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 Entropy, Longevity and the Cost of Annuities 

Steven Haberman, Marwa Khalaf-Allah and Richard Verrall 

 

1. Introduction 

 
Many demographers have analysed the changes in life expectancy over time. For example, 

Pollard (1982, 1988), Arriaga (1984), and Pressat (1985) have focused on discrete differences 

in life expectancy at two moments in time. In contrast, Keyfitz (1985) introduced the concept 

of entropy, and analysed this in the context of continuous changes in life expectancy. In 

particular, he related the entropy of a survival model to the time-derivative of life expectancy 

and used the entropy measure as an index to measure the effect of proportional change in the 

force of mortality on life expectancy. Thus, a higher level of entropy indicates that the life 

expectancy has a greater propensity to respond to a change in the force of mortality than a 

lower level of entropy. So a high level of entropy means that further reductions in mortality 

rates would have an impact on measures like life expectancy – conversely, a low level of 

entropy level means that life expectancy would be relatively “immune” to further reductions 

in mortality rates. 

 

This approach taken by Keyfitz (1985) extends the definition of the entropy of a population 

that had been derived and applied in population biology by Demetrius (1976) to measure the 

variability of the contribution of the different age classes to the stationary age distribution.  

The concept of entropy has also been advocated as a measure of the rectangularization of the 

life table by a number of researchers – for example Goldman and Lord (1986), Nagnur (1986) 

and Nusselder and Mackenbach (1996). 

In this paper, we extend the Keyfitz definition of entropy in order to measure the effect of any 

changes in the force of mortality on the discounted cost of a life annuity. We also investigate 

the properties of the measure of entropy for different scenarios of interest rates and levels of 

mortality improvements. One of the advantages of the concept of entropy is that it allows the 

sensitivity of the cost of a life annuity contract to changes in longevity to be summarized in a 

single figure index.  

We focus initially on using period life tables to calculate both the expectation of life and 

annuity values.  Calculated in this way, the entropy is a useful summary measure and has an 

intuitive interpretation, providing an objective means of comparison of trends between 

populations.  It should be noted that the interpretation requires care since period-based 

expectations of life are calculated using a set of age-specific mortality rates for a given 

period, with no allowance for any future changes in mortality.  We also consider cohort based 

expectations of life and annuity values which are calculated using a set of age specific 

mortality rates which allow for known or forecast changes in mortality rates at future ages (in 

future years).  Cohort based indices may constitute a more theoretically satisfactory concept 

but they require forecasted mortality rates and as such make heavy data demands and are 

subject to substantial model risk and forecasting error (Pitacco et al 2009, Booth & Tickle 

2008). Other examples of the use of entropy in this context can be found in Khalaf-Allah 

(2007). 

The paper is organized as follows. In section 2, we consider the definition of entropy in 

demography and how it can be extended to measure the effect of proportional change in the 



force of mortality on the cost of life annuity. In section 3, numerical values for the entropy 

measure for life annuities over the whole age range are obtained and analysed for different 

interest rates using English life tables over the period from 1851 to 1991 for both males and 

females.  In section 4, numerical values for the entropy measure for life annuities are derived 

using different mathematical models for mortality projection for both males and females as 

an attempt to gain a better understanding regarding the properties of the entropy measure. 

Section 5 deals with testing the sensitivity of the results with regard to the different factors 

that are likely to affect the value of the entropy measure: we focus on the effect of gender, 

assumed interest rate and the level of mortality improvement.  In section 6, we provide some 

overall conclusions. 

 

2. Entropy and Mortality 
 

This section considers the formula for the entropy measure (H) for life expectancy at birth as 

obtained by Keyfitz (1985), and then derives a corresponding formula in the case of a life 

annuity. Section 2.1 contains a summary of the theory from Keyfitz (1985), and section 2.2 

derives the new entropy measure for annuities. 

2.1 Entropy and life expectancy at birth 

Entropy as defined by Demetrius (1976) is a single figure index used to measure the effect on 

life expectancy at birth of a proportional change in the force of mortality over the whole age 

range. Suppose that the force of mortality x at age x is multiplied by )1(  , where   is a 

constant change in the force of mortality at all ages, and could be positive or negative.  Then 
* (1 )x x    

 
and the new probability of surviving till age x becomes 
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where   is the maximum age in the life table. In order to find the effect of small changes in 

  on the (period) expectation of life, we consider the derivative of equation (2) with respect 

to : 
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The quantity (3) cannot be positive, since 
0a p  cannot be greater than 1 and 1

0a p   is always 

positive.  In the neighbourhood of 0  we have the following approximation based on a 

Taylor expansion:    
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The quantity H is known as the entropy measure: 
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It should be noted that H is a positive quantity, since the ratio of the integrals is always 

negative. H is effectively a weighted average of values of 0ln a p  as age ranges from 0 to   

and, as such, has no upper bound. As mortality rates improve over time, we would expect a 

larger fraction of deaths to occur at older ages, and it can be shown that this leads to a drop in 

the value of H so that it becomes closer to 0.  Indeed, H would be 0 if all mortality were 

concentrated at a single age, and hence entropy can be regarded as an index of 

rectagularisation (Nusselder and Mackenbach, 1996) and it can also be interpreted as a 

measure of the heterogeneity of the population with respect to mortality at different ages: see 

Keyfitz (1985), Vaupel (1986). 

Analyses in the literature (see, for example, Vaupel, 1986) point out the inverse relationship 

between the period expectation of life and the entropy measure H. As the force of mortality 

falls and life expectancy rises, it is observed that there is an upwards shift in the ages where 

further reductions in mortality would be most effective in increasing life expectancy (Vaupel, 

1985, calculates that for the US, these ages have moved from 20-25 in 1900 to 80-85 as 

projected for 2000). This leads to life expectancy being less sensitive to further changes in the 

force of mortality, and so we would expect the entropy measure H to decrease over time as 

mortality improves. We will explore this relationship further in later sections. 

The theory outlined in this section has considered the concept of entropy in relation to the 

expectation of life. We now show how to extend this in order to find the corresponding 

entropy value for annuities, also calculated on a period basis. 

 

2.2 Entropy and Annuities 

With the same assumption of a proportionate increase in the force of mortality as considered 

in section 2.1, the new value of a (period) life annuity at age x becomes 
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where  is the force of interest. 

The effect of a small change in  on the value of a life annuity at age x can be derived in the 

same manner as in section 2.1. Firstly, the derivative is  
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and using a Taylor expansion, it is straightforward to show that  
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Here  xH    is the entropy measure for an annuity value and can be thought of as minus the 

weighted average value of ln t xp , weighted by  expt xp t . Again, ( )xH   is a positive 

quantity because the ratio of the integrals in (7) is always negative. As for the entropy 

measure in section 2.1, when mortality rates improve, we would expect a larger fraction of 

deaths to occur at older ages, resulting in a drop in the value of ( )xH   so that it becomes 

closer to 0. As before, H would be 0 if all mortality were concentrated at a single age. In the 

case of improving mortality rates, the value of ( )xH   increases, but the pace by which this 

happens is dependent on the concavity of the survivorship curve of the population in 

question.  Also, as the value of  increases, ( )xH   is expected to decrease, as any change of 

the force of mortality is expected to have a lower impact on the cost of a life annuity at higher 

interest rates. 

Using integration by parts, 
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Since s x x sp   is the probability density function for the time of death for an individual aged 

x , equation (8) indicates why  xH   is a measure of heterogeneity (as in the case when 

0  ). 

The theory developed in this section allows us to find the effect on the value of an annuity of 

a uniform proportional increase or decrease in the force of mortality over the whole age 

range. However, such a uniform change is unlikely to occur in practice as mortality rates 

have tended to change in different proportions at different ages. One way to deal with this 

problem would be to compute the uniform proportional change in the force of mortality that 

will have the same effect on the value of a life annuity as a set of step-wise changes at 



different ages caused by observed trends in mortality, so that the above theory could be used 

in a wider range of applications. 

 

 

 

3 Entropy values using English Life Tables 

In this section, the value of the entropy measure ( )xH   is calculated using English Life 

mortality tables over the period from 1851 to 1991. This allows us to examine how the 

measure has behaved over a period where mortality rates have been decreasing. The measure 

is calculated for both males and females at different rates of interest (0%, 2%, 4%, 6% and 

8%). Since the main area of interest for the application of the concept of entropy for annuities 

is for people over 60, the age ranges 60 – 110 and 70 – 110 are considered, as well as the 

whole age range (0 – 110). Hence we calculate  0H  ,  60H   and  70H  . 

In order to calculate values for ( )xH  , it is necessary to evaluate the ratio of integrals in 

equation (7).  We adopt a numerical approach proposed by Pollard (1982) and used, for 

example , by Khalaf-Allah et al (2006).  
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Using the mean value theorem for integrals, the integrals in (7) can be replaced by sums of 

one-year integrals, leading to the following approximation:   
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where   is the maximum age in the tables. Equation (9) can be used directly to calculate the 

values of  xH   for different values of x.  

3.1  Numerical results for  0H    

We first consider the values of the entropy measure,  xH  , over the whole age range, 

 0H  . A number of different interest rates are considered, using English life tables over the 

period 1851-1991. The results are shown in figure 1. Tables of these values are contained in 

the Appendix. It can be seen that, as mortality rates have decreased, the value of  0H   has 



decreased. This reflects the fact that any change in the force of mortality in a low mortality 

environment will have a smaller effect on the expectation of life and the cost of a life annuity 

as compared to the corresponding effect in a high mortality environment. Also, as expected, 

the effect is of lesser importance at higher rates of interest since the value of  0H  decreases 

when the rate of interest increases. For each level of interest rates and each year, the value of 

 0H  is lower for females than males, corresponding to the higher expectations of life for 

females in each year.  

 

Figure 1: Entropy values for different English life tables at different rates of interest for 

both females and males at age 0 
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It can also be seen that the changes in the values of  0H   fall into three distinct periods, for 

both males and females. In the earlier years, at higher levels of mortality, any change in the 

force of mortality does not markedly affect the entropy measure (the slope of the curves is not 

that steep). Moreover, this effect decreases with the increase in the interest rate so that, at 

high interest rates, the curve looks almost horizontal. The same applies in later years, when 

mortality is at a lower level. However, over the middle period, any change in the force of 

mortality has a stronger impact on the value of the entropy measure. We can express this 

feature by dividing the curve into three sections - one on the far left where the mortality level 

is high (A) , one on the far right where the mortality level is low (C) and the section in the 

middle where mortality is neither high or low (B). For both sections A and C the slope of the 

curve shows that the value of  0H   is inelastic and changes in the force of mortality do not 

have a great effect on the value of  0H  . However, in section B the slope is steeper 

reflecting the fact that the value of H is more elastic, and changes in the force of mortality 

have a strong effect on the value of the entropy measure.  

 

3.2 Numerical results for  xH   at older ages 

Since the main area of interest is likely to be the effect of any change of the force of mortality 

on the cost of a life annuity at age 60 and 70 at different rates of interest, this section 

considers the values for  xH   at ages 60 and 70, for both males and females. Using the 

same data and interest rates as before, Figure 2 shows the values of the entropy measure 

60 ( )H   for females and males. The actual values are shown in the Appendix. 

For females, it can be seen that the values of 60 ( )H  are higher than the corresponding ones 

for females at age 0,  0H  , in section 3.1. This reflects the greater effect of a change in the 

force of mortality on the expectation of life and the cost of a life annuity in the higher age 

group (where mortality rates are higher). Again, the higher the interest rate the lower is the 

effect of changes in the force of mortality on the cost of life annuity, and hence the lower are 

the values of 60 ( )H  . It is expected that the value of  60H   should decrease when levels of 

mortality are lower so that, for more recent life tables, the values of  60H   should be lower 

at all rates of interest. This is true except for year 1871, where the values of H at all interest 

rates were slightly higher than the corresponding ones calculated using for year 1851.  

Overall, the results are consistent with those in section 3.1. 

Similar features can be seen in the results for males. The values of  60H  are higher than the 

values of  0H  , and they are also higher than the values for females. As before, the higher 

the interest rate, the lower is the effect of changes in the force of mortality on the cost of life 

annuity, and the lower are the values of  60H  . We expect the value of  60H  to decrease 

when levels of mortality are lower so that, for more recent years the values of  60H  should 

be lower at all rates of interest.  There are a few anomalies in the results for males.  The 

values of H have increased slightly from 1851 to 1871 and again from 1871 to 1891 for all 

rates of interest after which they decrease with the improvements in mortality.  Further, at a 

rate of interest of 0%,  60H  has increased from 1951 to 1971 and, at some low interest 



rates, the decrease in  60H  from 1951 to 1971 has been quite small.  Further, analysis 

shows that this latter feature is matched by a decrease in the modal age at death as we move 

from 1951 to 1971, and only a small increase in the expectation of life over this 20 year 

period.  

 

 

Figure 2: Entropy values for different English life tables at different rates of interest for 

both females and males at age 60 
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Figure 2 shows that the value of  60H   does not always decrease when mortality improves. 

In Figure 1,  0H   decreases as mortality improves, but very slowly at both very high and 

very low levels of mortality to the extent that that the curve looks almost horizontal. This 



feature is more marked in Figure 2 - for females at age 60, at a high level of mortality, a 

considerable reduction in mortality is needed to decrease the value of  xH  . Although the 

mortality rates for 1871 are lower than for 1851, the difference is not sufficient to decrease 

the value of  xH  . When the reduction in mortality becomes more considerable, the value 

of  xH  starts to decrease.  The same happens in the case of males at age 60 at both very 

high and very low levels of mortality, where improvements in mortality rates are not 

sufficient to be translated into a material decrease in the value of  xH  .  

Figure 3 shows that values of  70H   for both females and males. For females, at high levels 

of mortality, the value of  70H   has increased as mortality has improved, for 1871 and 

1891. It can be seen that the decreases in  70H  occurs later as mortality improves, 

compared with  60H  .  Also, the values of  70H   are higher than the values of  60H   

and  0H   at all interest rates. 

The results for males are similar but we note that, as at age 60, an anomaly occurs as we 

move from 1951 to 1971: the value of  70H   increases for all rates of interest.  As noted 

above, this is linked to the downward shift in the modal age of death in this 20 year period.   

Figure 3: Entropy values for different English life tables at different rates of interest for 

both females and males at age 70 
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A Gompertz model of the form exp( )x b cx    is often used as the basis for the progression of 

mortality rates, particularly over ages (approximately) 50-90. Although other models may be more 

appropriate for modelling particular features of mortality rates (for example, at the oldest ages), the 

Gompertz model has the advantage of simplicity and familiarity and we use it to illustrate the 

application of entropy to annuity values. We consider the simple case of exponentially decreasing rates 

over time so that 

  0t

x u x uRF t         (10) 

where 0

x u   is the mortality rate in the base year. The reduction factor for the force of 

mortality, ( ),RF t  is assumed to take the simple form,  exp t . The behaviour of the 

period-based expectation of life,  
o

xe t , and life annuity values as functions of time can then 

be explored.  As discussed in Vaupel (1986), it is straightforward to demonstrate that  
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so that, in the long run,  
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and is roughly constant.  Thus, the rate of change over time in the expectation of life 

eventually reaches a stable level (and the same applies to annuity values within the 

constraints of the above model).  This underlying tendency is one of the driving forces behind 

the changes that have been demonstrated in  xH   from the historical perspective of the 

English life table calculations depicted in Figures 2 and 3. 



 

 

4 Properties of entropy using a mathematical model for mortality 

and allowing for mortality improvements 
 

In this section, the values of the entropy measure are calculated when mortality is assumed to 

follow a mathematical model instead of using published life tables. In this approach, we do 

not depend directly on observational data and this facilitates our adopting a cohort 

perspective rather than a period perspective.  The approach allows us better to examine the 

different properties of entropy and how its value is affected by different factors. In section 

4.1, mortality is assumed to follow the Gompertz model and improvements in mortality are 

allowed for using a reduction factor. For simplicity, it is assumed that the reduction factor 

depends only on the time, t, from the base year, b. In this context, the Continuous Mortality 

Investigation Bureau has highlighted the importance of the rate of improvement in mortality 

as well as the advantages of simple models (CMI 2009).  In section 4.2, a more sophisticated 

model is used to model mortality improvements, based on Sithole et al (2000).  

 

 

4.1 Gompertz law assumption 

We assume that the force of mortality is such that it follows the Gompertz law, with 

parameters b and c, so that the baseline force of mortality (at time 0) at age x u  can be 

expressed as 

  0 expx u b c x u       . 

 

Assuming that (10) holds and that the reduction factor is of the form  exp ,t  
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Entropy is now calculated on a cohort basis and it is a function of the parameters b and c,   

and , and so we use the notation  , , ,xH b c   . Hence, 
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  (13) 

 

Clearly  is constrained to be less than c, otherwise the probability of survival in (12) will be 

greater than 1.  , , ,xH b c   can be calculated for different values of b, c,   and in order 

to test the effect of the base table used, the level of mortality improvements and the force of 

interest. 

 

Each of the integrals in (13) can be written as an incomplete gamma function, by several 

changes of variables. Alternatively, numerical approximation for integrals can be used to 

evaluate the integrals, and this has been implemented using Mathematica. 

 

In order to illustrate the behaviour of  , , ,xH b c   , its value has been calculated using data 

from the CMI for insured female pensioners at ages 60 and over. The base mortality table 

used is the (1991-1994) mortality table. In order to perform the calculations, we need to have 

values for 0

60 , c,   and . The value for 0

60  can be taken directly from the base mortality 

table and the Gompertz model has been fitted in order to estimate c.  We then test the 

sensitivity of  60 , , ,H b c    to changes in the values of  and .  A range of values for    

from -0.07 to 0.07, and for   from 0% to 10% were used. The value for 0

60  using the 1991-

1994 tables for females is 0.00552155 and the estimate for c is 0.085, obtained by a simple 

regression approach. The values of  60 , , ,H b c    for different values of  and  are shown 

in Figure 4.  Note that positive values of  correspond to improving mortality rates over time 

and negative values correspond to deteriorating mortality rates over time.  

 

Figure 4 shows that the value of  60 , , ,H b c    decreases as the force of interest, , 

increases, reflecting the decreasing effect of mortality improvement on the cost of life 

annuities at high levels of interest rates. It can also be seen that at zero or low levels of 

interest rate, the trend in  60 , , ,H b c    is peaked: the value increases with the improvement 

in mortality (as   increases) until a level where any further improvement in mortality has a 

decreasing effect on  60 , , ,H b c    and hence on the expectation of life and the cost of a life 

annuity. Thereafter, the value of  60 , , ,H b c    starts to decrease as mortality improves 

exhibiting a similar pattern to that of females aged 60 and 70 in section 3 (based on 

population life tables). On the other hand, when the rate of interest is high,  60 , , ,H b c    

decreases continuously as mortality improves.   

 

 



Figure 4: Values for entropy when mortality follows the Gompertz law for different 

rates of interest (0% up to 10%) and different levels of mortality improvement 

(different values of  ) 
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We can also test the effect on  60 , , ,H b c    of the base mortality table, by calculating 

 60 , , ,H b c    for different values of c. As an illustration, we explore the effect of using 

values of 0.08, 0.085 and 0.09, and Figure 5 shows the results for  = 0% and 3%. 

 



Figure 5: Values for  60 , , ,H b c    for different values of c and   
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Figure 5 shows that, for the different values of c tested, when the force of interest is equal to 

zero (top panel), the profile of  60 , , ,H b c    as a function of  is peaked (as in Figure 4).  

When c = 0.08 (assuming a lower mortality level for the base table), the values of 

 60 , , ,H b c    are higher than the corresponding ones when c = 0.09 (assuming a higher 

mortality level for the base table) when the reduction factor is greater than 1 (  is negative) 

and the relationship is reversed when mortality rates are improving and the reduction factor is 



less than one (  is positive). This confirms our earlier conclusion that the expectation of life 

for the high mortality group (c = 0.09) would be less responsive (and hence have lower 

values for  60 , , ,H b c   ) to an increasing trend in the force of mortality than when c = 0.08. 

At low levels of mortality, it is the other way round: the cost of a life annuity for the high 

mortality group (c = 0.09) would be more responsive (hence leading to higher values for 

 60 , , ,H b c   ) to a decreasing trend in the force of mortality than when c = 0.08. 

 

When the force of interest increases to 3% (lower panel), the effect of any change in the force 

of mortality on the cost of a life annuity is less dramatic, resulting in lower values for 

 60 , , ,H b c   for the different scenarios of mortality base table. Also, the value for 

 60 , , ,H b c    decreases with increases in the rate of improvement in mortality. 

 

One advantage of using a mathematical model for the rates of mortality is that it enables us to 

investigate further the mathematical properties of the derivative of   60 , , ,H b c    with 

respect to the parameters c,  and . This should help us to understand better the behaviour 

of the entropy measure. A fuller analysis reveals that the numerical values of the partial 

derivative of  60 , , ,H b c    with respect to different levels of the improvement factor   are 

consistent with results that we have obtained so far, which confirms the conclusions that we 

have reached regarding the relationships between different variables.  

 

 

 

4.2 Modelling mortality improvements using Sithole et al (2000) 
 

In this section, mortality improvements are allowed for using the model of Sithole et al 

(2000), again considering the CMI insured female pensioners (1991-1994) as the base 

mortality table.  The Sithole et al (2000) reduction factor can be written in the form 

  ( , ) expRF x t x t            (14) 

Different levels of mortality improvement are considered by allowing  to vary. The 

estimated value of   in Sithole et al (2000) is 0.050651, and a range of values of   from 

60% to 140% of this estimate were considered. Figure 6 shows the values of 

 60 , , , ,H b c     at different rates of interest and for different values of . 

 



Figure 6: Values for  60 , , , ,H b c     at different rates of interest and mortality 

improvements allowed for using the Sithole et al (2000) model  
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Figure 6 shows that the value of  60 , , , ,H b c     decreases when the rate of interest 

increases for all rates of interest. At higher rates of interest, the value of  60 , , , ,H b c     

increases with decreases in the rate of mortality ( ) , while at lower rates of interest, it falls 

with the decreases in  until it reaches a point where the decreases in mortality rates have a 

greater effect on the cost of a life annuity. At this point, the value of  60 , , , ,H b c     starts 

to increase again. We note that the levels of the improvement factor  considered in this part 

of the analysis lead to very low values of mortality. The pattern of results shown is similar to 

that which we have obtained using the English Life Tables (section 3) as well as those 

obtained using the Gompertz law of mortality and the exponential reduction factor model 

(section 4.1). 

 



5  Summary and remarks 
 

In this paper, the entropy measure applied in population biology by Demetrius (1976) and in 

demography by Vaupel (1986) has been extended to measure the effect of any changes in the 

force of mortality on the cost of life annuity for different interest rate scenarios. This single 

figure index allows the effect of different sources of risk in a life annuity contract can be 

measured and analysed.  

It is worth mentioning that there are some limitations related to the use of the entropy value 

to measure of the effect of change of mortality on the cost of life annuity. Namely, if the 

survival function is already very rectangular shaped (when entropy is close to zero), an 

expansion of the survival function will have a big impact on the cost of life annuities but this 

would not be captured by the entropy measure. Also, as we have noted, in the case of 

complete rectangularization of the survival function, entropy is zero regardless of the age at 

which all members of the population die.  

The entropy measure has been calculated under different mortality and interest rates 

assumptions. Also, it has been calculated over the whole age range (from age 0) and at older 

ages (ages 60 and 70). For all cases, the lower the rate of interest, the higher is the value of 

entropy, indicating a higher effect of longevity risk on the present value of annuity payments. 

This reflects the importance of longevity risk in the context of life annuity portfolios 

especially in a low interest environment. 

At very high or low levels of mortality, the numerical results suggest that the effect of 

mortality changes on the value of life annuity is of less importance. This reflects the fact that 

when mortality is already very high or very low, any change (whether an increase or a 

decrease in the force of mortality) is less likely to have a significant effect on the cost of life 

annuity. This means that in theory, even if mortality continues to improve, it will reach a 

level beyond which any more improvements would not markedly affect the discounted cost 

of survival benefits.    

In terms of future work, it would be useful to investigate other models of mortality since in 

this paper we consider just the Gompertz model. It would also be of interest to investigate the 

mathematical properties of the derivative of the measure of entropy with respect to the 

underlying parameters, in order have a better understanding of the way it behaves. For 

example, it would enable us to answer questions such as: at a given level of interest rate, what 

would be the level of mortality that is considered too high or too low such that the cost of life 

annuity is relatively insensitive to further changes in the force of mortality?   

The models in this paper could be extended to reflect the effect of the uncertainty of future 

returns on the cost of life annuity, by incorporating a dynamic model for the interest rate. 

Also, the scenario analysis used in this paper to test the sensitivity of results could be 

replaced by distributional assumptions for the parameters. 
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Appendix 

Table 1: Entropy values over the whole age range  0H  – Females 

 

English Life 

Table 

(Females) 

Interest Rate 

0% 2% 4% 6% 8% 

1991 0.13763 0.06536 0.02948 0.01630 0.01124 

1971 0.15825 0.08513 0.05013 0.03527 0.02906 

1951 0.18431 0.10951 0.07200 0.05497 0.04722 

1931 0.29546 0.20531 0.15584 0.13011 0.11620 

1911 0.41575 0.31363 0.25583 0.22418 0.20592 

1891 0.54386 0.42841 0.35996 0.32021 0.29591 

1871 0.60370 0.47632 0.39873 0.35206 0.32248 

1851 0.64237 0.50796 0.42498 0.37429 0.34171 

 

 

Table 2: Entropy values over the whole age range 0 ( )H  – Males 

 

English Life 

Table 

(Males) 

Interest Rate 

0% 2% 4% 6% 8% 

1991 0.15576 0.07926 0.04213 0.02602 0.01916 

1971 0.18524 0.10556 0.06552 0.04725 0.03900 

1951 0.21369 0.13309 0.09115 0.07111 0.06152 

1931 0.33543 0.24201 0.18957 0.16149 0.14593 

1911 0.46447 0.35892 0.29805 0.26396 0.24392 

1891 0.60601 0.48756 0.41643 0.37442 0.34832 

1871 0.66110 0.53117 0.45144 0.40293 0.37184 

1851 0.68864 0.55498 0.47204 0.42093 0.38774 



 

 

Table 3: Entropy values for Females 60 ( )H  - age 60  

English 

Life Table 

Females 

Interest Rate 

0% 2% 4% 6% 8% 

1991 0.37663 0.30309 0.24542 0.20056 0.16575 

1971 0.39191 0.32088 0.26432 0.21954 0.18415 

1951 0.41319 0.34367 0.28772 0.24280 0.20675 

1931 0.45649 0.38500 0.32696 0.27992 0.24176 

1911 0.50177 0.42583 0.36423 0.31425 0.27361 

1891 0.53708 0.46164 0.39980 0.34906 0.30732 

1871 0.54043 0.46365 0.40088 0.34951 0.30735 

1851 0.54042 0.46310 0.39999 0.34843 0.30618 

 

Table 4: Entropy values for Males 60 ( )H  - age 60 

English Life 

Table 

(Males) 

Interest Rate 

0% 2% 4% 6% 8% 

1991 0.44971 0.37382 0.31298 0.26434 0.22543 

1971 0.50313 0.42641 0.36414 0.31361 0.27250 

1951 0.49838 0.42714 0.36854 0.32038 0.28074 

1931 0.50284 0.43135 0.37259 0.32428 0.28448 

1911 0.54445 0.46890 0.40696 0.35610 0.31420 

1891 0.56787 0.49358 0.43209 0.38113 0.33877 

1871 0.56717 0.49114 0.42851 0.37686 0.33412 

1851 0.55978 0.48323 0.42038 0.36871 0.32608 

 

 


