
              

City, University of London Institutional Repository

Citation: Avan, J., Caudrelier, V., Doikou, A. & Kundu, A. (2016). Lagrangian and 

Hamiltonian structures in an integrable hierarchy and space-time duality. Nuclear Physics B,
902, pp. 415-439. doi: 10.1016/j.nuclphysb.2015.11.024 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/12638/

Link to published version: https://doi.org/10.1016/j.nuclphysb.2015.11.024

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 902 (2016) 415–439

www.elsevier.com/locate/nuclphysb

Lagrangian and Hamiltonian structures in an integrable 

hierarchy and space–time duality

Jean Avan a, Vincent Caudrelier b,∗, Anastasia Doikou c, Anjan Kundu d

a Laboratoire de Physique Théorique et Modélisation (CNRS UMR 8089), Université de Cergy-Pontoise, 
F-95302 Cergy-Pontoise, France

b Department of Mathematics, City University London, Northampton Square, EC1V 0HB London, United Kingdom
c Department of Mathematics, Heriot-Watt University, EH14 4AS, Edinburgh, United Kingdom

d Saha Institute of Nuclear Physics, Theory Division, Kolkata, India

Received 9 October 2015; received in revised form 23 November 2015; accepted 25 November 2015

Available online 27 November 2015

Hubert Saleur

Abstract

We define and illustrate the novel notion of dual integrable hierarchies, on the example of the nonlinear 
Schrödinger (NLS) hierarchy. For each integrable nonlinear evolution equation (NLEE) in the hierarchy, 
dual integrable structures are characterized by the fact that the zero-curvature representation of the NLEE 
can be realized by two Hamiltonian formulations stemming from two distinct choices of the configura-
tion space, yielding two inequivalent Poisson structures on the corresponding phase space and two distinct 
Hamiltonians. This is fundamentally different from the standard bi-Hamiltonian or generally multitime 
structure. The first formulation chooses purely space-dependent fields as configuration space; it yields the 
standard Poisson structure for NLS. The other one is new: it chooses purely time-dependent fields as con-
figuration space and yields a different Poisson structure at each level of the hierarchy. The corresponding 
NLEE becomes a space evolution equation. We emphasize the role of the Lagrangian formulation as a uni-
fying framework for deriving both Poisson structures, using ideas from covariant field theory. One of our 
main results is to show that the two matrices of the Lax pair satisfy the same form of ultralocal Poisson 
algebra (up to a sign) characterized by an r-matrix structure, whereas traditionally only one of them is in-
volved in the classical r-matrix method. We construct explicit dual hierarchies of Hamiltonians, and Lax 
representations of the triggered dynamics, from the monodromy matrices of either Lax matrix. An appeal-
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ing procedure to build a multi-dimensional lattice of Lax pair, through successive uses of the dual Poisson 
structures, is briefly introduced.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the integrability of certain nonlinear evolution equations (NLEE), starting 
with the pioneering work of Gardner et al. [1] and Zakharov–Shabat [2], and based on the 
fundamental notion of a Lax pair [3], has marked a crucial turn in several major domains of 
mathematical physics of the last century. The influence is still strongly felt today. Many com-
plementary and interrelated points of view and theories have been developed around this single 
theme, to name but a few:

• the analytic approach culminating in the inverse scattering approach (see e.g. [4]),
• the geometric approach culminating in the Poisson–Lie group formulation of integrable hi-

erarchies via the classical r-matrix formalism, e.g. [5–8], and the related algebraic approach 
to integrable hierarchies via Kac–Moody algebras (see e.g. [9] and references therein),

• the algebro-geometric approach dealing with periodic solutions of integrable NLEE, with 
strong links to Riemann surface theory, e.g. [10–12],

• the pseudo-differential operator approach [13,14] applicable in particular to higher-dimen-
sional integrable systems such as KP hierarchy.

The reader will have to excuse our oversimplified list of topics and references which cannot make 
justice to the huge amount of literature accumulated over decades on this theme. Several books 
can be consulted for a much better and fairer description of these areas, e.g. [15–17].

Despite all these facets, a few key ingredients are always present and provide a unified basis 
for such treatments: a Lax pair formulation and the associated zero curvature representation of 
the NLEE. The various approaches mentioned above (and the many more hidden within them) 
are motivated by different goals: for instance, the Hamiltonian description of a NLEE is not 
necessary if one is only interested in viewing it as a PDE and finding its solutions. However, it 
becomes of importance if one insists on proving Liouville integrability of this NLEE viewed as 
an infinite dimensional dynamical system or if one has in mind its quantization (one of the key 
motivations behind the classical r-matrix approach).

We would like to make one simple but striking observation: most of these approaches, and 
most noticeably the (Liouville) Hamiltonian concept of integrability, always set emphasis on the 
x-part of the Lax pair as basic object and view the t -part as auxiliary. In a sense, this is not 
at all surprising since the very phrase “nonlinear evolution equations” suggests that time is a 
distinguished variable as the parameter of the evolution flow under investigation. A departure 
from this point of view already arises when a given NLEE is viewed as a member of an entire 
integrable hierarchy describing the commuting flows for an infinite number of times tn. The 
independent variable x is then simply one of the “times”. However, even with this picture, as 
soon as one singles out a given Lax pair in the hierarchy in view of studying the corresponding 
evolution equation, the bias mentioned above is restored and the equation is seen as an evolution 
equation with respect to tn.

http://creativecommons.org/licenses/by/4.0/
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In particular, considering NLEE formulated by an AKNS auxiliary problem

∂x� =U� , (1.1)

∂t� =V� , (1.2)

and the related zero curvature condition,

∂tU− ∂xV+
[
U,V

]
= 0, (1.3)

and formulating the system in the famous classical r-matrix approach to integrable NLEE, the 
fundamental result deals with the Poisson algebra satisfied by the “fundamental”, x-related Lax 
matrix U. The t -related half of the Lax pair, V, plays a secondary role in that it is determined by 
the r-matrix and the choice of Hamiltonian in the hierarchy deduced from the monodromy of U. 
This point of view is in sharp contrast with the natural symmetric roles played a priori by x and 
t in the AKNS formulation.

This symmetry between x and t naturally suggests a notion of duality in the process of choos-
ing x or t as the evolution parameter defining the integrable picture. Note also that the approach 
to discretization of conformal integrable quantum theories, e.g. à la de Vega–Destri [18] already 
uses as fundamental evolution variables the light cone coordinates x ± t , departing thus from the 
x, t formulation. One may even imagine resorting to some more general (linear) function of x, t
as the adequate evolution parameter, depending on the physical interpretation of the dynamical 
problem. In other words one may have several relevant choices of classical configuration space, 
determining the phase space and the Hamiltonian formulation of the dynamical problem. The 
issue is then whether some other choices than the usual one (here the space slice of fields sym-
bolically denoted {φ(x)}) also yield Liouville-integrable Hamiltonian systems. This is the core 
issue of our investigations.

The need to exploit this simple observation was felt when dealing with initial-boundary value 
problems as opposed to initial-value problems. It was used to its full extent in the development of 
the so-called unified method of Fokas for initial-boundary value problems [19]. This method falls 
into the analytic category mentioned above. More recently, still in the realm of initial-boundary 
value problems, two of the present authors introduced some ideas from covariant field theory 
into the Hamiltonian theory of integrable systems to tackle the question of Liouville integrability 
for a NLEE with an integrable defect [20]. This approach falls into the geometric/Hamiltonian 
approach mentioned above. It had been motivated by an apparent conceptual gap between earlier 
studies on classical integrability with defects, see e.g. [21–23] and references therein. The main 
idea was to treat the two independent variables on equal footing when developing a classical 
r-matrix approach to integrable defects. This put some of the points made in [24] on a firm 
basis. As a consequence, on the example of the nonlinear Schrödinger (NLS) equation, several 
important observations were made:

• In addition to the usual Poisson structure { , }S used for the Hamiltonian description of NLS 
as an evolution equation in time, one can construct another Poisson structure { , }T which de-
scribes NLS as an evolution equation in space. Both Hamiltonian descriptions are completely 
equivalent in that they produce the same NLEE but they involve completely different Poisson 
structures and Hamiltonians. One can speak of a dual picture whereby the same NLEE can 
be viewed either as a time or space Hamiltonian equation. We see here the explicit example 
of an alternative choice of the configuration space as time-slices of fields {φ(t)}) instead of 
space-slices. We insist that this scheme must be viewed as completely separated from the 
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multitime Hamiltonian procedure where the same phase space is endowed with a hierarchy 
of mutually compatible Poisson structures. In this well-known framework the x-evolution is 
triggered by the choice of the momentum P as Hamiltonian, and the same Poisson structure. 
In a nutshell: hierarchies of Poisson bracket structures are mutually compatible on the same 
phase space; dual Poisson structures live on different phase spaces arising from different 
choices of configuration space, albeit for the same original “dynamical” system.

• The second Poisson structure { , }T gives rise to an ultralocal Poisson algebra for the t -part 
V of the Lax pair, with the same classical r-matrix (up to a sign) as the ultralocal Poisson 
algebra satisfied by the x-part U with respect to the usual Poisson bracket { , }S . We in-
sist that this second Poisson structure is not a compatible Poisson structure in the sense of 
bi-Hamiltonian theory [25].

• The Lagrangian formulation becomes the most fundamental description in this context. In-
deed, both Poisson structures can be derived from it, together with the corresponding space 
and time Hamiltonians, once a choice of general coordinates or configuration space is stipu-
lated. The idea of going back to a Lagrangian formulation of integrable equations of motion, 
encapsulating a so-called multisymplectic form, goes back at least to the works in [14]: at 
that time it was undertaken in the context of multitime compatible Hamiltonian structures. 
Here however, as already emphasized, we use the Lagrangian formulation to extract two in-
equivalent choices of configuration space, inducing the construction of different phase spaces 
and associated Poisson structures for our dynamical system.

In our opinion, the last observation above is the main conceptual basis for an understanding of 
space–time duality (and possibly more general dualities) in integrable hierarchies. Lagrangians 
naturally contain information on space–time symmetries and do not discriminate between space 
and time. When one goes over to the traditional Hamiltonian picture for a two-dimensional field 
theory, a distinction between time and space immediately arises once one chooses what to call 
generalized coordinates and their general velocities.

Note that the distinction also occurs, even before Hamiltonian formulation, as soon as one 
is lead to specify “boundary conditions” for instance distinguishing between x = cst and t =
cst boundaries. The validity of this scheme and of these observations was also proved in the 
context of defect theory for the sine-Gordon model by one of the authors [26]. Although the 
second Poisson structure and its consequences were originally introduced to solve the problem 
of Liouville integrability in the presence of a defect raised in [27], it became clear that the above 
observations are of a more fundamental nature.

Let us now specify how we plan to use this scheme. We shall use both Lagrangian and Hamil-
tonian formalisms jointly and successively. In a first step, the well-known (Hamiltonian-based) 
construction of a hierarchy of Hamiltonians provides us with a hierarchy of simultaneously solv-
able NLEE. The derivation of a dual Poisson structure then requires to identify the Lagrangian 
density yielding each NLEE. We recover that the Poisson structure describing the tn evolution 
is the initial Poisson structure, as it should be by first principles of Hamiltonian integrability. 
The dual Poisson structure describing the x evolution at level n must be constructed as a second 
step by application of the canonical procedure with respect to x derivatives of the fields, as dic-
tated by the covariant approach to field theory and the dual choice of phase space and symplectic 
structure. Once it is constructed, the existence of an r-matrix structure for the Poisson algebra 
of the tn shift operator V(n), naturally identified as the Lax operator in this alternative choice, 
guarantees integrability of the second, “dual” Hamiltonian evolution. This must be checked by 
direct calculation. It is the purpose of this paper to investigate this notion of dual picture, and 
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the procedure just described, in an integrable hierarchy. We shall particularize our approach to 
the nonlinear Schrödinger equation as a simple but enlightening example. But it is clear that our 
ideas can be adapted to other AKNS-described hierarchies, with appropriate changes.

This paper is organised as follows. In Section 2, we give some useful notations and conven-
tions. Section 3 is devoted to the introduction of the main concepts of this paper. We describe 
the dual Hamiltonian formulation of the NLS hierarchy, the explicit construction being done for 
level 2 (NLS) and level 3 (complex MKdV). The role of the Lagrangian formulation combined 
with ideas from covariant field theory is emphasized in order to derive the two Poisson structures 
for the dynamical fields. The last part of this section explains how the results can be generalized 
to all the levels in the hierarchy. In Section 4, we then build the r-matrix formulation associated 
with this dual picture. On top of the usual ultralocal Poisson algebra for the space Lax matrix of 
NLS, we derive the same Poisson algebra for the hierarchy of time Lax matrices (up to a sign). 
Consequences for conserved quantities and integrability are discussed. Section 5 is concerned 
with some conclusions, remarks and definitions based on the results obtained in the previous 
sections. A physical application and an exciting new perspective of future developments are also 
given. Technical issues regarding the construction of dual hierarchies are given in Appendices A 
and B.

2. Notations and conventions

In the standard approach to the NLS hierarchy in 1 + 1 dimensions, the dependent variables 
(fields) ψ , ψ̄ are considered to be functions of an infinite sequence of times tn, n ≥ 0, with the 
space variable x being t0 for instance. We will keep it explicitly as x to make contact with some 
well-known equations in the NLS hierarchy. Each Hamiltonian H(n)

S at level n in the hierarchy 
describes the evolution of the system with respect to a given time tn in such a way that

ψtn = {H(n)
S ,ψ} , ψ̄tn = {H(n)

S , ψ̄} , (2.1)

with appropriately chosen Poisson brackets, is equivalent to the zero curvature condition for the 
Lax pair (U, V(n)) at level n

∂tnU− ∂xV
(n) + [U,V(n)] = 0 . (2.2)

In the course of our study, the notion of dual description will emerge whereby, the equations of 
motion captured by (2.2) can be equivalently rewritten as the x evolution of fields governed by 
Hamiltonians that are dual to H(n)

S in a precise sense. This is why we introduced the subscript S
in (2.1) to indicate that the Hamiltonian is a x integral of a local Hamiltonian density in the fields 
and their x derivatives. This is of course completely redundant in the traditional approach since 
this is always assumed to be the case. But, in our theory, the dual Hamiltonians H(n)

T appear 
naturally from a Lagrangian picture and are now integrals over the formerly identified “time” 
variables tn of local Hamiltonian densities in the fields and their tn derivatives.

The fields and their derivatives with respect to a given subset of the independent variables are 
denoted as follows

ψ(x, t) , ψ̄(x, t) , ∂xtj1 ...jq
ψ(x, t) = ∂q+1ψ(x, t)

∂x∂tj1 . . . ∂tjq

, etc. (2.3)

The symbol t denotes the sequence of “times” (hopefully there is no confusion in using this 
terminology strongly influenced by the standard Hamiltonian description) tn, n ∈ N. When no 
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confusion arises, we omit the arguments altogether. When only some of the independent variables 
are involved, typically x and one tn or possibly two tn’s, we may display explicitly only those 
variables that play a role, for instance by writing expressions like

ψ(x, t2) , ∂xt5ψ = ψxt5 , etc. (2.4)

We will use the same rules for all the objects built from the fields and their derivatives (La-
grangians, Hamiltonians, Lax pairs). Finally, the notion of equal-time Poisson bracket { , }(n)

S

and equal-space Poisson brackets { , }(n)
T will play an important role in our theory. The subscript 

S is used to emphasize that the Poisson bracket depends only on the space variable (equal-time) 
while T is there to remind us that the Poisson depends only on the time variable (equal-space). 
The superscript encodes the level of the hierarchy that we are looking at. When writing such 
Poisson brackets, only the independent variable that are involved will be shown. For instance, an 
expression like

{ψ(x), ψ̄(y)}(2)
S = iδ(x − y) (2.5)

involving ψ(x, t) and ψ̄(y, t′) is short for

{ψ(x, t2), ψ̄(y, t2)}(2)
S = iδ(x − y) (2.6)

and means that we work at equal time (indicated by the subscript S) and for n = 2 (indicated by 
the superscript (2)) i.e. t2 = t ′2. The understanding is that such a Poisson bracket will control the 
evolution with respect to t2 of a system described by a Hamiltonian density depending on x.

In this paper, we consider as boundary conditions the easy-to-handle choice of periodic bound-
ary conditions on a finite interval, both in space and time given our purposes. Were we to consider 
field theories on infinite intervals we would introduce the standard fast-decay conditions on the 
fields. More specific boundary conditions on the interval may be considered for specific pur-
poses, interplaying with bulk integrability properties using suitable formulations drawn from the 
well-known Cherednik–Sklyanin approaches.

Finally, it is quite profitable to use a notion of scaling dimension to keep track of various 
quantities in the hierarchy. For instance, we attach a scaling dimension 1 to the fields ψ , ψ̄ , to 
the spectral parameter λ, as well as to the derivative with respect to x, and a scaling dimension 
of n to the time tn. As we will see in the following, the superscript in V(n) captures this notion in 
that V(n) is a polynomial in λ of the form

V
(n)(x, λ) = λnV (n)(x) + λn−1V (n−1)(x) + · · · + V (0)(x) (2.7)

where V (j) is of scaling dimension n − j and contains only the fields and their x-derivatives in 
combinations of scaling n − j . For instance, in V(2), V (2) = i

2σ3, V (1) = −√
κQ, with

Q =
(

0 ψ̄

ψ 0

)
, (2.8)

and V (0) = iκQ2 − iσ3Qx . Higher V (j)’s can be determined recursively. The scaling dimension 
applies to all other quantities built from the fields like the Lagrangian and Hamiltonian densities 
to be discussed in this paper. Note that, in our notations, a Hamiltonian or Lagrangian density 
with superscript n has in fact scaling dimension n + 2 as the superscript indicates primarily the 
level in the hierarchy.
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3. The NLS hierarchy revisited: Lagrangian and dual Hamiltonian pictures

3.1. Lagrangian and dual Hamiltonian picture for NLS

We review the results first obtained in [20] in light of the present context and notations. A Lax 
pair for NLS reads

U
(1) = −i

λ

2
σ3 + √

κQ =
(

λ
2i

√
κψ̄√

κψ − λ
2i

)
, (3.1)

V
(2) = i

λ2

2
σ3 − λ

√
κQ(x) + iκQ2 − iσ3Qx

=
(

−λ2

2i
+ iκ|ψ |2 −λ

√
κψ̄ − i

√
κψ̄x

−λ
√

κψ + i
√

κψx
λ2

2i
− iκ|ψ |2

)
. (3.2)

In the rest of this paper, we drop the superscript (1) on U(1) as this U will be the only one involved 
here. The zero curvature condition

∂t2U− ∂xV
(2) + [U,V(2)] = 0 , (3.3)

yields the NLS equation,

iψt2 + ψxx = 2κ|ψ |2ψ (and complex conjugate) . (3.4)

A Lagrangian density for NLS is

L(2) = i

2
(ψ̄ψt2 − ψψ̄t2) − ψ̄xψx − κ(ψ̄ψ)2 . (3.5)

We now derive the two Poisson brackets { , }(2)
S (which is the standard one used e.g. in [15]) 

and { , }(2)
T , the new equal-space Poisson bracket first introduced in [20]. We will also find the 

corresponding Hamiltonians H(2)
S and H(2)

T . For convenience, let us denote φ1 = ψ and φ2 = ψ̄

which are treated as independent fields. Within this section, since we work at the fixed level 
n = 2, it is convenient to drop the subscript on t2 and we simply use t . Finally, whether we 
discuss the equal-time picture or the equal-space picture, one of the two independent variables 
will be fixed. Hence, we can afford to use classical mechanics notations instead of field theoretic 
ones (we will then also restrict our attention to densities). By this we mean that instead of writing 
an expression like

{
j(x, t), φk(y, t)} = δjkδ(x − y) , (3.6)

we will simply write

{
j,φk} = δjk . (3.7)

Similarly, a quantity like ∂tφj will be written as φ̇j and ∂xφj as φ′
j . The context will always 

be clear so this abuse of notation should not lead to any confusion. With this in mind, the usual 
canonical conjugate to φj is defined by


1 = ∂L(2)

˙ = i
φ2 , 
2 = ∂L(2)

˙ = − i
φ1 . (3.8)
∂φ1 2 ∂φ2 2
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These equations can not be used to eliminate φ̇j in favour of the momenta 
j when forming the 
Hamiltonian. On the contrary, we see that they relate variables that are supposed to be indepen-
dent in the Hamiltonian picture i.e. 
j and φk . So we fall within Dirac’s scheme for constrained 
dynamics [28], the primary constraints being

C1 = 
1 − i

2
φ2 , C2 = 
2 + i

2
φ1 . (3.9)

The enlarged Hamiltonian density, taking these constraints into account, is the usual Hamiltonian 
plus a linear combination of the constraints,

H∗(2)
S =H(2)

S + λ1 C1 + λ2 C2 (3.10)

= 
1 φ̇1 + 
2 φ̇2 −L(2) + λ1 C1 + λ2 C2 . (3.11)

The initial canonical Poisson brackets are given as usual by

{
j,φk} = δjk , (3.12)

and all the others are zero. The evolution of the constraints under H∗(2)
S and with respect to these 

brackets must remain zero, which entails the consistency conditions

{H∗(2)
S ,Cj } = 0 , j = 1,2 . (3.13)

One computes

{C1,C2} = −i , (3.14)

which shows that these primary constraints are second class. Then, the consistency conditions 
yield

λ1 = −i{H(2)
S ,C2} , λ2 = i{H(2)

S ,C1} , (3.15)

which fixes the value of λj and shows that there are no more constraints. Dirac’s generalized 
Hamiltonian theory [28] teaches us that we can either use { , } with H∗(2)

S as determined above 
to describe the dynamics of the system, or we can use the famous Dirac’s bracket { , }D which 
allows us to set Cj = 0 identically, and hence use H(2)

S to describe the dynamics. To this end, we 
need the matrix of Poisson brackets of second class constraints

M =
(

0 {C1,C2}
{C2,C1} 0

)
=

(
0 −i

i 0

)
. (3.16)

The Dirac bracket is then defined as

{f,g}D = {f,g} −
2∑

j,k=1

{f,Cj }(M−1)jk{Ck,g} , (3.17)

for any functions f , g of the dynamical variables. The nonzero canonical brackets with respect 
to { , }D are then modified to

{φ1, φ2}D = i , {
j,φk}D = 1

2
δjk , {
1,
2}D = − i

4
. (3.18)

We can see that they are of course consistent with the constraints Cj = 0 and these are the 
brackets we should identify with { , }(2)

S . With these brackets, we can use the Hamiltonian H(2)
S

modulo Cj = 0, which reads

H(2) = φ′ φ′ + κ(φ1φ2)
2 . (3.19)
S 2 1
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In terms of the original fields ψ , ψ̄ , the three brackets (3.18) all consistently reduce to the well-
known one [15]

{ψ(x), ψ̄(y)}(2)
S = iδ(x − y) , (3.20)

and H(2)
S is the NLS Hamiltonian density |ψx|2 + κ|ψ |4. The equations of motion arise from

ψt = {H(2)
S ,ψ}(2)

S (and complex conjugate) , (3.21)

where H(2)
S is the space integral of H(2)

S .
Following the same principle we now turn to the equal-space Poisson bracket. The idea is 

to complete the Legendre transform and consider another set of canonical conjugate momenta 
defined with respect to the x derivative of φj ,

P1 = ∂L(2)

∂φ′
1

= −φ′
2 , P1 = ∂L(2)

∂φ′
2

= −φ′
1 . (3.22)

Hence, from the point of view of the x variable, we are in the standard situation where we can 
eliminate the “velocities” φ′

j in favour of the momenta Pj when forming the Hamiltonian. The 
analysis is therefore straightforward and we can use the default canonical Poisson brackets

{Pj , φk} = δjk (all others zero) , (3.23)

as our equal-space bracket { , }(2)
T . The Hamiltonian density is also readily found to be

H(2)
T =P1 φ′

1 +P2 φ′
2 −L(2) . (3.24)

In terms of the original fields, this reads

H(2)
T = i

2
(ψψ̄t − ψ̄ψt ) − ψ̄xψx + κ(ψ̄ψ)2 , (3.25)

together with1

{ψ(t), ψ̄x(τ )}(2)
T = δ(t − τ) , {ψ(t), ψ̄(τ )}(2)

T = 0 = {ψx(t), ψ̄x(τ )}(2)
T . (3.26)

The equations of motion are then consistently given by

ψx = {H(2)
T ,ψ}(2)

T (and complex conjugate) , (3.27)

(ψx)x = {H(2)
T ,ψx}(2)

T (and complex conjugate) , (3.28)

where H(2)
T is the time integral of H(2)

T .
As indicated in the Introduction we now have two equally acceptable Poisson structures yield-

ing the same equations of motion, albeit with two distinct configuration spaces and unrelated 
Hamiltonians.

1 The difference in signs compared to the results in [20] comes from the fact that we use the convention {p, q} = 1 and 
ḟ = {H, f } here, as opposed to the other convention {q, p} = 1 and ḟ = {f, H } used in [20]. The present convention is 
in line with that of [15].
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3.2. Lagrangian and dual Hamiltonian picture for the complex mKdV equation

At level (3), the zero curvature condition based on the pair (U, V(3)), with

V
(3) =

(
−λ3

2i
+ iλκ|ψ |2 + X −λ2√κψ̄ − iλ

√
κψ̄x + Ȳ

−λ2√κψ + iλ
√

κψx + Y λ3

2i
− iλκ|ψ |2 − X

)
(3.29)

and

X = −κ(ψ̄xψ − ψxψ̄), Y = √
κψxx − 2κ

3
2 |ψ |2ψ , (3.30)

yields the complex modified KdV equation [29].

ψt3 − ψxxx + 6κ|ψ |2ψx = 0 , (and complex conjugate) . (3.31)

Notice that our V(3), as derived from the formulas in Appendix A, yields a minus sign in front of 
the third space derivative, whereas (complex) MKdV is usually presented with a plus sign. That 
is irrelevant as one can simply set t3 = −t and κ → −κ .

We use the same shorthand notations as before: t3 = t (as we work at the fixed level n = 3), 
φ̇j for ∂tφj , φ′

j for ∂xφj , etc. A Lagrangian density for this equation is

L(3) = i

2
(ψ̄ψt − ψψ̄t ) + i

2
(ψ̄x ψxx − ψx ψ̄xx) − 3iκ

2
ψ̄ψ(ψψ̄x − ψ̄ψx) (3.32)

= i

2
(φ2φ̇1 − φ1φ̇2) + i

2
(φ′

2 φ′′
1 − φ′

1 φ′′
2 ) − 3iκ

2
φ2φ1(φ1φ

′
2 − φ2φ

′
1) . (3.33)

The derivation of the equal-time bracket { , }(3)
S is exactly the same as in the previous case 

since the part of L(3) involving the time derivatives of the fields is identical to that of L(2). This 
is unchanged and this is of course consistent with the fact that we use U again and only change 
the V part, from V(2) to V(3). The Lagrangian approach presented is thus consistent with the 
traditional Hamiltonian picture where the Poisson bracket is intrinsic to the dynamical system 
(again we are not considering here Magri’s multi-Hamiltonian approach), and the change in V
corresponds to a change in the choice of commuting Hamiltonians. It also means that from now 
on, we can drop the superscript on the equal-time bracket { , }S . Again, as is well known from the 
usual Hamiltonian approach and from what we find generically at level n from the Lagrangian 
picture (see next subsection), the equal-time bracket { , }S is the same for the whole hierarchy.

The corresponding Hamiltonian density reads, in terms of the original fields,

H(3)
S = − i

2
(ψ̄x ψxx − ψx ψ̄xx) + 3iκ

2
ψ̄ψ(ψψ̄x − ψ̄ψx) . (3.34)

We now turn to the derivation of the equal-space bracket { , }(3)
T and the corresponding Hamil-

tonian density. The first step is to define the conjugate momenta but we notice that L(3) involves 
not only φ′

j but also φ′′
j . Therefore we have to deal with a higher order Lagrangian theory for 

which Ostrogradski’s construction can be applied. In the following, we use the nice and modern 
version of this construction detailed in [30]. Another important remark is that, in addition to be-
ing of higher order, L(3) is also degenerate since the higher order derivatives in the fields appear 
linearly. We have to apply Dirac’s scheme as well, along the lines detailed previously for obtain-
ing { }(2). Therefore, we adapt the construction of [30], which deals with regular Lagrangians, 
S
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to our singular case. This goes as follows. The first step is to reduce the order of the higher order 
Lagrangian by introducing new fields ϕj such that

ϕj = φ′
j , j = 1,2 . (3.35)

The Lagrangian L(3) then effectively becomes a standard first order Lagrangian in the indepen-
dent fields φj , ϕj

L(3) = L(3)(φj , φ̇j , ϕj , ϕ
′
j ) . (3.36)

The important relation (3.35) ensuring equivalence with the original Lagrangian is now dealt with 
as a constraint by introducing Lagrange multipliers μj . We introduce the following auxiliary 
Lagrangian

Laux(φj , φ̇j , ϕj , ϕ
′
j ,μj ) = L(3)(φj , φ̇j , ϕj , ϕ

′
j ) +

2∑
j=1

μj (ϕj − φ′
j ) . (3.37)

For convenience, let us split L(3) as

L(3)(φj , φ̇j , ϕj , ϕ
′
j ) = L0(φj ,ϕj , ϕ

′
j ) +L1(φj , φ̇j ) , (3.38)

with

L0(φj ,ϕj , ϕ
′
j ) = i

2
(ϕ2 ϕ′

1 − ϕ1 ϕ′
2) − 3iκ

2
φ2φ1(φ1ϕ2 − φ2ϕ1) , (3.39)

L1(φj , φ̇j ) = i

2
(φ2φ̇1 − φ1φ̇2) . (3.40)

This is motivated by the fact that L1 does not play an active role in the construction of H(3)
T and 

the corresponding Poisson brackets, being the time part of the Lagrangian.
We apply the variational principle to the auxiliary Lagrangian for the independent fields φj , 

ϕj and μj as usual. Of course, a variation in μj enforces the constraints (3.35). A variation in 
φj yields

∂L0

∂φj

+ μ′
j + ∂L1

∂φj

=
(

∂L̇1

∂φ̇j

)
. (3.41)

A variation in ϕj produces an equation fixing μj

μj = −∂L0

∂ϕj

+
(

∂L0

∂ϕ′
j

)′
. (3.42)

In particular,

μ1 = iϕ′
2 − 3iκ

2
φ2

2φ1 , (3.43)

μ2 = −iϕ′
1 + 3iκ

2
φ2

1φ2 . (3.44)

Note that, upon inserting (3.35) and (3.42) into (3.41), we obtain the equations of motion

φ̇1 − φ′′′
1 + 6κφ2

2 φ1 = 0 , (3.45)

φ̇2 − φ′′′ + 6κφ2 φ2 = 0 , (3.46)
2 1
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that is, (3.31) and its complex conjugate, as required. Note also that (3.42) allow us to eliminate 
ϕ′

j in favour of the other fields μj and φj when forming the Hamiltonian below.
We can now proceed to the transition to the Hamiltonian picture. We define the conjugate 

momenta of the fields φj , ϕj and μj ,

P0
j = ∂Laux

∂φ′
j

, P1
j = ∂Laux

∂ϕ′
j

, 
j = ∂Laux

∂μ′
j

. (3.47)

The initial canonical Poisson brackets are therefore

{P0
j , φk} = δjk , {P1

j , ϕk} = δjk , {
j ,μk} = δjk , (3.48)

with all others equal to zero. Explicitly, the conjugate momenta read

P0
j = −μj , 
j = 0 , (3.49)

and

P1
1 = i

2
φ2 , P1

2 = − i

2
φ1 . (3.50)

On the Hamiltonian phase space parametrized by (φj , P0
j ; ϕj , P1

j ; μj , 
j), these equations rep-
resent primary constraints. The first set (3.49) is inherent to the construction of [30]. The second 
set (3.50) is only present in our case because our Lagrangian is singular, in particular, it is linear 
in the “velocities” ϕ′

j . Note that they are exactly of the same nature as the constraints Cj dis-
cussed in the NLS case, and they will have exactly the same effect on the Poisson brackets to be 
derived below. We also call them Cj here. Summarizing, we now need to apply Dirac’s scheme 
with the primary constraints

C1 =P1
1 − i

2
φ2 , C2 =P1

2 + i

2
φ1 , (3.51)

C3 =P0
1 + μ1 , C4 =P0

2 + μ2 , C5 = 
1 , C6 = 
2 . (3.52)

We compute the following nonvanishing Poisson brackets among these constraints, which show 
that they are second class

{C1,C2} = i , {C3,C5} = 1 = {C4,C6} . (3.53)

We now form the Hamiltonian Haux in the usual way

Haux =
2∑

j=1

(P0
j φ′

j +P1
j ϕ′

j + 
jμ
′
j ) −Laux (3.54)

as well as the extended Hamiltonian with constraints H∗

H∗ =Haux +
6∑

j=1

αjCj . (3.55)

The constraints should remain equal to zero under evolution by H∗ and this yields the consistency 
conditions

{H∗,Cj } = 0 , j = 1, . . . ,6 . (3.56)
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After straightforward but lengthy calculations, we find that these give

αj = 0 , j = 1,2,5,6 , αj =
(

∂L̇1

∂φ̇j−2

)
, j = 3,4 . (3.57)

Thus there are no secondary constraints and the coefficients αj are fixed. The last step is to derive 
the Dirac brackets for this system so that we can set the constraints to zero identically. The Dirac 
brackets will also be the equal-space brackets { , }(3)

T that we are looking for. To this end, we 
need the matrix of Poisson brackets of the constraints

M = ({Cj ,Ck}) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 i 0 0 0 0
−i 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.58)

As before the Dirac bracket for any two functions f , g of the dynamical variables is defined by,

{f,g}D = {f,g} −
6∑

j,k=1

{f,Cj }(M−1)jk{Ck,g} . (3.59)

Using these brackets, the constraints can be set to zero identically in the Hamiltonian H∗ and we 
can work on the reduced phase space consisting of the fields (φj , P0

j , ϕj ). We obtain

Hred =P0
1 ϕ1 +P0

2 ϕ2 + 3iκ

2
φ2φ1(φ1ϕ2 − φ2ϕ1) − i

2
(φ2φ̇1 − φ1φ̇2) , (3.60)

with the Dirac brackets

{φ1, φ2}D = 0 , {ϕ1, ϕ2}D = i , {P0
1 ,P0

2 }D = 0 , (3.61)

{φj ,ϕk}D = 0 , {P0
j , φk}D = δjk , {P0

j , ϕk}D = 0 . (3.62)

Restoring all the results in terms of the original fields ψ and ψ̄ , we obtain our Hamiltonian 
density H(3)

T after simplification as

H(3)
T = i(ψ̄xψxx − ψxψ̄xx) − i

2
(ψ̄ψt − ψψ̄t ) . (3.63)

The Dirac bracket is the equal-space bracket { , }(3)
T we want and (3.61)–(3.62) translate into

{ψ(t), ψ̄(τ )}(3)
T = 0 , (3.64)

{ψ(t),ψx(t)}(3)
T = 0 = {ψ(t), ψ̄x(τ )}(3)

T , (3.65)

{ψx(t),ψxx(τ )}(3)
T = 0 = {ψx(t), ψ̄xx(τ )}(3)

T , (3.66)

{ψx(t), ψ̄x(τ )}(3)
T = iδ(t − τ) , (3.67)

{ψ̄(t),ψxx(τ )}(3)
T = iδ(t − τ) , {ψ(t),ψxx(τ )}(3)

T = 0 , (3.68)

{ψxx(t), ψ̄xx(τ )}(3)
T = −6iκ|ψ |2(t)δ(t − τ) . (3.69)

One can now verify that

(ψxx)x = {H(3)
,ψxx}(3)

, (3.70)
T T
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and its complex conjugate are indeed equivalent to the complex mKdV equation and its conju-
gate (3.31). This concludes our dual Hamiltonian formulation of complex mKdV, the equation 
corresponding to the level (3) in the NLS hierarchy.

The most important outcome in view of our dual classical r-matrix approach to be developed 
in the next section is the derivation of the brackets (3.64)–(3.69). Indeed, these allow us to com-
pute the Poisson bracket relations of the entries of V(3), with the fundamental result that they 
obey the ultralocal Poisson algebra with rational r matrix, just like U does with respect to { }(3)

S , 
but up to a minus sign.

3.3. Generalization to higher levels in the hierarchy

The previous two explicit levels indicate a way in which our scheme will hold for higher 
levels. Let us give here a sketch of this generalization. First of all it is clear that the Lagrangian 
density at level n is of the form

L(n) = i

2
(ψ̄ψtn − ψψ̄tn) −H(n)

S (3.71)

where H(n)
S is determined from the generating function z(L, −L, λ) via (B.18). The total number 

of x derivatives appearing under the integral in H(n)
S is equal to n, in view of the recursion 

relations defining W(n), and also consistently with scaling arguments. Therefore using integration 
by parts repeatedly, in view of our assumption of periodic boundary conditions, we can always 
bring H(n)

S to such a form that the highest order term is proportional to{
∂

p
x ψ̄∂

p
x ψ , n = 2p ,

i(∂
p
x ψ̄∂

p+1
x ψ − ∂

p
x ψ∂

p+1
x ψ̄) , n = 2p + 1 ,

(3.72)

NLS is an example of the even case and complex mKdV an example of the odd case, both with 
p = 1. For higher values of p, the general strategy to obtain a full dual Hamiltonian description 
of the model is clear. The equal-time bracket { , }S is the same at all levels and is obtained as 
previously described for NLS or complex mKdV. To obtain the equal-space brackets { , }(n)

T

and the corresponding Hamiltonian density H(n)
T , we proceed as explained above for NLS and 

complex mKdV, by using the formalism of [30]. For even cases, the Lagrangian is regular and 
the only constraints appearing are the ones intrinsic to that higher order formalism. For odd 
cases, one obtains two more constraints due to the linearity of the Lagrangian in the highest 
x derivative. Irrespective of their origin, all the constraints are second class and no additional 
constraints appear as a result of the consistency conditions. One then simply proceeds as in the 
complex mKdV case, deriving the Dirac brackets and the corresponding reduced Hamiltonian. 
These are then identified with { , }(n)

T and H(n)
T .

4. Classical r-matrix formulation in the dual picture

4.1. The original observation: two ultralocal Poisson algebras for NLS

The main result of the previous section is the derivation from a single Lagrangian picture of 
two Poisson brackets at each level of the NLS hierarchy. Both PBs are indeed represented by 
an r-matrix linear formula for their respective Lax matrix. This guarantees integrability of both 
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Hamiltonian dual formulations by construction of monodromy matrices with Poisson-commuting 
traces. For NLS itself, the result was already obtained and used in [20] for the specific purpose 
of studying integrable defects. Let us simply restate the result in the present context.

Proposition 4.1. Equipped with the canonical Poisson brackets { , }(2)
S and { , }(2)

T , the Lax 
matrices U and V(2) satisfy the following ultralocal Poisson algebras

{U1(x,λ),U2(y,μ)}(2)
S = δ(x − y)[r12(λ − μ),U1(x1, λ) +U2(y1,μ)] , (4.1)

{V(2)
1 (t2, λ),V

(2)
2 (τ2,μ)}(2)

T = −δ(t2 − τ2)[r12(λ − μ),V
(2)
1 (t2, λ) +V

(2)
2 (τ2,μ)] , (4.2)

where r is the sl(2) rational classical r-matrix

r12(λ) = κ

λ
P12 , (4.3)

P12 is the permutation operator acting on C2 ⊗C
2, and we have used the tensor product notation 

with indices 1 and 2.

It is quite remarkable, and a priori not expected to be a general feature of such duality pictures, 
that both Hamiltonian structures be described by the same r matrix. In any case an immediate 
consequence of the existence of these two Hamiltonian structures is that, in addition to the usual 
space monodromy matrix TU(L, −L, λ) built from U and containing all the information about 
the system, in particular the conserved charges in time, we may now consider the time mon-
odromy matrix T(2)

V
(T , −T , λ) built from V(2). In particular, it generates the conserved charges in 

space. One can talk about integrability of the model with respect to these two Poisson structures 
and hence, about “dual integrable” hierarchies, in a sense to be generalized in the Conclusion.

4.2. Hierarchy of dual ultralocal Poisson algebras for higher NLS systems

At level (3), we may use the Poisson brackets (3.64)–(3.69) and the explicit form (3.29) for 
V

(3) to show directly that V(3) satisfies the ultralocal Poisson algebra (4.2) with respect to { , }(3)
T .

As explained in Section 3.3, one can obtain the higher Poisson brackets { , }(n)
S (which are the 

same at all levels) and { , }(n)
T for the fields systematically. It is not hard to convince oneself that 

the ultralocal Poisson algebra structure may hold also for higher V(n). Hence, we conjecture

Proposition 4.2. Equipped with the canonical Poisson brackets { , }(n)
S and { , }(n)

T , the Lax 
matrices U and V(n) satisfy the following ultralocal Poisson algebras, for all n ∈N,

{U1(x,λ),U2(y,μ)}(n)
S = δ(x − y)[r12(λ − μ),U1(x,λ) +U2(y,μ)] , (4.4)

{V(n)
1 (tn, λ),V

(n)
2 (τn,μ)}(n)

T = −δ(tn − τn)[r12(λ − μ),V
(n)
1 (tn, λ) +V

(n)
2 (τn,μ)] . (4.5)

Remark. the Poisson algebra for V(n) given in the proposition is not just a consequence of 
the Poisson brackets on the dynamical fields involved in V(n) but is in fact equivalent to 
them. For n = 3, this means that the Poisson algebra for V(3) is equivalent to the brackets 
(3.64)–(3.69) when we project on the various components. “Historically”, this is how we dis-
covered (3.64)–(3.69): by postulating (4.5) for n = 3 and working out the consequences for the 
dynamical fields. This postulate was in turn motivated by the result that was already known for 
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n = 2 [20]. At this level, it was also known that the equal-space brackets for the fields could be 
derived from a covariant Lagrangian picture. One of our main successes in the present paper is to 
show that we can complete this picture from the Lagrangian point of view also at the higher lev-
els in the hierarchy, as we did explicitly for n = 3, hence producing (4.5) as a nice consequence 
of the Lagrangian approach. However, this “historical remark” shows the guiding power of the 
algebraic approach to Hamiltonian classical integrable systems.

4.3. A hierarchy of matrices U for each V(n)

Recall that following [15] (see Appendix A), given the Lax matrix U and its ultralocal Poisson 
algebra (4.1), one can derive an explicit expression for the generating function of all the matrices 
V

(n), n ∈ N of the NLS hierarchy. For instance, one finds the first few as:

V
(0)(λ) = − 1

2i

(
1 0
0 −1

)
,

V
(1)(x, λ) =

(
− λ

2i
−√

κψ̄

−√
κψ λ

2i

)
,

V
(2)(x, λ) =

(
−λ2

2i
+ iκ|ψ |2 −λ

√
κψ̄ − i

√
κψ̄x

−λ
√

κψ + i
√

κψx
λ2

2i
− iκ|ψ |2

)
,

V
(3)(x, λ) =

(
−λ3

2i
+ iλκ|ψ |2 + X −λ2√κψ̄ − iλ

√
κψ̄x + Ȳ

−λ2√κψ + iλ
√

κψx + Y λ3

2i
− iλκ|ψ |2 − X

)
, (4.6)

where

X = −κ(ψ̄xψ − ψxψ̄), Y = √
κψxx − 2κ

3
2 |ψ |2ψ . (4.7)

In view of our results, in particular the ultralocal Poisson algebra (4.5) satisfied by V(n)

(proved from n = 1, 2, 3, conjectured for higher n), it seems natural to follow the same procedure 
starting from a fixed V(n) and its ultralocal Poisson algebra this time. Following the construction 
detailed in Appendix A, we obtain a hierarchy of matrices U(m,n), m ∈ N associated to V(n). 
As an illustration, suppose we pick V(2) corresponding to ξ = t2. We find the first few matrices 
U

(m,2) as

U
(0,2)(t2, λ) = 1

2i

(
1 0
0 −1

)
,

U
(1,2)(t2;λ) =

(
λ
2i

+√
κψ̄√

κψ − λ
2i

)
,

U
(2,2)(t2;λ) =

(
λ2

2i
− iκ|ψ |2 +λ

√
κψ̄ + i

√
κψ̄x

λ
√

κψ − i
√

κψx −λ2

2i
+ iκ|ψ |2

)
,

U
(3,2)(t2;λ) =

(
λ3

2i
− iλκ|ψ |2 − � λ2√κψ̄ + iλ

√
κψ̄x − �̄

λ2√κψ − iλ
√

κψx − � −λ3

2i
+ iλκ|ψ |2 + �

)
, (4.8)

where we define

� = −κ(ψ̄xψ − ψxψ̄), � = −i
√

κψt2 − 2κ
3
2 |ψ |2ψ (4.9)

Note the appearance of a derivative with respect to t2 in U(3,2) in addition to the x-derivatives.
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Once this hierarchy is constructed, we can in principle repeat the process starting from a given 
U

(m,n) and obtain a hierarchy of associated Lax matrices V(p,m,n), p ∈N, and so on.
This appealing idea suggests that one can construct a collection of Lax pairs (U(I ), V(J )), 

where I , J are multiindices, which could be organised in a multidimensional lattice, hence pro-
ducing multidimensional integrable PDEs. One is naturally led to distinguish between “vertical” 
and “horizontal” indices depending whether the index labels a hierarchy of elements built from 
a “equal-space” or “equal-time” Poisson bracket. Quite obviously the even (resp. odd) indices of 
V (resp U) are horizontal indices in this sense. The detailed investigation of such a possibility 
and of the corresponding lattice of Lax pairs is left for future work. A very special example of 
this idea appeared differently in the form of a triple of Lax matrices in [31] and was at the basis 
of a certain 2 + 1-dimensional version of NLS. In general, it is far from obvious that the process 
just described “closes” in the sense that the lattice is finite dimensional and that all the equations 
obtained by taking the zero curvature associated to each pair in the lattice are mutually consis-
tent. The last issue is already a nontrivial result in the well-known case of a single hierarchy 
(a one-dimensional lattice from our point of view) that can be found e.g. in [9].

5. Conclusions and outlook

Our main results can be summarized as follows:
• Lagrangian and dual Hamiltonian formulation: For each Lax pair (U, V(n)) at level n in 

the NLS hierarchy, we construct two Poisson brackets { , }(n)
S and { , }(n)

T for the canonical fields 

and two Hamiltonians H(n)
S and H(n)

T (recall again that these are not Magri’s multi-Hamiltonian 
structures). They are derived from a Lagrangian which reproduces the equations of motion of 
the zero curvature condition for (U, V(n)) through its Euler–Lagrange equations. The equal-time 
bracket { , }(n)

S found in this procedure is the same at each level n, which is consistent with what 
is known from the traditional Hamiltonian approach to an integrable hierarchy.

• Dual classical r-matrix formulation: For each Lax pair (U, V(n)) at level n in the NLS 
hierarchy, the Poisson bracket { , }(n)

S (resp. { , }(n)
T ) for the canonical fields induces an ultralocal 

Poisson algebra for U (resp. V(n)). A consequence of this is that the space monodromy matrix 
TU generates integrals of motion (in time) that are in involution with respect to { , }(n)

S (the 
well-known result) and the time monodromy matrix TV(n) generates integrals of motion (in space) 
that are in involution with respect to { , }(n)

T (the new, dual result). The Hamiltonians H(n)
S and 

H
(n)
T are contained in these families of integrals of motion.
We are now in a position to formulate some general remarks and more precise definitions of 

our procedures.

5.1. The notion of duality in an integrable hierarchy

We have used the terminology dual or duality rather loosely so far, counting on the fact that it 
is self-explanatory in the various examples that we have used to illustrate it. However, we would 
now like to propose an attempt at a more precise definition to be used in future developments.

We recall that the general feature of a Lax representation of AKNS type in Hamiltonian for-
malism is as follows. Consider a Lax matrix U(φ(x), λ), depending on one-dimensional fields 
φ(x) living on the phase space and a spectral parameter λ and taken to describe the infinitesimal 
x-translation for an auxiliary wavefunction; and consider a Poisson structure for these fields φ
inducing an r-matrix structure for the Lax matrix.
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The monodromy TU of this Lax matrix then naturally generates Poisson commuting Hamil-
tonians as integrals over x of (local) densities, and the data of U(φ(x), λ) and r allow one to 
construct an V matrix depending on λ, φ and possibly the x-derivatives of φ, for every such 
Hamiltonian, describing a time translation for the auxiliary wavefunction, and such that the com-
patibility of the t - and x-evolutions (flatness of connection) implies the Hamiltonian equations of 
motion (time evolution) for the initial fields φ(x) now viewed as φ(x, t). The Poisson structure 
is here by construction an equal-time Poisson bracket.

In view of the explicit results obtained so far on our NLS example, we shall define the notion 
of dual formulation as follows. Suppose one can exhibit another, equal-space Poisson structure 
for the fields, now chosen to be φ(t), parametrizing another choice of configuration space such 
that:

– The corresponding Poisson structure of the matrix V now naturally identified as the relevant 
Lax matrix, has a linear r-matrix description with matrix r ′, and,

– the λ expansion of the monodromy matrix TV of the t -translation described by V(φ(t), λ)

contains in particular a Hamiltonian integral over t , such that its associated translation operator 
built from the r-matrix structure r ′ as in Appendix A coincides with U.

Then the dynamical equation for φ, contained in the zero-curvature condition for U, V, can 
be either represented as a Hamiltonian integrable evolution for φ(x) along t or for φ(t) along x.

This definition is here explicitly formulated for AKNS systems describing mutually compati-
ble x and t evolutions. It must be emphasized that one may easily extend this notion to any pair 
of AKNS-type gauge connections over a two-dimensional space–time, originally yielding by 
zero-curvature condition 2-dimensional nonlinear evolution equations for some fields. As above, 
in the general case these connections will be respectively identified with the infinitesimal shifts 
of an auxiliary wavefunction, this time along two independent space–time coordinates, linear 
combinations or even algebraic combinations of x and t : the example of light-cone coordinates 
mentioned above is one obvious such extension.

Whenever such a scheme is realised, we shall speak of dual (canonical) formulations or dual 
(canonical) representations of the integrable PDE. As is seen on the definition we impose in 
particular that in both cases the “generalized time-shift” element of the Lax connection will be 
identified as a partial trace describing an r-matrix co-adjoint action on the differential of the 
Hamiltonian derived from interval monodromies of the “generalized space-shift” element, such 
as derived in [7]. This implies a very nontrivial property on the “initial” Lax matrix (be it picked 
as U or V), i.e. that it must be recovered from r-matrix coadjoint action on the spectral-parameter 
expansion of the monodromy matrix of its Lax partner which is itself obtained from r-matrix 
coadjoint action on the spectral-parameter expansion of the first matrix; a very nontrivial consis-
tency of the set (Lax matrix / r-matrix) is thus suggested.

A general caveat is in order here: The identification of the second partner of a Lax formulation 
with the coadjoint formula à la Semenov-Tyan-Shanskii requires that the particular Hamilto-
nian triggering the dynamics of the considered integrable system belong to the ring generated 
by the trace of the monodromy matrix of the first partner, or the spectral-parameter expansion 
coefficients thereof. In other words it is strictly speaking a sufficient condition statement. How-
ever there exist situations where the Hamiltonian may not necessarily be constructed from the 
monodromy matrix of the chosen Lax matrix: such situations certainly occur in the context of 
“degenerate integrable systems” [32] and may also occur in the context of field-theoretical mod-
els where the existence of an infinite number of degrees of freedom requires extra completeness 
arguments. We shall assume that we are not in such a situation.
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In the case where the r-matrices coincide, r = r ′, we shall call the system a self-dual Hamil-
tonian system. We do not have examples at this time of dual integrable systems with different r
matrices for the two dual integrability structures but we cannot exclude such situations, hence this 
particularization. Note that the NLS equation can then be called anti-self-dual since we showed 
that we have r ′ = −r in this paper.

The definition can be easily extended to a whole hierarchy. Once again, given a Lax matrix 
U and its Poisson algebra characterised by r , one can build a whole integrable hierarchy of Lax 
pairs (U, V(n)), n ∈ N, in which V = V

(1) say. Then, by the notion of duality just explained, we 
have the data of V and its associated Poisson algebra characterised by r ′. Therefore, we can build 
a hierarchy of Lax matrices U(n), n ∈ N, with U(1) = U. The hierarchies (U(1), V(n)), n ∈ N and 
(U(n), V(1)), n ∈N are called dual hierarchies.

Note that the terminology of “duality” has already appeared in the domain of integrable sys-
tems, albeit in a different context, i.e. the famous position/momentum duality before Hamiltonian 
reduction, relating Calogero–Moser and Ruijsenaars–Schneider models under the generic name 
of Ruijsenaars duality [33,34], with identical Poisson structure. Here by contrast the “duality” 
exchanges the role of variables x and t in the definition of integrability itself, and the Poisson 
structures are distinct. In a sense and to borrow a phrase from string theory, RS duality is tar-
get space duality, whereas our notion is more related to world sheet duality, or change of the 
conformal structure.

5.2. Physical application: a Hamiltonian description of NLS in Optics

The NLS equation that served as the main basis to develop our formalism turns out to be also 
an excellent physical example of the interchange between space and time in certain integrable 
systems with a universal character. By this we mean that NLS arises as an approximate equation 
in wave dynamics under fairly general assumptions but with different interpretations of the inde-
pendent variables depending on the context. A nice discussion of the physical significance and 
universal character of NLS can be found in [35]. When derived in the fluid mechanics context 
for instance, the usual form is relevant

iφt + φxx = 2κ|φ|2φ , (5.1)

where t has the meaning of time and x the meaning of space. That is by far the most popular 
setting and the standard Hamiltonian description is always given for this form. But, when NLS 
is derived in nonlinear optics, the physical meaning attached to x and t is swapped. For instance, 
in Chapter 5 of [36], one finds NLS in the form

iAz = β2

2
Aττ − γ |A|2A, (5.2)

where A(z, τ) is the amplitude of the pulse envelope and β2, γ are parameters characterizing 
the physical properties of the optical fibre. Here z is the spatial coordinate along the fibre and τ
is attached to a frame of reference moving with the pulse at group velocity vg, τ = t − z

vg
. Of 

course this can always be rescaled to the standard form (5.1) but the point is that x is now a time 
and t a space variable. To implement the Hamiltonian approach of this form of NLS seen as an 
evolution equation in time, one has in fact to use our formalism to produce φxx = (φx)x as the 
Poisson bracket of some Hamiltonian with φx . This is nothing but (3.28).

This example is also illuminating to motivate the need for the notion of Hamiltonian space 
evolution that we have advocated for in this paper. Indeed, suppose that instead of using our new 
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bracket as just described, one insists on using the standard Hamiltonian formulation of (5.1) i.e.
(3.21), but now in the physical context of optical fibres. Then one is in fact describing the space
evolution of the wave.

This discussion shows that even in the nonrelativistic setting, it is sometimes useful not to 
attach an intrinsic meaning to what coordinate describes space and what coordinate describes 
time. We stress once again that, be it mathematically or physically, treating variables on an equal 
footing in a given integrable hierarchy provides new insight.

5.3. Multi-index Lax pairs

We have suggested in the previous section that one could imagine successive repeats of the 
dualization procedure, starting from the two initial hierarchies of U and V, and successively 
building higher levels of “horizontal” or U-type and “vertical” or V-type hierarchies by starting 
from a lower level hierarchy element, assuming it is endowed with the double set of Poisson 
structures. An immediate question arises whether there exist connections between U and V ob-
jects respectively labelled by their ordered set of alternatively “vertical” and “horizontal” indices: 
(U(I ), V(J )) when some relation exists between the respective sets I and J (a more precise state-
ment of the issue of “finite-dimensionality of the lattice” alluded to in the previous section). 
An obvious second question is whether the dual Poisson structures a priori deduced from the 
Lagrangian formulation of higher-level hierarchy equations are still represented by r-matrix for-
mulations; whether these r-matrices will then remain the same (as is the case for the first two 
levels of hierarchy in NLS); or whether new r-matrices will arise; or (worst-case) dual integra-
bility breaks altogether at higher levels and no dual r-matrix formulation is available.
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Appendix A. Hierarchy of Lax matrices from the r-matrix

Given the symmetric roles played by the matrices U and V(n) and in view of the discussion in 
Section 4.3, we present in this appendix the generalization of the construction of [15] [Chap III, 
§3]. It yields a formula for a generating function of the hierarchy of Lax matrices V(n) given 
U and the classical r-matrix encoding the Poisson algebra of the latter. For our purposes, we 
would like to be able to base the construction on any of the V(n), and the corresponding r-matrix 
encoding its Poisson algebra, in order to obtain a hierarchy of Lax matrices U(m) associated to 
this V(n). Ultimately, we can also imagine to pick one of the U(m) thus constructed, compute 
its Poisson algebra and repeat the construction once again. The study of the iteration of this 
process and of the lattice of Lax pairs that one can obtain this way will be the object of a future 
investigation.
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We need neutral notations to allow for this process. So, let us assume that we have constructed 
appropriate Poisson brackets { , }(N)

A ,2 such that equations of motion arising from the zero cur-
vature for the Lax pair (X, Y)

∂ηN
X(ξ, ηN,λ) − ∂ξY(ξ, ηN,λ) + [X,Y](ξ, ηN,λ) = 0 , (A.1)

read

∂ηN
X(ξ, ηN,λ) = {H(N),X(ξ, ηN,λ)}(N)

A . (A.2)

Here, X, Y matrix polynomials in λ of degree N and M respectively, and

TrX= 0 , X̄(ξ, η, λ̄) = σ X(ξ, η,λ)σ , (A.3)

where σ = σ1 if κ > 0 and σ = σ2 if κ < 0. We then assume that these equations of motion at 
the single level N are embedded into the following hierarchy of equations

∂ηnX(ξ, ηn,λ) = {H(n),X(ξ, ηn,λ)}(N)
A , n ∈N , (A.4)

where the Hamiltonians H(n) are constructed from X as in Appendix B. In addition, assume that

{X1(ξ, η,λ),X2(ζ, η,μ)}(N)
A = γ δ(ξ − ζ )[r12(λ − μ),X1(ξ, η,λ) +X2(ζ, η,μ)] , (A.5)

where γ = ±1 and r is the standard one-pole rational classical r-matrix. This last assumption is 
motivated by one of the main results of this paper whereby U and V(n) satisfy the same Poisson 
algebra up to a sign, hence the introduction of γ .

At this stage, we can repeat the arguments of [15] [Chap III, §3] and simply incorporate γ . 
We obtain the equations of motion in zero curvature form for each level n as

∂ηnX(ξ, ηn,λ) − ∂ξY
(n)(ξ, ηn,λ) + [X,Y(n)](ξ, ηn,λ) = 0 , (A.6)

where the hierarchy of matrices Y(n) is obtained from the expansion

Y(ξ, η,λ;μ) = κ

∞∑
n=1

Y
(n−1)(ξ, η,λ)

μn
, (A.7)

where

Y(ξ, η,λ;μ) = γ κ

2i(λ − μ)
(1 + W(ξ,η,μ))σ3 (1 + W(ξ,η,μ))−1 . (A.8)

We have added the explicit η dependence of W (defined in (B.4)) for consistency. In particular, 
we obtain that YN coincides with the original Y in (A.1), as it should.

Of course, if we apply this construction to X = U with ξ = x and γ = 1, we recover Y(n) =
V

(n) with ηn = tn. The idea is that we want to be able to apply the construction to X =V
(n) for 

some fixed n and ξ = tn, to yield a hierarchy of U(m)’s, etc.

Remark. An important consequence of formula (A.8) is that the two properties of X, i.e. trace-
lessness and symmetry, transfer to all the Y(n)(ξ, η, λ)’s. This is crucial if we want to be able to 
repeat the construction with one of the Y(n)’s as X since these properties enter the argument to 
obtain formula (A.8).

2 A can stand for either S or T here depending on whether we use ξ as space and η as time or vice versa. N is a fixed 
level that we take as a starting point.
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We now investigate a consequence of formula (A.8) that gives a useful recursive formula for 
Y

(n) in terms of Y(n−1) and the coefficients W(j), j = 1, . . . , n discussed in Appendix B. To our 
knowledge, this recursion formula was not known (at least not given) before. It reads,

Y
(0)(ξ, η,λ) = iγ κ

2
σ3 , (A.9)

Y
(n)(ξ, η,λ) = λY(n−1)(ξ, η,λ) + iγ σ3

n∑
j=1

(−1)j
∑

m1+···+mj =n

W(m1) . . .W(mj ) . (A.10)

In the last sum, for a given j , the sum runs over all partition of n into j integers m1, . . . , mj . To 
prove it, simply multiply (A.8) by λ − μ and rewrite it as[ ∞∑

n=1

1

μn

(
λY(n−1) −Y

(n)
)

−Y
(0) − i

γ

2
σ3

]
= −iγ σ3(1 + W)−1 . (A.11)

The result follows by identifying the term of order μ−n on each side.

Appendix B. Riccati equation and conserved quantities

We keep the notations introduced in the previous Appendix that allow us to discuss the con-
struction of a generating function of conserved quantities in time or space, depending on the 
starting point used for X and ξ as explained above. Again, we extend the arguments presented 
in [15] [Chap I, §4] to our case. The ensuing results are obtained by direct calculation. Consider 
the auxiliary problem

∂ξ�(ξ, η,λ) =X(ξ, η,λ)�(ξ, η,λ) (B.1)

∂η�(ξ, η,λ) =Y(ξ, η,λ)�(ξ, η,λ) (B.2)

with X, Y matrix polynomials in λ of degree N and M respectively, and

TrX= 0 , X̄(ξ, η, λ̄) = σ X(ξ, η,λ)σ , (B.3)

where σ = σ1 if κ > 0 and σ = σ2 if κ < 0. Consider periodic boundary conditions in ξ ∈
[−
, 
].3 Let T(ξ, ζ, λ) be the fundamental solution of (B.1) normalised to T(ξ, ξ, λ) = 1. 
Introduce the large λ expansion of T as follows

T(ξ, ζ, λ) = (1 + W(ξ,λ))eZ(ξ,ζ,λ)(1 + W(ζ,λ))−1 , (B.4)

where W is an off-diagonal matrix, Z a diagonal matrix, and they have the following expansion

W(ξ,λ) =
∞∑

n=1

W(n)(ξ)

λn
, Z(ξ, ζ, λ) =

N∑
n=0

Z(−n)(ξ, ζ )λn +
∞∑

n=1

Z(n)(ξ, ζ )

λn
. (B.5)

A generating function of the real-valued local conserved quantities in η is now given by

1

2iκ
Tr[σ3Z(
,−
,λ)] (B.6)

3 Note that in general ξ will be either a space x or a time tn so that we work with periodic conditions both in space and 
time variables. The well-known finite gap solutions fulfil this requirement.
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with

Z(ξ, ζ, λ) =
ξ∫

ζ

(Xd +Xo W) (z,λ) dz , (B.7)

where Xd (resp. Xo) is the diagonal (resp. off-diagonal) part of X. W is determined via the matrix 
Riccati equation

Wξ =Xd W − W Xd +Xo − W Xo W . (B.8)

The Hamiltonians are obtained by inserting the following expressions for Z(n)(ξ, ζ )

Z(−n)(ξ, ζ ) =
ξ∫

ζ

⎛
⎝X

(n)
d (z) +

N∑
p=n+1

X
(p)
o (z)W(p−n)(z)

⎞
⎠dz , n = 0, . . . ,N (B.9)

Z(n)(ξ, ζ ) =
N∑

p=0

ξ∫
ζ

(
X

(p)
o (z)W(p+n)(z)

)
dz , n ≥ 1 , (B.10)

and finding the coefficients W(n) recursively thanks to, for n = 1, . . . , N ,

[X(N)
d ,W(n)] = −X

(N−n)
o −

n−1∑
q=1

[X(N−q)
d ,W(n−q)] −

n∑
m=1

m−1∑
k=1

W(k)
X

(N+m−n)
o W(m−k) ,

(B.11)

and, for n ≥ 1,

[X(N)
d ,W(N+n)] = W

(n)
ξ −

N∑
k=1

[X(N−k)
d ,W(N+n−k)] −

N∑
p=0

n+p−1∑
k=1

W(k)
X

(p)
o W(n+p−k) .

(B.12)

Note that X(N)
d is always proportional to σ3. The previous Appendix shows that this is a stable 

property within a hierarchy. Hence these relations define W(n) fully, as it is off-diagonal. As is 
well known, the fact that X is traceless and the normalisation of T imply that

detT(ξ, ζ, λ) = 1 . (B.13)

In addition, using the periodic “boundary” conditions and the decomposition (B.4) for large λ, 
one obtains

∂ηTr[eZ(
,−
,λ)] = 0 . (B.14)

From the recursive definitions of the coefficients W(n) and Z(n) in terms of X, we can see that 
the symmetry condition on the latter is transferred to all these coefficients, and hence also to the 
functions W(ξ, λ) and Z(ξ, ζ, λ). Hence we can write

W(n)(ξ) = i
√

κ

(
0 −w̄(n)(ξ)

w(n)(ξ) 0

)
, Z(n)(ξ, ζ ) = iκz(n)(ξ, ζ )σ3 , z(n) ∈ R .

(B.15)
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In particular, this yields

z(
,−
,λ) = 1

2iκ
Tr[σ3Z(
,−
,λ)] . (B.16)

In addition, Tr[eZ(
,−
,λ)] = 2iκ cos(z(
, −
, λ)) so (B.14) implies that

∂ηz(
,−
,λ) = 0 . (B.17)

Once again, the recursion relations show that this function generates local conserved quanti-
ties as opposed to Tr[eZ(
,−
,λ)]. We have also shown that all the z(n)’s are real valued. The 
corresponding hierarchy of local Hamiltonians is now simply defined by

H(n) = z(n+1)(
,−
,λ) =

∫

−


H(n)(ξ) dξ . (B.18)

They generate the evolution with respect to the variable ηn (see Appendix A).
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