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ABSTRACT: A novel statistical linearization based approach is proposed to derive effective linear properties (ELPs), namely 
damping ratio and natural frequency, for bilinear hysteretic oscillators subject to seismic excitations specified by an elastic 
response/design spectrum. First, an efficient numerical scheme is adopted to derive a power spectrum, satisfying a certain 
statistical criterion, which is compatible with the considered seismic spectrum. Next, the thus derived power spectrum is used in 
conjunction with a frequency domain higher-order statistical linearization formulation to substitute a bilinear hysteretic 
oscillator by a third order linear system. This is done by minimizing an appropriate error function in the least square sense. 
Then, this third-order linear system is reduced to a second order linear oscillator characterized by a set of ELPs by enforcing 
equality of certain response statistics of the two linear systems. The ELPs are utilized to estimate the peak response of the 
considered hysteretic oscillator in the context of linear response spectrum-based dynamic analysis. In this manner, the need for 
numerical integration of the nonlinear equation of motion is circumvented. Numerical results pertaining to the European EC8 
elastic response spectrum are presented to demonstrate the applicability and usefulness of the proposed approach. These results 
are supported by Monte Carlo analyses involving an ensemble of 250 non-stationary artificial EC8 spectrum compatible 
accelerograms. The proposed approach can hopefully be an effective tool in the preliminary aseismic design stages of yielding 
structures following either a force-based or a displacement-based methodology. 

KEY WORDS: Effective linear properties; Design spectrum; Power spectrum; bilinear hysteretic; Stationary stochastic process. 

1 INTRODUCTION 
Aseismic code provisions define seismic severity via elastic 
design spectra associated with the peak response of linear 
viscously damped single-degree-of-freedom (SDOF) 
oscillators exposed to a “design” strong ground motion. 
However, ordinary structures are designed to behave 
inelastically (i.e. to suffer structural damage) for the “design 
earthquake”. To account for this nonlinear/hysteretic behavior 
within a response spectrum-based analysis framework, 
inelastic design spectra of reduced coordinates by a strength 
reduction factor R are usually prescribed by regulatory 
agencies. These spectra provide the peak response of 
hysteretic SDOF oscillators with Tn natural period of small 
oscillations. The development of inelastic spectra relies either 
on a straightforward computation of the peak inelastic 
deformation or on R-μ-Tn relations, where μ is the ductility 
ratio. In both cases, comprehensive Monte Carlo analyses 
involving numerical integration of the nonlinear equations 
governing the motion of the hysteretic oscillators exposed to 
ensembles of field recorded seismic accelerograms are 
required (e.g. [1],[2]). Alternatively, approximate linearization 
techniques can be used for this purpose (e.g. [3]-[5]).  

These techniques approximate the peak inelastic response 
by considering the peak response of an equivalent linear 
system (ELS) characterized by effective linear properties 
(ELPs), that is, damping ratio and natural frequency. Though 
results for various hysteretic constitutive laws are available 
the simple bilinear hysteretic law is the most extensively 
considered in such studies and the most commonly assumed in 
the everyday practice of earthquake resistant design of 

yielding structures. Most of the existing studies in the 
literature assume deterministic harmonic input to derive ELPs. 
This is done by averaging various quantities of interest over 
one cycle of the hysteretic response ([4],[5]). Herein, a 
recently proposed by the first two authors ([6],[7]) statistical 
linearization based approach is adopted and further extended 
to derive ELPs from bilinear hysteretic oscillators associated 
with any given elastic response spectrum. Notably, this is 
achieved without resorting to computationally demanding 
integration of the underlying nonlinear equation of motion. 

The adopted linearization approach comprises two steps. 
First, a stationary stochastic process of finite duration is 
derived via a computationally efficient numerical scheme to 
achieve compatibility with a given design spectrum in a 
statistical sense. This process is defined in the frequency 
domain by means of a non-parametric power spectrum. Next, 
the thus derived power spectrum is treated as the input 
spectrum to perform statistical linearization [8]. In this 
manner, an equivalent linear system (ELS) is defined whose 
properties depend both on the nonlinear system and on the 
considered design spectrum.  

In the original work of Giaralis and Spanos [7] an early 
statistical linearization formulation [9] assuming Gaussian 
narrow-band response of the considered nonlinear system has 
been used to derive a second order ELS corresponding to a 
linear SDOF oscillator. It relied on stochastic averaging over 
one period of oscillation. Herein, an efficient frequency-
domain statistical linearization solution is formulated.  It 
replaces the bilinear hysteretic system by a third order linear 
system [8],[10]. This statistical linearization formulation is 
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based on less restrictive assumptions than the one adopted in 
[7] allowing for the treatment of bilinear hysteretic oscillators 
exhibiting strong nonlinear behavior (see also [11] and [12]). 
However, the thus derived third order ELS does not 
correspond to any particular physical system and cannot be 
readily related to a response/design spectrum pertaining to the 
peak response of linear SDOF oscillators. To this end, an 
additional step is introduced which considers an effective 
second order linear system. This system is obtained by 
enforcing equality of its displacement and velocity response 
variances with those of the third order ELS. The reduced-
order effective linear system corresponds to a SDOF linear 
oscillator characterized by an effective damping ratio and an 
effective natural frequency. These effective linear properties 
are then used in conjunction with design spectra defined for 
various damping ratios to estimate the peak response of the 
underlying bilinear hysteretic oscillator.  

Numerical data pertaining to various bilinear hysteretic 
oscillators exposed to the elastic response/design spectrum 
prescribed by the European aseismic code provisions (EC8) 
[13] are provided to demonstrate the effectiveness and 
applicability of the proposed approach. Furthermore, Monte 
Carlo based analyses involving an ensemble of 250 non-
stationary artificial EC8 spectrum compatible accelerograms 
are also included. They pertain to R-μ-Tn relationships for 
both the considered hysteretic oscillators and the 
corresponding effective linear oscillators supporting the 
usefulness of the approach. 

2 THEORETICAL BACKGROUND 

2.1 Derivation of design spectrum compatible finite 
duration stationary stochastic processes 

Consider a one-sided power spectrum G(ω) representing in 
the domain of frequencies ω a stationary zero-mean stochastic 
process g(t) of finite duration Τs. This spectrum can be related 
to a given (target) response/design pseudo-acceleration 
seismic spectrum Sα(T,ζ), with T=2π/ωj being the natural 
period of oscillation, via the concept of a “peak factor” ηj by 
relying on the equation (e.g. [14])   
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In the above equation, ωj and ζ denote the natural frequency 
and ratio of critical damping, respectively, of a linear single-
degree-of-freedom (SDOF) base excited by the process g(t). 
In determining the peak factor ηj appearing in Eq. (1) the 
following approximate semi-empirical expression is herein 
adopted [14] 
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Equations (2) to (5) allow for calculating reliably the median 
peak factor of a linear oscillator with properties ωj and ζ 
subject to clipped white noise input of duration Ts. In this 
regard, Eq. (1) establishes the following criterion: considering 
an ensemble of realizations of the process g(t), half of the 
population of their response spectra will lie below Sa (i.e. Sa is 
the median response spectrum) [7],[14].  

Given a target spectrum Sa, an estimate of the power 
spectrum G(ω) conforming with the aforementioned criterion 
can be evaluated recursively at a specific set of M equally 
spaced natural frequencies ωk= ω0+ (j-0.5)Δω; j= 1,2,…,M 
using the equation [15] 
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In Eq. (6), ω0 is the lowest frequency for which Eq. (2) is 
defined (see also [7]). An approximation of the pseudo-
acceleration response spectrum A[2π/ωk,ζ] corresponding to 
the discrete power spectrum G[ωk] obtained by Eq. (6) can be 
determined by using Eqs. (1) to (5). For this purpose, the 
integral appearing in Eq. (1) can be efficiently evaluated 
numerically using the spectral moment formulae due to 
Pfaffinger [16] (see also [17]). Note that, in general, 
A[2π/ωk,ζ] may not lie as close as desired to the target 
spectrum Sα for all the considered ωk natural frequencies. In 
this respect, G[ωk] can be further modified iteratively to 
improve the point-wise matching of the response spectrum 
A[2π/ωk,ζ] with the target spectrum. This can be done by 
means of the following equation written at the N-th iteration 
(e.g. [18])  
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Next, the design spectrum compatible power spectrum G[ωj] 
obtained from Eqs. (6) or (7) is used in conjunction with the 
method of statistical linearization to determine effective 
natural frequency and damping parameters associated with 
bilinear hysteretic oscillators. 

2.2 A frequency-domain statistical linearization solution 
for bilinear hysteretic systems 

Consider a unit-mass quiescent bilinear hysteretic SDOF 
system with ratio of critical viscous damping ζ, base-excited 
by a stationary acceleration process g(t). The process is 
defined in the frequency domain by the one-sided power 



spectrum G(ω). The motion of the considered system is 
governed by the system of differential equations [19] 
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 ( ) ( ) ( ) ( )1 1 1z x U x U z U x U z= − − − − − −⎡ ⎤⎣ ⎦ . (9) 

In this equation xy is the yielding displacement, x is the 
relative response displacement process normalized by xy, α is 
the post-yield to pre-yield stiffness (“rigidity”) ratio (e.g. the 
value α=0 corresponds to a perfectly elasto-plastic oscillator), 
and ωn= (fy/xy)1/2 is the pre-yielding natural frequency with fy 
being the yielding strength. Furthermore, z is an additional 
“state” related to the response of the system by the differential 
Eq. (9) which mathematically captures the bilinear perfectly 
elasto-plastic hysteretic behavior. In the previous equations 
and hereafter the dot over a symbol denotes differentiation 
with respect to time and U(·) is the Heaviside step function. A 
graph of the restoring force of the bilinear hysteretic oscillator 
defined by Eqs. (8) and (9) for zero damping ratio is shown in 
Figure 1. Also included are certain response quantities of 
practical interest in the earthquake resistant design of 
structures (i.e. the strength reduction factor R and the ductility 
ratio μ). 

 
Figure 1. Bilinear hysteretic restoring force and definitions of 

the strength reduction factor R and ductility μ. 

Note that Eq. (8) is a linear differential equation containing 
three states ( , ,x x and z ) related by a non-linear equation (Eq. 
(9)). In this junction, the statistical linearization procedure for 
non-linear multi-degree-of-freedom systems described in [11] 
and based on the work of Kazakov [20] is applied to replace 
Eq. (9) by the following linear differential equation (see also 
[8] and [12]) 

 ( ) ( ) ( ) 0eq eqz t c x t k z t+ + = . (10) 

In this equation, the equivalent linear coefficients ceq and keq 
are determined by requiring minimization of the mean square 
error in replacing Eq. (9) by Eq. (10). By approximating the 
processes x and z as jointly Gaussian the following 
expressions for determining ceq and keq are derived [8] 
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In Eq. (12) erf(·) is the standard error function and in Eqs. (13) 
and (14), and, henceforth, E{·} denotes the mathematical 
expectation operator. From the above expressions it is seen 
that ceq and keq depend on the variance of the processes x and 
z, and their cross-variance. To this end, a frequency domain 
formulation relying on the spectral input/output relations for 
linear systems and the Wiener-Khinchin theorem can be 
devised to calculate these response moments. Specifically, 
[10] 

 { }
( )

( )
2

2 2
3 2

0

0

eq

k y
k

k

i k G
E x d

xi A

ω ω
ω ω

ω

∞

=

+
= ∫

∑
, (15) 

and 

 { }
( )

( )
2

2
3 2

0

0

eq

k y
k

k

i c G
E z d

xi A

ω ω
ω

ω

∞

=

−
= ∫
∑

, (16) 

in which 1i = − and 
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while the cross-variance term can be computed by the 
equation 
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Equations (11), (12), (15), (16), and (18) form a system of 
non-linear equations with five unknowns, namely, ceq, keq, 
{ }2E x , { }2E z , and { }E xz . This system can be readily 

written as a standard minimization problem and solved 
numerically by any qualified optimization routine. In all of the 
ensuing numerical examples an optimization algorithm built-
in MATLAB® using a trust region dog-leg search method is 
used for this purpose (see also [21] ).      

Upon determination of the ceq, keq parameters, an 
“equivalent” linear third order system is established governed 
by the differential Eqs. (8) and (10). Various researchers have 
shown both theoretically and through numerical 
experimentation that this particular higher-than-a-second-
order linear system captures the response statistics of various 
hysteretic systems exhibiting strong nonlinear behavior in an 
acceptable manner (see e.g. [8],[12] and [22]). However, this 
third order linear system cannot be readily related to a 
response/design spectrum pertaining to the peak response of 
linear SDOF oscillators. To this end, in the next section an 
approach to reduce the system order is introduced by relying 
on a specific statistical criterion.    

2.3 Derivation of effective linear properties from the 3rd 
order equivalent linear system 

Let y be the normalized by xy deformation of an “auxiliary” 
linear SDOF oscillator of critical viscous damping ζeff and 
natural frequency ωeff base excited by the stationary 
acceleration process g(t). The governing equation of motion of 
this auxiliary system reads as 

 ( ) ( ) ( ) ( )22 /eff eff eff yy t y t y t g t xζ ω ω+ + = − , (19) 

and zero initial conditions apply. For the purposes of this 
work, it is sought to relate the above second order linear 
system to the third order ELS derived by means of statistical 
linearization to replace bilinear hysteretic systems excited by 
the process g(t) as detailed in the previous section. This can be 
accomplished by enforcing equality of the variances of the 
processes x and y, that is,   
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and of the variances of the processes x  and y , that is, 
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The variance appearing in the lhs of Eq. (20) can be 
determined by the expression 

 { }
( )

( )
2

2
3 2

0

0

eq

k y
k

k

i k G
E x d

xi A

ω ω
ω

ω

∞

=

+
= ∫
∑

. (22) 

Further, the variance appearing in the lhs of Eq. (21) is a 
known quantity determined upon solving the nonlinear system 
of equations considered in the statistical linearization solution 

of the previous section. In this regard, Eqs. (20) and (21) 
define a system of nonlinear equations which can be solved 
for the unknown effective linear properties ζeff and ωeff of the 
second order linear system corresponding to a linear SDOF 
oscillator. To this aim, the same optimization algorithm used 
to obtain the statistical linearization solution is employed to 
solve the above two-by-two system of non-linear equations in 
obtaining the numerical results presented in the next section. 
Conveniently, there exist spectral moment formulae to 
numerically evaluate the integrals in Eqs. (20) and (21) for the 
discrete power spectra derived as detailed in section 2.1 in a 
computationally efficient manner [16],[17]. 

2.4  Estimation of the peak deformation of bilinear 
hysteretic systems from the effective linear properties  

Following the approach established in [6] and [7], the 
response/design spectrum compatible power spectra obtained 
by Eqs. (6) or (7) is used as the input spectrum to derive 
effective SDOF linear oscillators corresponding to bilinear 
hysteretic systems via the preceding statistical linearization 
based methodology. This is accomplished by solving 
sequentially one five-by-five system and one two-by-two 
system of non-linear equations derived in sections 2.2 and 2.3, 
respectively. In this context, for any bilinear hysteretic 
oscillator characterized by an initial stiffness Τn, a yielding 
displacement xy and a rigidity ratio α exposed to the seismic 
hazard represented by a specific response/design spectrum 
Sα(Τ,ζ), the herein proposed methodology yields a set of 
effective linear properties ζeff  and  ωeff. These effective linear 
properties are explicitly associated with both the pre-specified 
response/design spectrum and the considered non-linear 
system. In this regard, a reasonable estimate of the peak 
deformation of bilinear hysteretic oscillators can be 
determined by the expression 
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That is, using a family of response spectra defined for various 
damping ratios. In this manner, the need for numerically 
integrating the non-linear Eqs. (8) and (9) of motion for an 
ensemble of seismic accelerograms compatible with the 
considered response/design spectrum is by-passed. Obviously, 
the reliability of the estimated peak value will depend on the 
severity of the induced non-linear response and will lie within 
the well-quantified approximation induced by the application 
of the statistical linearization method (see e.g. [8]). 

Note that in case dependable response spectra are not 
available for damping ratios other than ζ an estimate of the 
peak non-linear response can be achieved by the equation 
relying on the concept of the peak factor and the fact that the  
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which relies on the concept of the peak factor and the fact that 
the response variance of x is determined upon performing 
statistical linearization. In the latter equation ηeff can be 
calculated from Eqs. (2) to (5) by setting ζ=ζeff.  

 



3 NUMERICAL APPLICATION TO THE EC8 DESIGN 
SPECTRUM 

The elastic response/design spectrum of the European 
aseismic code [13] is herein considered as a paradigm to 
assess the usefulness and applicability of the proposed 
methodology. Effective linear properties corresponding to 
various bilinear hysteretic oscillators are derived. Specifically, 
the EC8 (target) pseudo-acceleration response spectrum for 
peak ground acceleration 0.36g (g= 981cm/sec2), ground type 
B and damping ratio ζ= 0.05 (gray thick line in Figure 2), is 
considered to represent the induced seismic action. The 
broken line of Figure 3 corresponds to a discrete power 
spectrum compatible with the EC8 target spectrum computed 
by means of Eq. (6) assuming Ts = 20s and Δω= 0.1rad/s. 
Furthermore, this power spectrum is modified by performing 
four iterations using Eq. (7). The obtained modified spectrum 
is also shown in Figure 3.  

The pseudo-acceleration response spectra associated with 
the two power spectra of Figure 3 are plotted in Figure 2 and 
compared with the target spectrum. These response spectra 
have been determined analytically by Eqs. (1) to (5). It can be 
seen that the iteratively matched power spectrum achieves a 
close compatibility with the target spectrum (see also [7]). 
This is further confirmed by considering the median spectral 
ordinates  of an ensemble of 2000 20s long stationary signals 
compatible with the iteratively modified spectrum (plotted as 
dots in Figure 2), which have been synthesized using a 
random simulation filtering technique based on an auto-
regressive-moving-average filter (see for example [23]). 
 

 
Figure 2. Target EC8 design spectrum, response spectra 

computed by Eqs. (1) to (5) pertaining to the power spectra of 
Figure 3, and median response spectrum of 2000 simulated 

signals compatible with the iteratively modified power 
spectrum of Figure 3. 

 
Figure 3. Power spectra obtained by Eq. (6) and by Eq. (7) (4 

iterations) compatible with the EC8 spectrum of Figure 2. 

 
Figure 4. Effective linear properties (Teff and ζeff) for various 
bilinear hysteretic oscillators with damping coefficient ζ=5% 

rigidity ratio α and pre-yield natural period Τn compatible 
with the EC8 spectrum of Figure 2.  



Next, the iteratively modified power spectrum of Figure 3 is 
used to obtain effective linear properties (ELPs) Teff= 2π/ωeff 
and ζeff via the statistical linearization-based method detailed 
in sections 2.2 and 2.3 for various bilinear hysteretic 
oscillators. Shown in Figure 4 are ELPs corresponding to 
viscously damped bilinear oscillators with ζ=0.05, four 
different pre-yield stiffness values expressed by Tn= 2π/ωn, 
and with rigidity ratios α=0.4 (panels (a) and (b) of Figure 6) 
and α=0.05 (panels (c) and (d) of Figure 6). These properties 
are plotted against the “ductility” max|y| to quantify the 
severity of the nonlinear response. For the purposes of this 
study, max|y| is numerically evaluated as the average of the 
peak responses of the effective linear system of Eq. (19) 
excited by an ensemble of 250 artificial non-stationary 
accelerograms compatible with the target EC8 spectrum of 
Figure 2. These signals have been generated by a wavelet-
based stochastic methodology recently proposed by Giaralis 
and Spanos [24]. Figure 5 includes the average, the maximum, 
the minimum and the standard deviation over the average of 
the spectral ordinates in terms of pseudo-acceleration of this 
ensemble of accelerograms as a function of the natural period. 
In this context, the range of max|y| is accomplished by varying 
the yielding displacement xy of the considered nonlinear 
oscillators.  

Note that max|y| may not coincide with the ductility demand 
μ as defined in Figure 1, because of the approximation 
involved in deriving the ELPs via the proposed statistical 
linearization based approach. Larger discrepancy is expected 
for bilinear oscillators forced to exhibit more severe nonlinear 
response (see also [7]). This point is illustrated in Figure 6 
which includes R-μ-Tn relations based on averaged response 
time-histories obtained via numerical integration of the 
considered bilinear hysteretic oscillators (dots of various 
shapes) and of the corresponding effective linear oscillators 
(lines of various types) considering as input the ensemble of 
the seismic signals of Figure 5. Figure 6 further shows the 
standard deviation over the average of the obtained μ and 
max|y| to shed light on the statistical nature of the presented 
Monte Carlo analysis based numerical results. In all plots of 
Figure 6 the strength reduction factor R is computed as the 
ratio of the average value of the peak response of the 
corresponding linear oscillator of natural period Τn excited by 
the ensemble of the considered 250 design spectrum 
compatible accelerograms over the yielding force fy (see also 
Figure 1). 

Examining the data included in Figure 4, it is evident that 
the herein proposed approach yields results that are in 
agreement with engineering intuition. In general, the departure 
from the linear response, quantified by larger values of max|y|, 
yields “softer” effective linear systems characterized by 
longer natural periods. Furthermore, the effective damping 
ratio increases monotonically with max|y| to account for the 
increased energy dissipation through more severe plastic/ 
hysteretic behaviour of the corresponding nonlinear 
oscillators. 

Finally, Figure 7 illustrates the manner in which the ELPs 
derived from the adopted design spectrum-based statistical 
linearization procedure as those reported in Figure 4 can be 
used to approximate the peak values of certain response 
quantities of the associated nonlinear systems by using the 

EC8 design spectrum. This is done for various levels of 
viscous damping. In particular, consider a specific viscously 
damped bilinear hysteretic oscillator with damping ratio ζ= 
5% and pre-yield natural period Tn exposed to the EC8 elastic 
design spectrum (vertical broken lines). One can focus, 
following the horizontal arrows, to a vertical solid line 
corresponding to an effective linear system characterized by 
Τeff and ζeff obtained by the statistical linearization based 
methodology herein adopted and “read” the related spectral 
ordinate. In this manner, an estimate of the peak response of 
the considered structural system is achieved without the need 
to have available suites of spectrum compatible accelerograms 
and to numerically integrate the governing nonlinear equation 
of motion.  

 
 

 
Figure 5. Statistics of response spectra of an ensemble of 250 
artificial non-stationary accelerograms compatible with the 
EC8 response spectrum of Figure 2 (panels (a) and (b)), and 
time-history of an arbitrarily chosen signal belonging to the 

considered ensemble (panel (c)).   



 
Figure 6. Mean (panels (a) and (c)) and standard deviation 

over mean (panels (b) and (d)) values of the peak deformation 
normalized by the yielding displacement xy of various bilinear 
hysteretic oscillators and of the corresponding effective linear 

systems excited by the suite of accelerograms of Figure 5.  

 
Figure 7. Peak response estimation in terms of pseudo-

acceleration (panels (a) and (b)) and of deformation (panels 
(c) and (d)) of various viscously damped bilinear hysteretic 

oscillators using their corresponding effective linear 
properties and the EC8 elastic response spectrum. 

4 CONCLUDING REMARKS 
A novel statistical linearization based approach has been 
proposed to derive effective linear properties (damping ratio 
and natural frequency) (ELPs) corresponding to effective 
linear single-degree-of-freedom oscillators (ELSs) from 
viscously damped bilinear hysteretic oscillators excited by 
strong ground motions defined by a given response/design 
spectrum. Those ELPs have been determined by solving 
successively two systems of nonlinear equations (one five-by-



five and one two-by-two) which can be efficiently done using 
any qualified optimization algorithm. The first system of 
equations provides a frequency domain statistical linearization 
solution which replaces a bilinear oscillator with a third order 
linear system. The second system of equations is associated 
with a system reduction step to reduce the third order to a 
second order linear system. Both solutions involve the 
consideration of a numerically derived power spectrum 
compatible with the given design spectrum, in a probabilistic 
sense. An efficient recursive formula has been adopted to 
determine the required power spectrum. 

The thus derived ELPs have been used to obtain reliable 
estimates of the peak response of strongly nonlinear bilinear 
hysteretic systems without integrating the nonlinear equations 
of motion. This point has been ascertained by pertinent 
numerical results associated with the EC8 elastic 
response/design spectrum. Specifically, EC8 compatible ELPs 
corresponding to various viscously damped bilinear oscillators 
of different rigidity ratios and pre-yield stiffness have been 
obtained. Furthermore, strength reduction-ductility-natural 
period relationships have been derived for the considered 
hysteretic systems and for the associated ELSs within a Monte 
Carlo based analyses pertaining to an ensemble of 250 EC8 
design spectrum compatible non-stationary time-histories 
obtained via a wavelet-based stochastic approach. Finally, the 
derived ELPs have been utilized to estimate the peak 
responses of the bilinear hysteretic oscillators by using the 
elastic EC8 response spectrum for various damping ratios.  

It is expected that the proposed approach can be further 
used to facilitate various aseismic design procedures relying 
on the definition of ELSs such as the direct displacement 
based method [25]. For this purpose, perhaps a semi-empirical 
correction maybe incorporated to enhance the reliability of the 
estimated peak deformations. Such a corrective factor can be 
calibrated by means of comprehensive Monte Carlo analyses. 
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