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Abstract:  This paper presents an improved 

technique to generate rogue (freak) waves 

embedded in random sea based on the approach 

proposed by Kribel and Alsina (2000).  In this 

method, a part of the wave energy is focused 

using the temporal-spatial focusing approach to 

generate an extreme transient wave and the rest 

behaves randomly. By introducing a correction 

term, the improved technique removes the 

numerically spurious fluctuations of the spectra 

in the existing approach.  Various effects of the 

correction are investigated numerically by 

using the second-order wave theory and two 

existing numerical methods based on the fully 

nonlinear potential theory (FNPT), including 

the improved Spectral Boundary Integral (SBI) 

method and the Quasi Arbitrary Lagrangian- 

Eulerian Finite Element Method (QALE-FEM). 

The discussions are mainly focused on (1) the 

effectiveness of the correction on retaining the 

features of the specified wave spectrum; and (2) 

the effects of the correction on the probability 

of the maximum wave heights.  
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1. Introduction 

 

The rogue (freak) waves are extraordinarily 

large water waves in ocean and have been 

recognized as significant threats to the safety of 

offshore structures (Kharif and Pelinovsky, 

2003, 2009).  It is commonly defined as the 

wave with a maximum wave height exceeding 

2 times of significant wave height (Hs) and/or 

its maximum wave amplitude exceeding 1.25 

Hs (e.g. Skourup, et al, 1996; Adcock and 

Taylor, 2014).  Their occurrence is in fact more 

frequent than rare (Liu and Pinho, 2004), due to 

various possible mechanisms, including 

special-temporal focusing, wind-wave 

interaction, wave-current interaction and 

modulation instability, as reviewed by, for 

examples, Kharif and Pelinovsky(2003) and 

Adcock and Taylor (2014) .  

 

Many experimental and numerical 

investigations have been carried out to study 

the generation and propagation of rogue waves 

(e.g. Ma, 2007; Adcock and Yan, 2010; 

Adcock et al, 2011), and their interaction with 

wind (e.g. Touboul et al, 2006; Yan and Ma 

2010a, 2011) and/or current (e.g. Wu and Yao, 

2004; Touboul et al, 2007; Yan and Ma, 2010b). 

In most of the studies, the rogue waves were 

generated by using spatial-temporal focusing 

approach, in which the entire wave energy was 

fully focused at the same time and the same 

location.  Such studies significantly contributed 

to the wave kinematics and dynamics 

associated with the giant wave during a short 

window of time near its occurrence, but did not 

reflect the real situation that the observed rogue 

waves are always embedded with the random 

waves.  It has been reported that the rogue 

waves generated in such a way show an 

unrealistic sea state, which is out of the range 

of values in any filed observations of rogue 

waves (Kriebel and Alsina, 2000). 

Alternatively, a direct random sea simulation 

may well reflect the features of the real rogue 

waves. However, it may need a long duration of 

simulations, covering more than 10
3
 ~ 10

5
 

individual waves to observe the possible 

occurrence of rogue waves, which usually have 

exceedance probabilities ranging from 10
-3

 to 



10
-5

 (Adcock and Taylor, 2014). More 

importantly, the occurrence of the rogue waves 

generated in this way is random and 

unpredictable in a time domain numerical 

simulations or experiments.   

 

In order to overcome the above problem, 

various deterministic methods for generating 

rogue waves in random seas at a specified time 

and location have been suggested.  One of them 

is so-called the constrained NewWave method 

proposed by Taylor et al (1997). In their 

approach, a deterministic wave profile is 

assembled with the random wave in such a way 

that (1) both the mean and the covariance of the 

random process are equal to the leading order 

terms in the exact solution of the expected 

profile of the maxima of wave height by 

Lindgren (1970); and (2) in the region of 

constraint, the number of variances is 

minimised so that it is as deterministic as 

possible to approximate asymptotic forms of 

extreme wave profiles that are indistinguishable 

from a purely random occurrence of that 

particular crest (Taylor et al,1997). The 

ensemble statistics of the constrained 

realization by this approach matches those of 

purely random occurrences of large waves.    

Clauss and Steinhagen (2000) developed a 

Sequential Quadratic Programming method to 

optimize the location and time instant of the 

maximum crest in space and time domain for 

the purpose of re-producing an expected 

asymmetric wave profile. They considered a 

random phase spectrum, which is ignored in 

Gaussian random wave model, and concluded 

that the random character of the optimized sea 

state is not completely lost.  Funke and 

Mansard (1982), Zou and Kim (2000) and Kim 

(2008) suggested a method to deform the 

largest crest/trough wave in order to produce an 

asymmetric profile of the free surface in a 

constrained region of a random time history, 

which was obtained through specifying random 

phases. However, one common point of these 

methods is that a targeted local wave profile or 

a tailored time history, as the constrained 

condition, must be specified a prior.   This 

feature limits their application to the situations 

that the local wave profiles or their parameters 

are known or can be guessed.  In addition, a 

stationary wave spectrum is usually assumed by 

using the above approaches. This means that 

the local and rapid spectral changes following 

the evolution of large ocean waves (e.g. 

Baldock et al, 1996; Gibson and Swan, 2007) 

cannot be fully considered during the locally 

constraint process.    

 

In addition to the methods mentioned above, 

Kriebel and Alsina (2000) developed another 

approach to generate rogue waves in random 

seas. Based on the success in generating 

temporal-spatial focusing extreme waves in 

laboratory or numerical investigations (e.g. 

Baldock et al, 1996),  Kriebel and Alsina (2000) 

proposed to divide the specified spectrum into 

two parts: the phases of wave components in 

one part (referred to as the focusing part) are 

carefully assigned leading to a spatial-temporal 

focusing wave group; those of the second part 

(referred to as the random part) are randomly 

assigned to form the random background.  This 

approach reflects the fact that not all wave 

energy is focused at the same location and time. 

This approach does not need a pre-determined 

local wave profile or tailored time history to 

constrain the occurrence of the rogue wave.  In 

addition, it may allow to study what the wave 

profile and their dynamics would be by 

specifying different proportion of wave energy 

to be focused.  As a result, it may be employed 

to investigate the nonlinear evolution of the 

rogue waves and the associated wave spectrum.  

The experimental investigation by Kriebel and 

Alsina (2000) demonstrated that a spatial-

temporal focus of 15% spectral wave energy 

(the remaining part still behaves as a random 

sea) may lead to the occurrence of the rogue 

waves in a realistic sea, i.e. the highest wave 

height is about 2.24 Hs (the largest wave 

amplitude reaches 1.18 Hs) and the probability 



distribution of wave amplitudes largely follows 

the Rayleigh distribution with an abnormality 

representing the occurrence of the rogue wave.   

Unlike the constrained NewWave theory,  

Kriebel and Alsina (2000)’s approach adopted 

deterministic wave amplitudes and random 

phase spectra, which may lead to the loss of 

some randomness unless sufficiently large 

number of wave components is adopted, 

according to Tucker et al (1984). Nevertheless, 

it may be practical for deterministic or short-

term statistic studies.  It is also worth noting 

that there is not limit to Kribel and Alsina 

(2000)’s approach on specifying the wave 

amplitudes and phases randomly with right 

number of variances, the problem with the loss 

of randomness in  Kribel and Alsina (2000)’s 

approach can be solved.  

 

However, the linear analysis indicates that the 

approach developed by Kriebel and Alsina 

(2000) numerically modifies the specified 

spectrum unless the phases of the random part 

satisfying a certain condition.  This typically 

results in a significantly spurious fluctuation of 

the spectrum.  This paper proposes an improved 

technique by introducing a correction term to 

overcome the spurious fluctuation problem in 

the existing approach of Kriebel and Alsina 

(2000). Its effectiveness is tested by the 2
nd

 

order wave theory and two numerical methods 

based on the fully nonlinear potential theory 

(FNPT), i.e. the improved Spectral Boundary 

Integral method (SBI) and the Quasi Arbitrary 

Lagrangian-Eulerian Finite Element Method 

(QALE-FEM), in two-dimensional (2D) 

numerical wave tanks (NWT).   

 

2. Improved technique to generate rogue 

wave in random sea state 

 

2.1. Summary of Kriebel and Alsina’s approach 

 

For unidirectional waves, the wave elevation η 

can be represented by the Fourier series with N 

wave components as,  

 
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where An, kn, ωn  and θn are the wave amplitude, 

the wave number, the wave frequency and the 

phase shift of n
th
 wave component, respectively. 

kn and ωn are related to each other thorough the 

linear wave dispersion relation. The wave 

amplitude is estimated by the spectrum, i.e., 

   √  (  )   , in which S(ω) is the 

specified wave spectrum and is discretised by 

even interval Δω.  In the approach suggested by 

Kriebel and Alsina (2000), the wave elevation 

η’(x,t) is split into two parts, i.e. the random (ηR) 

and the focusing (transient) part ( ηT ) by,  
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where subscripts ‘T’ and ‘R’ refer to the 

focusing part and the random part, respectively. 

    √    (  )  and     

√    (  )   , where PR and PT are the 

energy ratios of the random and focusing parts, 

respectively, with PR + PT =1, leading to  

 








2
)(

22
TnRn

n

AA
S    (3) 

The phase shift      of the n
th
 component in the 

focusing part is assigned to be            , 

based on the spatial-temporal focusing 

mechanism (see Ma, 2007 for details) where xf 

and tf are the expected focusing location and 

focusing time according to the linear wave 

theory.       are randomly assigned.  If the two 

terms of Eq. (2) are assembled and re-written in 

the form as Eq. (1), one has  
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Thus, the spectrum corresponding to ωn, 

resulted from Eq. (4), is, 
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From Eq .(3) and Eq. (5), it is clear that 

)()(' nn SS   as 0)cos(  TnRn   due to 

the fact that                but the Rn  

is random.  That means that the spectrum of the 

waves given by Eq. (4a) is not generally the 

same as the specified spectrum by Eq. (3).  For 

each component corresponding to ωn, the 

difference between the specified value )( nS   

and the one obtained using Eq. (5) is  









2

)cos(2 TnRnTnRn AA
 which is randomly 

fluctuated due to the random value of Rn . As 

a result, the spectrum )(' S  in the existing 

approach by Kriebel and Alsina (2000) shows 

random fluctuations, as demonstrated by the 

curve marked by ‘Observed (Eq.2) in Fig.1(a), 

in which a Bretschneider spectrum with 

significant wave height Hs=0.061m and peak 

frequency 0.6Hz, the maximum frequency 2Hz, 

N=240, xf =15.2m, tf =89s and PT =40% is used 

to generate the wave in a water depth of 1.5m.  

The observed spectra shown in Fig.1a are 

obtained using the wave time histories of 120s 

recorded at the expected focusing point by the 

linear wave theory.   The fluctuations here are 

spurious but not physical. 

 

2.2. Improved approach 

 

In order to embed the rogue waves into random 

sea, as well as reserve the feature of the 

specified spectrum without spurious random 

fluctuations, a correction term is proposed to be 

introduced in this paper and the new expression 

of the wave elevation, replacing Eq. (2), 

becomes, 
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Figure 1: Comparison of observed wave spectra 

at the focusing point and the specified spectrum 

using linear wave theory (Bretschneider 

spectrum, d = 1.5m, Hs = 0.061m, peak 

frequency 0.6Hz, maximum frequency 2Hz, 

N=240, xf =15.2m, tf =89s and PT =40% ) 
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where ),(' tx is still given by Eq. (2). The 

spectrum of the waves resulted from Eq. (6a) 

corresponding to ωn  is 
 





2

22
TnRn AA

. Therefore, 

the observed wave spectrum is identical to the 

specified spectrum )(S . This is confirmed by 

Fig.1(a). It should be noted that due to the 

involvement of the correction term ),( txc in 

Eq. 6, the real energy ratio of the random and 

focusing parts have been changed. PR and PT in 

Eq.(6) only provide a reference value for the 

wave generation.   

 

Tucker et al (1984) pointed out that the use of 

deterministic amplitudes was not appropriate 

and might lead to the loss of randomness.  

Actually, the amplitudes and the phase Rn  in 

Eq. (2) and Eq. (6) can be determined by using 

a Gaussian random process as described in 

Tucker et al (1984) and Taylor et al, (1997).  
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Fig.1 (b) compares the observed spectra at the 

focusing point obtained by using Eq. (2), Eq. (6) 

and the specified spectrum using the method by 

Tucker et al, (1984) and Taylor et al (1997).  

As expected, the correction term ),( txc  in 

Eq.(6) ensures that the resultant spectrum after 

assembling the focusing part and the random 

part is identical to the specified spectrum; 

whereas the original approach (Eq. 2) by 

Kriebel and Alsina (2000) leads to a spectrum 

that is significantly different from the specified 

one. 

 

3. Summaries of numerical methods 

 

After showing that it is necessary to include the 

correction terms in Eq. (6), more effects of the 

correction term will be investigated by 

numerical tests. As discussed above, significant 

nonlinearities may be involved following the 

formation of the rogue waves, especially the 

second-order ‘bound’ wave leads to set-down 

and possible set-up of the wave elevation 

(Adcock and Taylor, 2014; Adcock et al, 2011), 

which influences the formation of the rogue 

waves.  It is also widely accepted that the 

nonlinearity of a large transient wave event is 

not restricted to second order; there are not only 

bound nonlinearities at third order and above, 

but also resonant nonlinearities (Gibson and 

Swan, 2007).  According to the knowledge, two 

numerical methods based on the fully nonlinear 

theory (FNPT), i.e. the improved SBI (Wang 

and Ma, 2015) and the QALE-FEM (Ma and 

Yan, 2006; Yan and Ma, 2010), are employed 

for the numerical tests on the effects of the 

correction term.  For comparison, the 2
nd

 order 

wave theory (e.g. Dalzell, 1999; Schäffer, 1996) 

is also implemented. The details of the FNPT 

methods can be found in the cited papers. For 

completeness, the summaries of the improved 

SBI and QALE-FEM are given herein.  

 

3.2 The Improved SBI method 

 

The improved SBI method is developed based 

on the original SBI method proposed by 

Clamond et al (2005), Fructus et al (2005) and 

Grue (2010).  In the SBI, the Neumann operator 

is introduced and expressed in terms of the free 

surface and the velocity potential. The 

kinematic and dynamic boundary conditions 

are reformulated into the skew-symmetric form 

after applying the Fourier transform. The free 

surface and velocity potential are updated 

through integrating the equations with respect 

to time, which requires the velocity on the free 

surface. The velocity on the free surface is 

decomposed into convolution parts and 

integration parts. Convolution parts are 

evaluated by the FFT, and the integration parts 

have kernels decaying quickly along the 

distance between the source and field points but 

their integrands are weakly singular. The 

distinguishing features of the improved SBI 

(Wang and Ma, 2015) include (1) a de-

singularity technique to accelerate the 

evaluation of  the integrals with weak 

singularity; (2) an anti-aliasing technique to 

overcome the aliasing problem associated with 

Fourier Transform or Inverse Fourier 

Transform with a limited resolution; and (3) a 

technique for determining a critical value of the 

slope of the free surface, under which the 

integrals can be neglected to further accelerate 

the computation. In the computational domain 

of the improved SBI method, a Cartesian 

coordinate system is selected with the oxy plane 

on the mean free surface, the x-axis pointing to 

the right end and the z-axis being positive 

upwards. The origin of the x-axis locates at the 

centre of the tank, where a pneumatic wave 

maker is applied to generate the waves.  

Damping zones are located at both ends to 

absorb the progressive waves to prevent the 

refection. Pre-tests are carried out to make sure 

that the resolution and time step size are 

sufficient and no considerable reflected waves 

are involved.  

 

3.2 QALE-FEM 



 

In the QALE-FEM, the flow is determined by 

solving a boundary value problem for velocity 

potential, which satisfies the Laplace’s equation, 

using a finite element method (FEM). The 

unstructured computational mesh is moving 

during the calculation by using a novel 

methodology based on the spring analogy 

method but purpose-developed for fully 

nonlinear water waves including overturning 

waves. The fully nonlinear free surface 

conditions are given in arbitrary Lagrangian-

Eulerian forms. In addition, this method is also 

equipped with other purpose-developed 

techniques: (1) a three-point method or 

modified SFDI (simplified finite difference 

interpolation) scheme (Xu et al, 2014) for 

computing the velocity on the free surfaces; 

and (2) special technique for coping with wave 

overturning and impacting. These techniques 

ensure high robustness of the QALE-FEM.   

The coordinate system for this method is 

similar to that used by the improved SBI except 

the origin of x-axis is located in the left end 

where there a wavemaker is.  The waves are 

generated by using a wavemaker (piston, flap 

or hinged) based on either linear or 2
nd

 order 

wavemaker theory.  A numerical wave absorber 

based on the self-adaptive wavemaker theory 

(Schäffer and Jakobsen, 2003). Its efficiency 

has been demonstrated in Ma et al (2015) and 

will not be discussed here.   

 

3.3 Accuracy 

 

The accuracies of these two numerical methods 

on modelling fully nonlinear water waves have 

been demonstrated in our previous publications, 

e.g. Wang and Ma (2015), Ma and Yan (2006) 

and Yan and Ma (2010). Necessary 

comparisons with the experimental results 

using the cases for extreme waves are presented 

here to shed light on their accuracies.  

 

 
(a) Time histories of the wave elevation 

 
(b) Wave spectra 

Figure 2: Comparisons between the numerical 

results and experimental data for (a) the time 

histories of the wave elevation and (b) the wave 

spectra recorded at 13.889m from the wave 

paddle(d = 2.93m, JONSWAP spectrum, Hs = 

0.103, peak period of 1.456s)  

 

The experiment was carried out in the 3D wave 

basin at the Plymouth University. The wave 

basin is 35 m long and 15.5m wide. The mean 

water depth (d) used to perform the 

experiments is 2.93m. Flap wave paddles are 

installed to generate 3D waves. JONSWAP 

spectrum with a peak period of 1.456s and 

significant wave height of 0.103m is used to 

generate the unidirectional focusing wave using 

spatial-temporal focusing approach similar to 

that in Ma (2007). The waves are expected to 

be focused at 13.886m from the wave paddle.  

The details of the experiments can be found in 

Ma et al (2015). Fig. 2(a) shows the time 

histories of the wave elevation recorded at the 

expected focusing location. It is clear that both 

the QALE-FEM and the Improved SBI produce 

numerical results which agree well with the 

experimental data.  The comparison of the 

wave spectra displayed in Fig.2(b) also verifies 

the FFT procedure used in the data analysis for 

processing the wave spectrum.   

 

4. Numerical Results and Discussions 

 



The preliminary studies shown above 

demonstrated that the new technique proposed 

here ensures that the feature of the specified 

spectrum can be retained and the spurious 

fluctuations in the spectrum in the existing 

techniques (Kriebel and Alsina, 2000) can be 

removed. In this section, we aim to answer the 

following questions. (1) How the wave 

spectrum is affected if not applying the 

correction in Eq. (6) but just smoothing the 

spectrum to remove the spurious fluctuations? 

(2) How does the correction term affect the 

statistics of maximum wave heights (Hmax)?  (3) 

How does the nonlinearity affect the wave 

spectrum?  We are aware that some 

publications have investigated the effects of 

nonlinearity on the wave spectrum of normal 

random waves or focusing wave groups (e.g. 

Baldock et al,1996; Gibson and Swan, 2007; 

Ning et al, 2009) but no publications looks at 

the similar questions for rogue waves 

embedded in a random sea.   

 

Although the preliminary study shown in 

Fig.1(b) has demonstrated a feasibility of using 

the improved technique in the Gaussian random 

process for determining the amplitudes, the 

deterministic amplitude spectra are employed 

in the rest of the paper.  That is because the use 

of the deterministic amplitude spectra is 

sufficient and more convenient to answer the 

three questions listed above.  The wave spectra 

adopted here are the same as that used in Fig.1, 

i.e. Bretschneider spectrum with significant 

wave height Hs=0.061m and peak frequency 

0.6Hz.  The cut-off high frequency is 2Hz and 

N = 240, yielding a mean frequency interval of  

0.00833Hz.  This means that the time history of 

the wave elevation obtained by linear and 2
nd

 

order wave theories behaves periodically with a 

longest period of 120s.  Similar to Fig. 1, xf 

=15.2m, tf =89s are specified.   The length of 

computational domain for the improved SBI is 

136m. Because the symmetrical boundary 

conditions are imposed at the two ends of the 

domain for the improved SBI, the effective 

length is 68m.  The length of the computational 

domain for the QALE-FEM is 30m and a 2
nd

 

order piston wavemaker (Schäffer, 1996; 

Sriram et al, 2013) is installed at the left end 

and a self-adaptive wavemaker is installed at 

the other end to absorb the wave.  In the fully 

nonlinear modelling, the initial free surface is 

the mean free surface (similar to the physical 

experiments). It takes about 40s for the wave 

components with highest wave frequency (2Hz) 

to reach the expected focused location.  Based 

on this, the simulation duration is assigned to 

be 160s and the time histories at the duration 

40~160s are used for the FFT analysis to obtain 

the wave spectra. Unless mentioned otherwise, 

all spectra presented in the paper are obtained 

without implementing any smooth techniques.   

 

4.1Effectiveness of the correction technique 

 

The most essential question (corresponding the 

first question raised above) to be answered is 

the effectiveness of the correction term ),( txc , 

which forms the basis of the present research.  

It should be noted that in the theoretical 

analysis presented in Section 2,  xf and tf, are 

assigned aiming to achieve a phase coherent of 

the focusing part at x = xf and t = tf according to 

the linear wave dispersion.  In the 2
nd

 order 

wave theory, the wave dispersion follows the 

linear relation, and so the phase coherent of the 

fundamental harmonics of the focusing part 

occurs at the same time and location as for the 

linear theory.  However, the phase coherent of 

all the components in the focusing part may not 

happen due to the nonlinearity (Ma, 2007), 

mainly because the linear dispersion may be 

invalid in the highly nonlinear cases. Both 

experiments and the numerical investigations 

have confirmed that the nonlinearity (mainly 

the 3
rd

 and higher order harmonics) shifts the 

location where the maximum wave crest occurs 

(e.g. Ning et al, 2009).  Furthermore, the 

appearance of the random part obviously 

influences the wave evolution in the spatial-



temporal domain. Therefore, the wave recorded 

at x = xf may not represent the maximum wave 

in the fully nonlinear simulation.  Similar to our 

previous investigations, e.g. Yan et al (2010, 

2011), we concentrate on the location where the 

maximum wave crest occurs in each case. For 

simplicity, this is referred to as the real 

focusing location (Xf), which may be 

significantly different from the linear focusing 

location xf (Ning et al, 2009, Schäffer, 1996; 

Sriram et al, 2013). In the same content, the 

time corresponding to the occurrence of the 

maximum wave crest is referred to as the real 

focusing time (Tf).   

 

 

 
Figure 3: Wave time histories near the focusing 

time recorded at x= Xf predicted by different 

numerical models using Eq.(6) (PT =20%, Xf = 

15.2m and Tf = 89s in the 2
nd

 order modelling;   

Xf = 15.864m and Tf = 89.39s in the fully 

nonlinear simulations, respectively) 

 

In the first case considered here, PT =20%.  For 

the purpose of comparison, the same random 

series have been used in both the 2
nd

 order and 

the fully nonlinear simulations when specifying 

the phase shifts of the random part. It is 

observed that in the simulations adopting the 

present technique with correction term, i.e. 

Eq.(6), Xf = 15.2m and Tf = 89s are predicted 

by the 2
nd

 order theory; whereas Xf = 15.864m 

and Tf = 89.39s are obtained by both the 

improved SBI and the QALE-FEM. The wave 

time histories recorded at  x= Xf  are illustrated 

in Fig.3. It is clear that the result by the 

improved SBI agrees well with that by the 

QALE-FEM.  

 

 

 
Figure 4: Wave time histories near the focusing 

time recorded at x= Xf predicted by different 

numerical models using Eq.(2) (PT =20%, Xf = 

15.2m and Tf = 89s in the 2
nd

 order modelling;   

Xf = 15.864m and Tf = 89.31s in the fully 

nonlinear simulations, respectively) 

 

Similar agreement has also been found in the 

simulations adopting the original technique 

without considering the correction term, i.e. Eq. 

(2), as demonstrated in Fig.4. The relative 

errors defined by using 



 

160

40
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160

40
22

dt

dt

i

qi




, in 

which the superscripts of ηi and ηq represent the 

wave elevations recorded in the improved SBI 

and QALE-FEM modelling,  are approximately 

1% and 5% for the results shown in Fig.3 and 

Fig.4, respectively.  Such agreement between 

two fully nonlinear models, together with the 

experimental validation shown in Fig. 2 for 

focusing waves, shall give sufficient confidence 

on their accuracies.  It is also found that the 

corresponding 2
nd

 order results seem to be 

visibly different from others. This will be 

discussed later. Another point needed to be 

pointed out is that the maximum wave crest 

(Fig. 4b) without considering the correction 

term is significantly larger than the one (Fig. 3b) 

with the correction term. 



 

 
Figure 5: Wave Spectra recorded at x= Xf in the 

cases (PT =20%)   

 

 

 
Figure 6: Wave Spectra recorded at the 

focusing location (PT =20%, numerical results 

are obtained by using the improved SBI. Only 

the spectrum obtained by the original technique 

(Eq. (2) is smoothed in (b)) 

 

The spectra corresponding to the data shown in 

Figs. 3-4 are presented in Fig.5.  From Fig.5 (b), 

it is clear that by using the original approach, 

i.e. Eq. (2) without the correction term, the 

spectra suffer from significant fluctuations, 

being very different from the originally 

specified one; whereas the technique using Eq. 

(6) with the correction term leads to the spectra 

(Fig.5(a)), which are very close to the specified 

spectrum.  It is clearer in Fig. 6(a), which 

compares the spectra obtained using the 

original technique and the present one by the 

improved SBI. This is consistent with the linear 

analysis in Section 2. 

 

 
Figure 7: Wave Spectra recorded at x = 5m 

(numerical results are obtained by using the 

ESBI)  

 

One may argue that such fluctuations could be 

artificially removed through smoothing 

technique as demonstrated in Fig. 6(b), in 

which only the spectrum from the case 

adopting the original technique is smoothed 

100 times using a five-point smoothing 

technique (Ma and Yan, 2006).  Although the 

smoothed spectrum seems to be less fluctuated, 

the analysis on the total spectral energy 

suggests a significant energy loss at a level of 8% 

(the total spectral energies obtained by the 

original technique is 2.33 ×10
-4

ρg and 2.15×10
-

4
ρg in those shown in Fig.6(a) and Fig.6(b), 

respectively), which is undesirable in the 

spectral analysis.  More importantly, the shape 

of the smoothed spectrum is visibly different 

from the specified one at the frequency range of 

4~7 rad/s.  Even in a location where the 

nonlinearity may be ignored, e.g., near the 

wavemaker, a similar difference can be found 

between the smoothed spectrum and the 

originally specified one, as evidenced by Fig.7, 

which compares the spectra at x = 5m. In such a 

location, the nonlinear effect has yet developed 

and, therefore, the spectrum should be very 

close to the originally specified spectrum, as 

will be discussed later. Clearly, the difference 

between the smoothed spectrum by using the 



original technique without the correction and 

the original spectrum may deliver a misleading 

signal that there is an energy transfer between 

harmonics due to nonlinearity.    

 

 

 

 
Figure 8: Wave Spectra recorded at the 

focusing location in the cases with different PT 

(numerical results are obtained by using the 

improved SBI)  

 

Similar phenomena are also found in the cases 

with other values of PT ranging from 40% to 

80%. The wave spectra recorded at the focusing 

location in the cases with different values of PT 

are illustrated in Fig.8. For clarity, only the 

numerical results by the improved SBI are 

presented.   Again, the effectiveness of the 

correction term on retaining the features of the 

specified spectrum without suffering from 

significant fluctuations in the spectrum is 

confirmed within the entire range of the 

investigations.   

 

One may also notice that minor fluctuations are 

detected in the spectra obtained by the present 

technique in Fig. 6 and Fig.8.  Such minor 

fluctuations are caused by the nonlinearity, as 

evidenced in Fig. 7 that shows a consistent 

smoothed spectrum obtained using the present 

technique at the location where the nonlinearity 

is not significant.  Similar observation is also 

confirmed experimentally for focusing waves 

without random waves. More discussions on 

the nonlinear behaviour of spectral 

development in the cases with a rogue wave 

embedded in random waves will be given in the 

following section.  

 

4.2 Nonlinear effects on wave spectra 

 

In the results presented above, some nonlinear 

effects have been revealed. In this section, it 

will be discussed in more details. Many 

researchers have explored nonlinear evolution 

of the wave spectra in the cases with focusing 

wave groups, e.g. Baldock et al, (1996) and 

Ning et al, (2009), without the background 

random waves.  They concluded that the 

nonlinearity transfers the wave energy to both 

lower and higher harmonics.  However, no 

publication looks at the similar issue for rogue 

waves embedded in random seas.  Due to the 

significant fluctuation of the spectra and/or 

considerable energy loss if smoothing the 

spectra in the cases adopting the original 

technique, we address this issue by using the 

present technique with the correction term for 

generating waves.  

 

For the spectra obtained using the present 

technique (Eq.6),  e.g. from Fig.8(c), one may 

find that the spectrum at higher harmonics, e.g. 

ω>7rad/s, recorded at the focusing location is 

considerably higher than the specified spectrum, 

but those at the range between 4~7 rad/s are 

significantly lower than the specified spectrum.  

This suggests an energy transfer from the 

fundamental harmonics to higher harmonics 

due to the nonlinear wave-wave interaction 

during the wave propagating.  It may be better 

explained through the comparison of the wave 

spectra obtained at different location along the 



direction of the propagation, which are 

illustrated in Fig. 9 for the cases with PT =60% 

and PT =80%.  As can be seen, near the 

wavemaker, e.g. x=5m, the wave spectrum is 

close to the specified one. The spectrum within 

the range around 4-7 rad/s become lower and  

the wave energy in higher harmonics, i.e. 

ω>7rad/s, becomes more significant, as the 

distance from the wavemaker becomes longer 

until the focusing location, i.e. 15.864m, 

following the occurrence of the rogue waves.  

The numerical results also reveal that after the 

focusing location, the spectral energy seems to 

transfer from the higher harmonics back to the 

fundamental harmonics as evidenced in Fig. 10, 

which illustrates the spectra recorded at 

different locations including the one after the 

focusing point in the case with  PT = 80%.  This 

observation is very similar to the existing 

publications on the focusing wave groups 

without the random background.   

 

 

 

Figure 9: Spectra recorded at different locations 

with different values of PT (numerical results 

are obtained by using the improved SBI)  

 
Figure 10: Spectra recorded at different 

locations with PT = 80% (numerical results are 

obtained by using the improved SBI)  

 

 

Figure 11: Spectra recorded at focusing 

location with different PT (numerical results are 

obtained by using the improved SBI)  

 

What is more interesting here is how the 

random part affects the nonlinear behaviour of 

the spectral development. For this purpose, 

Fig.11 is presented, which compares the spectra 

at focusing location in the cases with different 

PT.  From this figure, it is clear that the wave 

spectrum at higher harmonics, e.g. ω>7rad/s, 

increases considerably (evidencing more wave 

energy is transferred to higher harmonics) as PT 

increases, although the difference between the 

case with PT =60% and PT =80% is less 

significant. Additionally, the difference 

between the case with PT =80% and other cases 

with lower PT  values is that the spectral energy 

near the peak frequency is considerably higher. 

This may suggest the energy transfer to lower 

harmonics.  Based on this, one may draw a 

conclusion that more wave energy is transferred 



to lower and higher harmonics as PT increases, 

as more wave energy are expected to be 

focused at the focusing location leading to 

much higher wave steepness and thus stronger 

nonlinearity.    

 

The discussions following Figs. 8-11 show a 

significant nonlinearity associated with the 

rogue waves embedded in the random waves.   

However, in the design practices, the 2
nd

 order 

wave theory is very popular for random sea 

analysis. Experiments have confirmed that it 

may be inadequate for modelling focusing 

waves under extreme sea states (Ning et al, 

2009, Gibson and Swan, 2007).  Nevertheless, 

due to the split of the wave energy discussed in 

this paper, the expected rogue waves may have 

lower degree of nonlinearity than the fully 

focusing wave with the same spectrum.   From 

Figs.3-4 for the cases with PT =20%, it is found 

that the 2
nd

 order predictions on the wave time 

histories seem to be different from the fully 

nonlinear results, however, the maximum wave 

height observed is very close. The spectral 

results shown in Fig.5 also confirm a good 

agreement between the 2
nd

 order results and the 

fully nonlinear predictions. This implies that 2
nd

 

order theory may be applied to such cases with 

acceptable accuracy. However, with the 

increases of the PT, the wave height increases, 

so does the local wave steepness.  The 2
nd

 order 

wave theory may not give acceptable 

predictions. Therefore, the suitability of the 2
nd

 

order theory may need to be assessed. This is 

related to the Question (3) stated in the 

beginning of this section.  We are not trying to 

fully address this issue but to shed some light 

on the suitability of the 2
nd

 order theory on 

modelling rogue waves embedded in the 

random waves.  Two specific parameters, i.e. 

the maximum wave height and the wave 

spectrum are concentrated.  Other nonlinear 

features for rogue waves, such as the low 

frequency set-down/set-up (Adcock and Taylor, 

2014) and the local steepness related to the 

wave breaking are also of interest, but they will 

be discussed in future.  

 

 

 
Figure 12: Comparison of wave spectra 

recorded at focusing location between the 

improved SBI and the 2
nd

 order wave theory 

(Eq.(6) is used to generate the waves) 

 

Fig. 12 compares the wave spectrum at the 

focusing location obtained by using the 

improved SBI with that obtained by using the 

2
nd

 order wave theory. The present technique 

with the correction term, i.e., Eq.(6), is 

employed to generate waves.  As pointed out 

by Janssen (2009), the main effect from the 

second order is a shift of the low-frequency part 

of the wave spectrum towards higher 

frequencies, while at high frequencies there is 

an increase in spectral levels. This is confirmed 

again by Fig. 12, in which the evolution of the 

spectrum obtained by using both the second 

order wave model and the improved SBI is 

consistent with Janssen’s conclusion. 

Meanwhile, it is clear that with PT =40% 

(Fig.12(a)), the 2
nd

 order result is fairly close to 

the fully nonlinear results; but their results are 

significantly different when  PT=60% (the 2
nd

 

order wave theory over-estimate the spectrum 

at the range between 3.5-7rad/s but under-

estimate that when frequency higher than 

7rad/s).  In such cases, the 2
nd

 order wave 

model is unable to give a correct prediction of 

the spectrum.  

 



 
Figure 13: Comparison of maximum wave 

height recorded at focusing location between 

the improved SBI and the 2
nd

 order wave theory  

 

Consideration is also made to the maximum 

wave heights (Hmax) in the cases with different 

values of PT. Some results are shown in Fig.13. 

It confirms that the results of different methods 

are very close when PT = 20%. As expected, 

with increase in PT, the difference between the 

improved SBI and the 2
nd

 order theory becomes 

more significant.  It is also interesting to see 

that Hmax obtained by the 2
nd

 order are higher 

than that by the fully nonlinear simulation for 

PT > 20%.  

 

It is also found from Fig.13 that for higher 

values of PT, i.e. ≥60%, the maximum wave 

heights obtained by using the original technique 

and the present one are quite close. This is 

because the random wave energy takes lower 

percentage of energy, and so the correction 

term in Eq. (6) becomes small in these cases.  

Based on the results shown in Figs. 12-13, one 

may agree that for the specific wave condition, 

the 2
nd

 order wave theory may be considered to 

be acceptable for PT < 40% in term of 

maximum wave heights. However, it shall be 

noted that the validity of the 2
nd

 order wave 

theory may also be affected by other 

parameters such as the local wave steepness of 

the rogue wave. The threshold value 40% may 

only be suitable for the specific wave spectrum 

and condition discussed here.   

 

4.3Statistics of Hmax and ηmax 

 

In the experiments by Kriebel and Alsina 

(2000), who adopted Eq. (2) to generate the 

waves without considering the correction term, 

some results for the statistics of Hmax and ηmax  

with different values of PT are discussed.  In 

this section, we will look at how the correction 

term affects the statistical values of Hmax and 

ηmax. To do so, 100 cases with different random 

series but the same value of PT are investigated 

using the 2
nd

 order wave theory.  

  

 

 
Figure 14: Probability density of the maximum 

wave height recorded at x=xf. using 2
nd

 order 

wave theory 

 

Fig.14 displays the probability density of the 

maximum wave height recorded at the linear 

focusing location xf..  Both the original 

technique of Kriebel and Alsina (2000) without 

the correction term and the present technique 

with the correction term are used for 

comparison.   As can be seen in Fig.14, the 

maximum wave heights (Hmax) show a 

significant difference between the results for 

the original and the present techniques. Within 

100 samples, the difference may reach to 2.5~3 

Hs.  It is noted that the experimental results 

obtained by Kriebel and Alsina (2000), i.e. 2.21 

and 2.48Hs corresponding to PT =15% and 20%, 

respectively, are within the range shown in 

Fig.14(b).  The corresponding probability 

densities are 0.78 and 0.68, respectively.  As 

can be seen, if the original technique without 

correction (Eq.(2)) is used, most probable Hmax 

continuously increases with the increase of PT.  

However, for the present technique with 



correction (Eq.(6)), the most probable Hmax does 

not change significantly for smaller value of PT , 

e.g. ≤20%, but increases with further increases 

of PT from 30%.  The direct comparison 

between the results obtained by using the two 

techniques is given in Fig.15.  From this figure 

it appears that without the correction term, the 

most probable maximum wave heights are 

significantly overestimated, by approximately 

1.2Hs.     

 

 

Figure 15: Comparison of most probable Hmax 

recorded at x=xf.  (2
nd

 order wave theory, 100 

individual case studies) 

 

5. Conclusions 

 

In this paper, an improved technique for 

generating rogue waves in random sea using 

the method of Kribel and Alsina (2000) is 

suggested with introducing a correction term. 

The effectiveness of the proposed technique is 

investigated by numerical tests using the 2
nd

 

order wave theory, and the QALE-FEM and the 

improved SBI methods based on FNPT. The 

investigations suggest that the improved. The 

investigations suggest that the improved 

technique effectively retain the features of the 

specified wave spectrum and remove spurious 

fluctuations in the existing method. The 

statistical studies on the most probable 

maximum wave heights indicate that the 

original technique without the correction term 

can artificially over-predict the probability of 

the occurrence of the maximum wave heights 

for a given wave spectrum. 

 

This paper has focused on the 2D problems but 

the technique can be extended to model 3D 

crossing random sea state.  The relevant work 

will be left to future publications. 
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