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When does knowledge acquisition in R&D alliances increase new product development? 

The moderating roles of technological relatedness and product-market competition 

 

 

Abstract 

In studying the performance consequences of research and development (R&D) alliances, one 

stream of research has concentrated on the acquisition of partners’ technological knowledge 

whereas another has focused on firms’ new product development outcomes. Bridging these two 

research streams, this study directly connects knowledge acquisition through R&D alliances to 

new product development and examines when R&D alliances enable firms to apply acquired 

technological knowledge in the product domain. Using unique longitudinal data on a sample of 

firms engaged in R&D alliances in the information technology industry, I find that knowledge 

acquisition is on average positively associated with firms’ numbers of new products. However, I 

also find that knowledge acquisition is substantially more beneficial for new product 

development both when firms and their partners are active in similar technology domains and 

when they operate in distinct product markets. 

 

Keywords: Knowledge acquisition; New product development; R&D alliances; Product-market 

competition; Technological relatedness 
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1. Introduction 

Research and development (R&D) alliances are formal agreements through which firms 

conduct joint research and development relating to new technologies, products, or processes, 

eventually with the objective to enable firms to bring new products to market (Hagedoorn, 1993). 

One stream of research has concentrated on the potential for technological learning through R&D 

alliances, showing that such alliances can enable firms to acquire technological knowledge 

developed by their alliance partners (Frankort, 2013; Frankort, Hagedoorn, and Letterie, 2012; 

Gomes-Casseres, Hagedoorn, and Jaffe, 2006; Mowery, Oxley, and Silverman, 1996; Oxley and 

Wada, 2009; Rosenkopf and Almeida, 2003). Another stream of research has focused instead on 

the role of R&D alliances in new product development, showing that such alliances may have 

consequences in the product domain as well (Chen and Li, 1999; Deeds, Decarolis, and Coombs, 

1999; Deeds and Hill, 1996; Kotabe and Swan, 1995; Rothaermel and Deeds, 2004). 

Nevertheless, in focusing virtually exclusively on either knowledge acquisition or new 

product development, both research streams have tended to underemphasize the relationship 

between these two distinct outcomes.1 Furthering the understanding of the relationship between 

knowledge acquisition through R&D alliances and new product development is critical, however, 

because the competitiveness of manufacturing firms engaged in research and development may 

not derive from knowledge acquisition per se; it is ultimately some function of whether they are 

able to apply acquired technological knowledge in the product domain (e.g., Blundell, Griffith, 

and Van Reenen, 1999; Sorescu and Spanjol, 2008). Motivated by these observations, in this 

study I propose and test a conceptual framework that directly connects knowledge acquisition 

through R&D alliances to firms’ new product development. 

                                                           
    1 While some studies have examined the role of alliances in shaping both upstream and downstream outcomes 

(e.g., Rothaermel and Deeds, 2004), even that research has not systematically considered the importance of 

technological knowledge acquired from alliance partners as a factor influencing new product development. 
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My starting point is constituted by narrative accounts suggesting that knowledge 

acquisition may represent a key mechanism linking firms’ R&D alliances to new product 

development (e.g., Rindfleisch and Moorman, 2001; Soh, 2003). Specifically, I begin by arguing 

that acquired technological knowledge may generate opportunities for new product development 

both within and beyond the terms of firms’ R&D alliances and so one might expect a positive 

association between knowledge acquisition on the one hand and firms’ new product development 

on the other. In this study, knowledge acquisition is defined as the extent to which firms’ novel 

technological knowledge builds on technological content knowledge acquired from R&D alliance 

partners, while new product development refers to a firm’s propensity to design, manufacture, 

and market products that are new to the firm (Eisenhardt and Tabrizi, 1995). 

However, while the acquisition of technological knowledge may increase the potential for 

new product development, it will simultaneously increase firms’ dependence on partners’ tacit 

process knowledge necessary to apply acquired technological knowledge in the product domain. 

More specifically, knowledge acquisition intensifies demands both on firms’ abilities to 

understand partners’ tacit process knowledge and on partners’ incentives to facilitate access to 

such strategic competencies (Gerwin, 2004). Therefore, drawing from research on interfirm 

learning (e.g., Lane and Lubatkin, 1998; Nooteboom et al., 2007) and interpartner competition 

(e.g., Hamel, 1991; Khanna, Gulati, and Nohria, 1998), I argue that the new product development 

benefits from acquired technological knowledge will be especially pronounced when the 

technological knowledge bases of a firm and its R&D alliance partners are related and when a 

firm and its partners operate in distinct product markets. 

I test these ideas using unique longitudinal data on a sample of 44 manufacturing firms 

engaged in R&D alliances in the information technology industry, where profitability depends 

critically on firms’ propensities to bring new products to market (Bayus, Erickson, and Jacobson, 
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2003). The empirical results suggest that knowledge acquisition through R&D alliances has a 

positive association with firms’ new product development. However, I also find that the new 

product development benefits from knowledge acquisition are significantly enhanced when firms 

and their partners are active in similar technology domains, while such benefits are substantially 

reduced instead when firms and their partners are active in identical product markets. 

Integrating the insights from the knowledge acquisition literature with the literature on 

knowledge application (Fiol, 1996; Lane, Koka, and Pathak, 2006; Meier, 2011), this study fills a 

gap in the alliance literature by directly examining the role of R&D alliances in connecting firms’ 

technology and product domains. Specifically, one contribution lies in offering a systematic 

assessment of whether knowledge acquisition through R&D alliances influences firms’ new 

product development. The second contribution lies in showing that the knowledge acquisition 

association with new product development is subject to important scope conditions—specifically, 

those rooted in partners’ levels of technological relatedness and product-market competition. 

2. Theory and hypotheses 

2.1 Knowledge acquisition through R&D alliances and new product development 

Firms may use their R&D alliances to acquire technological knowledge otherwise 

unavailable internally (e.g., Gomes-Casseres et al., 2006; Mowery et al., 1996) and such 

knowledge acquisition can enrich firms’ pools of commercialization options (Chen and Li, 1999; 

Fey and Birkinshaw, 2005; Grant and Baden-Fuller, 2004; Kotabe and Swan, 1995; Moorman 

and Slotegraaf, 1999). Therefore, firms acquiring more technological knowledge through R&D 

alliances may be more productive in developing new products than otherwise identical firms that 

acquire less technological knowledge from their alliance partners (e.g., Yli-Renko, Autio, and 

Sapienza, 2001). Prior research suggests at least two distinct paths through which the acquisition 

of partners’ technological knowledge may enhance firms’ new product development (Sampson, 
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2007: 366). On the one hand, knowledge acquisition directly enriches firms’ pools of 

technological knowledge relevant to the development activities within the terms of their R&D 

alliances. On the other hand, acquired technological knowledge may also have broader relevance 

for new product development activities beyond firms’ individual alliance projects. Indeed, once 

acquired, technological knowledge can in principal be applied to new products even beyond the 

terms of firms’ R&D alliances (Hamel, 1991). Consequently, while technological knowledge 

may be acquired within specific R&D alliances, knowledge acquisition is likely to increase firms’ 

rates of new product development more generally. I therefore predict the following baseline 

association between knowledge acquisition and new product development: 

Hypothesis 1. Knowledge acquisition through R&D alliances is positively associated 

with a firm’s new product development. 

 

Prevailing alliance research provides no direct empirical evidence on this first hypothesis, 

even though it has alluded to the downstream importance of knowledge acquisition in R&D 

alliances (e.g., Rindfleisch and Moorman, 2001; Soh, 2003). However, prior studies would also 

suggest that straightforward application of knowledge in the product domain may not always be 

an inevitable consequence of acquiring partners’ technological knowledge (e.g., Meier, 2011). 

Therefore, it is reasonable to imagine that important scope conditions underlie H1 and so I next 

identify two moderating factors that previous research suggests are important in shaping 

coordination and cooperation between alliance partners engaged in new product development 

(Gerwin, 2004). First, research on interfirm learning suggests that firms may vary systematically 

in their abilities to understand how partners’ technological knowledge can be applied in the 

product domain (e.g., Lane and Lubatkin 1998; Nooteboom et al., 2007). Second, research on 

interpartner competition would suggest that partners may also vary systematically in their 

incentives to facilitate firms’ new product development (e.g., Hamel, 1991; Khanna et al., 1998). 
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2.2 The moderating role of technological relatedness 

The first moderating factor concerns the extent to which firms are able to understand how 

partners’ technological knowledge can be applied in the product domain. Research on interfirm 

learning suggests that the relatedness of a firm’s technological knowledge base to that of its 

partners is an important determinant of such ability (Cohen and Levinthal, 1990; Mowery et al., 

1996; Nooteboom et al., 2007; Lane and Lubatkin, 1998). Technological relatedness, defined 

here as the extent to which the knowledge bases of a firm and its alliance partners cover similar 

technology domains, reflects the degree to which firms have experience solving comparable types 

of problems. Therefore, at a basic level technological relatedness reflects common content 

knowledge and so it increases a firm’s understanding of the technological knowledge held by its 

partners (Lane and Lubatkin, 1998). More importantly, firms familiar with each other’s 

knowledge domains have a common reference frame and so they are more likely to be deeply 

exposed to the tacit process knowledge embedded in each other’s skills and routines (Zander and 

Kogut, 1995), which in turn facilitates richer communication and deeper mutual understanding. 

Consequently, at higher levels of technological relatedness, firms are better able to understand 

and share the more tacit process knowledge necessary both to identify commercial applications 

for acquired knowledge (Lane and Lubatkin, 1998) and to actually transform such knowledge 

into new products (Rindfleisch and Moorman, 2001). 

Technological relatedness is likely to be especially relevant in exploitation activities, such 

as the application of acquired technological knowledge in the product domain studied here. 

Indeed, once technological knowledge has been acquired and attention shifts to applying such 

knowledge in new product development, firms require a small ‘cognitive distance’ to their 

partners in order to achieve effective understanding and coordination (Nooteboom, 2000; 

Nooteboom et al., 2007). Yet, even though a small cognitive distance and so a high level of 
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technological relatedness enhances understanding between partners, one might argue that it 

simultaneously reduces the novelty value of R&D alliances (Nooteboom, 2000). However, an 

important counterargument is that in knowledge application, which is an exploitation activity 

focused on implementing acquired knowledge, the value of novelty is much lower than in 

exploratory activities, while the value of absorptive capacity is likely much greater instead 

(March 1991; Nooteboom et al., 2007; Rindfleisch and Moorman, 2001). Therefore, the 

exploitation of acquired technological knowledge through the application of such knowledge in 

the product domain should increase in effectiveness as technological relatedness increases.2 

Because it provides the absorptive capacity necessary in knowledge application, 

technological relatedness is likely to shape the knowledge acquisition association with new 

product development. Specifically, technological relatedness should be most effective in 

situations where a deep understanding of tacit process knowledge is required, while requisite 

deep understanding should in turn increase with the extent to which a firm acquires more of its 

partners’ technological knowledge. Indeed, at higher levels of knowledge acquisition, a firm must 

be able to understand the more tacit aspects associated with its partners’ technological knowledge 

in progressively greater detail in order to be able to apply that knowledge within the product 

domain. Therefore, the knowledge acquisition association with new product development should 

be stronger when firms are more technologically related to their alliance partners. 

                                                           
    2 Nooteboom et al. (2007) tested the effects of cognitive distance, measured as technological distance (i.e., the 

inverse of technological relatedness as defined here), across exploration and exploitation outcomes. Their results 

showed that exploration outcomes peaked at intermediate cognitive distance (Nooteboom et al., 2007: 1026), 

suggesting that neither novelty nor absorptive capacity alone would optimize exploratory innovation. In stark 

contrast, cognitive distance did not show an inverted U-shaped effect on exploitation outcomes. Moreover, though 

the authors did not show regression estimates of the linear association between cognitive distance and exploitation, 

reported correlations (Nooteboom et al., 2007: 1024) suggest that the correlation between cognitive distance and 

exploitation (i.e., ‘# of exploitation patents’) is negative and marginally significant (p < 0.1) and this negative 

correlation becomes stronger (p < 0.05) once one holds constant firm size, age, and R&D intensity. These findings 

converge with the idea that in exploitation, performance reduces monotonically with cognitive distance, fully 

consistent with Rindfleisch and Moorman’s (2001: 11) finding that knowledge relatedness between partners in new 

product alliances monotonically enhanced knowledge application. Consequently, I expect that the downstream 

application of acquired technological knowledge will increase in effectiveness as technological relatedness increases. 
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Hypothesis 2. Knowledge acquisition through R&D alliances is more beneficial for a 

firm’s new product development when technological relatedness between the firm and its 

alliance partners is high rather than low. 

 

One might argue that instead of reflecting absorptive capacity, technological relatedness 

perhaps also reflects competition between firms. However, in their study of R&D alliances in the 

electronics and telecommunications equipment industries, Oxley and Sampson (2004) found 

evidence consistent with the idea that firms viewed technological relatedness more as a source of 

absorptive capacity rather than competitive rivalry. In the information technology industry more 

broadly, which is my empirical setting, the absorptive capacity effect of technological relatedness 

is similarly likely to dominate due to a comparatively loose connection between firms’ 

knowledge and product domains (Grant and Baden-Fuller, 2004). Indeed, information 

technologies have a myriad of distinct applications (Hall, Jaffe, and Trajtenberg, 2002) 

Therefore, technological relatedness need not have implications for downstream competition 

between R&D alliance partners (Harrigan, 2003). I next focus on a second moderating factor that, 

unlike technological relatedness, is more directly related to interpartner competition. 

2.3 The moderating role of product-market competition 

The second moderating factor concerns the extent to which alliance partners have 

incentives to facilitate a firm’s new product development. Prior research suggests that the degree 

of interpartner competition is a key correlate of partners’ incentives to cooperate. An important 

source of interpartner competition is product-market competition, defined here as the extent to 

which a firm and its partners are (potential) competitors in products markets (Khanna et al., 

1998). Product-market competition signifies that partners’ commercial goals are likely to be in 

direct conflict. As such, it makes partners more suspicious of one another because competitive 

partners are more likely to be on the lookout for proprietary, organizationally embedded skills 

(Bamford, Gomes-Casseres, and Robinson, 2003: 81). Protection of core strategic competencies 
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is therefore critical (Laursen and Salter, 2014; Oxley and Sampson, 2004) and so competitive 

partners should be less motivated to facilitate each other’s new product development, for fear of 

creating stronger marketplace competitors (Harrigan, 2003). Indeed, firms failing to protect 

embedded process knowledge from leakage to competitors may run the risk of handing such 

partners market share (Fosfuri and Giarratana, 2009). Consequently, interpartner competition can 

destabilize interfirm alliances and turn such alliances from collaborative vehicles into competitive 

ones, where conflict ensues and firms try to maximize their private interests at the expense of 

their partners (Hamel, 1991; Park and Russo, 1996). Overall, because competing partners are 

likely to be more protective of their own strategic competencies, product-market competition may 

substantially reduce the benefits each partner can draw from an R&D alliance. 

For product-market competition to have negative effects in R&D alliances, it is not 

necessary that alliance partners are concerned with, or even aware of, any such effects from the 

outset (e.g., Faems, Janssens, and Van Looy, 2007). Indeed, R&D alliances among competitors 

are regularly formed to collaborate on technologies that may have a number of different product 

applications. In such alliances, partners’ limited farsightedness means that the downstream 

implications for product-market competition can be unclear ex ante (Rothaermel and Deeds, 

2004). Nevertheless, once technologies crystallize and “product development proceeds…, the 

competitive element may begin to color the relationship, with each firm’s trying to gain insight 

into the core competencies of the other” (Yoshino and Rangan, 1995: 21). 

Whether from the outset or—due to partners’ perhaps limited farsightedness—later on in 

an R&D alliance, product-market competition is likely to shape the knowledge acquisition 

association with new product development. Specifically, product-market competition should be 

especially problematic for firms that are more dependent on partners’ tacit process knowledge 

necessary to apply acquired technological knowledge in the product domain. Such dependence 
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will in turn be greater to the extent firms draw more extensively on partners’ technological 

knowledge as a building block for the creation of novel technological knowledge (and so, by 

implication, knowledge acquisition is substantial). In contrast, firms will be less dependent on 

partners’ more tacit process knowledge to the extent knowledge acquisition is limited.3 

Therefore, the positive association between knowledge acquisition and new product development 

should be weaker when firms and their partners operate in identical product markets, while it 

should be stronger when they operate in distinct product markets instead. 

Hypothesis 3. Knowledge acquisition through R&D alliances is more beneficial for a 

firm’s new product development when product-market competition between the firm and 

its alliance partners is weak rather than strong. 

 

3. Method 

I tested the three hypotheses using a unique dataset on a sample of manufacturing firms 

engaged in R&D alliances in information technology (IT) during 1994-1999. This industry 

provided a setting particularly well suited to examining my hypotheses. In the IT industry, R&D 

alliances have long constituted important new product development vehicles (Hagedoorn, 2002). 

Moreover, patenting has been prevalent in IT (Hall et al., 2002) and so I was able to follow 

previous studies in using patent data to measure two of the key constructs. Finally, new product 

development represents an important concern for IT firms because their profitability depends 

critically on the ability to bring new products to market (Bayus et al., 2003). 

R&D alliance data were drawn from the Cooperative Agreements and Technology 

Indicators database (CATI; see Hagedoorn, 2002); new product announcement data for 1997-

2000 from Dialog’s online New Product Announcements/Plus database (NPA/Plus); U.S. patent 

                                                           
    3 A different argument might be that firms’ dependence on partners also varies with technological relatedness. 

Specifically, greater technological relatedness facilitates learning and so it should reduce dependence, perhaps 

rendering product-market competition less problematic. A counterargument is that the potential for comparatively 

easy spillovers at high levels of technological relatedness is likely to intensify the efforts of competing partners to 

protect embedded process knowledge from leaking out (e.g., Harrigan, 2003; Yoshino and Rangan, 1995). The net 

effect of such countervailing forces is unclear a priori. Either way, H3 assumes constant Technological relatedness. 
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data for 1992-1999 from the NBER patent data file (see Hall et al., 2002); and data for the 

product-market competition and control variables from COMPUSTAT, Datastream, and a variety 

of other sources. Importantly, to evade a common-source bias, data for the hypothesis-testing 

variables were drawn from several independent data sources. R&D alliances were identified 

using a distinct data source; the two moderators measuring different aspects of such alliance 

relationships each came from separate sources; and data for the dependent variable also came 

from a unique data source. 

To address concerns of left censoring, all alliance- and partner-related measures (except 

alliance experience) were based on a three-year alliance horizon: in the initial observation year 

(1996) the alliance and partner variables reflected all R&D alliances a firm had formed during 

1994-1996, in 1997 all those formed during 1995-1997, and so on. The three-year horizon 

reflected that those sampled R&D alliances for which I was able to trace their duration lasted 

about three years on average. After discarding firms without patents during 1992-1999, those 

without new product introductions during 1997-2000, and firm-years with missing data, the final 

panel consisted of 120 firm-years for 44 firms (40 U.S. firms and 4 others) during 1996-1999. 

3.1 Dependent variable 

New product developmentit+1 was measured as the annual count of new products that each 

of the sample firms announced across computers, networks, office, semiconductors, and telecom 

during 1997-2000. New product announcements proxy for firms’ productivity in new product 

development (Brown and Eisenhardt, 1995) and have been used to measure new product 

development in studies focusing on the product-development correlates of innovative search 

(Katila and Ahuja, 2002), knowledge combination and exchange (Smith, Collins, and Clark, 

2005), biotechnology alliances (Deeds and Hill, 1996; Rothaermel and Deeds, 2004), and 

mergers and acquisitions (Hitt et al., 1996; Puranam, Singh, and Zollo, 2006). I was able to match 
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5,852 unique press releases listed in NPA/Plus, and announcing new IT products during 1997-

2000, to the sampled firms. I subsequently transformed these 5,852 press releases into yearly 

firm-level counts of new product announcements to obtain the dependent variable. I took special 

care to ensure that none of the press releases concerned new projects, which might otherwise 

confound the alliance and new product development measures. 

3.2 Independent variable and moderators 

3.2.1 Knowledge acquisition 

Following a large number of studies examining knowledge transfer in alliances (e.g., 

Frankort et al., 2012; Gomes-Casseres et al., 2006; Mowery et al., 1996; Oxley and Wada, 2009; 

Rosenkopf and Almeida, 2003), I used patent citation data to measure knowledge acquisition. For 

each firm in each year, I counted a firm’s number of patent citations to the patents of its R&D 

alliance partners that it did not cite prior to engaging in one or more R&D alliances with each of 

its partners. Subsequently, for each firm-year I obtained Knowledge acquisitionit by dividing this 

citation count by the firm’s total number of patent citations during that year (e.g., Mowery et al., 

1996). The empirical focus on citations to partners’ patents not cited by the focal firm prior to 

engaging in one or more R&D alliances with each of its partners ensured a close link with my 

conceptual focus on knowledge acquisition through R&D alliances.4 

While an aggregated citation measure may represent a valid indicator of knowledge 

acquisition (e.g., Jaffe ,Trajtenberg, and Fogarty, 2000), two concerns merit consideration. First, 

patent data are perhaps crude indicators of interfirm knowledge transfer and so noise in patent 

                                                           
    4 Citations to partners’ patents that the firm did cite prior to engaging in R&D alliances with each of its partners 

might have effects on new product development as well, even though such citations are unlikely to reflect knowledge 

acquisition through R&D alliances per se. To assess the potential confounding effects of such re-use of pre-alliance 

knowledge, I also constructed an additional citation-based measure in the same way I constructed Knowledge 

acquisition, yet used as the numerator a firm’s number of patent citations to the patents of its R&D alliance partners 

that it also cited prior to engaging in one or more R&D alliances with each of its partners. Unreported robustness 

checks adding this measure to the specifications as shown in the Results section did not reveal changes in the main 

results, while the coefficients on this additional measure were mostly insignificant. 
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citation measures appears unavoidable. However, because the effect of noise is to inflate standard 

errors, it should produce conservative parameter estimates. Second, Alcácer and Gittelman 

(2006) suggest that examiner-inserted citations can systematically bias citation-based proxies and 

so patent citations might both underestimate as well as overestimate knowledge acquisition. It is 

unlikely that patent examiners pattern their interventions on a firm’s R&D alliance activities 

(e.g., Frankort et al., 2012: 518) and so biases in alliance-related counts of patent citations should 

roughly parallel those in a firm’s patent citations more generally. Dividing a firm’s citations to 

partners’ patents by all of the firm’s patent citations therefore assuaged concerns of bias. 

3.2.2 Technological relatedness 

I used Jaffe’s (1986) vector correlation measure as the basis for constructing a measure of 

technological relatedness (Oxley and Sampson, 2004; Oxley and Wada, 2009). I began by 

calculating patent class distribution vectors for a firm and each of its partners. Specifically, Fit = 

(Fi1t ,…, Fikt ,…, FiKt) was the patent class distribution vector for firm i in year t (Jaffe, 1986), 

based on the firm’s successful patent applications within each of the USPTO’s K primary patent 

classes during years t-4 to t (Hall et al., 2002: 452-453). Fikt represented firm i’s successful patent 

applications in patent class k during years t-4 to t. Next, I calculated the technological relatedness 

of a focal firm i  and its partner j  as FitFjt’/[(FitFit’)(FjtFjt’)]
1/2. I averaged this dyadic measure 

across the relationships in a firm’s R&D alliance portfolio to obtain Technological relatednessit. 

This measure was bounded by 0 and 1, and values closer to 1 indicated a greater relatedness of 

the technological knowledge bases of a firm and its R&D alliance partners. 

3.2.3 Product-market competition 

 Product-market competitionit gauged the proportion of a firm’s partners operating in the 

same primary three-digit SIC code as that firm in year t. If firms viewed their competitor 

landscape at a more granular (e.g., four-digit SIC) level, then this should push the parameter 
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estimates toward insignificance, especially in cases where a firm and its partners were active in 

the same three-digit SIC code but not in the same four-digit SIC code. Thus, the product-market 

competition variable based on three-digit SIC codes should produce conservative estimates. 

3.3 Control variables 

 I controlled for various potential alternative explanations at the firm, R&D alliance 

portfolio, and partner levels of analysis. At the firm level, I controlled for Firm sizeit, measured as 

the logarithm of a firm’s total asset value in a given year, while Firm ageit was measured as the 

logarithm of a firm’s age in years since incorporation. Firm patent applicationsit was measured as 

the logarithm of a firm’s number of successful patent applications in a given year. To capture the 

effects of a firm’s experience in managing R&D alliances, Firm alliance experienceit represented 

the logarithm of the aggregated number of R&D alliances that a firm had formed in IT by year t 

(Sampson, 2005). Firm technological diversityit was measured using a modified diversity index 

(Phelps, 2010: 903), based on a firm’s successful patent applications across all the USPTO’s 

primary patent classes during years t-4 to t: 

Firm technological diversityit = 
1
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where Nit represented firm i’s total number of successful patent applications during years t-4 to t.5 

This measure was bounded by 0 and 1, and values closer to 1 indicated a greater distribution of a 

firm’s technologies across distinct technology domains. 

At the R&D alliance portfolio level, I captured the potential effects of alliance governance 

(e.g., Oxley and Wada, 2009) through Joint venture relationshipsit, measured as the proportion of 

a firm’s R&D alliance partners that the firm was connected to through one or more equity-based 

                                                           
    5 In Herfindahl-type measures based on patent counts, patent classes in which a firm has no patents are discarded 

from the calculations, which will bias diversity scores downward. Because none of the sampled firms had patents in 

all the USPTO’s primary patent classes, it was important to correct for such a bias. Hall (2005) showed that 

multiplication of the diversity measure by Nit / (Nit – 1) effectively achieves such a correction. 
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joint ventures in year t. To control for differences in geographic location between a firm and its 

partners (e.g., Lavie and Miller, 2008), Same country relationshipsit captured the proportion of a 

firm’s partners that were located in the firm’s home country. Finally, I controlled for a firm’s 

focus on research versus development across its R&D alliance portfolio (e.g., Frankort et al., 

2012). I began at the alliance level and, following Frankort et al. (2012: 519), coded joint 

research pacts, research corporations, and all joint ventures with the stated aim to perform basic 

and/or applied research as ‘research focused’. Next, I calculated Research-focused relationshipsit 

as the proportion of a firm’s R&D alliance partners that the firm was connected to through one or 

more research-focused R&D alliances in year t. 

At the partner level, I controlled for the general attractiveness of a firm’s R&D alliance 

partners as sources of technological knowledge. Partner citationsit measured the logarithm of the 

number of patent citations received by a firm’s partners in year t. Moreover, I controlled for 

partners’ new product development activities through Partner new productsit+1, capturing the 

logarithm of the number of new IT products introduced by a firm’s partners in year t+1. Both 

measures absorbed several unobserved, time-varying factors at the partner level and so any such 

factors should not confound the empirical identification. Finally, by analogy with Firm 

technological diversity, I measured Partner technological diversityit as follows: 

Partner technological diversityit = 
1
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where FJkt represented the total number of successful patent applications by a firm’s partners J in 

patent class k during years t-4 to t, and NJt represented the total number of successful patent 

applications by a firm’s partners J during years t-4 to t. This measure was bounded by 0 and 1, 

and values closer to 1 indicated that the technologies of a firm’s partners showed a greater 

dispersion across distinct technology domains. 
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To capture any time-varying factors homogeneously affecting all sampled firms, all 

models included year fixed effects for 1996-1998, while 1999 was the reference category. 

3.4 Estimation 

The dependent variable was an overdispersed count variable and so I estimated all models 

using a Poisson quasi-maximum likelihood (Poisson QML) estimator with conditional firm fixed 

effects that captured time-invariant unobserved heterogeneity at the firm level (Wooldridge, 

1999).6 While conditional fixed effects estimation drops all firms without temporal variation on 

the dependent variable, the resulting estimates are nevertheless unbiased and consistent. To avoid 

simultaneity, New product development took a one-year lead to the hypothesis-testing variables. 

A one-year lag was also consistent with some findings on R&D projects within firms (e.g., 

Hausman, Hall, and Griliches, 1984: 925; Pakes and Schankerman, 1984: 83), suggesting that 

traceable inventive activities, such as the creation of novel technological knowledge, may closely 

follow a project’s inception, while the time to commercial application is likely somewhat longer.7 

4. Results 

Table 1 shows summary statistics and Table 2 shows the conditional fixed effects Poisson 

QML estimates of new product development. In Models 2-4 and 6, the main effects for 

Knowledge acquisition, Technological relatedness, and Product-market competition were 

standardized prior to calculating the interaction terms. 

--- Insert Table 1 about here --- 

--- Insert Table 2 about here --- 

                                                           
    6 In an unreported supplementary analysis, I found that a considerable part of the variance in New product 

development was due to stable differences across the sampled firms. This finding resonates both with prior research 

suggesting that firms may differ substantially in their levels of innovation activities (e.g., Chen and Miller, 2007) and 

with studies showing inter-temporal persistence in innovation productivity within firms in high-tech industries (e.g., 

Raymond et al., 2010). The Hausman (1978) specification test showed that unobserved and time-invariant firm 

effects correlated significantly with the covariate matrix, which is why I opted for a fixed effects estimator. 

    7 Findings such as those reported in Pakes and Schankerman (1984) are based on R&D projects within firms. In an 

interfirm setting, the lag structure may of course be different. Therefore, after reporting the main results, I also show 

results using alternative lags between Knowledge acquisition and New product development. 
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4.1 Hypotheses 

In support of H1, Model 1 in Table 2 shows that the coefficient on Knowledge acquisition 

is positive and significant. This effect is also substantive in real terms, as a one standard deviation 

increase in knowledge acquisition is associated with a 29% increase in the multiplier of new 

product development (i.e., exp[2.817*0.09] = 1.29), holding all else constant. 

Model 2 shows that the interaction between Knowledge acquisition and Technological 

relatedness is positive and significant. Therefore, knowledge acquisition benefits a firm’s new 

product development more when technological relatedness is greater, which supports H2. As 

Figure 1a shows, the knowledge acquisition association with new product development is 

significantly stronger when technological relatedness is high rather than low. Moreover, Figure 

1a shows that below the mean level of Knowledge acquisition, low technological relatedness 

tends to be more beneficial for new product development than high technological relatedness. 

This finding implies that low levels of technological learning in R&D alliances allow for greater 

technological specialization of the partnered firms (e.g., Grant and Baden-Fuller, 2004; Mowery 

et al., 1996). 

--- Insert Figures 1a/b about here --- 

Supporting H3, Model 3 shows that the interaction between Knowledge acquisition and 

Product-market competition is negative and significant and so knowledge acquisition benefits a 

firm’s new product development progressively less when product-market competition increases. 

As Figure 1b shows, knowledge acquisition is positively associated with new product 

development when product-market competition is weak, while the knowledge acquisition 

association with new product development turns negative when product-market competition is 

strong instead. However, the estimates of the effects of low levels of knowledge acquisition on 

new product development in Figure 1b—specifically, those below the mean level of Knowledge 
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acquisition—also suggest that strong product-market competition results in significantly more 

new products than weak product-market competition. One way to explain this result is that a firm 

may not acquire technological knowledge from partners in its own industry if rather than 

competitors such partners are in fact the firm’s complementors in product markets. The purpose 

of alliances between complementors is likely not to outlearn one another so much as it is to 

coordinate in order to achieve complementarity in the product domain. For that reason, at low 

levels of Knowledge acquisition, partners active in the same product market as the focal firm may 

contribute more to its new product development than partners in other product markets. 

Next, I examined the implications of potential multicollinearity for the parameter 

estimates. Specifically, because a fixed-effects specification applied to a relative short panel 

tends to increase standard errors on time-varying variables that do not vary much over time, 

within-firm collinearity may be a concern. Though variance inflation factors for all covariates 

were below the standard threshold of ten (Belsey, Kuh, and Welsch, 1980; Kennedy, 2003), to 

assess the stability of the key results, I nevertheless re-estimated Models 1 and 4 after excluding 

all time-varying control variables. Models 5 and 6 in Table 2 show that the estimates are still 

consistent with all three hypotheses, though Models 1 and 4 provide a significantly better overall 

fit to the data (χ2
5 vs. 1 [11 d.f.] = 68.40, p < 0.001; and χ2

6 vs. 4 [11 d.f.] = 50.54, p < 0.001). 

While Models 1-6 show associations among the study variables at the focal firm’s alliance 

portfolio level of analysis, it is reasonable to imagine that the interaction effects as proposed in 

H2 and H3 may come into being at the dyadic, firm-partner level of analysis.8 To assess this 

                                                           
    8 The question whether aggregation of the main effects to the portfolio level prior to calculating the interaction 

terms hides more granular dyadic effects is directly relevant to the hypothesis tests. A more basic question concerns 

whether using measures of Technological relatedness and Product-market competition based on a straightforward 

aggregation across dyads may itself obscure relevant variance in these measures across different firm-partner dyads. 

In an unreported robustness check, I therefore re-estimated Models 1-6 in Table 2 while including the standard 

deviations of Technological relatedness and Product-market competition, both capturing variance in these measures 

across a firm’s dyadic relationships. The coefficient on the standard deviation of Technological relatedness was 
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possibility, I performed an additional analysis in which interactions between Knowledge 

acquisition and, respectively, Technological relatedness and Product-market competition were 

constructed at the dyadic, firm-partner level prior to averaging scores on these interactions across 

a firm’s portfolio of R&D alliance partners. Substituting these alternative measures for the 

portfolio-level interactions, Model 7 in Table 2 shows that the interaction between Knowledge 

acquisition and Technological relatedness is positive and significant. This finding suggests that 

firms that develop more new products are the ones that are more technologically related to 

especially those partners they acquire more technological knowledge from. However, the 

interaction between Knowledge acquisition and Product-market competition constructed using 

dyad-level scores is insignificant. I will return to this finding in the discussion section. 

4.2 Further analysis 

In various additional analyses, I further assessed the validity of the empirical findings in 

Table 2. Specifically, I examined the potential endogeneity of Knowledge acquisition; I allowed 

for different time lags between Knowledge acquisition and New product development; and I 

explored potential nonlinearity in the moderating effect of Technological relatedness. 

4.2.1 Potential endogeneity of knowledge acquisition 

The finding that technological relatedness and product-market competition are significant 

and substantive moderators of the knowledge acquisition association with new product 

development does not rule out the possibility that these two moderators are also antecedents of 

knowledge acquisition in the first place (e.g., Preacher, Rucker, and Hayes, 2007). Indeed, it is 

reasonable to imagine that technological relatedness and product-market competition may first 

                                                                                                                                                                                            
insignificant, while that of Product-market competition was negative and significant. The latter finding suggests that 

firms with similar numbers of partners in their own primary industry and in other industries introduced fewer new 

products than firms with partners mainly either inside or outside their primary industry. One way to explain this 

result is that requisite collaborative routines may be distinct between intra- and inter-industry alliances, such that 

firms focusing on one of the two reap greater efficiency benefits across their portfolios of R&D alliances. The results 

on the hypothesis-testing variables were unaffected by inclusion of these two measures of variation. 
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determine knowledge acquisition (e.g., Gomes-Casseres et al., 2006; Mowery et al., 1996; Oxley 

and Wada, 2009), to then condition its association with new product development in the ways I 

theorized and tested. Fixed effects OLS estimates of Knowledge acquisition as a function of all 

other variables included in Table 2, Model 1, indeed revealed a positive association between 

Technological relatedness and Knowledge acquisition (β = 0.195, p = 0.031), while Product-

market competition was not significantly associated with Knowledge acquisition (β = -0.056, p = 

0.222).9 

A key assumption underlying the models in Table 2 is that these and other factors that 

potentially determine a firm’s level of knowledge acquisition are held constant, such that 

Knowledge acquisition can be treated as an exogenous variable in the new product development 

models. An independent variable is exogenous if it is uncorrelated with the error term of the 

model in which it is entered, in which case the variable estimate will be consistent (Wooldridge, 

2002: 62). Using the average level of knowledge acquisition across all observations within a 

firm’s primary industry in year t as an instrument, generalized Durbin-Wu-Hausman tests 

(Davidson and MacKinnon, 1993: 237-240) failed to reject the null hypothesis of consistent 

estimates for Knowledge acquisition across all models in Table 2 (0.157 < p < 0.968). Therefore, 

the evidence suggests no reason to suspect that Knowledge acquisition suffered from an 

endogeneity bias in the new product development models. 

4.2.2 Alternative time lags for knowledge acquisition 

The models presented in Table 2 allow R&D alliances formed between years t-2 and t, 

and Knowledge acquisition in year t, to have an effect on New product development in year t+1. 

However, it is possible that technological knowledge acquired earlier in time might have effects 

                                                           
    9 Knowledge acquisition is truncated at zero and so strictly speaking, its distribution is a mixture of both discrete 

and continuous distributions, potentially rendering fixed effects OLS estimates biased. Nevertheless, Honoré’s 

(1992) implementation of a fixed effects Tobit estimator generated a qualitatively similar conclusion. 



21 

 

on New product development as well. To assess this possibility, I also tested the hypotheses using 

alternative lag specifications. 

--- Insert Table 3 about here --- 

Table 3 shows the estimates. Model 1 includes Knowledge acquisition in years t (i.e., the 

knowledge acquisition measure in Table 2), t-1, and t-2, showing that the main effect for 

Knowledge acquisition (t) remains positive and significant, while the coefficients on the two 

alternative lags are insignificant. Models 2-4 show tests of H2 based on alternative lags for 

knowledge acquisition. Interactions between Technological relatedness and, respectively, 

Knowledge acquisition (t-1) (Model 2) and Knowledge acquisition (t-2) (Model 3) are 

insignificant. Model 4 shows that the technological relatedness interaction with knowledge 

acquisition aggregated across years t-2 to t is positive and marginally significant, in line with 

H2.10 However, the model fit of Table 2, Model 2, is significantly better than that of Table 3, 

Model 4, suggesting that the aggregated effect is driven largely by Knowledge acquisition in year 

t. Finally, Models 5-7 in Table 3 show that tests of H3 using alternative lags all generate 

insignificant results. Therefore, the most appropriate lag specification is one year between 

Knowledge acquisition and New product development, which is the lag used in Table 2. 

4.2.3 Potential nonlinearity in the moderating effect of technological relatedness 

The theory motivating H2 suggested that in exploitation activities, such as the application 

of acquired technological knowledge in the product domain, technological relatedness is required 

“in order to coordinate rapidly and without errors”, while technological distance instead 

“creates uncertainty and complexity, which is undesirable in such a setting” (Nooteboom et al., 

2007: 1019). Accordingly, H2 predicted that technological relatedness would have a linear and 

                                                           
    10 To construct Knowledge acquisition (t-2 to t), I counted a firm’s number of patent citations to the patents of its 

R&D alliance partners during years t-2 to t that it did not cite prior to engaging in one or more R&D alliances with 

each of its partners. Subsequently, I divided this citation count by the firm’s total number of patent citations during 

years t-2 to t. 
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positive moderating effect on the association between knowledge acquisition and new product 

development. However, though large differences between a firm’s knowledge base and that of its 

partners may indeed be detrimental for exploiting acquired technological knowledge in the 

product domain, it is nevertheless possible that a firm derives value from small differences 

between its knowledge base and that of its partners, in which case technological relatedness 

might show some decreasing marginal returns (e.g., Nooteboom et al., 2007). 

The possibility of such decreasing marginal returns may have implications for the 

empirical evidence in Table 2 supporting H2. Specifically, if the effect of technological 

relatedness is curvilinear rather than linear, then the marginal new product development benefits 

from acquired technological knowledge will reduce at higher levels of technological relatedness. 

In such case, though we might still observe an average increase in the correlation between 

knowledge acquisition and new product development as technological relatedness increases 

(consistent with H2), this increase should occur at a progressively decreasing rate. 

--- Insert Figure 2 about here --- 

Figure 2 shows how the correlation between Knowledge acquisition and the logarithm of 

New product development varied across levels of Technological relatedness. I ordered all 120 

firm-years by ascending technological relatedness and then divided them into 20 groups 

containing 6 firm-years each. The 20 black dots in Figure 2 represent these groups. Each group’s 

position on the horizontal axis is determined by the average technological relatedness in the 

group, while its position on the vertical axis is determined instead by the correlation between 

Knowledge acquisition and the logarithm of New product development within that group. The 

figure shows that the knowledge acquisition correlation with the logarithm of new product 

development on average increases with technological relatedness, consistent with H2. 

--- Insert Table 4 about here --- 
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To assess whether the observed increase in the correlation between knowledge acquisition 

and new product development was linear or curvilinear, I regressed the correlations shown in 

Figure 2 on linear and squared Technological relatedness. Table 4, Models 1 and 2, show that the 

main effect of Technological relatedness is positive and significant, while its squared term is 

insignificant (Model 2). Moreover, the adjusted R-squared for Model 1 is higher than that for 

Model 2 (i.e., 0.167 versus 0.144). Based on the estimates of Model 1 in Table 2, the solid black 

line in Figure 2 shows the regression line fitted to the 20 data points. It predicts that a one 

standard deviation increase in technological relatedness is on average associated with an increase 

in the correlation between knowledge acquisition and new product development of 0.207. The 

linear and positive moderating effect of Technological relatedness as predicted in H2 and tested 

in Table 2 is thus clearly borne out by this descriptive correlation analysis.11 

--- Insert Table 5 about here --- 

Beyond this correlation analysis, I also directly introduced a squared term for 

Technological relatedness into the models testing H2. Table 5 shows the estimates. Model 1 

shows no evidence of nonlinearity in the effect of Technological relatedness, while the 

interaction between Knowledge acquisition and Technological relatedness is positive and 

significant. Model 2 introduces all control variables and again shows no evidence of nonlinearity 

in the effect of technological relatedness. Though the interaction term in Model 2 in Table 5 is 

insignificant, the log-likelihood for this model is identical to that for Model 2 in Table 2 and so 

the latter represents the more parsimonious model. Therefore, both descriptive and inferential 

analyses fully support H2, by generating consistent evidence for a positive and linear moderating 

effect of Technological relatedness, while providing no evidence of nonlinearity. 

                                                           
    11 To assess robustness, I also generated five alternative versions of the estimates in Table 4, one using raw counts 

of new products to construct the correlations, and others using 12, 15, 24, and 30 groups of firm-years, respectively. 

Across these five alternatives, the average marginal effect of Technological relatedness (z-score) on the correlation 

between Knowledge acquisition and New product development was 0.209, while I found no evidence of nonlinearity. 

Hans
Highlight
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5. Discussion and conclusion 

This study was motivated by the observation that research on the performance 

consequences of R&D alliances has focused virtually exclusively on either knowledge acquisition 

or new product development, while underemphasizing the relationship between these two distinct 

outcomes. Bridging these two research streams, this study directly connected knowledge 

acquisition through R&D alliances to new product development and examined when R&D 

alliances enabled firms to apply acquired technological knowledge in the product domain. My 

investigation showed that firms acquiring more technological knowledge from their R&D 

alliance partners were on average more productive in new product development. However, I also 

found robust evidence showing that knowledge acquisition was significantly more beneficial for 

firms’ new product development both when their technological knowledge bases were more 

closely related to those of their partners and when they operated in different product markets than 

their partners. 

This study fills a gap in the alliance literature by directly examining the role of R&D 

alliances in connecting firms’ technology and product domains (e.g., Grant and Baden-Fuller, 

2004). Different streams of research have shown that R&D alliances may facilitate technological 

learning (e.g., Gomes-Casseres et al., 2006; Mowery et al., 1996), while such alliances may have 

consequences in the product domain as well (e.g., Deeds and Hill, 1996; Rothaermel and Deeds, 

2004). Nevertheless, to date these two research streams have evolved largely independently and 

so in the context of R&D alliances, little is known about the relationship between knowledge 

acquisition on the one hand and knowledge application on the other (e.g., Meier, 2011). In the 

innovation literature more broadly, several studies have called for more research integrating the 

insights from the knowledge acquisition literature with the literature on knowledge application 

(Fiol, 1996; Lane et al., 2006). Therefore, the first contribution of this study lies in offering a 
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direct and systematic assessment of whether knowledge acquisition through R&D alliances 

influences firms’ new product development outcomes. 

In connecting technological learning through R&D alliances to new product development, 

this study also developed and tested a theory of how technological relatedness and product-

market competition between R&D alliance partners affects firms’ propensity to apply acquired 

knowledge in the product domain. Accordingly, the study’s second contribution lies in showing 

that the knowledge acquisition association with new product development is subject to important 

scope conditions. Specifically, though extensive knowledge acquisition requires technological 

relatedness and low levels of product-market competition between R&D alliance partners, low 

levels of technological learning from R&D alliance partners may translate into enhanced new 

product development as well, to the extent that firms have R&D alliances with technologically 

specialized competitors. These findings empirically support Grant and Baden-Fuller’s (2004) 

prediction that compared to R&D alliances focusing on knowledge acquisition, R&D alliances 

that instead de-emphasize knowledge acquisition enable greater technological specialization of 

the partner firms, while they are simultaneously less affected by interpartner competition. 

 Three of the empirical results directly present opportunities for future research. First, I 

found that in the application of acquired technological knowledge, partners active in similar 

technology domains consistently derived the greatest new product development benefits (e.g., 

Figures 1a and 2). This finding converges with the idea that the value of technological distance 

and concomitant novelty potential is comparatively low in firms’ exploitation activities (e.g., 

March, 1991; Nooteboom et al., 2007; Rindfleisch and Moorman, 2001). However, it is possible 

that novelty value varies across different types of new products. For example, it is reasonable to 

imagine that exposure to somewhat unfamiliar tacit process knowledge is more likely to generate 

radical rather than incremental new products. If this is the case, then we should observe 
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nonlinearities in the benefits that firms derive from technological relatedness. Future research can 

assess such effects using more granular data on the nature of firms’ new products. 

Second, I found that firms acquiring little technological content knowledge through their 

R&D alliances benefited disproportionally from partners within their own primary industry 

(Figure 1b). This finding nicely underscores the conditional benefits of technological learning in 

R&D alliances, as it suggests that new product development may not always require firms to rely 

strongly on partners’ technological knowledge. I speculated that this effect might reflect potential 

product-market complementarities between partners active in the same industry, which perhaps 

reduces the need for extensive acquisition of partners’ technological knowledge. While some 

prior studies have alluded to such complementarity effects (e.g., Grant and Baden-Fuller, 2004; 

Kapoor and McGrath, 2014), empirical research systematically linking learning in the technology 

domain to the new product development activities of complementors is needed. Moreover, 

studies have not directly compared the potentially distinct mechanisms connecting R&D alliances 

to new product development between competing and complementary partners. There are thus 

ample opportunities to investigate the effects of competition and complementarity between 

alliance partners in the process connecting technological learning to new product development. 

Third, I found that the interactive effects of knowledge acquisition and technological 

relatedness came into being at the level of firm-partner dyads rather than at the level of firms’ 

R&D alliance portfolios. Therefore, firms more technologically related to especially those 

partners they acquired more technological knowledge from achieved the best new product 

development outcomes. However, I found no such evidence for product-market competition 

(Table 2, Model 7). This somewhat counterintuitive result perhaps suggests that technological 

knowledge drawn from a particular partner is not always developed with the cooperation of that 

same partner. Indeed, one possible mechanism is this: in anticipation of downstream competitive 
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tensions with particular alliance partners, firms might turn to other partners for the 

commercialization of knowledge acquired elsewhere, even if such partners are less able to 

provide the tacit process knowledge this requires. Another possible mechanism is that product-

market competition makes firms’ knowledge application more dependent on perhaps inadequate 

internal capabilities (e.g., Hagedoorn and Wang, 2012; Moorman and Slotegraaf, 1999). Future 

research is needed to identify and distinguish between such more complex mechanisms. 

 Given my focus on the information technology industry, generalizability to other 

industries remains a possible concern. Specifically, a key identifying assumption of the theory 

presented in this study is that technological relatedness represents a suitable indicator of partner-

related absorptive capacity. This is conceivable especially in settings where connections between 

firms’ knowledge and product domains are loose rather than strong (Grant and Baden-Fuller, 

2004) and the information technology industry represents such a setting. Indeed, technological 

progress in information technology is cumulative and so the majority of technologies and final 

products embody numerous pieces of intellectual property that have little value in and of 

themselves (Cohen, Nelson, and Walsh, 2000). Moreover, information technologies are known to 

have a myriad of distinct applications (Hall et al., 2002). However, in settings where technologies 

are more discrete rather than cumulative, and where competition in factor markets maps much 

more closely onto product-market competition, competitive aspects of technological relatedness 

may dominate the absorptive capacity effects as predicted and tested here. Future research may 

explore additional correlates of partner-related absorptive capacity, and how such factors shape 

the knowledge acquisition association with new product development, in carefully selected 

settings other than information technology. 

 In sum, bridging alliance research on knowledge acquisition and that on new product 

development, this study offers the first systematic empirical examination connecting 
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technological learning through R&D alliances to firms’ new product development outcomes, 

showing that important scope conditions underlie the application of acquired technological 

knowledge in the product domain. The study’s findings generate several directions for future 

research that can deepen our understanding of the mechanisms connecting R&D alliances to firm 

performance. 
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Figure 1. 

New product development multipliers of knowledge acquisition interactions with technological 

relatedness and product-market competition 
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(1a) Technological relatedness (Table 2, Model 2) 
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(1b) Product-market competition (Table 2, Model 3) 
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Figure 2. 

Correlations between knowledge acquisition and the logarithm of new product development 

across levels of technological relatedness 
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Table 1. 

Summary statistics and correlation matrix (N = 120) 

 

Variable name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 New product development (t +1) 1.00

2 Knowledge acquisition 0.49 1.00

3 Technological relatedness 0.16 0.37 1.00

4 Product-market competition -0.06 0.07 0.57 1.00

5 Firm size
a

0.39 0.12 -0.15 -0.37 1.00

6 Firm age
a

0.10 -0.16 -0.41 -0.42 0.55 1.00

7 Firm patent applications
a

0.58 0.24 0.18 -0.02 0.34 0.14 1.00

8 Firm alliance experience
a

0.68 0.55 0.14 -0.12 0.58 0.18 0.48 1.00

9 Firm technological diversity 0.28 0.16 -0.14 -0.43 0.65 0.45 0.24 0.42 1.00

10 Joint venture relationships 0.39 0.34 0.23 0.12 0.28 0.22 0.40 0.63 0.27 1.00

11 Same-country relationships 0.00 0.29 -0.07 0.21 0.03 -0.05 -0.01 0.15 -0.03 0.12 1.00

12 Research-focused relationships -0.01 0.10 0.34 0.39 0.03 -0.10 0.17 0.17 -0.01 0.54 0.13 1.00

13 Partner citations
a

0.42 0.41 0.08 -0.12 0.17 -0.04 0.60 0.38 0.28 0.12 0.00 0.02 1.00

14 Partner new products (t +1)
a

0.49 0.44 0.10 -0.14 0.30 -0.02 0.44 0.52 0.29 0.18 0.00 0.03 0.65 1.00

15 Partner technological diversity 0.14 0.17 0.16 -0.01 0.22 -0.10 0.10 0.14 0.27 -0.06 -0.09 0.02 0.38 0.34 1.00

Mean 48.77 0.08 0.33 0.20 3.91 3.62 3.78 2.10 0.92 0.21 0.79 0.09 7.26 4.68 0.95

Standard deviation 65.81 0.09 0.20 0.30 0.70 0.78 1.64 1.30 0.05 0.26 0.32 0.19 2.47 2.10 0.09

Minimum 0.00 0.00 0.00 0.00 2.03 2.20 0.69 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 305 0.43 0.85 1.00 5.48 4.80 7.47 4.72 1.00 1.00 1.00 1.00 10.14 7.08 0.98

All correlations ≥ |0.18| are significant at or beyond p=0.05 (two-tailed).

a. Logarithm.  
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Table 2. 

Conditional fixed effects Poisson QML estimates of new product development (t+1) (N = 120)a 

(1) (2) (3) (4) (5) (6) (7)

Model: H1 H2 H3 H2/3 H1 H2/3 H2/3
b

Knowledge acquisition 2.817** 0.055 0.068 -0.073 2.403** 0.022 -0.233

[0.886] [0.116] [0.084] [0.111] [0.774] [0.071] [1.291]

Technological relatedness (TR) 2.451** 0.325** 0.265+ 0.141 2.424*** 0.232** 0.580

[0.764] [0.117] [0.142] [0.133] [0.548] [0.081] [0.711]

Product-market competition (PMC) -0.616 -0.087 -0.148 -0.066 -0.446 -0.057 -0.042

[0.409] [0.133] [0.105] [0.117] [0.422] [0.082] [0.591]

Knowledge acquisition × TR 0.230** 0.194** 0.164** 9.779***

[0.078] [0.070] [0.050] [2.603]

Knowledge acquisition × PMC -0.452*** -0.409*** -0.247** -3.406

[0.102] [0.106] [0.091] [5.396]

Firm size -0.006 0.067 0.880 0.834 -0.024

[0.837] [0.785] [0.695] [0.677] [0.898]

Firm age -1.019 -1.764 -4.000+ -4.251+ -0.881

[3.023] [3.269] [2.305] [2.513] [3.014]

Firm patent applications 0.271+ 0.230 0.310* 0.273* 0.157

[0.163] [0.150] [0.139] [0.123] [0.145]

Firm alliance experience 0.037 0.025 -0.137 -0.134 -0.036

[0.208] [0.218] [0.191] [0.191] [0.210]

Firm technological diversity -0.823 6.369 7.317 12.350* 9.386+

[7.061] [7.382] [5.061] [5.216] [5.476]

Joint venture relationships 0.403 0.274 1.486** 1.291* 0.501

[0.560] [0.629] [0.542] [0.580] [0.613]

Same-country relationships 0.947 0.328 -0.130 -0.546 0.172

[0.585] [0.555] [0.580] [0.589] [0.498]

Research-focused relationships -0.890+ -0.088 -0.266 0.373 0.293

[0.531] [0.572] [0.365] [0.450] [0.459]

Partner citations 0.082 0.114+ 0.096 0.125+ 0.139+

[0.070] [0.061] [0.078] [0.065] [0.071]

Partner new products (t +1) -0.107 -0.031 0.013 0.064 -0.022

[0.073] [0.077] [0.087] [0.098] [0.095]

Partner technological diversity 2.294 0.545 0.382 -0.919 0.215

[1.493] [0.752] [1.644] [1.063] [1.037]

Log-likelihood -308.65 -290.00 -278.82 -265.92 -342.85 -291.19 -273.45

Standard errors in brackets; *** p<0.001, ** p<0.01, * p<0.05, + p<0.1. All models include year fixed effects.

b. In Model 7, interactions were calculated at the dyadic level and then averaged across a firm’s R&D alliance partners.

a. In Models 2-4 and 6, the main effects for Knowledge acquisition , Technological relatedness , and Product-market competition  were 

standardized prior to calculating the interaction terms.
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Table 3. 

Conditional fixed effects Poisson QML estimates of new product development (t+1) with 

alternative time lags for knowledge acquisition (N = 120) 

(1) (2) (3) (4) (5) (6) (7)

Model: H1 H2 H2 H2 H3 H3 H3

Technological relatedness (TR) 2.762** 2.652* 2.304* 1.850+ 3.614** 3.043** 3.312***

[0.881] [1.352] [1.007] [1.105] [1.111] [0.953] [0.942]

Product-market competition (PMC) -0.558 -0.709+ -0.846+ -0.707+ -0.509 -0.821 -0.329

[0.399] [0.420] [0.486] [0.419] [0.423] [0.558] [0.504]

Knowledge acquisition (t ) 2.157*

[0.992]

Knowledge acquisition (t -1) -0.432 -1.894 -0.297

[0.281] [1.572] [0.265]

Knowledge acquisition (t -2) -0.260 -2.614+ -0.680*

[0.275] [1.559] [0.282]

Knowledge acquisition (t -2 to t ) -6.402** -1.537+

[2.402] [0.823]

Knowledge acquisition (t -1) × TR 3.187

[4.007]

Knowledge acquisition (t -2) × TR 4.604

[3.428]

Knowledge acquisition (t -2 to t ) × TR 10.600+

[5.742]

Knowledge acquisition (t -1) × PMC -1.968

[1.232]

Knowledge acquisition (t -2) × PMC 0.177

[0.927]

Knowledge acquisition (t -2 to t ) × PMC -3.271

[2.572]

Firm size -0.066 0.009 0.370 0.221 -0.246 0.172 0.076

[0.872] [0.971] [0.975] [0.930] [0.908] [0.936] [0.869]

Firm age -0.069 1.505 1.858 1.608 0.924 1.879 1.503

[3.065] [2.510] [2.386] [2.735] [2.738] [2.513] [2.829]

Firm patent applications 0.335+ 0.369+ 0.395+ 0.472* 0.229 0.342+ 0.379+

[0.177] [0.208] [0.212] [0.218] [0.195] [0.199] [0.198]

Firm alliance experience -0.048 -0.055 -0.156 -0.188 0.019 -0.125 -0.157

[0.234] [0.267] [0.227] [0.265] [0.275] [0.231] [0.263]

Firm technological diversity -2.323 0.427 -0.423 -2.076 0.799 0.470 0.385

[6.757] [6.269] [6.536] [5.941] [6.325] [6.649] [6.028]

Joint venture relationships -0.037 -0.264 -0.180 -0.596 -0.624 -0.163 -0.485

[0.722] [0.746] [0.688] [0.787] [0.798] [0.687] [0.775]

Same-country relationships 1.035+ 0.716 0.862 1.087+ 0.642 0.745 0.753

[0.629] [0.580] [0.547] [0.634] [0.570] [0.551] [0.657]

Research-focused relationships -1.246* -1.183+ -0.934 -1.271* -1.041 -0.880 -1.233*

[0.593] [0.643] [0.635] [0.587] [0.659] [0.655] [0.606]

Partner citations 0.111 0.170* 0.164* 0.191* 0.155+ 0.159* 0.173+

[0.084] [0.083] [0.073] [0.088] [0.083] [0.078] [0.090]

Partner new products (t +1) -0.119 -0.120 -0.105 -0.109 -0.127 -0.116 -0.118

[0.076] [0.089] [0.088] [0.085] [0.087] [0.091] [0.087]

Partner technological diversity 2.299 1.843 1.773 1.384 2.501 2.505 2.472

[1.631] [1.930] [1.948] [1.461] [2.741] [2.988] [3.287]

Log-likelihood -304.23 -318.64 -319.11 -306.68 -317.28 -321.83 -308.78

Standard errors in brackets; *** p<0.001, ** p<0.01, * p<0.05, + p<0.1. All models include year fixed effects.  
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Table 4. 

OLS regressions of the correlation between knowledge acquisition and the logarithm of new 

product development across 20 groups of firm-years (Figure 2)a 

Dependent variable:

(1) (2)

Technological relatedness 0.207* 0.226*

[0.094] [0.099]

(Technological relatedness)
2 -0.056

[0.078]

Constant 0.472** 0.526**

[0.092] [0.119]

N 20 20

R-squared 0.211 0.234

adjusted R-squared 0.167 0.144

Corr[Knowledge acquisition;                    

ln(New product development)]

Standard errors in brackets; ** p<0.001, * p<0.05.

a. In both models, Technological relatedness was standardized.  
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Table 5. 

Conditional fixed effects Poisson QML estimates of new product development (t+1) including 

squared technological relatedness (N = 120)a 

(1) (2)

Knowledge acquisition 0.074 0.062

[0.069] [0.119]

Technological relatedness (TR) 0.202 0.163

[0.162] [0.190]

[Technological relatedness (TR)]
2 0.042 0.150

[0.086] [0.121]

Knowledge acquisition × TR 0.218* 0.148

[0.056] [0.112]

Product-market competition -0.456

[0.480]

Firm size 0.257

[0.837]

Firm age -1.838

[3.046]

Firm patent applications 0.265+

[0.154]

Firm alliance experience 0.054

[0.229]

Firm technological diversity 7.529

[6.976]

Joint venture relationships 0.438

[0.619]

Same-country relationships 0.330

[0.546]

Research-focused relationships -0.246

[0.580]

Partner citations 0.120+

[0.065]

Partner new products (t +1) -0.033

[0.082]

Partner technological diversity 0.623

[0.782]

Log-likelihood -305.15 -290.00

Standard errors in brackets; * p<0.001, + p<0.1. All model include year fixed effects.

a. In both models, the main effects for Knowledge acquisition  and Technological relatedness were standardized prior to 

calculating the squared and interaction terms.
 


