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Abstract

One of the most studied questions in economics and finance is whether empirical models can be used

to predict equity returns or premiums. In this paper, we take the actuarial long-term view and base

our prediction on yearly data from 1872 through 2014. While many authors favor the historical mean

or other parametric methods, this article focuses on nonlinear relationships between a set of covariates.

A bootstrap test on the true functional form of the conditional expected returns confirms that yearly

returns on the S&P500 are predictable. The inclusion of prior knowledge in our nonlinear model shows

notable improvement in the prediction of excess stock returns compared to a fully nonparametric model.

Statistically, a bias and dimension reduction method is proposed to import more structure in the estima-

tion process as an adequate way to circumvent the curse of dimensionality.
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1. Introduction and Overview

One of the most studied questions in economics and finance is whether equity returns or premiums are

predictable. Until the mid-1980’s, the view of financial economists was that returns are not predictable

– at least not in an economically meaningful way (see, for example, Fama (1970)) – and that stock

market volatility does not change much over time. Tests of predictability were motivated by efficient

capital markets and it was commonly assumed that predictability would contradict the efficient markets

paradigm. In this paper, we take the long-term actuarial view and base our predictions on annual data

of the S&P500 from 1872 through 2014. Clearly there are not many historical years in our records and

data sparsity is an important issue in our approach. It could be argued that it would be better to use

monthly, weekly or even daily data to the extend that more data is available. However, in this context,

it cannot be overlooked that the logistics of prediction are very different for yearly, monthly, weekly and

daily data. Clearly volatility is key. On the one hand, bias becomes less of an issue when predicting

daily data; but on the other hand, bias might be of great importance when predicting yearly data. In

the timeframe of a year, it might play a role similar to that of volatility. In other words, the classical

trade-off of variance and bias depends on the horizon. A good model for monthly data might be a bad

model for yearly data and vice versa. We take the long-term view using yearly data and predict at a

one-year horizon. Our reason for doing so is that we are really interested in actuarial models of long-term

savings and potential econometric improvements to such models (see, for example, Guillen et al. (2013a);

Guillen et al. (2013b); Owadally et al. (2013); Bikker et al. (2012); Guillen et al. (2014); or Gerrard et al.

(2014)). It is, therefore, perhaps not a surprise that our favored methodology for validating our sparse

long-term yearly data originates from the actuarial literature (see Nielsen and Sperlich (2003)).

Empirical research in the late twentieth century suggests that excess returns (over short-term interest

rates) are predictable; especially over long horizons, as pointed out by Cochrane (1999). For exam-

ple, Fama and French (1988b) only take into account past returns in a univariate mean-reverting sense
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and, in doing so, find only rather weak statistical significance, which seems stronger when other predic-

tive variables are included. In the vast array of pertinent literature, short-term interest rates (Camp-

bell (1991)); yield spreads (Fama and French (1989)); stock market volatility (Goyal and Santa-Clara

(2003)); book-to-market ratios (Kothari and Shanken (1997)); price-earnings ratios (Lamont (1998));

and consumption-wealth ratios (Lettau and Ludvigson (2001)) are proposed. Numerous other articles

examine the predictive power of the dividend yield and, particularly, the dividend ratio on excess stock

returns over different horizons. To date, Fama and French (1988a, 1989); Campbell and Shiller (1988a,b);

and Nelson and Kim (1993) have published the most influential articles on the subject matter. With

regard to the economic interpretation of the driving force behind predictability, we refer to the discussion

by Rey (2004). In more literature, Neely et al. (2014) use technical indicators and compare predictive

ability with that of macroeconomic variables.

Given the recent progress in asset pricing theory and the continually growing number of publications

reporting on empirical evidence for return predictability, it seems that the paradigm of constant expected

returns has been abandoned. In that same spirit, conditional and dynamic asset pricing models (e. g.

Campbell and Cochrane (1999)) as well as models that analyse the implications of return predictability

on portfolio decisions, when expected returns are time-varying (e. g. Campbell and Viceira (1999)), are

proposed. Nevertheless, certain aspects of the empirical studies cast doubt on the predictive ability

of price-based variables and should be examined with caution. While, for example, Fama and French

(1988a) or Campbell (1991) find that the aggregate dividend yield strongly predicts excess returns with

even stronger predictability on longer horizons, in contrast, Boudoukh et al. (2008) criticize those same

findings as an illusion based on the fact that the R2 of the model is roughly proportional to the considered

horizon. On the other hand, Rapach et al. (2010) recommend a combination of individual forecasts.

Goyal and Welch (2008) favor the historical average in forecasting excess stock returns, which yields

better results than predictive regressions with different variables. Then again, Campbell and Thompson
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(2008) respond that many of them outperform the historical mean either by imposing weak restrictions on

the signs of coefficients and return forecasts or by imposing restrictions of steady-state valuation models.

Elliott et al. (2013) suggest a new method for combining linear forecasts based on subset regressions and

showing improved performance over other classical linear prediction methods. Bollerslev et al. (2009)

demonstrate that the variance risk premium is able to explain a nontrivial fraction of the time-series

variation in post-1990 aggregate stock market returns, and Bandi and Perron (2008) illustrate the long-

run dependence between expected excess market returns and past market variance.

The most popular model in the economic and financial literature is the discounted-cash-flow or present

value model, which relates the price of a stock to its expected future cash flows – namely, its dividends,

which is discounted to the present value using a constant or time-varying discount rate (e. g. Campbell

and Shiller (1987, 1988a,b)). The model assumes the efficient market paradigm of constant expected

returns and is based on the well-known discrete-time perfect certainty model (Gordon growth model) and

its dynamic generalization. Hence, stock prices are high when dividends are discounted at a low rate or

when dividends are expected to grow rapidly. The limitations of this linear model, such as the apparently

exponential growth of stock prices or dividends over time, make it less suitable than a nonlinear model

– which, as mentioned by Chen and Hong (2009), can better capture the properties of returns over time.

For example, Froot and Obstfeld (1991) introduce a dividend model featuring intrinsic bubbles that are

nonlinearly driven by exogenous fundamental determinants of asset prices. The linear model can also be

extended by using a log-linear approximation of the present-value relation (see, for example, Campbell

(1991)). Thus, the asset price behavior can be modeled without imposing restrictions on expected returns.

In light of results of studies indicating that expected asset returns and dividend ratios are time-varying

and highly persistent, it is essential that the relationships between equity returns and dividend ratios,

interest rates, excess returns, or cash flows be modeled in a nonlinear fashion.

In this paper, we consider the annual American data provided by Robert Shiller. Shiller’s dataset
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includes, among other variables, long-term stock and bond price changes and interest rate data for the

years ranging from 1872 through 2014. It is an updated and revised version of Shiller’s (1989) own

Chapter 26 which provides a detailed description of the data. It should be noted that the application to

this data set is not meant to serve as a comprehensive study but rather as an illustration of the auspicious

and potential use of the strategy developed in our article.

We use bootstrap techniques to test the null hypothesis of the non-predictability of returns when using

information such as earnings. We then consider predictive models for the returns. We estimate both

linear and nonlinear models and use a cross-validated measure of fit to rank the prediction methods. The

nonlinear model is estimated by a local-linear kernel regression smoother. This nonlinear smoother has

significantly better predictive properties than classical linear models often used for prediction. The long-

lasting popularity of predictive regression models justifies the usefulness of the linear method for stock

return prediction. However, a model (statistical or from financial theory) can only be an approximation

to the real world. As such, a linear model can only be seen as a first step in the representation of the

unknown relationship in mathematical terms. In a semi-parametric fashion, we then include the available

prior information, where the former nonparametric estimator is multiplicatively guided by the prior. This

prior could be, for example, a standard regression model or likewise an appropriate economic model. This

approach helps to reduce bias in the nonparametric estimation procedure and thus to improve again the

predictive power.

The cross-validated measure of performance used here is a generalized version of the validated R2 of

Nielsen and Sperlich (2003). This measure of prediction allows for direct comparisons between proposed

models. Furthermore, it should also be noted that we use this measure of performance not only to find

the optimal bandwidth in non- and semi-parametric regression but also to select the best model. While

we find our cross-validated measure of prediction to work well for our specific application, cross-validation

and other data driven measures of model selection may lead to models that are too complex (see, for
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example, Shao (1993) or Racine (2000)).

We point out that our predictor-based regression models outperform the historical average excess

stock return. Moreover, the best prediction model for one-year excess stock returns not only outperforms

the historical mean but also obtains an improved validated R2 of 20.9 – which corresponds to a relative

increase of 42% compared to the best nonparametric model without prior and represents a relative increase

of 62% compared to the linear regression. We also carry out purely out-of-sample predictions to verify

that our conclusions based on validated R2 do indeed hold true when predicting future yearly returns.

The remainder of the article is structured as follows. Section 2 describes the prediction framework

and the applied measure of validation. Here, the bootstrap test is introduced; and the first results of

linear and nonlinear models are also provided. Section 3 explores nonparametric prediction as guided

in a new way by prior knowledge. Approaches such as the dimension reduction approach are specified,

and an out-of-sample validation is carried out. Section 4 serves as a conclusion. Finally, the Appendix

contains results for all models and all variables not discussed in the main text.

2. Preliminaries and First Steps

We consider excess stock returns defined as

St = log{(Pt +Dt)/Pt−1} − rt−1,

where Dt denotes the (nominal) dividends paid during year t, Pt the (nominal) stock price at the end

of year t, and rt the short-term interest rate. Using the discount rate Rt, the short-term interest rate is

expressed as

rt = log(1 +Rt/100).

In our article, we concentrate on forecasts covering the one-year horizon. Nevertheless, longer periods

can also easily be included with Yt =
∑T−1
i=0 St+i (the excess stock return at time t over the next T years).
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In the following, we study the prediction problem

Yt = g(Xt−1) + ξt, (1)

whereby we want to forecast excess stock returns (Yt), using lagged predictive variables (Xt−1) – such as

the dividend-price ratio (dt−1); earnings by price (et−1); the long-term interest rate (Lt−1); the risk-free

rate (rt−1); inflation (inft−1); the bond (bt−1), or also the stock return (Yt−1). The functional form

of g is set for the parametric relationship, while remaining fully flexible for non- and semi-parametric

counterparts. The error terms (ξt) are mean zero variables given the past. We address the regression

problem of estimating the conditional mean function g(x) = E(Y |X = x) using n i.i.d. pairs (Xi, Yi)

observed from a smooth joint density and its multivariate generalization. We do not assume any explicit

distribution for asset returns. An explicit understanding of this distribution (see, for example, Eling

(2014)) could perhaps enhance the efficiency of our estimation.

2.1. Out-of-Sample Validation and the more Complex Validated R2 Measure

Since we use non- as well as semi-parametric techniques, we need an adequate measure of predictive

power. Classical in-sample measures like R2 or adjusted R2 cannot be used because various problems

occur. For example, the classical R2 favors the most complex model and is often inconsistent (see Valkanov

(2003)). Furthermore, the usual penalization for complexity via a degree-of-freedom adjustment becomes

meaningless in nonparametrics because it remains unclear what degrees-of-freedom are in this setting.

Moreover, in prediction, we are not interested in how well a model explains the variation inside the

considered sample but, in contrast, would like to know how well it works out-of-sample. To that end,

we follow the classical approach of estimating the prediction error directly. However, prediction error

per se is difficult to interpret intuitively. Hence, in the same vein of R2, we use a generalized version of

Nielsen and Sperlich’s (2003) validated R2 based on leave-k-out cross-validation, which is suitable in a
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time series context. The validated R2 is defined as

R2
V = 1−

∑
t{Yt − ĝ−t}2∑
t{Yt − Ȳ−t}2

, (2)

where ĝ−t and Ȳ−t are leave-k-out estimators of the (parametric or nonparametric) function g and the

unconditional mean of Yt. Both are computed removing k observations around the t-th point in time. Here

we use k = 1, the classical leave-one-out estimator. Nevertheless, it is well-known that cross-validation

often demands the omission of more than one data point and possibly requires some extra correction

when the omitted fraction of data is non-negligible (see, for example, Burman et al. (1994)).

The validated R2 is independent of the amount of parameters (in the parametric case of g) and

measures the predictive power of a given model and estimation principal as compared to the cross-

validated historical mean. For positive R2
V values, that means, that the predictor-based regression model

(1) outperforms the historical average excess stock return. Moreover, cross-validation not only punishes

instances of overfitting – such as, for example, feigning the existence of a functional relationship that

does not really exist – but also allows us to find the optimal (predictive) bandwidth for non- and semi-

parametric estimators (cf. Gyöfri et al. (1990)), which means that we use the validated R2
V for both

model selection and optimal bandwidth choice.

In standard out-of-sample tests, the variance-bias trade-off is extremely dependent on the underlying

amount of data. Due to cross-validation, our approach featuring R2
V has almost the exactly correct

underlying size of data so that the variance-bias trade-off of our validation is therefore expected to be

more accurate than current methods. In other words, we use the R2
V measure in our search because

it provides for a more correct trade-off of complexity of the model versus available information. In the

empirical study, we analyse subsample stability, cut the full information set of 142 years down to 84

years, and estimate the models. In that context, our optimization criteria will favor less complex models

corresponding to less information. We tested the standard assumption of model selection by running

our methodology on a number of subsamples of various sizes. As expected, smaller samples led to less
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complex models. More often than not, when considering sub-samples, we ended with one-dimensional

regression models. Our approach has therefore been to use the R2
V measure for our search and then to

evaluate our final choice using a classical out-of-sample validation.

2.2. Bandwidth Choice for Nonparametric Estimation

In addition to the R2
V measure, various other methods for the bandwidth choice in nonparametric esti-

mation are also proposed in the relevant literature. For example, Bandi et al. (2011) consider bandwidth

selection for the nonparametric estimation of potentially non-stationary regressions. Although still partly

unpublished, there is some literature on nonparametric estimation with non-stationary time-series data.

To the best of our knowledge, the current main references are Karlsen and Tjostheim (2001) and Guerre

(2004). Both articles rely on ideas of decomposing the process into a recurrent part plus a remainder in

order to make consistency statements. Here it should be kept in mind that nonparametric estimators are

local, and therefore, require that each “location” be re-visited infinitely many times. The latter article

does not restrict the dynamics of the time series to beta-null recurrence and avoids technical smoothness

conditions on its invariant measure. Bandi et al. (2011) prefer to stick to the case of the decomposition

and assumptions introduced by Karlsen and Tjostheim (2001). As their estimator is a moment estimator

based on the first two moments, the bandwidth selector simply looks at the same two (estimated) moment

expressions. Thus, the bandwidth is based on first order bias and variance estimators. Recently, Wilhelm

(2014) presented a theoretical refinement of this method by adding some higher order approximations –

but only for stationary time-series – allowing for some autocorrelation and heteroscedasticity. Again, it

is for nonparametric GMM estimation and a theoretical, asymptotically optimal bandwidth. Reviews for

almost all the other (relevant) bandwidth selection methods include Heidenreich et al. (2013) for density

estimation, and Köhler et al. (2014) for regression.

2.3. A Bootstrap Test

To demonstrate that our method works and does not yield better results than the cross-validated

historical mean merely by chance, we propose a bootstrap test. We test the parametric null that the true
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model is the cross-validated historical mean against a non- or semi-parametric alternative (i. e. that the

true model is our proposed fully nonparametric (5) or semi-parametric model with (8)). In detail, we

estimate the model not only under the null hypothesis but also under the alternative, and calculate the

R2
V as well as

τ =
1

T

∑
t

(
ĝ−t − Ȳ−t

)2
. (3)

The intention is now to simulate the distribution of R2
V and τ under the null. Since we do not know the

distribution of the underlying random variables (the excess stock returns), we cannot directly sample from

them. We, therefore, apply the wild bootstrap. It is a stylized fact that stock returns are not normally

distributed. Using the wild bootstrap, we avoid poor approximation. We construct B bootstrap samples

{Y b1 , . . . , Y bT } using the residuals under the null

ε̂0t = Yt − Ȳ−t

and independent and identically distributed random variables with mean zero and variance one, for

example, ubt ∼ N(0, 1), such that

Y bt = Ȳ−t + ε̂0t · ubt .

In each bootstrap iteration b, we now calculate the cross-validated mean Ȳ b−t of the Y bt , t = 1, . . . , T , as

well as the estimates of the alternative model ĝb−t, and, finally, R2,b
V and τ b like in (2) and (3) with these

new estimates. In order to decide, whether to reject or retain, we use critical values from corresponding

quantiles of the empirical distribution function of the B bootstrap analogues – that is, from

F ∗(u) =
1

B

∑
b

1I{rb≤u},

where rb is R2,b
V or τ b, respectively, and 1IA denotes the indicator function of an appropriate set A. It is

a standard bootstrap testing procedure for non- as well as semi-parametric testing problems (for details

see the survey by Gonzales-Manteiga and Crujeiras (2013) and the citations therein).
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Table 1: Predictive power (in percent) of the linear model (4).

S d e r L inf b

R2
V -1.4 -0.1 7.1 4.0 -0.8 -1.5 -0.2

R2
adj -0.2 0.6 7.9 4.8 -0.3 -0.5 0.1

NOTE: Lagged explanatory variables: S stock return, d dividend by price, e earnings by price, r risk-free rate, L
long-term interest rate, inf inflation, b bond yield.

2.4. The Linear Predictive Regression

For the sake of illustration, we develop our strategy step by step and start with the linear model. In

empirical finance, the linear predictive regression model

Yt = β0 + β1Xt−1 + εt (4)

is often used to evidence the predictability of excess stock returns. We are fully aware of the problems

with this model. Nevertheless, we use it in this basic form, not only as a starting point of our empirical

study but also as a straightforward possibility for generating a linear prior.

For the American data Table 1 displays both the usual adjusted and the validated R2, whereby the

adjusted R2 is always greater. Fama and French (1988a) already indicate that the classical in-sample

R2 tend to overstate explanatory power due to possible bias. However, the validated R2 evidences the

earnings yield as the variable with the most explanatory power. Therefore, we will concentrate on the

behavior of models that include that covariate and take the R2
V of 7.1 as a first reference value.

Our findings directly conform to the results of Lamont (1998), who mentions the additional power of

the earnings-price ratio for the prediction of excess stock returns in his study using postwar U.S. data.

Interestingly, the often used dividend-price ratio renders only poor results (cf. Boudoukh et al. (2007)).

2.5. The Nonparametric Model

In accordance with the growing evidence of nonlinear behavior in asset returns documented in the

relevant literature, we examine the relationship of excess stock returns and the financial variables of the
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Table 2: Predictive power (in percent) of the nonparametric model (5) and corresponding estimated
p-values of the bootstrap test.

S d e r L inf b

R2
V -1.5 0.8 11.5 3.8 -0.1 -1.5 -0.4

p-value 0.714 0.240 0.008 0.022 0.270 0.772 0.404

τ 0.019 0.106 0.368 0.174 0.016 0.014 0.035
p-value 0.634 0.168 0.034 0.016 0.516 0.648 0.356

NOTE: Lagged explanatory variables: S stock return, d dividend by price, e earnings by price, r risk-free rate, L
long-term interest rate, inf inflation, b bond yield.

last section using a flexible because model-free nonparametric estimator. The model

Yt = g(Xt−1) + ξt (5)

is estimated with a local-linear kernel smoother using the quartic kernel and the optimal bandwidth

chosen by cross-validation – that is, by maximizing the R2
V as described in Section 2.1. Once again, it

should be noted here that no functional form is assumed. Moreover, it should be kept in mind that the

nonparametric method can estimate linear functions without any bias, given that we apply a local-linear

smoother. Thus, the linear model is automatically embedded in our approach, which is also the case for

all of the non- and semi-parametric models proposed in the rest of this article. Table 2 shows the results,

the validated R2, and the estimated p-values of the bootstrap test. It should not be overlooked that we

test the parametric null hypothesis – that is, the true model is the cross-validated historical mean against

the nonparametric alternative. As such, the model (5) holds. The estimated p-value yields the probability

that, under the null, a R2
V value can be found which is greater or equal to the observed one. We focus

here on the R2
V and its estimated p-values, since no essential differences occur between the decisions made

for R2
V and τ . Nevertheless, we show τ statistics and the estimated p-values in the corresponding tables,

since the distinction of both is the fact that τ basically measures only the variation between the estimates

of two procedures, while the R2
V compares the fit of them. Using the usual significance levels, we find the

earnings variable (p-value 0.008) as well as the risk-free rate (p-value 0.022) to be capable of forecasting
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Figure 1: Left: stock returns and earnings by price, Right: stock returns and risk-free; both estimated
with linear model (4) (circles) and nonlinear model (5) (triangles)

stock returns better than the historical mean. For earnings by price the validated R2 increases by 62%

from 7.1 to 11.5 (compared to the linear regression).

Figure 1 shows the estimated linear and nonlinear functions for both variables. For risk-free, an almost

identical linear relationship is found, while nonlinearities appear for earnings by price. Economic theory

predicts that the short-term interest rate has a negative impact on stock returns. Figure 1 confirms

this relationship, since it shows an almost linear declining stock return for an increasing risk-free rate.

An increase in the interest rate could raise financial costs, followed by a reduction of future corporate

profitability and stock prices. Also the findings for earnings by price aline with the theory. A growing

earnings-price ratio makes firms more interesting for investors, and thus stock returns should also increase,

as can bee seen in the left part of Figure 1.

Motivated by the results indicating that both (earnings and risk-free) explain stock returns to some

extent, we expand our model to the multivariate case in the next subsection.
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Table 3: Predictive power (in percent) of the two-dimensional linear model (6).

e, S e, d e, r e, L e, inf e, b

R2
V 5.6 6.9 12.9 6.9 7.5 8.2

R2
adj 7.4 8.7 14.5 8.3 9.0 9.5

NOTE: Lagged explanatory variables: e earnings by price together with S stock return, d dividend by price, r risk-free
rate, L long-term interest rate, inf inflation, b bond yield.

2.6. The Multivariate Parametric Model

The natural extension of model (4) is

Yt = β0 + β>Xt−1 + εt, (6)

where Xt−1 can be a vector of different explanatory variables, higher order terms, interactions of certain

variables, or a combination of them. Nevertheless, we concentrate on the simple case. More specifically,

we use only two different regressor variables in (6) to create a simple prior. Table 3 shows the results,

the validated and the adjusted R2, for the regression of lagged earnings by price together with another

variable on stock returns. We find again that the size of both measures is comparable. Moreover, the

additional variables of inflation, bond yield, and risk-free rate further improve prediction power relative

to the simple model (4) with earnings by price as a unique explanatory variable due to R2
V values greater

than 7.1. In particular, the multivariate linear model (6) using earnings by price and the risk-free rate

as regressors even outperforms the one-dimensional nonparametric model (5) with earnings by price as

covariate. Here we find a R2
V of 12.9 instead of 11.5 for the former.

3. Nonparametric Prediction Guided by Prior Knowledge

3.1. The Fully Nonparametric Model

To allow the use of more than one explanatory variable in a flexible nonparametric way, we consider

the conditional mean equation

Yt = g(Xt−1) + ξt, (7)
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Table 4: Predictive power (in percent) of the fully two-dimensional nonparametric model (7) and
corresponding estimated p-values of the bootstrap test.

e, S e, d e, r e, L e, inf e, b

R2
V 7.6 12.9 14.7 14.5 11.0 12.1

p-value 0.020 0.004 0.002 0.000 0.000 0.002

τ 0.272 0.504 0.499 0.822 0.686 0.388
p-value 0.064 0.018 0.004 0.000 0.002 0.028

NOTE: Lagged explanatory variables: e earnings by price together with S stock return, d dividend by price, r risk-free
rate, L long-term interest rate, inf inflation, b bond yield.

where the vector Xt−1 now includes different regressor variables. Table 4 shows the results, the validated

R2 and the estimated p-value of the proper bootstrap test, once again using earnings by price together with

another explanatory variable. Here, we find evidence that the appropriate functional form is nonlinear.

For all these models, at the usual levels of significance, we reject the null hypothesis that the true

model would be the historical mean. Moreover, once again for all models, we find improved stock return

predictions compared to those of their multivariate linear counterparts (6) because all R2
V values are

significantly higher. The best model at the moment is the fully two-dimensional one that uses earnings

by price and the risk-free rate, resulting in a R2
V value of 14.7, which represents an increase in predictive

power of 14% compared to that of its parametric counterpart.

Here we only apply two-dimensional models. According to our validation results, three-dimensional

nonparametric models all yield worse predictions than those of the best two-dimensional nonparametric

models. Typically, such settings are faced with essential difficulties – such as the curse of dimensionality

and/or, boundary or bandwidth problems. In the following section, we will see how it is possible to

circumvent or at least reduce the influence of those difficulties by using a combination of strategies that

are usually applied individually.

3.2. Improved Smoothing Through Prior Knowledge

The basic idea (see Glad (1998)) is the combination of the parametric pilot from model (4) or (6) and

the nonparametric smoother from Subsections 2.5 or 3.1 in a semi-parametric fashion, where the latter
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nonparametric estimator is multiplicatively guided by the former parametric and builds on the simple

identity

g(x) = gθ(x) · g(x)

gθ(x)
. (8)

Remember that we address the regression problem of estimating the conditional mean function g(x) =

E(Y |X = x), utilizing its standard solution, the fit of some parametric model gθ(x), with the parameter

θ, to the data. The essential fact is that if the prior captures some of the characteristics of the shape of

g(x), the second factor in (8) becomes less variable than the original g(x) itself. Thus a nonparametric

estimator of the correction factor g(x)
gθ(x)

yields better results with less bias.

Once again, it should be noted that the global pilot could be generated by any parametric technique

including linear methods; either by relying on regression splines with few knots or by using more complex

approaches such as nonparametric regressions (for multiplicative bias correction in nonparametric regres-

sion, see Linton and Nielsen (1994)); or even by economic theory. However, even a simple and rough

parametric guide is quite often enough to improve the estimate.

Judging from identity (8), it is obvious that local problems for the guided approach outlined above

can occur if the prior itself crosses the x-axis at least once or several times. Two possible solutions are

usually described in the literature. First of all, a suitable truncation is proposed. For example, the

absolute value of the correcting factor can be clipped below 1/10 and above 10, making the estimator

more robust. Second, all response data Yt could be shifted a distance of c in such a way that the new

prior gθ(x) + c is strictly greater than zero and no longer intersects the x-axis:

g(x) + c = (gθ(x) + c) · g(x) + c

gθ(x) + c
. (9)

It should be kept in mind that, as c increases in size, the estimator draws continually closer to the usual

local polynomial, which is invariant to such shifts. As such, large values of c resolve the intersection

problem but diminish the effect of the guide. In the practical application, we choose c according to our
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validation criterion.

Of course, parameter estimation variability also affects results; but Glad (1998) demonstrates that

the prior actually causes no loss in precision. Even for clearly misleading guides, Glad (1998) reports

the tendency to ignore incorrect information and, thereby end up with results similar to those yielded by

fully nonparametric estimators. The guided estimator even has strong bias reducing properties in small

samples. In experiments, Glad (1998) finds that all passably reasonable guides significantly reduce the

bias for all sample sizes and the level of noise.

This approach can improve prediction mainly in the multivariate version. The reason for its effective-

ness lies in the fact that traditional nonparametric estimators, such as the one presented in Section 3.1,

have a rather slow rate of convergence in higher dimensions. Moreover, for a guided multivariate kernel

estimator, the possibility for bias reduction is also essential if the parametric guide captures important

features of g(x). Here it should be noted that, in the conditional asymptotic bias of the multivariate

local-linear estimator, the hessian of the true function appears. However, for a “quasi linear” correction

factor produced by a very good prior, not only the second derivatives but also, consequentially, the bias

should be very small. Therefore, the idea of guided nonparametric regression turns out to be even more

helpful in such a setting.

It is also possible to interpret equations (8) or (9) as an optimal transformation of the nonpara-

metric estimation problem. The subsequent nonparametric smoother of the transformed variables (of

the correction factor) is characterized by less bias (for simple transformation techniques that improve

nonparametric regression, see, for example, Park et al. (1997)).

Table 5 shows the results (i. e. validated R2
V ) of models based on (9), which use earnings by price

together with another explanatory variable. The same variables are used to generate the linear prior with

model (6) and to estimate the correction factor. For all models in Table 5, our quality measure for the

prediction decreases slightly. The reason lies in a poor prior or in the fact that the fully two-dimensional
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Table 5: Predictive power (in percent) for model (9).

e, S e, d e, r e, L e, inf e, b

R2
V 2.9 9.0 10.4 12.8 8.7 8.4

NOTE: In both steps, the prior and estimation of the correction factor, used lagged explanatory variables: e earnings by
price together with S stock return, d dividend by price, r risk-free rate, L long-term interest rate, inf inflation, b bond
yield.

smoother already estimates the unknown relationship between stock returns and the used explanatory

variables adequately. In Table 5 and in the rest of this article, the results of the bootstrap test for the

models guided by a prior are omitted given that we will see that those models result in more improved

R2
V than the fully nonparametric models. In the applied bootstrap tests, we have already seen that the

fully nonparametric models are significantly better than the historical mean.

3.3. Prior Knowledge for Dimension Reduction

As discussed in previous subsections, fully nonparametric models suffer in several aspects (with in-

creasing number of dimensions) from the curse of dimensionality, and are also faced with bandwidth

or boundary problems. Since this type of estimator is based on the idea of local weighted averaging,

the observations are sparsely distributed in higher dimensions causing unsatisfactory performance. To

circumvent such problems, the importation of more structure in the estimation process – such as addi-

tivity (cf. Stone (1985)) or semi-parametric modelling – is often proposed. However, these are not the

only possible solutions. Here, our approach proposed in Section 3.2 can aid in the importation of more

structure and in the reduction of dimensionality in a multiplicative way. For example, instead of using a

two dimensional model for both the prior and the nonparametric smoother of the correction factor, we

reduce both to one-dimensional problems with different explanatory variables. Thus, we first generalize

(9) and concentrate on the analog identity

g(x1) + c = (gθ(x2) + c) · g(x1) + c

gθ(x2) + c
. (10)
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Table 6: Predictive power (in percent) for dimension reduction using identity (10).

S d r L inf b

e 8.5 8.4 16.5 10.9 11.2 11.7

NOTE: The prior is generated by a one-dimensional linear regression (4) and uses as lagged explanatory variables S stock
return, d dividend by price, r risk-free rate, L long-term interest rate, inf inflation, and b bond yield. The correction
factor is estimated as in model (5) using only e earnings by price.

It should be kept in mind that this model is separable in x1 and x2. The results of this approach can

be found in Table 6. Here, we use the linear parametric model (4) with different variables for the prior

step. Afterwards, we estimate the correction factor with the one-dimensional nonparametric model (5)

and earnings by price as covariate. Four of the six models presented in Table 6 improve stock return

prediction, as we can observe an increased R2
V compared to the fully two-dimensional models from

Subsection 3.1. For example, a linear prior with the risk-free rate and nonparametric smoother with

earnings by price yields a validated R2 of 16.5 – which represents an increase of 12% compared to our

best model so far, the fully two-dimensional model with exact the same variables.

The estimated functions for both models, the fully two-dimensional one (7) and the model guided by

prior with (10), as well as for the parametric counterpart are shown in Figure 2. Note that we set one

variable at a certain level and plot the relationship of stock returns with the remaining variable. On the

left-hand side of Figure 2, we set the risk-free rate at values of 1.0, 6.0, and 12.0. For example, we see

in the bottom left-hand part of Figure 2 that the estimated function – which is guided by the prior (in

diamonds) – always forecasts negative stock returns. In contrast, the parametric and fully nonparametric

fit show positive increasing stock returns for earnings by price from a value of 0.12. On the right-hand

side of Figure 2, we set earnings by price at 0.03, 0.05, and 0.13. All the displayed estimates are more

or less linear and find at all levels of earnings by price a linear relationship between stock returns and

the risk-free rate. Again, the negative impact of the risk-free rate on stock returns can bee seen. Only

for a small earnings-price ratio, the estimator guided by the prior results in an almost constant line –

which means that, for small earnings by price, the risk-free rate has no, or only a small, impact on stock
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Figure 2: Left: stock returns and earnings by price at different levels of risk-free, Right: stock returns
and risk-free at different levels of earnings by price; both estimated with linear model (6) (circles),
fully nonparametric model (7) (triangles), and the model guided by prior (10) (diamonds). The linear
model (4) with the risk-free rate as a regressor is used to generate the prior.
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Table 7: Predictive power (in percent) for dimension reduction using identity (10).

e, S e, d e, r e, L e, inf e, b

e 7.5 9.1 16.0 10.0 9.9 10.2

NOTE: The prior is generated by a two-dimensional linear regression (6) and uses as lagged explanatory variables e
earnings by price together with S stock return, d dividend by price, r risk-free rate, L long-term interest rate, inf
inflation, and b bond yield. The correction factor is estimated as in model (5) using only e earnings by price.

returns.

Moreover, we must point out that the approach featuring the prior does indeed result in a better fit

in the boundary region compared to the fully nonparametric one and thus in more reliable results. The

reason lies again in the different number of dimensions used for the nonparametric part of the estimators.

3.4. Extensions to Higher Dimensional Models

The above approach can easily be extended in several ways. Here, we consider higher dimensions for

x1 and x2 in (10) with possible overlapping covariates. For example, we could also use a two-dimensional

linear prior in (10) and still estimate the correction factor with a one-dimensional nonparametric model.

In doing so, we find a validated R2 of 16.0 for the model that uses earnings by price and the risk-free

rate for the linear prior and only earnings in the nonparametric step, as can be seen in Table 7.

The other way around is also feasible. We use the one-dimensional parametric prior (4) together

with a fully two-dimensional nonparametric smoother. The results of the application of this method are

presented in Table 8. For example, by using the risk-free rate in the linear prior step and using earnings

by price along with the long-term interest rate in the nonparametric smoother, we find an R2
V of 20.9 –

which represents an impressive improvement of 42% compared to the best nonparametric model without

the prior or an increase of 62% compared to the predictive regression (the starting point of our analysis).

These results are in accordance with economic theory, given that the most important part of the stock

return is related to the change in interest rates and earnings.

In the above examples, we have seen that the simple extension to identity (10) combines transforma-

tion, bias, and dimension reduction techniques in a new way and in one single approach, in contrast to
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Table 8: Predictive power (in percent) for dimension reduction using identity (10).

S d e r L inf b

e, L 9.8 12.8 14.4 20.9 13.0 13.2 11.5

NOTE: The prior is generated by a one-dimensional linear regression (4) and uses as lagged explanatory variables S
stock return, d dividend by price, e earnings by price, r risk-free rate, L long-term interest rate, inf inflation, and b
bond yield. The correction factor is estimated as in model (7) using e earnings by price and L long-term interest rate as
covariates.

the commonly proposed separable or additive structures. Thus, boundary and bandwidth problems are

easily alleviated; and the curse of dimensionality, circumvented.

3.5. Out-of-sample Validation

As already mentioned in Section 2.1, we evaluate our final model choice (i. e. the model based on the

full information set) using a classical out-of-sample validation. We defined an initial estimation sample

of 110 observations (from 1872 through 1981). This was used for the purpose of chosing not only the

smoothing parameters (bandwidths) in the non- and semi-parametric model but also the variables to

be included in the linear model, both based on validated R2. The remaining sample of 33 observations

corresponding to the years from 1982 through 2014, was used to evaluate out-of-sample performance in

terms of prediction mean square error (oos-mse) and out-of-sample R2 (oos-R2) as defined, for example,

by Campbell and Thompson (2008)

oos-R2 = 1−
∑T
t=1(Yt − Ŷt)2∑T
t=1(Yt − Ȳt)2

,

where Ŷt is the fitted value of the chosen model through period t − 1, and Ȳt is the historical mean

return also estimated through period t− 1. Every time a new data point is available, we re-estimate the

parameters of the linear model as well as the non- or semi-parametric estimator. It should be noted that

the smoothing is kept fixed and at the values determined in the estimation sample. The re-estimation

is carried out both using an expanding window as well as a rolling window. We present the results in

Figure 3 only for an expanding window since no important differences appeared.

In order to analyse the effect of the length of the estimation sample on out-of-sample performance, we
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Figure 3: Left: oos-mse for different sample sizes. Right: oos-R2 for different sample sizes. EGT3:
complete subset regression of Elliott et al. (2013) with k = 3 (circles), lin3d: linear model (6) on
{e, r, L} (upside down triangles), nonpar2d: fully nonlinear model (7) on {e, L} (squares), bestlin3d:
3-dim. linear model which performs best with hindsight (diamonds), prior: model guided by prior (10)
with linear prior on {r} and nonparametric correction factor on {e, L} (triangles), historical mean
(pluses)

then increased the number of observations used for estimation step by step from 110 to 142. In Figure 3,

the following six models are compared:

1. EGT3 is based on the complete subset regression by Elliott et al. (2013), where k = 3 (circles);

2. lin3d is the linear model (6) on {e, r, L} (upside down triangles);

3. nonpar2d is the fully nonlinear model (7) on {e, L} (squares);

4. bestlin3d is the three-dimensional linear model that performs best (in terms of oos-mse) with

hindsight at each period in time (that is to say that, in hindsight, it is the best combination of 3

variables that one could choose at each period (diamonds));

5. prior is the model guided by prior (10) with a linear prior on {r} and nonparametric correction

factor on {e, L}, as chosen with our validation criterion (triangles); and

6. the historical mean.

We have included the best possible historical three-dimensional linear estimator (bestlin3d) in our table.
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It is a goodness-of-fit estimator knowing the past and it is therefore infeasible when predicting. We have

included it for comparative reasons to illustrate that our feasible predictor based on prior information

is close to and sometimes even better than the infeasible linear model. These results provide us with

strong arguments in favor of our nonparametric prior-based predictor. Here, it should be noted that

the best combination of 3 variables in bestlin3d can also change over time. However, we have found

that they are relatively stable. For example, for estimation sample sizes ranging from 111 to 137, the

combination {d, e, inf} was best, while {d, e, r} was best for larger estimation samples. Furthermore, with

increasing estimation sample size – that is, with growing information – we see that the more complex

prior method even achieves a lower oos-mse than the three-dimensional linear model, which performs

best with hindsight. That particular result is mainly driven by the good performance of the prior model

during the financial crises in 2008, as can be seen in Figure 4. In that context, the predicted annual

excess stock returns of the different models are shown in comparison to the realized annual excess stock

returns of the S&P500.

Meanwhile, it should be noted that, in comparison to the fully nonparametric model, we have observed

that the inclusion of prior information allows for the use of smaller bandwidths in the nonparametric

estimation part in (10). Hence, this new method might better capture nonlinearities.

Predictions around the business-cycle

As a next step, we attempt to analyse the behavior of the predictions of the different models around

business-cycle peaks and troughs. Table 9 shows the oos-mse’s from 1982 through 2014 (including peaks

and troughs respectively). It should be noted that, during the given time period, four years with negative

growth rates in real gross domestic product can be observed: 1982, 1991, 2008, and 2009. During the

recessions, the prior model performs best. It is also worth mentioning that the historical mean seems

to render reasonable predictions around the peaks of the business-cycle, while performing at its worst

around the troughs.

23



(p
re

di
ct

ed
) 

an
nu

al
 e

xc
es

s 
st

oc
k 

re
tu

rn
s

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

1985 1990 1995 2000 2005 2010

EGT3
S&P 500

(p
re

di
ct

ed
) 

an
nu

al
 e

xc
es

s 
st

oc
k 

re
tu

rn
s

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

1985 1990 1995 2000 2005 2010

nonpar2d
S&P 500

(p
re

di
ct

ed
) 

an
nu

al
 e

xc
es

s 
st

oc
k 

re
tu

rn
s

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

1985 1990 1995 2000 2005 2010

prior
S&P 500

(p
re

di
ct

ed
) 

an
nu

al
 e

xc
es

s 
st

oc
k 

re
tu

rn
s

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

1985 1990 1995 2000 2005 2010

lin3d
S&P 500

(p
re

di
ct

ed
) 

an
nu

al
 e

xc
es

s 
st

oc
k 

re
tu

rn
s

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

1985 1990 1995 2000 2005 2010

bestlin3d
S&P 500

(p
re

di
ct

ed
) 

an
nu

al
 e

xc
es

s 
st

oc
k 

re
tu

rn
s

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

1985 1990 1995 2000 2005 2010

historical mean
S&P 500

Figure 4: Predicted annual excess stock returns of the different models (cf. Figure 3) in comparison
to the realized annual excess stock returns of the S&P500 (First row: EGT3 and lin3d, Second row:
nonpar2d and bestlin3d, Third row: prior and historical mean). Note: The data consists of January
values such that we observe the largest drawdown caused by the financial crises in 2009.

24



Table 9: Oos-mse of predictions along the business cylce, oos-period: 1982–2014

model whole period business-cycle peaks business-cycle troughs

EGT3 0.028 0.021 0.074
lin3d 0.033 0.028 0.062
nonpar2d 0.030 0.026 0.052
bestlin3d 0.020 0.016 0.051
prior 0.024 0.022 0.033
historical mean 0.029 0.019 0.103

Performance of simple prediction-based portfolios

Here we are interested in the performance of a portfolio based on the predictions of the different

models. We limit ourselves to three simple trading strategies (and ignore transaction costs etc.): (a)

buy-and-hold without reinvesting dividends; (b) simple market timing (whereby for positive predictions,

we invest 100% of our capital in stocks and 0% in a risk-free asset; and for negative predictions, we

invest 0% in stocks and 100% in a risk-free asset); and (c) more conservative market timing (whereby

for predictions with an expected return greater than 5%, we invest 100% of our capital in stocks and

0% in a risk-free asset; for predictions with an expected return between 0% and 5%, we invest 50% in

stocks and 50% in a risk-free asset; and for negative predictions, we invest 0% in stocks and 100% in a

risk-free asset). We repeat this analysis for three different horizons of 33, 15, and 7 years: 1982–2014,

2000–2014, 2008–2014 (based on the predictions displayed in Figure 4). Table 10 shows the compound

annual growth rate (cagr) – that is, the year-over-year growth rate of the portfolio over the chosen period

– and the maximum drawdown (mdd) of the investment. For the horizon of 33 years and the simple

market timing we find, that the prior-based portfolio performs best among the feasible models and is

the only one that can even outperform the historical mean. A similar result also holds true for the more

conservative strategy. For the shorter periods, portfolios based on prior and EGT3 have similar cagr

while in most cases the prior has a significantly lower mdd and should be preferred.

Moreover, it should also be noted that a drawdown in the portfolio only happens when the price of the

S&P500 decreases. We analyse excess stock returns and thus it is possible to observe a negative excess
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Table 10: Portfolio performance

1982–2014 2000–2014 2008–2014

(a) buy-and-hold
cagr mdd cagr mdd cagr mdd

9.1 40.7 3.7 40.7 5.1 40.7
(b) simple strategy

cagr mdd cagr mdd cagr mdd

EGT3 10.9 30.5 11.2 30.5 17.2 0.0
lin3d 9.1 0.0 10.3 0.0 16.5 0.0
nonpar2d 9.1 0.0 10.3 0.0 16.7 0.0
bestlin3d 14.8 2.0 16.1 0.0 17.2 0.0
prior 12.5 5.5 11.3 5.5 16.7 0.0
historical mean 11.0 38.8 8.0 38.8 8.8 38.8

(c) conservative strategy
cagr mdd cagr mdd cagr mdd

EGT3 9.6 11.7 9.8 11.7 14.4 0.0
lin3d 7.7 0.0 7.5 0.0 10.6 0.0
nonpar2d 8.1 0.0 8.3 0.0 12.3 0.0
bestlin3d 12.6 0.0 13.8 0.0 16.8 0.0
prior 10.5 0.2 9.7 0.2 14.2 0.0
historical mean 9.0 18.1 6.9 18.1 7.3 18.1

NOTE: cagr is the compound annual growth rate and mdd the maximum drawdown (both in percent).

stock return, even when the price increases (but not enough to exceed the risk-free investment), as was

the case for example, in the year 1985. The consequence is that, even for a positive prediction, there is

no drawdown in the portfolio, which can be observed (e. g., for the bestlin3d model in the conservative

strategy).

Subsample Stability

We complete our out-of-sample validation with the issue of subsample stability. Campbell and Thomp-

son (2008) analyse the out-of-sample performance of different models for three subsamples. One source

of motivation for this investigation are Goyal and Welch’s (2008) findings that valuation ratios have

the strongest ability to forecast stock returns in the oos-period 1927–1956, which includes the Great

Depression and World War II. We repeat this analysis with the six models introduced above and three
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Table 11: Subsample stability

1927–1956 1956–1985 1985–2014

model oos-mse oos-R2 oos-mse oos-R2 oos-mse oos-R2

EGT3 0.055 10.6 0.018 34.5 0.028 1.9
lin3d 0.060 2.9 0.017 35.2 0.025 12.7
nonpar2d 0.052 16.3 0.024 12.0 0.030 -2.6
bestlin3d 0.049 21.4 0.016 41.6 0.024 16.3
prior 0.052 15.9 0.018 34.8 0.024 16.8
historical mean 0.062 0.027 0.029

similar out-of-sample periods of 30 years: 1927–1956, 1956–1985, and 1985–2014. The results (oos-mse

and oos-R2) can be found in Table 11. In terms of oos-mse, the first oos-period yields the worst results,

while the second oos-period has the lowest. Nevertheless, in all subsamples, the prior model performs

best; and, in the last period, it even has a higher oos-R2 than the non-feasible model bestlin3d.

Once again, we emphasize that, especially for shorter estimation periods other (and often less complex)

models would have been chosen by our validation criterion for the fully nonparametric and prior models.

For example, a fully nonparametric model on {r} over the out-of-sample period 1956–1985 would have

reached an oos-R2 of 41.1% and an oos-mse of 0.016.

4. Further Remarks and Conclusions

4.1. Broader Results

Up until this point, in our article, we have concentrated on models involving the variable earnings by

price. Of course, we also used other explanatory variables. The results of such models can be found in

the analogy to previous representations in Table 13–17 in the appendix. There, we also provide a short

overview of the data used in Table 12. Here, it should be noted that we calculate the inflation variable as

the percentage change of the consumer price index and the bond variable as the difference of the ten-year

government bond.

As Table 13 and 14 indicate, it is hard to find a model that can predict better than the historical

mean. Nonetheless, it is not surprising that, once we find such a model, the risk-free rate is an important
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part of it. For example, for the fully nonparametric model, risk-free rate together with dividend by price

(R2
V = 3.8) or long-term interest rate (R2

V = 10.0), we find validated R2 values that are significantly

different from zero. However, these models do not have the predictive power found before for the model

that uses earnings by price and risk-free (R2
V = 14.7).

In Table 15–17, we include the previously demonstrated results (for earnings by price) for reasons of

clarity and comparability. We find that the variable earnings by price consistently yields the best results

(in the sense of the largest R2
V value), together with the interest rates. Moreover, we see that more

complex models do not automatically imply better results. For example, if we use the linear prior (4)

with the risk-free rate and estimate the correction factor along (10) with model (5) and earnings by price

as covariate (see the third line of Table 15), we obtain a validated R2 of 16.5. On the other hand, if we

also include the risk-free rate when we estimate the correction factor (i. e. with the more complex model

(7)), we get only a R2
V of 11.9 (see the third line of Table 17). Furthermore, we must emphasise once

again that the choice of the prior is crucial. This can bee seen, for example, in line three of Table 16,

where we estimate the correction factor with model (5) and earnings by price as covariate. The use of the

prior (6) together with earnings by price and dividend by price yields a R2
V of 9.1, while we nearly double

(R2
V = 16.0) the result if we take the same prior but the risk-free rate instead of dividend by price.

4.2. Summary and Outlook

The objective of our article is to demonstrate that the prediction of excess stock returns can essentially

be improved by an approach using flexible non- and semi-parametric techniques. We start with a fully

nonparametric model and estimate using a standard local-linear kernel regression, whereby we maximize

the validated R2 for the choice of the best model and bandwidth. We further propose a wild-bootstrap test

which allows us to decide whether we can accept the parametric null hypothesis, that the historical mean

is the right model, or whether we prefer the non- or semi-parametric alternative. After we have seen the

usefulness of the nonparametric approach, we introduce a method to incorporate prior knowledge in the

estimation procedure. Examples are parametric regression or appropriate economic models. We indicate,
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that even the inclusion of the latter in a semi-parametric fashion – more precisely, in a multiplicative

way – can enormously improve the prediction of stock returns. To illustrate the potential of our method,

we apply it to annual American stock market data provided by Robert Shiller and used for several other

articles (see, for example, Campbell and Thompson (2008) or Chen et al. (2012)). Our results conform

to economic theory, namely that the most important part of stock returns is related to the change in

interest rates and earnings.

In order to deliver a statistical insight into our method, we mention that, mainly in higher dimensions,

a nonparametric approach would suffer from the curse of dimensionality and/or bandwidth or boundary

problems. A possible adjustment to counteract this problem would be to impose more structure. Our

method contributes to this strategy due to its new and innovative idea – a model directly guided by

economic theory. By means of a simple transformation, we achieve the combination of bias and dimension

reduction (i. e. more structure to circumvent the curse of dimensionality), which means that, in our case,

a reliable prior captures some of the characteristics of the shape of the estimating function; and as such,

a multiplicative correction can cause a bias and dimension reduction in the remaining nonparametric

estimation process of the correction factor. Thus, we propose here a method that greatly improves

nonparametric regression in combination with a parametric technique.

Another way to impose more structure in the prediction process of excess stock returns could be

the use of same-year covariates. Usually, economic theory says that the price of a stock is driven by

fundamentals and investors should focus on forward earnings and profitability. Thus, information on the

same years’ – instead of the last years’ – earnings or interest rates can improve prediction. The problem

which obviously occurs is that this information is unknown and must also be predicted in some way. For

example, Scholz et al. (2014) propose a two-step approach for the inclusion of the same years’ bond yield,

which is related to the change in interest rates. Furthermore, calendar effects or structural breaks, as

described for linear models by Paye and Timmermann (2006) should be taken into consideration. While
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many financial prediction models are intended for the short term, the one-year view taken in this paper

is natural and omnipresent in actuarial science. Clearly, pension savings is for the long-term, while the

forecasting of balance sheet numbers like reserves in non-life insurance are mostly for one-year (see, for

example, Kuang et al. (2011)). We believe that the long-term view provided by this paper could play an

important role in building financial prediction models to be used in actuarial saving models in the future.
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Appendix: Tables of Additional Results

Table 12: US market data (1872-2014).

Max Min Mean Sd

S&P Stock Price Index 1807.78 3.25 207.04 407.55
Dividend Accruing to Index 39.44 0.18 4.91 8.00
Earnings Accruing to Index 105.96 0.16 11.59 21.66
Stock Returns 0.44 -0.62 0.04 0.18
Dividend by Price 0.09 0.01 0.04 0.02
Earnings by Price 0.17 0.02 0.08 0.03
Short-term Interest Rate 17.63 0.13 4.61 2.85
Long-term Interest Rate 14.59 1.91 4.60 2.26
Inflation 0.21 -0.16 0.02 0.06
Bond 2.03 -4.13 -0.02 0.78

NOTE: We base our empirical study on the annual data from the file chap26.xls which was ex-
tended to the full period of interest using monthly data in ie data.xls (both files are downloadable from
http://www.econ.yale.edu/∼shiller/data.htm) and short-term interest rate data from the Federal Reserve.
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Table 13: Predictive power (in percent) of the two-dimensional linear model (6).

S, d S, r S, L S, inf S, b d, r d, L d, inf

R2
V -1.3 2.2 -2.3 -3.0 -1.7 4.1 -1.0 1.6

R2
adj 0.7 4.3 -0.5 -0.7 -0.1 5.5 0.2 2.8

d, b r, L r, inf r, b L, inf L, b inf, b

R2
V -0.1 8.8 2.6 2.9 -2.1 -1.1 -1.8

R2
adj 0.9 9.6 4.3 4.1 -0.5 -0.4 -0.5

NOTE: Lagged explanatory variables: S stock return, d dividend by price, r risk-free rate, L long-term interest rate, inf
inflation, b bond yield.

Table 14: Predictive power (in percent) of the fully two-dimensional nonparametric model (7) and
corresponding estimated p-values of the bootstrap test.

S, d S, r S, L S, inf S, b d, r d, L d, inf

R2
V -1.6 1.7 -2.3 -2.8 -2.1 3.8 -1.0 -1.7

p-value 0.464 0.116 0.660 0.688 0.590 0.020 0.422 0.526
τ 0.072 0.190 0.036 0.040 0.052 0.213 0.048 0.050
p-value 0.428 0.118 0.612 0.614 0.448 0.052 0.464 0.524

d, b r, L r, inf r, b L, inf L, b inf, b

R2
V -0.6 10.0 2.1 3.5 -2.1 -0.8 -2.1

p-value 0.316 0.000 0.070 0.012 0.668 0.352 0.648
τ 0.094 0.345 0.175 0.180 0.020 0.040 0.039
p-value 0.248 0.004 0.108 0.034 0.690 0.450 0.584

NOTE: Lagged explanatory variables: S stock return, d dividend by price, r risk-free rate, L long-term interest rate, inf
inflation, b bond yield.

Table 15: Predictive power (in percent) for dimension reduction using identity (10).

S d e r L inf b

S -5.1 -2.7 4.2 0.7 -3.8 -4.2 -3.1
d -1.6 -2.1 5.3 2.9 -1.6 -2.0 -0.2
e 8.5 8.4 9.1 16.5 10.9 11.2 11.7
r 0.6 2.5 11.5 0.9 -0.3 0.5 1.5
L -3.1 -2.2 5.7 4.8 -2.9 -3.0 -1.7
inf -4.2 -2.7 8.5 0.8 -3.9 -4.8 -3.3
b -3.4 -1.8 7.2 2.4 -2.7 -3.4 -1.4

NOTE: The prior (columns) is generated by a one-dimensional linear regression (4) and the correction factor (rows) is
estimated as in model (5). Both use as lagged explanatory variables S stock return, d dividend by price, e earnings by
price, r risk-free rate, L long-term interest rate, inf inflation, and b bond yield.
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Table 16: Predictive power (in percent) for dimension reduction using identity (10).

e, S e, d e, r e, L e, inf e, b

S 2.5 3.9 9.8 3.9 5.4 5.3
d 3.6 4.2 11.9 5.6 7.6 6.5
e 7.5 9.1 16.0 10.0 9.9 10.2
r 9.6 11.9 10.0 7.5 10.9 10.9
L 4.1 6.4 12.0 4.1 6.2 6.4
inf 7.0 9.6 11.6 7.2 7.6 8.2
b 5.6 7.4 12.8 6.8 7.5 5.6

NOTE: The prior (columns) is generated by a two-dimensional linear regression (6) and uses as lagged explanatory
variables e earnings by price together with S stock return, d dividend by price, r risk-free rate, L long-term interest
rate, inf inflation, and b bond yield. The correction factor (rows) is estimated as in model (5) using only one of the
explanatory variables.

Table 17: Predictive power (in percent) for dimension reduction using identity (10).

S d e r L inf b

e, S 4.2 2.0 4.9 12.6 6.8 7.0 8.4
e, d 10.3 11.6 10.6 17.9 13.1 13.1 13.1
e, r 10.9 9.0 12.1 11.9 10.3 14.0 13.8
e, L 9.8 12.8 14.4 20.9 13.0 13.2 11.5
e, inf 7.8 7.4 8.1 13.7 9.3 8.4 10.0
e, b 9.1 7.6 9.5 17.4 10.9 11.5 10.3

NOTE: The prior (columns) is generated by a one-dimensional linear regression (4) and uses as lagged explanatory
variables S stock return, d dividend by price, e earnings by price, r risk-free rate, L long-term interest rate, inf inflation,
and b bond yield. The correction factor (rows) is estimated as in model (7) using e earnings by price together with
another covariate.
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