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Zum Grossen Windkanal 6, Berlin, 12489 Germany
cCentre for Mathematical Science, City University London,

Northampton Square, London, EC1V 0HB U.K.

E-mail: olof.ohlsson.sax@gmail.com,

Alessandro.Sfondrini@physik.hu-berlin.de,

bogdan.stefanski.1@city.ac.uk

Abstract: In the context of the AdS3/CFT2 correspondence, we investigate the Higgs

branch CFT2. Witten showed that states localised near the small instanton singularity

can be described in terms of vector multiplet variables. This theory has a planar, weak-

coupling limit, in which anomalous dimensions of single-trace composite operators can be

calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with

nearest-neighbour interactions. This CFT2 spin-chain matches precisely the one that was

previously found as the weak-coupling limit of the integrable system describing the AdS3
side of the duality. We compute the one-loop dilatation operator in a non-trivial compact

subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This

provides the first direct evidence of integrability on the CFT2 side of the correspondence.

Keywords: AdS-CFT Correspondence, 1/N Expansion

ArXiv ePrint: 1411.3676

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)103

mailto:olof.ohlsson.sax@gmail.com
mailto:Alessandro.Sfondrini@physik.hu-berlin.de
mailto:bogdan.stefanski.1@city.ac.uk
http://arxiv.org/abs/1411.3676
http://dx.doi.org/10.1007/JHEP06(2015)103


J
H
E
P
0
6
(
2
0
1
5
)
1
0
3

Contents

1 Introduction 1

2 The D1-D5 system 4

2.1 Field content in the UV 5

2.2 Two-dimensional action by dimensional reduction 5

3 Effective action at the origin of the Higgs branch 7

4 Superconformal representations of the fields 10

4.1 The u(1, 1|2) superalgebra 10

4.2 psu(1, 1|2)L ⊕ psu(1, 1|2)R decomposition of the fields 10

4.3 Spin-chain states 12

5 One-loop dilatation operator in the so(4) sector 13

5.1 “One-loop” Feynman diagrams 14

5.2 Computation of one-loop dilatation operator 16

6 Conclusions 18

A Gamma matrices 20

B G-functions 21

C Regularisation of Feynman diagrams 22

1 Introduction

The AdS/CFT correspondence [1–3] can be understood quantitatively through integrabil-

ity methods in certain classes of AdS5/CFT4 and AdS4/CFT3 dual pairs. Reviews of this

approach and references to the literature can be found in [4, 5]. Superstrings on AdS3
backgrounds with 16 supersymmetries are known to be classically integrable [6–8], and

so one may wonder whether integrability underlies the AdS3/CFT2 correspondence.1 Re-

cently, we have found the complete non-perturbative world-sheet integrable S matrix of

string theory on such AdS3 backgrounds, including the hitherto unaccounted for massless

modes [11–14].2 It appears now very likely that the AdS3/CFT2 correspondence with 16

1For a review of the generalities of the AdS3/CFT2 correspondence see [9]. Some aspects of the integra-

bility approach to AdS3/CFT2 have been recently reviewed in [10].
2For some early work on integrability in the context of AdS3/CFT2 see also [15, 16].
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supersymmetries is described, in the planar limit [17], through a holographic quantum

integrable system.

As a consequence, there exists an all-loop Bethe Ansatz (BA) whose solutions deter-

mine the closed-string spectrum in these backgrounds [6, 18–21].3 It is known that this

BA, in the weak-coupling limit, encodes the energy spectrum of an integrable spin chain

with local interactions [18, 21, 22]. Based on experience with higher-dimensional holo-

graphic integrability, this spin-chain is believed to describe the large-curvature or small ’t

Hooft-coupling limit of a discretised string world-sheet.

In higher-dimensional examples of integrable holography the local integrable spin-chain

emerges in perturbative gauge theory calculations of anomalous dimensions of single-trace

operators, as first shown in [23]. The relation between the spin-chain and perturbative

gauge theory gives strong evidence of integrability of the dual pair at small ’t Hooft cou-

pling. In practice it also provides physical input and a rich testing ground for the weak-

coupling limit of the non-perturbative quantum integrable system. Therefore, identifying

how the spin-chain constructed in [18, 21, 22] emerges on the gauge theory side of the

AdS3/CFT2 correspondence is a key outstanding problem.

The AdS3/CFT2 correspondence is different in a number of important ways from its

higher-dimensional, higher-supersymmetric cousins. Firstly, unlike N = 4 super-Yang-

Mills [24] or ABJM theory [25], the two-dimensional UV gauge theory is not conformal:

the gauge coupling is dimensionful and the CFT2 appears as the IR fixed-point of renor-

malisation group flow. Secondly, the AdS3/CFT2 dual pair has a large moduli space [26],

while the higher-dimensional duals are parametrised (in the planar limit) only by the value

of λ — the ’t Hooft coupling. Thirdly, the two-dimensional UV gauge theory has, in

addition to the (adjoint-valued) gauge vector multiplet, a number of (fundamental- and

adjoint-valued) hypermultiplets.

The moduli space of the two-dimensional UV gauge theory has two branches: the

Coulomb branch and the Higgs branch, which are parametrised by non-zero expectation

values of the scalars in vector multiplets and hypermultiplets, respectively. The moduli

space metric in the IR is closely related to the UV one because of supersymmetry. The

gauge coupling is part of a vector multiplet [27] and so the moduli space metric receives

quantum corrections only on the Coulomb branch [28]. On the other hand the Fayet-

Iliopoulos (FI) parameters [29] and theta angles can be promoted to hypermultiplets and

so that they can appear in the Higgs branch moduli space metric [28]. Both sets of quantum

corrections can be computed exactly because of supersymetry.

Maldacena [1] conjectured that the IR Higgs-branch CFT2 is dual to string theory on

AdS3. From the string theory point of view this is very natural: the AdS3 background

emerges as the near-horizon limit of a stack of Nc D1- and Nf D5-branes, with the two-

dimensional U(Nc) gauge theory living on the D1-branes. In this UV description the

Higgs branch parametrises the motion of the D1-branes inside the D5-branes, while on the

Coulomb branch the D1-branes separate from the D5-branes.

3The original conjecture for the BA [6, 18] was put forward for massive modes only. Later, it was found

that the BA had to be modified when the non-perturbative worldsheet S matrix was constructed [19–21].
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An equivalent description of the Higgs branch is provided by the re-combination process

of the D-branes as an instanton [30]. The D1-branes are absorbed into the D5-branes

forming an instanton (of instanton number Nc) in the SU(Nf ) gauge theory living on

the D5-branes. The low-energy physics [30] matches precisely the ADHM description of

instanton moduli space [31]. Since the moduli-space metric is protected by supersymmetry

(it is in fact hyper-Kähler), the ADHM sigma-model gives a good description of the Higgs

branch CFT2 for generic instanton configurations.

However when the size of the instantons shrinks to zero the moduli-space metric be-

comes singular. Therefore, the CFT2 states whose wave-function is peaked around such

configurations are not well described in terms of a sigma model. There is an alternative

description of such states, which can be obtained from the UV gauge-theory Lagrangian

by dropping the kinetic terms of the vector multiplet and integrating out the fundamental-

valued hypermultiplets, yielding an effective action [32, 33]. This procedure produces new,

non-local kinetic terms and interactions for the vector multiplet fields. As a result, such

fields no longer have canonical dimensions, rather they have geometric scaling dimensions.

The dynamical fields that describe the localised states are adjoint-valued vector multiplets

and hypermultiplets, with 1/Nf being the effective coupling constant.

In this paper we investigate the CFT2 states localised near the small-instanton sin-

gularity using the description given in [32, 33]. The gauge-invariant operators in this

sub-sector of the CFT2 can be written in terms of single- and multi-trace operators in-

volving the vector multiplets and adjoint hypermultiplets. We show that, in the large Nc

limit, the perturbation series re-arranges itself into a ’t Hooft like expansion in λ ≡ Nc/Nf

with non-planar corrections suppressed by factors of 1/N2
c . As a result, in the planar limit

the computation of anomalous dimensions of gauge invariant operators can be reduced to

the the spectral problem of a periodic spin-chain with local interactions, much like was

found for N = 4 SYM [23]. In a closed so(4) sub-sector of the CFT2 we calculate the

one-loop anomalous dimension of single-trace operators in the planar limit (Nc ≫ 1) at

small ’t Hooft coupling Nc/Nf ≪ 1. We show that the resulting computation reduces in

the conventional way [23] to calculating the energy spectrum of an integrable spin-chain.

As far as we are aware, this constitutes the first direct evidence of integrability on the CFT

side of the duality.

In previous works [11, 18, 21, 22], we have constructed an integrable worldsheet S ma-

trix which can be used to calculate the perturbative closed string spectrum to all orders in

the string tension on the AdS3 side. Using this construction, the weakly-coupled spin-chain

limit of the integrable system was obtained [18, 22]. The representations that appear in

this spin-chain are precisely the same as the ones that we find in the spin-chain descrip-

tion of the localised states of the CFT2 that we find in this paper. Further, in the so(4)

sub-sector the dilatation operators of the AdS3 and CFT2 agree. These results lead us to

suggest that we should identify the perturbative closed string spectrum of the pure R-R

AdS3 theory with the CFT2 states localised near the small instanton singularity.

This paper is organised as follows. In section 2 we briefly review the UV description

of the gauge theory in terms of the D1-D5 system and obtain the UV Lagrangian of the

two-dimensional gauge theory by dimensional reduction from six dimensions. In section 3

– 3 –
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we review the description of the CFT2 states localised near the small-instanton singularity

given in [32, 33]. In section 4 we show how the field content of that theory fits into repre-

sentations of psu(1, 1|2)2, which is the rigid part of the small N = (4, 4) super-conformal

algebra, and how such fields are represented in a spin-chain that matches the one intro-

duced in [18, 22]. In section 5 we compute the one-loop dilatation operator in the bosonic

so(4) subsector of the theory, showing that it corresponds to an integrable Hamiltonian.

We conclude in section 6 and relegate some technical material to the appendices.

2 The D1-D5 system

The UV description of the dual pair is encoded in the dynamics of the open strings ending

on a stack of D1 and D5-branes,

Nf D5-branes: 012345,

Nc D1-branes: 01,

with the directions 2345 compactified on a four-torus [1]. The D1- and D5-branes separately

preserve supersymmetry corresponding to N = (8, 8) in two dimensions. However, the

intersection of the two stacks of branes only preserve N = (4, 4). Open strings stretching

between the branes give rise to several multiplets of this symmetry. The D1-D1 strings

correspond to an N = (8, 8) U(Nc) vector multiplet, which splits into an N = (4, 4)

vector multiplet and an adjoint hypermultiplet. The D1-D5 strings give bi-fundamental

U(Nc) × U(Nf ) hypermultiplets. Finally, the D5-D5 strings give an N = (8, 8) U(Nf )

vector multiplet. In the UV we will take the volume of the 2345 directions to be large. As

a result, from the 1+1 dimensional point of view, the D5-D5 strings correspond to non-

normalisable modes. Their kinetic terms come with a factor of the 2345 volume and so can

be decoupled; the U(Nf ) symmetry becomes global. Furthermore, the center-of-mass U(1)

vector multiplet also decouples and the gauge group is given by SU(Nc).

The two-dimensional N = (4, 4) multiplets can be obtained by dimensional reduc-

tion of the corresponding six-dimensional N = (1, 0) multiplets. The six-dimensional

supersymmetry algebra has an R-symmetry that we will denote by su(2)•.
4 Upon reduc-

tion to two dimension we get an additional su(2)L ⊕ su(2)R symmetry corresponding to

rotations in the four compact dimensions. We will also introduce an additional su(2)◦
symmetry under which only the fields in the adjoint hypermultiplet transform. In the

brane-system, the su(2)L⊕su(2)R symmetry corresponds to rotations in the directions 6–9,

while su(2)• ⊕ su(2)◦ gives rotations in the directions 2–5.

In the IR the theory has a small N = (4, 4) superconformal symmetry. The Lie-

superalgebra part of this symmetry algebra is given by psu(1, 1|2)2. Here su(2)L ⊕ su(2)R
plays the role of the R-symmetry, i.e., the two su(2) algebras inside psu(1, 1|2)2 [32]. The

4This notation will be useful to make contact with the isometries of AdS3 × S3 × T4 as described

in refs. [11, 12].
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algebra su(2)• acts on psu(1, 1|2)2 as an outer automorphism, while su(2)◦ commutes with

the other symmetries.5

2.1 Field content in the UV

The vector multiplet consists of the gauge field Aµ, two left-moving fermions ψαȧ
L
, two

right-moving fermions ψα̇ȧ
R
, four scalars φαα̇ and three auxiliary fields Dȧḃ. Under the

global symmetries the fields transform as

su(2)L su(2)R su(2)• su(2)◦

Aµ 1 1 1 1

Dȧḃ 1 1 3 1

φαα̇ 2 2 1 1

ψαȧ
L

1 2 2 1

ψα̇ȧ
R

2 1 2 1

The fundamental hypermultiplet contains two complex scalars H ȧ, a doublet of left-moving

fermions λα̇
L
, a doublet of right-moving fermions λα

R
, as well as two auxiliary complex scalars

F ȧ. The charges of these fields are given by

su(2)L su(2)R su(2)• su(2)◦

H ȧ 1 1 2 1

F ȧ 1 1 2 1

λα̇
L

2 1 1 1

λα
R

1 2 1 1

The field content of the adjoint hypermultiplet is essentially the same as above , but can

be written in terms of real fields by having the full multiplet transforming as a doublet

under the global symmetry su(2)◦. We denote the scalars by T aȧ, the fermions by χα̇a
L

and

χαa
R

and the auxiliary field by Gaȧ. The corresponding charges are given by

su(2)L su(2)R su(2)• su(2)◦

T aȧ 1 1 2 2

Gaȧ 1 1 2 2

χα̇a
L

2 1 1 2

χαa
R

1 2 1 2

2.2 Two-dimensional action by dimensional reduction

To obtain the Lagrangian of the two-dimensional UV field theory one can start with six-

dimensional supersymmetric Yang-Mills theory and dimensionally reduce to two dimen-

sions [24]. In six dimensions, the fermions in the vector multiplet satisfy the symplectic

5Our index conventions are as follows. We indicate so(1, 1) chiralities by L and R. For the IR R-symmetry

so(4) algebra we hence write so(4) = su(2)L ⊕ su(2)R, with su(2)L,R ⊂ psu(1, 1|2)L,R and we represent the

su(2) subalgebras using Greek indices α̇, β̇, . . . and α, β, . . . , respectively. The other so(4) is decomposed

as su(2)• ⊕ su(2)◦ following [11], with each subalgebra by indices ȧ, ḃ, . . . and a, b, . . . , respectively.
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Majorana condition

(ψȧ)∗ = Bǫȧḃψ
ḃ, (2.1)

and are chiral

Γ012345ψȧ = +ψȧ. (2.2)

The Lagrangian for the vector multiplet is

L6D

V = −1

4
trFµνF

µν +
i

2
tr ψ̄ȧ /∇ψȧ +

1

2
trDȧḃD

ȧḃ. (2.3)

The hypermultiplet fermion λ is complex and anti-chiral

Γ012345λ = −λ . (2.4)

The Lagrangian for the hypermultiplet and its couplings to the vector multiplet is

L6D

H = −1

2
∇µH

†
ȧ∇µH ȧ + iλ̄ /∇λ+ iH†

ȧψ̄
ȧλ− iλ̄ψȧHȧ +

1

2
F †
ȧF

ȧ +
1

2
H†

ȧD
ȧḃHȧ. (2.5)

Above we have written the Lagrangian for a hypermultiplet transforming in the fundamen-

tal representation of the gauge group. We will write the Lagrangian for the adjoint-valued

hypermultiplets in its two-dimensional form below.

When we dimensionally reduce from six to two dimensions the so(1, 5) Lorentz sym-

metry is broken to so(1, 1)⊕ so(4) which we write as so(1, 1)⊕ su(2)L ⊕ su(2)R. The gauge

field then splits into a two-dimensional gauge field Aµ and four real scalars φαα̇ that form

a vector of so(4).

Dimensionally reducing the kinetic term for the anti-chiral fermion λ to two dimensions

we find

iλ̄/∂λ = iλ†C/∂λ → iλ†∂tλ+ iλ†γ̂2345∂xλ. (2.6)

Our gamma-matrix conventions can be found in appendix A. From this expression we see

that worldsheet chirality is correlated with so(4) chirality. Hence, we split the fermion λ as

λ → λα̇
L
+ λα

R
(2.7)

so that the kinetic term becomes

iλ†
L α̇(∂t + ∂x)λ

α̇
L
+ iλ†

Rα(∂t − ∂x)λ
α
R
. (2.8)

The fermion ψȧ in the vector multiplet is chiral. The same sort of calculation as above

therefore gives

iψ̄ȧ/∂ψ
ȧ → iψ†

Lαȧ(∂t + ∂x)ψ
αȧ
L

+ iψ†
R α̇ȧ(∂t − ∂x)ψ

α̇ȧ
R
. (2.9)

The full Lagrangian for the two-dimensional vector multiplet is then given by

LV = tr

(

−1

4
FµνF

µν − 1

2
∂µφ

αα̇∂µφαα̇ + iψ†
Lαȧ∇+ψ

αȧ
L

+ iψ†
R α̇ȧ∇−ψ

α̇ȧ
R

−1

4
[φαα̇, φββ̇][φ

αα̇, φββ̇] + iψ†
Lαȧ[φ

αα̇, ψR α̇
ȧ] + iψ†

R α̇ȧ[φ
αα̇, ψLα

ȧ] +
1

2
DȧḃD

ȧḃ

)

.

(2.10)
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The Lagrangian for the fundamental hypermultiplet and its couplings to the vector multi-

plet then takes the form

LH = −1

2
∇µH

†
ȧ∇µH ȧ + iλ†

L α̇∇+λ
α̇
L
+ iλ†

Rα∇−λ
α
R
+

1

2
F †
ȧF

ȧ

− 1

2
H†

ȧφαα̇φ
αα̇H ȧ + iλ†

L α̇φ
αα̇λRα + iλ†

Rαφ
αα̇λL α̇ +

1

2
H†

ȧD
ȧḃHḃ

+ iH†
ȧψ

†αȧ
L λRα + iH†

ȧψ
† α̇ȧ
R λL α̇ − iλ†

L α̇ψ
α̇ȧ
R
Hȧ − iλ†

Rαψ
αȧ
L
Hȧ,

(2.11)

and the Lagrangian for the adjoint hypermultiplet the form

LT = tr

(

−1

2
∇µTaȧ∇µT aȧ + iχ†

L α̇a∇+χ
α̇a
L

+ iχ†
Rαa∇−χ

αa
R

+
1

2
GaȧG

aȧ

− 1

2
[φαα̇, Taȧ][φ

αα̇, T aȧ] + iχ†
R α̇a[φ

αα̇, χLα
a] + iχ†

Lαa[φ
αα̇, χRα̇

a]

+
1

2
Taȧ[D

ȧḃ, T a
ḃ] + iχ†

L α̇a[ψ
α̇ȧ
R
, T a

ȧ] + iχ†
Rαa[ψ

αȧ
L
, T a

ȧ]

)

.

(2.12)

We can now write the full two-dimensional UV Lagrangian as

LUV(φ,H, T ) =
1

g2YM

LV (φ) + LH(H,φ) + LT (T, φ). (2.13)

In the above equation we write φ, H and T as short-hand for all fields in these super-

multiplets, and the dependence of LUV on gYM has been explicitly written out.

3 Effective action at the origin of the Higgs branch

In the previous section we wrote down the two-dimensional N = (4, 4) SYM Lagrangian

LUV for the D1-D5 system in the UV. Since gYM is dimensionful, this theory flows. As

explained in [32], the IR is described by two decoupled CFTs: one corresponding to the

Coulomb branch and the other to the Higgs branch. Within the context of AdS/CFT we

will be interested in the Higgs branch (4, 4) CFT2 [1]. Witten [32] made a proposal for

how to describe this CFT2. The argument is further discussed in [33] and we review it

presently. Since gYM is dimensionful, LV is irrelevant and can be dropped while flowing to

the IR. The IR Lagrangian is then

LIR(φ,H, T ) = LH(H,φ) + LT (T, φ). (3.1)

LIR is conformal provided we assign the fields in the vector multiplet the following geometric

scaling dimensions [32]

dim(A) = 1, dim(φ) = 1, dim(ψ) = 3/2, dim(D) = 2. (3.2)

The fields in the hypermultiplets retain their canonical dimensions.

Conventionally, the Higgs branch CFT can be described as a supersymmetric sigma

model on the Higgs branch moduli space. Such a description can be obtained by integrating

– 7 –
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out the non-dynamical vector multiplet fields in LIR [33]. However, near the origin of the

Higgs branch, this moduli space has a singularity. The degrees of freedom describing states

localised near the origin of the Higgs branch are the adjoint-valued vector multiplet and

hypermultiplet fields [32, 33]. The physics of these localised degrees of freedom is obtained

by integrating out from LIR the fundamental hypermultiplets H

∫

DφDT DH ei
∫
d2xLIR =

∫

DφDT ei
∫
d2x(NfLeff(φ)+LT (T,φ)) . (3.3)

Since the adjoint and fundamental hypermultiplets do not couple to one another in LIR, LT

remains unchanged. On the other hand for the vector multiplet we see that this procedure

results in what Witten called an “induced gauge theory”: the vector multiplet acquires

kinetic terms coming exclusively from performing the path integral over the fundamental

hypermultiplets. In addition to these kinetic terms, the vector multiplet fields also have

higher-order (in the number of fields) interactions determined by the integrating-out proce-

dure. We denote the resulting vector multiplet action by Leff(φ); the Lagrangian governing

the adjoint-valued fields is then

NfLeff(φ) + LT (T, φ) . (3.4)

Notice that Leff(φ) appears with an overall factor of Nf which comes from the sum over

flavours in the fundamental hypermultiplet loop.6 In the remainder of this section we

discuss in more detail Leff(φ) and how it may be used to perform calculations in the

localised sector of the CFT2.

As we mentioned above, integrating out the fundamentals results in the vector multiplet

fields becoming dynamical: Leff contains non-standard kinetic terms that account for the

scaling dimensions given in equation (3.2). Conformal invariance then dictates the form of

the two-point functions of the fields in the vector multiplet. For example, the dimension

one scalar φ has a two-point function of the form

〈φαα̇(x)φββ̇(y)〉 = Cǫαβǫα̇β̇

|x− y|2 , (3.5)

where C is a normalisation constant.

The non-standard kinetic terms in Leff modify the dynamical degrees of freedom in

the vector multiplet. In a theory with a conventional kinetic term, the two-dimensional

gauge field Aµ carries no physical degrees of freedom. In Leff, on the other hand, Aµ has

a non-standard kinetic term, and so the gauge field will now carry one degree of freedom.

Similarly, the field Dab is auxiliary in the standard Lagrangian, but is a physical field of

dimension 2 in the effective theory. N = (4, 4) supersymmetry [37], should be powerful

enough to determine the kinetic terms of the full vector multiplet from the kinetic term of

the scalars φ.7

6This action is reminiscent of the Coulomb branch action. The relationship between the two is discussed

in refs. [33, 36].
7We are grateful to Chris Hull for discussions about this.
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Witten’s description of the states localised near the singularity of the Higgs branch in

terms of Leff simplifies when Nc = 1. In that case, it was argued in [33] that the description

reduces to a level Nf supersymmetric SU(2) WZW model coupled to a charged scalar of

charge Q = (Nf−1)
√

2/Nf . In [33], it is argued that the fields φaȧ are composite operators

φαα̇ = e
√

2/Nfϕuαα̇ , (3.6)

where u is the fundamental field of the WZW model and ϕ is the charged scalar. Using

the well-known OPEs of u and ϕ one finds

φαα̇(x)φββ̇(y) ∼ ǫαβǫα̇β̇

|x− y|2−
5

2Nf

. (3.7)

This is consistent with our expression (3.5) in the large Nf limit.

The effective Lagrangian Leff also contains higher-order terms in the vector multiplet

fields. We now describe how these interactions arise from LIR and the integrating-out

procedure. In the Lagrangian LIR there are interaction vertices involving fields from the

fundamental hypermultiplet and fields from the vector multiplet. Hence, the fundamental

hypermultiplet mediates interactions between fields of the vector multiplet. Let us look at

an example which will be important in section 5. The vector multiplet scalar field φ appears

quadratically in the Lagrangian LIR. It interacts with the fundamental hypermultiplet

through the terms H†φφH and λ†φλ, see equation (2.11). As a result, when performing the

path integral over the fields H and λ in equation (3.3) the resulting functional determinant

will yield a non-local quartic effective vertex for φ. This is most transparent in terms of

Feynman diagrams:8

= + . (3.8)

Here the double lines correspond to φ, the single solid lines to H and the dashed lines to λ.

The fat dot stands for the effective vertex, while the diagrams on the right hand side can

be written using the Feynman rules of LIR. Equation (3.8) provides us with an efficient

way to compute diagrams involving effective vertices. This information, together with the

propagator of equation (3.5) is all we will need to study the one loop mixing of operators

in section 5. This kind of diagrammatics, as well as the scaling in Nf of equation (3.4), is

reminiscent of large-N models [40].

We conclude this section by noting that there are two parameters in the theory: the

number of flavours Nf and the number of colours Nc. In the effective Lagrangian, Nf

plays the role of the Yang-Mills coupling 1/g2YM. Hence, it is natural to consider the

weakly coupled ’t Hooft limit, where Nf , Nc → ∞ with Nc/Nf ≪ 1 fixed.

8The effective vertex has a particularly simple expression in terms of Feynman diagrams because the

Lagrangian LIR is quadratic in the fields λ and H that are integrated out. Hence, the functional integration

in equation (3.3) reduces to an one-loop determinant.
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4 Superconformal representations of the fields

In this section we show how the field content of the theory described above fits in repre-

sentations of psu(1, 1|2)2, which is the rigid part of the small N = (4, 4) superconformal

algebra, and how these match with the representations used in the spin-chain constructed

in [18, 22]. We start by briefly reviewing the u(1, 1|2) superalgebra.

4.1 The u(1, 1|2) superalgebra

The u(1, 1|2) superalgebra consists of the su(2) R-symmetry generatorsRa
b, the translation

P, the supercharges Qa and Q̇a, the dilatation D, the special conformal transformation K,

the conformal supercharges Sa and Ṡa, the central charge C and the hypercharge B. We

write the su(2) commutation relations as

[Jab,R
c] = +δcbR

a − 1

2
δabR

c, [Jab,Rc] = −δacR
b +

1

2
δabRc, (4.1)

where R is an arbitrary generator. The su(1, 1) algebra takes the form

[K,P] = 2D, [D,P] = +P, [D,K] = −K. (4.2)

The action of P and K on the supercharges is given by

[K,Qa] = +Ṡa, [K, Q̇a] = +Sa, [P,Sa] = −Q̇a, [P, Ṡa] = −Qa, (4.3)

and the non-trivial anti-commutators by

{Qa, Q̇
b} = δbaP, {Qa,S

b} = −Jba + δba(D− C),

{Sa, Ṡb} = δabK, {Q̇a, Ṡb} = −Jab + δab (D+ C).
(4.4)

The (conformal) supercharges carry dimension (D) and hypercharge (B)

dim(Q) = +
1

2
, dim(Q̇) = +

1

2
, dim(S) = −1

2
, dim(Ṡ) = −1

2
,

hyp(Q) = +
1

2
, hyp(Q̇) = −1

2
, hyp(S) = −1

2
, hyp(Ṡ) = +

1

2
.

(4.5)

Since the hypercharge B never appears on the right hand side of the commutation relations

we can drop it to obtain the algebra su(1, 1|2). If the central charge C vanishes we instead

get pu(1, 1|2). Combining these two conditions we obtain the psu(1, 1|2) algebra.

4.2 psu(1, 1|2)L ⊕ psu(1, 1|2)R decomposition of the fields

The maximal finite-dimensional subalgebra of the small N = (4, 4) superconformal algebra

is psu(1, 1|2)L ⊕ psu(1, 1|2)R. To distinguish the generators of the two copies of psu(1, 1|2)
we use subscripts L and R. We also introduce the u(1) generators

D = DL +DR, S = DL −DR, J = JL + JR,

J• = BL +BR, M = S− JL + JR.
(4.6)
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Spin-chain D S JL JR J• CFT2

φ±
L φ

±
R 1 0 ±1

2 ±1
2 0 φαα̇

φ±
L ψ

±
R

3
2 −1

2 ±1
2 0 ±1

2 ψα̇ȧ
R

ψ±
L φ

±
R

3
2 +1

2 0 ±1
2 ±1

2 ψαȧ
L

ψ±
L ψ

±
R 2 0 0 0 ±1

ǫµνFµν , D
ȧḃ

ψ±
L ψ

∓
R 2 0 0 0 0

DL 1 +1 0 0 0 ∇+

DR 1 −1 0 0 0 ∇−

Table 1. Charges of the states in the representation (− 1

2
; 1

2
)L ⊗ (− 1

2
; 1

2
)R and their relation to

the degrees of freedom of the spin-chain and CFT2. We use φ±

L/R to denote the su(2)L/R doublet

of scalars in the (− 1

2
; 1

2
)L/R representation, while ψ±

L/R denotes the two fermions. The su(1, 1)L/R
descendants are obtained by acting on these states with DL/R.

The states appearing in the representation9 (−1
2 ;

1
2)L⊗(−1

2 ;
1
2)R of this algebra were used to

construct the all-loop massive S matrix of the AdS3 × S3 ×T4 superstring [18]. We collect

them in table 1. To compare these states with the ones appearing in the field theory, we

identify the su(2)L ⊕ su(2)R ⊂ psu(1, 1|2)L ⊕ psu(1, 1|2)R with the so(4) we got by reducing

from six to two dimensions. We further let D measure the dimension and S the Lorentz

spin. Finally we identify J• with the u(1) part of the su(2)• R-symmetry. We will now see

how the states in the (−1
2 ;

1
2)L ⊗ (−1

2 ;
1
2)R match the field theory states.

First we have four scalars with dimension 1 transforming as a bispinor under su(2)L ⊕
su(2)R. These correspond to the fields φαα̇. There are eight dimension 3

2 fermions that

have charge ±1
2 under J•. The fermions with spin +1

2 are doublets under su(2)R and those

with spin −1
2 are doublets under su(2)L. This matches the chiral and anti-chiral spinors

ψαȧ
L

and ψα̇ȧ
R
. The su(1, 1)L and su(1, 1)R descendants are obtained by acting with DL and

DR. These correspond to the left- and right-moving covariant derivatives ∇t ±∇x.

Finally, there are four bosons of dimension 2, which are only charged under su(2)•,

which decompose into a singlet and a triplet. The triplet can be identified with the auxiliary

field Dȧḃ, while the singlet comes from the field strength ǫµνFµν = 2ǫµν∇µAν . Hence, the

field strength multiplet perfectly fits into (−1
2 ;

1
2)L ⊗ (−1

2 ;
1
2)R.

The multiplet discussed here is very similar to the field strength multiplet of N = 4

SYM (see e.g. ref. [38]). However, the two-dimensional field strength has only a single

component Ftx = −Fxt. Further, as seen above the field strength multiplet contains the

normally auxiliary field Dȧḃ which now is dynamical. In table 1 we also summarise the

identifications of the spin-chain and CFT2 variables.

The states in the adjoint hypermultiplet can also be organised into psu(1, 1|2)L ⊕
psu(1, 1|2)R representations. However, in this case the representations are reducible. The

9We denote by (− 1

2
; 1

2
) the short representation of psu(1, 1|2) having highest weights − 1

2
and 1

2
for its

bosonic sub-algebras su(1, 1) and su(2), respectively. The representation (− 1

2
; 1

2
)∗ differs from (− 1

2
; 1

2
) by

having a fermionic, rather than bosonic, highest weight state.
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spin-chain D S JL JR J• J◦ CFT2

ψ̃±
L 1

±
R

1
2 +1

2 ±1
2 0 0 ±1

2 χα̇a
L

φ̃±
L 1

±
R 1 +1 0 0 ±1

2 ±1
2 ∇+T

aȧ

1±L ψ̃
±
R

1
2 −1

2 0 ±1
2 0 ±1

2 χαa
R

1±R φ̃
±
R 1 −1 0 0 ±1

2 ±1
2 ∇−T

aȧ

DL 1 +1 0 0 0 0 ∇+

DR 1 −1 0 0 0 0 ∇−

Table 2. Charges of the states in the representation 1±L ⊗ (− 1

2
; 1

2
)∗R and (− 1

2
; 1

2
)∗L ⊗ 1±R and their

relation to the degrees of freedom of the spin-chain and CFT2. The fermions ψ̃±

L/R form an su(2)L/R

doublet and φ̃±

L/R denote the two bosons in the (− 1

2
; 1

2
)∗
L/R representations. The su(1, 1)L/R descen-

dants are again obtained by acting with DL/R.

scalars T±± have vanishing dimensions, spin and su(2)L⊕ su(2)R charge. Hence, they form

singlets under psu(1, 1|2)L ⊕ psu(1, 1|2)R. However, they have spin 1/2 under both su(2)•
and su(2)◦.

The remaining states of the hypermultiplet are charged under either psu(1, 1|2)L or

psu(1, 1|2)R. The left-moving fermions χ+±
L are the highest-weight states of (−1

2 ;
1
2)

∗
L
⊗ 1±R ,

where 1±R denotes two psu(1, 1|2)R singlets that form a doublet under su(2)◦. The other

states in these representations are given by χ−±
L and ∇+T

±± as well as the su(1, 1)L
descendants obtained by acting with ∇+. Similarly, the right-moving fermions χ+±

R are

highest-weight states of the modules 1±L ⊗(−1
2 ;

1
2)

∗
R
, which further contain χ−±

R and ∇−T
±±

as well as the states obtained by the action of ∇−. The charges of the states in these

multiplets and the identification of spin-chain and CFT2 degrees of freedom are summarised

in table 2. This structure matches the reducible spin chain constructed in ref. [22].

4.3 Spin-chain states

We can now construct local operators using the states in the field strength multiplet and

adjoint hypermultiplet. The simplest such state is the 1/2-BPS ground state

tr
[

(φ++)L
]

. (4.7)

Starting with this state we can obtain excited states by replacing the field at a site by any

other adjoint field. Let us first restrict ourselves to the fields in the field strength multiplet.

Such an operator will consist of L sites each containing a state from the (−1
2 ;

1
2)L⊗(−1

2 ;
1
2)R

representation of psu(1, 1|2)L ⊕ psu(1, 1|2)R. This is exactly the operators that appear in

the integrable spin-chain constructed in [18]. The Hamiltonian acting on the spin-chain is

given by the charge H = D−J. In the next section we will calculate the one-loop correction

to this Hamiltonian in a closed sub-sector.

The ground state (4.7) is the highest weight state in the short (−L
2 ;

L
2 )L ⊗ (−L

2 ;
L
2 )R

representation of psu(1, 1|2)L⊕psu(1, 1|2)R, and carries u(1) charges D−J = 0 and M = 0.

The lowest-lying excitations, i.e., the excitations with lowest eigenvalue for D− J, created
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by the fields in the field strength multiplet can be grouped into two sets. Replacing one of

the fields φ++ in the ground state by any of the fields

φ−+, ∇+φ
−+, ψ++

L
, ψ−+

L
(4.8)

results in a state with D − J = 1 and M = +1. We can also consider the excitations

φ+−, ∇−φ
+−, ψ++

R
, ψ−+

R
(4.9)

which carry charges D − J = 1 and M = −1. These two sets of excitations form two

multiplets of the centrally extended psu(1|1)4c.e. used to construct the S matrix in [21]. The

remaining fields in the field strength multiplet can be though of as composite excitations

constructed out of the eight fundamental excitations.

Let us now consider excitations created from fields in the adjoint hypermultiplet. The

four bosonic and four fermionic fields

T±±, χ+±
L

, χ+±
R

, (4.10)

all carry charges D − J = 0 and M = 0. They can be inserted into the operator with

no cost of energy, and hence correspond to gapless excitations. Since the scalars T aȧ

form singlets under psu(1, 1|2)L ⊕ psu(1, 1|2)R the resulting spin-chain states are exactly

of the type that appears in the reducible spin-chain discussed in [22]. The excitations fit

perfectly in the massless psu(1|1)4c.e. ⊕ su(2)◦ representation discussed in [11, 12]. While

the operators containing these fields form reducible short representations at tree-level, we

expect them to join into long irreducible representations once we include the interactions.

A similar mechanism explains the fact that at zero coupling this theory seems to have too

many chiral primaries with respect to the supergravity dual or to the symmetric product

orbifold CFT [39]. Naively, arbitrary products of χ+±
L , χ+±

R give chiral primary composite

operators. However, all but few of these are accidental chiral primaries, whose dimension

is corrected at non-zero coupling [22]. We hope return to the investigation of the exact

details of these mechanisms and of the chiral ring in the future.

5 One-loop dilatation operator in the so(4) sector

In this section we will compute, in the planar limit, the one-loop anomalous dimensions

of operators in the effective CFT2 proposed by Witten. We restrict ourselves to operators

made up of scalar fields from the vector multiplet, which form a one-loop closed subsector

charged under so(4).10 We find that the computation of these anomalous dimensions can

be re-phrased in terms of finding the spectrum of a nearest-neighbour Hamiltonian for a

homogenous so(4) spin chain, in a manner similar to the seminal work of Minahan and

Zarembo [23]. As we will show explicitly, such an Hamiltonian has precisely the right form

to be integrable.

Witten’s prescription for the dynamics for states localised near the origin of the Higgs

branch is closely related to the “large-N” approach11 widely used in the study of sigma

10We will return to the analogous computation for the complete theory in an upcoming work.
11See [40] for reviews and a more extensive list of references.
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models [41]. In the present setting it is Nf that plays the role of “large-N”, while taking

Nc large will ensure that we can restrict to single-trace operators. Let us then consider

single-trace operators made out of scalar fields from the vector multiplet,

OA = tr
(

φα1α̇1φα2α̇2 · · ·φαJ α̇J
)

. (5.1)

Since these operators are charged only under so(4) = su(2)L ⊕ su(2)R we refer to it as

the so(4) sector. Our goal is to find the one-loop dilatation operator acting on these

operators. To extract the dilatation operator we consider the one-loop corrections to the

local operators. These corrections are generally UV divergent, which means we need to

introduce counter-terms and renormalised operators

OI,ren = ZI
JOJ,bare, Z = 1 + λ2Z2 + · · · . (5.2)

The matrix Z cancels the UV divergences in the one-loop corrections, and introduces a

mixing between different operators. In a perturbative calculation it can be extracted as

minus the divergent piece of the sum of all Feynman diagrams. In dimensional regulari-

sation we consider the theory in D = d + 2ǫ dimensions and divergences appear as poles

in ǫ. For non-zero ǫ the coupling constant is dimensionful. Hence we introduce as mass

parameter µ so that the full coupling constant can be written as µ2ǫλ. The corrections to

the dilatation operator can then be extracted as

δD = µ
d

dµ
logZ(µ2ǫλ, ǫ)

∣

∣

∣

∣

ǫ=0

. (5.3)

In the planar limit, the one-loop dilatation operator acts locally on two neighbouring

fields of the operators. From so(4) symmetry we expect it to take the form

L
∑

k=1

(δb1a1δ
ḃ1
ȧ1
) · · · (δbk−1

ak−1
δ
ḃk−1

ȧk−1
)M

bk ḃkbk+1ḃk+1

akȧkak+1ȧk+1
(δ

bk+2
ak+2

δ
ḃk+2

ȧk+2
) · · · (δbJaJ δ

ḃJ
ȧJ
), (5.4)

where M is an so(4) invariant tensor, which can be built out of the identity 1, the per-

mutation P and the trace K. The dilatation operator should preserve supersymmetry. In

particular it should annihilate chiral primary operators such as (4.7), since the dimension

of these operators is protected. Since this operator is symmetric and traceless, we can

impose supersymmetry by requiring the tensor M to take the form

M = c1(1− P) + c2K , (5.5)

for some constants c1 and c2. Hence, we only need to consider Feynman diagrams that act

non-trivially in flavour space.

5.1 “One-loop” Feynman diagrams

We now proceed to compute the Feynman diagrams in order to determine the form of

the spin-chain Hamiltonian for the so(4) sector involving φαα̇. The dynamics of the field

φ is given by the effective Lagrangian Leff. This has non-standard propagators and non-

local effective vertices. As we have discussed in section 3, such propagators are fixed by
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conformal invariance, cf. equation (3.5), and the effective interaction vertices are given by

one-loop diagrams of LIR, like in (3.8). This provides a systematic expansion of Leff in

Feynman diagrams.

We are interested in the limit of a large number of colours Nc and flavours Nf , with

the ’t Hooft coupling λ = Nc/Nf fixed and small. The (effective) diagrams that contribute

to the two-point function at one loop and are divergent by power counting are

, (5.6)

where the straight and wiggly double lines indicate the effective propagators of the scalars

and gluons from the vector multiplet, and the fat dots represent effective vertices obtained

by one-loop sub-diagrams with a field from the fundamental hypermultiplet running in the

loop. The large blob in the last diagram represents the one-loop self energy. As we saw in

eq. (3.8), the four-scalar interaction comes from the diagrams

= + , (5.7)

while the gluon-scalar interaction is given by

= + . (5.8)

Above, the single dashed and solid lines correspond to fundamental fermions and scalars,

respectively. We refer to the diagrams in (5.6) as one-loop diagrams, because they all

give a contribution proportional to the coupling λ = Nc/Nf . In practice, to compute

them we need to plug in the effective vertices (5.7), (5.8), yielding several loops for each

diagram. Let us see in more detail how this counting of λ goes for the diagrams in (5.6).

We first note that the above vertices all contain a single loop of fields from the fundamental

hypermultiplet, which gives an overall factor of Nf . Furthermore, the effective action for

the fields in the vector multiplet is proportional to Nf . Hence, each double line propagator

in (5.6) gives a factor 1/Nf . Finally, in each diagram there is a single sum over colour

indices in the loop, which gives a factor of Nc. Since the number of effective vertices in

each diagram is one less than the number of internal propagators the overall factor for each

diagram is Nc/Nf .

In principle we should also consider the diagrams above, but with the fields from the

fundamental hypermultiplet replaced by the corresponding fields in the adjoint hypermul-

tiplet. However, in that case the sums over flavours in the loops are replaced by a sum over

colours. Hence, the resulting diagrams are suppressed at small λ. The counting of factors

of Nc and Nf is illustrated in figure 1.

Let us now look at the flavour structure of the diagrams in (5.6). The second and

fourth diagram give no non-trivial so(4) flavour interactions. As discussed above, the

coefficient of the so(4) identity tensor 1 in the dilatation operator can be determined using
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1

Nf

1

Nf
Nc

Nf

(a) Nc/Nf .

1

Nf

1

Nf

1

Nf

Nc

Nf

Nf

(b) Nc/Nf .

1

Nf

1

Nf
Nc

Nc

(c) (Nc/Nf )
2.

Figure 1. Example of counting of factors of Nc and Nf for three diagrams. The double lines

represent adjoint fields and the single line give particles transforming in the fundamental repre-

sentation of the gauge group. Each closed loop gives a factor of Nc or Nf depending on which

representation the fields in the loop transform under. Additionally, each propagator for a field in

the vector multiplet give a factor 1/Nf . The first two diagrams are proportional to Nc/Nf and

hence count as one-loop diagrams. The dotted propagator in the third diagram corresponds to a

fermion in the adjoint hypermultiplet. This diagram is proportional to (Nc/Nf )
2 and is therefore

suppressed in the weakly-coupled planar limit.

supersymmetry. Hence, we do not need to calculate those diagrams. The third diagram

in (5.6) gives an so(4) trace in flavour space. By expanding the effective vertices in this

diagram in terms of the one-loop diagrams with a fundamental hyper, we find four different

diagrams. However, all four vanish due to symmetry as detailed in appendix C. Hence, the

first diagram in (5.6) is the only one we have to compute.

5.2 Computation of one-loop dilatation operator

In this sub-section we consider the first diagram in (5.6). As was shown above, it is only

this diagram that has a potentially non-trivial so(4) flavour structure and hence is needed

to determine the dilatation operator. We may expand the diagram by plugging in the

effective vertices (5.7) and (5.8)

= + + . (5.9)

In fact, the first of these diagram again has a trivial flavour structure and so we do not

need to calculate it. The second diagram gives an so(4) trace in flavour space, and we

compute it in appendix C. There we show that the corresponding integral is UV-finite, and

therefore does not contribute to the mixing matrix. We are only left with the last diagram,

the fermion box

. (5.10)

The left- and right-moving fermions λL and λR in the hypermultiplet are charged under

su(2)L and su(2)R, respectively. The cubic vertices in the fermion box diagram in (5.10)
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λ̄L

φ λR

λ̄Rφ

λL

λ̄R φ

λL

λ̄L

φλR

=

ak ȧk ak+1 ȧk+1

bk ḃk bk+1 ḃk+1

(a) δ
bk
ak
δ
bk+1
ak+1

ǫȧkȧk+1
ǫḃk ḃk+1 .

λ̄R

φ λL

λ̄Lφ

λR

λ̄L φ

λR

λ̄R

φλL

=

ak ȧk ak+1 ȧk+1

bk ḃk bk+1 ḃk+1

(b) ǫakak+1
ǫbkbk+1δ

ḃk
ȧk
δ
ḃk+1

ȧk+1
.

Figure 2. The flavour structure of the fermion box diagram for the two fermion chiralities. The

dashed red lines represent the su(2)L flavour, while the su(2)R flavour is represented by solid blue

lines. A vertical line connecting the operator at the bottom with an external line corresponds to a

Kronecker δ while a line connecting two sites of the operator or two external lines corresponds to a

Levi-Civita tensor ǫ.

each couple φ to λL and λR. Hence, the diagram in (5.10) in fact corresponds to two

diagrams that differ in the assignment of chiralities of the fermions in the loop. It turns

out that the two diagrams result in two different flavour structures.

Let us consider such flavour structures in more detail. In each propagator and each

vertex the su(2)L and su(2)R indices are contracted by invariant ǫ-symbols as shown in

figure 2. In the figure the su(2)L (su(2)R) indices are represented by dashed red (solid

blue) lines. A line connecting the operator at the bottom with an external line gives a

contraction with a Kronecker δ while a line connecting two sites of the operator or two

external lines contracts the indices with a Levi-Civita tensor ǫ.

The computation of the divergence for each of these diagrams is somewhat involved

due to the propagator (3.5). It is straightforward, however, to show that the difference of

the two resulting integrals is finite, see appendix C. To perform the calculation for the sum

of the diagrams we work in two steps. We first compute the integral in dimension d using

the propagator of (3.5), that in momentum space is

〈φαα̇(−p)φββ̇(+p)〉 = C ′ǫαβǫα̇β̇

|p|2(d/2−1)
. (5.11)

The resulting integral has a UV log-divergence in any d > 2. We then check that the

diagram remains UV divergent also when taking d → 2. As the diagram (5.10) is logarith-

mically divergent in the UV it contributes to the dilatation operator. We again relegate

the details of such calculation to appendix C.

We have concluded that the divergent part of the fermion-box diagram yields a con-

tribution to the mixing matrix M of the form

M
bk ḃkbk+1ḃk+1

akȧkak+1ȧk+1
∝ δbkakδ

bk+1
ak+1

ǫḃk ḃk+1ǫȧkȧk+1
+ ǫbkbk+1ǫakak+1

δḃkȧkδ
ȧk+1

ȧk+1
. (5.12)

To simplify this we introduce the identity operator 1 and permutation P acting on the

tensor product of two spin-1/2 su(2) representations. If Ψa is an su(2) doublet this action

can be written as

1 |ΨaΨb〉 = |ΨaΨb〉 , P |ΨaΨb〉 = |ΨbΨa〉 . (5.13)
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The combination 1
2(1− P ) then represents a projector onto the su(2) singlet

1

2
(1− P ) |ΨaΨb〉 = 1

2
(|ΨaΨb〉 − |ΨbΨa〉) = 1

2
ǫabǫcd |ΨcΨd〉 . (5.14)

Since the divergence of both fermion box diagrams shown in figure 2 is the same, the flavour

structure of the mixing matrix M can then be written as

M ∝ 1⊗ (1− P ) + (1− P )⊗ 1 = 1⊗ 1− P ⊗ P + (1− P )⊗ (1− P )

= 1− P+K .
(5.15)

Since the above operator annihilates the supersymmetric vacuum (4.7) by itself, and since

the diagrams that we have refrained from computing so far do not, we find that these must

cancel by supersymmetry.

We conclude that the one-loop dilatation operator in this sector is given by

δD ∝ Nc

Nf

L
∑

k=1

(

1− P+K
)

k,k+1
, (5.16)

in the so(4) sector, up to an overall numerical constant. This is precisely the Hamiltonian

of the integrable so(4) spin-chain [42, 43].

6 Conclusions

In this paper we have investigated the Higgs-branch CFT2 states that are localised near

the small-instanton singularity. Using Witten’s description of such states [32], we showed

that they can be analysed in a planar, weak-coupling limit, with λ ≡ Nc/Nf playing the

role of the ’t Hooft coupling and non-planar diagrams suppressed by powers of 1/N2
c . We

demonstrated that at small λ and large Nc computing the anomalous dimension of such

operators reduces to the calculation of the spectrum of a nearest-neighbour spin chain.

Further, in a sub-sector of the theory, we showed that the Hamiltonian of the spin-chain is

integrable.

The dynamics of states localised near the origin of the Higgs branch features a vector

multiplet and an adjoint-valued hypermultiplet, and is governed by a non-local effective

action [32]. Remarkably, the field content in this effective theory that is used to describe

the CFT2 spin-chain matches precisely the representations that appear in the local inte-

grable spin-chain obtained by taking the small ’t Hooft coupling constant limit of the AdS3
integrable system [18, 21, 22]. For this matching to occur, it is necessary for the auxiliary

fields present in the vector multiplet to become dynamical. This property is characteristic

of supermultiplets with non-canonical kinetic terms, such as the ones that appear in the

action introduced in [32]. Still, the composite operators in this theory are simply the con-

ventional gauge-invariant sequences of adjoint-valued fields, and in the large-Nc limit of the

CFT2 one may restrict to single-trace operators. We calculated the anomalous dimensions

of such operators in the scalar so(4) sub-sector of the theory, a calculation which should

be dual to the one of part of the closed-string spectrum. We have shown that this results
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in an integrable Hamiltonian for the vector representation of so(4) in a manner that is

reminiscent of [23]. This is the first appearance of integrability on the CFT2 side of the

duality. Together with the evidence for integrability that has been found on the string

theory side [11–14], it provides a powerful argument for a holographic integrability descrip-

tion of AdS3/CFT2. This evidence leads us to suggest that the perturbative closed strings

of the R-R AdS3 background are dual to CFT2 states localised near the small-instanton

singularity.

In a forthcoming paper, we will return to the computation of the complete CFT2 spin-

chain Hamiltonian. There, we will also address the issue of length-changing effects that

are expected to occur in the complete spin-chain, much as they do in N = 4 SYM [44].

This should allow us to understand better, from the weakly-coupled CFT2 point of view,

how the massless modes enter into the reducible spin-chain description introduced in [22].

It will also allow for a CFT2-based understanding of the S matrix constructed in [11, 12].

In this context it will be particularly illuminating to extend the analysis of the chiral-ring

of the CFT2 that was initiated in [22].

It is widely believed that the SymN (T4) orbifold can be found at some point in the

moduli space of the N = (4, 4) CFT2 that we have been investigating in this paper.

However, it appears to be much harder to understand the spin-chain picture starting from

the SymN (T4) orbifold point [45], though many suggestive connections seem to exist. It

would be interesting to see whether it is possible to deform the spin-chain [18, 22] to

approach the SymN (T4) orbifold point. It is not clear to us whether the connection to the

orbifold can be fully understood in the small λ limit.12

Throughout this paper we have focused on the CFT2 description of the D1-D5 system,

or in other words on string geometries supported by R-R three-form flux only. More

generally, the AdS3/CFT2 correspondence is believed to hold for configurations involving

NS5-branes and fundamental strings in addition to the D1- and D5-branes. In this case

the string geometry is supported by a mixture of NS-NS and R-R three-form flux, giving a

family of backgrounds related by Type IIB S-duality. The all-loop worldsheet S matrix for

these backgrounds is known [13, 46], and we expect also these dualities to be governed by

a quantum integrable system. It would be interesting to understand whether an integrable

spin-chain picture emerges in this setting too. It would also be interesting to understand

how recent work on higher-spin limits of AdS3/CFT2, such as [47], can be related to our

findings. Recent progress on understanding the large N = (4, 4) AdS3/CFT2 duality [48]

opens up the possibility of establishing the expected connections to integrability more

firmly.

The “large-N” method (which here means large Nf ) is particularly useful in the study

of the effective theory describing states localised near the origin of the Higgs branch, as

was originally advocated by Witten [32]. In this paper, we have used this approach to

perform some simple computations of anomalous dimensions at leading order. But large-

N techniques have been very widely exploited for a long time and an extensive set of

tools exists to perform calculations in this approach. As a result, we expect that these

12We are grateful to Kostya Zarembo for discussions on this point.
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methods, combined with integrability, will lead to significant advances in understanding

generic unprotected quantities in the AdS3/CFT2 correspondence in the near future.
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A Gamma matrices

We use the gamma matrices

Γ0 = +iσ2 ⊗ σ3 ⊗ σ3,

Γ1 = −σ1 ⊗ 1 ⊗ σ3,

Γ2 = −σ2 ⊗ σ2 ⊗ 1 ,

Γ3 = +σ2 ⊗ σ1 ⊗ σ3,

Γ4 = −σ1 ⊗ σ2 ⊗ σ1,

Γ5 = +σ1 ⊗ σ2 ⊗ σ2.

(A.1)

In this basis a generic six-dimensional spinor can be written as a tri-spinor Ψα0α1α2
. In-

troducing the intertwiners

C = −Γ0, B = Γ0125, T = BtC. (A.2)

the Gamma matrices satisfy

CΓµC−1 = −(Γm)†, BΓµB−1 = −(Γm)∗, TΓµT−1 = +(Γm)t. (A.3)

We also have

Γ012345 = −σ3 ⊗ 1⊗ 1, Γ01 = −σ3 ⊗ σ3 ⊗ 1, Γ2345 = +1⊗ σ3 ⊗ 1. (A.4)
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It is also useful to note
CΓ0 = 1 ⊗ 1 4,

CΓ1 = σ3 ⊗ γ̂2345,

CΓ2 = 1 ⊗ γ̂2,

CΓ3 = 1 ⊗ γ̂3,

CΓ4 = σ3 ⊗ γ̂4,

CΓ5 = σ3 ⊗ γ̂5,

(A.5)

where we have introduced the so(4) gamma matrices

(γ̂i)aȧ,bḃ =

(

0 (γi)aḃ
(γ̃i)ȧb 0

)

, (A.6)

with

γ2 = +σ3, γ3 = −i1, γ4 = +σ2, γ5 = +σ1, γ̃i = +(γi)†, (A.7)

and

γ̂2345 = σ3 ⊗ 1. (A.8)

We also have
TΓ0 = +1 ⊗ t,

TΓ1 = +1 ⊗ tγ̂2345,

TΓ2 = +1 ⊗ tγ̂2,

TΓ3 = +1 ⊗ tγ̂3,

TΓ4 = +σ3 ⊗ tγ̂3,

TΓ5 = +σ3 ⊗ tγ̂5,

(A.9)

where the four-dimensional transpose intertwiner is given by

t = σ3 ⊗ ǫ. (A.10)

B G-functions

It is useful to introduce the basic one-loop integrals

∫

dDk

(2π)D
1

k2α(k − p)2β
=

1

p2(α+β−D/2)
G(α, β),

∫

dDk

(2π)D
kµ

k2α(k − p)2β
=

pµ

p2(α+β−D/2)
G1(α, β),

∫

dDk

(2π)D
k · (p− k)

k2α(k − p)2β
=

1

p2(α+β−1−D/2)
G2(α, β).

(B.1)

The function G is given by

G(α, β) =
1

(4π)D/2

Γ(α+ β −D/2)Γ(D/2− α)Γ(D/2− β)

Γ(α)Γ(β)Γ(D − α− β)
. (B.2)

– 21 –



J
H
E
P
0
6
(
2
0
1
5
)
1
0
3

The integrals with non-trivial numerators can be expressed in terms of the above integral as

G1(α, β) =
1

2

(

G(α, β)−G(α, β − 1) +G(α− 1, β)
)

,

G2(α, β) =
1

2

(

G(α, β)−G(α, β − 1)−G(α− 1, β)
)

.

(B.3)

C Regularisation of Feynman diagrams

In this appendix we present the details of the Feynman diagram calculation discussed

in section 5. Since we are in two dimensions the IR properties of the theory are rather

delicate [32]. What is more, the effective propagator for the vector multiplet fields that

follows from the two-point function (3.5) is logarithmic in momentum space. All this

makes it difficult to evaluate the loop-momenta integrals. To overcome such technical

complications we propose the following method. We will compute the one-loop anomalous

dimensions in a large Nf expansion for a general dimension d > 2, following which we will

take the limit d → 2.13 This method is useful because the effective propagator for the

scalars φ in dimension d > 2 has a simple form in momentum space (5.11). It also allows

us to retain much better control over the IR region of momentum integration. We believe

this prescription is physically well motivated, because we are interested in the anomalous

dimensions of the CFT2 which are related to the UV properties of the theory. Furthermore,

within the large-N approach anomalous dimensions are often computed in a similar manner

for generic d [49, 50] and, when finite, the d → 2 limit can be taken.

The leading order diagrams that we are interested in are given in equation (5.6). The

diagrams that give non-trivial flavour interactions are

, (C.1)

and

. (C.2)

The four diagrams in (C.1) involving a gluon exchange all vanish by symmetry. As an exam-

ple of this let us consider the lower subgraph of the second and fourth diagram containing

a scalar bubble

. (C.3)

13The loop-momentum integrals will be performed in dimensional regularisation — we will evaluate them

first in dimension D and then analyticaly continue D → d.
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This integral can be represented by the two diagrams

µ

µ

p

+

µ

µ

p

, (C.4)

where the arrows indicate a factor of the corresponding momentum in the numerator of

the integral. Reflecting the second diagram horizontally gives the first diagram but with

the momentum insertion in the opposite direction so that the two diagrams sum to zero.

A similar argument can be used to show that the fermion triangle appearing in the bottom

of the third and fifth diagram of (C.1) vanishes.

The remaining leftmost integral in (C.1) is given by a product of two bubble integrals.

One bubble consists of scalar fields from the vector multiplet and one of scalars from the

hypermultiplet, Ibb = BhypBvec. Let us consider the bubble from the hypermultiplet.

Power counting dictates that such an integral must be UV-convergent in any d < 4, and in

particular in d = 2 where we want to compute it. Dimensional regularisation yields

Bhyp =

∫

dDk

(2π)D
1

k2(k − p)2
=

1

p2(2−D/2)
G(1, 1) ≈ 1

πp2
1

ǫ
, (C.5)

where in the last step we expanded around D = 2 + ǫ, and the function G was introduced

in appendix B. Clearly this pole is due to an infrared divergence, and as such will not

contribute to the mixing matrix. The bubble of scalars from the vector multiplet on the

other hand appears, by power-counting, to be polynomially UV divergent (but IR-finite).

In dimensional regularisation we have

Bvec =

∫

dDk

(2π)D
1

k2(d/2−1)(k − p)2(d/2−1)
=

1

p2(d−2−D/2)
G

(

d

2
− 1,

d

2
− 1

)

. (C.6)

We want to see whether this expression is UV divergent in dimension d, i.e., we setD = d+ǫ.

We obtain, up to numerical prefactors

Bvec = p2(2−d/2) 1

(d/2− 2)2Γ[d/2− 2]
+O(ǫ) . (C.7)

Not only is this expression regular at d = 2, but in fact it vanishes, and it does so regardless

of how we send D → d → 2.14 Clearly the bubbles are well-behaved in the UV, and Ibb
cannot contribute to the mixing matrix.

We are left with the fermion box diagram (C.2). This diagrams gives rise to two

integrals I1 and I2 which differ in the chiralities of the fermions. Diagrammatically these

14Interestingly, it vanishes even in d = 0, where we would expect the d = 2 quadratic divergence to

manifest itself. This is in a way similar to what happens to the renormalisation of the photon two-point

function in quantum electrodynamics.
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integrals can be represented by

I1 =

d/2
−
1 d/

2
−
1

+

−

+

−

p1 p2

p1 + p2

I2 =

d/2
−
1 d/

2
−
1

−

+

−

+

p1 p2

p1 + p2

. (C.8)

The arrows on the propagators in the boxes represent a factor of momentum in the numer-

ator, with the ± next to the arrow indicating the component. The label below the double

lines at the bottom serve as a reminder of the non-canonical weight of the propagator of

the scalar in the vector multiplet. To evaluate the UV divergence of these integrals while

avoiding IR divergences we can set the external momenta to p1 = −p2 = p.

We will start by showing that the two integrals I1 and I2 have the same UV divergence.

Let us therefore consider the difference between these integrals

I1 − I2 = + +

−

−

d− 2

− − −

+

+

d− 2

. (C.9)

Since we have set p1 + p2 = 0, the two scalar propagators at the bottom have merged into

a single propagator of weight d− 2. We can now perform the bubble integrals to obtain

I1 − I2 = G1(1, d− 2)











−

d− D
2

+ 1

− ++ −
+

d− D
2

+ 1

+ −−











. (C.10)

The remaining loop integrals are tensor valued and anti-symmetrised. Since the only

available tensors are the metric and the external momentum p, the difference of the two

integrals vanishes and the UV divergences of I1 and I2 coincide.15

Since the integrals I1 and I2 have the same UV divergence we can consider their sum,

which can be interpreted as a single fermion box diagram with a Dirac fermion running in

the loop. This leads to an integral of the form

I1 + I2 =

∫

dDk dDq

(2π)2D
tr
(

/k(/k − /p1)(/k + /p2)(/k − /q)
)

k2(k − p1)2(k + p2)2(k − q)2(q − p1)2(d/2−1)(q + p2)2(d/2−1)
. (C.11)

Again the UV divergence can be evaluated by setting p1 = −p2 = p. The trace in the

numerator gives rise to three different contractions, which diagrammatically can be repre-

15Note that the full integrals I1 and I2 are not necessarily identical. However, because the UV divergence

can be evaluated at p1 = −p2 the difference of the full integrals is finite.
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sented as

I1 + I2 = 4

















µ ν

µ

ν

d− 2

+ ν µ

µ

ν

d− 2

− ν ν

µ

µ

d− 2

















. (C.12)

In the above diagrams the arrows again indicate factors of momenta in the numerator, and

the indices µ and ν indicate which momenta are to be contracted. Performing the one-loop

bubble integral we are left with three identical terms which add up to

I1 + I2 = 4G1(1, d− 2)

µ

d− D
2

µ

= 4G1(1, d− 2)

∫

dDk

(2π)D
k · (p− k)

k2(k − p)2(d−D/2)
.

(C.13)

If we go ahead and perform the remaining integration by dimensional regularisation we find

I1 + I2 = − 4

p2(d−D)
G1(1, d− 2)G2(1, d−D/2) (C.14)

which has a simple pole at d = D for any d > 2. However, taking the limit d → 2 in this

expression is subtle. Instead, we re-express the integral using Feynman parameters as

I1 + I2 = −4G1(1, d− 2)

∫

dDk

(2π)D
1

k2(d−
D
2 )

+ 4

(

d− D

2

)

G1(1, d− 2)

∫

dDk

(2π)D

∫ 1

0
dx

xd−
D
2
−1(p · k + xp2)

(k2 + x(1− x)p2)d−
D
2
+1

.

(C.15)

The integral in the second line is UV convergent. Performing the integral in the first line

we get

I1+ I2 ≈ − 8G1(1, d− 2)

(4π)D/2Γ(D/2)

∫ Λ

µ

dk

k2(d−D)+1
= − 4G1(1, d− 2)

(4π)D/2Γ(D/2)

Λ2(D−d) − µ2(D−d)

D − d
, (C.16)

where we have dropped terms that are not UV divergent and Λ and µ are cutoffs at large

and small momentum. Using the definition of G1 we get

I1 + I2 ≈
4π

(4π)D
csc((d−D/2)π)

Γ(d− 2)Γ(D − d+ 2)

Λ2(D−d) − µ2(D−d)

d−D
. (C.17)

In the above calculation the dimension d has been introduced in the propagator to avoid

IR divergences, while D has been introduced in the integrations to avoid UV divergences.

Hence we now need to take the limit where d and D approach 2 with

2 < D < d. (C.18)
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A natural way to do this is to first send D → d, and then d → 2, which results in

I1 + I2 ≈
8π

(4π)d
csc(dπ/2)

Γ(d− 2)
log

Λ

µ
≈ − 1

π2
log

Λ

µ
, (C.19)

so that the fermionic box diagram (C.2) is UV divergent. This expression also appears

IR divergent when we send µ to zero. However, in the full fermion box integral with the

momentum assignment we have made there is no such divergence, so this IR divergence

is cancelled by a contribution from the UV convergent integral in (C.15) that we have

dropped.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231]

[hep-th/9711200] [INSPIRE].

[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[4] G. Arutyunov and S. Frolov, Foundations of the AdS5 × S5 Superstring. Part I,

J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].

[5] N. Beisert et al., Review of AdS/CFT Integrability: An Overview,

Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
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Worldsheet S Matrix for AdS3 × S3 × T 4, Phys. Rev. Lett. 113 (2014) 131601

[arXiv:1403.4543] [INSPIRE].

[12] R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański Jr., The complete AdS3 × S3 × T 4
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