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Abstract

We investigate type IIB strings on AdS3×S3×S3×S1 with mixed Ramond-Ramond
(R-R) and Neveu-Schwarz-Neveu-Schwarz (NS-NS) flux. By suitably gauge-fixing
the closed string Green-Schwarz (GS) action of this theory, we derive the off-shell
symmetry algebra and its representations. We use these to determine the non-
perturbative worldsheet S-matrix of fundamental excitations in the theory. The
analysis involves both massive and massless modes in complete generality. The
S-matrix we find involves a number of phase factors, which in turn satisfy crossing
equations that we also determine. We comment on the nature of the heaviest modes
of the theory, but leave their identification either as composites or bound-states to
a future investigation.
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1 Introduction

The holographic correspondence between gravity and quantum field theories [1] can be
quantitatively realised in string theory as a duality between superstrings on anti-De Sitter
(AdS) space and conformal field theories (CFT) [2–4]. As this AdS/CFT correspondence
is a weak-strong duality, it is highly desirable to find exact approaches to study it. In
the ’t Hooft, or planar, limit [5] of certain classes of dual theories a very successful
approach is integrability—finding hidden symmetries that allow for the solution of the
spectrum of protected and non-protected states of both theories. The best understood
AdS/CFT dual pairs are given by type IIB strings on AdS5 × S5 and the dual N = 4
Supersymmetric Yang-Mills (SYM) theory, and its close relative type IIA string theory on
AdS4 ×CP3 [6–8] and the dual ABJM Chern-Simons theory [9,10], see references [11–13]
for reviews and a more complete list of references. Integrability seems to be quite a
robust feature of such backgrounds, as it persists for their orbifolds, orientifolds as well
as for certain deformations [14, 15]. It is natural to wonder if integrability underlies
other instances of AdS/CFT, and in particular whether AdS3/CFT2 enjoys such hidden
symmetries.

It turns out that superstrings on AdS3 × M7 with the maximal amount of supersym-
metry allowed for such backgrounds (16 real supercharges) [16–20] are indeed classically
integrable [20, 21]. More precisely, the classical superstring non-linear sigma model on

AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1 (1.1)

supported by R-R background fluxes admits a Lax formulation. In fact, such AdS3 back-
grounds supported by a mixture of R-R and NS-NS three-form fluxes are integrable [22].
These results indicate that integrability may underlie the AdS3/CFT2 correspondence,
but are not enough to determine whether the spectrum of the quantum theory can be
found by Bethe ansatz techniques. In this paper, we construct an S matrix for the scat-
tering of asymptotic excitations on the string worldsheet, that is compatible with the
assumption of quantum integrability, in particular with factorised scattering. In this
context the scattering of giant magnons in AdS3 was originally investigated in [23, 24]
and more recently in [25]. In this paper we will construct the worldsheet S matrix for the
AdS3 × S3 × S3 × S1 background by studying the off-shell symmetry algebra of the light-
cone gauge-fixed string theory. In the case of AdS5/CFT4 correspondence constraining
the S matrix by the off-shell symmetry algebra was first developed in the spin-chain
setting in [26]. On the string theory side a corresponding derivation of the AdS5 × S5

worldsheet S matrix was done in [27, 28] and applied to AdS3 × S3 × T4 in [29–31].
This method circumvents the problems associated with the presence of massless

worldsheet excitations typically found in AdS3×M7 backgrounds. Considerable progress
had been made in the study of massive modes on AdS3 ×S3 ×S3 ×S1 [32–38].1 In particu-
lar, the all-loop massive S matrix [33] and Bethe ansatz [34] were found in the background
supported by pure R-R flux up to the so-called dressing factors. It was harder to in-
corporate fully the massless modes into the integrable structure, though partial progress

1Massive modes on AdS3 ×S3 ×T4 were understood in a similar manner [39,40]. See [41] for a review
and more extensive list of references.
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in this direction was made in [42–44]. To date, no proposal existed for scattering of
massless modes in AdS3 × S3 × S3 × S1, nor the inclusion of NS-NS flux.2

The methods employed in this paper naturally incorporate both massive and massless
modes and allows for mixed R-R and NS-NS fluxes. The starting point is the GS action of
type IIB string theory on AdS3 ×S3 ×S3 ×S1 with mixed flux. Strings in this background
possess a large (4, 4) super-conformal algebra [50], whose finite-dimensional sub-algebra
is d(2, 1;α)2 [51]. Upon gauge-fixing the GS action, only a sub-algebra

su(1|1)2 ⊂ d(2, 1;α)2 (1.2)

commutes with the Hamiltonian. When the level-matching condition is relaxed su(1|1)2

acquires two new central charges C,C. We denote this off-shell symmetry algebra by
A.3 The world sheet S-matrix of the theory can be fixed, up to dressing phases, by
requiring that it commute with A. In this paper we write down the world sheet S-matrix
of this theory and show that it satisfies the Yang-Baxter equation. We also determine the
crossing equations that the dressing phases have to satisfy. In this way, we find evidence
for a family of integrable theories interpolating between the pure R-R-flux case familiar
from AdS/CFT in higher dimensions and the pure NS-NS case which is well-understood
through worldsheet CFT techniques [52].

This paper is structured as follows. In section 2 we derive the algebra A from a gauge-
fixed GS action of strings on AdS3×S3×S3×S1. In section 3 we study the representations
of A at quadratic order in fields. We comment on the possible interpretation of the heavy
modes as composite modes or bound states of the theory, and the consequences this would
have. We leave the question of determining the exact nature of these modes to future
investigations. In section 4 we write down the exact representations of A. In section 5
we use these representations and the off-shell form of the algebra A to fix the structure
of the two-body worldsheet S-matrix up to a number of dressing phases. Using unitarity
and crossing, we reduce the number of independent dressing phases and determine the
crossing equations that these phases have to satisfy. Following our conclusions, we include
a number of technical appendices.

In much of section 2 we write down expressions that are leading order in fermionic
fields and next-to-leading order in bosonic fields. We have used a Mathematica program
to find these expressions and we include the program as part of our submission. The
program contains expressions which are next-to-next-to-leading order in bosonic fields.
These expressions are very lengthy and we have not transferred them to the present
manuscript. The interested reader may find them by running the Mathematica program.
We have nonetheless checked that the derivation of the centrally-extended algebra A
remains valid at this order in the bosonic fields. The Mathematica package grassmann.m

by M. Headrick and J. Michelson was very useful when performing the calculations
presented in the first part of this paper.

2For recent work on integrable AdS3 string solutions involving NS-NS flux see [45–49].
3The appearance of such central extensions when level-matching is relaxed is similar to what happens

in AdS5 × S5 [27, 28] and AdS3 × S3 × T4 [29–31].
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2 String theory on AdS3 × S3 × S3 × S1 and the off-

shell symmetry algebra

In this section we write down the fully gauge-fixed Green-Schwarz action for type IIB
string theory on AdS3×S3×S3×S1 with mixed flux up to quadratic order in fermions. We
determine the classical conserved supercharges of the theory and calculate the off-shell
algebra A that they satisfy.

2.1 The supergravity background

We write the metric of AdS3 × S3 × S3 × S1 as

ds2 = ds2
AdS3

+ ds2
S3

+
+ ds2

S3
−

+ dw2, (2.1)

where w is the coordinate along the S1. The radii of AdS3 and of the two three-spheres
are related by [51]

1

R2
AdS3

=
1

R2
S3

+

+
1

R2
S3

−

. (2.2)

We normalise the AdS3 radius to one and solve the above relation by setting

1

R2
S3

+

= α ≡ cos2ϕ,
1

R2
S3

−

= 1 − α ≡ sin2ϕ. (2.3)

The metrics on AdS3 and the spheres are then given by4

ds2
AdS3 = −

(
1 +

z2
1
+z2

2

4

1 − z2
1

+z2
2

4

)2

dt2 +
(

1

1 − z2
1

+z2
2

4

)2

(dz2
1 + dz2

2),

ds2
S3

+
=
(

1 − cos2ϕ
y2

3
+y2

4

4

1 + cos2ϕ
y2

3
+y2

4

4

)2

dφ2
5 +

(
1

1 + cos2ϕ
y2

3
+y2

4

4

)2

(dy2
3 + dy2

4),

ds2
S3

−

=
(

1 − sin2ϕ
x2

6
+x2

7

4

1 + sin2ϕ
x2

6
+x2

7

4

)2

dφ2
8 +

(
1

1 + sin2ϕ
x2

6
+x2

7

4

)2

(dx2
6 + dx2

7).

(2.4)

The bosonic background further contains a B-field

B =
q

(
1 − z2

1
+z2

2

4

)2

(
z1dz2 − z2dz1

)
∧ dt

+
q cosϕ

(
1 + cosϕ

y2
3
+y2

4

4

)2

(
y3dy4 − y4dy3

)
∧ dφ5

+
q sinϕ

(
1 + sinϕ

x2
6
+x2

7

4

)2

(
x6dx7 − x6dx7

)
∧ dφ8,

(2.5)

4The coordinates of the three-spheres have been rescaled by the radius of respective sphere, so that
for example the angle φ8 takes values 0 ≤ φ8 < 2πR

S
−

3

= 2π/ sinϕ and (x6, x7) take values on a disc

of radius 2R
S

−

3

= 2/ sinϕ. This makes the expressions for the metric and B field more complicated,

but gives canonically normalised kinetic terms in the bosonic action and makes the limit ϕ → 0, or
R

S
−

3

→ ∞, more straightforward.
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where the parameter q is related to the quantised coefficient k of the Wess-Zumino (WZ)
term by

k = q
√
λ. (2.6)

The corresponding NS-NS three form is given by

H = dB = 2q
(

Vol(AdS3) +
1

cos2 ϕ
Vol(S3

+) +
1

sin2 ϕ
Vol(S3

−)
)
, (2.7)

where the volume forms are all defined for unit radius. For q = 1 this precisely corre-
sponds to an sl(2)k × su(2)k′ × su(2)k′′ Wess-Zumino-Witten (WZW) model where the
three levels satisfy [53].

1

k
=

1

k′
+

1

k′′
. (2.8)

In addition to the NS-NS three form, the background contains a R-R three form

F = 2q̃
(

Vol(AdS3) +
1

cos2 ϕ
Vol(S3

+) +
1

sin2 ϕ
Vol(S3

−)
)
, (2.9)

where
q̃ =

√
1 − q2 . (2.10)

In appendix B we write down the Killing spinors for this background.

2.2 Bosonic action and gauge fixing

The action for the bosonic sigma model is given by5

SB = −1

2

∫
dσdτ

(
γαβGMN∂αX

M∂βX
N + ǫαβBMN∂αX

M∂βX
N
)
. (2.11)

Introducing the canonically conjugate momenta

pM =
δSB

δẊM
= −γ0βGMN∂βX

N −BMN

′

XN (2.12)

the bosonic action can be written in the first order form

SB =
∫
dσ
(
pMẊ

M +
γ01

γ00
C1 +

1

2γ00
C2

)
(2.13)

with

C1 = pM
′

XM ,

C2 = GMNpMpN +GMN

′

XM
′

XN + 2GMNBNKpM
′

XK +GMNBMKBNL

′

XK
′

XL.
(2.14)

5In writing down the action and supercurrents in this section we suppress the string tension
√
λ/2π.

We will reinstate in the relevant places in the next section.
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Above ˙ and ′ denote derivatives with respect to τ and σ, respectively. We further
introduce light-cone coordinates x± along the supersymmetric geodesic and a transverse
angle ψ by setting

x± =
1

2

(
cosϕφ5 + sinϕφ8 ± t

)
, ψ = − sinϕφ5 + cosϕφ8. (2.15)

To fix uniform light-cone gauge we now set

x+ = τ, p− = 2, (2.16)

where p− is the canonical momentum conjugate to x−. This completely fixes the dynam-
ics of the light-cone directions x±. The resulting gauge-fixed bosonic action can then be
expanded in the eight remaining transverse fields.

The constraints C1 = 0 and C2 = 0 are equivalent to the Virasoro constraints

γ11GMNẊ
M

′

XN + γ01GMNẊ
MẊN = 0,

γ00GMNẊ
MẊN − γ11GMN

′

XM
′

XN = 0.
(2.17)

To cubic order in the transverse fields the worldsheet metric is then given by

γττ = −1 + 1
2

(
z2 − cos4 ϕ y2 − sin4 ϕx2

)
+ 1

4
sin(2ϕ) ψ̇

(
cos2 ϕ y2 − sin2 ϕx2

)
,

γσσ = +1 + 1
2

(
z2 − cos4 ϕ y2 − sin4 ϕx2

)
+ 1

4
sin(2ϕ) ψ̇

(
cos2 ϕ y2 − sin2 ϕx2

)
,

γτσ = − 1
4

sin(2ϕ)
′

ψ
(
cos2 ϕ y2 − sin2 ϕx2

)
.

(2.18)

The worldsheet derivatives of the light-cone coordinate x− can be found by imposing
equations of motion and the gauge-fixing condition. To cubic order we find

′

x− = −1
2

(
żi

′

zi + ẏi
′

yi + ẋi
′

xi + ẇ
′

w + ψ̇
′

ψ
)

− 1
4

sin(2ϕ)
′

ψ
(
cos2 ϕ y2 − sin2 ϕx2

)
,

ẋ− = −1
4

(
ż2 + ẏ2 + ẋ2 + ẇ2 + ψ̇2 +

′

z2 +
′

y2 +
′

x2 +
′

w2 +
′

ψ2

− z2 − cos4ϕ y2 − sin4ϕx2
)

+ 1
4

sin(2ϕ) ψ̇
(
cos2 ϕ y2 − sin2 ϕx2

)
.

(2.19)

Because of the gauge fixing condition p− = 2, the total light-cone momentum P− is given
by

P− =
∫ +r

−r
p− = 4r, (2.20)

where we have introduced the integration limits ±r to keep track of the extent of the
worldsheet. We will work in the large P− limit, where r → ∞ and the worldsheet
decompactifies and we are effectively on a plane rather than a cylinder. However, we
still impose periodic boundary conditions on the fields. The field x+ is independent of σ
and hence periodic. Imposing periodicity of x− we find the condition

∆x− = x−(+∞) − x−(−∞) =
∫ +∞

−∞
dσ

′

x− = 0. (2.21)
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From the constraint C1 = 0 and the gauge fixing conditions we find

2
′

x− = −
(
pzi

′

zi + pyi
′

yi + pxi
′

xi + pwi
′

wi + pψi

′

ψi
)
. (2.22)

The right-hand-side of the above expression is exactly the world sheet momentum density.
Hence,

∆x− =
1

2
pw.s.. (2.23)

Above we have assumed that there is no winding along the direction φ. In the general
case, periodicity of x− gives the condition

pw.s. = 2πm, (2.24)

where m is the winding number.

2.3 Green-Schwarz action and suitable fermionic coordinates

Having found the gauge fixing conditions from the bosonic action we will now write down
the fermionic part of the GS action. The procedure here is very similar to the case of
mixed flux AdS3 × S3 × T4 [31].

The GS action is given by

L = LB + Lkin + LWZ, (2.25)

where LB is the bosonic part of the action discussed in the previous sub-section and, up
to quadratic order in fermions [54–56]

Lkin = −iγαβ ¯̃θI /Eα

(
δIJDβ +

1

48
σIJ3

/F /Eβ +
1

8
σIJ1

/Hβ

)
θ̃J , (2.26)

LWZ = +iǫαβ ¯̃θIσ
IJ
1 /Eα

(
δJKDβ +

1

48
σJK3 /F /Eβ +

1

8
σJK1 /Hβ

)
θ̃K . (2.27)

Above, the fermions have beed “rotated” along the I − J index compared to the expres-
sions given in [55]

θ̃1 =

√
1 + q̃

2
θ1 −

√
1 − q̃

2
θ2, θ̃2 =

√
1 + q̃

2
θ2 +

√
1 − q̃

2
θ1. (2.28)

This ensures that the kinetic term in the Lagrangian is diagonal in terms of the θI .
To understand the action of the supersymmetries on the fields it is useful to perform

a field redefinition so that the fermions in the action are closely related to the Killing
spinors of the background. We introduce the rotated fermions

θ̃1 =

√
1 + q̃

2
M0θ1 −

√
1 − q̃

2
M−1

0 θ2,

θ̃2 =

√
1 − q̃

2
M0θ1 +

√
1 + q̃

2
M−1

0 θ2,

(2.29)
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where the matrix M0 is given in equation (B.3). To make the connection with Killing
spinors manifest, we use the projectors

Π± =
1

2
(1 ± cosϕΓ012345 ± sinϕΓ012678), (2.30)

to further define

θ1 = Mt

(
Π+ϑ

+
1 + Π−ϑ

−
1

)
, θ2 = M−1

t

(
Π+ϑ

+
2 + Π−ϑ

−
2

)
, (2.31)

where the matrix Mt is given in equation (B.3). The action of the sixteen supersymme-
tries of d(2, 1;α)2 then correspond to shifts in the fermions ϑ−

I .
The GS action has a large gauge invariance. We fix this by a suitable choice of kappa

and light-cone gauge. In uniform light-cone gauge, the directions x± play a special role.
Under shifts of these light-cone coordinates the fermions ϑ±

I change by a phase. In the
gauge-fixed action it is therefore more convenient to use the fields θI , which are neutral
under such shifts.6 We fix kappa gauge by imposing the condition

Γ+θI = 0, Γ± =
1

2

(
cosϕΓ5 + sinϕΓ8 ± Γ0

)
. (2.32)

By further introducing a different set of projectors

P1 =
1 + Γ1234

2

1 + Γ1267

2
, P2 =

1 + Γ1234

2

1 − Γ1267

2
,

P3 =
1 − Γ1234

2

1 + Γ1267

2
, P4 =

1 − Γ1234

2

1 − Γ1267

2
,

(2.33)

we can split the fermions into four groups

Piθ
(i)
I = θ

(i)
I , i = 1, 2, 3, 4. (2.34)

As we will see below, this divides the fermions according to mass of the fluctuation.
After fixing kappa gauge, each of the eight spinors θ

(i)
I (for i = 1, 2, 3, 4 and I = 1, 2)

contain a single complex fermionic degree of freedom. In the following we will therefore
write out the action directly in terms of eight complex components θIi and their complex
conjugates θ̄Ii. In appendix C explicit expressions for the 32-component spinors θI in
terms of the components θIi.

To write down the gauge-fixed Lagrangian and supercurrents in a compact form we
finally introduce the complex bosonic fields7

Z = −z2 + iz1, Y = −y3 − iy4, X = −x6 − ix7,

Z̄ = −z2 − iz1, Ȳ = −y3 + iy4, X̄ = −x6 + ix7.
(2.36)

6The fermions θI are also invariant under shifts of ψ. This is not essential for our calculation, but
still convenient. Since the field ψ is massless the action is invariant under shifts of ψ. However, if the
fermions transform under such shifts there will be terms in the Lagrangian that depend on the field ψ
itself, and not only its derivatives. By using the fermions θI we avoid such terms.

7The leading order bosonic Lagrangian and supercurrents can further be compactly expressed in
terms of the fields

W = w − iψ, W̄ = w + iψ. (2.35)

However, the compact u(1) isometry acting on W is broken at higher orders.
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The quadratic-in-fermions terms in the gauge-fixed GS Lagrangian is then given by

L(2)
F = +iθ̄11

(
θ̇11 − iq̃

′

θ21 + q
′

θ11

)
+ iθ̄21

(
θ̇21 + iq̃

′

θ11 − q
′

θ21

)
(2.37)

+iθ̄12

(
θ̇12 − iq̃

′

θ22 + q
′

θ12

)
+ iθ̄22

(
θ̇22 + iq̃

′

θ12 − q
′

θ22

)
− sin2 ϕ

(
θ̄12θ12 − θ̄22θ22

)

+iθ̄13

(
θ̇13 − iq̃

′

θ23 + q
′

θ13

)
+ iθ̄23

(
θ̇23 + iq̃

′

θ13 − q
′

θ23

)
− cos2 ϕ

(
θ̄13θ13 − θ̄23θ23

)

+iθ̄14

(
θ̇14 − iq̃

′

θ24 + q
′

θ14

)
+ iθ̄24

(
θ̇24 + iq̃

′

θ14 − q
′

θ24

)
−
(
θ̄14θ14 − θ̄24θ24

)
.

We note that the fermions θI1, θI2, θI3 and θI4 have mass 0, sin2 ϕ, cos2 ϕ and 1, respec-
tively. Furthermore, for the case of q = 1 (and hence q̃ = 0) the fermions are all purely
left- or right-moving on the worldsheet. The cubic order corrections to the fermionic
Lagrangian can be found in appendix D.

2.4 The off-shell symmetry algebra A

The gauge-fixed action obtained at the end of the last subsection has four supersym-
metries that commute with the Hamiltonian. In this subsection we write down the
expressions for the associated supercurrents. We relax the level-matching condition and
determine the algebra A of the supercharges. We find that the off-shell (i.e., non-
level matched) algebra A contains four central elements H, M, C and C. We also
determine the relationship between C and the worldsheet momentum pw.s.. The re-
sulting expressions are similar to those appearing in the off-shell symmetry algebra of
AdS3 × S3 × T4 [29–31].

2.4.1 Supercurrents

After gauge fixing there are in total four conserved supercurrents. Below we will write
expressions for the components of the two currents jµ

L
and jµ

R
. The other two currents,

̄µ
L

and ̄µ
R

, can be obtained by complex conjugation. The labels “L” and “R” refer to
chirality in the dual CFT2.

To quadratic order in the transverse fields, the τ -components of the supercurrents
are given by

jτ
L

= 1
2
e−iπ/4e+ix−

(
+ 2PZ̄θ14 +

′

Z(iq̃θ24 − qθ14) + iZθ14

− 2iPY θ̄13 −
′

Ȳ (q̃θ̄23 − iqθ̄13) − cos2 ϕ Ȳ θ̄13

− 2iPX θ̄12 −
′

X̄(q̃θ̄22 − iqθ̄12) − sin2 ϕ X̄θ̄12

− i(Pw + iPψ)θ̄11 − (
′

w + i
′

ψ)(q̃θ̄21 − iqθ̄11)
)
,

(2.38)

and

jτ
R

= 1
2
e−iπ/4e+ix−

(
+ 2PZ θ̄24 +

′

Z̄(iq̃θ̄14 + qθ̄24) + iZ̄θ̄24

− 2iPȲ θ23 −
′

Y (q̃θ13 + iqθ23) − cos2 ϕY θ23

− 2iPX̄θ22 −
′

X(q̃θ12 + iqθ22) − sin2 ϕXθ22

− i(Pw − iPψ)θ21 − (
′

w − i
′

ψ)(q̃θ11 + iqθ21)
)
.

(2.39)
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The σ-components of the currents are given by

jσ
L

= 1
2
e−iπ/4e+ix−

(
−

′

Zθ24 − (2PZ̄ + iZ)(iq̃θ14 − qθ24)

+ i
′

Ȳ θ̄23 + (2PY − i cos2 ϕ Ȳ )(q̃θ̄13 − iqθ̄23)

+ i
′

X̄θ̄22 + (2PX − i sin2 ϕ X̄)(q̃θ̄12 − iqθ̄22)

+ i(
′

w + i
′

ψ)θ̄23 + (Pw + iPψ)(q̃θ̄11 − iqθ̄21)
)
.

(2.40)

and

jσ
R

= 1
2
e−iπ/4e+ix−

(
−

′

Z̄θ̄24 − (2PZ + iZ̄)(iq̃θ̄14 + qθ̄24)

+ i
′

Y θ23 + (2PȲ − i cos2 ϕY )(q̃θ13 + iqθ23)

+ i
′

Xθ22 + (2PX̄ − i sin2 ϕX)(q̃θ12 + iqθ22)

+ i(
′

w + i
′

ψ)θ23 + (Pw − iPψ)(q̃θ11 + iqθ21)
)
.

(2.41)

The next-to-leading order in transverse bosons corrections to the currents are given
in appendix D. Using the attached Mathematica program, we have checked using the
equations of motion derived from the Lagrangians presented in the previous sections that
the above currents plus their higher order corrections satisfy the conservation equations
∂µj

µ
I = 0 to cubic order in transverse bosons. In the above expressions we have included

a non-local dependence on the non-dynamic field x−. These exponential factors are
essential when checking the current conservation at cubic order in transverse bosons. As
we will see below, these terms are responsible for the central extension of the off-shell
symmetry algebra.

2.4.2 The algebra from the supercurrents

The supercurrents presented above give rise to four supercharges

QL =
∫
dσjτ

L
, QR =

∫
dσjτ

R
, Q

L
=
∫
dσ̄ τ

L
, Q

R
=
∫
dσ̄ τ

R
. (2.42)

We can find the algebra satisfied by these charges at a classical level by calculating
Poisson brackets. To do this we first need to know the Poisson bracket of the fermions.
To leading order these are given by 8

{θ̄Ii, θJj}PB = −iδIJδijδ(x− y), {θIi, θJj}PB = 0. (2.43)

These expression receive corrections that are quadratic in the transverse bosonic fields.
We will not explicitly write out the corrections here. However, we have checked that the
algebra presented below is preserved by the cubic-in-bosons currents, and in performing
that calculation the corrections to the Poisson brackets of the fermions are essential.

8The contributions arising from the Poisson bracket of two bosons need not be considered since they
contribute to the algebra at next-to-leading order in fermions while our supercurrents are only valid up
to leading order in fermions. As a result, the expression for the central charges presented in this section
involve only the bosonic fields.
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Taking the Poisson bracket between a supercharge and its complex conjugate we find

{QL,QL
}PB = − i

2

(
H + M

)
,

{QR,QR
}PB = − i

2

(
H − M

)
,

(2.44)

where the Hamiltonian density H is given to cubic order in transverse bosons by

H =1
2

∫
dσ
(
p2
z + p2

y + p2
x + p2

w + p2
ψ +

′

z2 +
′

y2 +
′

x2 +
′

w2 +
′

ψ2 (2.45)

+ z2 + cos4ϕ y2 + sin4ϕx2 − 2qǫij
(
zi

′

zj + cos2ϕ yi
′

yj + sin2ϕxi
′

xj
))

− 1
2

sin(2ϕ)
(
pψ
(
cos2ϕ y2 − sin2ϕx2

)
− qǫij

(
pψ(yi

′

yj − xi
′

xj) +
′

ψ(pyiyj − pxixj)
))
,

and the charge M is given by9

M = −
∫
dσ
(
ǫij
(
pzizj + cos2 ϕ pyiyj + sin2 ϕ pxixj

)

+ q
(
pzi

′

zi + pyi
′

yi + pxi
′

xi + pwi
′

wi + pψi

′

ψi
))
.

(2.46)

The second line gives a term proportional to the world sheet momentum pw.s.. On shell,
i.e., for pw.s. = 0, the u(1) charge M is given by a combination of angular momenta
in AdS3 × S3 × S3, and the anti-commutation relations (2.44) are part of the d(2, 1;α)2

superisometry algebra of the string background.
Let us now consider the Poisson bracket between QL and QR. These supercharges

belong to two different d(2, 1;α) algebras and therefore anti-commute on shell. When
we relax the level-matching condition we find

{QL,QR}PB =
q̃

2

∫
dσ
(
∂σ
(
e2ix−

)
+ 1

2
∂σ
(
e2ix−

(z2 − cos2 ϕ y2 − sin2 ϕx2)
)

+ 1
8
e2ix−

∂σ(z2 − cos2 ϕ y2 − sin2 ϕx2)2
)
.

(2.47)

The above expression is written out to quartic order in bosons since it is quite compact
even to this order. To obtain it, we used the cubic-in-bosons super-currents and corrected
Poisson brackets contained in the Mathematica file attached to this paper. Using partial
integration in the second line we obtain one term that integrates to zero as well as a
term that is higher order in transverse fields. Similarly, the second term in the first line
vanishes upon integration. The remaining integral is non-vanishing since the field x− is
non-trivial at σ → ±∞. Hence we are left with a non-trivial Poisson bracket

{QL,QR}PB = −iC, (2.48)

where the central charge C evaluates to

C =
iζq̃

2

(
eipw.s. − 1

)
. (2.49)

9This expression for M is exact at least to quartic order. Moreover, M is a conserved quantity of
the bosonic Hamiltonian to all orders in the transverse fields.
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The constant ζ is given by ζ = exp(2ix−(−∞)). Since a physical state satisfies pw.s. ∈
2πZ, the charge C vanishes when acting on such a state, as expected.

The Poisson bracket between supercharges Q
L

and Q
R

can be obtained from equa-
tion (2.48) by complex conjugation10

{Q
L
,Q

R
}PB = −iC. (2.50)

In summary, we have investigated the symmetry algebra of the gauge-fixed type IIB
string theory on AdS3 × S3 × S3 × S1. On shell this algebra is given by

su(1|1)2 ⊂ d(2, 1;α)2. (2.51)

Going off shell, by letting the world sheet momentum take arbitrary values, we showed
that this algebra is enlarged by two additional central charges C and C. We denote the
resulting algebra by

A = psu(1|1)2
c.e.. (2.52)

3 Representations of A at quadratic order in fields

In this section we will present the short representations of the symmetry algebra at
quadratic order in the fields.

3.1 Off-shell symmetry algebra

The AdS3 × S3 × S3 × S1 background preserves four supercharges after light-cone gauge
fixing. This is half of the amount preserved by the AdS3 × S3 × T4 background, which
can be seen as a limit of the case at hand when α → 0 or α → 1. In the previous section
we introduced four supercharges

QL =
∫
dσjτ

L
, QR =

∫
dσjτ

R
, Q

L
=
∫
dσ̄ τ

L
, Q

R
=
∫
dσ̄ τ

R
. (3.1)

As we found there, these charges satisfy the centrally extended psu(1|1)2 algebra11

{QL,QL
} =

1

2
(H + M), {QL,QR} = C ,

{QR,QR
} =

1

2
(H − M), {Q

L
,Q

R
} = C,

(3.2)

where H is the Hamiltonian, M is an angular momentum on shell and C and C are
central charges appearing off-shell [26, 27].

10Note that in our conventions the Poisson bracket of two Grassmann odd quantities is anti-Hermitian.
11 In the rest of the paper we will write the algebra in terms of canonical anti-commutators instead

of Poisson brackets. The two notations are related by

{A,B} = i{A,B}PB.
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3.2 Irreducible representations

To make the representations of this symmetry algebra more transparent it is convenient
to rewrite the charges in terms of oscillators, which is straightforward at quadratic order
in the fields. To this end, let us introduce the wave-function parameters fL,R, gL,R and
the dispersion relations ωL,R,

gL(p,mj) = − q̃ p

2fL(p,mj)
, gR(p,mj) = − q̃ p

2fR(p,mj)
,

fL(p,mj) =

√
|mj | + q p+ ωL(p,mj)

2
, fR(p,mj) =

√
|mj| − q p+ ωR(p,mj)

2
,

ωL(p,mj) =
√
p2 + 2 |mj| q p+m2

j , ωR(p,mj) =
√
p2 − 2 |mj| q p+m2

j ,

(3.3)

with the labels L,R standing for “left” and “right”.12 All these parameters depend on
the momentum p, on the NS-NS flux coefficient q, and on the oscillators’ mass |mj|. We
expect |mj| to take values 1, α, 1 − α and 0 for the bosonic oscillators corresponding to
modes on AdS3, on each of the two spheres, and to the flat coordinates, respectively (and
similarly for their fermionic partners). Hence, we expect to find four representations of
the symmetry algebra (one for each mass), which may be further reducible. We can then
schematically write the bosons in terms of creation and annihilation operators as usual,

X ≈
∫
dp

(
1√
ωL

a†
L
(p) e−i pσ +

1√
ωR

aR(p) ei pσ
)
,

P ≈ i
∫
dp
(√

ωL a
†
L
(p) e−i pσ − √

ωR aR(p) ei pσ
)
,

(3.4)

and similarly for the fermions

θL ≈
∫
dp

(
gR√
ωR

d†
R
e−i pσ − fL√

ωL

dL e
i pσ

)
,

θR ≈
∫
dp

(
gL√
ωL

d†
L
e−i pσ − fR√

ωR

dR e
i pσ

)
.

(3.5)

Note that like in reference [31] we have to introduce “left” and “right” oscillators with
appropriate wave-function parameters due to the presence of the parity-breaking NS-NS
flux, i.e., since q 6= 0. Moreover, for each value of the mass there will be one set of
oscillators

aL j, aR j and dL j, dR j with j ∈ {1, 2, 3, 4}, (3.6)

for a total of 8 + 8 bosonic and fermionic oscillators, whose precise definition can be
found in appendix E.

12This corresponds to left and right chirality in the dual CFT2.
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In terms of these oscillators, the supercharges take a simple form:

QL =
∫
dp
(

− fL(p, 1) a†
L 4(p)dL 4(p) − gR(p, 1) d†

R 4(p)aR 4(p)

+
3∑

j=1

(
fL(p,mj) d

†
L j(p)aL j(p) + gR(p,mj) a

†
R j(p)dR j(p)

))
,

QR =
∫
dp
(

− fR(p, 1) a†
R 4(p)dR 4(p) − gL(p, 1) d†

L 4(p)aL 4(p)

+
3∑

j=1

(
fR(p,mj) d

†
R j(p)aR j(p) + gL(p,mj) a

†
L j(p)dL j(p)

))
.

(3.7)

On the first line of each equation13 we wrote the contribution of the oscillators with
mass |m| = 1. All the remaining ones can be grouped together, as the representations
for masses |m| = 0, 1−α, α have the same grading. We read off two irreducible represen-
tations for each mass, each labelled by left or right,14 for a total of eight two-dimensional
irreducible representations. They are all short representations, satisfying the shortening
condition

H2 = M2 + 4CC . (3.8)

The eigenvalues of the central charges M and H on each module are, at this order in the
field expansions 15

M = m+ qp =

{
|m| + qp left,

−|m| + qp right,

H =
√
p2 + 2mq p+m2 =






√
p2 + 2 |m| q p+m2 left,√
p2 − 2 |m| q p+m2 right.

(3.9)

with |m| = 1, 1 −α, α, 0. Consistently, the off-shell central charges are C = C = −1
2
q̃P

for all representations at quadratic order in the fields.
Finally, it is interesting to note that equation (3.7) possesses a discrete symmetry

under swapping “L” and “R” labels everywhere. This is just a generalisation of the
left-right symmetry (LR symmetry) introduced in reference [33].

3.3 Heavy representations

There are two heavy representations with |m| = 1. These modes look similar to the heavy
modes of AdS4 ×CP3 superstrings,16 which in fact are composite. [60] This means that in

13The minus sign appearing for the contribution of |m| = 1 could be reabsorbed e.g. by redefining
the fermionic fields of mass |m| = 1, or the map that relates them to the corresponding creation and
annihilation operators. We prefer the present convention, so that other expressions are more natural.

14As we will see in the next subsection, this label is not entirely appropriate for the massless repre-
sentations.

15The corresponding dispersion relations for the massive modes of the mixed flux AdS3 ×S3 ×T4 were
first discussed in [57–59].

16To see this similarity consider the case α = 1/2. The supergroup D(2, 1; 1/2) is the same as OSp(4|2).
In the coset sigma model the heavy modes are embedded in OSp(4|2)2 in essentially the same way the
heavy modes of AdS4 ×CP3 are embedded in OSp(6|4).
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that theory the heavy modes should not be regarded as part of the asymptotic particle
spectrum, but should instead be understood as a compound of two real lighter particles.
Therefore, in the Bethe ansatz description of the spectrum there are no momentum-
carrying nodes corresponding to the heavy modes—instead, these are represented by
stacks of two (lighter) Bethe roots.17

It is natural to wonder whether something similar may happen here. At the order
in the near-plane-wave expansion that we are considering, this is certainly allowed kine-
matically. Let us consider two particles of mass m1 = α, m2 = 1 − α and momenta
p1 = α p, p2 = (1 − α)p. Then their total energy is

Etot =
√
p2

1 + 2m1 q p1 +m2
1 +

√
p2

2 + 2m2 q p2 +m2
2 =

√
p2 + 2 q p+ 1, (3.10)

with the total mass adding up to 1 and the total momentum adding up to p. At higher
orders in perturbation theory, as we will see in the next section, the central charges and
hence the dispersion relations get deformed. If the heavy modes are indeed composite,
we would expect that their representations reveal themselves as long (i.e., they are
“accidentally short” at this order), fusing up with some other multi-particle excitation of
mass one—note that all long representations are four-dimensional. If all this happened,
we would not need to consider the heavy modes in our integrable S matrix and Bethe
ansatz.

A different possibility is that the heavy modes do transform in genuinely short repre-
sentations, but are bound states of lighter excitations. This would mean that we can get
the heavy modes by tensoring two light representations. The constituents should have
suitable (complex) momenta, so that the resulting four-dimensional representation may
be reducible yielding a short representation by a quotient, much like in reference [61].18

There is an interesting difference between the would-be bound state with |m| = 1 and
the ones familiar from AdS5 × S5. The latter can be geometrically interpreted as bound
states of giant magnons on the sphere [62], and correspond to the totally symmetric
combination of the constituent representations. Such magnon bound states also exist
here, and can be constructed out of two light excitations of the same mass. The heavy
mode instead sits in a representation with opposite grading than its constituents, and
as such must come from the anti-symmetric combination19 of its constituents. While we
will not investigate this further here, it is interesting to note that this would yield a dif-
ferent kinematic condition for bound states—much like the one of the AdS5 × S5 mirror

theory [63]. In any case, should the heavy modes be bound states, we could consistently
consider scattering processes involving them. However their scattering matrices would
be uniquely fixed, under the assumption of integrability, in terms of the ones of light
modes through fusion [64].

While there is some evidence that these heavy modes may be indeed composite [21],
we will not assume this for the time being. We will proceed by treating them as good

17See reference [13] for a review of AdS4 ×CP3 integrability and for an extensive list of references on
the subject.

18Here all short representations, including the bound-state one, would be two-dimensional. In the
case of the psu(2|2) representations for AdS5 × S5 superstrings, the short representation of bound-state
number M has dimension 4M .

19For the sake of this argument we can take α = 1/2.
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asymptotic states, and write down restrictions on their scattering matrices. Such S ma-
trices may either not exists (“composite” scenario) or be redundant (“bound state” sce-
nario).

3.4 Massless representations

Looking at equation (3.9) we see that at m = 0 “left” and “right” representations have
the same central charges. In this sense such a distinction is arbitrary, and indeed one
can check that a massless “left” representation is isomorphic to a “right” one of opposite
grading. Like in reference [31] the change-of-basis matrix depends on the momentum
through

aL(p)

bR(p)
= −sgn

(
sin

p

2

)
. (3.11)

Still, unlike what happens in the case of AdS3 × S3 × T4, where the massless modules
are rotated into each other by an additional su(2) symmetry, here the two massless
representations are completely distinct. For the bosons this can be expected from the
geometry, where the massless directions w and ψ correspond to coordinates of S1 and
S3 × S3, respectively.

3.5 The α → 1 limit

As we mentioned, when sending α → 1 or α → 0 we expect the off-shell symmetry alge-
bra to have twice as many supercharges. This is the case for AdS3 ×S3 ×T4, which is the
background that we would obtain from AdS3 × S3 × S3 × S1 in those limits, up to com-
pactifying the flat directions. This symmetry enhancement would also require the short
(two-dimensional) representations of psu(1|1)2

c.e. to join up into short (four-dimensional)
representations of psu(1|1)4

c.e.. Such a merging may be subtle in the quantum theory,
especially if the heavy modes are indeed composite for generic values of 0 < α < 1, see
also reference [21]. Still, it is worth briefly examining whether there is any obstruction
from a representation-theoretical point of view.

When sending α → 1 we find that the two-dimensional representations of psu(1|1)2
c.e.

do come in pairs: two withm = +1, two withm = −1 and four withm = 0. The twom =
+1 representations have opposite grading, so that one of the psu(1|1)4

c.e. supercharges
that are not in psu(1|1)2

c.e. can act on the bosonic psu(1|1)2
c.e. highest weight state a†

L 3 |0〉
at α = 1, to give the fermionic one d†

L 4 |0〉. Things go similarly for m = −1 and for the
massless modes. In that case, we have, e.g., that the representation of bosonic highest
weight state a†

L 2 |0〉 becomes related to the one of fermionic highest weight state d†
R 1 |0〉.

It may appear unnatural to mix left and right representations. However, as discussed,
the left and right massless representations are isomorphic to the transpose of each other.
Hence, there is no inconsistency.

As the situation is perfectly symmetric when α → 0, we can conclude that the repre-
sentations which we found are compatible with the symmetry enhancement to psu(1|1)4

c.e..
The matching of the psu(1|1)2

c.e. and psu(1|1)4
c.e. supercharges in the α → 1 limit is further

described in appendix F.
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4 Exact representations

From the analysis of the supercurrents in section 2.4 we expect the off-shell symmetry
algebra to be still given by A even at higher orders in the field expansion. However,
the representations will be deformed with respect to the ones described above, which
can be seen by looking at the central charges. In this section we present the exact short
representations of A.

4.1 Central charges

From equation (2.49) we expect the central charges C,C to take the form

C = +
i

2
h(λ, q, α)

(
e+iP − 1

)
, C = − i

2
h(λ, q, α)

(
e−iP − 1

)
, (4.1)

where P is the worldsheet momentum and the effective coupling h(λ, q, α) is related to
the string tension by

h(λ, q, α) ≈ q̃
√
λ

2π
, (4.2)

up to sub-leading orders in
√
λ. It is worth noticing that here we expect such subleading

contributions to depend on the geometrical parameter α [35, 36]. With this in mind,
from now on for simplicity we will write h ≡ h(λ, q, α).

In the presence of the NS-NS flux the charge M also depends on the momentum as

M = m+ −kP, (4.3)

with m = +|m| on left representations, and m = −|m| on right representations. The
constant −k is given by

−k =
q
√
λ

2π
. (4.4)

Since k = q
√
λ is the integer-valued coupling of the WZ term in the bosonic action, we

expect −k to be exact to all orders in
√
λ.

From the shortening condition (3.8) we find the dispersion relation

Ep =

√
(m+ −kp)2 + 4h2 sin2 p

2
. (4.5)

We now want to modify the representations introduced in section 3 in such a way as to
reproduce these central charges.

4.2 Short representations

Let us now describe the most general short representations of psu(1|1)2
c.e.. We introduce

the coefficients a, b and their complex conjugates ā, b̄, which will depend on the particle’s
momentum p and mass |m|, as well as on h, α and q. At zero momentum the symmetry
algebra reduces to su(1|1)2. In the representations below we require the coefficients b to
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vanish for p = 0. Note that each representation in that case transforms under just one
of the two su(1|1) algebras, as indicated by the labels L and R.

As in [33] we can define a left module ̺L consisting of a boson φL and a fermion ψL

̺L :
QL |φL〉 = aL |ψL〉 , QL |ψL〉 = āL

p |φL〉 ,
QR |φL〉 = b̄L

p |ψL〉 , QR |ψL〉 = bL |φL〉 ,
(4.6)

where we decorated the representation parameters to remind ourselves that they pertain
to the left module. Similarly, we have a right representation ̺R

̺R :
QR |φR〉 = aR |ψR〉 , QR |ψR〉 = āR

p |φR〉 ,
QL |φR〉 = b̄R |ψR

p 〉 , QL |ψR〉 = bR |φR〉 ,
(4.7)

that is formally obtained from the previous one by exchanging the labels L and R on the
supercharges, the states and the momentum-dependent coefficients.

We can obtain two more representations by changing the grading of the ones above,
in other words by swapping the role of the boson and the fermion. Denoting these
representations with a tilde, we find

˜̺
L :

QL |ψ̃L〉 = aL |φ̃L〉 , QL |φ̃L〉 = āL |ψ̃L〉 ,
QR |ψ̃L

p〉 = b̄L |φ̃L〉 , QR |φ̃L〉 = bL |ψ̃L〉 ,
(4.8)

and

˜̺
R :

QR |ψ̃R〉 = aR |φ̃R〉 , QR |φ̃R〉 = āR |ψ̃R〉 ,
QL |ψ̃R〉 = b̄R |φ̃R〉 , QL |φ̃R〉 = bR |ψ̃R〉 .

(4.9)

The representations so constructed automatically satisfy (3.8). On the left represen-
tations we have

H =
(
|aL |2 + |bL |2

)
1, M = +

(
|aL |2 − |bL |2

)
1, C = aLbL 1, (4.10)

while on the right representations we have

H =
(
|aR|2 + |bR|2

)
1, M = −

(
|aR|2 − |bR|2

)
1, C = aRbR 1. (4.11)

4.3 Exact representation coefficients

It is convenient to parametrise the representation coefficients aL, bL, aR, bR and their com-
plex conjugates by introducing the Zhukovski variables x±

L p and x±
R p that satisfy the

constraints
x+

L p

x−
L p

= eip, x+
L p +

1

x+
L p

− x−
L p − 1

x−
L p

=
2i (|m| + −k p)

h
,

x+
R p

x−
R p

= eip, x+
R p +

1

x+
R p

− x−
R p − 1

x−
R p

=
2i (|m| − −k p)

h
.

(4.12)
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These equations can be solved by setting

x±
L p =

(|m| + −kp) +
√

(|m| + −kp)2 + 4h2 sin2(p
2
)

2h sin(p
2
)

e± i
2
p,

x±
R p =

(|m| − −kp) +
√

(|m| − −kp)2 + 4h2 sin2(p
2
)

2h sin(p
2
)

e± i
2
p.

(4.13)

Then we take the representation coefficients to be

aL = ηL

p e
iξ, āL = ηL

p e
−ip/2e−iξ, bL = − ηL

p

x−
L p
e−ip/2eiξ, b̄L = − ηL

p

x+
L p
e−iξ,

aR = ηR

p e
iξ, āR = ηR

p e
−ip/2e−iξ, bR = − ηR

p

x−
R p
e−ip/2eiξ, b̄R = − ηR

p

x+
R p
e−iξ,

(4.14)

with

ηL

p = eip/4

√
ih

2
(x−

L p − x+
L p), ηR

p = eip/4

√
ih

2
(x−

R p − x+
R p). (4.15)

Note that we have introduced an additional parameter ξ. This has to be set to zero for
the one-particle representation to match the central charges (4.1)–(4.3). However, ξ is
needed to consistently define multi-particle representations [28]. In fact, if we consider a
two-particle state with momenta p1, p2 and parameters ξ1, ξ2 and we require the central
charges C,C to match equation (4.1), we must make the non-local assignment [11, 41]

ξ1 = 0, ξ2 = p1/2. (4.16)

This amounts to defining a non-local coproduct for the off-shell symmetry algebra [65].
In the previous section we saw that to leading order all excitations transform in

short representations of the symmetry algebra A. Assuming the representation remain
short also at higher orders—as discussed in section 3.3 this is quite subtle for the heaviest
modes—we can use the exact representations constructed above to organise the spectrum
of world sheet excitations. This lead to eight exact representations, which can be grouped
by mass and chirality as

|m| = 1 |m| = α |m| = 1 − α |m| = 0

L ˜̺
L ̺L ̺L ̺L

∼= ˜̺
R

R ˜̺
R ̺R ̺R ̺R

∼= ˜̺
L

5 The integrable S matrix

In this section we present the two-body world sheet S matrix. The off-shell symmetry
algebra A severely restricts the form of the S-matrix. Integrability further limits the
allowed scattering processes. Finally, we will require (braiding and physical) unitarity
and crossing invariance, and use this to constrain the dressing phases appearing in the
S matrix.
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5.1 Allowed processes

In an integrable theory the presence of higher conserved charges imposes strong con-
straints on which two-particle scattering processes can appear [66]. Let us consider the
scattering of two particles with quantum numbers (p1, m1) and (p2, m2), resulting in
two particles (p′

1, m
′
1) and (p′

2, m
′
2). The central charges impose constraints on (p′

j , m
′
j),

yielding

m1 +m2 = m′
1 +m′

2, p1 + p2 = p′
1 + p′

2, E1 + E2 = E ′
1 + E ′

2, (5.1)

where we also imposed invariance under worldsheet translations. This allows for a
plethora of scattering channels. For instance if the masses |m1|, |m2| take values α, 1−α,
the outgoing particles may have masses |m′

1|, |m′
2| equal to

α, 1 − α, 1 − α, α, 0, 1, or 1, 0. (5.2)

In general the dependence of the outgoing momenta on the incoming ones is complicated.
However, only one of the outcomes is compatible with integrability. If we require the
conservation of higher charges of the form [67,68]

Qn =
i

n− 1

(
1

(x+
p )n−1

− 1

(x−
p )n−1

)
, (5.3)

where the Zhukovski variables suitably depend on each particle’s representation, we
find20 that the only allowed processes are the ones where m is transmitted along with
the momentum:

(p1, m1; p2, m2) −→ (p′
1, m

′
1; p

′
2, m

′
2) = (p2, m2; p1, m1). (5.4)

As the sign of m determines the left/right flavour, also this label is transmitted. This
restriction on the scattering processes is compatible with the perturbative calculations
so far performed in this theory [21, 36, 38, 69–74]. Therefore, for the time being we will
work under the assumption that only the processes (5.4) are allowed.

5.2 Constraining the S matrix

Let us consider an arbitrary (super)charge Q of psu(1|1)2
c.e. in the two-particle represen-

tation, denoted by Q(p1, p2). This is a 162 × 162 matrix, which can be decomposed into
22 × 22 matrices, corresponding to irreducible two-particle representations of the form
̺1 ⊗ ̺2, identified by the charges m1, m2 and by the grading. The possible representa-
tions ̺i have been presented in section 4.2. If we denote such matrices by Q̺1,̺2

m1,m2
(p1, p2),

we can write down the constraints on the S matrix

Q̺2,̺1

m2,m1
(p2, p1) S̺1,̺2

m1,m2
(p1, p2) = S̺1,̺2

m1,m2
(p1, p2) Q̺1,̺2

m1,m2
(p1, p2). (5.5)

20In fact, if we assume no particle production it is enough to require a single higher charge to be
conserved to rule out all but one of the processes in (5.2). Imposing higher conservation laws would
force particle number to be conserved, as we have already implicitly assumed.
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These equations are similar to the ones solved in reference [31] as an auxiliary problem
in order to find the AdS3 × S3 × T4 mixed-flux S matrix.21 The situation here is a bit
more general, as we want to allow the masses to take real values 0 6 |m| 6 1. Still it is
straightforward to find that each block of the S-matrix is completely determined up to
an overall pre-factor—a dressing factor. We collect the expressions for these blocks in
appendix G.

There are some further constraints that we should impose for consistency: braiding
unitarity imposes

S(p2, p1) S(p1, p2) = 1, (5.6)

while physical unitarity requires S to be unitary as a matrix. Both of these constraints
will yield restrictions on the dressing factors. More restrictions will follow from requiring
crossing invariance [75], as we will describe in section 5.4. Finally, for consistency with
factorisation of scattering, the Yang-Baxter equation

S(p2, p3)⊗1 ·1⊗S(p1, p3) ·S(p1, p2)⊗1 = 1⊗S(p1, p2) ·S(p1, p3)⊗1 ·1⊗S(p2, p3), (5.7)

must also hold. This is in fact the case for an S matrix composed of the blocks given in
appendix G.

Another constraint is the discrete left-right symmetry [33]. We have seen that the left
and right representations of section 3 (and further detailed in appendix E) are mapped
into each other by swapping L↔R everywhere. Note than in presence of a non-vanishing
NS-NS flux, this also means flipping the sign of q. We will assume that this discrete
symmetry still holds at the level of the S matrix—compatibly with perturbative cal-
culations. This is automatically the case for all blocks we construct, but gives further
relations between the dressing factors.

5.3 Blocks and dressing factors

Overall, the S matrix splits into 8 × 8 = 64 blocks, one for each possible combination of
masses and left/right flavours of the incoming particles. In principle, each of those comes
with a dressing factor, which cannot be fully determined just by symmetry arguments.
However, unitarity and left-right symmetry reduce this number significantly. Let us list
such blocks to better investigate how this happens.

Same mass, same chirality. Let us consider two particles of mass |m| and same
target-space chiralities. We therefore have eight blocks22

ΣLL

m,m SLL

m,m, ΣRR

m,m SRR

m,m, with |m| = 0, α, 1 − α,

ΣLL

m,m S L̃L̃

m,m, ΣRR

m,m S R̃R̃

m,m, with |m| = 1,
(5.8)

where we have multiplied each block by its dressing factor Σ. We single out the heavy-
mode S matrix since it scatters representations with a grading that is opposite to the one

21Note in fact that the psu(1|1)4
c.e. symmetry of that theory factors precisely into two copies of the

psu(1|1)2
c.e. discussed here.

22To keep the notation manageable we use ̺L ≡ L, ̺R ≡ R, etc. in the S-matrix indices.
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of light modes. Its matrix structure is related in a simple way to that of the other blocks,
see appendix G. The matrix part of all blocks depends on the masses only through the
Zhukovski parameters x±

L,R, and can be found in equations (G.1–G.3).
If we assume that the dressing factors are related by LR symmetry, i.e.,

ΣLL

m,m(p1, p2; q) = Σm,m(xL

1, x
L

2; +q), ΣRR

m,m(p1, p2; q) = Σm,m(xR

1 , x
R

2 ; −q), (5.9)

for appropriate functions Σm,m, we are then left with four undetermined factors.

Same mass, opposite chirality. In a very similar way we also start out with eight
blocks here

ΣLR

m,m SLR

m,m, ΣRL

m,m SRL

m,m, with |m| = 0, α, 1 − α,

ΣLR

m,m S L̃R̃

m,m, ΣRL

m,m S R̃L̃

m,m, with |m| = 1,
(5.10)

where the explicit expressions for the two cases are collected in (G.6) and (G.9) respec-
tively. Upon imposing LR symmetry we get

ΣLR

m,m(p1, p2; q) = Σ̃m,m(xL

1, x
R

2 ; +q), ΣRL

m,m(p1, p2; q) = Σ̃m,m(xR

1 , x
L

2; −q), (5.11)

for four appropriate Σ̃m,m.

Different mass, same chirality. We start with 24 blocks. We have to distinguish
between the case in which only light modes are involved

ΣLL

m1,m2
SLL

m1,m2
, ΣRR

m1,m2
SRR

m1,m2
, with |m1|, |m2| = 0, α, 1 − α |m1| 6= |m2|,

(5.12)
and the case in which light modes scatter with heavy ones

ΣLL

m1,m2
SLL̃

m1,m2
, ΣRR

m1,m2
SRR̃

m1,m2
, with |m1| = 0, α, 1 − α, |m2| = 1,

ΣLL

m1,m2
S L̃L

m1,m2
, ΣRR

m1,m2
S R̃R

m1,m2
, with |m1| = 1, |m2| = 0, α, 1 − α.

(5.13)

In (5.12) we find again S matrices of the form (G.1), since the mass dependence is just
encoded in the spectral parameters x±

L,R. The matrices appearing in (5.13) are instead
found in (G.4) and (G.5), because of the different grading of the two representations that
scatter.

Clearly LR-symmetry halves the amount of independent blocks. In this case it is also
interesting to observe that braiding unitarity gives, in the appropriate normalisation of
appendix G

ΣLL

m2,m1
(p2, p1) ΣLL

m1,m2
(p1, p2) = 1 and ΣRR

m2,m1
(p2, p1) ΣRR

m1,m2
(p1, p2) = 1. (5.14)

This means that these scalar factors are fixed if we determine the six functions

Σm1,m2
(p1, p2; q) with |m1|, |m2| = 0, α, 1 − α, 1, |m1| < |m2|. (5.15)
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Different mass, opposite chirality. This case resembles the one above, and we start
again with 24 blocks. For light-light scattering we find

ΣLR

m1,m2
SLR

m1,m2
, ΣRL

m1,m2
SRL

m1,m2
, with |m1|, |m2| = 0, α, 1 − α, |m1| 6= |m2|,

(5.16)
while light-heavy scattering yields

ΣLR

m1,m2
SLR̃

m1,m2
, ΣRL

m1,m2
SRL̃

m1,m2
, with |m| = 0, α, 1 − α, |m|′ = 1,

ΣLR

m1,m2
S L̃R

m1,m2
, ΣRL

m1,m2
S R̃L

m1,m2
, with |m| = 1, |m|′ = 0, α, 1 − α.

(5.17)

The relevant S matrices are collected in (G.6), (G.10) and (G.11). Here unitarity relates
the LR to the RL channel,

ΣLR

m2,m1
(p2, p1) ΣRL

m1,m2
(p1, p2) = 1, (5.18)

and again we are left with six functions

Σ̃m1,m2
(p1, p2; q) with |m1|, |m2| = 0, α, 1 − α, 1 , |m1| < |m2|. (5.19)

Let us stress again that all this discussion was done for the case in which we can include
the heavy modes in the asymptotic particle spectrum. Should the heavy modes be
composite or be bound states, we would not need to compute their scattering matrices.
In that case, we would only have to determine 12 blocks and the relative dressing factors.

5.4 Constraints on the dressing factors

The matrix part of each block is fixed by requiring equation (5.5) to hold for suitably
chosen representations ̺1, ̺2. The normalisation of each block, and hence of the dressing
factor, is a matter of convention. Our choices in appendix G aim at simplifying the
constraints on the dressing factors. These come from braiding and physical unitarity,
and from crossing symmetry.

Constraints from unitarity. Braiding unitarity imposes that the dressing factors
satisfy

ΣLL

m2,m1
(p2, p1) ΣLL

m1,m2
(p1, p2) = 1, ΣRR

m2,m1
(p2, p1) ΣRR

m1,m2
(p1, p2) = 1,

ΣLR

m2,m1
(p2, p1) ΣRL

m1,m2
(p1, p2) = 1,

(5.20)

while physical unitarity yields

(
ΣLL

m1,m2
(p1, p2)

)∗
ΣLL

m1,m2
(p1, p2) = 1,

(
ΣRR

m1,m2
(p1, p2)

)∗
ΣRR

m1,m2
(p1, p2) = 1,

(
ΣLR

m1,m2
(p1, p2)

)∗
ΣLR

m1,m2
(p1, p2) = 1,

(
ΣRL

m1,m2
(p1, p2)

)∗
ΣRL

m1,m2
(p1, p2) = 1,

(5.21)

for any choice of the masses m1 and m2, where ∗ denotes complex conjugation. These
conditions imply that all the dressing phases are pure phases.
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Constraints from crossing. Invariance under the particle-to-antiparticle transfor-
mation requires that the S matrix is compatible with crossing symmetry [75]. On the
one-particle representations we might define the charge conjugation matrix as

C =




0 0 1 0

0 0 0 i

1 0 0 0

0 i 0 0


 , (5.22)

in the basis23 {φL, ψL, φR, ψR}, where φ denotes bosons and ψ fermions belonging to a
psu(1|1)2

c.e. short representation. After analytically continuing the momentum p to p̄ we
have to implement crossing on the Zhukovski variables as in reference [31]

x±
L

(p̄) =
1

x±
R (p)

, x±
R

(p̄) =
1

x±
L (p)

, (5.23)

and to resolve square-root ambiguities of equation (4.15) by

ηL(p̄) =
i

x+
R (p)

ηR(p), ηR(p̄) =
i

x+
L (p)

ηL(p). (5.24)

The crossing equations may be written compactly in terms of the matrix

S = Π S, (5.25)

where Π is the permutation matrix. Then we have, in matrix form,

C1 · St1(p̄1, p2) · C
−1
1 · S(p1, p2) = 1, (5.26)

where we have used the notation C1 = C ⊗ 1, and t1 denotes transposition on the first
space. These equations amount to constraints just on the scalar factors

ΣRL

m1m2
(xR(p̄1), xL(p2)) ΣLL

m1m2
(xL(p1), xL(p2)) = c(xL 1, xL 2),

ΣLL

m1m2
(xL(p̄1), xL(p2)) ΣRL

m1m2
(xR(p1), xL(p2)) = c̃(xR 1, xL 2),

ΣLR

m1m2
(xL(p̄1), xR(p2)) ΣRR

m1m2
(xR(p1), xR(p2)) = c(xR 1, xR 2),

ΣRR

m1m2
(xR(p̄1), xR(p2)) ΣLR

m1m2
(xL(p1), xR(p2)) = c̃(xL 1, xR 2),

(5.27)

where we have defined the functions of the Zhukovski variables

c(x1, x2) =

(
x+

1

x−
1

)+1/4 (
x+

2

x−
2

)−1/4
x−

1 − x−
2

x+
1 − x−

2

√√√√x+
1 − x+

2

x−
1 − x−

2

,

c̃(x1, x2) =

(
x+

1

x−
1

)−1/4 (
x+

2

x−
2

)−3/4
1 − x−

1 x
+
2

1 − x−
1 x

−
2

√√√√√
1 − 1

x−

1
x−

2

1 − 1
x+

1
x+

2

.

(5.28)

23The charge conjugation matrix can be chosen to be the same also for the representation ˜̺L ⊕ ˜̺R in
the basis {φ̃L, ψ̃L, φ̃R, ψ̃R}.
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Thanks to the normalisations of the S matrices introduced in appendix G, the crossing
equations above take the same form for any choice of the masses m1, m2. Furthermore,
it is clear that LR symmetry relates the first and third lines, and the second and fourth
lines in (5.27).24

It would be very interesting to solve these crossing equations, at least at the so-called
Arutyunov-Frolov-Staudacher (AFS) order of the dressing phases. For the case of pure
R-R (q = 0), an AFS order of the phases in the massive sector—including scattering of
different masses—was recently proposed in [76]. The proposal of [76] was also shown to
be compatible with the crossing equations derived in [33]. It is easy to see that those
crossing equations match with the ones derived here, if we account for the different
normalisations on the two sides. In particular, comparing the (string-frame) S matrix
of [33] with the one constructed here (when we set q = 0), we see that we have to identify
the scalar factors SLL

′

, SRL
′

of [33] with

SLL
′

(p1, p2) →
(
x+

1

x−
1

)−1/2 (
x+

2

x−
2

)1/2

ΣLL

m1m2
(p1, p2) ,

SRL
′

(p1, p2) →
(
x+

1

x−
1

)−1/4 (
x+

2

x−
2

)1/4

ΣRL

m1m2
(p1, p2) ,

(5.29)

where the labels L and R on the Zhukovski variables can be omitted, because q = 0.
With this identification we can check25 that (5.46) of [33] is compatible with (5.27).

To conclude, let us comment on the form of the charge-conjugation matrix (5.26) with
respect to the one of references [30,31]. There, charge conjugation for massless particles
involved momentum-dependent expressions of the form sgn(sinp

2
). This is simply because,

when taking the α → 1 limit and identifying the massless modes here with the ones
of AdS3 × S3 × T4, a momentum-dependent change of basis is necessary to make the
so(4) symmetry of that case manifest. This is precisely the change of basis discussed in
section 3.4.

6 Conclusions

The all-loop worldsheet S matrix of the maximally supersymmetric string theory AdS3 ×
M7 backgrounds can be fixed, up to dressing phases, by determining the off-shell sym-
metry algebra A and its representations. This approach, originally used in the context
of AdS5 × S5 [27], has been particularly useful in the context of type IIB strings on
AdS3 × S3 × T4 [29–31]. Unlike the AdS5 × S5 background where the two formulations
are equivalent, in the case of string theory on AdS3 it is necessary to use the GS action,
rather than the coset action [20]. This is because the massless fermions that appear in
AdS3 backgrounds do not have conventional kinetic terms in the coset formulation [29].
While this makes the computations more involved than in the case of AdS5, a major

24Let us stress once more that such normalisations are arbitrary, and that different normalisations
would produce different right-hand-sides of the crossing equations.

25The equations of [33] are written for crossing in the second variable. For this reason we also need
to use braiding unitarity to rewrite them when the first variable is crossed.
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advantage of this approach is that it treats massive and massless modes democratically,
circumventing previous problems associated with incorporating massless modes into the
integrability construction.

In this paper we have applied this method to type IIB string theory on the background
AdS3 ×S3 ×S3×S1 with mixed NS-NS and R-R flux by computing the all-loop worldsheet
S matrix between all possible one-particle representations. The S matrix was fixed, up
to dressing factors, using A and its representations. As we have discussed, it may well be
that the heavy modes should not be treated as fundamental particles, and that therefore
the relative S matrix needs not to be computed in this way. While we are left with several
dressing factors, most of those are related to each other by unitarity and symmetry under
left and right or α ↔ (1−α) exchange. When we consider the scattering of light massive
and massless modes, we are left with nine factors: four correspond to light–light massive
scattering of same or different mass and same or opposite chirality, two to the scattering of
a light massive mode with one of the two massless representations, and three to massless
scattering of each of the two representations with itself and with each other. Should we
treat the heavy modes as fundamental, we would have to consider six additional dressing
factors. We have also determined the crossing relations that all dressing factors should
satisfy.

Because we have been working with the GS action, the methods used here are quite
robust and do not, for example, depend on the background being a semi-symmetric space.
As a result, they could be applied to other, less symmetric backgrounds, associated not
just to less-symmetric cosets [77, 78], but perhaps also to other AdS backgrounds such
as [79–83]. While these latter backgrounds are not expected to be integrable, it would be
interesting to establish what happens to the symmetry algebra of the gauge-fixed action
when the level-matching condition is relaxed. In the case of the integrable backgrounds
studied in this paper and previous works, the Lie-algebra structure is preserved and the
algebra is merely centrally extended to A when one goes off-shell. One may wonder
whether this relatively simple structure is a result of the underlying integrability of the
theory and whether it will be significantly modified in more generic backgrounds.

The S matrix we have constructed gives rise to a three-parameter family of quantum
integrable models, controlled by λ, α and q. Together with the presence of massless
modes this provides a rich setting for investigating more fully the integrability struc-
tures present here. It would be very interesting to understand, for example, the asymp-
totic Bethe ansatz [84], finite-gap equations [20, 32, 43, 46], the thermodynamic Bethe
ansatz [63, 85–90], Yangian symmetries [91–95], and quantum spectral curve [96–98] for
these models. The study of boundary integrable boundary conditions for these models
is another interesting direction, which has recently been investigated in [99].

The AdS side of the AdS3/CFT2 correspondence is now likely to be understandable
using integrable holography methods. Recently, some signs of integrability on the CFT
side have also been identified [100] in the CFT dual to strings on AdS3 × S3 × T4. Much
less is known about the CFT2 dual of strings on AdS3 × S3 × S3 × S1 [51, 101–103].
It would be interesting to see if the AdS integrability results already known for this
background can shed some light on the dual CFT2. The AdS3/CFT2 correspondence has
been recently investigated in the higher-spin limit (see [104–106] and references therein).
It was found that in this context the α → 0 limit provided valuable information about
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the theories, much as it had done in [32,42]. Since it is widely expected that the higher-
spin theory should arise as a tensionless limit of the string backgrounds it would be
very interesting to see the precise way in which these can be related. Perhaps the large
symmetries (Yangian and W-algebra, respectively) can be used in this context.
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A Conventions

For AdS3 and S3 we consider the three-dimensional gamma matrices26

γ0 = −iσ3, γ1 = σ1, γ2 = σ2,

γ3 = σ1, γ4 = σ2, γ5 = σ3,

γ6 = σ1, γ7 = σ2, γ8 = σ3.

(A.1)

The ten-dimensional gamma matrices are then given by

ΓA = +σ1 ⊗ σ2 ⊗ γA ⊗ 1 ⊗ 1 , A = 0, 1, 2,

ΓA = +σ1 ⊗ σ1 ⊗ 1 ⊗ γA ⊗ 1 , A = 3, 4, 5,

ΓA = +σ1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ γA, A = 6, 7, 8,

Γ9 = −σ2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(A.2)

26Our conventions are the same as those of [20], except for the definition of γ0 and γ2.
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We then have
Γ05 = −1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ 1 ,

Γ012 = +σ1 ⊗ σ2 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ345 = +iσ1 ⊗ σ1 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ012345 = + 1 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ1234 = − 1 ⊗ 1 ⊗ σ3 ⊗ σ3 ⊗ 1 ,

Γ6789 = + σ3 ⊗ σ3 ⊗ 1 ⊗ 1 ⊗ 1 ,

Γ = Γ0123456789 = +σ3 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 .

(A.3)

The gamma matrices satisfy

(ΓA)t = −TΓAT−1, (ΓA)† = −CΓAC−1, (ΓA)∗ = +BΓAB−1, (A.4)

where
T = −iσ2 ⊗ σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, C = Γ0, B = −Γ0 T, (A.5)

Note that

T †T = C†C = B†B = 1, Bt = TC†,

T † = −T = +T t, C† = −C = +Ct, B† = +B = +Bt,

T = −Γ01479, C = −iσ1 ⊗ σ2 ⊗ σ3 ⊗ 1 ⊗ 1,

B = +σ3 ⊗ 1 ⊗ σ1 ⊗ σ2 ⊗ σ2 = −Γ1479,

BΓB† = Γ∗.

(A.6)

The Majorana spinors satisfy the conditions

θ∗ = Bθ, θ̄ = θ†C = θtT. (A.7)

B Killing spinors

The background is supported by Ramond-Ramond three-form flux satisfying

/F = 12(Γ012 + cosϕΓ345 + sinϕΓ678). (B.1)

Let us introduce the matrices27

M̂ =
1 − 1

2
ziΓ

012Γi
√

1 − z2

4

1 − 1
2
ỹiΓ

345Γi
√

1 + ỹ2

4

1 − 1
2
x̃iΓ

678Γi
√

1 + x̃2

4

e− t
2

Γ12−
φ̃5
2

Γ34−
φ̃8
2

Γ67

,

M̌ =
1 + 1

2
ziΓ

012Γi
√

1 − z2

4

1 + 1
2
ỹiΓ

345Γi
√

1 + ỹ2

4

1 + 1
2
x̃iΓ

678Γi
√

1 + x̃2

4

e+ t
2

Γ12+
φ̃5
2

Γ34+
φ̃8
2

Γ67

,

(B.2)

27The gamma matrices that appear in this equations are the ones that were defined in section A.
Note that the summations over i runs over different values in the various terms, corresponding to the
coordinates z1, z2, ỹ3, ỹ4, x̃6 and x̃7.
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and further define the matrices M0 and Mt as

M̂(zi, yi, xi, t, φ5, φ8) ≡ M0(zi, yi, xi)Mt(t, φ5, φ8),

M̌(zi, yi, xi, t, φ5, φ8) ≡ M−1
0 (zi, yi, xi)M

−1
t (t, φ5, φ8).

(B.3)

In the above, for compactness, we have used the rescaled coordinates

ỹi = cosϕ yi, φ̃5 = cosϕφ5, x̃i = sinϕxi, φ̃8 = sinϕφ8. (B.4)

We further introduce the rotated vielbeins

/̂Em = M̂−1 /EmM̂, /̌Em = M̌−1 /EmM̌, (B.5)

and the orthogonal projectors Π±

Π± =
1

2
(1 ± cosϕΓ012345 ± sinϕΓ012678). (B.6)

The covariant derivative in the rotated frame can then be written as

∂m + 1
4
/̂ωm + 1

48
/F /̂Em = ∂m−1

2
/̂EmΓ012Π+,

∂m + 1
4
/̌ωm − 1

48
/F /̌Em = ∂m+1

2
/̌EmΓ012Π+.

(B.7)

The Killing spinor equations
(
∂m + 1

4 /ωm + 1
48
/F /Em

)
ǫ1 = 0,

(
∂m + 1

4 /ωm − 1
48
/F /Em

)
ǫ2 = 0, (B.8)

hence have the solutions

ǫ1 = Π−M̂ǫ
(0)
1 , ǫ2 = Π−M̌ǫ

(0)
2 , (B.9)

where ǫ
(0)
i are constant spinors.

C Components of the spinors θI

The Lagrangian and supercurrents presented in sections 2.3 and 2.4.1 are written in
terms of (eight complex) fermionic components θIi. The 32-component Majorana-Weyl
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spinors θI are given in terms of the components of the spinors θI by

θ1 =
1

2




+e−iπ/4 sinϕ
2
θ14

+e−iπ/4 sinϕ
2
θ13

−e−iπ/4 cosϕ
2
θ12

+e+iπ/4 cosϕ
2
θ11

−e−iπ/4 cosϕ
2
θ̄11

−e+iπ/4 cosϕ
2
θ̄12

+e+iπ/4 sinϕ
2
θ̄13

−e+iπ/4 sinϕ
2
θ̄14




⊕




+e−iπ/4 cosϕ
2
θ14

−e−iπ/4 cosϕ
2
θ13

−e−iπ/4 sinϕ
2
θ12

−e+iπ/4 sinϕ
2
θ11

+e−iπ/4 sinϕ
2
θ̄11

−e+iπ/4 sinϕ
2
θ̄12

−e+iπ/4 cosϕ
2
θ̄13

−e+iπ/4 cosϕ
2
θ̄14




⊕




0
0
0
0
0
0
0
0




⊕




0
0
0
0
0
0
0
0




,

θ2 =
1

2




−e+iπ/4 sinϕ
2
θ24

−e+iπ/4 sinϕ
2
θ23

+e+iπ/4 cosϕ
2
θ22

+e−iπ/4 cosϕ
2
θ21

−e+iπ/4 cosϕ
2
θ̄21

+e−iπ/4 cosϕ
2
θ̄22

−e−iπ/4 sinϕ
2
θ̄23

+e−iπ/4 sinϕ
2
θ̄24




⊕




−e+iπ/4 cosϕ
2
θ24

+e+iπ/4 cosϕ
2
θ23

+e+iπ/4 sinϕ
2
θ22

−e−iπ/4 sinϕ
2
θ21

+e+iπ/4 sinϕ
2
θ̄21

+e−iπ/4 sinϕ
2
θ̄22

+e−iπ/4 cosϕ
2
θ̄23

+e−iπ/4 cosϕ
2
θ̄24




⊕




0
0
0
0
0
0
0
0




⊕




0
0
0
0
0
0
0
0




,

(C.1)

where θ̄Ii is the complex conjugate of θIi.

D Cubic order terms

In this appendix we collect the cubic order corrections to the fermionic Lagrangian and
the supercurrents. Note that these terms all vanish for ϕ = 0 and ϕ = π/2, which is
expected since the gauge-fixed Green-Schwarz action for AdS3 × S3 × T4 contains no
cubic terms [29–31]. The cubic part of the Lagrangian is given by

LF

∣∣∣
cubic

= − sinϕ cosϕ
(

(θ̄12θ12 − θ̄13θ13)(ψ̇ − q
′

ψ) + (θ̄22θ22 − θ̄23θ23)(ψ̇ + q
′

ψ)

−q̃(θ̄11

′

θ22 + θ̄21

′

θ12 + iθ̄13

′

θ24 + iθ̄23

′

θ14)X

+q̃(θ̄12

′

θ21 + θ̄22

′

θ11 − iθ̄14

′

θ23 − iθ̄24

′

θ13)X̄

+q̃(θ̄11

′

θ23 + θ̄21

′

θ13 − iθ̄12

′

θ24 − iθ̄21

′

θ14)Y

−q̃(θ̄13

′

θ21 + θ̄23

′

θ11 + iθ̄14

′

θ22 + iθ̄24

′

θ12)Ȳ

−q̃(θ12θ23 + θ13θ22)
′

Z + q̃(θ̄12θ̄23 + θ̄13θ̄22)
′

Z̄

−q̃(θ11θ22 − θ12θ21)
′

Y + iq̃(θ̄13θ̄24 − θ̄14θ̄23)
′

Ȳ

−q̃(θ11θ23 − θ13θ21)
′

X + iq̃(θ̄12θ̄24 − θ̄14θ̄22)
′

X̄

+q̃(θ̄12θ22 − θ̄13θ23 + θ̄22θ12 − θ̄23θ13)
′

w
)
.

(D.1)

Note that for q = 1 only the first line of this expression remains. Furthermore, in that
case θ1i couples to the right-moving part of ψ, and θ2i couples to the right-moving part.
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The cubic order corrections to the components of the current jL is given by

jτ
L

∣∣∣
cubic

= 1
2

sinϕ cosϕe−iπ/4e+ix−
(

+ iθ̄11(PY Y − PȲ Ȳ − PXX + PX̄X̄)

− (θ̄12X̄ − θ̄13Ȳ )Pψ + iq̃θ̄24(Ȳ
′

X̄ +
′

Ȳ X̄)

− q̃(θ̄22X̄ − θ̄23Ȳ )
′

w − q̃(θ22Ȳ + θ23X̄)Z̄

− q̃

2
θ̄21(Ȳ

′

Y +
′

Ȳ Y − X̄
′

X −
′

X̄X)
)

(D.2)

and

jσ
L

∣∣∣
cubic

= 1
2
e−iπ/4 sinϕ cosϕe+ix−

(
− iq̃(θ22Ȳ + θ23X̄)(2iPZ̄ − Z)

− q̃θ24(2iPY X̄ + 2iPX Ȳ + X̄Ȳ )

− q(θ̄12X̄ − θ̄13Ȳ )Pψ + q̃(θ̄22X̄ − θ̄23Ȳ )Pw

+ (q̃θ̄21 + iqθ̄11)(PY Y − PXX)

+ (q̃θ̄21 − iqθ̄11)(PȲ Ȳ − PX̄X̄)

− iq̃θ̄21(cos2 ϕ Ȳ Y − sin2 ϕ X̄X)

+ q̃(q̃θ̄12 − iqθ̄22)X̄
′

ψ − q̃(q̃θ̄13 − iqθ̄23)Ȳ
′

ψ

+
iq̃

2
(q̃θ̄21 − iqθ̄11)(Ȳ

′

Y −
′

Ȳ Y − X̄
′

X −
′

X̄X)
)
.

(D.3)

Similarly, the corrections to jR are given by

jτ
R

∣∣∣
cubic

= 1
2

sinϕ cosϕe−iπ/4e+ix−
(

+ iθ21(PY Y − PȲ Ȳ − PXX + PX̄X̄)

− (θ22X − θ23Y )Pψ + iq̃θ14(Y
′

X +
′

Y X)

+ q̃(θ12X − θ13Y )
′

w − q̃(θ̄12Y + θ̄13X)
′

Z̄

− q̃

2
θ11(Ȳ

′

Y +
′

Ȳ Y − X̄
′

X −
′

X̄X)
)
,

(D.4)

and

jσ
R

∣∣∣
cubic

= 1
2
e−iπ/4 sinϕ cosϕe+ix−

(
− iq̃(θ̄12Y + θ̄13X)(2iPZ − Z̄)

− q̃θ̄14(2iPȲX + 2iPX̄Y +XY )

+ q(θ22X − θ23Y )Pψ − q̃(θ12X − θ13Y )Pw

− (q̃θ11 + iqθ21)(PY Y − PXX)

− (q̃θ11 − iqθ21)(PȲ Ȳ − PX̄X̄)

+ iq̃θ11(cos2 ϕ Ȳ Y − sin2 ϕ X̄X)

+ q̃(q̃θ22 + iqθ12)X
′

ψ − q̃(q̃θ23 + iqθ13)Y
′

ψ

+
iq̃

2
(q̃θ21 + iqθ11)(Ȳ

′

Y −
′

Ȳ Y − X̄
′

X −
′

X̄X)
)
.

(D.5)
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E Quadratic charges

In this appendix we will spell out the supercharges at quadratic order in the fields, and
fix the conventions to cast them in the oscillator notation (3.7).

E.1 Expression in terms of fields

Let us introduce complex combinations of the fields. For the bosons we choose

|m| = 1 |m| = α |m| = 1 − α |m| = 0

Z = −z2 + iz1 Y = −y3 − iy4 X = −x6 − ix7 W = w − iψ
Z̄ = −z2 − iz1 Ȳ = −y3 + iy4 X̄ = −x6 + ix7 W̄ = w + iψ

Note that at quadratic order we can combine the massless coordinate w coming from
S1 with ψ coming from the combination of the equators of the two three-spheres. The
conjugate momenta PZ , PZ̄ , etc., are define in such a way to have canonical Poisson
brackets with the fields, so that PZ = 1

2
∂0Z̄, PZ̄ = 1

2
∂0Z and so on. In this way, we have

the canonical commutation relations28

[
Z(x), PZ(y)

]
= i δ(x− y), (E.1)

and so on.
We also redefine the fermions, denoting them by θL j, θR j and indicating their complex

conjugates by a bar. We use labels L and R also for the massless fermions to keep the
notation uniform. These fermions are related to the components of the Majorana-Weyl
spinors of appendix C by

θL j = θ1j , θR j = θ̄2j . (E.2)

The fermions satisfy canonical anti-commutation relation of the form
{
θ̄L j(x), θL j(y)

}
= δ(x− y),

{
θ̄R j(x), θR j(y)

}
= δ(x− y), (E.3)

for all masses |mj|. For completeness we rewrite the supercharges from section 2.4.1 in
terms of θL j and θR,j as

QL =
e−i π/4

2

∫
dσ
(

+ 2PZ̄θ
L 4 + Z ′(iq̃θ̄R 4 − qθL 4) + iZθL 4

− 2iPY θ̄
L 3 − Ȳ ′(q̃θR 3 − iqθ̄L 3) − αȲ θ̄L 3

− 2iPX θ̄
L 2 − X̄ ′(q̃θR 2 − iqθ̄L 2) − (1 − α)X̄θ̄L 2

− 2iPW θ̄
L 1 − W̄ ′(q̃θR 1 − iqθ̄L 1)

)
,

QR =
e−i π/4

2

∫
dσ
(

+ 2PZθ
R 4 + Z̄ ′(iq̃θ̄L 4 + qθR 4) + iZ̄θR 4

− 2iPȲ θ̄
R 3 − Y ′(q̃θL 3 + iqθ̄R 3) − αY θ̄R 3

− 2iPX̄ θ̄
R 2 −X ′(q̃θL 2 + iqθ̄R 2) − (1 − α)Xθ̄R 2

− 2iPW̄ θ̄
R 1 −W ′(q̃θL 1 + iqθ̄R 1)

)
.

(E.4)

28Our convention for the bars on PZ , PZ̄
, etc. is different from the one of [30, 31].
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Note that QL is related to QR by exchanging a boson with its conjugate, swapping the
labels L and R on the fermions and flipping the sign of the NS-NS flux coefficient, q → −q.
This is a manifestation of left-right symmetry. From the equations above one can already
expect the fields with mass |m| = 1 − α, α, 0 to be organised into representations with
the same grading, and the representations with |m| = 1 to have opposite grading.

E.2 Expressions in terms of oscillators

In order to introduce oscillators, we have defined the wave-function parameters (3.3)
which we repeat here for convenience:

gL(p,mj) = − q̃ p

2fL(p,mj)
, gR(p,mj) = − q̃ p

2fR(p,mj)
,

fL(p,mj) =

√
|mj | + q p+ ωL(p,mj)

2
, fR(p,mj) =

√
|mj | − q p + ωR(p,mj)

2
,

ωL(p,mj) =
√
p2 + 2 |mj| q p +m2

j , ωR(p,mj) =
√
p2 − 2 |mj| q p+m2

j .

(E.5)

These satisfy the useful identities

fL(−p,mj) = +fR(+p,mj), fL(p,mj)
2 + gL(p,mj)

2 = ωL(p,mj),

gL(−p,mju) = −gR(+p,mj), fR(p,mj)
2 + gR(p,mj)

2 = ωR(p,mj).
(E.6)

We define the bosons as

Xj =
1√
2π

∫
dp



 1
√
ωL(p,mj)

a†
L j(p) e

−i pσ +
1

√
ωR(p,mj)

aR j(p) e
i pσ



 ,

X̄j =
1√
2π

∫
dp



 1
√
ωR(p,mj)

a†
R j(p) e

−i pσ +
1

√
ωL(p,mj)

aL j(p) e
i pσ



 ,

PX̄j
=

i√
2π

∫
dp

2

(√
ωL(p,mj) a

†
L j(p) e

−i pσ −
√
ωR(p,mj) aR j(p) e

i pσ
)
,

PXj
=

i√
2π

∫ dp

2

(√
ωR(p,mj) a

†
R j(p) e

−i pσ −
√
ωL(p,mj) aL j(p) e

i pσ
)
,

(E.7)

where we introduced obvious short-hand notations X4 = Z, X3 = Y, X2 = X and
X1 = W .

We denote the fermionic annihilation operators by dL j, dR j and the creation operators

are d†
L j, d

†
R j with |mj| = (0, 1 − α, α, 1). Then

θL j =
e−i π/4

√
2π

∫
dp


 gR(p,mj)√

ωR(p,mj)
d†

R j e
−i pσ − fL(p,mj)√

ωL(p,mj)
dL j e

i pσ


 ,

θR j =
e−i π/4

√
2π

∫
dp


 gL(p,mj)√

ωL(p,mj)
d†

L j e
−i pσ − fR(p,mj)√

ωR(p,mj)
dR j e

i pσ


 .

(E.8)
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These definitions are such that the raising and lowering operators satisfy canonical
(anti)commutation relations, which follows from the ones of the fields. Much like in
references [30,31] we can now use these definitions and the relations (E.6) to rewrite the
supercharges. It is tedious but straightforward to show that these take the form (3.7).

F Supercharges in the α → 1 limit

Our construction bears some similarities to the one performed in references [30, 31] for
AdS3 × S3 × T4, which is not surprising as AdS3 × S3 × S3 × S1 takes that form—up to
suitably compactifying the flat directions—when either sphere blows up. This can be
achieved by sending α → 0 or α → 1. We have chosen our conventions such that, in the
former case, the coordinates can be matched with the ones of references [30, 31] as

zi
α→1−−→ zi, i = 1, 2, yi

α→1−−→ yi, i = 3, 4,

xi
α→1−−→ xi, i = 6, 7, ψ

α→1−−→ x8, w
α→1−−→ x9.

(F.1)

Similarly, we can match the fermions as

θL 4 α→1−−→ η 1
L
, θL 3 α→1−−→ η 2

L
, θL 2 α→1−−→ iχ̄+2, θL 1 α→1−−→ χ̄+1,

θR 4 α→1−−→ ηR 1, θR 3 α→1−−→ ηR 2, θR 2 α→1−−→ iχ̄−1, θR 1 α→1−−→ χ̄−2,
(F.2)

With these identifications, the supercharges match as

QL

α→1−−→ QL

1, QR

α→1−−→ QR1, Q
L

α→1−−→ Q
L1, Q

R

α→1−−→ Q
R

1
. (F.3)

G psu(1|1)2
c.e.-invariant S-matrices

We collect the S-matrices invariant under psu(1|1)2
c.e. that are relevant for our results.

Although we do not write it explicitly, the dependence of the Zhukovski variables on a
generic mass is always assumed. In particular, the results in this appendix are valid for
any choice of the masses |m| and |m|′ associated to the excitations with momenta p and
q, respectively. To keep our notation simple, we denote a boson by φ and a fermion by
ψ.

Same LR flavour If we decide to scatter two excitations both belonging to the rep-
resentation ̺L we find

SLL |φL

pφ
L

q〉 = ALL

pq |φL

qφ
L

p〉 , SLL |φL

pψ
L

q 〉 = BLL

pq |ψL

qφ
L

p〉 + CLL

pq |φL

qψ
L

p〉 ,
SLL |ψL

pψ
L

q 〉 = F LL

pq |ψL

qψ
L

p〉 , SLL |ψL

pφ
L

q〉 = DLL

pq |φL

qψ
L

p〉 + ELL

pq |ψL

qφ
L

p〉 ,
(G.1)
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The coefficients appearing are determined up to an overall factor. As a convention we
decide to normalise ALL

pq = 1 and we find

ALL

pq = 1, BLL

pq =

(
x−

L p

x+
L p

)1/2
x+

L p − x+
L q

x−
L p − x+

L q
,

CLL

pq =

(
x−

L p

x+
L p

x+
L q

x−
L q

)1/2
x−

L q − x+
L q

x−
L p − x+

L q

ηL p

ηL q

, DLL

pq =

(
x+

L q

x−
L q

)1/2
x−

L p − x−
L q

x−
L p − x+

L q
,

ELL

pq =
x−

L p − x+
L p

x−
L p − x+

L q

ηL q

ηL p
, F LL

pq = −
(
x−

L p

x+
L p

x+
L q

x−
L q

)1/2
x+

L p − x−
L q

x−
L p − x+

L q
.

(G.2)

The S matrix SRR scattering two excitations that are both in the representation ̺R is
parameterised by scattering elements ARR

pq , B
RR

pq , etc., obtained by substituting all labels
left with labels right in the equations above.

If we scatter two excitations both transforming under ˜̺L we find an S matrix that is
related to the previous one. After choosing a convenient normalisation we write it as

S L̃L̃ |φ̃L

pφ̃
L

q〉 = −F LL

pq |φ̃L

q φ̃
L

p〉 , S L̃L̃ |φ̃L

pψ̃
L

q 〉 = DLL

pq |ψ̃L

q φ̃
L

p〉 −ELL

pq |φ̃L

qψ̃
L

p〉 ,
S L̃L̃ |ψ̃L

pψ̃
L

q 〉 = −ALL

pq |ψ̃L

q ψ̃
L

p〉 , S L̃L̃ |ψ̃L

p φ̃
L

q〉 = BLL

pq |φ̃L

q ψ̃
L

p〉 − CLL

pq |ψ̃L

q φ̃
L

p〉 .
(G.3)

The other cases to consider involve scattering of representations with different grading

SLL̃ |φL

pφ̃
L

q〉 = BLL

pq |φ̃L

qφ
L

p〉 − CLL

pq |ψ̃L

qψ
L

p〉 , SLL̃ |φL

pψ̃
L

q 〉 = ALL

pq |ψ̃L

qφ
L

p〉 ,
SLL̃ |ψL

pψ̃
L

q 〉 = −DLL

pq |ψ̃L

qψ
L

p〉 + ELL

pq |φ̃L

qφ
L

p〉 , SLL̃ |ψL

p φ̃
L

q〉 = −F LL

pq |φ̃L

qψ
L

p〉 ,
(G.4)

S L̃L |φ̃L

pφ
L

q〉 = DLL

pq |φL

q φ̃
L

p〉 + ELL

pq |ψL

q ψ̃
L

p〉 , S L̃L |φ̃L

pψ
L

q 〉 = −F LL

pq |ψL

q φ̃
L

p〉 ,
S L̃L |ψ̃L

pψ
L

q 〉 = −BLL

pq |ψL

q ψ̃
L

p〉 − CLL

pq |φL

q φ̃
L

p〉 , S L̃L |ψ̃L

pφ
L

q〉 = ALL

pq |φL

qψ̃
L

p〉 .
(G.5)

The matrices S R̃R̃,SRR̃,S R̃R are found again by sending the labels L → R in the equations
above, including in the spectral parameters.

Opposite LR flavour Scattering excitations carrying opposite LR flavour yields dif-
ferent results. To start, the scattering of ̺L and ̺R is

SLR |φL

pφ
R

q 〉 = ALR

pq |φR

qφ
L

p〉 +BLR

pq |ψR

q ψ
L

p〉 , SLR |φL

pψ
R

q 〉 = CLR

pq |ψR

q φ
L

p〉 ,
SLR |ψL

pψ
R

q 〉 = ELR

pq |ψR

q ψ
L

p〉 + F LR

pq |φR

qφ
L

p〉 , SLR |ψL

pφ
R

q 〉 = DLR

pq |φR

qψ
L

p〉 .
(G.6)
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Scattering them in the opposite order corresponds to considering the matrix SRL, that
is found by swapping the labels L↔R. The scattering elements may be written as

ALR

pq = ζLR

pq

(
x+

L p

x−
L p

)1/2 1 − 1
x+

L p
x−

R q

1 − 1
x−

L p
x−

R q

, BLR

pq = −2i

h

(
x−

L p

x+
L p

x+
R q

x−
R q

)1/2
ηL pηR q

x−
L px

+
R q

ζLR

pq

1 − 1
x−

L p
x−

R q

,

CLR

pq = ζLR

pq , DLR

pq = ζLR

pq

(
x+

L p

x−
L p

x+
R q

x−
R q

)1/2 1 − 1
x+

L p
x+

R q

1 − 1
x−

L p
x−

R q

,

ELR

pq = −ζLR

pq

(
x+

R q

x−
R q

)1/2 1 − 1
x−

L p
x+

R q

1 − 1
x−

L p
x−

R q

, F LR

pq =
2i

h

(
x+

L p

x−
L p

x+
R q

x−
R q

)1/2
ηL pηR q

x+
L px

+
R q

ζLR

pq

1 − 1
x−

L p
x−

R q

,

(G.7)
where we have multiplied the matrix by a convenient overall factor

ζLR

pq =

(
x+

L p

x−
L p

)−1/4 (
x+

R q

x−
R q

)−1/4



1 − 1
x−

L p
x−

R q

1 − 1
x+

L p
x+

R q




1/2

, (G.8)

in such a way that unitarity is simply SLRSRL = 1.
As previously, we write also the other S matrices corresponding to the other choices

of the gradings of the representations

S L̃R̃ |φ̃L

pφ̃
R

q 〉 = −ELR

pq |φ̃R

q φ̃
L

p〉 + F LR

pq |ψ̃R

q ψ̃
L

p〉 , S L̃R̃ |φ̃L

pψ̃
R

q 〉 = DLR

pq |ψ̃R

q φ̃
L

p〉 ,
S L̃R̃ |ψ̃L

pψ̃
R

q 〉 = −ALR

pq |ψ̃R

q ψ̃
L

p〉 +BLR

pq |φ̃R

q φ̃
L

p〉 , S L̃R̃ |ψ̃L

p φ̃
R

q 〉 = CLR

pq |φ̃R

q ψ̃
L

p〉 .
(G.9)

S L̃R |φ̃L

pφ
R

q 〉 = +DLR

pq |φR

q φ̃
L

p〉 , S L̃R |φ̃L

pψ
R

q 〉 = −ELR

pq |ψR

q φ̃
L

p〉 − F LR

pq |φR

q ψ̃
L

p〉 ,
S L̃R |ψ̃L

pψ
R

q 〉 = −CLR

pq |ψR

q ψ̃
L

p〉 , S L̃R |ψ̃L

pφ
R

q 〉 = +ALR

pq |φR

q ψ̃
L

p〉 +BLR

pq |ψR

q φ̃
L

p〉 .
(G.10)

SLR̃ |φL

pφ̃
R

q 〉 = +CLR

pq |φ̃R

qφ
L

p〉 , SLR̃ |φL

pψ̃
R

q 〉 = +ALR

pq |ψ̃R

q φ
L

p〉 − BLR

pq |φ̃R

qψ
L

p〉 ,
SLR̃ |ψL

pψ̃
R

q 〉 = −DLR

pq |ψ̃R

q ψ
L

p〉 , SRR̃ |ψL

p φ̃
R

q 〉 = −ELR

pq |φ̃R

qψ
L

p〉 + F LR

pq |ψ̃R

q φ
L

p〉 .
(G.11)
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