
              

City, University of London Institutional Repository

Citation: Gámiz Pérez, M. L., Mammen, E., Miranda, M. D. M. & Nielsen, J. P. (2016). 

Double one-sided cross-validation of local linear hazards. Journal of the Royal Statistical 
Society: Series B, 78(4), pp. 755-779. doi: 10.1111/rssb.12133 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/12651/

Link to published version: https://doi.org/10.1111/rssb.12133

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Double one-sided cross-validation of local linear
hazards

Marı́a Luz Gámiz Pérez
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Summary.
This paper brings together the theory and practice of local linear kernel hazard estimation.
Bandwidth selection is fully analysed, including Do-validation that is shown to have good prac-
tical and theoretical properties. Insight is provided into the choice of the weighting function in
the local linear minimization and it is pointed out that classical weighting sometimes lacks sta-
bility. A new semiparametric hazard estimator transforming the survival data before smoothing
is introduced and shown to have good practical properties.

Keywords: Aalen’s multiplicative model; cross-validation; Do-validation; filtered data; local lin-
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1. Introduction

One important practical problem for kernel smoothing applied to survival data is that of
finding the optimal level of smoothing. This paper provides a new approach to smoothing
optimization for survival data illustrated for one-dimensional local linear kernel hazard
estimation. The local linear kernel approach provides a simple intuitive estimator with an
elegant solution to the boundary problem. This paper considers a general filtered survival
data framework capable of analysing the detailed properties of cross-validation, plug-in and
Do-validation bandwidth selectors for local linear kernel hazard estimation. Do-validation
is a relatively new bandwidth selection method and the lack of survival data theory on
Do-validation could be excused; however, it is about time that the asymptotic theory of
classical cross-validation is developed in the important general framework considered in this
paper.

The theoretical contributions on kernel smoothing of hazards and smoothing optimiza-
tion of Patil (1993) and Patil et al. (1994), Jiang and Doksum (2003), Spierdijk (2008),
Bagkavos and Patil (2008) and Bagkavos (2011) are all based on more restrictive models,
where the survival statistics are approximated by sums of independent identical distributed
stochastic variables. Our paper is based on the full filtered counting processes data model
rather than on such approximations. The wide literature on right-censored hazard estima-
tion based on individual observations cannot be applied to many central applications in
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survival analysis. For example, almost the entire empirical literature on actuarial and de-
mographic mortality prediction and forecasting are based on filtered survival data including
left truncation and right censoring. This important class of models is not covered by this
literature. Early actuarial work on this kind of discrete survival data dates a long way back
as illustrated in Gram (1879,1883) developing local polynomial hazard estimators not far
in spirit from our work. More modern expositions considering this kind of discrete survival
data in the mathematical statistical literature include Müller et al. (1997), Wang et al.
(1998) and Wang (2005).

In this paper we study different implementations of cross-validation and compare them
with theoretical plug-in. To our knowledge a practical version of a plug-in hazard esti-
mator has not yet been developed in our general set-up. The finite sample results of this
paper favor the Do-validation bandwidth selector to the classical cross-validated one. The
performance of the Do-validated bandwidth selector is also impressive compared with theo-
retical plug-in bandwidth selectors. These findings are in line with recently published finite
sample studies recommending Do-validation as a better alternative to feasible plug-in and
cross-validation. The original paper on Do-validating density estimators of independent
identically distributed (i.i.d.) stochastic variables, Mammen et al. (2011), concludes that
infeasible plug-in outperforms Do-validation a little bit in theory and finite sample studies
and that plug-in looses its good performance when transferred from infeasible to feasible
implementations, at least for kernel density estimation. Further insight for kernel density es-
timation was added into this discussion by Mammen et al. (2014). Do-validation is perhaps
the simplest possible exploitation of indirect cross-validation originally developed by Hart
and Lee (2005), Hart and Yi (1998) and Savchuk et al. (2008,2010). Indirect cross-validation
transfers the smoothing optimization problem at hand to a more complicated one, where
the optimal level of smoothing is easier to obtain. Mammen et al. (2014) develops a class of
indirect cross-validation procedures where the limit of the theoretical performance is as good
as in infeasible plug-in. In other words, a feasible indirect cross-validation procedure does
exist with the same theoretical performance as the infeasible plug-in estimator. One could
think of this theoretical optimal and feasible indirect cross-validation procedure as a feasible
plug-in estimator. At a first glance this sounds excellent, the problems with plug-in after all
came from its practical implementation. It seems that theoretical considerations can only
guide us to some extent: when a sufficient level of theoretical excellence has been achieved,
then it is the practical performance of the method that counts. In this paper we argue
that Do-validation being the simplest and most practical indirect cross-validation method
seems to be the best method to use overall. This paper focuses on transferring the simple
Do-validation method to survival analysis. Finite sample studies have been considered in
the survival density case: Gámiz et al. (2013a) estimated densities on transformed scales.
The idea was to develop graphical tests to check if a given frailty model fits well a data
set. In another paper, Gámiz et al. (2013b) introduced practical cross-validation and Do-
validation to multivariate unstructured hazard estimation. Do-validation showed to have
excellent finite sample performance also in this more complicated multivariate framework.
The theoretical analyses we provide in this paper was not part of the computational studies
Gámiz et al. (2013a,b).

In this paper we study local linear kernel hazard estimation in the full model of filtered
stochastic processes: our local linear kernel hazard estimator has a simple structure incor-
porating otherwise complicated censoring and truncation patterns and immediately lends
itself to approximations tailored to the discrete data actually available from many data
providers. Old-age mortality estimation is important and challenging as pointed out in for
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example Wang et al. (1998). Stability might be hard to obtain and asymptotic theory is
not always relevant for the very old-age mortality estimation. This paper provides two new
tricks to overcome some of these difficulties and apply them together with Do-validation on
real life mortality data. The first trick is on exposure robustness relevant in these very high
ages, where exposure might vary a lot from year to year. It turns out that a simple and
non-classical choice of weighting in the local linear hazard estimation is sufficient to adjust
for exposure instability. The second trick is to develop a semiparametric transformation
approach to one-dimensional hazard estimation. Wand et al. (1991) and Bolance et al.
(2003) developed such a semiparametric approach in density estimation. Clements et al.
(2003), Buch-Larsen et al. (2005) and Gustafsson et al. (2009) introduced equally efficient
procedures, where the preliminary transformation of the data is based on a parametric
distribution close the considered data. They showed that the better this parametric distri-
bution fits the data, the better performing is the overall semiparametric density estimator.
Buch-Kromann et al. (2011) and Jeon and Kim (2013) took advantage of this insight to pro-
vide better insurance models for the extreme losses. Such sparse data problems in insurance
provide us with similar estimation challenges as old-age mortality. It is therefore natural
to develop a semiparametric transformation procedure for hazards. Such a procedure first
finds the best possible parametric starting point, then uses it to transform the data, then
does the nonparametric estimation including Do-validation on the transformed data and fi-
nally transform the estimation results back on the original scale. In our application section
this semiparametric estimation procedure provides an immediate method to obtain stable
nonparametric old-age mortality estimators.

The paper is organized as follows. In Section 2 the model and the local linear hazard
estimator are defined. In Section 3, cross-validation and Do-validation for bandwidth selec-
tion of the local linear hazard estimator are introduced. Section 4 provides the asymptotic
properties of the bandwidth selectors (details and proofs are deferred to the Appendix). In
Section 5 the local linear estimator and its bandwidth selectors are given for the discrete
data setting, where only aggregated observations of occurrences and exposures are given. In
Section 6 a case study with mortality data is given. In this section we also discuss the choice
of the weighting function to achieve exposure robustness. Section 7 includes a finite sample
study showing that Do-validation indeed is the preferred bandwidth selector with an excel-
lent practical performance. In Section 8 a new semiparametric version of the local linear
hazard estimator based on a transformation procedure of the survival data is introduced
and illustrated. All the calculations have been performed with R (R Development Core
Team, 2014). An R-package named DOvalidation has been created by the authors (Gámiz
et al., 2014), providing original functions that implement all the methods proposed in the
paper as well as the datasets used for the empirical illustrations. R-scripts to reproduce the
results shown in the paper are also available as supplementary material.

2. The counting process model and the local linear estimator

We observe n individuals, i = 1, . . . , n. Let Ni count observed failures for the ith individual
in the time interval [0, T ]. Ni can take values 0 or 1. We assume that Ni is a one-dimensional
counting process with respect to (w.r.t.) an increasing, right continuous, complete filtration
Ft, t ∈ [0, T ], i.e. it obeys less conditions habituelles, see Andersen et al. (1993) (pp. 60). We
assume Aalen’s multiplicative model (Aalen, 1978) where the random intensity is written
as λi(t) = α(t)Yi(t), with no restriction on the functional form of the hazard function
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α(·). Again, Yi is a predictable process taking values in {0, 1}, indicating (by the value
1) when the ith individual is at risk. We assume that (N1, Y1) , . . . , (Nn, Yn) are i.i.d. for
the n individuals. Note that this formulation contains the important particular case of a
longitudinal study with left truncation and right censoring. In this case we observe tuples
(Li, Zi, δi) (i = 1, .., n) where Li is the time an individual enters the study, Zi is the time
he/she leaves the study and δi is binary and equal to 1 if death is the reason for leaving the
study (censoring indicator). Then, the process Yi above would be Yi(t) = I(Li ≤ t < Zi)
and Ni(t) = I(Zi ≤ t)δi, where I(·) is the indicator function. Hereafter we will work in
the general model. Expressions for particular sampling schemes such as left truncation
and right censoring can be derived just by substituting the particular expressions of the
processes.

Let us consider the above general counting process formulation. An intuitive (ad hoc)
hazard estimate is the life table estimate based on grouped lifetimes, which is defined as the
ratio between the number of occurrences over the time exposure for the considered groups.
A smooth version of this intuitive estimator can be derived using kernel smoothing. Let us
define the function Kb(·) as Kb(·) ≡ b−1K(·/b), with a bandwidth parameter b > 0 and K
being a symmetric probability density function. Then we define the following expressions

OLC(t) =
∑n

i=1

∫ T

0
Kb(t − s)dNi(s) and ELC(t) =

∑n
i=1

∫ T

0
Kb(t − s)Yi(s)ds, which are

smooth estimators of the occurrence and integrated exposure, respectively. Therefore a
local constant estimator of the hazard function can be defined as the following smoothed
occurrence-exposure ratio: α̂LC(t) = OLC(t)/ELC(t). This estimator simplifies to the
number of failures divided by exposure time in a neighborhood of the considered value
when a uniform kernel is used. These estimators are related to the popular Ramlau-Hansen

estimator written as α̂RH(t) =
∫ T

0
Kb(t − s)d Λ̂(s), where Λ̂(s) =

∑n
i=1

∫ s

0
J(u)

Y (n)(u)
d Ni(u)

is the Nelson-Aalen estimator of the cumulative hazard (see for example Andersen et al.
(1993)), Y (n)(u) =

∑n
i=1 Yi(u) is the risk set (also called here the exposure process), which

means the number of individuals under observation at time u, and J(u) = I(Y (n)(u) > 0).
Following the local linear approach for hazard estimation developed in Nielsen and

Tanggard (2001), we can also construct local linear smoothers of the occurrence and ex-

posure by defining OLL(t) =
∑n

i=1

∫ T

0
(aK2 (t) − aK1 (t)(t − s))Kb(t − s)W (s)dNi(s) and

ELL(t) =
∑n

i=1

∫ T

0
(aK2 (t) − aK1 (t)(t − s))Kb(t − s)Yi(s)W (s)ds with aKj (t) =

∫ T

0
Kb(t −

s)(t − s)jW (s)Y (n)(s)ds, j = 0, 1, 2. Here, W is a process that is predictable w.r.t. the
filtration Ft. We will see that W does not affect the first order asymptotics of the es-
timator. Dependence of OLL(t), ELL(t) and aKj (t) on W will not be indicated in the
notation. Two choices of weight functions are of particular interest. The first one is the
natural weighting with W (s) ≡ 1. The second is the Ramlau-Hansen weighting defined by
W (s) = {n/Y (n)(s)}I(Y (n) > 0). We will argue in favor of natural weighting in Section 6.

If we consider the ratio of OLL(t) and ELL(t) we get the local linear hazard estimators
presented in Nielsen and Tanggard (2001) that is

α̂b,K(t) =
OLL(t)

ELL(t)
. (1)

It can be easily seen that α̂b,K(t) =
∑n

i=1

∫ T

0
K̄t,b(t− s)W (s)dNi(s), with

K̄t,b(t− s) =
aK2 (t)− aK1 (t)(t− s)

aK0 (t)aK2 (t)− {aK1 (t)}2
Kb(t− s). (2)
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Notice that
∫ T

0
K̄t,b(t− s)W (s)Y (n)(s)ds = 1,

∫ T

0
K̄t,b(t− s)(t− s)W (s)Y (n)(s)ds = 0, and∫ T

0
K̄t,b(t− s)(t− s)2W (s)Y (n)(s)ds > 0, so that K̄t,b can be interpreted as a second order

kernel with respect to the measure µ, where dµ(s) = W (s)Y (n)(s)ds. Below we argue that
representation (1) helps to explain the behavior of the hazard function especially in the
right tail of the distribution, where the exposure tends to be small. We will see that it is
useful to display separate plots of the three curves OLL, ELL and α̂b,K . To illustrate this
viewpoint, we use the mortality data of Spreeuw et al. (2013) in Section 6.

3. Bandwidth selection by cross-validation and Do-validation

Ramlau-Hansen (1983) suggested cross-validation for kernel hazard estimation using the
counting process formulation described above. Recently, the practical papers by Gámiz et al.
(2013a,b) have developed cross-validation and the Do-validation method of Mammen et al.
(2011) for survival densities and marker dependent hazard estimation. In this paper, cross-
validation and Do-validation will be studied for local linear univariate hazard estimation.
Let α̂b,K be a hazard estimator depending on a bandwidth b > 0 and a kernel K. Ideally,
one would like to choose the smoothing parameter as the minimizer of

∆K(b) = n−1
n∑

i=1

∫ T

0

{α̂b,K(s)− α(s)}
2
Yi(s)w(s)ds (3)

where w is some weight function. In our simulations and our empirical example we always
will put w(s) ≡ 1.

The minimization of ∆K(b) is equivalent to minimizing n−1{
∑n

i=1

∫ T

0
[α̂b,K(s)]2Yi(s)w(s)

ds − 2
∑n

i=1

∫ T

0
α̂b,K(s)α(s) Yi(s)w(s)ds}. Only the second of these terms depends on the

unknown hazard. The cross-validation approach estimates this second term from the data
and chooses b as minimizer of

Q̂K(b) = n−1

{
n∑

i=1

∫ T

0

[α̂b,K(s)]
2
Yi(s)w(s)ds− 2

n∑

i=1

∫ T

0

α̂
[i]
b,K(s)w(s)dNi(s)

}
, (4)

where α̂
[i]
b,K(s) is the estimator arising when the data set is changed by setting the stochastic

process Ni equal to 0 for all s ∈ [0, T ]. The cross-validation bandwidth estimate is denoted

by b̂KCV .
Mammen et al. (2011) introduce the Do-validation method by the combination of left-

and right-sided cross-validation and because of this it was called Do-validation from (Do)uble
cross(-validation) or (D)ouble (o)ne-sided cross(-validation). One-sided cross-validation was
previously proposed by Mart́ınez-Miranda et al. (2009) for kernel density estimation. It is
based on indirect cross-validation. Indirect cross-validation makes use of the fact that un-
der mild regularity conditions asymptotically optimal bandwidths for two kernel estimators
with different kernels K and L differ by a factor that only depends on the two kernels K and
L. In indirect cross-validation one applies cross-validation to a kernel estimator with kernel
L and afterwards one multiplies the cross-validation bandwidth by the factor depending on
K and L to get a bandwidth for the kernel estimator with kernel K. Such a construction
makes sense if cross-validation for a kernel estimator with kernel L works better than cross-
validation for a kernel estimator with kernel K. It has been shown by asymptotic theory
and by simulations that the kernel L can be chosen such that this is indeed the case. In
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Do(uble)-validation one takes the average of two indirect cross-validation bandwidths. The
two kernels L1 and L2 of indirect cross-validation correspond to local linear smoothing with
one-sided kernels. They are defined as in (2) but with K replaced by their left-sided or
right-sided versions: KL(u) = 2K(u)I(u < 0) or KR(u) = 2K(u)I(u > 0), respectively.
We denote the resulting local linear kernels by K̄L,t,b or K̄R,t,b, respectively. An intuitive
reason that cross-validation for kernel estimators with kernel KL or KR works better than
for K lies in the fact that the asymmetry of the kernels KL and KR leads to larger optimal
bandwidths. The one-sided cross-validation criteria are given as Q̂KL

(b) and Q̂KR
(b), see

(4). Finally, the Do-validation bandwidth estimate, b̂DO, is defined as the weighted average

b̂DO =
1

2

(
R(K̄∗

L)

R(K)

µ2(K)2

µ2(K̄∗
L)

2

)1/5 (
b̂KL

CV + b̂KR

CV

)
,

where b̂KL

CV and b̂KR

CV are the minimizers of Q̂KL
(·) and Q̂KR

(·), respectively. Here K̄∗
L

denotes the equivalent kernel defined in expression (6) in Section 4, and we have defined
the functions µ2(L) =

∫
u2L(u)du and R(L) =

∫
L2(u)du, for L = K, K̄∗

L.
Note that Do-validation cross-validates twice with two different kernels. Therefore the

complexity of the algorithm to compute the Do-validated bandwidth is two times the com-
plexity of estimating standard cross-validation. Since computational complexity of estimat-
ing the local linear kernel hazard estimator is already considerable, the computational time
to derive the final hazard estimator with Do-validated bandwidth can be challenging. In
this paper we solve this computational challenge by discretizing the time scale by a fine
grid. This approach was discussed previously by Nielsen and Tanggard (2001) and Gámiz
et al. (2013b) and it will be described in Sections 5 and 7.

4. Asymptotic theory

In this section we develop theory for the asymptotic behavior of the Do-validation band-
width selector. As just explained, the Do-validation bandwidth is the weighted average of
two bandwidth selectors based on indirect cross-validation. Our main result contains an
asymptotic normality result for the general class of bandwidths that are constructed as
weighted averages of bandwidth selectors based on indirect cross-validation. A corollary
to this result gives asymptotic normality of Do-validation. Our theorem also includes the
case of classical cross-validation. As far as we know, our asymptotic normality results are
new even for the classical cross-validation. There is the unpublished thesis work of Nielsen
(1990) developing the asymptotic theory of cross-validation and plug-in for the Ramlau-
Hansen estimator and the less general, but published, work of Patil (1993) and Patil et al.
(1994) developing the same results as Nielsen did, but for i.i.d. right censored data only.
The last of these three papers adding the interesting insight that the hazard should indeed
be estimated directly and should not be considered as a ratio of two components to be
estimated separately. Therefore, our theory closes an important gap in classical smoothing
theory and will hopefully facilitate that many more future developments in this important
field will be based on the full filtered survival data model, that is so useful for many practical
applications. In Mammen et al. (2011) combinations of indirect cross-validation bandwidths
were considered for kernel density estimation and asymptotic normality was shown for band-
width selectors from this class. In this section we show similar results for the case of hazard
rate estimation. Although the theoretical results are similar in spirit, the mathematical
tools for deriving the results rely on counting process theory and are qualitatively quite
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different in nature. The infeasible ideal plug-in estimator is analysed in full detail. Since
feasible plug-in procedures have the exact same large sample performance as the infeasible
plug-in, therefore our theory includes theory on feasible plug-in methods (including most
bootstrap bandwidth selector methods as well, see for example González-Manteiga et al.
(1996)).

For a weight function W we consider the local linear estimators α̂b,L defined as in ex-
pression (1) and in the expression above (2) with kernels L = K and L = Lj . The pointwise
asymptotic properties of α̂b,L were derived in Theorem 5.1 of Nielsen and Tanggard (2001).
Assuming that the kernel L is a symmetric function, it was shown in Nielsen and Tanggard
(2001) that

(nb)1/2(α̂b,L(t)− α(t)− b2Bt)→N(0, V 2
t ) in distribution, (5)

where Bt =
1
2µ2(L)α

′′(t), Vt = R(L)α(t){γ(t)}−1, and µ2(·), R(·) being the functions of the
kernel defined in Section 3. It can be shown that for an asymmetric kernel L the asymptotic
result (5) is exactly the same apart from the kernel constants involved. Specifically, these
constants become the values µ2(L̄

∗) and R(L̄∗), involving the equivalent kernel

L̄∗(u) =
µ2(L)− µ1(L)u

µ2(L)− {µ1(L)}2
L(u), (6)

where µ1(L) =
∫
uL(u)du. In Lemma 3 of the Appendix A we state a uniform asymp-

totic expansion for the Integrated Squared Error (ISE), ∆L(b), see (3). We show that the
asymptotic integrated squared error is equivalent to ML(b) where

ML(b) = b4µ2
2(L̄

∗)

∫ T

0

(
α′′(t)

2

)2

γ(t)w(t)dt+ (nb)−1R(L̄∗)

∫ T

0

α(t)w(t)dt.

These asymptotic ISE expansions lead to the following asymptotically optimal deterministic
bandwidth selector for the local linear hazard estimator with kernel L:

bLMISE = C0,Ln
−1/5, where C0,L =

{
R(L̄∗)

µ2
2(L̄

∗)

∫ T

0
α(t)w(t)dt

∫ T

0
α′′(t)2γ(t)w(t)dt

}1/5

. (7)

For our symmetric kernelK we have K̄∗ = K, and thus R(L̄∗) and µ2(L̄
∗) can be replaced by

R(K) or µ2(K), respectively. The ISE-optimal bandwidth b̂LISE is defined as the minimizer
of the ISE criterion ∆L(b). To simplify the mathematical asymptotic discussion we assume

that b̂LISE is defined as minimizer over the interval I∗n = [a∗1n
−1/5, a∗2n

−1/5] where the
constants a∗2 > a∗1 > 0 are chosen such that a∗1 < C0,L < a∗2 for L = K and L = Lj

with j = 1, ..., J . Lemma 3 shows that b̂LISE = bLMISE + oP
(
n−1/5

)
. As above, the cross-

validation selector b̂LCV is defined as the minimizer of the cross-validation criterion: Q̂L(b),

see (4). Again, to simplify the mathematical asymptotic discussion we assume that b̂LCV is
defined as the minimizer over the interval I∗n.

In the following theorem we study the asymptotics of weighted combinations of indirect
cross-validation selectors:

b̂∗ =

J∑

j=1

ωjρj b̂
Lj

CV with ρj = ρ(L̄∗
j ) =

{
R(K)µ2

2(L̄
∗
j )

µ2
2(K)R(L̄∗

j )

}1/5

, (8)
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for kernels Lj and some weights ωj with
∑J

j=1 ωj = 1. Note also that the definition of b̂DO

is of this form because symmetry of K implies that R(K̄∗
L) = R(K̄∗

R), µ2(K̄
∗
L) = µ2(K̄

∗
R)

and therefore ρ(K̄∗
L) = ρ(K̄∗

R). The following theorem contains our main theoretical result.

It states consistency and asymptotic normality of b̂∗.

Theorem 1. Under A1-A3, the bandwidth selector b̂∗ in (8) satisfies n3/10
(
b̂∗ − bKMISE

)
→

N
(
0, σ2

1

)
, and n3/10

(
b̂∗ − b̂KISE

)
→ N

(
0, σ2

2

)
, in distribution, where

σ2
1 = S1

∫ 


J∑

j=1

ωj
R(K)

R(L̄∗
j )
[HLj

−GLj
](ρju)




2

du,

σ2
2 = S2 + S1

∫ 


J∑

j=1

ωj
R(K)

R(L̄∗
j )
[HLj

−GLj
](ρju)−HK(u)




2

du,

S1 =
2

25

R(K)−7/5
(∫

α2(t)w2(t) dt
)

µ2(K)6/5
(∫

α′′(t)2γ(t)w(t) dt
)3/5 (∫

α(t)w(t) dt
)7/5 ,

S2 =
4

25
R(K)−2/5

(∫
α(t)w(t) dt

)−2/5

µ2(K)−6/5

×

(∫
α′′(t)2γ(t)w(t) dt

)−8/5 (∫
α′′(t)2γ(t)w2(t)α(t) dt

)
,

and where, for L = Lj (j = 1, ..., J), and L = K, we define GL(w) = I[w 6= 0][L̄∗∗(w) −
L̄∗∗(−w)] and HL(w) = I[w 6= 0]

∫
L̄∗(u)[L̄∗∗(w + u)− L̄∗∗(−w + u)] du with

L̄∗∗(u) = −
µ2(L)− µ1(L)u

µ2(L)− (µ1(L))2
(L(u) + uL′(u)) +

µ1(L)u

µ2(L)− (µ1(L))2
L(u).

The following corollary immediately follows from Theorem 1. It states consistency and
asymptotic normality of the classical cross-validated bandwidth b̂KCV , the Do-validation

bandwidth b̂DO and the best possible (infeasible) plug-in bandwidth bKMISE .

Corollary 2. Under A1-A3, the bandwidth selectors b̂DO, b̂KCV and bKMISE satisfy

n3/10(̂bDO − b̂KISE) → N(0, σ2
DO), n3/10(̂bKCV − b̂KISE) → N(0, σ2

CV ) and n3/10(bKMISE −

b̂KISE) → N(0, σ2
MISE), in distribution, where σ2

DO = S2+S1ΨK,DO, σ
2
CV = S2+S1ΨK,CV ,

and σ2
MISE = S2+S1ΨK,MISE, with ΨK,DO =

∫ (
R(K)
R(KL) [HK̄L

−GKL
](ρju)−HK(u)

)2

du,

ΨK,CV =
∫
[GK(u)]

2
du and ΨK,MISE =

∫
[HK(u)]

2
du.

Corollary 2 follows directly from Theorem 1. The proof of Theorem 1 is given in the
Appendix A. All variances consist of two terms. Only the factor ΨK,• differs for different
bandwidth estimators. This factor only depends on the kernels K and K̄∗

L. Mammen et al.
(2011,2014) provided the exact calculation of this factor for the Epanechnikov kernel and the
quartic kernel (in the density case and under the i.i.d. formulation). These calculations can
be used to compare the asymptotic performance of the bandwidth selectors. As for kernel
density estimation this can also be done for the hazard case. Table 1 shows the values of the
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Table 1. Comparison of asymptotic variances among
bandwidth selection methods: factor ΨK,• defined in
Corollary 2.
Method Epanechnikov Quartic Sextic

Do-validation 2.19 1.89 2.36
Cross-validation 7.42 5.87 6.99
Plug-in 0.72 0.83 1.18

factor ΨK,• for the Epanechnikov kernel, the quartic kernel and the sextic kernel. The last
kernel has been used in our empirical studies. Plug-in rules achieve the same asymptotic
limit as the MISE-optimal bandwidth under appropriate conditions. Thus, the value of
ΨK,• for plug-in rules in Table 1 is identical to ΨK,MISE . When comparing these constants
one has to take into account that the term S2 has to be added to get the value of the
asymptotic variance. This makes the difference between Do-validation and plug-in rather
small. Do-validation works under weaker conditions than required for plug-in rules. As in
the discussion of Do-validation for density estimation this gives strong evidence for a good
performance of Do-validation.

5. A discrete formulation in terms of occurrences and exposures

In this section we write the local linear estimator as a function of occurrences and exposures,
see (1). Also we will always choose natural weighting W (s) ≡ 1. Typically survival data
are not provided as continuous data, in contrast to our continuous model. They are given
as aggregated numbers. One reason data providers use this data format is to reduce data
size. Another reason might be tradition and habit.

The mortality data that we will use are divided into discrete yearly numbers of oc-
currences and exposures. This data only allow an approximation of the fully continuous
filtered model as it is formulated in this paper. However, one can show that the approx-
imation is sufficiently precise to provide a reasonable fit to the continuous model. We
now describe a modification of the local linear estimator for discrete data. We suppose
that the following aggregated values of occurrences and exposures are available: Or =∑n

i=1

∫Xr

Xr−1
dNi(x) and Er =

∑n
i=1

∫Xr

Xr−1
Yi(x)dx for r = 1, . . . ,m. Here, X1, . . . , Xm are

some time points. We allow that they are not equidistant. In particular, this may be the
case if the data are transformed to another scale for statistical reasons as we will see in
Section 7 below. With ∆r = Xr − Xr−1 we can define Yr = Er/∆r. This is the aver-
age number of individuals which are at risk in the interval [Xr−1, Xr) for r = 1, . . . ,m
and with X0 = 0. The discrete versions of the estimators OLL(t) and ELL(t) can now
be defined as Od,LL(t) =

∑m
r=1(ad,2(t) − ad,1(t)(t − X∗

r ))Kb(t − X∗
r )Or and Ed,LL(t) =∑m

r=1(ad,2(t)−ad,1(t)(t−X∗
r ))Kb(t−X∗

r )Er, where ad,j(t) =
∑m

r=1 Kb(t−X∗
r )(t−X∗

r )
jEr,

j = 0, 1, 2, and X∗
r = (Xr−1 + Xr)/2, for r = 1, . . . ,m. Finally the discrete version of

the local linear hazard estimator is given as the ratio α̂b,d,LL(t) =
Od,LL(t)
Ed,LL(t) . With α̃

[r]
b,d,LL

defined as the estimator after replacing Or by Or − 1, the cross-validation bandwidth can

be defined as the minimizer of
∑m

r=1 (α̃b,d,LL(X
∗
r ))

2
Er − 2

∑m
r=1 α̃

[r]
b,d,LL(X

∗
r )Or.

Hazard estimation from discretized data has previously been considered by Wang et al.
(1998) and Tutz and Pritscher (1996) among others. These previous papers are related
to our approach above. Specifically Wang et al. (1998) described estimators which would
give the same discrete expression as our local linear hazard estimate, but with the Ramlau-
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Fig. 1. Case study with mortality data. The top panels show the estimated local linear hazard with
95% confidence bands. The panels below display the two components of the hazard estimators
Od,LL(t) and Ed,LL(t), defined in Section 5, for United Kingdom. The solid line is obtained using the
Do-validation method and the dashed line with cross-validation.

Hansen weighting. Tutz and Pritscher (1996) suggested a discretized version but for the
local constant estimator which is the simple Ramlau-Hansen estimator.

6. The local linear hazard estimator in practice

In this section we apply local linear hazard estimation to mortality data of women in the
calendar year 2006 from four countries, namely United States, United Kingdom, Denmark
and Iceland. The data have also been considered in Spreeuw et al. (2013) and were obtained
from the Human Mortality Database. Only the ages from 40 to 110 were included. The data
consist of aggregated yearly occurrences and exposures. We have used the discrete version
of the local linear estimator described in the last section. Figure 1 displays on the top
panel the estimated local linear hazard for United Kingdom. This figure also shows the two
components of the estimator, i.e., the smoothed occurrences and the smoothed exposures
defined in Section 5respectively. Using the asymptotic properties of the hazard estimator in
(5), we have constructed (and plotted in the top panel of Figure 1) 95% confidence intervals
for the hazard estimates with Do-validated bandwidth. Table 2 reports the values of the
Do-validation and the cross-validation bandwidths for the four countries. The values for
Do-validation and cross-validation are quite different. In particular, this is the case for
Iceland, where cross-validation leads to an oversmoothed estimation of the hazard curve.
This issue will be investigated in Section 7.
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Table 2. Case study with mortality
data. Estimated bandwidth for each
country using the cross-validation
and the Do-validation methods.
Country b̂CV b̂DO

United States 1.92 3.62
United Kingdom 1.95 4.70
Denmark 7.87 6.43
Iceland 21.41 12.32

Table 3. Old-age mortality data from Iceland. Original data given as occurrences and exposures
and the ratio between them.

Age 100 101 102 103 104 105 106 107 108 109
Occurrences 6 3 3 1 0 0 1 0 0 2
Exposure 11.50 6.83 2.50 1.33 0.50 0.50 0.17 0.00 1.00 0.33
Ratio 0.522 0.439 1.20 0.752 0.000 0.000 5.882 0 0.000 6.061

We now use the Iceland data to compare natural weights and Ramlau-Hansen weights
in local linear smoothing, see the discussion at the end of Section 2. Table 3 gives the
observed occurrences/exposures for individuals in Iceland at the ages from 100 to 109. The
empirical estimator of the hazard at age 106 is extremely large. The reason is that one
death was recorded during this period and that the exposure was only 0.17. This value
comes from one 106 years old individual who died in March. The local linear estimators
with natural weighting and Ramlau-Hansen weighting are shown in the left plots of Figure
2. We now modify the data and replace the value of exposure for age 106 by 0.005. This
very low exposure value would have been reported if the individual would have died in early
January instead of in March. The new modified data are shown in Table 4. The resulting
new local linear estimators are given on the right hand side of Figure 2. We see that local
linear smoothing with natural weights is rather robust. There are nearly no changes of the
estimator. On the other hand local linear smoothing with Ramlau-Hansen weights shows
drastic changes on the right tails. Note that these changes are caused by a minor change of
the data. We argue that this instability also occurs if the number of cases at the boundary
is slightly larger. We therefore recommend to use natural weighting instead of Ramlau-
Hansen weighting. See also Nielsen and Tanggard (2001) and Nielsen et al. (2009) for more
details about this issue.

7. Simulation studies

In this section we compare the finite sample performance of Do-validation bandwidths and
cross-validation bandwidth estimates and show that Do-validation corrects some of the

Table 4. A modification in the old-age mortality data from Iceland. The original exposure at the age
of 106 has been replaced by the value 0.005 so that the ratio between occurrences and exposures
increases dramatically at this age.

Age 100 101 102 103 104 105 106 107 108 109
Occurrences 6 3 3 1 0 0 1 0 0 2
Exposure 11.50 6.83 2.50 1.33 0.50 0.50 0.005 0.00 1.00 0.33
Ratio 0.522 0.439 1.20 0.752 0.000 0.000 200 0 0.000 6.061
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Fig. 2. Exposure robustness analysis of two possible weightings for the local linear hazard estimator:
Ramlau-Hansen weighting and natural weighting. The left panels show the hazard estimates from
the original old-age mortality data in Iceland (Table 3). The right panels show the hazard estimates
obtained from the modified data in Table 4.

well known drawbacks of standard cross-validation such as (i) variability of the bandwidth
selector, (ii) bias of the bandwidth selector, and (iii) probability of local minima when
selecting the bandwidth, see for example Loader (1999) or Hurvich et al. (1998). We
present two different sampling schemes to simulate data from five hazard functions in the
next subsections. The first four hazard functions are: α1(t) = B(t, 2, 2), α2(t) = B(t, 4, 4),
α3(t) = 0.6[B(t, 0.5, 0.5)+B(t, 7, 7)], α4(t) = 0.6[B(t, 0.5, 0.5)+B(t, 4, 2)+B(t, 2, 4)]. Here
B(t, a, b) is the density at t of a Beta distribution with parameters (a, b). These hazard
functions have also been used in the simulations in Nielsen and Tanggard (2001). The
fifth hazard function is the parametric model estimated by Spreeuw et al. (2013) using the
mortality data described in the previous section. This hazard can be written as α5(t) =

(1 + σ2)−1 exp(a0 + a1t + a2t
2)/

∫ t

0
exp(a0 + a1s + a2s

2)ds, where θ = (a0, a1, a2, σ
2)t is a

four-dimensional parameter. Here we have considered the maximum likelihood estimates
of the parameters calculated from the data corresponding to Iceland (see Spreeuw et al.
(2013) for more details). A plot of the five hazard models is provided in the supplementary
material. For each hazard datasets are simulated with and without left-truncation.

7.1. Case 1: Without left-truncation
The data are simulated in a discrete grid of time points on the time interval. For models
1 to 4 the time interval is (0, 1) and the grid length δM = 1/(M + 1). For model 5 time
is age and it lies in the interval (40, 110) with grid length δM = 70/(M + 1). The grid
points are denoted by {tr, r = 1, . . . ,M}. Then for a sample of n individuals, failures at
time tr, denoted as Or are generated from the binomial distribution Bi (Yr, αk(tr)δM ), for
r = 1, . . . ,M . Here Yr denotes the size of the risk set at the beginning of the rth interval
of the grid. The total number of simulated occurrences do not sum up to n. Some of the
simulated individuals are finally right censored, because they are still at risk at the end of
the interval. Therefore our simulated i.i.d. sample contains right censoring. These right
censoring rates for the i.i.d. samples are around 20-30% for all models.
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Samples are generated with sample sizes n = 100, 1000 and 10000 for models 1 to 4 and
n = 50000, 75000 and 100000 for model 5 (this is comparable to the sample size n=64630 of
the mortality dataset). The number of Monte Carlo replications is R = 1000. The grid size
has been chosen equal to M = 500. We have experimented with other choices of M and
found that this choice is enough to provide stable results. The local linear hazard estimator
has been calculated using the sextic kernel: K(x) = 3003/2048(1−x2)6I(−1 < x < 1). For
each model and sample size we compare the performance of the two bandwidth estimates
presented in Section 3: the Do-validated bandwidth b̂DO and the cross-validated bandwidth
b̂CV . As benchmarks we calculate two infeasible bandwidths: the ISE-optimal bandwidth
b̂ISE and the MISE-optimal bandwidth b̂MISE . The MISE is approximated by the average
of the ISE errors along the R simulated samples. The MISE-optimal bandwidth b̂MISE

is approximated by the bandwidth minimizing this average value. We consider a grid of
100 equispaced bandwidth values around the ISE-optimal bandwidth to compute these
four bandwidths. The performance of the bandwidth estimates is analysed with respect to
three performance measures, which we denote by m1, m2 and m3, see Table 5. For any
b̂ = b̂DO, b̂CV , b̂ISE , b̂MISE , the measure m1(̂b) denotes the (Monte Carlo estimate of the)
MISE of the local linear hazard estimator α̂b̂,K . The bandwidths are compared to the ISE-
optimal bandwidth by the measure m2 which is defined as the average of the differences
b̂− b̂ISE . Thus m2 is a Monte Carlo estimate of the bias of b̂ with respect to the ISE-optimal
bandwidth. Finally we have calculated m3 which is the standard deviation of the differences
b̂− b̂ISE .

Table 5 shows the simulation results in the above scenarios. Another measure has
been added evaluating the relative loss of using Do-validation respectively cross-validation
to using the infeasible ISE-optimal bandwidth. The measure is defined as: Rel err =
{m1(̂bCV ) − m1(̂bISE)}/{m1(̂bDO) − m1(̂bISE)}. Note that Rel err indicates when Do-
validation outperforms cross-validation considering the criterion m1. This is the case when
this value is above 1. We can see from Table 5, that Do-validation is better than cross-
validation for all models and sample sizes. We also see that the improvement from using
Do-validation is substantial with a relative error that is often above 2. There is only one
out of twelve cases where the result of cross-validation is better than for Do-validation.
An inspection of the m2-values shows that cross-validation has a tendency to undersmooth
while Do-validation is slightly oversmoothing. The absolute value of the bias terms were
smaller for Do-validation in the first three models and they were smaller for cross-validation
in the remaining two. Considering the criterion m3, we can see that b̂DO outperforms b̂CV

in almost all cases.

7.2. Case 2: With left-truncation
When adding left truncation Li only individuals with Li ≤ Zi are entering the dataset in the
simulations and Y (n)(t) is defined as

∑n
i=1 I(Li ≤ t ≤ Zi), with Li and Zi as in Section 2.

The left truncation times are simply generated by independent variables from the uniform
distribution. Besides these changes, values of exposures and occurrences are generated in
the same way as in the previous section. The performance of the bandwidth estimates are
again analysed using the same criteria m1, m2 and m3 described above. Also in this more
complex model with left truncation Do-validation shows excellent performance properties.
For all specifications of the model, Do-validation clearly outperforms cross-validation with
Rel err ranging from 1.27 to 2.75. The complete simulation results in this model are shown
in Table 1 in the supplementary material of the paper.
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Table 5. Simulation results for datasets without left-truncation. Measure m1 in
columns 3–6 is the empirical MISE for each bandwidth estimate (multiplied by 100
for models 1 to 4 and by 1000 for model 5). The last column shows the relative error
Rel err that compares Do-validation with standard cross-validation. Measures m2

and m3 are the average and the standard deviation of the differences b̂ − b̂ISE ,
respectively.

Criteria ISE MISE CV DO Rel err

Model 1, n =100 m1 2.499 2.934 4.526 3.314 2.49
m2 0.002 -0.005 0.004
m3 0.180 0.315 0.246

n =1000 m1 0.370 0.428 0.594 0.447 2.86
m2 -0.009 -0.028 -0.016
m3 0.094 0.141 0.104

n =10000 m1 0.062 0.067 0.081 0.069 2.71
m2 -0.000 -0.013 -0.005
m3 0.043 0.067 0.047

Model 2, n =100 m1 3.048 3.629 5.552 4.023 2.57
m2 0.002 -0.017 0.006
m3 0.124 0.194 0.150

n =1000 m1 0.544 0.609 0.814 0.646 2.66
m2 0.001 -0.011 0.003
m3 0.054 0.087 0.066

n =10000 m1 0.093 0.100 0.118 0.103 2.50
m2 0.000 -0.006 0.000
m3 0.025 0.040 0.029

Model 3, n =100 m1 6.370 6.813 9.157 8.287 1.45
m2 0.003 0.064 0.133
m3 0.123 0.347 0.407

n =1000 m1 1.134 1.192 1.411 1.247 2.45
m2 0.003 -0.004 0.008
m3 0.036 0.068 0.048

n =10000 m1 0.228 0.233 0.254 0.239 2.36
m2 -0.001 -0.001 0.009
m3 0.015 0.027 0.019

Model 4, n =100 m1 4.146 4.465 6.766 5.432 2.04
m2 0.347 0.090 0.192
m3 0.526 0.943 0.876

n =1000 m1 0.803 0.893 1.171 0.967 2.24
m2 0.061 0.102 0.079
m3 0.293 0.594 0.477

n =10000 m1 0.244 0.254 0.289 0.315 0.63
m2 -0.016 0.016 0.147
m3 0.070 0.119 0.105

Model 5, n =50000 m1 0.067 0.071 0.082 0.079 1.18
m2 -0.095 0.454 -1.024
m3 0.997 1.667 1.192

n =75000 m1 0.051 0.054 0.060 0.059 1.11
m2 -0.041 0.399 -0.861
m3 0.813 1.370 0.983

n =100000 m1 0.041 0.043 0.048 0.047 1.23
m2 -0.126 0.341 -0.720
m3 0.740 1.276 0.897
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We have checked cross-validation and Do-validation for the number of local minima in
their criterion functions. This has been done by evaluating the criterion on a fine grid of
bandwidth values. We have calculated the percentage of times where the score in (4) for the
kernel K (cross-validation) or for the one-sided kernels KL and KR (Do-validation) have
more than one minima on the considered grid of bandwidths. The small number of cases
where the Do-validation criterion runs into having several local minima is an indicator for
the stability of Do-validation compared to cross-validation. Our results for both models,
with and without truncation, show that cross-validation presents multiple local minima in
a percentage of cases ranging from 2.0 to 21.2, with a median of 9.8, while Do-validation
provides percentages ranging from 0.0 to 2.4, with a median of 0.0. A table with the full
summary is provided in Table 2 in the supplementary material of this paper.

8. Hazard estimation for transformed data

In this section we propose a two-step procedure for hazard estimation. First a parametric
hazard function λθ

i (t) = αθ(t)Yi(t) with θ ∈ Θ is fitted to the data. This parametric fit is
used to transform the data in such a way that the underlying hazard would become constant
in case the parametric fit indeed would have been the correct underlying model. The para-
metric fit is in other words used as a kind of prior knowledge to simplify the nonparametric
estimation problem. If the prior knowledge is of high quality and the parametric model has
good approximation properties, then the resulting nonparametric problem is simplified in
the second step. In the second step a local linear hazard estimator is applied to the trans-
formed data. The resulting semiparametric estimator is an alternative to the original fully
nonparametric estimator and it is expected to do a better job when the used parametric
model is accurate enough.

If the parametric specification αθ were true then after the time transformation x = Λθ(t)

with Λθ(t) =
∫ t

0
αθ(s)ds the functional form of the hazard on the transformed scale would

be simply equal to the standard exponential. That is, the hazard would be equal to one on
the transformed scale.

For a given θ ∈ Θ we put Ñθ
i = Ni ◦ Λ

−1
θ and Ỹ θ

i = Yi ◦ Λ
−1
θ . This transformed process

follows Aalen’s multiplicative hazard model with transformed stochastic hazard λ̃θ
i (x) =

gθ(x)Yi

(
Λ−1
θ (x)

)
, where gθ(x) = α

(
Λ−1
θ (x)

)
/αθ

(
Λ−1
θ (x)

)
, α is the true hazard, and αθ is

the assumed parametric value. We now carry out our nonparametric local linear smoothing
technique on the transformed processes Ñθ

i and Ỹ θ
i and obtain an estimate ĝθ of gθ on the

transformed time axis. These plots can also be used as a check of the parametric model, see
Spreeuw et al. (2013). This is illustrated below by a data example. After back transforming
to the original scale we get the semiparametric hazard: α̂θ(t) = ĝθ (Λθ(t))αθ(t). In practice

θ is estimated. One could for example use the maximum likelihood estimator θ̂ of θ, see
Borgan (1984).

We now apply the semiparametric transformation method to estimate the hazard func-
tion of the mortality data of Spreeuw et al. (2013) discussed above. For simplicity we de-
scribe the results for United Kingdom only. As in Spreeuw et al. (2013) we use a parametric
mixed hazard model based on a gamma frailty mortality model and we estimate the param-
eters by a standard maximum likelihood procedure. Then we transform the survival data as
just described. The considered parametric mixed mortality model generalizes the classical
Gompertz survival model by including more parameters and by including a multiplicative
frailty component. The resulting parametric mixed hazard specification of Spreeuw et al.
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Fig. 3. Hazard estimators with Do-validated bandwidths in the case study for United Kingdom: the
parametric estimator, the semiparametric estimator with b̂DO = 5.87; and the nonparametric estima-
tor with b̂DO = 4.70. The bottom panel shows the maximum difference between the semiparametric
and the nonparametric estimators at the highest age is about 8% .

(2013) implies that the underlying continuous data come from a counting process with inten-

sity function λθ
i (t) = (1 + σ2)−1exp(a0 + a1t+ a2t

2)(
∫ t

0
exp(a0 + a1s+ a2s

2)ds)−1Yi(t) =
αθ(t)Yi(t), where θ = (a0, a1, a2, σ

2)t is a four-dimensional parameter.

The final semiparametric approach used in our application was first to calculate the
parametric maximum likelihood estimators of θ following Borgan (1984) and then to trans-
form the time axis with the function Λθ̂ , where Λθ is the integrated hazard function of the
underlying hazard αθ. Finally, a local linear hazard was estimated to the transformed data
and the resulting nonparametric estimator was backtransformed to the original axes. We
have compared the resulting hazard estimators from the semiparametric approach with the
fully nonparametric local linear estimator considered in Section 2 and the just discussed
parametric specification. In general the three estimates are quite close except for the old-
age mortality where relative differences up to 8% are found. Semiparametric test theory
goes along the lines of many other semiparametric test procedures from survival analysis,
see among many others Gandy and Jensen (2005), to evaluate the quality of the parametric
transformation approach.
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A. Details on the asymptotics and proof of Theorem 1

In this section we describe the assumptions made for the asymptotic theory, introduce
additional notation, and provide the proof of the main result.

Assumptions
(A1) (i) For the expected exposure function γ(t) = n−1E[Y (n)] it holds that γ ∈ C2([0, T ]),

that it is strictly positive for t ∈ [0, T ], and that sups,t∈[0,T ],|t−s|≤CKb |[Y
(n)(t) −

Y (n)(s)]/n − [γ(t) − γ(s)]| = oP ((nb log n)
−1/2) and sups∈[0,T ]

∣∣Y (n)(s)/n− γ(s)
∣∣ =

oP ((log n)
−1), where the constant CK is defined in (A2).

(ii) The weight W is a predictable process. There exists a function γ∗ ∈ C2([0, T ]),
that is strictly positive for t ∈ [0, T ], and that fulfills with the same constant CK as in
(i) that sups∈[0,T ] |W (s)− γ∗(s)| = oP ((log n)

−1) and sups,t∈[0,T ],|t−s|≤CKb[W (t) −

W (s)]/− [γ∗(t)− γ∗(s)]| = oP ((nb log n)
−1/2).

(A2) The kernels K and Lj (j = 1, ..., J) are compactly supported (i.e., the support is
contained in [−CK , CK ] for some constants CK > 0). The kernels are continuous
on IR\{0} and have one-sided derivatives that are Hölder continuous on IR− = {x :
x < 0} and IR+ = {x : x > 0}, that is there exist constants c and δ such that
|g(x)−g(y)| ≤ c|x−y|δ for x, y < 0 or x, y > 0 with g equal to K ′ or L′

j (j = 1, ..., J).
The left and right-sided derivatives differ at most on a finite set. The kernel K is
symmetric.

(A3) It holds that α ∈ C2([0, T ]), w ∈ C1([0, T ]). The second derivative of α is Hölder
continuous with exponent δ > 0.

Assumptions (A1)–(A3) are rather weak. Assume for instance that Yi(t) = I(Li ≤ t < Zi)
for some i.i.d. tuples (Li, Zi) with joint continuously differentiable density. Then Assump-
tion (A1)(i) can be easily verified with γ(t) = P (Li ≤ t < Zi). For the weight W (s) ≡ 1
Assumption (A1)(ii) holds trivially. For Ramlau-Hansen weighting W (s) = {n/Y (n)(s)}
I(Y (n) > 0) it follows from Assumption (1)(i). Assumption (A2) is a weak standard con-
dition on kernels. Assumption (A3) differs from standard smoothness conditions only by
the mild additional assumption that the second derivative of the hazard function fulfils a
Hölder condition.

We now state and prove some lemmas that we will use in the proof of Theorem 1. For
simplicity we assume in the proof that the weight function W is deterministic. If this is not
the case W can be treated in the same way as we will do it in the proof for the analysis of
Y (n)(t)/n. As in the expression above (2) for L = Lj with j = 1, . . . , J and L = K the local

linear estimators α̂b,L are defined as α̂b,L(t) =
∑n

i=1

∫ T

0
L̄t,b(t−s)W (s) dNi(s), with L̄t,b(u)
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defined as in (2). We also define α∗
b,L(t) =

∫ T

0
L̄t,b(t− s)W (s)α(s)Y (n)(s)ds. Thus we have

that α̂b,L(t)− α∗
b,L(t) =

∑n
i=1

∫ T

0
L̄t,b(t− s)W (s) dMi(s) =

∫ T

0
L̄t,b(t− s)W (s)dM(s).

To prove the main result in the paper we first state a uniform asymptotic expansion
for the Integrated Squared Error (ISE). Similar expansions are well known for other kernel
smoothing estimators but they require some additional work in the hazard case. As outlined
before the statement of Theorem 1, the interval I∗n = [a∗1n

−1/5, a∗2n
−1/5] is defined with

constants a∗2 > a∗1 > 0 that fulfill a∗1 < C0,L < a∗2 for L = K and L = Lj with j = 1, ..., J .

Lemma 3. Under A1–A3, we get for the ISE, ∆L(b), with kernels L = K and L = Lj

(j = 1, . . . , J) that, uniformly for b ∈ I∗n, ∆L(b) = ML(b) + oP
(
n−4/5

)
.

Proof. For brevity we write α̂ = α̂b,L and α∗ = α∗
b,L. We have that ∆L(b) =

n−1
∫ T

0
[α̂(t)− α∗(t)]

2
Y (n)(t)w(t)dt + 2n−1

∫ T

0
[α̂(t)− α∗(t)] [α∗(t)− α(t)]Y (n)(t)w(t)dt +

n−1
∫ T

0
[α∗(t)− α(t)]

2
Y (n)(t)w(t)dt. Below we will apply a martingale central limit theo-

rem. We cannot directly apply this theorem to ∆L(b) because the integrand in the definition
of α̂(t) is not predictable. More precisely, the integrand of α̂(t) contains values of Y (n)(s)

with s > t in the terms aLl,b(t) for l = 0, 1, 2. For this reason we use an approximation d̂∗(t)

of α̂(t)− α∗(t) where Y (n)(s) is replaced by Y (n)(t) + n{γ(s)− γ(t)}. We will show that

(log n)1/2n1/2b1/2
∣∣∣α̂(t)− α∗(t)− d̂∗(t)

∣∣∣ = oP (1), (9)

uniformly for 0 ≤ t ≤ T and b ∈ I∗n, where d̂∗(t) =
∑n

i=1

∫ T

0
L̄+
t,b(t − s)W (s) dMi(s) =

∫ T

0
L̄+
t,b(t − s)W (s)dM(s), L̄+

t,b(u) =
a+
2,b(t)−a+

1,b(t)u

a+
0,b(t)a

+
2,b(t)−{a+

1,b(t)}
2
Lb(u), Lb(u) = b−1L(b−1u) and

a+l,b(t) =
∫ T

0
Lb(t − s)(t − s)lW (s)

[
Y (n)(t) + n{γ(s)− γ(t)}

]
ds for j = 1, . . . , J and l =

0, 1, 2. Note that the integrand in the definition of d̂∗(t) is predictable. Expansion (9) follows

directly from Assumption (A1). We now apply (9), Assumption (A1) and supt∈[0,T ]

∣∣∣d̂∗(t)
∣∣∣ =

OP ((log n)
1/2(nb)−1/2) and supt∈[0,T ] |α

∗(t)− α(t)| = OP ((nb)
−1/2). This gives that

∆L(b) =

∫ T

0

d̂∗(t)2γ(t)w(t)dt+ 2

∫ T

0

d̂∗(t) [α∗(t)− α(t)] γ(t)w(t)dt

+

∫ T

0

[α∗(t)− α(t)]
2
γ(t)w(t)dt+ oP (n

−4/5)

= SL,1(b) + SL,2(b) + TL,1(b) + TL,2(b) + oP (n
−4/5),

uniformly for b ∈ I∗n, where SL,1(b) =
∫ T

0
H̄L,b(u, v) dM(u) dM(v)−

∫ T

0
H̄L,b(u, u) α(u)γ(u)

du, SL,2(b) = 2
∫ T

0
δL,b(u) dM(u), TL,1(b) =

∫ T

0
H̄L,b(u, u) α(u)γ(u) du, TL,2(b) =

∫ T

0
[α∗(u)

−α(u)]2γ(u) w(u) du, H̄L,b(u, v) =
∫ T

0
L̄+
t,b(t−u)L̄+

t,b(t−v)W (u)W (v)γ(t)w(t) dt, δL,b(u) =∫ T

0
L̄+
t,b(t− u)W (u) [α∗(t)− α(t)] γ(t)w(t) dt.

We now argue that uniformly for b ∈ I∗n it holds that SL,1(b) and SL,2(b) are of order

oP
(
n−4/5

)
, and that TL,1(b) = (nb)−1R(L̄∗)

∫ T

0
α(t)w(t)dt+oP

(
n−4/5

)
, TL,2(b) = b4µ2

2(L̄
∗)

∫ T

0

(
α′′(t)

2

)2

γ(t)w(t)dt + oP
(
n−4/5

)
. We will show the first statement. The second claim

follows by similar but simpler arguments. The last two claims can be shown by standard
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smoothing theory arguments using that uniformly for b ∈ I∗n, CLb ≤ t ≤ T − CLb it holds
that R(L̄+

t ) = R(L̄∗) + o(1) and µ2(L̄
+
t ) = µ2(L̄

∗) + o(1).

For the proof of SL,1(b) = oP
(
n−4/5

)
, uniformly for b ∈ I∗n, we consider the process

x → ZT,n(x), with

Zt,n(x) = n4/5

∫ t

0

∫ t

0

H̄L,xn−1/5(u, v) dM(u)dM(v)− n4/5

∫ t

0

H̄L,xn−1/5(u, u) α(u)γ(u) du,

with x ∈ [a∗1, a
∗
2]. Note that ZT,n(x) = n4/5 SL,1(xn

−1/5). Thus for for SL,1(b) = oP
(
n−4/5

)

we have to show that

sup
x∈[a∗

1 ,a
∗

2 ]

|ZT,n(x)| = oP (1) . (10)

We first show pointwise convergence

ZT,n(x) = oP (1) (11)

for x ∈ [a∗1, a
∗
2]. Now, for x ∈ [a∗1, a

∗
2] fixed, we get that t → Zt,n(x) is a martingale.

This follows from the representation: Zt,n(x) =
∫ t

0
Rn(w, x) dM(w) with Rn(w, x) =

n4/5
∫ w

0
2H̄L,b(u,w)I[u 6= w]γ(u) dM(u) − H̄L,b(w,w) and the fact that Rn(t, x) is pre-

dictable with respect to the filtration (Ft)t≥0. For the proof of (11) we will apply a mar-
tingale central limit theorem. We state a central limit theorem instead of a simpler law of
large numbers because we will make use of the central limit theorem again below. Suppose
that for some σ2 ≥ 0 and a martingale Vt,n =

∫ t

0
Wn(w) dM(w) with an (Ft)t≥0 predictable

process Wn(t) we have that:

∫ T

0

W 2
n(t)Y

(n)(t)α(t) dt = σ2 + oP (1), (12)

∫ T

0

W 2
n(t)I[W

2
n(t) > ε]Y (n)(t)α(t) dt = oP (1) for all ε > 0. (13)

Then it holds that

VT,n =

∫ T

0

Wn(w) dM(w) → N(0, σ2), in distribution. (14)

For a discussion of this central limit theorem, see e.g. Ramlau-Hansen (1983). In the proof
of (11) we apply this result with σ2 = 0 and Wn(t) = Rn(t, x). Then (12) implies (13) and

for (11) we have to show that
∫ T

0
R2

n(t, x)Y
(n)(t)α(t) dt = oP (1) for all x ∈ [a∗1, a

∗
2]. Because

of (A1) this claim follows from n
∫ T

0
R2

n(t, x) dt = oP (1). This immediately follows from n

E[
∫ T

0
Rn(t, x)

2 dt] = o(1). This concludes the proof of (11).

For the proof of (10) we have to show that the process x → ZT,n(x) is tight. For this
purpose we apply the tightness criterion (12.51) in Billingsley (1968). For (10) it suffices
to show that E[{ZT,n(x1) − ZT,n(x2)}

2] ≤ C(x1 − x2)
2 for some constant C and for all

x1, x2 ∈ [a∗1, a
∗
2]. This inequality can be shown by a direct calculation. This concludes the

proof of Lemma 3.
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For the asymptotic discussion of the cross-validation selector b̂LCV note that minimizing

Q̂L(b) is equivalent to the minimization of

∆̂L(b) = Q̂L(b) + n−1

∫
α(t)2w(t)Y (n)(t)dt+ 2n−1

∫
α(t)w(t) dM(t).

The two last terms in ∆̂L(b) do not depend on the bandwidth b. Thus, the minimizer of

∆̂L(b) is equal to the CV-bandwidth b̂LCV . Note also that it holds that

Q̂L(b) = n−1

{∫ T

0

[α̂b,L(s)]
2
Y (n)(s)w(s)ds− 2

∫ T

0

α̂−
b,L(s)w(s) dN(s)

}
,

where α̂−
b,L(t) =

∫ T

0
L̄t,b(t− s)W (s)I[s 6= t] dN(s).

The next lemma states consistency of cross-validation.

Lemma 4. Under A1–A3, we get for L = K and L = Lj (j = 1, ..., J) that D1,L(b) =

∆L(b) − ∆̂L(b) = oP
(
n−4/5

)
, uniformly for b ∈ I∗n. In particular, we have that b̂LCV =

bLMISE + oP
(
n−1/5

)
.

Proof. For brevity we write, as in the proof of Lemma 3, α̂ = α̂b,L, α̂
− = α̂−

b,L and
α∗ = α∗

b,L. By simple calculations one gets that

nD1,L(b) = 2

∫ T

0

[α̂−(s)− α(s)]w(s) dM(s) + 2

∫ T

0

[α̂−(s)− α̂(s)]w(s)Y (n)(s)α(s) ds

= 2n−1

∫ T

0

[α̂−(s)− α(s)]w(s) dM(s)

= 2

∫ T

0

[α̂−(s)− α∗(s)]w(s) dM(s) + 2

∫ T

0

[α∗(s)− α(s)]w(s) dM(s)

= nU1,L(b) + nU2,L(b).

We will show that

U1,L(b) = U∗
1,L(b) + oP (n

−4/5) (15)

uniformly for b ∈ I∗n, where U
∗
1,L(b) = 2n−1

∫ T

0
d̂−(s)w(s) dM(s) and d̂−(t) =

∑n
i=1

∫ T

0
L̄+
t,b(t−

s)I(s 6= t)W (s) dMi(s) with L̄+
t,b defined as in the proof of Lemma 3.

With similar arguments as in the proof of Lemma 3 one can show that both terms,
U∗
1,L(b) and U2,L(b) are of order oP (n

−4/5). This gives D1,L(b) = oP (n
−4/5). Using similar

arguments as in the proof of Lemma 3 one can show that the convergence is uniform. This
implies the statement of Lemma 4. It remains to show (15).

For the proof of (15) we apply Lemma A1 in Mammen and Nielsen (2007). For this pur-

pose we write: U1,L(b)−U∗
1,L(b) =

∑n
i=1

∫ T

0
hi(s) dMi(s) with hi(s) = n−1

∑
j 6=i

∫ T

0
(L̄s,b −

L̄+
s,b)(s− t) dMj(t). According to Lemma A1 in Mammen and Nielsen (2007) it holds that

E(U1,L(b)− U∗
1,L(b))

2 ≤

n∑

i=1

ρ2i + n

n∑

i=1

δ2i ,
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where ρ2i = E[
∫ T

0
h2
i (s) Yi(s)α(s) ds] and δ2i ≡ E[

∫ T

0

(
n−1

∫ T

0
(L̄s,b − L̄+

s,b)(s− t) dMj(t)
)2

Yi(s)α(s) ds] with j 6= i. We now use that because of Assumption (A1) for a constant C > 0
we have that |(L̄s,b − L̄+

s,b)(s− t)| ≤ Cn−1n−2/5(log n)−1/2n1/5 = Cn−6/5(log n)−1/2. This

implies the following bound for δ2i with some constants C1, C2, ... > 0:

δ2i ≤ C1n
−2n−12/5(log n)−1

×E

[∫ T

0

∫ T

0

∫ T

0

I(|t− s| ≤ C2n
−1/5)I(|u− s| ≤ C2n

−1/5) dMj(t) dMj(u)ds

]

≤ C3n
−22/5(log n)−1

∫ T

0

∫ T

0

I(|t− s| ≤ C2n
−1/5) dt ds ≤ C4n

−23/5(log n)−1.

By using similar bounds one gets that ρ2i ≤ C5n
−18/5(log n)−1. Thus, we have that

E(U1,L(b) − U∗
1,L(b))

2 ≤ C6n
−13/5(log n)−1.We now argue that for two bandwidths b1,

b2 with |b1 − b2| ≤ n−3/5(log n)−1/2 it holds that |[U1,L(b1) − U∗
1,L(b1)] − [U1,L(b2) −

U∗
1,L(b2)]| ≤ C7n

−2/5(log n)−1/2|b1 − b2|n
1/5 ≤ C7n

−4/5(log n)−1, where again Assumption
(A1) has been used. The last inequality implies that it suffices to show supb∈I∗∗

n
|U1,L(b)−

U∗
1,L(b)| = oP (n

−4/5), where I∗∗n is a finite subset of I∗n with less than C8n
2/5(log n) ele-

ments. Here, I∗∗n can be chosen as a grid of points that is contained in I∗n and where neigh-
bored points have a distance less than or equal to n−3/5(log n)−1. Now for δ > 0 it holds

that P
(
supb∈I∗∗

n
|U1,L(b)− U∗

1,L(b)| > δn−4/5
)
≤

∑
b∈I∗∗

n
P
(
|U1,L(b)− U∗

1,L(b)| > δn−4/5
)

≤
∑

b∈I∗∗

n
E
∣∣U1,L(b)− U∗

1,L(b)
∣∣2 δ−2n8/5 ≤ C8n

2/5 (log n)C6n
−13/5(log n)−1δ−2n8/5 = C9

δ−2n−3/5. Because this upper bound converges to 0 we get that (15) holds. This concludes
the proof of the lemma.

The next lemmas enable us to develop linear expansions of b̂LISE . For functions G
depending on the bandwidth b we denote by G′ and G′′ the first or second derivative of this
function w.r.t. b, respectively.

Lemma 5. Under A1–A3, we get for L = K and L = Lj (j = 1, ..., J) that ∆′′
L(b) =

M ′′
L(b) + oP

(
n−2/5

)
and D′′

1,L(b) = oP
(
n−2/5

)
uniformly for b ∈ I∗n.

Proof. This lemma can be shown with similar arguments as used in the proof of Lemma
4. Note first that the derivative of a kernel Rb(u) = b−1R(b−1u) w.r.t. to the bandwidth
b is equal to b−2R∗(b−1u) = b−1R∗

b(u) with R∗(u) = −R(u) − uR′(u) and that the second
derivative is equal to b−2R∗∗

b (u) with R∗∗(u) = 2R(u) + 4uR′(u) + u2R′′(u). Thus the first
and the second derivative behave like the product of a kernel and the factor b−1 or b−2,
respectively. By looking at the derivatives of a∗l,b(t) and a∗l,b(t) with l = 0, 1, 2 one can see

that the same holds true for the kernels L̄t,b and L̄+
t,b. Using these facts one can easily treat

D′′
1,L(b) as in the proof of Lemma 4. One writes D′′

1,L(b) as the sum of two expressions
and one shows that the integrand in the first expression can be replaced by a predictable
integrand, with an error that is now of the order oP (n

−2/5), uniformly over all b. The
order of the error term is now by a factor n2/5 larger because of the just outlined argument.
Afterwards one argues again as in the proof of Lemma 3 that the modified first term and
the second term are of order oP (n

−2/5), uniformly over all b, where the error rate is again
increased by a factor n2/5 for the same reason as above.
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For the expansion of ∆′′
L(b) one replaces α̂(t)−α∗(t) and its derivatives by d̂∗(t) and its

derivatives. Using brute force bounds as in the proof of Lemma 3 one gets that ∆′′
L(b) =

S′′
L,1(b)+S′′

L,2(b)+T ′′
L,1(b)+T ′′

L,2(b)+oP (n
−2/5), where SL,1(b), SL,2(b), TL,1(b) and TL,2(b)

are defined as in Lemma 3.
One now shows that S′′

L,1(b) = oP
(
n−2/5

)
, S′′

L,2(b) = oP
(
n−2/5

)
, T ′′

L,1(b) = 2n−1b−3R(L̄∗)∫ T

0
α(t)w(t)dt + oP

(
n−2/5

)
, T ′′

L,2(b) = 3b2µ2
2(L̄

∗)
∫ T

0
α′′(t)2γ(t)w(t)dt + oP

(
n−4/5

)
. The

proof of the first two claims is similar to the proof of (10). Furthermore, the last two state-

ments follow by standard kernel smoothing theory. Note that M ′′
L(b) = 3b2µ2

2(L̄
∗)

∫ T

0
α′′(t)2

γ(t)w(t)dt+ 2n−1b−3R(L̄∗)
∫ T

0
α(t)w(t)dt. This concludes the proof of Lemma 5.

We now state expansions of ∆′
L(b

L
MISE) and D′

L,1(b
L
MISE).

Lemma 6. Under A1-A3, we get for L = K and L = Lj (j = 1, ..., J) that with b =
bLMISE

∆′
L(b) = −n−2b−2

∫
HL(b

−1(u− v))w(u)γ(u)−1 dM(u) dM(v)

+2n−1bµ2(L̄
∗)

∫
α′′(u)w(u) dM(u) + oP

(
n−7/10

)
,

D′
L,1(b) = −n−2b−2

∫
GL(b

−1(u− v))w(u)γ(u)−1 dM(u) dM(v)

+2n−1bµ2(L̄
∗)

∫
α′′(u)w(u) dM(u) + oP

(
n−7/10

)
,

where L̄∗
b(u) = b−1L∗(b−1u), L̄∗∗

b (u) = b−1L∗∗(b−1u), GL(w) = I[w 6= 0](L̄∗∗(w)−L̄∗∗(−w))

and HL(w) = I[w 6= 0]
∫
L̄∗(u)(L̄∗∗(w+u)−L̄∗∗(−w+u)) du with L̄∗(u) = µ2(L)−µ1(L)u

µ2(L)−(µ1(L))2L(u)

and L̄∗∗(u) = − µ2(L)−µ1(L)u
µ2(L)−(µ1(L))2 (L(u) + uL′(u)) + µ1(L)u

µ2(L)−(µ1(L))2L(u). In particular, it holds

that ∆′
L(b) = OP

(
n−7/10

)
and D′

L,1(b) = OP

(
n−7/10

)
.

Proof. We treat ∆′
L(b) and D′

L,1(b) in two steps. In a first step one can use the results

in Mammen and Nielsen (2007) to show that replacing the kernels L̄t,b(u) and ∂bL̄t,b(u) by
the kernels L̄+

t,b(u) or ∂bL̄
+
t,b(u), respectively, leads to an error of order oP

(
n−7/10

)
. The

arguments are similar to the proof of Lemma 4. But the argumentation is now simpler
because we expand the functions ∆′

L(b) and D′
L,1(b) for one value of b and not uniformly

for a set of values of b. In a next step the kernels L̄t,b(u) and ∂bL̄t,b(u) are replaced by the
kernels (W (t)γ(t))−1L̄∗

b(u) or (W (t)γ(t)b)−1 L̄∗∗
b (u), respectively. This gives an additional

error term of order oP
(
n−7/10

)
. This can be proved by the calculation of the first two

moments of the approximations of ∆′
L(b) and D′

L,1(b). Note that the calculation of the
fist two moments is simplified by the first step because some non-predictable integrands
have been replaced by predictable functions. A check of the last approximation shows the
statement of the lemma.

Lemma 7. Under A1-A3, we get for L = K and L = Lj (j = 1, ..., J) that with

b = bLMISE the following two expansions hold: b̂LISE = b + C−1
1,Ln

−8/5b−2
∫
HL(b

−1(u −

v))w(u)γ(u)−1 dM(u) dM(v)− 2n−3/5C−1
1,Lbµ2(L̄

∗)
∫
α′′(u)w(u) dM(u) + oP

(
n−3/10

)
and

b̂LCV = b+ C−1
1,Ln

−8/5b−2
∫
[HL −GL](b

−1(u− v))w(u)
γ(u) dM(u) dM(v) + oP

(
n−3/10

)
, where

C1,L = 5R(L̄∗)2/5µ
6/5
2 (L̄∗)

{∫ T

0
α(t)w(t)dt

}2/5 {∫ T

0
α′′(t)2γ(t)w(t)dt

}3/5

.
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Proof. Lemmas 3 – 6 imply that b̂LISE = bLMISE−M ′′
L (̂b

L,∗)−1∆′
L(b

L
MISE)+oP

(
n−3/10

)

and b̂LCV = bLMISE −M ′′
L (̂b

L,∗∗)−1∆̂′
L(b

L
MISE) + oP

(
n−3/10

)
, where the bandwidth b̂L,∗ lies

between b̂LISE and bLMISE and where the bandwidth b̂L,∗∗ lies between b̂LCV and bLMISE . The
claim of the lemma now follows from the expansions of Lemma 6, the continuity of M ′′

L and
using M ′′

L(b
L
MISE) = C1,Ln

−2/5.

Proof (of Theorem 1). Lemma 7 implies that with b = bKMISE = ρjb
Lj

MISE we get

for b̂∗ =
∑J

j=1 ωjρj b̂
Lj

CV that b̂∗ − b = B1(T ) + oP
(
n−3/10

)
and b̂∗ − b̂KISE = B2(T ) +

B3(T )+oP
(
n−3/10

)
, where B1(t) = n−8/5b−2

∑J
j=1 ωjρ

3
jC

−1
1,Lj

∫ t

0

∫ t

0
(HLj

−GLj
)(ρjb

−1(u−

v))w(u)γ(u)−1 dM(u) dM(v), B2(t) = n−8/5b−2
∫ t

0

∫ t

0
[
∑J

j=1 ωjρ
3
jC

−1
1,Lj

(HLj
−GLj

)(ρjb
−1(u−

v)) − C−1
1,KHK(b−1(u − v))]w(u)γ(u)−1 dM(u) dM(v) and B3(T ) = 2n−3/5bC−1

1,Kµ2(K)∫ t

0
α′′(u)w(u) dM(u). The statement of the theorem follows by application of a martingale

central limit theorem to the martingales B1(t) and B2(t), see (12)–(14). We omit the details
for checking (12)–(13). It can be shown that B1(T ) and B2(T ) have asymptotic variances
σ2
1 or σ2

2 , respectively.
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