =
m−1∑

l=0

π̃lµ̃l (3)

and πl = π̃lµ̃lµ
−1, so that µπl = µ̃lπ̃l and therefore the unconditional mean of the

payments becomes

E[Xij ] = αiγiµ

j∑

l=0

βj−lπl. (4)
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Equation (4) is the key in deriving the outstanding loss liabilities. These are the

values of Xij in the lower triangle and the tail (that is for i = 1, . . . ,m; j =

0, . . . , 2m− 1; i+ j ≥ m+ 1). In the sequel we will write all the DCL parameters,

i.e. the parameters involved in the DCL model, as

(α, β, π, γ, µ) = (α1, . . . , αm, β0, . . . , βm−1, π0, . . . , πm−1, γ1, . . . , γm, µ).

In the next section, we will see that in a very natural way, we are able to dis-

tinguish between RBNS and IBNR claims. This is possible due to the separation of

the development delay into the reporting delay, β, and the settlement delay, π.

3 Forecasting outstanding claims: the RBNS and

IBNR reserves

To produce outstanding claims forecasts under the DCL model we need to estimate

the DCL parameters. Section 4 below is devoted to this issue. In this section,

we assume that the DCL parameters (α, β, π, γ, µ) have been already estimated by

(α̂, β̂, π̂, γ̂, µ̂), and show how easily point forecasts of the RBNS and IBNR compo-

nents of the reserve can be calculated. Using the notation of Verrall et al. (2010) and

Mart́ınez-Miranda et al. (2011), we consider predictions over the triangles illustrated

in Figure 1.

J1 = {i = 2, . . . ,m; j = 0, . . . ,m− 1 with i+ j ≥ m+ 1},

J2 = {i = 1, . . . ,m; j = m, . . . , 2m− 1 with i+ j ≤ 2m− 1},

J3 = {i = 2, . . . ,m; j = m, . . . 2m− 1 with i+ j ≥ 2m}.

The classical CLM produces forecasts over only J1. So, if the CLM is being used,

it is necessary to construct tail factors in some way. For example, this is sometimes

done by assuming that the run-off will follow a set shape, thereby making it possible

to extrapolate the development factors. In contrast, under the DCL model it is

possible to provide also the tail over J2∪J3, just by using the underlying assumptions

about the development.

Following Mart́ınez-Miranda et al. (2012), we calculate the forecasts using the

expression for the mean of the aggregated payments derived in (4) and replacing

the unknown DCL parameters by their estimates. Note that the RBNS component

arises from claims reported in the past and therefore, as Mart́ınez-Miranda et al.

(2012) discuss, it is possible to calculate the forecasts using the true observed value
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Figure 1: Index sets for aggregate claims data, assuming a maximum delay m− 1.

Nik instead of their chain ladder estimates, α̂i, β̂k, which are involved in the formu-

lae (4). However, for the IBNR reserves, this is not possible since those values arise

from claims reported in the future and then it is necessary to use all DCL parameters.

From these comments we define the RBNS component as follows, where we

consider two possibilities depending on whether the estimates of Nik are used or

not.

X̂
rbns(1)
ij =

j∑

l=i−m+j

Ni,j−lπ̂lµ̂γ̂i, (i, j) ∈ J1 ∪ J2, (5)

and

X̂
rbns(2)
ij =

j∑

l=i−m+j

N̂i,j−lπ̂lµ̂γ̂i, (i, j) ∈ J1 ∪ J2, (6)

where N̂ik = α̂iβ̂k. In most cases, to shorten the notation, we will simply write

X̂rbns
ij for the RBNS estimates. However, whenever it is necessary, we will state

which version is taken. The IBNR component always needs all DCL parameters

and it is calculated always as follows:

X̂ ibnr
ij =

i−m+j−1∑

l=0

N̂i,j−lπ̂lµ̂γ̂i, (i, j) ∈ J1 ∪ J2 ∪ J3. (7)
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By adding up the RBNS and IBNR components we have the outstanding loss

liabilities pointwise forecasts, which spread out on the forecasting sets J1 ∪J2 ∪J3

as follows.

X̂ij =

{
X̂rbns

ij + X̂ ibnr
ij if (i, j) ∈ J1 ∪ J2,

X̂ ibnr
ij if (i, j) ∈ J3.

(8)

The outstanding liabilities per accident year are the row sums of forecasts X̂ij

above. For a fixed i, we write Ja(i) = {j : (i, j) ∈ Ja}, a = 1, 2, 3. Then the

outstanding liabilities per accident year i = 1, . . . ,m are

R̂i =
∑

j∈J1(i)∪J2(i)

X̂rbns
ij +

∑

j∈J1(i)∪J2(i)∪J3(i)

X̂ ibnr
ij . (9)

4 Estimation of the parameters in the double chain

ladder model

In the previous section we have described how to estimate the outstanding claims

and thereby construct RBNS and IBNR reserves once the DCL parameters have been

estimated. Now we describe how to get suitable estimators for the DCL parameters.

Specifically we are going to explore four different estimations methods, all of them

based on the chain-ladder algorithm.

4.1 The DCL method

The DCL method is the simplest method to derive the parameters in the DCL

model. It is the original method proposed by Mart́ınez-Miranda et al. (2012) which

makes the following additional assumption on the payments triangle XI :

B1 The payments Xij , with i = 1, . . . ,m, and j = 0, . . . ,m − 1, are random

variables with mean having a multiplicative parametrization:

E[Xij ] = α̃iβ̃j,

m−1∑

j=0

β̃j = 1. (10)

Then, merging the previously derived expression (4) and the above (10), we have

that

αiγiµ

j∑

l=0

βj−lπl = α̃iβ̃j,

9



and then the DCL parameters can be identified from the chain ladder parameters,

α̃i, β̃j , using the following equations:

αiµγi = α̃i, (11)

j∑

l=0

βj−lπl = β̃j. (12)

Even though many other micro-structure formulations might exist, the above

model can be considered as a detailed specification of the classical chain ladder.

Mart́ınez-Miranda et al. (2012) discuss that if the RBNS component is estimated

using (6), DCL completely replicates the results of CLM applied to the aggregated

payments triangle. Thus, from the above two equations we can see how the un-

derwriting and development chain ladder components are decomposed into separate

components which capture the separate sources of delay inherent in the way claims

emerge and the severity specification.

Now, the main idea to derive the DCL parameters is to estimate the chain ladder

parameters (α̂, β̂) and (̂̃α, ̂̃β) ( cf. A1, B1) by applying the classical chain ladder

algorithm on the counts triangle NI and the payments triangle XI , respectively.

Afterwards, the remaining DCL parameters, this is (γ̂, µ̂, π̂), can be calculated by

simple algebra using (11) and (12).

For illustration of the chain ladder algorithm, we assume an incremental triangle

(Cij) (in our case this would be NI or XI), and that we want to estimate its chain

ladder parameters (α̂, β̂). To apply the chain ladder algorithm, one has to transform

the triangle (Cij) into a cumulative triangle (Dij):

Dij =

j∑

k=1

Cik.

Then, the chain ladder algorithm can be applied on (Dij). It will produce estimates

of development factors, λj, j = 1, 2, . . . ,m− 1 which can be described by

λ̂j =

∑n−j+1
i=1 Dij∑n−j+1

i=1 Di,j−1

.

These development factors can be converted into estimates of (α, β) using the fol-

lowing identities which were derived in Verrall (1991).

β̂0 =
1

∏m−1
l=1 λ̂l

,

β̂j =
λ̂j − 1
∏m−1

l=j λ̂l

,

α̂i =
m−i∑

j=0

Cij

m−1∏

j=m−i+1

λ̂j.
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Alternatively, analytical expressions for the estimators can also be derived directly

(rather than using the chain ladder algorithm), and further details can be found in

Kuang et al. (2009).

Once the chain ladder parameters (α̂, β̂) and (̂̃α, ̂̃β) are derived, the settlement delay

parameter, π, can be estimated just by solving the following linear system.




̂̃
β0
...
...

̂̃
βm−1




=




β̂0 0 · · · 0

β̂1 β̂0
. . . 0

...
. . . . . . 0

β̂m−1 · · · β̂1 β̂0







π0

...

...

πm−1




. (13)

Let π̂ denote the solution of (13).

Now we consider the estimation of the parameters involved in the means of

individual payments. The model is technically over-parametrised since there are too

many inflation parameters in (11). The simplest way to ensure identifiability is to

set γ1 = 1, and then the estimate of µ, µ̂, can be obtained from

µ̂ =
̂̃α1

α̂1

. (14)

Using µ̂, the remaining estimates for γi, i = 2, . . . ,m, are directly derived from

(11).

The DCL estimation procedure described above has been implemented in the R-

package DCL created by Mart́ınez-Miranda et al. (2013c). Using this software, we

have derived Table 1, which shows the values of α̂, β̂, π̂ and γ̂, calculated from a

real dataset included also in the DCL package.

4.2 Bornhuetter-Ferguson and double chain ladder: the BDCL

method

The chain ladder and Bornhuetter-Ferguson (BF) methods are among the easiest

claim reserving methods and, due to their simplicity, they are two of the most com-

monly used techniques in practice. Some recent papers on the BF method include

Verrall (2004), Mack (2008), Schmidt and Zocher (2008), Alai et al. (2009) and Alai

et al. (2010). The BF method introduced by Bornhuetter and Ferguson (1972) aims

to address one of the well known weaknesses of CLM, which is the effect outliers

can have on the estimates of outstanding claims. Especially the most recent under-

writing years are the years with nearly no data and thus very sensitive to outliers.

However, these recent underwriting years build the very major part of the outstand-

ing claims. Hence, the CLM estimates of the outstanding liabilities might differ

11



i k,l α̂(i) β̂(k) π̂(l) γ̂(i)

1 0 1078 0.7599 0.0592 1.0000

2 1 1890 0.2097 0.3098 1.1173

3 2 2066 0.0189 0.2032 1.4947

4 3 2353 0.0064 0.1996 1.7461

5 4 3015 0.0016 0.1388 2.1075

6 5 3727 0.0010 0.0440 2.0936

7 6 5057 0.0009 0.0227 2.2495

8 7 6483 0.0007 0.0095 2.1250

9 8 7727 0.0003 0.0018 1.9028

10 9 7134 0.0001 0.0029 2.0197

11 10 7319 0.0001 0.0002 2.0704

12 11 6152 0.0000 0.0026 2.2666

13 12 5242 0.0001 0.0019 2.3157

14 13 6150 0.0000 0.0032 2.4747

15 14 7028 0.0001 -0.0002 2.3829

16 15 6725 0.0000 0.0013 2.8391

17 16 5260 0.0000 -0.0004 3.1815

18 17 5869 0.0000 0.0000 4.1747

19 18 5953 0.0000 0.0000 6.7501

µ̂ = 2579

Table 1: DCL parameter estimates derived by the DCL method

fatally from the true (unknown) values.

Acknowledging this problem, the BF method incorporates prior knowledge from ex-

perts and is therefore more robust than the CLM method, which relies completely

on the data contained in the run-off triangle XI .

In this section, we briefly summarize the Bornhuetter-Ferguson double chain lad-

der (BDCL) method introduced in Mart́ınez-Miranda et al. (2013b), which mimics

BF in the framework of DCL. The BDCL method starts with identical steps as DCL

but instead of using the estimate of the inflation parameters, γ and µ, from the tri-

angle of paid claims, XI , it deploys expert knowledge in the form of the incurred

triangle, II , to adjust the estimation of the sensitive inflation parameter, γ. This is

done as follows. First we show that

E[Iik] = α̃iβk. (15)
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From the definition of Iik in equation (1) we have that

E[Iik] =
m−1∑

l=0

E[Xikl] =
m−1∑

l=0

E




N
paid

ikl∑

h=0

X
(h)
ikl




Now we use Wald’s identity and assumptions A1–A3 to deduce that

E[Iik] =
m−1∑

l=0

E
[
N

paid
ikl

]
E
[
X

(h)
ikl

]
=

m−1∑

l=0

αiβkπ̃lµ̃klγi = αiµγiβk = α̃iβk,

where we have substituted µ =
∑m−1

l=0 µl,kπ̃l, as it was defined in (3). Hence, the

incurred triangle, II , has multiplicative mean and its underwriting year factor, α̃,

is identical to the one of the payments triangle, XI (cf. (10)). However, its estima-

tion is less sensitive to outliers since it incorporates all incurred claims via expert

knowledge. We conclude that we can replace the payments triangle by the incurred

payments triangle when we calculate estimates of the inflation parameters, γ, µ, in

(11). Note that the severity mean, µ, is going to remain the same since the first

rows of XI and II are identical.

Summarized, the BDCL-method can be carried out as follows.

• Step 1: Parameter estimation.

Estimate the DCL parameters (α, β, π, γ, µ) using the DCL method of Section

4.1 with the data in the triangles NI and XI and denote the parameter esti-

mates by (α̂, β̂, π̂, γ̂, µ̂).

Repeat this estimation using the DCL method but replacing the triangle of

paid claims, XI , by the triangle of incurred data, II . Keep only the resulting

estimated inflation parameters, denoted by γ̂BDCL.

• Step 2: BF adjustment.

Replace the inflation parameters γ̂ from the paid data by the estimate from

the incurred triangle, γ̂BDCL.

From these two steps, the final BDCL estimates of the DCL parameters are α̂, β̂,

π̂, γ̂BDCL and µ̂.

Again, using the R-package DCL, we can derive the Figure 2 that shows the

severity inflation estimates derived by DCL and BDCL. BDCL, with the incorpo-

rated expert knowledge, seems to stabilize the severity inflation in the most recent

underwriting years while keeping the values in the other years. The result is a more

realistic estimate correcting the DCL parameter γ̂i exactly in its weakest point, that

is in those years where the payments triangle, XI , has nearly no data. Again, those

recent underwriting years contain the very major part of the outstanding liabilities.

13
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Figure 2: Plot of severity inflation estimates. DCL: γ̂i (red), BDCL: γ̂
BDCL
i (green).

4.3 The PDCL method

In the last section, we have described a method which incorporates expert knowl-

edge in form of the incurred triangle, II . The values in II arise from case estimates

for RBNS claims, developed in the case department of the insurance company, and

claims which are already paid. Thus, if one subtracts these already paid claims

(which are given via the payments triangle XI) from the incurred triangle, one can

reconstruct the RBNS case estimates. However, as soon as this is done, it is ob-

vious that these RBNS case estimates do not match with the RBNS estimates (5)

and (6), using any DCL method (including BDCL). We conclude that the reserve

department, using double chain ladder (and also chain ladder), calculates different

RBNS estimates than those given by the case department. If this difference is huge,

consultation between the case department and reserve department is necessary. The

case department possesses expert knowledge on every single claim that is reported

and they can use that knowledge of the claims in conjunction with their expertise to

improve estimation. Below we introduce an alternative reserving method preserving

the RBNS estimates given by the case department. We call this method RBNS-

preserving double chain ladder (PDCL).

The first step is to construct a preliminary square (Sij), i = 1, . . . ,m, j =

0, . . . ,m − 1, which will yield new estimates for the DCL parameters. The upper

triangle of the square (i.e. (i, j) ∈ I) should have the same entries as the payments

triangle (Xij). The lower triangle (i.e. (i, j) ∈ J1) should consist of preliminary

estimates of the outstanding loss liabilities. The outstanding loss liabilites comprise

14



an RBNS and an IBNR part (cf. (8)). However, we only want to estimate the

IBNR component of these outstanding loss liabilities while taking the RBNS case

estimates as the RBNS component. More precisely, we do the following. We take the

BDCL parameter estimates (α̂, β̂, π̂, γ̂BDCL, µ̂) and use these parameters to estimate

the RBNS component (X̂rbns
ij ) and IBNR component (X̂ ibnr

ij ) using (6) and (7).

As mentioned above, we want the RBNS estimate to be equal to the RBNS case

estimates, which can only be reconstructed per accident year. For i = 1, . . . ,m,

they can be described as

Xrbns.case.estimate
i =

m−i∑

j=0

Iij −
m−i∑

j=0

Xij.

Hence, we define the RBNS preserving components

X̂
rbns.pres
ij =

Xrbns.case.estimate
i∑

j∈J1(i)∪J2(i)
X̂rbns

ij

X̂rbns
ij ,

which verifies that

∑

j∈J1(i)∪J2(i)

X̂
rbns.pres
ij = Xrbns.case.estimate

i .

Thus we define the preliminary square (Sij) as

Sij =




Xij, if (i, j) ∈ I,

X̂
rbns.pres
ij + X̂ ibnr

ij , if (i, j) ∈ J1.

With this definition the payments square (Sij) has multiplicative mean that is

approximately E[Sij ] ≈ α̃iβ̃j. In the upper triangle, I, the approximation is exact

since E[Sij] = E[Xij ]. In the lower triangle, J1, we first note that

E[X̂rbns.pres
ij ] =E

[
Xrbns.case.estimate

i∑
j∈J1(i)∪J2(i)

X̂rbns
ij

X̂rbns
ij

]
≈ E

[
X̂rbns

ij

]
,

where we have used that X̂rbns
ij is a consistent estimator of the RBNS reserve. Then

we have that, in J1,

E[Sij] ≈E[X̂rbns
ij + X̂ ibnr

ij ] = E[

j∑

l=0

N̂i,j−lπ̂lµ̂γ̂i] = E[ ˜̂αi
˜̂
βj] ≈ α̃iβ̃j,

using expressions (5) and (7), or similarly with (6) and (7), and the consistency of

the chain ladder estimators. Therefore, we can use (Sij) to completely replace XI

to estimate the DCL parameters (cf. (10)).
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Note that in the BDCL method we were only able to balance the estimator of

the inflation parameter α̃i (cf. (15)). Again, while in the BDCL method, we use

the expert knowledge to only adjust the inflation parameters. Here, we can take full

advantage of the triangle II and also equalize the delay parameters.

Since (Sij) has a multiplicative structure, we use the CLM idea to estimate α̃i and

β̃j . We define

̂̃αPDCL

i =
m−1∑

j=0

Sij,
̂̃
β
PDCL

j =

∑m

i=1 Sij∑
(i,j)∈I∪J1

Sij

.

Exactly as in the previous sections, we can now apply (11) and (12) to derive the

PDCL parameters (α̂i, β̂j , π̂
PDCL, γ̂PDCL∗

, µ̂PDCL). Since this approach is still not

RBNS preserving, we balance γ̂PDCL∗

by defining a new scaled inflation factor esti-

mate γ̂PDCL such that

γ̂PDCL
i =

Xrbns.case.estimate
i∑

j∈J1(i)∪J2(i)
X̂rbns

ij

,

where X̂rbns
ij is calculated with the parameters (α̂i, β̂j , π̂

PDCL, γ̂PDCL∗

, µ̂PDCL) using

(6).

4.4 The IDCL method

One could look at the methods BDCL and PDCL as belonging to the tradition of re-

serving literature using paid-incurred information, see Happ and Wüthrich (2013),

Merz and Wüthrich (2013) and Happ et al. (2012). In the BDCL definition, we

incorporate an additional triangle of incurred claims in order to produce a more sta-

ble estimate of the underwriting inflation parameter γi. The derived BDCL method

becomes a variant of the Bornhuetter-Ferguson technique using prior knowledge

contained in the incurred triangle. In the PDCL method, we use the additional in-

formation to get better IBNR estimates while preserving the RBNS estimates given

by the claims department. But now, one natural question is whether one of those

derived reserve estimates is the classical incurred chain ladder. However, this is not

the case and neither the BDCL nor the IDCL method is replicating the results ob-

tained by applying the classical CLM to the incurred triangle. Among practitioners,

the incurred reserve seems to be more realistic for many datasets compared to the

classical paid chain ladder reserve. From this motivation Agbeko et al. (2015) have

introduced a new method to estimate the DCL parameters which completely repli-

cates the chain ladder reserve from incurred data. The method is called incurred

double chain ladder (IDCL) and it is easily defined just by rescaling the underwrit-

ing inflation parameter estimated from the DCL method. Specifically, a new scaled

16



inflation factor estimate γ̂IDCL is defined by

γ̂IDCL
i =

R̂∗
i

R̂i

γ̂i, (16)

where R∗
i are the outstanding loss liabilities per underwriting year as predicted by

applying the classical CLM on the incurred data, γ̂i are the inflation parameters

estimated using the DCL method and Ri are the outstanding loss liabilities per

accident year calculated using the parameters estimated by the DCL method (see

Section 4.1).

The final IDCL estimates of the DCL parameters are then (α̂, β̂, π̂, γ̂IDCL, µ̂). With

the new inflation parameter estimate, γ̂IDCL, the outstanding liabilities derived by

the IDCL estimates of the parameters completely replicate the CLM forecasts on

the incurred triangle.

−
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Figure 3: Plot of severity inflation estimates. DCL: γ̂i (red), BDCL: γ̂
BDCL
i (green),

PDCL: γ̂PDCL
i (yellow), IDCL: γ̂IDCL

i (blue).

Figure 3 shows a plot of the four severity inflation parameters derived by DCL,

BDCL, PDCL and IDCL. The impression is that the rather rough adjustment of the

PDCL and IDCL method leads to fluctuations in the estimate. These fluctuations

are stronger in the less important and older underwriting years. It coincides with

the following intuition. CLM on incurred triangle relies on the RBNS case estimates

which are too small in older underwriting years. Thus, they lead to volatile esti-

mates of the severity inflation in those years. However, the important most recent

underwriting year estimates match the one from BDCL. In the most recent years

one gets the impression that IDCL might underestimate the severity inflation. Table

2 shows the reserve estimates per underwriting year derived with the four different

methods. In Figure 3, it is visualized that the underwriting inflation parameters
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of PDCL and IDCL might be too volatile in the first five years. However, these

first five years have nearly no impact and account for far less than 0.1% of the total

loss liabilities estimates. The very most recent years on the other hand account for

the very major part of the outstanding liabilities. The unrealistic severity inflation

of the DCL method in the most recent underwriting year nearly doubles the ulti-

mate estimates. More realistic results are derived when incorporating the expert

knowledge in form of the incurred triangle, II , using BDCL, PDCL or IDCL.

i CLM DCL BDCL IDCL PDCL

1 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0005 0.0003 0.0005 0.0003

3 0.0000 0.0001 -0.0003 0.0001 0.0037

4 0.0000 0.0007 -0.0014 0.0007 -0.0096

5 0.0173 0.0039 0.0151 0.0045 0.0365

6 0.0346 0.0309 0.0313 0.0122 0.0067

7 0.1381 0.1407 0.1408 0.0090 0.0039

8 0.2449 0.2485 0.2483 0.0927 0.0970

9 0.3522 0.3582 0.3563 0.0536 0.0642

10 0.3943 0.3818 0.3800 0.1507 0.2024

11 0.5524 0.5246 0.5206 0.1664 0.2597

12 0.6839 0.6309 0.6169 -0.1458 0.0299

13 1.0504 0.9764 0.9733 0.8648 1.2578

14 2.5361 2.5483 2.5164 2.0388 2.8155

15 5.7370 5.4483 5.2846 4.2095 6.2722

16 14.0889 15.4373 12.9824 6.8542 9.4736

17 21.0057 21.7407 17.0455 12.0924 13.5066

18 44.6877 44.4580 29.2840 23.0002 26.1823

19 98.9723 98.9722 41.8444 39.1522 42.6500

SUM 190.4957 191.9021 112.2385 88.5565 102.8528

Table 2: Outstanding loss liabilities per underwriting year in million
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5 Model validation

This section describes the validation process for the four methods DCL, BDCL,

IDCL and PDCL discussed in Section 4. We are able to compare all these reserving

methods since double chain ladder provides micro structure information which pro-

duces reserve forecasts by expanding the payments triangle, Xij , no matter which

data is used. The validation process is based on back-testing data previously omit-

ted while estimating the parameters for each method. See Agbeko et al. (2015) for

more details about this validation technique.

Note that classical incurred chain ladder and chain ladder are ad hoc not compa-

rable since reserves are calculated on different triangles with different delay mean-

ings. Double chain ladder solves this problem.

Below, we have omitted the most recent calendar year and the four most recent

calendar years, respectively (in all three available triangles). Therefore, since our

dataset consists of m = 19 years, there are 18 and 60 cells, respectively, to be

compared with the true values.
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Figure 4: Box plot of the cell errors

Figure 4 shows two box plots of the respectively 18 and 60 errors calculated by

taking the difference between estimated and true value. While we have also tried

to omit different amounts of calendar years, the results were all similar and quiet

clear. The three methods incorporating expert knowledge, that is BDCL, IDCL and

PDCL, outperform the CLM and DCL method which only work with real data.

In the top panels of Figure 5, we have plotted the sum of the absolute cell errors
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Figure 5: Bar plot for the sum of absolute cell errors and the relative errors.

(ℓ1 error). That is,

Sum of absolute cell errors =
∑

(i,j)∈Bc

|X̂ij −Xij|,

Bc = {(i, j)| i = 2, . . . ,m− c; j = 0, . . . ,m− c− 1; i+ j = m− c+ 1, . . . ,m},

where c is the number of recent calendar years omitted for back testing (here: 1 and

4).

The relative errors, that is

Sum of absolute cell errors

Sum of absolute true values
=

∑
(i,j)∈Bc

|X̂ij −Xij|∑
(i,j)∈Bc

|Xij|
,

are shown in the bottom panels of Figure 5. The conclusion is the same as in the

box plots. The estimates of BDCL, IDCL, PDCL are more accurate, while no great

distinction can be made in between those winners.
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6 Continuous Chain Ladder

This section is a motivating section. The message of this section is: when dou-

ble chain ladder is extended, then it is also a contribution to granular reserving.

This section gives a very short introduction of recent research interpreting the chain

ladder model as a structured histogram. We do not provide theory here. We just

give a taste of this new interpretation of chain ladder and its potential. Contin-

uous chain ladder was first published in Mart́ınez-Miranda et al. (2013a), where

it is verified that the classical reserving problem really is a multivariate density

estimation problem and that the classical chain ladder technique is a structured

histogram version of this density estimator. While histograms are not too bad, it

is well known from smoothing theory that one can do better by introducing more

smoothing. Also, many actuaries use the chain ladder method without realizing

that when they choose weekly, monthly, quarterly or yearly data, they are really

picking a smoothing parameter which could be optimized via validation methodol-

ogy. Natural extension of classical chain ladder methodology would be to smooth it

via kernel smoother or some other smoothers. Hereby, one takes advantage on the

vast literature of mathematical statistics, when deciding the amount of smoothing

(week, month, quarter, year or something completely different) and perhaps allow

one-self - in full consistency with the literature - to vary the smoothing according

the difference of information at different underwriting years. Mart́ınez-Miranda

et al. (2013a) introduces these ideas and call the approach continuous chain ladder.

In its simplest version, continuous chain ladder is based on simple kernel smoothers

providing intuitive and natural improvement to histograms. Mart́ınez-Miranda et al.

(2013a, 2015) consider the multiplicative density model f(x, y) = f1(x)f2(y), where

f1 is the density in underwriting direction (corresponding to α) and f2 the density

in development direction (corresponding to β). They estimate these densities via

a least-squares or maximum likelihood criterion. Notice that one hereby estimates

one-dimensional functions, not parameters. The aim is to estimate the density com-

ponents f1(x) and f2(y) from observations of the two-dimensional density provided

in the triangle I (see definition in Section 2). Classical CLM considers histogram

smoothers (with bins corresponding to the accident and delay periods) to estimate

both f1 and f2. The natural context for continuous chain ladder is of course micro

claims data or granular data, however it can still be applied to aggregated data - the

data traditionally used in reserving. Now, we illustrate how the continuous chain

ladder method can be applied to the paid data described in the previous sections

and compared with the classical chain ladder histogram. The input data for both

approaches are quarterly-aggregated triangles for 76 quarters (this is 19 years). Fig-

ure 6 shows a histogram of the observed payments considering bins of 4 quarters (a
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year). Such a histogram is the first step in classical CLM which leads to the pre-

dicted cash-flow plotted in Figure 7. Continuous chain ladder replaces this yearly

histogram with a more efficient local linear kernel density estimator shown in the

left panel of Figure 8. A functional projection of this two-dimensional density down

on a multiplicative space derives the smooth cash-flow shown in the right panel of

Figure 8. While the two approaches are quite similar, however, the chain ladder

histogram approach results in piece-wise constant functions as the shown in Figure

9, while continuous chain ladder indeed results in the continuous functions shown

also in Figure 9.
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Figure 6: Histogram of the paid data using yearly bins: the starting point for

classical CLM.

7 Conclusions

This paper has developed a new method called PDCL, which combines classical chain

ladder methodology with expert knowledge via the double chain ladder methodol-

ogy. While the preceding IDCL method is able to replicate the incurred chain

ladder reserves, which are most commonly used in practice, the new PDCL method

replicates the exact expert knowledge of the claims handling department via the

estimated RBNS reserves. Among a number of advantages, both PDCL and IDCL

methods inherit the good mathematical statistical properties of the double chain

ladder methodology including a full statistical model and a stochastic cash flow

interpretation. This in turn allows for a validation procedure cutting of recent pay-

ments and forecasting them. Such a validation procedure between paid chain ladder
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Chain Ladder cash−flow
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Figure 7: Classical chain ladder forecasts.

(or DCL) and incurred chain ladder (or IDCL) have hitherto not been available. We

believe that our new results can upgrade the scientific quality of model selection in

the perhaps most important single modelling process of a non-life insurance com-

pany. Now a scientifically based validation exist between DCL, BDCL, IDCL and

PDCL, where the three latter are various version of combining expert knowledge

with observed payment data. Finally, we have pointed out the close link between

our methodology and granular reserving indicating that the insights of this paper

could be transferred to granular reserving. Another recent trend is to use so called

granular data or micro data for reserving, see Antonio and Plat (2014) for one of

the most interesting recent contributions in that area.
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