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Abstract— In recent years we have become interested in the 
problem of assessing the probability of perfection of software-
based systems which are sufficiently simple that they are 
“possibly perfect”. By “perfection” we mean that the software of 
interest will never fail in a specific operating environment. We 
can never be certain that it is perfect, so our interest lies in claims 
for its probability of perfection. Our approach is Bayesian: our 
aim is to model the changes to this probability of perfection as we 
see evidence of failure-free working. Much of the paper considers 
the difficult problem of expressing prior beliefs about the 
probability of failure on demand (pfd), and representing these 
mathematically. This requires the assessor to state his prior belief 
in perfection as a probability, and also to state what he believes 
are likely values of the pfd in the event that the system is not 
perfect. We take the view that it will be impractical for an 
assessor to express these beliefs as a complete distribution for 
pfd. Our approach to the problem has three threads. Firstly we 
assume that, although he cannot provide a full probabilistic 
description of his uncertainty in a single distribution, the assessor 
can express some precise but partial beliefs about the unknowns. 
Secondly, we assume that in the inevitable presence of such 
incompleteness, the Bayesian analysis needs to provide results 
that are guaranteed to be conservative (because the analyses we 
have in mind relate to critical systems). Finally, we seek to prune 
the set of prior distributions that the assessor finds acceptable in 
order that the conservatism of the results is no greater than it has 
to be, i.e. we propose, and eliminate, sets of priors that would 
appear generally unreasonable. We give some illustrative 
numerical examples of this approach, and note that the 
numerical values obtained for the posterior probability of 
perfection in this way seem potentially useful (although we make 
no claims for the practical realism of the numbers we use). We 
also note that the general approach here to the problem of 
expressing and using limited prior belief in a Bayesian analysis 
may have wider applicability than to the problem we have 
addressed. 

Keywords— Probability of perfection, conservative claims, 
reliability assessment, 1oo2 systems 

I. INTRODUCTION: WHY “PROBABILITY OF PERFECTION”? 
Software-based systems are used in an increasing number 

of applications where their failures may be very costly, in 
terms of monetary loss or human suffering. As a result, such 
systems often have very high dependability requirements. For 
example, for flight-critical avionics systems in civil transport 
airplanes there is a requirement of less than 10-9 probability of 

failure per hour of operation [1]. Some demand-based systems 
have similarly stringent requirements: e.g. the claimed 
probability of failure on demand (pfd) for the combined control 
and instrumentation safety systems on the UK European 
Pressurised Reactor (UK EPR) is 10-9 [2].  

There are different reasons why such high reliabilities are 
needed. In the aircraft example, there will be massive exposure 
worldwide for a particular aircraft fleet, and thus for a critical 
flight-control system. For example, the Airbus A320 and its 
siblings had by 2013 experienced some 80m flight departures 
(with an average flight time of a little under two hours) [5]. 
Society demands that fatal accidents remain very infrequent, 
even as commercial flights increase in number. In the case of 
nuclear power reactors, exposure measured in operating hours 
will be much more modest, but worst case accidents may have 
catastrophically greater consequences and thus need to be 
extremely unlikely [16]. In many other industries – such as 
control of hazardous chemical plant – the safety and reliability 
requirements are similarly stringent. 

To achieve these kinds of ultra-high reliabilities is clearly a 
difficult task of design and implementation. The problems of 
assessing what has been achieved – so as to be sufficiently 
confident that a particular system is safe enough to use – seem 
to us to be even harder. Direct black-box operational testing, 
for example, would require infeasible times on test [3] to 
support claims for the failure rates, or pfds, needed in examples 
like the ones above1.  

In this paper we consider a different approach to this 
difficult problem of assessment. The idea is that, instead of 
claims for reliability – failure rates, pfds, etc – we make claims 
for perfection. This word comes, we realise, with extensive 
baggage: here it just means that a “perfect” system will not fail 
however much operational exposure it receives. If we assume that 
failures of a software system can occur if and only if it contains 
faults, it means that the system is “fault-free”. Readers may think, 
reasonably, that we can never be certain that a system is perfect in 
this sense; but they may be prepared to accept that such perfection 
is possible. In the face of this uncertainty, we shall use 
“probability of perfection” as a measure of how good such a 
system is. 

                                                             
1  Even in the unlikely event that there were no doubts about the 
representativeness of the operational profile used in the testing, and we could 
be certain that the test oracle was perfect. 



In fact, as John  Rushby has pointed out [9, 15], the traditional 
processes of software assurance, such as those performed in 
support of DO-178B (the guidelines for the certification of safety-
critical aircraft software), can be best understood as developing 
evidence of possible perfection, rather than ultra-high reliability. 
Indeed, claims for the perfection of some systems may be more 
intuitively plausible than claims for very high reliability, since the 
two would be based upon different types of evidence and 
reasoning. A claim for 10-9 probability of failure per hour seems to 
acknowledge that the system in question is unlikely to be perfect – 
for example because of the complexity of its functionality – and 
resulting assessment of an extremely small number may not be 
believable2. A claim for perfection, on the other hand, may be 
based upon evidence that the design is simple enough that the 
designers had a chance of “getting it right”. 

Why should we seek to be confident that a software system is 
perfect, rather than reliable? What benefits does this change of 
view bring to the problem of assessing the safety of a wider 
system? There seem to be two ways in which this approach may 
make the system assessment problem easier. The first concerns the 
need to assess the chance of lifetime freedom from system failure; 
the second concerns the need to assess the reliability of multi-
channel software-diverse fault tolerant systems, since these are 
obvious candidates for these demanding safety-critical roles (and 
have been demonstrated to be effective – after the fact – in some 
cases, e.g. some Airbus aircraft). 

Consider first the problem of lifetime reliability of a critical 
on-demand3 system, such as a safety shut-down system for a 
nuclear reactor or hazardous chemical process. Whilst 
requirements of such a system are often expressed in terms of 
probability of failure on (a single) demand (pfd), in fact for most 
systems what is really needed is a high confidence that only a 
small number of failures will occur over all demands in the 
expected life of the system. For some systems – e.g. nuclear 
reactor protection systems – this number may be zero. A pfd claim 
is thus really in support of a lifetime claim. 

The point here is that a probability of perfection directly 
addresses a lifetime claim: it is precisely the probability that the 
system will experience no failures, no matter how long its 
exposure (number of demands over its life) [12, 17]. Consider the 
following (artificial) example to illustrate this point. Let’s say we 
have a system for which we expect 100 demands in its lifetime, 
and we want to be 99% confident that it will survive all these 
without failure. To obtain such confidence, we need the pfd to be 
no worse than about 10-4. If we expected 1000 demands during its 
lifetime, we would need a pfd no worse than about 10-5 to be 99% 
confident of seeing no failures. For 10,000 demands, we need a 
pfd of about 10-6, and so on. As the expected number of lifetime 
demands increases, the required pfd needed to be 99% confident of 
seeing no failures becomes more and more demanding. In contrast, 
of course, we could be 99% confident of seeing no failures in any 
number of demands if we were 99% confident in perfection. If we 
could support such a possible perfection claim, the need for 

                                                             
2 For example, in exceedingly long operational testing, doubts about the 
representativeness of the testing, and the correctness of the test oracle, may 
come to dominate. 
3 We shall use the terminology of on-demand systems for the rest of the 
paper, but much of what we say will also be applicable to continuously 
operating systems.  

extremely extensive (possibly infeeasibly so) testing to establish a 
very small pfd disappears4. 

The second reason we might wish to claim a probability of 
perfection arises from some recent work on design diversity. 
Design diversity has been proposed as a promising way of 
achieving high dependability for software-based systems. The 
intuitive explanation is that if we force two or more systems to 
be built differently, their resulting failures may also be 
different. So if, in a 1-out-of-2 protection system (1oo2 
system), channel A fails on a particular demand, there may be a 
good chance that channel B will not fail. There is evidence 
from some industrial applications that this kind of design 
diversity has been successful [4]. For example, the safety-
critical flight control systems of Airbus fleets have experienced 
massive operational exposure [5] with apparently no critical 
failure. 

Such evidence was, of course, only available after the fact. 
Assessing the reliability of such a design-diverse system before 
it is deployed remains a very difficult problem. We know, from 
experimental work [6, 7] and theoretical modelling [8] that we 
cannot claim with certainty that there is independence between 
the failures of multiple software-based channels of a system. 
Thus for a 1oo2 system, if channel A fails on a randomly 
selected demand, this may increase the likelihood that the 
demand is a “difficult” one and so increase the likelihood that 
channel B also will fail. So even if we know the marginal 
probabilities of failures of the two channels, say pfdA and pfdB, 
from extensive testing, we cannot simply multiply them and 
claim the system pfd is pfdA × pfdB. 

In recent work by Littlewood and Rushby [9], the authors 
proposed a new way to reason about the reliability of a special 
kind of 1oo2 systems. Here channel A is conventionally 
engineered and presumed to contain faults, and thus supports 
only a pfd claim (say pfdA). Channel B on the other hand is 
extremely simple and extensively analyzed, and thus is 
“possibly perfect”; in [9] the claim about this channel is a 
probability of non-perfection, pnpB

5. Littlewood and Rushby 
show that: 

Pr(system fails on randomly selected demand |pfdA, pnpB )
≤ pfdA × pnpB

 

The result depends on the events “A fails on a randomly 
selected demand” and “B is not perfect” being conditionally 
independent, given  that  the  probabilities of these events, 
respectively pfdA and pnpB, are known. This is a conservative 
bound for the system’s probability of failure on demand 
(pfdsys), and the conservatism arises by assuming that if B is 
imperfect, it always fails when A does. The result is useful 
because it allows multiplication of two small numbers to obtain 
(a bound on) pfdsys (cf the result above involving the product of 
the small numbers pfdA and pfdB, which requires the 
improbable assumption of independence of channel failures). 

                                                             
4 In this informal account, for simplicity, we have not taken account of the 
inevitable epistemic uncertainty about the values of the system pfd.  
5 In the present paper we shall usually deal with “probability of perfection”, 
which is of course simply 1- pnp. 



In reality, of course, an assessor would not know pfdA and 
pnpB with certainty: there is epistemic uncertainty about their 
numerical values. In principle, an assessor could represent his 
uncertainty here via a (bivariate) distribution for the two 
unknowns. In practice people find this kind of thing very 
difficult, if not impossible. Whilst assessors may be able to 
make informed statements about their marginal beliefs about 
the two parameters separately, they will usually be unable to 
say anything about their dependence. 

In [10], Littlewood and Povyakalo address this problem. 
They obtain results that require only an assessor’s marginal 
beliefs about the individual numbers, i.e. they do not require 
the assessor to say anything about dependence between the two 
numbers. The price paid here is further conservatism, in 
addition to that arising from the result of [9]. 

The results of [9] and [10], then, have reduced the problem 
of assessing the pfd of this kind of special 1oo2 system to one 
concerning simply marginal beliefs about the parameters pfdA 
and pnpB. There is a large literature on the assessment of pfd 
from statistical analysis of operational tests [11], so the first of 
these parameters could be easily assessed, e.g. in terms of a 
Bayesian posterior distribution. That leaves pnpB, which is the 
subject of the current paper. 

The question about probability of perfection upon which 
we concentrate here is what can be claimed about it from 
seeing many failure-free tests. We develop a probability model 
for this problem, and illustrate it with some numerical 
examples. Much of the paper addresses some difficult issues of 
prior beliefs in the Bayesian framework: our approach is to 
support conservative claims for probability of perfection based 
on limited prior belief, but these should be no more 
conservative than is necessary. We argue that this general 
approach may have wider applicability than to the example 
considered here. 

II. CLAIMS FOR PROBABILITY OF PERFECTION BASED ON 
FAILURE-FREE TESTING EVIDENCE 

A. Informal introduction to our approach: the problem of the 
prior distribution 
Our approach to the problem is similar to that we 

introduced in [13]. However, in that work our interest centered 
upon the problem of obtaining conservative claims for system 
pfd; here our aim is to obtain conservative claims for 
probability of perfection (from which, of course, we can 
calculate a probability of non-perfection as required, for 
example, for the Littlewood/Rushby model). 

We begin with an informal and intuitive explanation of our 
general approach, before giving an account of the modelling 
details.  

We start by assuming that for every software-based system 
(or channel), there is a true unknown pfd, say P. As a thought 
experiment, we could imagine executing a large number of 
demands, n, selected in a way that accurately represents 
operational use, and allowing n to approach infinity: the 
proportion of failed demands would converge to the true (but 
unknown) pfd, P.  

In practice, of course, there will only be a finite amount of 
evidence available, so the assessor will still be uncertain about 
the magnitude of the pfd after seeing this evidence. In the usual 
Bayesian terminology, this evidence will be used to update an 
assessor’s prior beliefs about the unknown pfd to obtain his 
posterior beliefs: Bayes’ Theorem modifies his uncertainty 
about the unknown pfd in the light of the evidence (but he does 
not arrive at certainty).  

If an assessor were able to specify a complete distribution 
to represent his prior beliefs about the pfd, it is a simple matter 
to use Bayes’ Theorem to obtain his exact posterior distribution 
after he has seen the results. From this he could express his 
modified beliefs about quantities of interest such as the 
expected value of P (best “point” estimate), percentiles 
(confidence bounds for P), and so on.  

A major – and often expressed – difficulty with the 
Bayesian approach is that assessors find it difficult, if not 
impossible, to express their prior uncertainty in terms of a 
complete probability distribution. This observation seems 
particularly pertinent for the kinds of software systems that are 
the subject of the present paper. In contrast to some other 
applications of Bayesian statistics (e.g. some medical 
scenarios), where there is extensive previous empirical 
evidence that can be used to inform an assessor’s prior 
judgments about this system, such evidence is often lacking, or 
very meagre, in software engineering applications. This is 
particularly true of safety critical applications. 

Our main purpose here, then, is to show some ways that 
this problem can be addressed when our interest centres on an 
assessor’s confidence in the perfection of a software system. In 
such a case, as we have said, the assessor cannot realistically 
be certain, a priori, that the system is perfect. Instead, he will 
have a prior probability of perfection, Pr(P=0)=θ. Since 
perfection is not certain, the assessor must in addition specify 
his prior beliefs about the possible non-zero values of the pfd. 
Ideally, then, he would be able to express his beliefs about the 
system pfd in terms of a complete distribution over the interval 
[0,1] that has probability mass at the origin: see Figure 1 for an 
idealized depiction of such a distribution. In the absence of 
such a complete prior distribution for the assessor’s prior 
beliefs, what can be said? Our approach to the problem is two-
pronged. 

Firstly, we recognize the reality that an assessor may only 
be able to express extremely limited beliefs about the 
likelihood of the pfd taking particular values in the interval. 
Specifically, we shall assume that he can only tell us a single 
percentile 6  of the distribution of pfd, in addition to his 
expressed confidence in perfection. That is, he is only willing 
and/or able to express the following two precise beliefs: 

θ== )0(Pr P                                  (1) 

θ−−=<< xyP 1)0(Pr                           (2) 

 
                                                             
6 This is, of course, only one example of “restricted prior belief”. One could 
imagine an assessor expressing limited beliefs in many other ways, e.g. giving 
numerical values for the first two moments of the pfd distribution. This is an 
idea that we shall not pursue here, but is worth further study. 



where he states the values 0<θ , x, y<1. 

Of course, the limited constraints represented by (1) and (2) 
are far from sufficient to specify a single complete distribution. 
In fact there will be an infinite number of distributions 
satisfying these constraints (assessor expressed beliefs) for any 
particular vector of numbers (x, y, θ). By only expressing such 
limited prior belief, the assessor is implicitly accepting that 
none of these distributions has been ruled out as candidates to 
be his prior distribution for the pfd. We say “implicitly” here 
because, of course, he cannot examine all these distributions to 
see whether some of them have characteristics that would 
result in his finding them unacceptable representatives of his 
prior beliefs. 

The second part of our approach is now to choose the most 
conservative of these candidate distributions, that is the one (or 
many) that gives the most conservative (i.e. smallest) value for 
our quantity of interest, the posterior probability of perfection, 
following the observation of n failure-free demands. We shall 
call this most conservative posterior probability θ*. 

The interpretation of this probability is that it represents the 
lowest posterior confidence in perfection that the assessor 
could have, consistent with his only expressing prior beliefs, 
(1) and (2), and having seen n failure-free demands. This result 
is an attainable one, in the mathematical sense that there exists 
at least one prior distribution, in the assessor’s infinite set of 
distributions that he has not ruled out via his expressed prior 
beliefs, that results in a posterior distribution (after seeing n 
failure-free demands) with mass θ* at the origin. 

As we shall see, it turns out that this result is extremely 
conservative – so much so as to be of little practical interest. 
We therefore go on to discuss whether it is too conservative for 
a “reasonable person” who holds beliefs (1) and (2): i.e. 
whether any prior distribution that gives this most conservative 
result would in fact be ruled out by him as representative of his 
beliefs if he were to examine it in detail.  

The intuition behind this approach is that an assessor may 
often hold unexpressed beliefs, in addition to the ones that are 
represented by his limited but precise expressions such as (1) 
and (2). What we are not doing here is asking the assessor to 
change his prior beliefs in the face of embarrassingly 
conservative posterior consequences; that is, of course, 
unacceptable in the Bayesian framework. Rather, we are 
inviting the assessor to examine the infinite set of distributions 
initially allowed by (1) and (2), to see whether there are subsets 
of these distributions that he regards as unallowable 
(unbelievable) – and to do this before he sees the evidence 
from testing the n demands. 

In this way, the new set of allowable distributions will be a 
subset of the original set of distributions. The assessor would 
then proceed as before: seeking the most conservative result 
from this more restricted (but still infinite) set of priors. We 
would expect the conservative posterior probability of 
perfection obtained in this way to be less conservative than the 
one above obtained from the original, larger, set of allowable 
priors. 

In some cases it may be possible to repeat this procedure by 
identifying other characteristics of priors that are not allowed 

by the assessor, thus further restricting the set of priors from 
which the most conservative will be selected. Indeed, given the 
weakness of the restrictions (1) and (2) imposed by the 
assessor’s limited prior beliefs, it is unlikely the remaining set 
of distributions will all truly be allowable by the assessor.  

Informally, the aim here is to prune the set of allowable 
prior distributions to the extent that the assessor’s extra 
expressed beliefs allow, so as to make the resulting 
conservative posterior beliefs less conservative. The 
expectation is that in this way the results will be useful, albeit 
still guaranteed to be conservative 

B. The probability model 
Figure 1 shows an example of a potential prior distribution 

satisfying the assessor’s conditions (1) and (2): it has point 
mass θ at the origin, and the remainder of the probability in 
(0,1], with probability x in the interval (y,1]. Note that the 
shape of the distribution in (0,1] in Figure 1 is an idealization 
for purposes of illustration only 
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Fig. 1. An idealized example of a distribution satisfying the assessor’s 
expressed prior beliefs. 
 

After seeing n failure-free demands, for any particular 
complete prior distribution f(p) we could calculate the resulting 
posterior distribution. Our interest centres on how the 
observation of failure-free working changes the assessor’s 
belief in perfection. This posterior belief is: 
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The problem now, as outlined in Section II.A, is to find the 
most conservative f(p), i.e. the one that minimizes (3) subject 
to the constraints (1), (2). The value of (3) at the minimum we 
shall call θ*: this is the most pessimistic posterior belief in 
perfection consistent with the assessor’s expressed (minimal) 
prior beliefs. 

   It turns out that the most pessimistic f(p) is a 3-point 
distribution (see the Appendix for proof). As shown in Figure 2, 
the distribution has probability mass at three points: at the 
origin with mass θ; at the P1 point which is infinitesimally 



distant7 from the origin with mass 1-x-θ; and at the P2 point, at 
y, with mass x. With this worst case prior f(p), the lower bound 
of θ, i.e. θ*, is obtained: see equation (4) below. This is the 
most conservative belief of the assessor about the probability 
of perfection of this system, after seeing n failure free tests, 
given his professed prior beliefs (1) and (2). 

θ*= Pr(P = 0 | n failure free tests)

=
θ

θ + (1− p)n f (p)dp
0+

1

∫

=
θ

1-x + (1− y)n ⋅ x

  (4) 
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Fig. 2. The most conservative prior distribution. 

 

C. Numerical Examples 
Table I shows some numerical examples, where θ is the 

priori belief about perfection, x and y satisfy the assessor’s 
prior belief (2), n is the number of failure-free tests that have 
been observed, θ* is the posterior belief in perfection.  

The final column of the table shows the factor by which the 
posterior beliefs improve on the prior ones. We have chosen to 
do this in terms of the proportional reduction in the doubt (1- θ) 
about perfection, since this seems better to reflect intuition here 
for the values of θ close 1 that we would anticipate in the 
critical applications that are our concern. So the ratio (1-θ)/(1-
θ*) is the “doubt reduction factor”. Clearly we seek large 
values of this factor. 

In each case there is some increase in the assessor’s 
confidence in perfection as the number of failure free tests 
increases. However, this increase in confidence is very modest 
in all cases: the evidence from failure-free testing seems to be 
generally very weak in supporting claims about probability of 
perfection in this worst case. 

                                                             
7 Of course our intuitive language is somewhat informal here. To explain 
more carefully, the worst case posterior belief (3) is, under these constraints, 
approached as a limit, without being attained exactly by any individual prior 
pfd distribution. So to argue with full mathematical rigour entails an infinite 
set of distinct prior pfd distributions, each with its own P1>0; with this set so 
constructed that zero is the infimum of all its member distributions’ positive 
P1s. Figure 2 is intended to depict this infimum property of this set of 
distributions. The infimum of the resulting set of Bayesian posterior 
perfection probabilities – each computed from one member of this set of 
priors – is easily show to be the RHS of equation (4). 

Notice that the best results in support of perfection in Table 
I arise when θ and x are larger, i.e. 1-x-θ is small. Now this is 
the probability mass arbitrarily close to 0 for the most 
conservative prior distribution satisfying the assessor’s stated 
prior beliefs. The role this probability mass plays is best 
understood by seeing what happens when the number of 
failure-free demands, n, approaches infinity. The conservative 
bound on probability of perfection is then: 

)1(1)1(-1
lim
n θθ

θθθ
−−+

=
−

=
⋅−++∞→ xxxyx n

 (5) 

So even for an infinite number of failure-free demands, the 
assessor does not become certain of perfection. Informally, 
when we see an infinite number of failure-free demands, we 
become certain that pfd cannot be greater than or equal to y; so 
the only possibilities remaining are perfection and 0<pfd <y. In 
the case of the second of these, an infinite number of failure-
free demands suggests that the probability mass in this interval 
will be concentrated at the extreme left of the interval. So, the 
infinite number of demands are failure-free because either (a) 
the program is perfect, or (b) it is not perfect but has an 
infinitesimally small failure rate. The probability that what has 
been seen is due to (a), rather than (b), is just the ratio of Pr(a) 
to Pr(a or b), i.e. (5) above. 

 
TABLE I. NUMERICAL EXAMPLES OF THE 3 POINTS PRIOR DISTRIBUTION 

θ x y n 

 
 
θ* 

Doubt 
reduction 

factor: 
(1-θ)/(1-θ*) 

0.5 0.01 0.001 1000 0.503181641 1.006404032 
0.5 0.01 0.001 10000 0.505050275 1.010203611 
0.5 0.01 0.001 100000 0.505050505 1.010204082 
0.5 0.05 0.001 1000 0.516323692 1.033749207 
0.5 0.05 0.001 10000 0.526314538 1.055552767 
0.5 0.05 0.001 100000 0.526315789 1.055555556 
0.9 0.01 0.001 1000 0.905726953 1.060748572 
0.9 0.01 0.001 10000 0.909090494 1.099994981 
0.9 0.01 0.001 100000 0.909090909 1.10 
0.9 0.05 0.001 1000 0.929382645 1.41608249 
0.9 0.05 0.001 10000 0.947366169 1.899918692 
0.9 0.05 0.001 100000 0.947368421 1.90 
 

 

Informally, there is a limit to how much confidence in 
perfection can be obtained from failure-free demands, as we 
cannot tell whether this happened because of perfection or very 
high reliability.  

If the assessor were able to rule out very high reliability a 
priori, of course, this picture changes. Table II shows what 
happens if 1-x-θ=0, i.e. the expert is certain that the pfd is 
either 0 or greater than or equal to y. Here, relatively modest 
numbers of failure-free demands result in high confidence in 
perfection. These results are intuitively obvious because, for 
any value of y, the more failure-free working, the more 
confident we shall be that the system is “perfect” rather than 
“has a pfd worse than y”. 

Obtaining these stronger claims for perfection requires the 
assessor to rule out completely the possibility of the pfd lying 



anywhere between 0 and y. Such beliefs do not seem 
reasonable, of course.  

 
TABLE II NUMERICAL EXAMPLES OF THE CASE 1-x-θ =0 OF THE 2 POINTS 

PRIOR DISTRIBUTION. 
 

θ x y n 

 
 
θ* 

Doubt 
reduction 

factor: 
(1-θ)/(1-θ*) 

0.5 0.5 0.001 1000 0.7311569 1.85982084 
0.5 0.5 0.001 10000 0.9999548 1106194.69 
0.9 0.1 0.001 1000 0.9607485 2.547673337 
0.9 0.1 0.001 10000 0.9999949 19607.84314	
  

 

In the next section we consider what reasonable further 
restrictions can be placed on an assessor’s prior beliefs, and 
how these affect his posterior belief in perfection. 

III. REFINING THE SET OF ALLOWABLE PRIOR BELIEFS 
The results above arise from a situation in which an 

assessor has expressed some precise, but very limited prior 
beliefs, represented by (1) and (2). Because these beliefs are so 
very limited, they are satisfied by a large set of possible prior 
distributions. In this section we argue that some of these 
distributions would be ruled out as possible priors by all 
“reasonable” assessors. The effect of this would be to “prune” 
the set of allowable priors (still satisfying (1) and (2), of 
course). An assessor would then proceed as above, but with 
this pruned – i.e. smaller – set of allowable distributions. That 
is, he would choose the most conservative of these to find a 
new posterior probability of perfection. 

How should such pruning be carried out? Are there 
obviously unreasonable distributions in the set of priors that are 
allowable above? 

The conservative results represented by Table I and the 
limiting result (5) arise essentially because they are based on 
the most extreme priors that have probability mass at 0+ and y, 
as well as at 0 (the perfection point). The problem here – what 
we believe to be the unreasonable “extremeness” of these 
priors – lies in their having positive support at points in (0,1].  

For instance, a frequent situation is that the support for such 
prior beliefs comes from generic experience of the reliabilities 
achieved by similar development processes, in products that 
are comparable to the present one, e.g. in terms of application 
area, complexity and software engineering culture. Then, while 
it would seem reasonable for an assessor possibly to believe a 
non-zero probability of perfection – i.e. mass at 0 for his prior 
distribution for pfd – it does not seem reasonable for him to 
believe there is positive mass associated with any non-zero 
value of pfd. That is, statements like: “I think there is a 50% 
probability that the pfd is zero, i.e. that this program is perfect” 
seem reasonable; but statements like “In the event that this 
program is not perfect, I believe that there is a 20% chance that 
its pfd is exactly 0.1234” would generally not seem 

reasonable8. More precisely, we believe that assessors would 
usually think that the only beliefs they could reasonably hold 
would correspond to distributions that satisfy these conditions: 

• There is no non-zero probability concentrated at points in 
(0,1], i.e. the only mass-at-a-point on the complete prior 
for pfd is that at 0, corresponding to perfection; 

• There is no point in (0,1] for which the probability density 
is zero, i.e. no value is impossible. 

These conditions suggest that the only distributions that 
assessors should normally consider as candidates to represent 
their prior beliefs should have probability mass only at 0, and 
have continuous density in (0,1]. 

Whilst imposing these conditions will eliminate many 
distributions from the set that simply satisfies (1) and (2), there 
will still remain a large set of candidate distributions: 
essentially any suitably renormalized continuous distribution 
on (0,1], together with a mass at 0. 

To then analyse the implication of beliefs like those in (1) 
and (2), the next stage after this pruning would be to explore 
the implications of prior distributions in the set thus restricted; 
possibly eliciting more detailed approximate representations 
for, or bounds on, the distributions. Which mathematical form 
these approximations should take will be a matter of 
convenience, both in elicitation (where the concern is to make 
it easier for the assessor to translate his reasoning into a 
distribution without being biased by artificial constraints – e.g. 
that his beliefs should be represented by a specific parametric 
family) and calculations (to avoid excessive computational 
load, avoid excessive numerical errors, and perhaps allow 
analytical treatment for better insight). We do not address here 
the question of which representation would be most convenient 
in a specific case, but develop, purely by way of illustration, an 
example in which the assessor is prepared to restrict the 
expression of his prior beliefs to a (suitably renormalized) Beta 
distribution, on (0,1], with parameters (a,b). We shall discuss 
later the reasonableness of such a restriction to this Beta 
parametric family. 

Table III shows the results of numerical optimization to 
find the most conservative prior within the new restricted set of 
allowable distributions. Once again, confidence in perfection 
increases slowly even for very large n. However, it is notable 
that in all cases in Table III both a and b are fractional, i.e. the 
most conservative priors in this refined set of allowable 
distributions are all “U-shaped” as shown in the Fig.3. In each 
case the probability density is infinite at both 0 and 1. 

                                                             
8 We say “generally” because of course there are exceptions. For example, it 
may be that there is a particular type of event that is associated with a known-
to-be difficult (i.e. possibly fallible) operation, and these events occur at a 
known frequency. So-called “leap seconds”, for example, have been known to 
cause system failures because of synchronization issues. The point here is that 
detailed and specific knowledge is needed for an assessor to hold such point-
mass beliefs. 
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Fig. 3. The most conservative prior re-normalized beta distribution. 

 

We again argue that this kind of U-shaped distribution 
would not represent the beliefs of reasonable assessors. We can 
further prune our set of allowable distributions by ruling out 
such U-shaped beta distributions: if a and b are not allowed to 
be fractional – i.e. a≥1, b≥1 – we obtain uni-modal beta 
distributions9. 

Optimizing (numerically) over this further-refined set of 
allowable distributions we obtain the results in Table IV. The 
worst case conservative results here give large increases in the 
posterior probability of perfection as n increases; this contrasts 
with the results we obtained for the less constrained sets of 
allowable priors, shown in Tables 1 and 3. 

The shape of the worst case distributions in Figure 4 are 
similar to the idealized case of Figure 1: because a is close to 1 
and b is large, in each case, they have a mode at (a-1)/(a+b-2), 
far to the left and very close the origin, but in all cases there is 
zero probability density at 0 and at 1 (because both a and b are 
larger than 1). 

In fact, the “worst case” results of Table IV are only worst 
within the accuracy of the numerical optimisation we used. We 
believe (but have so far not been able to prove!) that the 
asymptotic optimum – i.e. the true worst case – occurs when 
a=1, and to satisfy the percentile constraint, b = log1−y x / (1−θ ) . 
The results for this case are shown in Table V. 

Within the “probability mass at 0 plus re-normalised Beta 
distribution” framework, these results are the most 
conservative with respect to the assessor’s expressed prior 
beliefs, and (subject to our “prunings” of the original large 
class of priors satisfying (1) and (2)) they can be thought of as 
“no more conservative than they need be.”  

We just note here that the numerical values obtained above 
for the posterior probability of perfection seem potentially 
useful, but we make no claim for the practical plausibility of 
the vector of numbers (x, y, θ) we have used for illustration. 

Note that in this case, as n goes to infinity, the assessor 
approaches certainty that the system is perfect. 

 

                                                             
9 By “uni-modal” here we include those cases where the maximum of the 
density is at the end of the interval, and is not a turning point: this turns out to 
be the case for a=1 in Table V. 
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Fig. 4. The most conservative prior re-normalized unimodal beta distribution 
after “pruning”. This is an idealised representation: in reality the “spike” 
would be very large and close to the origin. 
 

IV. DISCUSSION AND CONCLUSION 
The work reported here was, of course, specifically 

addressing the problem of assessing confidence in perfection of 
software. However, to do this within the Bayesian framework 
we have had to consider some difficult general problems 
concerning prior distributions, so our results may have wider 
applicability.  

We believe that the Bayesian approach is the most 
appropriate formalism for the assessment of the dependability 
of critical systems, but its use poses some difficulties for an 
assessor. The most obvious difficulties concern the need for the 
assessor to express his prior beliefs about his problem’s 
unknowns, formally and quantitatively, in order to feed into the 
formalism of Bayes’ theorem. It is well-known that this can be 
difficult, and has been used by some to argue that the Bayesian 
approach is impractical. Assessors are rarely able to provide a 
complete account of their uncertainty about the unknowns – in 
terms of the problem addressed in this work, they are unable to 
express their prior beliefs in a complete distribution for the 
unknown pfd of the system under study. 

In some earlier work [13] we considered a similar problem. 
There our interest was in a system’s probability of failure on 
demand (rather than, as here, its probability of perfection, or 
non-perfection). We showed that useful results, guaranteed to 
be conservative, could be obtained even from very limited 
prior beliefs. Our hope was that something similar could be 
obtained in the case where interest centred on claims for 
perfection. An important result here – and a disappointing one 
– is that this seems not to be possible: see Section II. Even after 
observing large numbers of failure-free demands, confidence in 
perfection increases only modestly over an assessor’s original 
prior belief. In fact he would not be certain of perfection even 
if he were able to see an infinite number of failure-free 
demands. The informal explanation for these disappointing 
results is that failure-free operation over many demands may 
be due to perfection or to a very small pfd.  

 
 



 
 

TABLE III NUMERICAL EXAMPLES FOR THE PRIOR BETA DISTRIBUTIONS WITH MASS AT ORIGIN 
 

θ x y n a  b θ* Doubt 
reduction 

factor: 
(1-θ)/(1-θ*)  

Doubt reduction compared with not 
using the Beta family prior 

0.5 0.01 0.001 1000 0.00019256 0.010154142 0.505055848 1.010214987 1.003786705 
0.5 0.01 0.001 10000 0.000174069 0.009065462 0.505179928 1.010468306 1.000262021 
0.5 0.01 0.001 100000 0.000226364 0.012069137 0.50532834 1.010771468 1.000561655 
0.5 0.05 0.001 1000 0.001997401 0.0208142 0.526603047 1.056196068 1.02171403 
0.5 0.05 0.001 10000 0.00058413 0.00547856 0.526730227 1.056479895 1.000878334 
0.5 0.05 0.001 100000 0.000942005 0.009070504 0.527517591 1.058240457 1.00254359 
0.9 0.01 0.001 1000 0.001371121 0.013629679 0.909150688 1.100723798 1.037685864 
0.9 0.01 0.001 10000 0.000873768 0.008366982 0.909298034 1.102511938 1.002288154 
0.9 0.01 0.001 100000 0.000771203 0.007326781 0.909423631 1.10404073 1.003673391 
0.9 0.05 0.001 1000 0.007752825 0.008651361 0.94759435 1.908191213 1.347514165 
0.9 0.05 0.001 10000 0.001784232 0.001829209 0.947621395 1.909176459 1.004872717 
0.9 0.05 0.001 100000 0.002078817 0.002139551 0.947905689 1.91959541 1.010313374 

 
 
 

TABLE IV NUMERICAL EXAMPLES OF THE PRIOR UNIMODAL BETA DISTRIBUTION WITH MASS AT ORIGIN 
 

θ x y n a  b θ* Doubt 
reduction 

factor: 
(1-θ)/(1-θ*) 

Doubt reduction compared with not 
using the Beta family prior 

0.5 0.01 0.001 1000 1.002865687 3919.454939 0.556728757 1.127977526 1.120799888 
0.5 0.01 0.001 10000 1.000348556 3913.798799 0.780539772 2.278317141 2.255304887 
0.5 0.01 0.001 100000 1.000219221 3914.753876 0.963720105 13.78173798 13.6425285 
0.5 0.05 0.001 1000 1.001096111 2304.159264 0.589248898 1.217282187 1.177541109 
0.5 0.05 0.001 10000 1.000879434 2302.601846 0.842539329 3.175396105 3.008277941 
0.5 0.05 0.001 100000 1.001000815 2302.579322 0.978069486 22.79928354 21.59932125 
0.9 0.01 0.001 1000 1.000493405 2302.371071 0.928116048 1.39113109 1.311461667 
0.9 0.01 0.001 10000 1.000013517 2300.871174 0.97964033 4.911670911 4.465175748 
0.9 0.01 0.001 100000 1.001562038 2304.529699 0.997518052 40.29093267 36.62812061 
0.9 0.05 0.001 1000 1.002947755 695.838612 0.956506003 2.299167843 1.623611519 
0.9 0.05 0.001 10000 1.000263576 693.2090557 0.992853625 13.99310937 7.365109587 
0.9 0.05 0.001 100000 1.001273649 694.1325914 0.999239476 131.4883667 69.20440352 

 
 
 

TABLE V THE CASE OF THE PRIOR BETA DISTRIBUTION WITH a=1 AND MASS AT ORIGIN. 
 

θ x y n a  b θ* Doubt 
reduction 

factor: 
(1-θ)/(1-θ*)  

Doubt reduction compared with not 
using the Beta family prior 

0.5 0.01 0.001 1000 1 3910.066668 0.556688485 1.127875058 1.120698072 
0.5 0.01 0.001 10000 1 3910.066668 0.780581515 2.278750575 2.255733943 
0.5 0.01 0.001 100000 1 3910.066668 0.963735283 13.78750575 13.64823802 
0.5 0.05 0.001 1000 1 2301.433608 0.589240023 1.217255887 1.177515668 
0.5 0.05 0.001 10000 1 2301.433608 0.842398512 3.17255887 3.005590027 
0.5 0.05 0.001 100000 1 2301.433608 0.97799837 22.7255887 21.52950509 
0.9 0.01 0.001 1000 1 2301.433608 0.928112406 1.391060597 1.311395211 
0.9 0.01 0.001 10000 1 2301.433608 0.979635914 4.910605966 4.464207612 
0.9 0.01 0.001 100000 1 2301.433608 0.997506611 40.10605966 36.46005424 
0.9 0.05 0.001 1000 1 692.8005492 0.95650425 2.299075183 1.623546085 
0.9 0.05 0.001 10000 1 692.8005492 0.992852421 13.99075183 7.363868722 
0.9 0.05 0.001 100000 1 692.8005492 0.999236102 130.9075183 68.89869383 

 

 

 

 

 

 

 

 



In Section III we discuss ways in which it may sometimes 
be possible to rule out the second of these explanations. The 
result in Section II can be seen as a problem that stands in the 
way of anyone trying to use the results of our earlier work 
reported in [9, 10]. These results provide a novel means of 
assessing the pfd of a 1-out-of-2 system in which one channel 
is sufficiently simple as to be “possibly perfect”. However, 
they depend upon an assessor being able to make probabilistic 
claims about perfection, but do not tell an assessor how to do 
this. That our the main aim in the present paper. 

We have described our general approach in three stages 
(although they need not occur in this order). Firstly we assume 
that, although he cannot provide a full probabilistic description 
of his uncertainty, the assessor can express some partial but 
precise beliefs about the unknowns. Secondly, we assume that 
in the inevitable presence of such incompleteness, the Bayesian 
analysis needs to provide results that are guaranteed to be 
conservative (because the analyses we have in mind relate to 
critical systems). Finally, we seek to prune the set of prior 
distributions that the assessor finds acceptable in order that the 
conservatism of the results is no greater than it has to be.  

On the first point, we assume that the assessor’s prior 
beliefs about system pfd are expressed in terms of just a prior 
probability that this pfd is zero (i.e. the system is perfect), 
together with a single percentile (because, in the event that the 
system is not perfect, its pfd may lie anywhere in the interval 
(0,1]): the assessor’s prior beliefs are summarized in the 
numbers x, y, and θ in (1) and (2).  

Of course, these are rather “weak” beliefs. They fall far 
short of a complete distribution for the unknown pfd. Our next 
step is to find the most conservative of the many possible 
complete prior distributions, i.e. the one that gives the most 
pessimistic value for the posterior probability of perfection. It 
turns out that this is very conservative – probably too much so 
to be of practical use. 

We therefore proceeded (second stage) to “prune” the 
infinite set of initially allowable prior distributions, discarding 
those that we argue all reasonable assessors would find 
unacceptable, and find the most conservative member of this 
new set of allowable priors. The corresponding most 
conservative posterior probability of perfection will be less 
conservative than the previous one.  

There is a sense in which this pruning process makes the 
assessor’s expressed prior beliefs more extensive than they 
were: it adds further assessor belief to those previously 
expressed. But note that, in contrast to the specific and positive 
assertions of a (hypothetical) real assessor represented by (1) 
and (2), this pruning process involves general and negative 
assertions about prior distributions: we are identifying proper-
ties that no prior distribution, for any reasonable assessor, 
should possess. We do not need to have a particular assessor in 
mind to do this. 

This is an important point that may be worth labouring a 
little. We want to emphasise that the pruning process we 
describe here does not mean that an assessor retrospectively 
changes his prior beliefs after he has seen evidence that 
produces embarrassingly inconvenient posterior consequences. 

That would be a perversion of a correct assessment process 
(and, of course, would be considered unacceptable within the 
Bayesian framework). Rather we (the authors of this paper) 
believe that some distributions can be discarded because they 
are unreasonable in general (for a broad class of situations, as 
discussed earlier), and are thus so in particular for this assessor. 
In a real dependability case, of course, we would expect that 
the assessor would expressly agree that the reasons behind this 
pruning of the set of allowable distributions did in fact accord – 
or not – with his  beliefs. 

This general account of our procedure suggests that it may 
have wider applicability than to the perfection arguments of 
this paper; we have not seen our approach reported elsewhere. 

We now return to the specifics of the reasoning about 
perfection that was the spur to this work. In particular, are the 
details of the particular prunings that we have used here 
supportable? 

We have argued earlier why it is reasonable – in a broad 
class of cases – to rule out finite probability mass arbitrarily 
close to the origin. 

The third stage was to analyse specific representations of 
the “pruned” set of prior distributions. Here we developed an 
example using a Beta distribution family for this continuous 
part of the prior for pfd. This choice can most certainly be 
questioned. We would claim no more for the choice of a Beta 
than that it allows us to illustrate our general approach in what 
follows10.  

Since the unrestricted Beta family includes U-shaped 
distributions with infinite density at 0 and/or 1, we further 
prune the set of allowable priors to exclude these, i.e. 
constraining both a and b to be no smaller than 1. The most 
conservative posterior probabilities of perfection within this set 
of prior distributions now increase significantly as the number 
of failure-free demands, n, increases. If the reader – or, more 
accurately, our (hypothetical) assessor – has accepted our 
reasoning thus far, these results allow appropriate testing 
evidence to provide useful confidence in perfection of a 
system. 

Given our interest in probability of perfection, readers may 
reasonably ask whether the results we have obtained here are 
special to the Beta distribution assumption, or are more widely 
applicable. In particular, can we expect to gain increasing 
confidence in perfection of software by observing large 
numbers of failure-free demands, under different assumptions? 
We have no definitive answer to this question. But we 
speculate tentatively that the conditions we imposed to prune 
the Beta family here are rather weak, and similar restrictions 

                                                             
10 It might be argued that a Beta family is sufficiently flexible to represent 
most continuous beliefs over the unit interval, so that some member of the 
family may be a good approximation to an assessor’s prior beliefs. Such 
reasoning, however, seems to beg the question that the assessor has a prior 
distribution to be approximated. Another view is that there is no distribution 
“in his head” (Beta or any other). Rather, he only has some very restricted 
beliefs, far short of a distribution, such as represented by (1) and (2). We tend 
to be more sympathetic to the latter position, but such issues verge on the 
boundary between philosophy and psychology, and we do not think it wise to 
pursue them further here. 



may be available for a wide class of assumed distribution 
families. 

Using any particular parametric family of priors, as in our 
example using the Beta here, may be regarded as a “strong” 
assertion for an assessor. For example, in some safety-critical 
industries, a regulator with responsibility for oversight might 
reasonably respond: “You may represent your prior beliefs by 
this Beta family, but this seems unreasonably restrictive to me, 
so I cannot accept as reasonable the resulting claims you make 
for the probability of perfection.” Is it possible to impose 
weaker constraints on the form of the prior distribution – i.e. 
more “generally believable” ones – than the choice of a 
parametric family of distributions? One might, for example, try 
to state optimization constraints on only the general form of 
prior distribution, such as perhaps just its unimodality on (0,1]. 
Our Tables 4 and 5 show some results attained by unimodal 
priors which are constrained to be beta: what would we find 
were we able to remove the Beta family constraint but retained 
that of unimodality? We do not currently know. One can easily 
imagine other general classes of simple constraint for which 
similar questions can be asked: an upper or lower density 
bound, perhaps, or constraints involving distribution moments. 
These questions suggest possible avenues for further 
investigation into constrained worst cases priors which might 
help us to understand better the implications of what we have 
observed for our Beta example.  

Finally, we note that failure-free working is not the only 
evidence that can be used to support claims about the 
reliability, or perfection, of software. Other software 
engineering measures and metrics have been proposed in the 
past to aid quantitative prediction of software reliability: see, 
e.g. [18, 19]. Whilst such evidence is generally not sufficient 
on its own to obtain accurate predictions of reliability [20], we 
speculate that it may help assessors to provide the partial prior 
beliefs we need in our conservative inference, and perhaps to 
justify specific prunings. In particular, evidence from formal 
verification seems, on intuitive grounds, to be especially 
attractive [14] as a means to support claims about perfection. 
Whilst this kind of evidence does not currently fit readily into 
the kind of Bayesian analysis we are using here, we think an 
assessor might use it informally to support his (limited) 
subjective prior beliefs. More formal support for this kind of 
reasoning is clearly needed These are some of the issues we 
intend to address in further work. 
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APPENDIX 
The problem is to find the most conservative prior 

distribution f(p), still satisfying (1) and (2), which minimizes 
(3), then calculate the corresponding posterior probability mass 
at the origin, θ*. 

By the mean value theorem for integrals, we could find two 
values, say P1 and P2, satisfying the equations below, 
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where 0<P1<y, y≤P2≤1. From the prior constraints (1) and 
(2), we know: 
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So we get,  
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Put (8) and (9) into (3), we get, 
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To minimise (10), we can easily see that when both P1 and 
P2 reach their lower bound, θ* reaches its lower bound. That is, 
when P1=0 and P2=y, 
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Here, strictly, P1 cannot reach the 0 point but infinitely 
close to it, so this most conservative prior f(p) is a “special” 3 
points distribution, as shown in Figure 2, i.e. the 0 point with 
mass θ, the P1 point which is infinitely close to the original 
point with mass 1-x-θ, and the P2 point at y with mass x (see 
comment in footnote 7). 

 


