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Abstract— In this paper the authors study the problem of the II. NONLINEAR SYSTEMS, OPERATING
existence of multiple local operating points in control sysems. CONDITIONS AND TRACKABILITY
In particular, they consider a method of going from local to . . . .
global control, i.e. given a number of local, linearized syems, Consider the following nonlinear system:
from which global system do they come?, and, can global %= f(xu) 1)

controllers be determined in this case?.
defined onO"xO™. This is in fact, a kind of local model for
systems on manifolds - this point will be addressed later.
. INTRODUCTION
Intuitively, by an operating point it is understood a
pair (xq4(t),ug(t)) € O consisting of an open loop control

In many practical applications of the control of nonlineanng a functionxy(t) which satisfies equation (1) when the
systems, the dynamics are usually linearised abodbntroluy(t) is applied, i.e.:

"operating points” (such as trim conditions in aircraft). .
These local models are then used to design local controllers Xg(t) = f(xa(t),uq(t)) (2)

and some gain scheduling procedure is used to swit@hn the other hand, the desired functigyit) is trackableif
between the controllers at different operating points. Ifhere exists a contralg(t) such that (2) holds.

fact, in many industrial plants or aerospace systems, only

a small number of operating conditions are known ang x,(t) is trackable for (1), the local variables around

the global nonlinear dynamical system is not known. Gaithe operating poiny(t) andv(t), are defined as:
scheduling methods are widely used and are object of

many research papers, (see [1], [2], [3] and references y(t)ix(t)—xd(t) (3)
within as example). In this paper, the problem of going v(t) = u(t) — ug(t)

from some known local models to a global one will beThen by applying Taylds theorem:

considered. Furthermore, the obtained global model can Y(t) = X(t) — Xq(t) = F(x,u) — f (xa(t), Ug(t))

then be used instead of gain scheduling for control purposes >~ A)y(t) + B(t)v(t) 4)
The contains of this paper are as followSection 1l Where It (xa (1), Ug(t))

recalls the basics of nonlinear systems linearisation Alt) = dx7

procedure, operating conditions and trackability prapert

Section Il introduces an algebraic method that allow"d af(xg(t),ug(t))

the reconstruction of an unknown nonlinear system taking Blt)=—%5,—

as starting points its linear representations at some giv
operating conditionsSection IV presents a global control
method_that can be used_instead of the_ well—know_n of gaiﬁn (A(t),B(t)) is a controllable pair, then the control
scheduling once the ”0”"!"9"’“ system is knoBaction V of system (1) around the operating condition is achievable
tackles the problem of going from the local models to th% uSing the control:

topology of the manifold on which the system is defined. y 9 '
Section Vicontains a summary of the ideas here presented. u(t) = ug(t) +v(t) (5)

For ‘small y(t) andv(t).



In general, there could be a numbieof these operating for 1 <i <k, and moreoverf must satisfy:

points: fo uy=0, 1<i<k (15)

(¢.uf)) ec(lo.wln™m), 1<i<k  (6) R
Consider the equations:

associated to a correspondent numbef 'local model$ of

the nonlinear system (1): 0= fp(xg>,ug)) (16)

¥ 1) =AY 0y 1) +BY v @), (7) R D
=Dy Yy Y A i mXa) (Ug)
i1=0 =0 j1=0 jm=0
The problem to be considered now is the inverse one: How to ! !
go from a set of local models (7) to the global one (1)?. Forwith

simplicity, it will be assumed that all the operating poiate 1<I<k, 1<p<n. a7)
constant, so that the local models are linear, time-inwaria
systems of the form: and
y = AlyO )+ BV (1), 1<i<K (8) A(p'a = zi’\ilzo...ziqq:l. .
Nn M Mm P SN ONEPYRON|
Also, in this case, (2) becomes an algebraic condition of the Zin:O"'2111:0"'ijzoail...in.jl...jm'q(xd ) a(ug)!
form: o 0 N N (18)
fd uy =0 ) Bm:zi;&--- 0" -
1oogVa g Mm gp i [ -1
. - P meat | u q
if the values ofx’ are constant, £ i <K. 2jp=0" Lig=t ™" Bim0Bpin . Ja ) (U6 (19)
] . ) where
Having obtained a global model from thelocal ones, a = (in,in)
global controller which will drive the system from one VLI
operating point to another has to be determined. This i=(i im)
= UL Im

will involve an application of an iteration scheme [4]
which replaces a nonlinear (not necessarily quadrati%)nd
optimal control problem which is linear (time-varying) and
guadratic, which can be solved by classical methods.

Finally, the authors will consider the tracking globalin the anl(Ni+1)n?1:1(Mj+1) variablesaipj, where f is

problem of determining (to some degree) the topology 0z;ssumed to be able to be approximated’ by a polynomial
the manifold on which a nonlinear system is defined from i " The number of equations is

a knowledge of the local representatives assuming that the
local systems are complete in the sense that their defining (n+n?+nmk (20)
neighborhoods cover the manifold.

and they can be written in the form:
I1l. FROM LOCAL TO GLOBAL

Suppose the set &f unknown constant operating points: LV =W (21)
(xg),ug)), 1<i<k (10) whereL ispa linear operat.ok( is a vector of the unknown pa-
rametersy;; andW contains the known local representations
at which there exisk linearisations of the form: AD B0, L mapsO? into Of, where:
Yy =AlO 1) +BVO®L), 1<i<k (1) a = NN+ )M +1) (22)
of some unknown nonlinear system aif. and
B = (n+n?4+nmk (23)

If the unknown system is of the form (1)

x= f(x,u) (12) The system (21) is:
« (i) Overdetermined ifa < 3,
PYINOING « (ii) Determined ifa = 3 andL is invertible,
9T, Ua) _ pi), (13) -« (ii) Underdetermined ifa > B.
éx . Therefore, according to the above classification, theré wil
af(xg>7ug>) ) be a unique solution in case (ii), a solution in case (Wit
— ou_ BY, (14) RangéL) and in case (iii) if Rank.) = 3.

then



IV. GLOBAL CONTROL whereg(0,0,t) = O, vt.

In the previous section, a way to find a global model ]
from the local models around some operating conditiongence, if y = x—x4 and v.=u—ug, then the system
has been presented. Now!/global controller which drives (27) can be written as:
the system from one operating condition to another is found. .
y=gy:vt) (28)

tt?‘nerefore, the regulator problem feican be solved, and then
write u= v+ ugq.
. To solve this problem, a well established technique of linea
x=f(xu) (24) time-varying approximations to the problem (see [4]) is
this will be, applied: It is assumed that the system (28) can be written
f(x uy=0, i=12 (25) on the form:

Suppose the existence of two distinct operating poin
(xM u®) and (x® u®?), so that in the obtained global
model of the form:

Now the control objective is to drive the global nonlinear y(t) = A(y,)y(t) + B(y, )v(t), (29)
system (24) fromx(? to x@, this is, to seek a desired
trajectoryxq(t) such that: In the case the system is not affine in the control, nonlinear
xa(0) =XV, xg(te) = x contrql terms can be included iA(y,t) gnd B(y,t)). Now,
equation (29) is replaced by the following sequence of LTV
Therefore, the question is: Does there exist a conigdl) systems:
so that: , , , , ,
sa(t) = f(xa(t),ug(t)) (26) Yl =AYy ®+ Byt m)vie)  (30)

In order to answer this question, the notion mbjection and to each of the equations (30), the following quadratic
field should be introduced: This is defined as a section &ost functional is applied:

the bundle of projection operators af' of rank m. Thus, .
a projection field on" associates a projection operatorJ:}X[i]T(tf)FX[i](tf)Jr}/f [X[i]T(t)QX[i](t)+u[i]T(t)Rdi](t) dt
P : 0" — O™ to each pointx € 0" such that the function 2 2 Jo (31)

X — P is smooth. The main result can be summarized as:The problems (30) and (31) can then be solved by standard

Theorem Given a desired trajectory x: 0" — 0O, methods (see [5] or [7]).

there is a control y: O — O™ satisfying (26), if there
exist a projection field x- P such that the function
g(x,u) = B f(x,u) satisfies:

EXAMPLE

Let (&10,v10), (&20,V20) € 02 be two points which

59(Xd(;),ud(t)) 40 satisfy:
oo vio = &20— 210+ &
for each te OF and x4(t) € RR for all t € OF, where
RP is the range of the projection. P Voo = —&10+ 5230’
Proof. and suppose the two local systems:
Sincexy € RR,, then: X -85 1) (x + 0) 0 i=12
_ X2 -1 0 X2 1) e
PuatyXd = Pty F(Xa (1), Ua (1)) = 9(Xa(t), ua(t)) (32)
Hence, These systems are local versions of:
X4 —9(Xa(t),ug(t)) =0 - _g2
- ()= et ) () (3)v e
and since 5 . . X2 -1 0 X2 1
900, W(®)
th Its follow f thau' licit function th and it
e results follow from the implicit function theorem.
X1d(t) = &10(1 —1) + &20(t)
Suppose there exists a contngf(t) satisfying the above . 3
theorem, then from (24) and (26), it can be written that: Xod (t) = X1d —X1d +Xig
X—%g = f(x,u) — f(xq,Uq) Then the control:

= f(x—Xg+ X, U—Usg+Ug) — Fxa,ta)  (27) _ _ ,
= g(X—X4,U—Ug,t) Ug = Xod -+ X1d = —X1d + 3X1q - X1d — X1d



will derive the system between the two points. problem is, how do they fit together?. Taking zero controls

from (40): . o
The system (28) becomes: vy =ghyh 0), 1<i<K
( Y1 ) _ ( 1 ((yr+xa)?+ 2(y1 + Xag)Xag + X34) ) each of these systems is defined on some regipsay of
2 )\ -1 0 an.
. ( Y1 ) 4 ( 0 ) v Now, it is said that two local systems
(34) viy=9Y",0), v =9V y,0) (41)
and this generates a closed-loop control so that the faligwi are compatibleif there exist a diffeomorphisng; : ()\7“)

expression ofi(t), from some nonempty subs\e@ of V onto some subs@tw

of Vj such that the system is a topologically conjugaté/pn
will regulate the system between the two given operatinge. @aj maps trajectories of systenis on those of system
values. (j)- Note that, if these two systems are compatible, then

U=V Ug, (35)

V. GLOBAL SYSTEMS ON MANIFOLDS yO ) = @y ()
In this section, a more general problem is considered; thghq so

of going from local models to the topology of the ambient () _ 2q; (i)

manifold on which the system is defined. y ay(i>y
ie.,

Hence, consider a compact n-dimensional differentiable oq;

manifold M and let X(u) be a parameterized vector field ¢/ (y".0) = ﬁy(i)g<l)(y(l>’0)'
on M, whereu e O™ Let (@,Ui), 1<i <K be a finite
covering of M by local parameters, where eaghU;" is  Hence the matriceﬁ—g from the transmition matrices for

a homeomorphism. this tangent bundle of a manifold. The transition matriaes a
denoted by

In each coordinate neighborhood, the local form of Vi) = 2 (yD)

the dynamical system corresponding to the vector field (i) oy

X(u)|ly can be written as: Note that they obey the standard cocycle conditions:

% = 0 (0 u®y. (36)
Yii — Yik = Yik ony; ﬂU N Uk,
It will be assumed that, in each neighborhdddthere is an ; — |,
operating pomb(d € @i)(Ui). This, as before, means thaty; -y =1 onUiNU;.

there is a (constant) open loop contl:é such that
For example, for a sphei®, regarded a§&* = CU {c}:

fOxD iy =0 37
O ta') 37) G0 - UpNUe — GL(1,C)

Then the new local coordinates are defined, 1 )

) . 0 where gx0(2) = 5 for each integem and Up, U, are
y(”:x")—xd (38) neighborhoods of 0 ando respectively. This defines a

i 2 n

and the new control complex line bundle ors7, usually denoted byi".

Vi) =y — )y (39) A connectionon the vector bundle defined by transition

functions y; is a collection of dlfferen'ual operatordH— Wi

_ defined onU; such thatw; = y,dyJ + YWY Lony NU;

yi) = g(”(y(i),vé')) (40) whered is the exterior derivative. These glue together to

give a global map:

da: Q%E) — QY(E) (42)

so the’local model is of the form:

where

for a bundleE.
Note thatg(0,0) = 0.
The curvature of da is (d3) and is represented locally

The question is now: Knowmg the local models (40)oyamatr|xK. of two-forms for which

and the operating p0|nt$<d ,ud)) what can be said about .
the topology ofM?. Ki = yiKj¥; (43)
It is assumed that complete information is known, in therhe Kth
sense that the coordinate patches on which the local systems

are defined cover the (unknown) ambient manifold. So the (E) = [1(A)] € H¥(M; 0) (44)

characteristic class of the bundle is defined by



where T(A) =tracd(»-K;)¥|. The first Chem class
c1(E) = 11 (E).

Then, < ¢y(tM),[M] >= 2 [yKdA = X(M) by the
Gauss-Bonnet theorem, so the Chem class states if the
system is trivial or not.

EXAMPLE

The systems:
(2):(:1 8)'(2)+<2>-u (45)
()-(28)(n)(2) w

Generate a system i&, since the transition functions look

like gwo(2) = % in local coordinates. It can be seen that

c,(TM),[M] >= 2= X(M)

VI. CONCLUSIONS

In this paper the authors have considered the problem of
piecing together a set of given local systems to form a global
one on some manifold. If the information is incomplete
(as in most practical cases) interpolation methods can be
used and if it is complete, then topological manifold theory
will be used to describe the ambient manifold. Using an
approximation method for the obtained nonlinear system,
global controllers can be now designed in order to drive the
system from one local operating point to another.
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