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Abstract

In this paper, we study the extent to which any risk measure can lead to superadditive risk

assessments, implying the potential for penalizing portfolio diversification. For this purpose we

introduce the notion of extreme-aggregation risk measures. The extreme-aggregation measure

characterizes the most superadditive behavior of a risk measure, by yielding the worst-possible

diversification ratio across dependence structures. One of the main contributions is demonstrat-

ing that, for a wide range of risk measures, the extreme-aggregation measure corresponds to the

smallest dominating coherent risk measure. In our main result, it is shown that the extreme-

aggregation measure induced by a distortion risk measure is a coherent distortion risk measure. In

the case of convex risk measures, a general robust representation of coherent extreme-aggregation

measures is provided. In particular, the extreme-aggregation measure induced by a convex short-

fall risk measure is a coherent expectile. These results show that, in the presence of dependence

uncertainty, quantification of a coherent risk measure is often necessary, an observation that lends

further support to the use of coherent risk measures in portfolio risk management.
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1 Introduction

Debate on the desirability of alternative sets of properties for risk measures has been raging

since the seminal paper of Artzner et al. (1999) on coherent measures of risk. Key to coherence

is the property of subadditivity, implying that the merging of risky positions should always yield

capital savings. Subadditivity, as well as the alternative notion of convexity, has gained wide ac-

ceptance in the literature; see Föllmer and Schied (2011, Chapter 4) for an extensive treatment.

However, dissenting voices have persisted. For instance, Dhaene et al. (2008) criticize subadditivity

from a regulatory perspective, considering the impact of mergers on shortfall risk. Cont et al. (2010)

argue that empirical estimators of coherent risk measures lack classical robustness properties, while

Krätschmer et al. (2014) introduce a generalized notion of robustness that allows comparisons be-

tween coherent risk measures. A further twist is added by considering the property of elicitability

(Gneiting, 2011) of a risk measure. A risk measure is elicitable if it can be written as the unique

minimizer of a suitable expected loss function; this representation provides a natural statistic for as-

sessing the performance of statistical procedures used to estimate the risk measure. Such discussions

are exemplified by the comparative advantages of the (coherent, non-elicitable, less robust) Expected

Shortfall (ES) and the (non-coherent, elicitable, more robust) Value-at-Risk (VaR) measures; see

Embrechts et al. (2014) and Emmer et al. (2014) for reviews of such arguments. Related debates are

not caged within academia; discussions on a potential transition from VaR to ES in regulation and

risk assessment are sought by the Basel Committee on Banking Supervision in two recent consulta-

tive documents BCBS (2012, 2013), and by the International Association of Insurance Supervisors

in a more recent document IAIS (2014).

In this paper, we focus on subadditivity, the key property which distinguishes coherent risk

measures (such as ES) and non-coherent risk measures (such as VaR). For a risk measure ⇢ : X !
[�1,1] where X is a set of risks (random variables), we consider the diversification ratio (see for

instance Embrechts et al., 2014 and Emmer et al., 2014) for a portfolio X = (X1, . . . , Xn

) 2 X n,

defined as

�X(⇢) =
⇢(X1 + · · ·+X

n

)

⇢(X1) + · · ·+ ⇢(X
n

)
,

that is, the ratio of portfolio risk over the sum of the risks of individual positions. Lack of subad-

ditivity makes the value of �X(⇢) potentially greater than one, indicating lack of capital savings

from diversification. Considering what the largest possible value of �X(⇢) can be, leads to the

fundamental question we attempt to address in this paper: How superadditive can a risk measure

be?

To answer this question, we focus on the properties of law-invariant risk measures themselves,

rather than those of specific portfolios. For that reason, we consider homogeneous portfolios with

identical marginal distributions F of size n and let n vary. We then introduce the law-invariant risk
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measure

�
⇢,n

=
1

n
sup{⇢(X1 + · · ·+X

n

) : X
i

2 X , X
i

⇠ F, i = 1, . . . , n},

that is, the worst-case value of the aggregate risk, scaled by 1/n, across all homogeneous portfolios

with marginal distribution F . The largest possible value of�X(⇢) can be directly obtained from �
⇢,n

.

Subsequently, dependence on the portfolio size is eliminated by defining the extreme-aggregation

measure induced by ⇢ as �
⇢

= lim sup
n!1

�
⇢,n

, thus considering worst-case diversification under

extreme portfolio aggregations.

�
⇢

is itself a risk measure with many properties inherited from ⇢. It provides risk measurement

under the most adverse dependence structure for given marginal distributions, which is of interest

in the study of dependence uncertainty ; see for instance Bernard et al. (2014) and Embrechts et al.

(2015). In applications such as operational risk modeling, the dependence structure between risks

is typically unknown, with very limited empirical evidence to allow for its estimation. When there

is insu�cient data to estimate the dependence structure of a portfolio, it is necessary to calculate

the risk measure �
⇢

to derive an upper bound on the portfolio risk, even when the portfolio is

inhomogeneous (see discussions in Section 3).

We proceed by deriving explicit expressions for the extreme-aggregation measure induced by

common risk measures and find that it is in fact coherent in cases of interest. We start with the class

of distortion risk measures (Yaari, 1987; Wang et al., 1997; Acerbi, 2002), originating from early

study on non-additive measures (Denneberg, 1990, 1994). Distortion risk measures include both

VaR and ES as special cases. The main theorem in this paper shows that the extreme-aggregation

measure induced by a distortion risk measure ⇢ is the smallest coherent distortion risk measure

dominating ⇢. An asymptotic equivalence (in the sense of Embrechts et al., 2014) of distortion

risk measures with their extreme-aggregation measures is established, in the case of inhomogeneous

portfolios.

A further class of interest is that of convex risk measures (studied by Föllmer and Schied

(2002) and Frittelli and Rosazza Gianin (2002) in financial capital requirements and early by Deprez

and Gerber (1985) in insurance pricing). We show that when ⇢ is a convex risk measure, the

corresponding extreme-aggregation measure �
⇢

is the smallest coherent risk measure dominating ⇢,

and a robust representation of �
⇢

is thereby provided for ⇢ satisfying the Fatou property. In the

specific case of shortfall risk measures, we show that �
⇢

is identified with an expectile (Newey and

Powell, 1987), which is the only coherent shortfall risk measure (Weber, 2006), as well as the only

elicitable coherent risk measure (Ziegel, 2014; Delbaen et al., 2015).

In summary, for a wide range of risk measures, �
⇢

corresponds to the smallest coherent risk

measure dominating ⇢. These results show that, in the presence of dependence uncertainty, the

worst-possible value of a non-coherent risk measure often equals to the value of a coherent risk
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measure on the same portfolio, an observation that lends further support to the use of coherent risk

measures in portfolio risk management.

The structure of the paper is as follows. In Section 2 we list the definitions and notation used

in this paper, and connect the diversification ratio of a portfolio with the notion of an extreme-

aggregation measure. In Section 3, distortion risk measures are considered and the form of the

induced extreme-aggregation measures is obtained. Section 4 deals with the extreme-aggregation

measures of convex risk measures. Brief conclusions are stated in Section 5, while all proofs are

collected in the Appendix.

2 Diversification and extreme-aggregation

2.1 Definitions and notation

Let (⌦,A,P) be an atomless probability space and Lp := Lp(⌦,A,P) be the set of all random

variables in the probability space with finite p-th moment, p 2 [0,1]. A positive (negative) value

of X 2 L0 represents a financial loss (profit).

A risk measure ⇢ : X ! [�1,+1] assigns to every financial loss X 2 X a real number

(or infinity) ⇢(X), where the set X is a convex cone, and L1 ⇢ X ⇢ L0 (⇢ is the non-strict set

inclusion). We always let ⇢(X) 2 R for all X 2 L1 to avoid triviality. We gather here some of

the standard properties often required for risk measures. A risk measure ⇢ may satisfy, for any

X,Y 2 X :

(a) Monotonicity : if X 6 Y P-a.s, then ⇢(X) 6 ⇢(Y ); (b) Cash-invariance: for any m 2 R,
⇢(X�m) = ⇢(X)�m; (c) Positive homogeneity : for any ↵ > 0, ⇢(↵X) = ↵⇢(X); (d) Subadditivity :

⇢(X+Y ) 6 ⇢(X)+⇢(Y ); (e) Convexity : for any � 2 [0, 1], ⇢(�X+(1��)(Y )) 6 �⇢(X)+(1��)⇢(Y );

(f) Zero-normalization: ⇢(0) = 0, (this is implied by (c)); (g) Comonotonic additivity : if X,Y are

comonotonic, then ⇢(X + Y ) = ⇢(X) + ⇢(Y ); (h) Law-invariance: if X and Y have the same

distribution under P, denoted as X
d
= Y , then ⇢(X) = ⇢(Y ).

In the above, we say that X and Y are comonotonic if

(X(!)�X(!0))(Y (!)� Y (!0)) > 0 for a.s. (!,!0) 2 ⌦⇥ ⌦,

(see for instance Föllmer and Schied, 2011, Definition 4.82).

The properties listed above and many more can be found in di↵erent literatures, such as

finance (e.g. capital setting; Artzner et al., 1999, Föllmer and Schied, 2002, Frittelli and Rosazza

Gianin, 2002), insurance (e.g. premium calculation; Bühlmann, 1970, Gerber, 1974, Goovaerts et al.,

1984, Deprez and Gerber, 1985, Wang et al., 1997) and economics (e.g. choice under risk; Yaari, 1987;

Schmeidler, 1989) with mathematical representations corresponding to di↵erent sets of properties
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typically provided. Interpretations of risk measure properties vary with applications and a detailed

discussion is not given here.

Following the terminology of Föllmer and Schied (2011), a monetary risk measure satisfies (a,

b), a convex risk measure satisfies (a, b, e), and a coherent risk measure satisfies (a-d) (or equivalently

(a-c, e)). Most commonly studied risk measures also satisfy (h), for practical applications and

statistical tractability.

The risk measure most commonly used in banking and insurance for capital setting purposes

is Value-at-Risk (VaR), defined as

VaR
p

(X) = inf{x : P(X 6 x) > p}, p 2 (0, 1), X 2 L0,

which satisfies (a-c, f-h), but not (d) or (e). A coherent alternative to VaR is Expected Shortfall

(ES),

ES
p

(X) =
1

1� p

Z 1

p

VaR
q

(X)dq, p 2 [0, 1), X 2 L0,

satisfying properties (a-h). A convex but not positively homogeneous risk measure frequently en-

countered in the literature is the entropic risk measure (ER)

ER
�

(X) =
1

�
logE[e�X ], � > 0, X 2 L0, (2.1)

which finds its origins in indi↵erence pricing (Gerber, 1974) and satisfies properties (a, b, e, f, h).

VaR and ES belong to the class of distortion risk measures, while ER is an example of a convex

shortfall risk measure.

For all risk measures discussed in this paper law-invariance (h) is assumed and not explicitly

stated as a property from now on; in the same sense, we assume that if X 2 X and Y
d
= X, then

Y 2 X . We use X ⇠ F to indicate that X 2 X and X has distribution F ; this, implicitly, assumes

that all random variables with distribution F are in the set X of our interest. Throughout the

paper, we denote by X
F

any random variable with distribution F on R, that is, X
F

⇠ F . For any

distribution function F , we denote the generalized inverse function

F�1(t) = inf{x : F (x) > t}, t 2 (0, 1], and F�1(0) = sup{x : F (x) = 0}.

A risk measure may not be well defined on all L0 random variables. Specific constrains on X
relating to families of risk measures are stated when these risk measures are defined in Sections 3

and 4.

2.2 Diversification ratio of a risk measure

For a risk measure ⇢ and a portfolio of risksX = (X1, . . . , Xn

) 2 X n with 0 < ⇢(X1), . . . , ⇢(Xn

) <

1 we define the diversification ratio

�X(⇢) =
⇢(X1 + · · ·+X

n

)

⇢(X1) + · · ·+ ⇢(X
n

)
. (2.2)
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�X(⇢) is a measure of portfolio diversification; see the discussions of Embrechts et al. (2014) and

Emmer et al. (2014), as well as the references therein1. When �X(⇢) 6 1, a diversification benefit

is indicated, a situation always guaranteed by the subadditivity of ⇢. When ⇢ is not subadditive,

�X(⇢) > 1 is possible.

For a non-subadditive risk measure ⇢, we are interested in the largest possible values for �X(⇢),

characterizing the worst-case diversification scenario. In this paper, we treat �X
⇢

as a property of

⇢ rather than the diversification characteristic of individual portfolios. For that reason, we consider

homogeneous portfolios, X
i

⇠ F, i = 1, . . . , n. Denote the set of possible portfolio risks with

identical marginal distributions F ,

S
n

(F ) = {X1 + · · ·+X
n

: X
i

⇠ F, i = 1, . . . , n}, n 2 N.

Assuming (for now) 0 < ⇢(X
F

) < 1, we define the n-superadditivity ratio, for n 2 N,

�F

n

(⇢) = sup

⇢
⇢(X1 + · · ·+X

n

)

⇢(X1) + · · ·+ ⇢(X
n

)
: X

i

⇠ F, i = 1, . . . , n

�
=

sup {⇢(S) : S 2 S
n

}
n⇢(X

F

)
. (2.3)

Taking the supremum in�F

n

(⇢) serves to reflect the question of “how superadditive” the risk measure

⇢ can become. If ⇢ is comonotonic additive or positively homogeneous, then choosing X1 = · · · = X
n

a.s. leads to ⇢(X1+ · · ·+X
n

) = ⇢(X1)+ · · ·+ ⇢(X
n

); by the supremum in the definition of �F

n

(⇢) it

follows that �F

n

(⇢) > 1. For subadditive risk measures ⇢, it is �F

n

(⇢) 6 1. Hence for coherent risk

measures ⇢ (that are subadditive and positive homogeneous), �F

n

(⇢) = 1.

When ⇢ is not coherent, the calculation of �F

n

(⇢) is not easy and is known as the Fréchet

problem; see Embrechts and Puccetti (2006) for a study on ⇢ = VaR
p

, p 2 (0, 1). Wang et al.

(2013) gave the value of sup {VaR
p

(S) : S 2 S
n

} when F has a tail-decreasing density, leading to the

explicit value of �F

n

(VaR
p

). For general risk measures ⇢ or general marginal distributions F , explicit

values of �F

n

(⇢) are not available. Even in the case of VaR, analytical results are very limited; see

Embrechts et al. (2013) for a numerical method. We are particularly interested in determining the

overall superadditivity ratio sup
n2N�F

n

(⇢), quantifying the greatest possible n-superadditivity ratio

across all portfolio sizes n and thus providing an answer to our question of “how superadditive a

risk measure can be”, as well as characterizing worst-case diversification.

For the particular case of VaR it has been shown that

sup
n2N

�F

n

(VaR
p

) = lim
n!1

�F

n

(VaR
p

) =
ES

p

(X
F

)

VaR
p

(X
F

)
, (2.4)

such that the worst diversification of VaR can be characterized via the associated ES. Puccetti and

Rüschendorf (2014) showed (2.4) under an assumption of complete mixability; Puccetti et al. (2013)

1For comonotonic additive ⇢, the denominator of (2.2) becomes the risk measure of the sum of comonotonic risks

with corresponding marginal distributions; this is typically interpreted as a worst-case dependence scenario (see e.g.

Dhaene et al., 2002, 2012).
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for a strictly positive density; Wang (2014) for a bounded density; finally, Wang and Wang (2015)

for any distribution. In the present paper we consider a much more general version of (2.4).

The assumption 0 < ⇢(X
F

) < 1 guarantees that �F

n

(⇢) remains easily interpretable and

corresponds to the practical situation that F is the distribution of a loss. However, this is not a

mathematical requirement. One may define the law-invariant risk measure

�
⇢,n

(X
F

) :=
1

n
sup{⇢(S) : S 2 S

n

(F )}, n 2 N,

that is, the highest possible risk of the homogeneous portfolio X1, . . . , Xn

⇠ F , normalized by 1/n;

in particular �
⇢,1(XF

) = ⇢(X
F

). It is immediate that, whenever well defined, �F

n

(⇢) can be written

as �F

n

(⇢) = �
⇢,n

(X
F

)
⇢(X

F

) . With this in mind, in the sequel we do not require ⇢(X
F

) > 0 and work with

�
⇢,n

(X
F

) instead of �F

n

(⇢).

2.3 Extreme-aggregation measures

We now discuss the superadditivity and diversification properties of risk measures through a

global version of �
⇢,n

, which does not depend on the portfolio size n. First we consider risk measures

that satisfy comonotonic additivity, positive homogeneity or convexity2, corresponding to most risk

measures encountered in practice. For such risk measures, the limit of �
⇢,n

as n ! 1 corresponds

to the largest possible value of �
⇢,n

among all possible portfolio sizes n. We assume ⇢(X
F

) > �1
throughout the rest of the paper to avoid pathological cases without loss of generality.

Proposition 2.1. If the risk measure ⇢ is (i) positively homogeneous or (ii) comonotonic additive

or (iii) convex and zero-normalized, then the following hold:

(a) For all n, k 2 N, it is �
⇢,n

6 �
⇢,kn

;

(b) lim sup
n!1

�
⇢,n

= sup
n2N

�
⇢,n

. In case of (ii) or (iii), we have that lim
n!1

�
⇢,n

= sup
n2N

�
⇢,n

.

For any risk measure ⇢, the following holds:

(c) For any subadditive risk measure ⇢+ such that ⇢+ > ⇢, it is �
⇢,n

6 ⇢+ for all n 2 N.

Motivated by Proposition 2.1(b), we introduce the notion of extreme-aggregation (risk) mea-

sures, which characterizes the worst-case risk measure among all homogeneous portfolios, under

which the risk measure ⇢ is “at its most superadditive”.

2In the presence of monotonicity, it is actually found that comonotonic additivity implies positive homogeneity

Föllmer and Schied (2011). However, monotonicity is not required here, allowing for commonly used risk measures,

such as the standard deviation.
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Definition 2.1. The extreme-aggregation measure �
⇢

induced by a risk measure ⇢ is defined as

�
⇢

: X ! R [ {�1,1}, �
⇢

(X
F

) = lim sup
n!1

⇢
1

n
sup{⇢(S) : S 2 S

n

(F )}
�
.

Consider a risk measure that satisfies the assumptions of Proposition 2.1, such that �
⇢

(X
F

) =

sup
n2N �

⇢,n

(X
F

) holds. Then, by definition, for 0 < ⇢(X
F

) < 1, it is

sup
n2N

�F

n

(⇢) =
�
⇢

(X
F

)

⇢(X
F

)
. (2.5)

Some properties of ⇢ are inherited by �
⇢

, as summarized below.

Lemma 2.2. If a risk measure ⇢ satisfies any of the properties (a-f) in Section 2.1, then �
⇢

inher-

its the corresponding properties. Moreover, if ⇢ is (i) positively homogeneous or (ii) comonotonic

additive or (iii) convex and zero-normalized, then �
⇢

> ⇢; if ⇢ is subadditive, then �
⇢

6 ⇢.

Considering its relevance to the worst-case superadditivity of a risk measure, the mapping

�
⇢

: ⇢ 7! �
⇢

from the set of risk measures to itself is of our primary interest. Distortion risk

measures, which are positively homogeneous and comonotonic additive, are treated in detail in

Section 3; convex risk measures are discussed in Section 4. Explicit constructions of �
⇢

for those

classes of risk measures are given. In those examples, we observe that in addition to the properties of

⇢, �
⇢

very often “gains” more desirable properties, such as positive homogeneity and subadditivity.

When �
⇢

is subadditive, it becomes the smallest subadditive risk measure dominating ⇢.

Corollary 2.3. If ⇢ induces a coherent (subadditive) extreme-aggregation measure, and satisfies

any of the assumptions of Proposition 2.1, then the smallest coherent (subadditive) risk measure

dominating ⇢ exists and is �
⇢

.

Thus, a coherent �
⇢

provides the closest conservative coherent correction to ⇢. Note that in

general it is not clear whether such a smallest coherent risk measure dominating ⇢ exists. Corollary

2.3 is of independent mathematical interest, not contingent on either the definition of a diversification

ratio or an assumption of portfolio homogeneity.

3 Distortion risk measures

3.1 Preliminaries on distortion risk measures

For the whole of Section 3 we assume that X is the set of random variables in L0 bounded from

below, unless otherwise specified. This serves to avoid possibly undefined values of the risk measure

and, in the present context, corresponds to having bounded gains.
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A distortion risk measure ⇢
h

: X ! R [ {+1} is defined as

⇢
h

(X
F

) =

Z 1

0
F�1(t)dh(t), (3.1)

where h is an increasing, right-continuous and left-limit function, with h(0) = h(0+) = 0 and

h(1�) = h(1) = 1. Equivalently, h is a distribution function supported in (0, 1)3. We refer to

h as a distortion function and � := dh/(dt�), the left derivative of h, as a distortion factor if

the derivative exists. As the most popular class of risk measures, distortion risk measures were

introduced in insurance pricing by Wang et al. (1997) (see Deprez and Gerber, 1985; Yaari, 1987

and Denneberg, 1990 for early use of (3.1)) and in banking risk measurement by Acerbi (2002) (who

focuses on the case of convex h) under the name spectral risk measures. Recently, VaR and the mean

are shown to be the only elicitable distortion risk measures in Kou and Peng (2014). Sometimes

(see e.g. Kusuoka, 2001), h is allowed to have probability mass on {0, 1}; for example, h(t) = I
{t=1},

t 2 [0, 1] leads to h(X) = ess-sup(X), the essential supremum. In this section, we exclude such

special cases.

The family of distortion risk measures includes commonly used risk measures, such as VaR
p

and

ES
p

defined in Section 2.1, with distortion functions h(t) = I
{t>p}

and h(t) = I
{t>p}

(t�p)/(1�p) re-

spectively. In addition to those risk measures, we consider Range-Value-at-Risk (RVaR), introduced

in Cont et al. (2010) as a robust alternative to ES. RVaR
p,q

, p, q 2 [0, 1), q > p is the distortion risk

measure with h(t) = min{I
{t>p}

(t� p)/(q � p), 1}, leading to

RVaR
p,q

(X
F

) =
1

q � p

Z
q

p

VaR
r

(X
F

)dr.

Any distortion risk measure ⇢
h

satisfies properties (a-c, f-h) in Section 2.1. It is shown that a

risk measure satisfies (a, g, h) if and only if it is a distortion risk measure up to a scale; see Yaari

(1987) and Schmeidler (1989). The risk measure ⇢
h

is subadditive (d) if and only if h is convex (�

is increasing); this dates back to Yaari (1987, Theorem 2, in the appearance of preserving convex

order). A special role of distortion risk measures follows from the Kusuoka (2001) representation,

showing that each (law-invariant) coherent risk measure on X = L1 can be written as the supremum

over a class of coherent distortion risk measures.

We aim to characterize the extreme-aggregation measures induced by distortion risk measures.

Since distortion risk measures are positively homogeneous, by Proposition 2.1, we have �
⇢

(X
F

) =

sup
n2N �

⇢,n

(X
F

). Motivated by the discussion of Section 2.3, we seek the smallest coherent distortion

risk measure ⇢+
h

such that ⇢+
h

> ⇢
h

. The existence of ⇢+
h

is guaranteed by the following lemma.

3A distortion risk measure is often defined as ⇢

h

(X
F

) =
R
R xdh(F (x)) for h increasing but not necessarily right-

continuous and left-limit. The two definitions are equivalent for all continuous random variables. In this paper we use

(3.1) for its analytical convenience.
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Lemma 3.1. For a given distortion function h, the smallest coherent distortion risk measure ⇢+
h

that dominates ⇢
h

always exists, and is given by

⇢+
h

(X
F

) = ⇢
h

⇤(X
F

) =

Z 1

0
F�1(t)dh⇤(t),

where for t 2 [0, 1],

h⇤(t) = sup{g(t) : g : [0, 1] ! [0, 1], g 6 h, g is increasing, and convex on [0, 1]}. (3.2)

In what follows, h⇤ is defined by (3.2). For a given function h, finding h⇤ is equivalent to finding

the convex hull of the set {(x, y) 2 [0, 1] ⇥ R+ : h(x) 6 y}. Although an analytical formula for h⇤

may not be available, it can always be computed by approximation (see Section 1.1 in de Berg et

al., 2008). Such h⇤ is referred to as the largest convex minorant of h, and it is the most cost-e�cient

path (in the sense of ||h0||2; see Hashorva and Mishura, 2014) from (0, 0) to (1, 1) dominated by h.

Note that ⇢+
h

(X
F

) is not guaranteed to be finite even if ⇢
h

(X
F

) < 1.

Proposition 2.1 implies that ⇢
h

(X
F

) 6 �
⇢

h

(X
F

) 6 ⇢+
h

(X
F

) for any distortion function h and

a distribution F . In the following examples it is seen that for the VaR and RVaR risk measures it

actually is �
⇢

h

(X
F

) = ⇢+
h

(X
F

), such that in those cases �
⇢

h

is coherent.

Example 3.1 (Value-at-Risk). Let h(t) = I
{t>p}

, t 2 [0, 1] for p 2 (0, 1), such that ⇢
h

= VaR
p

.

Then h⇤(t) = I
{t>p}

(t � p)/(1 � p), t 2 [0, 1], implying ⇢+
h

= ES
p

. We have that �VaR
p

= ES
p

Wang and Wang (see 2015, Corollary 3.7). Hence �VaR
p

is identified with the smallest dominating

coherent distortion risk measure.

Example 3.2 (Range-Value-at-Risk). Let �, the distortion factor corresponding to h, be a step

function

�(t) =

8
>><

>>:

0 t 6 p,

a p < t 6 q,

b q < t 6 1,

where a > b > 0 and such that h(1) =
R 1
0 �(t)dt = 1. We can check that h⇤(t) = I

{t>p}

(x�p)/(1�p),

t 2 [0, 1], such that ⇢+
h

= ES
p

. To prove that �
⇢

h

= ES
p

, observe that h⇤(t) 6 h(t) 6 I
{t>p}

and

hence ES
p

> ⇢
h

> VaR
p

. It follows that �ES
p

> �
⇢

h

> �VaR
p

which leads to �
⇢

h

= ES
p

by Example

3.1. In particular, by choosing b = 0 and thus ⇢
h

= RVaR
p,q

, we have that for p, q 2 (0, 1) and

q > p, �RVaR
p,q

= ES
p

.

3.2 Extreme-aggregation measures induced by distortion risk measures

Examples 3.1 and 3.2 suggest that for some classes of distortion risk measures the smallest

dominating coherent risk measure is again a distortion risk measure and is identical to the extreme-

aggregation risk measure. As the main result of this section, it is now shown that the same is true

for all distortion risk measures.
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Theorem 3.2. The extreme-aggregation measure induced by any distortion risk measure ⇢
h

is the

smallest coherent risk measure dominating ⇢
h

, and is given by �
⇢

h

= ⇢+
h

.

Theorem 3.2 shows that ⇢+
h

characterizes the most superadditive behavior of ⇢
h

, by providing a

sharp upper bound for the n-superadditivity ratios in (2.3). Furthermore, all distortion risk measures

induce coherent extreme-aggregation measures which belong to the same class of distortion risk

measures. This is a non-trivial conclusion, since the infimum over a set of coherent (resp. distortion)

risk measures is not necessarily a coherent (resp. distortion) risk measure in general.

A di↵erent interpretation of Theorem 3.2 arises in the context of dependence uncertainty. Recall

that one of the stated reasons for introducing non-coherent distortion risk measures is statistical

robustness (Cont et al., 2010). If the choice of a non-coherent distortion risk measure involves a

trade-o↵ between subadditivity and statistical robustness, the benefits of such a trade-o↵ fade in

a portfolio context. Since in the context of dependence uncertainty the calculation of a coherent

risk measure becomes necessary, comparisons of robustness among coherent risk measures, as those

provided by Krätschmer et al. (2014), are relevant.

The “coherent correction” to the risk measure induced by moving from h to h⇤ entails the

smallest possible reduction in robustness. Example 3.3 illustrates the derivation of such a risk

measure, while Example 3.4 deals with the problem of best-case (dual) diversification scenarios.

Example 3.3 (Truncation of convex distortions). Let h be a convex distortion function, representing

a decision maker’s preferences. The decision maker attempts to “robustify” the coherent risk measure

⇢
h

, by introducing for some q close to 1 the distortion function

g(t) =

8
<

:
h(t), t 2 [0, q)

1, t 2 [q, 1],

leading to the risk measure

⇢
g

(X
F

) =

Z
q

0
VaR

t

(X
F

)dh(t) + (1� h(q))VaR
q

(X
F

).

Thus, percentiles with confidence levels beyond q are ignored and the corresponding weight is placed

on VaR
q

(X
F

).

Now, in the presence of a homogeneous portfolio and dependence uncertainty, risk may be

quantified by �
⇢

g

= ⇢+
g

= ⇢
g

⇤ . By the convexity of h it follows that

g⇤(t) =

8
<

:
h(t), t 2 [0, q)

h(q) +
�
t� q

�1�h(q)
1�q

, t 2 [q, 1],

leading to the risk measure

⇢+
g

(X
F

) =

Z
q

0
VaR

t

(X
F

)dh(t) + (1� h(q))ES
q

(X
F

).
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Thus, the extreme-aggregation risk measure resembles the original ⇢
h

, with the di↵erence that per-

centiles with confidence levels beyond q receive a constant weight, leading to an ES-like quantification

of extreme risk.

Example 3.4 (Dual bound and best-case scenarios). Let �1 < F�1(0) 6 F�1(1) < 1 and, for

simplicity, both F and h be continuous. The relation ⇢
h

(X
F

) = �⇢
h̄

(�X
F

) holds, where h̄(t) =

1� h(1� t) is the conjugate distortion of h. Let F̃ be the distribution of �X
F

. It follows that the

best-case diversification (least superadditive) scenario can be quantified by

inf
n2N

⇢
1

n
inf

S2S
n

(F )
⇢
h

(S)

�
= � sup

n2N

(
1

n
sup

S̃2S
n

(F̃ )

⇢
h̄

(S̃)

)

= ��
⇢

h̄

(X
F̃

) = �⇢
h̄

⇤

(X
F̃

) = ⇢
h

⇤

(X
F

),

where h
⇤

is the conjugate distortion of h̄⇤ and, by symmetry, is the smallest concave distortion

dominating h. This argument generalizes the known best-case VaR bounds; see Embrechts et al.

(2014) for a relevant discussion.

As an example, let ⇢
h

= RVaR
p,q

, such that h(t) = min{I
{t>p}

(t� p)/(q � p), 1}, implying

h̄(t) = min

⇢
I
{t>1�q}

t� (1� q)

q � p
, 1

�
, h̄⇤(t) = I

{t>1�q}

t� (1� q)

q
, h

⇤

(t) = min

⇢
I
{t6q}

t

q
, 1

�
.

Hence the best-case dependence scenario is characterized by the superadditive risk measure

inf
n2N

⇢
1

n
inf

S2S
n

(F )
⇢
h

(S)

�
=

1

q

Z
q

0
VaR

t

(X
F

)dt,

sometimes referred to as the Left-Tail-VaR.

Remark 3.1. Theorem 3.2 can be easily extended to generalized distortion risk measures, defined as

⇢G
A

:= sup
h2A

⇢
h

, (3.3)

whereA is a set of distortion functions. The extreme-aggregation measure induced by any generalized

distortion risk measure ⇢G
A

is the smallest coherent risk measure dominating ⇢G
A

, and is given by

�
⇢

G

A

(X
F

) = sup
n2N

1

n
sup

⇢
sup
h2A

⇢
h

(S) : S 2 S
n

(F )

�

= sup
n2N

sup
S2S

n

(F )
sup
h2A

⇢
1

n
⇢
h

(S)

�

= sup
h2A

sup
n2N

sup
S2S

n

(F )

⇢
1

n
⇢
h

(S)

�
= sup

h2A

⇢+
h

(X
F

).

Note that (3.3) includes all law-invariant coherent risk measures with the Fatou property (see

Kusuoka, 2001; Delbaen, 2012).
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3.3 Asymptotic equivalence between worst-case risk measures

Theorems 3.2 and Remark 3.1 imply an asymptotic equivalence between a non-coherent risk

measure and its coherent counterpart, under the worst-case scenario of dependence uncertainty.

Here we extend the discussion to an inhomogeneous portfolio. For a sequence of distributions

F = {F
i

, i 2 N}, we denote

S
n

(F) := {X1 + · · ·+X
n

: X
i

⇠ F
i

, i = 1, . . . , n}.

The quantity sup
S2S

n

(F) ⇢
G

A

(S) is the worst-case risk measure ⇢G
A

under dependence uncertainty.

We establish the asymptotic equivalence for generalized distortion risk measures in the following

theorem, based on results in Theorem 3.2 and Remark 3.1.

Theorem 3.3. Let A be a finite set of distortion functions. Assume that there are only finitely

many di↵erent distributions in the sequence {F
i

, i 2 N}, and 0 < ⇢G+
A

(X
F

i

) < 1 for each i 2 N.
Then, as n ! 1,

sup
S2S

n

(F) ⇢
G

A

(S)

sup
S2S

n

(F) ⇢
G+
A

(S)
! 1. (3.4)

From the perspective of risk management, Theorem 3.3 indicates that when assessing capital

conservatively under dependence uncertainty, using ⇢G
A

and using ⇢G+
A

would give roughly the same

capital estimates. This suggests that in situations where information on the dependence structure

is unavailable, a conservative regulation principle would take the information of the coherent risk

measure ⇢G+
A

into account for quantifying risk aggregation. This ratio is close to 1 even for small

numbers n; see Embrechts et al. (2014) for numerics in the case of VaR and ES.

Remark 3.2. The equivalence (3.4) for VaR and ES was studied under various di↵erent conditions

on the marginal distributions; see Embrechts et al. (2014, 2015) and the references therein.

In the case of infinitely many elements in A, a uniform convergence for (n, h) 2 N⇥A is required

in the proof of the above theorem for the same equivalence to hold.

4 Convex risk measures

4.1 Extreme-aggregation measures induced by convex risk measures

Convex risk measures, satisfying properties (a), (b), and (e) in Section 2.1, are discussed in

detail by Föllmer and Schied (2011, Chapter 4). Since the canonical domain for convex risk measures

is L1 (Filipović and Svindland, 2012), we assume X = Lp, p 2 [1,1] in this section. Recall that we

assume that risk measures are law-invariant throughout.

For any convex risk measure that also satisfies zero-normalization (f), it can be shown that the

induced extreme-aggregation measure is once more the smallest dominating coherent risk measure.
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Theorem 4.1. The extreme-aggregation measure induced by any convex risk measure ⇢ with ⇢(0) = 0

is the smallest coherent risk measure dominating ⇢.

More can be said when the risk measure ⇢ satisfies the Fatou property. A law-invariant risk

measure ⇢ on Lp, p 2 [1,1) satisfies the Fatou property (FP), if

(FP) Fatou: lim inf
n!1

⇢(X
n

) > ⇢(X) if X,X1, X2, · · · 2 Lp, X
n

L

p

! X as n ! 1.

A law-invariant convex risk measure on Lp, p 2 [1,1) satisfying the Fatou property has a dual

representation (also called a robust representation in Föllmer and Schied, 2011)

⇢ = sup
µ2P

⇢Z 1

0
ES

↵

dµ(↵)� v(µ)

�
, (4.1)

where P is the set of all probability measures on [0, 1], and v : P ! R[ {+1} is a penalty function

of ⇢. The representation (4.1) was established in Frittelli and Rosazza Gianin (2005) for convex

risk measures on L1 (in that case, the L1-Fatou property is always guaranteed on an atomless

probability space, see Jouini et al., 2006 and Section 5.1 of Delbaen, 2012); for the case of Lp see

Svindland (2009, Lemma 2.14). For such risk measures, we have the following characterization for

the extreme-aggregation measure of ⇢.

Corollary 4.2. Suppose ⇢ is a convex risk measure on Lp, p 2 [1,1] with the Fatou property and

a penalty function v in (4.1), then

�
⇢

= sup
µ2P

v

Z 1

0
ES

↵

dµ(↵), (4.2)

where P
v

= {µ 2 P : v(µ) < +1}.

Note that �
⇢

in (4.2) is a coherent risk measure with the Fatou property. In particular, the

robust representation of �
⇢

in (4.2) reflects directly the corresponding representation of ⇢ in (4.1),

dispensing with the penalty function and focusing on those probability measures that are potentially

used in the calculation of ⇢.

4.2 Extreme-aggregation measures induced by shortfall risk measures

In this section we focus on risk measures that are derived via loss functions. Here, a loss

function ` : R ! R is an increasing and convex function that is not identically constant. Following

Föllmer and Schied (2011), a shortfall risk measure is defined as

⌧
`,x0(X) = inf{x 2 R : E(`(X � x)) 6 x0}, X 2 L1, (4.3)
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where x0 is an interior point of the range of `. Shortfall risk measures belong to the class of convex

risk measures. Without essential loss of generality we may assume x0 = `(0) such that ⌧
`,x0 satisfies

zero-normalization; in that case we write ⌧
`

:= ⌧
`,`(0).

The p-expectile, denoted by e
p

, is a risk measure of type (4.3) defined for x0 = 0 and the loss

function `
p

(x) = px+ � (1� p)x
�

, p 2 (0, 1), where x+ := max(x, 0) and x
�

:= max(�x, 0), x 2 R.
Equivalently, it satisfies (Newey and Powell, 1987)

pE[(X � e
p

(X))+] = (1� p)E[(X � e
p

(X))
�

], X 2 L1.

For the purposes of this paper, we extend the definition of expectiles by defining e1(X) = ess-sup(X)

and e0(X) = ess-inf(X). The p-expectile is evidently positively homogeneous. For p > 1/2 the loss

function `
p

is convex, such that e
p

is a shortfall risk measure and is also coherent (Bellini et al.,

2014). In fact, {e
p

, p > 1/2} is the only class of coherent shortfall risk measures (Weber, 2006) and

the only class of elicitable coherent risk measures (Delbaen et al., 2015)4.

Expectiles play a special role in the construction of extreme-aggregation measures induced by

shortfall risk measures. Since ` is convex and not always a constant, we know that a
`

:= lim
x!1

`0+(x)

exists in (0,1], b
`

:= lim
x!�1

`0+(x) exists in [0,1), and b
`

6 a
`

. For each `, define the loss function

`⇤(x) = a
`

x+ � b
`

x
�

.

By b
`

6 a
`

, `⇤ is a convex loss function, derived from `, and giving rise to a coherent risk measure via

(4.3). Thus the risk measure ⌧
`

⇤ is a coherent expectile, with ⌧
`

⇤(X) = e
p

`

(X) for p
`

= a
`

/(a
`

+b
`

) >
1/2.

Note the analogy with the definition of h⇤ in Section 3. Indeed, the extreme-aggregation

measure induced by a convex shortfall risk measure is an expectile.

Proposition 4.3. The extreme-aggregation measure induced by any shortfall risk measure ⌧
`,x0 is

the smallest coherent expectile dominating ⌧
`,x0, and is given by �

⌧

`,x0
= ⌧

`

⇤ = e
p

`

.

For many loss functions used in practice it may be a
`

= 1 or b
`

= 0. In that case the extreme-

aggregation measure is the essential supremum. This implies that for many models used in practice

it may be �
⌧

`

(X) = 1, showing that risk aggregations lead to an explosion of portfolio risk. An

example is the entropic risk measure defined in (2.1).

5 Conclusions

We examine the superadditivity properties of general classes of risk measures, corresponding

to worst-case diversification scenarios. The introduction of extreme-aggregation measures �
⇢

allows

4See also Ziegel (2014), Bellini and Bignozzi (2014) and Kou and Peng (2014) for characterization of elicitable risk

measures.
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a systematic study of the behavior of a risk measure ⇢ “at its most superadditive” and the quan-

tification of worst-case portfolio capital requirements under dependence uncertainty. Furthermore,

extreme-aggregation measures, when coherent, allow us to construct for general risk measures their

smallest dominating coherent risk measures.

Explicit forms of extreme-aggregation measures are obtained for distortion and convex risk

measures and in both cases the induced extreme-aggregation measures are coherent. The main

theoretical results in this paper suggest that an extreme-aggregation measure inherits all key prop-

erties of a risk measure, and in addition, often “gains” positive homogeneity as well as convexity or

subadditivity.

When capital is set using a non-subadditive risk measure ⇢, whatever the motivation for this

choice, the extreme-coherence of ⇢ implies that a coherent risk measure �
⇢

needs to be considered

in order to quantify portfolio risk under dependence uncertainty. This is further evidence in favor

of coherence (subadditivity, in particular) as a desirable property for risk measures.

A Proofs

Proof of Proposition 2.1

Proof. To prove (a) and (b), first we deal with the case that ⇢ is positively homogeneous (i) or

comonotonic additive (ii).

(a) From the definition of �
⇢,n

, the inequality �
⇢,n

(X
F

) 6 �
⇢,kn

(X
F

) is equivalent to

sup{⇢(S) : S 2 S
kn

(F )} > k sup{⇢(R) : R 2 S
n

(F )}.

Note that for all R 2 S
n

(F ), we have kR 2 S
kn

(F ). Thus

sup{⇢(S) : S 2 S
kn

(F )} > ⇢(kR) = k⇢(R), 8R 2 S
n

(F ),

where the last equality is implied by that ⇢ is comonotonic additive or positively homogeneous.

In particular this holds for sup{⇢(R) : R 2 S
n

(F )}, from which the result follows.

(b) By (a) we can see that for a fixed m 2 N we have that �
⇢,m

(X
F

) 6 �
⇢,km

(X
F

) for all k 2 N,
and this directly implies

sup
m2N

�
⇢,m

(X
F

) 6 lim sup
n!1

�
⇢,n

(X
F

). (A.1)

The opposite inequality follows immediately and thus (A.1) is an equality.
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In the following we assume ⇢ is comonotonic additive. Let k,m, n 2 N and k =
⌅
n

m

⇧
be the

inferior integer part of n/m so that n > km. Then

�
⇢,n

(X
F

) =
km

n

sup{⇢(S) : S 2 S
n

(F )}
km

> km

n

sup{⇢(S) : S 2 S
km

(F )}+ (n� km)⇢(X
F

)

km

> km

n

sup{⇢(S) : S 2 S
m

(F )}
m

+
(n� km)⇢(X

F

)

n

=
km

n
�
⇢,m

(X
F

) +
(n� km)⇢(X

F

)

n
,

where in the last inequality we used part (a). It follows that for m fixed,

lim inf
n!1

�
⇢,n

(X
F

) > lim
n!1

km

n
�
⇢,m

(X
F

) + lim
n!1

n� km

n
⇢(X

F

) = �
⇢,m

(X
F

).

By taking supremum over m, we obtain

lim inf
n!1

�
⇢,n

(X
F

) > sup
m2N

�
⇢,m

(X
F

).

The opposite inequality follows immediately and we get

lim
n!1

�
⇢,n

(X
F

) = sup
n2N

�
⇢,n

(X
F

).

Now consider the case (iii) where ⇢ is convex. Then for any X1, . . . , Xn

⇠ F , it is

⇢(X1 + · · ·+X
n

) = ⇢

✓
1

n
nX1 + · · ·+ 1

n
nX

n

◆
6 1

n
⇢(nX1) + · · ·+ 1

n
⇢(nX

n

) = ⇢(nX
F

).

Consequently

⇢(nX
F

) = sup
S2S

n

(F )
⇢(S) =) �

⇢,n

(X
F

) =
1

n
⇢(nX

F

).

By the convexity of ⇢ and the assumption ⇢(0) = 0, �
⇢,n

(X
F

) is increasing in n, which implies (a)

and (b).

(c) For any n 2 N, �
⇢,n

(X
F

) 6 1
n

sup{⇢+(S) : S 2 S
n

(F )} 6 1
n

n⇢+(X
F

) = ⇢+(X
F

).

Proof of Lemma 2.2

Proof. The inheritance of (a-c, f) is immediate. For subadditivity (d) let X,Y be two random

variables with distributions F and G respectively, then

�
⇢,n

(X + Y ) 6 1

n
sup{⇢(T +R) : T 2 S

n

(F ), R 2 S
n

(G)}

6 1

n
sup{⇢(T ) : T 2 S

n

(F )}+ 1

n
sup{⇢(R) : R 2 S

n

(G)}

= �
⇢,n

(X) + �
⇢,n

(Y ).
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By taking an upper limit as n ! 1 on both sides, we obtain that �
⇢

is subadditive. For convexity

(f) a similar argument applies. Moreover, it follows from Proposition 2.1 (a) that if ⇢ is (i) positively

homogeneous or (ii) comonotonic additive or (iii) convex and zero-normalized, then �
⇢

> ⇢.

Proof of Lemma 3.1

Before giving the proof of Lemma 3.1, we introduce a useful lemma, which characterizes an

ordering of distortion risk measures in terms of their distortion functions. The lemma will be used

repeatedly in proofs of later results.

Lemma A.1. (a) For a distortion risk measure ⇢
h

and every F such that ⇢
h

(X
F

) < 1,

⇢
h

(X
F

) =

Z 1

0
F�1(t)dh(t) = F�1(0) +

Z 1

0
(1� h(t))dF�1(t).

(b) For two distortion risk measures ⇢
h1 , ⇢h2,

h1(t) 6 h2(t) for all t 2 [0, 1] , ⇢
h1(XF

) > ⇢
h2(XF

) for all distributions F .

Proof. (a) By integration by parts,

Z 1

0
F�1(t)dh(t) =

Z 1

0
F�1(t)d(�(1� h(t)))

= �F�1(t)(1� h(t))
��1
0
+

Z 1

0
(1� h(t))dF�1(t)

= �F�1(t)(1� h(t))
��
t!1�

+ F�1(0) +

Z 1

0
(1� h(t))dF�1(t).

To prove that the first term F�1(t)(1� h(t)) tends to 0 as t ! 1, note that

⇢
h

(X
F

) =

Z 1

0
F�1(t)dh(t) = E[F�1(Y )] < 1, (A.2)

where Y is a random variable with probability distribution h. From (A.2) it follows that

lim
u!1�

F�1(u)P(Y > u) = 0.

Note that P(Y > u) = 1� h(u) which gives the result.

(b) It follows immediately from the definition of distortion risk measure given in (a).

Proof of Lemma 3.1. The set

H
h

:= {g : [0, 1] ! [0, 1], g 6 h, g is increasing, and convex on [0,1]} (A.3)
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is not empty, since g(t) := 0, t 2 [0, 1] is an element of H
h

. Also the supremum is finite since

everything in H
h

is bounded above by h. Hence h⇤ = sup{g 2 H
h

} is a well-defined function. It is

easy to verify that h⇤ 6 h. The supremum of increasing functions is increasing, thus h⇤ is increasing.

Further, because g(0+) 6 h(0+) = 0 for any g 2 H
h

, h⇤(0+) = 0. We only need to prove that

h⇤(1�) = 1. For any ✏ > 0, let y := inf{x : h(1� x) > 1� ✏}, note that y > 0, and define

g
✏

(t) =

(
0 if t 2 [0, 1� y)

(t�(1�y))(1�✏)
y

if t 2 [1� y, 1],

so that g
✏

(1� y) = 0 and g
✏

(1) = 1� ✏. It is clear that g
✏

6 h, g
✏

2 H
h

and g
✏

6 h⇤ for any ✏ > 0.

In particular,

h⇤(1�) = lim
x!0+

h⇤(1� x) > sup
✏

lim
x!0+

g
✏

(1� x) = sup
✏

(1� ✏) = 1.

It follows that h⇤ is a distortion function. Thus from Lemma A.1 (b), ⇢
h

⇤ > ⇢
h

. Since the supremum

of convex functions is still convex, h⇤ is convex and thus ⇢
h

⇤ is coherent.

Suppose there is another coherent distortion risk measure ⇢
h0 such that ⇢

h

6 ⇢
h0 . Always from

Lemma A.1 (b) it follows that h > h0. Hence h0 2 H
h

and h0 6 h⇤ by definition. Thus ⇢
h0 > ⇢

h

⇤ .

That is, ⇢
h

⇤ is the smallest coherent distortion risk measure that dominates ⇢
h

.

Proof of Theorem 3.2

In the following we report the detailed proof of Theorem 3.2. For the ease of presentation we

slightly abuse the notation. We use ⇢
h

(X) = ⇢
�

(X) to represent the risk measure with distortion

factor � and distortion function h. Both are convenient at di↵erent places.

We start with the case when � is a step function with a finite number (m) of steps. In the

following we make this assumption throughout. To be more specific, let m be a positive integer,

0 = b0 < b1 < · · · < b
m

= 1 be a partition of [0, 1], and a1, . . . , am be non-negative numbers, with

a
i

6= a
i+1 for i = 1, . . . ,m� 1. We suppose that � has the following form: for i = 1, . . . ,m,

�(t) = a
i

, t 2 [b
i�1, bi) ,

and in addition, �(1) = a
m

. It is obvious that for each step function �, the values of m, {b
i

}m
i=0 and

{a
i

}m
i=1 are uniquely determined.

We define the incoherence index

#(�) =
m�1X

i=1

I
{a

i+1<a

i

}

.

If a
i+1 < a

i

for some i, we say � is incoherent at the i-th step. Suppose � is a step function and let

K be its largest incoherent step, i.e. �(t) = a
K+1 < a

K

= �(s) for t 2 [b
K

, b
K+1), s 2 [b

K�1, bK),
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and � is increasing on [b
K

, 1]. Define the operator L on � as follows: if #(�) > 1, then

L�(t) =
(

�(t) t 62 [b
K�1, bK+1), t 2 [0, 1],

b

K

�b

K�1

b

K+1�b

K�1
a
K

+ b

K+1�b

K

b

K+1�b

K�1
a
K+1 t 2 [b

K�1, bK+1).

Since Z
b

K+1

b

K�1

L�(t)dt = (b
K

� b
K�1)aK + (b

K+1 � b
K

)a
K+1 =

Z
b

K+1

b

K�1

�(t)dt,

we have that L� is still a distortion factor. If #(�) = 0 (i.e. � does not have an incoherent step; �

is increasing), let L� = �. Lemma A.1 (b) implies that ⇢
L�

> ⇢
�

by noting that h
L�

(t) 6 h(t).

Lemma A.2. Suppose that � is a step function, and F has a bounded support. Then

lim
n!1

✓
sup

⇢
⇢
L�

✓
S

n

◆
: S 2 S

n

(F )

�
� sup

⇢
⇢
�

✓
S

n

◆
: S 2 S

n

(F )

�◆
= 0. (A.4)

Proof. First, note that for any S 2 S
n

(F ), there exists R 2 S
n

(F ), R
d
= S such that R can be

written as R = X1+· · ·+X
n

whereX
i

⇠ F , i = 1, . . . , n, and (X1, . . . , Xn

) is exchangeable. This can

be seen from the fact that F
n

(F ) := {distribution function of (Y1, . . . , Yn) : Yi ⇠ F, i = 1, . . . , n} is

a convex set. Hence, for S = Y1 + · · ·+ Y
n

, Y
i

⇠ F , i = 1, . . . , n, one can always take the average of

the distribution functions of all permutations of (Y1, . . . , Yn) to obtain an exchangeable distribution

F. Let (X1, . . . , Xn

) ⇠ F then we have that X
i

⇠ F , i = 1, . . . , n and R := X1 + · · · + X
n

d
=

Y1 + . . . , Y
n

= S.

Denote

M = F�1(1) < 1, and r
n

= sup

⇢
⇢
L�

✓
S

n

◆
: S 2 S

n

(F )

�
. (A.5)

Note that sup {⇢
�

(S/n) : S 2 S
n

(F )} 6 r
n

< 1 since ⇢
L�

> ⇢
�

and F has bounded support. By

definition of r
n

, for any ✏ > 0, there exists R 2 S
n

(F ) such that ⇢
L�

(R/n) > r
n

� ✏ and one can

write R = X1 + · · ·+X
n

where X
i

⇠ F , i = 1, . . . , n, and (X1, . . . , Xn

) is exchangeable. Let F
R

be

the distribution function of R. Define the random event

A = {R 2 [F�1
R

(b
K�1), F

�1
R

(b
K+1))}. (A.6)

In the following we discuss di↵erent cases:

(a) Suppose P(A) = 0, then F�1
R

(b
K�1) = F�1

R

(b
K+1) and

⇢
L�

(R)� ⇢
�

(R) =

Z 1

0
F�1
R

(t)(L�(t)� �(t))dt

=

Z
b

K+1

b

K�1

F�1
R

(t)(L�(t)� �(t))dt

= F�1
R

(b
K�1)

Z
b

K+1

b

K�1

(L�(t)� �(t))dt = 0.
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(b) Suppose P(A) > 0. Let F
A

be the distribution function of X1|A. Since the distribution of

(X1, . . . , Xn

) is exchangeable, F
A

is also the distribution function of X
i

|A, i = 2, . . . , n. We

can calculate the mean of F
A

:

E[X1|A] =
1

n
E[R|A]. (A.7)

(b1) Suppose that E[R|A] = F�1
R

(b
K�1) or E[R|A] = F�1

R

(b
K+1). Then R is a constant on A, and

⇢
L�

(R)� ⇢
�

(R) = E[R|A]

Z
b

K+1

b

K�1

(L�(t)� �(t))dt = 0.

(b2) Suppose that F�1
R

(b
K�1) < E[R|A] < F�1

R

(b
K+1). Denote for i = 1, . . . , n,

W
i

= X
i

(1� I
A

) +
1

n
E[R|A]I

A

,

and T = W1 + · · · +W
n

. Denote by F
T

the distribution function of T . It is easy to see that

T = R a.s. on Ac, and since we assume F�1
R

(b
K�1) < E[R|A] < F�1

R

(b
K+1), F

�1
T

(t) = F�1
R

(t)

for t 62 [b
K�1, bK+1).

We can check that

⇢
L�

(R)� ⇢
�

(T )

=

Z 1

0
(F�1

R

(t)L�(t)� F�1
T

(t)�(t))dt

=

Z
b

K+1

b

K�1

(F�1
R

(t)L�(t)� F�1
T

(t)�(t))dt

=

✓
b
K

� b
K�1

b
K+1 � b

K�1
a
K

+
b
K+1 � b

K

b
K+1 � b

K�1
a
K+1

◆Z
b

K+1

b

K�1

F�1
R

(t)dt� E[R|A]

Z
b

K+1

b

K�1

�(t)dt

= ((b
K

� b
K�1)aK + (b

K+1 � b
K

)a
K+1)E[R|A]� E[R|A]((b

K

� b
K�1)aK + (b

K+1 � b
K

)a
K+1)

= 0.

To continue analyzing the case (b2), we will use the following lemma.

Lemma A.3 (Corollary 3.1 of Wang and Wang, 2015). Suppose G is any distribution. If the

support of G is contained in [a, b], a < b, a, b 2 R, then there exists T 2 S
n

(G) such that

|T � E[T ]| 6 b� a.

In the following we use M given in (A.5) and A given in (A.6). Lemma A.3 tells us that there

exist random variables Y1, . . . , Yn with a common distribution F
A

such that

|Y1 + · · ·+ Y
n

� E[Y1 + · · ·+ Y
n

]| 6 M. (A.8)
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We choose Y1, . . . , Yn such that they are independent of A (this is always possible since (A.8)

only concerns the distribution of (Y1, . . . , Yn)). Note that by (A.7), E[Y1+ · · ·+Y
n

] = E[R|A].

Hence

|Y1 + · · ·+ Y
n

� E[R|A]| 6 M.

Denote for i = 1, . . . , n,

Z
i

= X
i

(1� I
A

) + Y
i

I
A

.

For x 2 R,

P(Z
i

6 x) = P(X
i

6 x,Ac) + P(Y
i

6 x,A)

= P(X
i

6 x,Ac) + P(Y
i

6 x)P(A)

= P(X
i

6 x,Ac) + P(X
i

6 x|A)P(A)

= P(X
i

6 x) = F (x).

Thus, Z
i

⇠ F for i = 1, . . . , n and R̂ := Z1 + · · ·+ Z
n

is in S
n

(F ). It is easy to see that

|R̂� T | = |Y1 + · · ·+ Y
n

� E[R|A]|I
A

6 M.

Finally, |⇢
�

(T )�⇢
�

(R̂)| 6 M since monetary risk measures are Lipschitz continuous. It follows

that |⇢
L�

(R)� ⇢
�

(R̂)| 6 M.

We have either (a, b1), |⇢
L�

(R)�⇢
�

(R)| = 0 or (b2), |⇢
L�

(R)�⇢
�

(R̂)| 6 M . Recall that ⇢
L�

(R/n) >
r
n

� ✏. Hence, we have that in both cases,

sup

⇢
⇢
�

✓
S

n

◆
: S 2 S

n

(F )

�
> ⇢

L�

✓
R

n

◆
� M

n
> r

n

� ✏� M

n
.

Since ✏ > 0 is arbitrary, we conclude that

r
n

> sup

⇢
⇢
�

✓
S

n

◆
: S 2 S

n

(F )

�
> r

n

� M

n
,

and Lemma (A.2) follows.

Lemma A.4. Suppose that the distortion factor � is a step function with m steps and F has a

bounded support. We have that

lim
n!1

1

n
sup {⇢

�

(S) : S 2 S
n

(F )} = ⇢
L

m

�

(X
F

),

and moreover, ⇢
L

m

�

= ⇢+
�

.
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Proof. Since the support of F is bounded, we have ⇢
L

k

�

(X
F

) < 1 for all k 2 N. By applying

Lemma A.2 iteratively, we have

lim
n!1

✓
sup

⇢
⇢
L

k

�

✓
S

n

◆
: S 2 S

n

(F )

�
� sup

⇢
⇢
�

✓
S

n

◆
: S 2 S

n

(F )

�◆
= 0

for any k 2 N. Note that the operator L : � ! L� either reduces the number of steps in � by one

(if #(�) > 0) or L� = � (if #(�) = 0). Since the number of steps in � is m, we have that #(�) 6 m

and Lm� is an increasing function. It follows that ⇢
L

m

�

is a coherent risk measure and hence

sup {⇢
L

m

�

(S) : S 2 S
n

(F )} = n⇢
L

m

�

(X
F

).

Thus,

lim
n!1

1

n
sup {⇢

�

(S) : S 2 S
n

(F )} = ⇢
L

m

�

(X
F

).

Since #(Lm�) = 0, ⇢
L

m

�

is a coherent distortion risk measure, ⇢
L

m

�

> ⇢
�

, and hence ⇢
L

m

�

> ⇢+ by

Lemma 3.1. In addition, ⇢
L

m

�

(X
F

) 6 ⇢+(X
F

) for X
F

2 L1 by Proposition 2.1 (c). Thus, the two

distortion risk measures ⇢
L

m

�

and ⇢+ agree on L1, and hence they agree on X .

Recall that in Lemma 3.1, for any distortion function h, its largest dominated convex distortion

function is given by h⇤ := sup{g : g 2 H
h

}, where H(·) is defined in (A.3).

Lemma A.5. Let f , g and f
m

, m 2 N be distortion functions.

(a) If f
m

! f weakly as m ! 1, then f⇤

m

! f⇤ uniformly, and |⇢+
f

m

(X)� ⇢+
f

(X)| ! 0 as m ! 1
for all X 2 L1.

(b) Let ✏ > 0 be a real number. If |f � g| 6 ✏ on [0, 1], then |⇢
f

(X) � ⇢
g

(X)| 6 2✏||X||
1

and

|�
⇢

f

(X)� �
⇢

g

(X)| 6 2✏||X||
1

for all X 2 L1.

Proof. (a) We will use the Lévy distance between distribution functions, defined as

d(F,G) := inf{✏ > 0 : F (x� ✏)� ✏ < G(x) < F (x+ ✏) + ✏, 8x 2 R}. (A.9)

Note that the Lévy distance metricizes the weak topology on the set of distributions on R. For
any distortion functions (treated as distribution functions on R) f and g, suppose d(f, g) < ✏.

Then for each f0 2 H
f

, let g0(t) = max{0, f0(t � ✏) � ✏}. It follows that g0 is also convex and

g0 6 g, hence g0 2 H
g

. Note that d(f0, g0) 6 ✏, and since f0 is arbitrary we have that d(f⇤, g⇤) 6
✏. This shows that d(f⇤

m

, f⇤) ! 0 if d(f
m

, f) ! 0. As f⇤ is convex with f⇤(1�) = f⇤(1), we

have that f⇤ is continuous. Therefore, the weak convergence f⇤

m

! f⇤ is uniform; see e.g. Chow

and Teicher (2003, p.281). Recall that from Lemma A.1 (a), we have that

⇢
f

(X
F

)� ⇢
g

(X
F

) =

Z 1

0
(g(t)� f(t))dF�1(t). (A.10)

Therefore, by the uniform convergence f⇤

m

! f⇤, we obtain that |⇢+
f

m

(X)� ⇢+
f

(X)| ! 0.
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(b) By (A.10), we have that |⇢
f

(X)� ⇢
g

(X)| 6 2✏||X||
1

for X 2 L1. Similarly, we have that

|�
⇢

f

(X
F

)� �
⇢

g

(X
F

)| 6 lim
n!1

����sup
⇢
1

n
⇢
f

(S) : S 2 S
n

(F )

�
� sup

⇢
1

n
⇢
g

(S) : S 2 S
n

(F )

�����

6 lim
n!1

sup

⇢
1

n
|⇢

f

(S)� ⇢
g

(S)| : S 2 S
n

(F )

�

6 2✏||X
F

||
1

.

Lemma A.6. For any distortion function h and X 2 L1, we have that

�
⇢

h

(X) = ⇢+
h

(X).

Proof. Let G
m

denote the set of distortion functions with an m-step distortion factor. For X 2 L1

and h
m

2 G
m

, we have shown in Lemmas 3.1 and A.4 that

�
⇢

h

m

(X) = ⇢+
h

m

(X).

For any ✏ > 0, denote

h✏(t) =

8
>><

>>:

0, h(t) < ✏;

1, h(t) > 1� ✏;

h(t), otherwise.

It is obvious that h✏ is a distortion function and h✏(t) = h(t) on an interval I = [a, b), a > 0 and

b < 1, since h(0+) = 0 and h(1�) = 1. We can take two sequences of distortion functions f
m

2 G
m

and g
m

2 G
m

, m 2 N, such that f
m

% h✏ and g
m

& h✏ weakly as m ! 1. By Lemma A.1 (b), we

have that ⇢
g

m

6 ⇢
h

✏ 6 ⇢
f

m

and hence

⇢+
g

m

(X) = �
⇢

g

m

(X) 6 �
⇢

h

✏

(X) 6 �
⇢

f

m

(X) = ⇢+
f

m

(X). (A.11)

It follows from Lemma A.5 (a) that ⇢+
f

m

(X) ! ⇢+
h

✏

(X) and ⇢+
g

m

(X) ! ⇢+
h

✏

(X) as m ! 1. Therefore,

taking limits on both sides of (A.11) leads to �
⇢

h

✏

(X) = ⇢+
h

✏

(X). Since |h � h✏| < ✏, we have that

by Lemma A.5 (b),

|�
⇢

h

(X)� ⇢+
h

✏

(X)| = |�
⇢

h

(X)� �
⇢

h

✏

(X)| 6 2✏||X||
1

. (A.12)

Note that h✏ ! h uniformly as ✏ ! 0. Applying Lemma A.5 (a) again, we have that ⇢+
h

✏

(X) ! ⇢+
h

(X)

as ✏ ! 0. Finally, we obtain �
⇢

h

(X) = ⇢+
h

(X) from (A.12) by taking ✏ ! 0.

Proof of Theorem 3.2. Lemma A.6 implies that �
⇢

h

= ⇢+
h

on L1, and recall that �
⇢

h

6 ⇢+
h

on X by

Proposition 2.1 (c). For X 2 X , let X
m

, m 2 N be a sequence of random variables in L1 such that
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X
m

% X as m ! 1. By the monotone convergence theorem, we have that ⇢+
h

(X
m

) ! ⇢+
h

(X). On

the other hand, from the monotonicity of �
⇢

h

we have that

⇢+
h

(X) = lim
m!1

⇢+
h

(X
m

) = lim
m!1

�
⇢

h

(X
m

) 6 �
⇢

h

(X) 6 ⇢+
h

(X).

Therefore, �
⇢

h

(X) = ⇢+
h

(X) for all X 2 X .

Proof of Theorem 3.3

Proof. Let G
j

, j = 1, . . . ,K be the K di↵erent distributions in the sequence F, K < 1. Denote

H
j

= {i 2 N : F
i

= G
j

}.

for j = 1, . . . ,K. It is obvious that
S

K

j=1Hj

= N. Define for j = 1, . . . ,K,

Sn

j

= {X1 + · · ·+X
m

: X
i

⇠ G
j

, m = #{i 2 H
j

, i 6 n}}.

Suppose that S
j

2 Sn

j

, j = 1, . . . ,K. Then
P

K

j=1 Sj

2 S
n

(F). Vice versa, for each S 2 S
n

(F), it

can be written as S =
P

K

j=1 Sj

where S
j

2 Sn

j

for j = 1, . . . ,K. It follows that

sup
S2S

n

(F)
⇢
h

(S) > sup
S

j

2Sn

j

, j=1,...,K
⇢
h

0

@
KX

j=1

S
j

1

A . (A.13)

Note that

{S
j

2 Sn

j

: j = 1, . . . ,K} � {S
j

2 Sn

j

: j = 1, . . . ,K, S
j

are comonotonic}. (A.14)

It follows from (A.13)-(A.14) and the comonotonic additivity of ⇢
h

that

sup
S2S

n

(F)
⇢
h

(S) > sup
S

j

2Sn

j

, j=1,...,K
⇢
h

0

@
KX

j=1

S
j

1

A >
KX

j=1

sup
S

j

2Sn

j

⇢
h

(S
j

) . (A.15)

Also note that

sup
S2S

n

(F)
⇢+
h

(S) =
KX

j=1

sup
S

j

2Sn

j

⇢+
h

(S
j

) , (A.16)

by the comonotonic additivity and subadditivity of ⇢+
h

. For each j = 1, . . . ,K, if #(H
j

) = 1, by

Theorem 3.2, as n ! 1, we have that

sup
S

j

2Sn

j

⇢
h

(S
j

)

sup
S

j

2Sn

j

⇢+
h

(S
j

)
! 1, and sup

S

j

2Sn

j

⇢+
h

(S
j

) ! 1. (A.17)

If #(H
j

) < 1, then

sup
S

j

2Sn

j

⇢
h

(S
j

) 6 sup
S

j

2Sn

j

⇢+
h

(S
j

) = #(H
j

)⇢+
h

(X
G

j

) < 1,
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i.e. both sup
S

j

2Sn

j

⇢
h

(S
j

) and sup
S

j

2Sn

j

⇢+
h

(S
j

) are finite, and they do not a↵ect the limit of (3.4) as

n ! 1, since the denominator of (3.4) goes to infinity by (A.17). In summary, by (A.15)-(A.17),

1 >
sup

S2S
n

(F) ⇢h(S)

sup
S2S

n

(F) ⇢
+
h

(S)
>

P
K

j=1 supS
j

2Sn

j

⇢
h

(S
j

)
P

K

j=1 supS
j

2Sn

j

⇢+
h

(S
j

)
! 1.

As a consequence,
sup

S2S
n

(F) ⇢h(S)

sup
S2S

n

(F) ⇢
+
h

(S)
! 1. (A.18)

This shows that the theorem holds for any distortion risk measure ⇢
h

.

Now, consider the case for ⇢G
A

. Since A is a finite set, by (A.18), we have that

sup
S2S

n

(F) ⇢
G

A

(S)

sup
S2S

n

(F) ⇢
+
A

(S)
=

sup
S2S

n

(F)max
h2A

⇢
h

(S)

sup
S2S

n

(F)max
h2A

⇢+
h

(S)
> min

h2A

(
sup

S2S
n

(F) ⇢h(S)

sup
S2S

n

(F) ⇢
+
h

(S)

)
! 1. (A.19)

Proof of Theorem 4.1

By Corollary 2.3, it su�ces to show that �
⇢

is coherent. This is implied immediately by the

following lemma.

Lemma A.7. For any risk measure ⇢, the following hold:

(a) �
⇢

(0) = 0.

(b) For k 2 N, �
⇢

(kX
F

) 6 k�
⇢

(X
F

).

(c) If ⇢ is convex, then �
⇢

is subadditive and positive homogeneous.

Proof. (a) Recall that |⇢(0)| < 1 is assumed throughout. Then �
⇢

(0) = lim sup
n!1

1
n

⇢(0) = 0.

(b) Denote by F
k

the distribution of X
F

k

:= kX
F

. It is obvious that X
F

k

2 S
k

(F ) by taking

X1 = · · · = X
k

= X
F

. As a consequence, S
n

(F
k

) ⇢ S
kn

(F ) since each element in S
n

(F
k

) can

be written as an element in S
kn

(F ). It follows that

�
⇢

(kX
F

) = lim sup
n!1

1

n
sup{⇢(S) : S 2 S

n

(F
k

)}

6 lim sup
n!1

1

n
sup{⇢(S) : S 2 S

kn

(F )}

= k lim sup
n!1

1

kn
sup{⇢(S) : S 2 S

kn

(F )}

6 k lim sup
n!1

1

n
sup{⇢(S) : S 2 S

n

(F )} = k�
⇢

(X
F

).
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(c) By Proposition 2.2, �
⇢

is convex if ⇢ is convex. For any X,Y 2 X , using (b),

�
⇢

(X + Y ) 6 2�
⇢

✓
1

2
X +

1

2
Y

◆
6 2

✓
1

2
�
⇢

(X) +
1

2
�
⇢

(Y )

◆
= �

⇢

(X) + �
⇢

(Y ).

Thus we have the subadditivity. The positive homogeneity is implied by subadditivity, convexity

and zero-normalization, via Deprez and Gerber (1985, Theorem 2).

Proof of Corollary 4.2

Proof. Without loss of generality, we can assume ⇢(0) = 0; otherwise one can work with the convex

risk measure ⇢̂ = ⇢ � ⇢(0), and easily check that �
⇢

= �
⇢̂

since �
⇢,n

� �
⇢̂,n

= 1
n

⇢(0) ! 0. As a

consequence, v > 0 on P. Note that by Proposition 2.1 and the fact that a convex risk measure

with the Fatou property preserves convex order, we have that for each distribution F , the worst

dependence structure is the comonotonic one X1 = . . . = X
n

= X
F

, hence

�
⇢

(X
F

) = sup
n2N

1

n
sup
µ2P

⇢Z 1

0
ES

↵

(nX
F

)dµ(↵)� v(µ)

�

= sup
µ2P

⇢Z 1

0
ES

↵

(X
F

)dµ(↵)� inf
n2N

1

n
v(µ)

�

= sup
µ2P

v

⇢Z 1

0
ES

↵

(X
F

)dµ(↵)

�
,

where the second equality is obtained exchanging the two suprema.

Proof of Proposition 4.3

Proof. First assume 0 < b
`

6 a
`

< 1. The case when b
`

= 0 or a
`

= 1 will be commented on at

the end of the proof. Without loss of generality we can assume `(0) = x0 = 0. Note that

sup{inf{x 2 R : E[`(S � x)] 6 0)} : S 2 S
n

(F )}

= inf{x 2 R : E[`(S � x)] 6 0, for all S 2 S
n

(F )}

= inf{x 2 R : sup{E[`(S � x)] : S 2 S
n

(F )} 6 0}.

We have, by the convexity of `, that

sup{E[`(S � x)] : S 2 S
n

(F )} = E[`(nX
F

� x)].
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It follows that

�
⌧

S

`

(X
F

) = lim sup
n!1

1

n
sup{inf{x 2 R : E[`(S � x)] 6 0)} : S 2 S

n

(F )}

= lim sup
n!1

1

n
inf{x 2 R : E[`(nX

F

� x)] 6 0}

= lim sup
n!1

inf{t 2 R : E[`(nX
F

� nt)] 6 0}.

Let t⇤
n

= 1
n

⌧S
`

(nX
F

) be the unique solution to E[`(nX
F

� nt)] = 0 (the existence of t⇤
n

is implied by

the convexity of `). It follows that

1

n
E[`(nX

F

� nt⇤
n

)] =
1

n
E[`(n(X

F

� t⇤
n

))I
{X

F

>t
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n

}

] +
1

n
E[`(n(X

F

� t⇤
n

))I
{X

F

6t

⇤

n

}

] = 0. (A.20)

Let t0 = lim sup
n!1

t⇤
n

and t1 = lim inf
n!1

t⇤
n

. Note that `(nx)/n 6 a
`

x for all x > 0. We have that

lim sup
n!1

1

n
E[`(n(X

F
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)+] = a
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� t1)+].

Let {t⇤
n

k

} be a subsequence of {t⇤
n

} which converges to t1. Since

1

n
k

E[(`(n
k

X
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� t⇤
n

k

))+] 6 a
`

E[(X
F

� t⇤
n

k

)+] = a
`

E[(X
F

� t1 + o(1))+] < 1,

by dominated convergence theorem, we have that

lim
k!1

1

n
k
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�

= E[a
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In summary, we have that

lim sup
n!1

1

n
E[`(n(X

F

� t⇤
n

))I
{X

F

>t

⇤

n

}

] = a
`

E[(X
F

� t1)+],

and similarly we obtain that

lim sup
n!1

1

n
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F
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n

))I
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n

}

] = �b
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It follows from (A.20) that

a
`

E[(X
F

� t1)+] = b
`

E[(t0 �X
F

)+]. (A.21)

Similarly, we have

lim inf
n!1

1

n
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F
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n

}
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and
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Again, it follows from (A.20) that

a
`

E[(X
F

� t0)+] = b
`

E[(t1 �X
F

)+]. (A.22)

(A.21)-(A.22) imply that t0 = t1 and t⇤ := lim
n!1

t⇤
n

is the unique solution to

a
`

E[(X
F

� t⇤)+] = b
`

E[(t⇤ �X
F

)+].

When b
`

= 0 or a
`

= 1, (A.20) implies that lim sup
n!1

E[`(X
F

� t⇤
n

)I
{X

F

>t

⇤

n

}

] = 0. In this case,

t⇤ = ess-sup(X
F

).
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