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Abstract: A microgrid consists of a variety of inverter-interfaced distributed energy resources (DERs). A key issue is how 
to control DERs within the microgrid and how to connect them to or disconnect them from the microgrid 
quickly. This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an 
artificial neural network, which implements a dynamic programming algorithm and is trained with a new 
Levenberg-Marquardt backpropagation algorithm. Compared to conventional control methods, our neural 
network controller exhibits fast response time, low overshoot, and, in general, the best performance. In 
particular, the neural network controller can quickly connect or disconnect inverter-interfaced DERs without the 
need for a synchronization controller, efficiently track fast-changing reference commands, tolerate system 
disturbances, and satisfy control requirements at grid-connected mode, islanding mode, and their transition.

1 INTRODUCTION 

Distributed generation (DG) is an approach that 
employs small-scale technologies to produce 
electricity close to the end users of power. DG 
technologies often consist of modular and 
renewable-energy generators. They offer a number of 
potential benefits over traditional power generators, 
such as lower-cost electricity and increased power 
reliability and security with fewer environmental 
consequences. A microgrid is defined as an 
interconnected network of distributed energy systems 
(loads and DG resources) that can function with or 
without a connection to the main grid. This new 
approach to designing and building future smart grids 
focuses on creating a plan for local energy delivery 
that meets the needs of the constituents being served. 
Microgrids can efficiently integrate small-scale DGs 
into low-voltage (LV) systems and supply the demand 
of local customers, so their development is expected to 
yield the following benefits: 1) enable the 

development of sustainable and green electricity; 2) 
enable larger public participation in the investment in 
small-scale generation; 3) reduce the number of 
marginal central power plants, 4) improve the security 
of the supply; 5) reduce losses; and 6) enable better 
network congestion management and control to 
improve power quality. One important issue in 
microgrid operation is how to control the 
inverter-interfaced distributed energy resources 
(DERs). Conventionally, these DERs are controlled 
using standard vector control technology (mostly, 
Proportional Integral, PI, controllers). Within this 
framework, different solutions for connecting them to 
and disconnecting them from the main network have 
been proposed (Blaabjerg et al., 2006). Specifically, 
implementing a fast and accurate grid voltage 
synchronization algorithm (Rodríguez et al., 2012) is 
crucial, though this usually involves a complicated 
process. Recent studies have shown that an artificial 
neural network can be trained and used to control a 
grid-connected converter (Li et al., 2014). In (Li et al., 



2014), the neural network performance was evaluated 
mainly for d- and q-axis current tracking control of a 
grid-connected converter in a vector control condition. 
Compared to conventional vector control methods, the 
neural network yielded an extremely fast response 
time, low overshoot, and, in general, the best 
performance. The purpose of this paper is to 
investigate neural network control technology for 
control of grid-connect converters, including PQ and 
PV converters, and for control of a microgrid 
containing PQ and PV grid-connected converters. The 
main contributions of the paper include: 1) a neural 
network vector control strategy for optimal control of 
grid-connected converters (GCC); 2) a neural network 
design and training algorithm that can handle GCC 
control properly under physical system constraints; 3) 
control of inverter-interfaced DERs in a microgrid 
without using a synchronization control technique; and 
4) investigation of neural network vector control for a 
microgrid network.  

2 CONTROL ARCHITECTURES 

The control objective of a DER is to manage the active 
power transferred from the dc side to the ac side and to 
control the reactive power absorbed from the ac grid. 
This active and reactive power control usually is 
transformed into d- and q-axis current control (Li et 
al., 2011). In the d-q reference frame and using the 
motor sign convention, the voltage balance across the 
grid filter is: 
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in which vd and vq represent the Point of Common 

Coupling (PCC) d- and q-axis voltages, id and iq are 
the d- and q-axis currents from the grid to the DER, ωs 
is the angular frequency of the PCC voltage, and 
vd1and vq1 are the inverter’s d- and q-axis output 
voltages. Lf and Rf are the inductance and resistance of 
the grid filter, respectively. Using the PCC 
voltage-oriented frame (Li et al., 2011; Li et al., 2014), 
the instant active and reactive powers absorbed by the 
DER from the grid are proportional to the grid's d- and 
q-axis currents, respectively, as shown by Eqs. (2) and 
(3):  

 

  

p(t) = vdid + vqiq = vdid

q(t) = vqid − vdiq = −vdiq
 

(2) 

(3) 

      

2.1 Conventional Control Structure 

The conventional standard vector control method of a 
DER converter implements a nested-loop structure. 
The control strategy of the inner current loop is 
developed by rewriting Eq. (1) as:     
  

( )1d f d f d s f q dv R i L di dt L i vω= + ⋅ − +  (4) 

( )1q f q f q s f dv R i L di dt L iω= + ⋅ +  (5) 

in which the expressions in parentheses are treated 
as the state equations between the voltage and current 
on the d- and q-axis loops, and the remaining 
expressions are treated as compensation terms (Li et 
al., 2011; Rocabert et al., 2011). The final control 
voltages,vd1

* and vq1
*, applied to the DER converter 

include the d- and q-axis voltages, vd
’ and vq

’, 
generated by the current-loop controllers, in addition 
to the compensation terms, as shown in Eq. (6). Hence, 
the conventional control configuration of the DER 
converter intends to regulate id and iq using vd

’ and vq
’, 

respectively. However, as indicated in (Li et al., 2011), 
vd

’ is only effective for reactive power, or iq, control, 
and vq

’ is only effective for active power, or id, control. 
Although the final control voltage applied to the 
converter contains the compensation terms, those 
compensation terms are not generated by the PI 
controllers.   

 
* ' * '
1 1,d d s f q d q q s f dv v L i v v v L iω ω= − + = +   (6) 

 

2.2 Neural Network Control Structure 

Following (Li et al., 2011), our neural network vector 
control structure of a DER a d-axis loop is used for 
active power control and a q-axis loop is used for 
reactive power, or grid voltage support control. The 
error signal between the measured and reference active 
power generates a d-axis current reference to the 



neural network through a PI controller, while the error 
signal between the actual and desired reactive power 
generates a q-axis current reference. The neural 
network, known here as the action network, is applied 
to the DER inverter through a pulse width modulation 
(PWM) mechanism to regulate the DER output voltage 
in the three-phase ac system. The ratio of the inverter 
output voltage to the output of the action network is a 
gain of kPWM, which equals Vdc/2 if the amplitude of 
the triangle voltage waveform in the PWM scheme is 
1V (Mohan et al., 2002). The integrated DER system, 
described by Eq. (1), is rearranged into the standard 
state-space representation using Eq. (7), in which the 
system states are id and iq, PCC voltages vd and vq 
normally are constant, and converter output voltages 
vd1and vq1 are the control voltages to be specified by 
the output of the action network. For digital control 
implementation and offline training of the neural 
network, the discrete equivalent of the continuous 
system state-space model, Eq. (7), must be obtained 
using Eq. (8), in which Ts represents the sampling 
period, k is an integer time step, F is the system matrix, 
and G is the matrix associated with the control voltage. 
In this paper, a zero-order-hold discrete equivalent 
(Franklin et al., 1998) is used to convert the 
continuous state-space model of the system in Eq. (7) 
to the discrete state-space model in Eq. (8). In all 
experiments, Ts=1ms. 
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The action network is a fully connected multi-layer 
perceptron (Hagan et al., 2002) with six input nodes, 
two hidden layers having six nodes each, two output 
nodes, and shortcut connections between all pairs of 
layers, with hyperbolic tangent functions at all nodes. 
These six input components correspond to 1) the d- 
and q-axis current signals, 2) the two error signals of 
the d- and q-axis currents, and 3) the two integrals of 
the error signals. To simplify the expressions, the 
discrete system model in Eq. (8) is represented by:  

 

!
idq k +1( ) = F ⋅ !idq k( )+G ⋅ !vdq1 k( ) - !vdq( )  (9) 

For a reference dq current, the control action 
applied to the system is expressed by: 

 

   
!vdq1 k( ) = kPWM ⋅ A

!
idq k( ),!idq k( )− !idq _ ref k( ),!sdq (k), !w( )  (10) 

in which 
!w  represents the weight vector of the 

action network, and 
!sdq (k) represents the network’s 

integral input vector defined by 
!s(k) =

!
idq t( )−

!
ida_ ref t( )( )dt0

k

∫ . To prevent the neural 

network controller from being affected by the PCC 
voltage variation, we used a strategy that introduces 
the disturbance PCC voltage to the output of the 
network.  

3 NEURAL NETWORK TRAINING 

Unlike the conventional standard vector controller, the 
neural network controller is produced through training 
using Dynamic Programming (DP). DP employs 
Bellman’s Principle of Optimality (Bellman, 1957) 
and is a very useful tool for solving optimal control 
problems (Balakrishnan and Viega, 1996; He et al., 
2012). The typical structure of discrete-time DP 
includes a discrete-time system model and a 
performance index or cost associated with the system 
(Wang et al., 2009). The DP cost function associated 
with the vector-controlled system is defined as: 
 

C idq
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in which α is a constant. The function C(⋅),  
depending on the initial time j and the initial state 



idq
!"!
( j),  is referred to as the cost-to-go of state idq

!"!
( j)  

of the DP problem. The objective of the neural 
network controller is to solve a current tracking 
problem, i.e., to hold the existing state

!
idq  near a given 

(possibly moving) target state
!
idq
*  so that the function 

C(⋅) in Eq. (11) is minimized. The current-loop action 
network was trained to minimize the DP cost in Eq. 
(11) using Levenberg-Marquardt backpropagation 
(LMBP) (Hagan et al., 2002). LMBP, a variation of 
Newton’s method, minimizes a function that is the 
sum of squares of a nonlinear function. Using LMBP 
with a general value for α  requires a modification 
for the cost function ( )C ⋅ defined in Eq. (11). Consider 

the cost function C = γ k− jU (edq
! "!
(k))

k= j

∞

∑ , in which 

γ =1, 1,=j  and    k = 1,…, N .  Then, C  can be 
written as: 
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in which V (k) = U (edq
! "!
(k)) and the gradient 

∂C / ∂w
!"

can be written in matrix form as:  
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in which  V
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Jacobian matrix J (w
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) is:  
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(15) 

Therefore, the process of updating the weights 
using LMBP for a neural network controller can be 
expressed as: 

 

Δw
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= − J (w
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)T J (w
!"
) + µI⎡
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−1
J (w
!"
)TV
!"

 
(16) 

The parameter µ was dynamically adjusted to 
ensure that the training followed the decreasing 
direction of the cost function. When µ increased, (16) 
approached the steepest descent algorithm with a small 
learning rate, while as µ  decreased, the algorithm 
(16) approached Gauss-Newton, which typically 
provides faster convergence. In order to increase the 
speed of computation, the weight update in Eq. (16) 
was conducted using Cholesky factorization, which is 
roughly twice as efficient as lower-upper 
decomposition for solving systems of linear equations 
(Press et al., 1992).  

To train the action network, the system data 
associated with Eq. (7) had to be specified. The 
training procedure for the current-loop action network 
involved: 1) randomly generating a sample initial state 
idq(j); 2) randomly generating a changing sample 
reference dq current time sequence; 3) unrolling the 
trajectory of the system from the initial state; 4) 
training the current-loop neural network based on Eq. 
(16); and 5) repeating the process for all of the sample 
initial states and reference dq currents until reaching a 
stop criterion associated with the DP cost. All of the 
network weights initially were randomized using a 
uniform distribution with zero mean and 0.1 
variance.The generation of the reference current 
considered the physical constraints of a practical DER 
inverter system. The randomly generated d- and q-axis 
reference currents first were chosen uniformly from 
[-Irated,Irated], in which Irated represents the rated inverter 
line current. Then, these randomly generated d- and 
q-axis current values were checked and modified to 
ensure that their resultant magnitude did not exceed 
the inverter’s rated current limit and/or the control 
voltage did not exceed the converter’s PWM saturation 
limit. From the neural network standpoint, the PWM 
saturation constraint indicates the maximum positive 
or negative voltage that the action network can output. 
Therefore, if a reference dq current requires a control 
voltage that exceeds the acceptable voltage range of 
the action network, it is impossible to reduce the cost 
during the training of the action network. The neural 
network controller is trained offline, and no training 
occurs in the real-time control stage. Without online 
training, a real-time control action can be computed 
very quickly using modern DSP chips. The most 



important issue is the sampling time. However, an 
optimal neural network controller can be trained using 
a large sampling time based on the DP principle, while 
tuning a conventional controller for the same sampling 
time could be very difficult or impossible. Therefore, 
the neural network controller actually has lesser 
sampling and computing power requirements during 
the real-time control process. 

4 CONTROL OF INVERTER DER  

The key requirements for controlling 
inverter-interfaced DERs within a microgrid include: 
1) active power control; 2) reactive power control; 3) 
grid voltage support control, and 4) control under 
physical constraints. If a GCC can meet these control 
requirements, it can be applied broadly to power and 
energy system applications involving GCCs. In our 
experiments, the system data and controller parameters 
for various control purposes are as in Tables 1 and 2:  
 

Table 1: Systems data. 
 

Component Parameter Value 

AC system 
  Line voltage 400V 

   Frequency 60Hz 

Transmission line 
   Resistance   0.0076Ω 

   Inductance   0.154mH 

  Grid-filter 
   Resistance   0.006Ω 

   Inductance 1mH 

DER converter   Switching frequency   3000Hz 

DC system    Voltage 700V 

 

Table 2: Parameters of DER controller (kp – proportional 
gain, ki – integral gain). 

Approach Controller Gain (kp / ki) 

Conventional 
Current loop   1.54 / 53.52 

  AC bus voltage   1.09 / 35.6 

  Neural network 
Current loop    Neural network 

  AC bus voltage   1.09 / 35.6 

 

The PCC bus was connected to the microgrid 
through a transmission line that was modeled by an 

impedance. A fault-load was connected before the 
PCC bus to evaluate how the controller behaves when 
a fault appears in the grid. The DER inverter’s 
switching frequency was 3kHz. Typical strategies for 
operating a DER in a microgrid include PQ-inverter 
DER and PV-inverter DER (Katiraei et al., 2008). In 
the power converter switching condition, the controller 
can be evaluated under close to real-life conditions. 
The position of the PCC voltage space vector θv was 
obtained directly from the PCC voltage measurement 
in the α-β reference frame given by: 

 

  
θv = tan−1 vα vβ( )  (17) 

     
 

4.1 Control of PQ-Inverter DERs 

A PQ-inverter DER operates by injecting active and 
reactive power into the microgrid. The active and 
reactive power control at the PCC of an 
inverter-interfaced DER is converted to d- and q-axis 
current control. The d- and q-axis current references, 
id

* and iq
*, are obtained either through a PI control 

mechanism or by calculating Eqs. (2) and (3), as 
discussed in (Li et al., 2011): 
 

* * * *,d ac d q ac di P v i Q v= = −  (18) 

The desired active power of the DER normally is 
generated according to either a maximum power 
capture rule for a renewable DER unit or an active 
power control demand from the microgrid central 
control (MGCC) level. The desired reactive power is 
issued either locally for the unity power factor or 
centrally according to a control command from the 
MGCC.  

Fig. 1 in the Appendix presents a case study of the 
PQ-controlled DER using the conventional and neural 
network control methods. At first, the active and 
reactive power references were 40kW and 0kVar, 
respectively. After the system started, the neural 
network controller quickly regulated the active and 
reactive power of the DER to the reference values. 
When the reference power took on new values of 
-50kW/20kVar and -100kW/10kVar at t=2sec and 
t=4sec, respectively, the neural network controller 
immediately restored DER power to the new reference 
values (Fig. 1a). As shown in Fig. 1c, the three-phase 



grid current was properly balanced. For any other 
commanded change of the reference power within the 
DER-rated power limit, the system could be adjusted 
immediately to the new reference power, 
demonstrating the strong optimal control capability of 
the neural network vector controller. Compared to the 
neural network controller, the conventional controller 
was slower, had a higher oscillation, and took longer 
to reach its target value. This was more evident at 
t=0sec when starting the system. 

4.2 Control of PV-Inverter DERs 

One critical disadvantage of the PQ-inverter DER is 
that the PCC bus voltage changes as active and 
reactive power are transferred through the PCC and as 
the load varies. A PV-inverter DER operates by 
injecting active power into the microgrid while 
simultaneously maintaining the PCC bus voltage at a 
desired value. The desired active power is formed in 
the same way as that used in a PQ-inverter DER, but 
the reactive power is controlled according to the error 
signal between the desired and the actual PCC bus 
voltage to which the inverter is connected. Therefore, 
as the PCC bus voltage fluctuates, so does the 
reference q-axis current generated by a PI controller. 

Fig. 2 in Appendix presents a case study of the 
PV-inverter DER using the conventional and neural 
network controllers. The active power reference was 
the same as that used in the case study presented in 
Fig. 1, while the reference PCC voltage was 1pu. After 
the system started, the neural network controller 
quickly regulated the active power of the DER and the 
PCC bus voltage to the reference values. The inverter 
initially absorbed active power from the grid, and the 
reactive power was generated so as to maintain the 
PCC voltage at 1pu. When the reference active power 
in the ac system began to generate at t=2sec, the 
reactive power shifted from generating to absorbing. 
At t=4sec, the reactive power absorbed more in order 
to maintain the PCC voltage for the increased active 
power generated by the DER (Fig. 2a). Similar to Fig. 
1, this case study demonstrates the excellent 
performance of the neural network vector controller 
for the PV-inverter DER. However, using the 
conventional controller, a large oscillation occurred 
each time the DER active power changed significantly 
(Fig. 2b). 

4.3 Control of DER Inverter under 
Constraints 

In practice, a DER inverter cannot operate beyond the 
rated power and PWM saturation of the converter. To 
handle DER operation under such conditions, we 
propose controlling the DER by maintaining the 
effectiveness of the active power control while 
meeting the reactive power control demand as much as 
possible. This is expressed as: minimize Qac −Qac

* , 

subject to 
 

  

Pac = Pac
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2 ≤ Irated ,
vd1

2 + vq1
2

3
≤
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2 2
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⎩
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 . 

For the conventional controller, the following 
strategies are used. To prevent the DER converter 
from exceeding the PWM saturation limit, Eq. (19) is 
applied if the amplitude of the reference voltage 
generated by the inner current-loop controller exceeds 
the converter’s PWM saturation limit (Gagnon, 2009; 
Li et al., 2011), in which vd1_new

* and vq1_new
* are the d 

and q components of the modified controller output 
voltage, and Vmaxis the maximum allowable dq 
voltage: 

 

  
vd1_ new

* =Vmax cos ∠vdq1
*( ) vq1_ new

* =Vmax sin ∠vdq1
*( )

 

(19) 

 
To prevent the DER converter from exceeding the 

rated current, Eq. (20) is employed if the amplitude of 
the reference current generated by the outer control 
loop exceeds the rated current limit, i.e., the d-axis 
current reference id

* is kept constant to maintain active 
power control effectiveness, while the q-axis current 
reference iq

* is modified to satisfy the reactive power 
or ac system bus voltage support control demand as 
much as possible (Gagnon, 2009; Li et al., 2011): 
 

  
id _ new

* = id
* iq _ new

* = sign iq
*( ) ⋅ idq _ max

*( )2
− id

*( )2

 

(20) 

 



For the neural network controller, if |idq
*| generated 

by the dc-voltage or the active and reactive power 
control loops exceeds the rated current limit, id

* and iq
* 

are modified by Eq. (20) before being applied to the 
action network (Li et al., 2011); if |vdq1

*| generated by 
the current control loops exceeds the PWM saturation 
limit, the action neural network automatically turns 
into a state by regulating vq1 to maintain the 
effectiveness of the active power control while 
restraining vd1 to meet the reactive power control 
demand as much as possible.  

Fig. 3 in the Appendix presents a case study of the 
PQ-inverter DER in which there was high demand for 
reactive power generation. The active power reference 
was the same as that used in the case study illustrated 
in Fig. 2, while the reactive power demand caused the 
required control voltage to exceed the inverter’s PWM 
saturation limit at t=3sec. As Fig. 3a illustrates, the 
neural network controller automatically restrained the 
reactive power control while maintaining the 
effectiveness of the active power control at t=3sec. At 
t=5sec, when the reactive power demand generation 
decreased, causing the control voltage to fall below the 
PWM saturation limit, the neural network controller 
returned to its normal control condition immediately. 
For the conventional controller, however, when the 
control voltage exceeded the inverter’s PWM 
saturation limit at t=3sec, the system could not follow 
the control commands properly due to its competing 
control nature (Li et al., 2011), as shown in Fig. 3b. 

Fig. 4 in the Appendix presents a case study of the 
PV-inverter DER for PCC voltage support control 
under a moderate voltage drop caused by a fault at 
t=3sec. Due to the inverter’s PWM saturation 
constraint, the neural network controller could not 
maintain the PCC voltage at 1pu to compensate for the 
voltage drop (Fig. 4c). Instead, it operated by 
maintaining the effectiveness of the active power 
control while providing PCC voltage support control 
as much as possible. At t=5sec, when the short circuit 
was cleared, the neural network controller returned to 
its normal operating condition, and the PCC bus 
voltage recovered to the rated bus voltage quickly, 
thus demonstrating the neural network controller’s 
excellent PCC voltage support control under the 
physical constraints of DERs. For the conventional 
controller, however, when the required control voltage 
exceeded the inverter’s PWM saturation limit shortly 
after t=3sec, the system could not follow the control 
commands properly, as shown in Fig. 4b and 4d. 

5 MICROGRID CONTROL AND 
STABILITY ANALYSIS  

5.1 A Benchmark Microgrid Network 

A typical benchmark low-voltage (LV) microgrid 
network was built using MatLab SimPowerSystems 
and an Opal-RT real-time simulation system, as shown 
in Fig. 5. The microgrid was supplied through a LV 
feeder to serve a suburban residential area with a 
limited number of consumers connected along its 
length. The microgrid consisted of DGs from the most 
relevant technologies, such as solar photovoltaics, 
wind turbines, microturbines, and fuel cells. The 
impedance data for various line types used in the 
network, as well as detailed information about the 
installed capacities of the microturbine, fuel cell, and 
battery storage device, are available in 
(Papathanassiou et al., 2005)). The loads were 
assumed to have similar load patterns. The power 
factor was 0.85 lagging. The DGs were connected to 
the following buses: solar on buses 6 and 7, wind on 
bus 6, microturbine on bus 5, fuel cell on bus 8, and 
battery on bus 4. Thus, the benchmark network 
maintained the important technical characteristics of 
real-life utility distribution systems, while dispensing 
with the complexity of actual networks, to permit the 
efficient modeling and simulation of the microgrid’s 
operation. 

 

 
 

Figure 5. Benchmark LV microgrid networks using neural 
controllers. 



5.2 DER Synchronization 

Before connecting any DER to the microgrid, it must 
be synchronized accurately with the network voltage 
to avoid over currents (Rodríguez et al., 2012). Most 
grid-tied systems use a phase locked loop (PLL) for 
synchronization (Rodríguez et al., 2012). Many grid 
synchronization applications for three-phase systems 
are based on the implementation of synchronous 
reference frame PLLs (SRF-PLL) (Chung, 2000), in 
which the three-phase grid voltage is transformed 
using Clarke and Park transformation into a stationary 
reference frame (Chung, 2000). The quadrature 
component of the voltage resulting from this 
synchronous transformation, namely, vq, is conducted 
to zero using a PI controller. The output of the PI 
controller provides the estimated value of the rotating 
frequency of the SRF-PLL. Integrating this frequency 
yields the phase angle of the SRF (θ). When the 
quadrature component, vq, is equal to zero, θ matches 
the phase angle of the input voltage vector; hence, the 
PLL is synchronized with the positive-sequence 
component of the grid. Although the SRF-PLL 
performs appropriately under balanced voltages, it 
exhibits highly deficient performance under 
unbalanced and distorted grid conditions (Rocabert et 
al., 2011)). Moreover, its performance is very sensitive 
to sudden changes in the phase angle, which makes it 
less reliable when synchronizing power converters 
with the grid (Rocabert et al., 2011). However, this is 
not the case when using the neural network vector 
controller. The neural controller can better satisfy the 
requirements of an ideal controller with its close to 
zero rise time, zero overshoot, and zero settling time. 
Therefore, it is possible to connect the 
inverter-interfaced DERs to the grid using the neural 
vector controller directly, without pre-synchronization.  

Fig. 6 in Appendix compares the performance of 
the conventional and neural network control methods 
without synchronization control when connecting the 
two-DER systems to the grid. Neither DER was 
connected to the MG before t=1sec. When DER1 and 
DER2 were connected to the MG at 1sec and 2sec, 
respectively, the system reached the reference current 
or power demand of each micro-source almost 
immediately, without any over current, using the 
neural network controller. However, using the 
conventional controller, a large oscillation appeared in 
the ac system three-phase currents, depending on the 
extent to which the DER was synchronized with the 

grid when closing the switch. The comparison 
demonstrates the superior synchronization capability 
of the neural network vector controller, which is due to 
this controller having been trained to implement the 
optimal control according to the DP principle. An ideal 
optimal controller would allow a reference value to be 
reached immediately without any oscillation. A 
well-trained neural network controller based on the DP 
principle could exhibit very close to ideal performance 
to satisfy the need for fast synchronization. 

5.3 Microgrid Control and Stability  

The performance of neural networks for microgrid 
control was further evaluated under the following 
conditions. Initially, the microgrid was connected to 
the main grid. The solar and wind turbine at Bus 6 
operated in the maximum power extraction and PCC 
voltage control mode. The PCC voltage control has the 
advantage of providing a better voltage quality to the 
microgrid, which is particularly important under the 
microgrid islanding condition. The converter of the 
microturbine at Bus 5 operated in the V-f control mode 
based on the conventional droop control concept 
(Bottrell et al., 2013; Lee et al., 2013; Rowe et al., 
2013), which is a necessary requirement especially in 
the microgrid islanding operating condition. The droop 
control is implemented by 
 

  
fs = fs0 − rf Pac − Pac0( ),Vac =Vac0 − rV Qac −Qac0( )  (21) 

where fs0 and Vac0 represent the nominal frequency 
and voltage, Pac0 and Qac0 signify the PCC active and 
reactive power that the microturbine is expected to 
generate at the nominal frequency and voltage, rf and 
rV are the coefficients corresponding to frequency- and 
voltage-droop characteristics, and fs, Vac, and Pac and 
Qac represent the instant frequency, voltage, and PCC 
active and reactive powers, respectively. The battery at 
Bus 4 employed the vector control structure with the 
d-axis loop for active power control and q-axis loop 
for PCC voltage control. Again, with the PCC voltage 
control, a better voltage quality across the microgrid 
can be achieved. The reference active power command 
P*

ac of the battery converter is generated based on the 
frequency-droop characteristic as shown by 
 



Pac
* = Pac0

* − 1
Rf

fs − fs0( )  
(22) 

where P*
ac0 represents the secondary active 

reference power command generated by the MGCC. 
Hence, if the frequency fs of the microgrid equals to 
the nominal frequency fs0, the reference power 
command P*

ac of the battery equals to the power 
command P*

ac0 from the MGCC; if the frequency fs of 
the microgrid is different from the nominal frequency 
fs0, the reference power command equals to the power 
command P*

ac0 from the MGCC plus an adjustment 
generated according to the droop principle. 

Fig. 7 shows the performance of the microgrid in 
the grid-connected mode, islanding mode, and 
transition from the grid-tied to islanding mode. Due to 
variable weather conditions, the power transferred 
from a wind turbine or solar array changed constantly. 
This is represented by a changing d-axis current as 
shown in Figs. 7a and 7b. Before t=2sec, only wind 
and solar DERs at Bus 6 were connected to the 
microgrid. At t=2sec, the battery at Bus 4was 
connected to the microgrid with full charging power, 
which increased the power supplied by the grid to the 
microgrid (Fig. 7e). At t=4sec, non-critical loads 
within the microgrid were curtailed to prepare for the 
islanding operation, which increased voltage distortion 
within the microgrid network as demonstrated by 
higher d- and q-axis current oscillation from wind, 
solar, and battery DERs in Figs. 7a to 7c. At t=6sec, 
the battery shifted from charge mode to discharge 
mode, which decreased the power supplied by the grid 
even more (Fig. 7e). During the grid-connected mode, 
the microgrid frequency was stable (Fig. 7d) so that 
the reference power of the battery converter depended 
mainly on the charge or discharge power command 
from the MGCC (Fig. 7c). At t=8sec, the microgrid 
shifted from the grid-tied mode to the islanding mode. 
Therefore, no power was transferred from the grid to 
the microgrid after t=8sec (Fig. 7e) and at the same 
time there was a large increase of the power supplied 
by the microturbine (Fig. 7f). Note that in Figs. 7e and 
7f, the motor sign convention is used to represent the 
power absorbed by the microgrid from the grid or 
power absorbed by the microturbine from the 
distribution network. In the islanding mode, the 
microgrid frequency was more sensitive to the load 
and DER power variations (Fig. 7d). The frequency 
alteration caused the battery controller to adjust the 
MGCC power reference according to the droop 

principle (Eq. (22) and Fig. 7c). During both the 
grid-tied and islanding modes, the microgrid voltage 
was properly maintained around the desired value 
(Figs. 7g and 7h). Although there was a high 
oscillation in DER currents during the transition from 
the grid-tied to islanding mode (Fig. 7i), the current 
oscillation of the loads within the microgrid is not 
obvious (Fig. 7j).  

For each DER, only information about the nominal 
PCC voltage, nominal dc voltage, and resistance and 
inductance values of the grid filter is required to train 
the neural network controller of the DER converter. 
The same information is needed for the design of a 
conventional controller, as well. After the training, the 
neural network controller can be applied to the DER 
converters in a microgrid, although the distribution 
system structure seen by each DER may be different. 
Again, the study shown by Fig. 7 demonstrates a great 
performance and stability of the microgrid in grid-tied 
mode, islanding mode, and transition from the 
grid-tied to islanding mode by using the proposed 
neural network vector controllers, which is an 
important issue in microgrid operation (Bottrell et al., 
2013; Lee et al., 2013; Rowe et al., 2013). 

6 CONCLUSIONS  

 
This paper presented a neural network control 
mechanism for the control of a microgrid and the 
distributed energy sources within the microgrid. This 
controller, which implements dynamic programming, 
was trained with a Levenberg-Marquardt 
backpropagation algorithm. Compared to conventional 
vector control methods, the neural network controller 
demonstrated a stronger ability to determine optimal 
control actions from multiple inputs. It boasts very fast 
response and close to ideal controller performance. It 
does not require synchronization to initially connect a 
DER or a microgrdi to the grid, making it a potential 
solution to many challenges in the operation and 
management of DERs and future smart microgrids. 
Using a neural network control technique, a microgrid 
can achieve a better voltage profile, high power quality 
and quick connection or disconnection of a distributed 
energy source to the microgrid. In future work, we 
plan to build a micro-scale microgrid system and 
obtain real data and more solid experiment results. 
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a) Active and reactive power (neural network) 

 
b) Active and reactive power (conventional) 
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c) Three-phase current (neural network) 

 
d) Three-phase current (conventional) 

 
Fig. 1. Performance of PQ-inverter DER using conventional and neural network controllers (Ts=1ms). 

 

 
a) Active and reactive power (neural network) 

 
b) Active and reactive power (conventional) 

 
c) PCC voltage (neural network) 

 
d) PCC voltage (conventional) 

Fig. 2. Performance of PV-inverter DER using conventional and neural network controllers (Ts=1ms). 

 

a) Active and reactive power (neural network) 

 

b) Active and reactive power (conventional) 

Fig. 3. PQ-inverter DER with constraints using conventional and neural network controllers. 
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a) Active and reactive power (neural network) 

 
b) Active and reactive power (conventional) 

 

c) PCC voltage (neural network) 

 

d) PCC voltage (conventional) 

Fig. 4. PV-inverter with constraints using conventional and neural network controllers. 

 

 
a) DER1 current (neural network) 

 
b) DER1 current (conventional) 

 

c) DER2 current (neural network) 

 

d) DER2 current (conventional) 

Fig. 6. Three-phase currents when connecting DERs to the grid without synchronization control. 
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a) Solar inverter d- and q-axis currents 

 
b) Wind turbine inverter d- and q-axis currents 

 
c) Battery inverter d- and q-axis currents 

 
d) Microgrid frequency 

 
e) Active and reactive power absorbed from the grid 

 
f) Active and reactive power of the microturbine 

 
g) RMS line voltage at Bus 4 

 
h) RMS line voltage at Bus 6 

 
i) Three-phase PCC current of wind DER 

 
j) Three-phase load current at Bus 8 

Fig. 7. Performance of neural network controlled microgrid. 
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